Manipulative Properties of Asymmetric Double Quantum Dots via Laser and Gate Voltage
Institute of Scientific and Technical Information of China (English)
ZHAO Shun-Cai; LIU Zheng-Dong
2009-01-01
We present a density matrix approach for the theoretical description of an asymmetric double quantum dot (QD) system. The results show that the properties of gain, absorption and dispersion of the double QD system, the population of the state with one hole in one dot and an electron in another dot transferred by tunneling can be manipulated by a laser pulse or gate voltage. Our scheme may demonstrate the possibility of electro-optical manipulation of quantum systems.
Asymmetric double quantum well structure as a tunable detector in the far-infrared range
Shin, U; Park, M J; Lee, S J
1999-01-01
The eigenvalues and the wave functions of GaAs/Al sub x Ga sub 1 sub - sub x As asymmetric double quantum well structure have been calculated by using of complex energy method. Based on theoretical calculations, tuning ranges from 9 to 14 mu m are predicted for the proposed asymmetric coupled-quantum-well structure. In addition we calculated the energy eigenvalues and the wave functions of an electron in GaAs/Al sub x Ga sub 1 sub - sub x As single quantum well structure (including delta-perturbation). the variation in E sub 1 , the ground state energy eigenvalue of the electron, depends on the strength and position of the perturbation within the well.
Asymmetric Quantum Transport in a Double-Stranded Kronig-Penney Model
Cheon, Taksu; Poghosyan, Sergey S.
2015-06-01
We introduce a double-stranded Kronig-Penney model and analyze its transport properties. Asymmetric fluxes between two strands with suddenly alternating localization patterns are found as the energy is varied. The zero-size limit of the internal lines connecting two strands is examined using quantum graph vertices with four edges. We also consider a two-dimensional Kronig-Penney lattice with two types of alternating layer with δ and δ' connections, and show the existence of energy bands in which the quantum flux can flow only in selected directions.
Optical absorption in asymmetric double quantum wells driven by two intense terahertz fields
Institute of Scientific and Technical Information of China (English)
Wu Hong-Wei; Mi Xian-Wu
2013-01-01
Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.Wben the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.
Tunneling-Induced Transient Gain in an Asymmetric Double Quantum Well
Institute of Scientific and Technical Information of China (English)
XU Wei-Hua; WU Jin-Hui; GAO Jin-Yue
2004-01-01
@@ We investigate the transient behaviour of a weak probe in asymmetric double quantum well structures, where two excited states are coupled by resonant tunnelling through a thin barrier in a three-level system of electronic subbands. There is no external coherent coupling field applied, and we find that probe gain can be achieved during the transient process, which is induced by the coherent coupling of the upper states via the resonant tunnelling.We show that the transient behaviour of the probe depends on the coupling strength and the dephasing rate and can be tuned by changing the width of the tunnelling barrier.
Niculescu, E. C.
2017-02-01
Electromagnetically induced transparency in an asymmetric double quantum well subjected to a non-resonant, intense laser field is theoretically investigated. We found that the energy levels configuration could be switched between a Λ-type and a ladder-type scheme by varying the non-resonant radiation intensity. This effect is due to the laser-induced electron tunneling between the wells and it allows a substantial flexibility in the manipulation of the optical properties. The dependence of the susceptibilities on the control field Rabi frequency, intensity of the nonresonant laser, and the control field detuning for both configurations are discussed and compared.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)
2015-02-15
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.
Energy Technology Data Exchange (ETDEWEB)
Das, S.; Nayak, R.K.; Sahu, T., E-mail: tsahu_bu@rediffmail.com; Panda, A.K.
2015-11-01
We study the effect of coupling of subband wave functions on the multisubband electron mobility in a barrier delta doped GaAs/Al{sub x}Ga{sub 1−x}As asymmetric double quantum well structure. We use selfconsistent solution of the coupled Schrödinger equation and Poisson's equation to calculate the subband wave functions and energy levels. The low temperature mobility is considered by using scatterings due to ionized impurities, interface roughness and alloy disorder. We show that variation of the width of the central barrier considerably affect the interplay of different scattering mechanisms on electron mobility through intersubband effects. Under single subband occupancy, the mobility increases with decrease in the barrier width as functions of doping concentration as well as function of well width. However, in case of double subband occupancy, effect of intersubband interaction yields opposite trend, i.e., increase in mobility with increase in barrier width. It is gratifying to show that in case of asymmetric variation of well widths the mobility shows nonmonotonic behavior which varies with change in the width of the central barrier under double subband occupancy.
Dynamical behaviors of an exciton in an asymmetric double coupled quantum dot
Institute of Scientific and Technical Information of China (English)
LIU Can-de; LIU Wen; LI Feng-ling; WU Da-peng; SU Xi-yu
2006-01-01
Dynamical behaviors of an exciton in an asymmetric double coupled quantum dot and an altematingcurrent (ac) electric field have been analyzed based on the two-level approximation theory,and the conditions under which dynamical localization occurs are obtained.It shows that when the amplitude of the ac electric field is small,the Coulomb interaction plays an important role.The dynamical behaviors of the exciton are mainly confined in the low-level subspace.When the ratio of the field intensity to frequency is the root of Bessel function,electron and hole are localized in one dot,and they can be divided with the increasing amplitude of the ac electric field.
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
Dispersive properties of tunnelling-induced transparency in an asymmetric double quantum well
Institute of Scientific and Technical Information of China (English)
苏雪梅; 卓仲畅; 王立军; 高锦岳
2002-01-01
We have investigated the dispersive properties of tunnelling-induced transparency in asymmetric double quantumwell structures where two excited states are coupled by resonant tunnelling through a thin barrier in a three-levelsystem of electronic subbands. The intersubband transitions exhibit high dispersion at zero absorption, which leads tothe slow light velocity in this medium as compared with that in vacuum (c＝3× 108). The group velocity in a specificGaAs/AlGaAs sample is calculated to be vg＝c/4.30. This structure can be used to compensate for the dispersion andenergy loss in fibre optical communications.
Energy Technology Data Exchange (ETDEWEB)
Nayak, R. K.; Das, S.; Panda, A. K.; Sahu, T., E-mail: tsahu-bu@rediffmail.com [Department of Electronics and Communication Engineering, National Institute of Science and Technology, Palur Hills, Berhampur-761 008, Odisha (India)
2015-11-15
We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.
Directory of Open Access Journals (Sweden)
SUBHA SUBRAMANIAM
2013-01-01
Full Text Available In this paper modeling framework for single gate conventional planar MOSFET and double gate (DG MOSFETS are reviewed. MOS Modeling can be done by either analytical modeling or compact modeling. Single gate MOSFET technology has been the choice of mainstream digital circuits for VLSI as well as for other high frequency application in the low GHZ range. The major single gate MOS modeling methods are reviewed and compared. First generation to fifth generation MOS models like BSIM & PSP are compared. The use of multiple gates has emerged as a new technology to replace the conventional planar MOSFET when itsfeature size is scaled to the sub 22nm regime. Double Gate devices seem to be attractive alternatives as they can effectively reduce the short channel effects and yield higher current drive. DGFETS are classified as Symmetric Double Gate FETs (SDGFET and Asymmetric Double Gate FETs (ADGFET. This paper covers the fundamentals of SDGFETs and ADGFETs. Drain current models for single gate MOSFETs, SDGFETs and ADGFETs are reviewed. In the Double gate MOS era the dominating quantum mechanical effects which has to be considered in two dimensional modeling are also discussed. The comparisons of drain current models for Symmetric and Asymmetric Double gate MOSFETs are done and shown with the results like limitations of the models. A brief summary of the review work is provided. The result shows a greater demand in the field of Asymmetric Double gate modeling which can be extended for circuits like SRAM and RF amplifier design. Thepremier quantum mechanical effects which should be included in model development for below 22nm devices are listed.
On Asymmetric Quantum MDS Codes
Ezerman, Martianus Frederic; Ling, San
2010-01-01
Assuming the validity of the MDS Conjecture, the weight distribution of all MDS codes is known. Using a recently-established characterization of asymmetric quantum error-correcting codes, linear MDS codes can be used to construct asymmetric quantum MDS codes with $d_{z} \\geq d_{x}\\geq 2$ for all possible values of length $n$ for which linear MDS codes over $\\F_{q}$ are known to exist.
Abedi, Kambiz
2011-12-01
In this paper, the strain effect on saturation optical intensity in electroabsorption modulators (EAMs) based on asymmetric intra-step-barrier coupled double strained quantum well (AICD-SQWs) active region is theoretically investigated and compared with intra-step quantum well (IQW) structure. For this purpose, the thermionic emission and tunneling escape processes are taken into account and the escape times of photogenerated carriers are calculated. Then, the electroabsorption coefficient is calculated for different well strains for TE input light polarization. Finally, the saturation optical intensity of electroabsorption modulators with AICD-SQW structures in comparison with IQW structure is evaluated. Numerical results show that the tensile strain of well has the most significant effect on the saturation optical intensity of electroabsorption modulators with AICD-SQW structures due to reduction in escape times.
Institute of Scientific and Technical Information of China (English)
Cen Long-Bin; Shen Bo; qin Zhi-Xin; Zhang Guo-Yi
2009-01-01
The influence of applied electric fields on the absorption coefficient and subband distances in asymmetrical AlN/GaN coupled double quantum wells (CDQWs) has been investigated by solving Schrodinger and Poisson equations self-consistently. It is found that the absorption coefficient of the intersubband transition (ISBT) between the ground state and the third excited state (1odd -2even) can be equal to zero when the electric fields are applied in asymmetrical A1N/GaN CDQWs,which is related to applied electric fields induced symmetry recovery of these states. Meanwhile,the energy distances between 1odd -2even and 1even - 2even subbands have different relationships from each other with the increase of applied electric fields due to the different polarization-induced potential drops between the lett and the right wells. The results indicate that an electrical-optical modulator operated within the opto-communication wavelength range can be realized in spite of the strong polarization-induced electric fields in asymmetrical AIN/GaN CDQWs.
Time Asymmetric Quantum Mechanics
Directory of Open Access Journals (Sweden)
Arno R. Bohm
2011-09-01
Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
Zhang, Xiang; Mitin, Vladimir; Choi, Jae Kyu; Sablon, Kimberly; Sergeev, Andrei
2016-05-01
We designed, fabricated, and characterized multi-color IR photodetectors with asymmetrical doping of GaAs/AlGaAs double quantum wells (DQW). We measured and analyzed spectral and noise characteristics to evaluate feasibility of these photodetectors for remote temperature sensing at liquid nitrogen temperatures. The bias voltage controls the charge distribution between the two wells in a DQW unit and provides effective tuning of IR induced electron transitions. We have found that the responsivity of our devices is symmetrical and weakly dependent on the bias voltage because the doping asymmetry compensates the effect of dopant migration in the growth direction. At the same time, the asymmetrical doping strongly enhances the selectivity and tunability of spectral characteristics by bias voltage. Multicolor detection of our QWIP is realized by varying the bias voltage. Maximum detection wavelength moves from 7.5 μm to 11.1 μm by switching applied bias from -5 V to 4 V. Modeling shows significant dependence of the photocurrent ratio on the object temperature regardless of its emissivity and geometrical factors. We also experimentally investigated the feasibility of our devices for remote temperature sensing by measuring the photocurrent as a response to blackbody radiation with the temperature from 300°C to 1000°C in the range of bias voltages from -5 V to 5 V. The agreement between modelling and experimental results demonstrates that our QWIP based on asymmetrically doped GaAs/AlGaAs DQW nanomaterial is capable of remote temperature sensing. By optimizing the physical design and varying the doping level of quantum wells, we can generalize this approach to higher temperature measurements. In addition, continuous variation of bias voltage provides fast collection of large amounts of photocurrent data at various biases and improves the accuracy of remote temperature measurements via appropriate algorithm of signal processing.
Excitons in asymmetric quantum wells
Grigoryev, P. S.; Kurdyubov, A. S.; Kuznetsova, M. S.; Ignatiev, I. V.; Efimov, Yu. P.; Eliseev, S. A.; Petrov, V. V.; Lovtcius, V. A.; Shapochkin, P. Yu.
2016-09-01
Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.
Directory of Open Access Journals (Sweden)
Daijiro Fukuda
2004-01-01
Full Text Available Using diagrammatic pictures of tensor contractions, we consider a Hopf algebra (Aop⊗ℛλA** twisted by an element ℛλ∈A*⊗Aop corresponding to a Hopf algebra morphism λ:A→A. We show that this Hopf algebra is quasitriangular with the universal R-matrix coming from ℛλ when λ2=idA, generalizing the quantum double construction which corresponds to the case λ=idA.
Colloidal Double Quantum Dots.
Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan
2016-05-17
Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon
Quantum optics of lossy asymmetric beam splitters
Uppu, Ravitej; Wolterink, Tom A. W.; Tentrup, Tristan B. H.; Pinkse, Pepijn W. H.
2016-07-01
We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.
Quantum optics of lossy asymmetric beam splitters
Uppu, Ravitej; Tentrup, Tristan B H; Pinkse, Pepijn W H
2016-01-01
We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.
Asymmetric quantum dialogue in noisy environment
Banerjee, Anindita; Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban; Panigrahi, Prasanta K.
2017-02-01
A notion of asymmetric quantum dialogue (AQD) is introduced. Conventional protocols of quantum dialogue are essentially symmetric as the users (Alice and Bob) can encode the same amount of classical information. In contrast, the proposed scheme for AQD provides different amount of communication powers to Alice and Bob. The proposed scheme offers an architecture, where the entangled state to be used and the encoding scheme to be shared between Alice and Bob depend on the amount of classical information they want to exchange with each other. The general structure for the AQD scheme has been obtained using a group theoretic structure of the operators introduced in Shukla et al. (Phys Lett A 377:518, 2013). The effect of different types of noises (e.g., amplitude damping and phase damping noise) on the proposed scheme is investigated, and it is shown that the proposed scheme for AQD is robust and it uses an optimized amount of quantum resources.
Asymmetric chemical reactions by polarized quantum beams
Takahashi, Jun-Ichi; Kobayashi, Kensei
One of the most attractive hypothesis for the origin of homochirality in terrestrial bio-organic compounds (L-amino acid and D-sugar dominant) is nominated as "Cosmic Scenario"; a chiral impulse from asymmetric excitation sources in space triggered asymmetric reactions on the surfaces of such space materials as meteorites or interstellar dusts prior to the existence of terrestrial life. 1) Effective asymmetric excitation sources in space are proposed as polarized quantum beams, such as circularly polarized light and spin polarized electrons. Circularly polarized light is emitted as synchrotron radiation from tightly captured electrons by intense magnetic field around neutron stars. In this case, either left-or right-handed polarized light can be observed depending on the direction of observation. On the other hand, spin polarized electrons is emitted as beta-ray in beta decay from radioactive nuclei or neutron fireballs in supernova explosion. 2) The spin of beta-ray electrons is longitudinally polarized due to parity non-conservation in the weak interaction. The helicity (the the projection of the spin onto the direction of kinetic momentum) of beta-ray electrons is universally negative (left-handed). For the purpose of verifying the asymmetric structure emergence in bio-organic compounds by polarized quantum beams, we are now carrying out laboratory simulations using circularly polarized light from synchrotron radiation facility or spin polarized electron beam from beta-ray radiation source. 3,4) The target samples are solid film or aqueous solution of racemic amino acids. 1) K.Kobayashi, K.Kaneko, J.Takahashi, Y.Takano, in Astrobiology: from simple molecules to primitive life; Ed. V.Basiuk; American Scientific Publisher: Valencia, 2008. 2) G.A.Gusev, T.Saito, V.A.Tsarev, A.V.Uryson, Origins Life Evol. Biosphere. 37, 259 (2007). 3) J.Takahashi, H.Shinojima, M.Seyama, Y.Ueno, T.Kaneko, K.Kobayashi, H.Mita, M.Adachi, M.Hosaka, M.Katoh, Int. J. Mol. Sci. 10, 3044
Institute of Scientific and Technical Information of China (English)
张蔚曦; 张愉; 金慧
2016-01-01
The characteristics of optical absorption in an asymmetric four-level N-type semiconductor quantum well with the cross-coupling longitude-optical phonons (CCLOP) relaxation were studied. In the linear range, it shows that the electromagnetically induced transparency (EIT) relies on the coherence control of the optical fields and the CCLOP relaxation. Especially, there exhibits a double-EIT when the transition frequency between the hole and anti-bonding states is rather large. Interestingly, there appears a near-perfect double-EIT phenomenon when increasing the CCLOP relaxation. It is expected that these results may exhibit some potential applications in the all-optical switching and other optical information engineering related issues.%对在交叉耦合纵波光学声子（Cross-coupling Longitude-optical Phonons，简称CCLOP）弛豫时四能级非对称N型半导体量子阱系统的光吸收特性进行了研究。研究表明，在线性范围内，在该系统中能够实现电磁感应透明效应（Electromagnetically Induced Transparency，简称EIT），并且这种EIT效应依赖于光场与系统的谐振控制和CCLOP 弛豫；尤其是当空穴态和反键态之间的跃迁频率较大时，系统会出现双EIT现象。有趣的是，当CCLOP弛豫增大时，将出现近乎完美的双EIT现象。研究结果在全光开关和其他的光信息工程中有着潜在的应用。
Bound states in a hyperbolic asymmetric double-well
Energy Technology Data Exchange (ETDEWEB)
Hartmann, R. R., E-mail: richard.hartmann@dlsu.edu.ph [Physics Department, De La Salle University, 2401 Taft Avenue, Manila (Philippines)
2014-01-15
We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.
Transmission of asymmetric coupling double-ring resonator
Zhao, C. Y.; Tan, W. H.
2015-02-01
Based on the asymmetry between waveguide and double ring, the transmission and phase characteristics of coupled double-ring resonators are analyzed systemically. It is shown that the initial detuning determines the shape of transmission spectrum. The transmission spectrum of all-optical analog to electromagnetic inducted transparency (EIT) is controlled by tuning the asymmetric coupled parameter and loss. With the increasing of asymmetric coupled parameter, the transmission spectrum changes from EIT-like profile to Lorenz profile. The EIT-like transmission spectrum results from the interference between two Lorenz profiles. With the increasing of the loss, the transmission spectrum full frequency width at half-maximum broadens and its peak declines. The detuning and loss also make significant influences on the phase profile.
Walborn, S P; Pádua, S; Monken, C H
2002-01-01
We report a quantum eraser experiment which actually uses a Young double-slit to create interference. The experiment can be considered an optical analogy of an experiment proposed by Scully, Englert and Walther. One photon of an entangled pair is incident on a Young double-slit of appropriate dimensions to create an interference pattern in a distant detection region. Quarter-wave plates, oriented so that their fast axes are orthogonal, are placed in front of each slit to serve as which-path markers. The quarter-wave plates mark the polarization of the interfering photon and thus destroy the interference pattern. To recover interference, we measure the polarization of the other entangled photon. In addition, we perform the experiment under delayed erasure circumstances.
Quantum asymmetric cryptography with symmetric keys
Institute of Scientific and Technical Information of China (English)
GAO Fei; WEN QiaoYan; QIN SuJuan; ZHU FuChen
2009-01-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.
Quantum asymmetric cryptography with symmetric keys
Gao, Fei; Wen, Qiaoyan; Qin, Sujuan; Zhu, Fuchen
2009-12-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.
Quantum asymmetric cryptography with symmetric keys
Gao, Fei; Wen, Qiao-Yan; Qin, Su-Juan; Zhu, Fu-Chen
2008-01-01
Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstr...
Quantum asymmetric cryptography with symmetric keys
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on quantum encryption,we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme,which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore,the state-estimation attack to a prior QPKC scheme is demonstrated.
Asymmetric de Finetti Theorem for Infinite-dimensional Quantum Systems
Niu, Murphy Yuezhen
2016-01-01
The de Finetti representation theorem for continuous variable quantum system is first developed to approximate an N-partite continuous variable quantum state with a convex combination of independent and identical subsystems, which requires the original state to obey permutation symmetry conditioned on successful experimental verification on k of N subsystems. We generalize the de Finetti theorem to include asymmetric bounds on the variance of canonical observables and biased basis selection during the verification step. Our result thereby enables application of infinite-dimensional de Finetti theorem to situations where two conjugate measurements obey different statistics, such as the security analysis of quantum key distribution protocols based on squeezed state against coherent attack.
Quantum Stackelberg Duopoly of Continuous Distributed Asymmetric Information
Institute of Scientific and Technical Information of China (English)
WANG Xia; YANG Xiao-Hua; MIAO Lin; ZHOU Xiang; HU Cheng-Zheng
2007-01-01
The minimal quantization structure is employed to investigate the quantum version of the Stackelberg duopoly with continuous distributed asymmetric information, I.e. The first mover has incomplete information that obeys a continuous distribution while the second mover has complete information. It is found that the effects of the positive quantum entanglement on the outcomes exhibit many interesting features due to the information asymmetry. Moreover, although the first-mover advantage is counteracted by the information asymmetry, the positive quantum entanglement still enhances the first-mover advantage and improves the first-mover tolerance of the information asymmetry beyond the classical limit.
Resonance fluorescence from an asymmetric quantum dot dressed by a bichromatic electromagnetic field
Kryuchkyan, G. Yu.; Shahnazaryan, V.; Kibis, O. V.; Shelykh, I. A.
2017-01-01
We present the theory of resonance fluorescence from an asymmetric quantum dot driven by a two-component electromagnetic field with two different frequencies, polarizations, and amplitudes (bichromatic field) in the regime of strong light-matter coupling. It follows from the elaborated theory that the broken inversion symmetry of the driven quantum system and the bichromatic structure of the driving field result in unexpected features of the resonance fluorescence, including the infinite set of Mollow triplets, the quench of fluorescence peaks induced by the dressing field, and the oscillating behavior of the fluorescence intensity as a function of the dressing field amplitude. These quantum phenomena are of general physical nature and, therefore, can take place in various double-driven quantum systems with broken inversion symmetry.
J0316+4328: a Probable "Asymmetric Double" Lens
Boyce, E R; Browne, I W A; Stroman, W J; Jackson, N J
2007-01-01
We report a probable gravitational lens J0316+4328, one of 19 candidate asymmetric double lenses (2 images at a high flux density ratio) from CLASS. Observations with the Very Large Array (VLA), MERLIN and the Very Long Baseline Array (VLBA) imply that J0316+4328 is a lens with high confidence. It has 2 images separated by 0.40", with 6 GHz flux densities of 62 mJy and 3.2 mJy. The flux density ratio of ~19 (constant over the frequency range 6-22 GHz) is the largest for any 2 image gravitational lens. High resolution optical imaging and deeper VLBI maps should confirm the lensing interpretation and provide inputs to detailed lens models. The unique configuration will give strong constraints on the lens galaxy's mass profile.
Double-partition Quantum Cluster Algebras
DEFF Research Database (Denmark)
Jakobsen, Hans Plesner; Zhang, Hechun
2012-01-01
A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....
No fermion doubling in quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Gambini, Rodolfo [Instituto de Física, Facultad de Ciencias, Iguá 4225, esq. Mataojo, 11400 Montevideo (Uruguay); Pullin, Jorge, E-mail: pullin@lsu.edu [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2015-10-07
In loop quantum gravity the discrete nature of quantum geometry acts as a natural regulator for matter theories. Studies of quantum field theory in quantum space–times in spherical symmetry in the canonical approach have shown that the main effect of the quantum geometry is to discretize the equations of matter fields. This raises the possibility that in the case of fermion fields one could confront the usual fermion doubling problem that arises in lattice gauge theories. We suggest, again based on recent results on spherical symmetry, that since the background space–times will generically involve superpositions of states associated with different discretizations the phenomenon may not arise. This opens a possibility of incorporating chiral fermions in the framework of loop quantum gravity.
Institute of Scientific and Technical Information of China (English)
缪中林; 陈平平; 蔡炜颖; 李志锋; 袁先漳; 刘平; 史国良; 徐文兰; 陆卫; 陈昌明; 朱德彰; 潘浩昌; 胡军; 李明乾
2001-01-01
用分子束外延系统(MBE)生长了GaAs/AlGaAs不对称耦合双量子阱(ACDQW)，采用组合注入质子的方法，在同一块衬底上获得了不同注入剂量的GaAs/AlGaAs不对称耦合双量子阱单元，没有经过快速热退火的过程，在常温下测量了不同注入剂量量子阱单元的显微光荧光谱和光调制反射光谱，发现了各区域子带间跃迁能量最大变化范围达到81meV.由于样品未作高温热退火处理，为此由Al组分误差函数模型推导的扩散长度要大大高于扩散系数公式.耦合量子阱的界面混合效应对于质子注入非常敏感.%With combinatorial proton implantation, we obtained several areas with different implantation doses in single wafer of GaAs/AlGaAs asymmetry coupling double quantum well grown by MBE, and studied the optical characteristics with photoluminescence (PL) and photo-modulated reflectance(PR). Without rapid thermal annealing, maximum transition energy shift 81 meV was obtained in single wafer. The diffusion lengths of Al component calculated from error function were larger than that calculated from coefficient of diffusion formula. The interface effect of double quantum well is sensitive to proton implantation.
Double Acceptor Interaction in Semimagnetic Quantum Dot
Directory of Open Access Journals (Sweden)
A. Merwyn Jasper D. Reuben
2011-01-01
Full Text Available The effect of geometry of the semimagnetic Quantum Dot on the Interaction energy of a double acceptor is computed in the effective mass approximation using the variational principle. A peak is observed at the lower dot sizes as a magnetic field is increased which is attributed to the reduction in confinement.
The asymmetric quantum Rabi model in the polaron picture
Liu, Maoxin; Ying, Zu-Jian; An, Jun-Hong; Luo, Hong-Gang; Lin, Hai-Qin
2017-02-01
The concept of the polaron in condensed matter physics has been extended to the Rabi model, where polarons resulting from the coupling between a two-level system and single-mode photons represent two oppositely displaced oscillators. Interestingly, tunneling between these two displaced oscillators can induce an anti-polaron, which has not been systematically explored in the literature, especially in the presence of an asymmetric term. In this paper, we present a systematic analysis of the competition between the polaron and anti-polaron under the interplay of the coupling strength and the asymmetric term. While intuitively the anti-polaron should be secondary owing to its higher potential energy, we find that, under certain conditions, the minor anti-polaron may gain a reversal in the weight over the major polaron. If the asymmetric amplitude ɛ is smaller than the harmonic frequency ω, such an overweighted anti-polaron can occur beyond a critical value of the coupling strength g; if ɛ is larger, the anti-polaron can even be always overweighted at any g. We propose that the explicit occurrence of the overweighted anti-polaron can be monitored by a displacement transition from negative to positive values. This displacement is an experimentally accessible observable, which can be measured by quantum optical methods, such as balanced Homodyne detection.
The small quantum group as a quantum double
Etingof, Pavel; Gelaki, Shlomo
2009-01-01
We prove that the quantum double of the quasi-Hopf algebra A_q(g) of dimension n^{dim g} attached in arXiv:math/0403096 to a simple complex Lie algebra g and a primitive root of unity q of order n^2 is equivalent to Lusztig's small quantum group u_q(g) (under some conditions on n). We also give a conceptual construction of A_q(g) using the notion of de-equivariantization of tensor categories.
Eigenstate localization in an asymmetric coupled quantum well pair
DEFF Research Database (Denmark)
Mialitsin, Aleksej; Schmult, Stefan; Solov'yov, Ilia;
2012-01-01
exclusively either in the wide or the narrow parts of the well pair. The energy of the narrow-well localized state determines the minimal excitation energy for optically pumped charge carriers separation. In a previously used design [Guliamov et al., PRB 64 035314 (2001)] this narrow well transition energy......Optical pumping of a type-I/type-II coupled asymmetric quantum well pair induces a spatially separated two dimensional charge carriers plasma in the well’s wide and narrow parts. Treating the two coupled wells as a single system we find that the eigenstate probability distribution localizes...... was measured to correspond to a wavelength of 646 nm. We propose modifications to the design suggested earlier with the purpose of pushing up the energy required for the optical pumping of the two-dimensional plasma into the green and blue regions of the visible spectrum....
Local Gate Control of a Carbon Nanotube Double Quantum Dot
2016-04-04
Nanotube Double Quantum Dot N. Mason,*† M. J. Biercuk,* C. M. Marcus† We have measured carbon nanotube quantum dots with multiple electro- static gates and...used the resulting enhanced control to investigate a nano- tube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams...This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum
Structures of an asymmetrically coupled double-well superlattice by double-crystal X-ray diffraction
Institute of Scientific and Technical Information of China (English)
马文全; 庄岩; 王玉田; 江德生
1997-01-01
An asymmetrically coupled ( GaAs/AlAs/GaAs/AlAs)/GaAs(001) double-well supperlattice isstudied by HRDCD (high resolution double-crystal X-ray diffractometry).The intensity of satellite peaks is modulated by wave packet of different sublayers.In the course of simulation,the satellite peaks in the vicinity of the node points of wave packet are very informative for precise determination of sublayer thickness and for improving accuracy.
Asymmetric double split-ring metamaterials absorber in the terahertz region
Jun, He; Li, Qingmei; Shen, Jingling
2012-12-01
We present the simulation of an asymmetric double split-ring metamaterials absorber in terahertz region. The device consists of a metal/dielectric-spacer/metal structure allowing us select absorption by varying the asymmetric characteristics. When the two gaps are gradually away from the center in opposite direction, a giant amplitude modulation is observed at the fundamental inductive-capacitive (LC) resonance and the resonant frequencies are observed to red shifting. Besides, increasing the thickness of dielectric-spacer, the peak absorption can be changed. This theoretical simulation will be good reference for the follow experiments, and these asymmetric metamaterials absorbers is expected to be used as cloaking materials.
Terahertz detection using double quantum well devices
Khodier, Majid; Christodoulou, Christos G.; Simmons, Jerry A.
2001-12-01
This paper discusses the principle of operation of an electrically tunable THz detector, working around 2.54 THz, integrated with a bowtie antenna. The detection is based on the idea of photon-assisted tunneling (PAT) in a double quantum well (DQW) device. The bowtie antenna is used to collect the THz radiation and feed it to the detector for processing. The Bowtie antenna geometry is integrated with the DQW device to achieve broadband characteristic, easy design, and compatibility with the detector fabrication process. The principle of operation of the detector is introduced first. Then, results of different bowtie antenna layouts are presented and discussed.
Directory of Open Access Journals (Sweden)
Zhao Yi Fan
2016-01-01
Full Text Available paper presents a new use of double queues asymmetric gated service polling system in the intelligent traffic light control system.Usually there are more vehicles in main road than minor road,so there are more green light time be needed in the main road.From the computer simulation and theory analysis,we can find that the application of double queues asymmetric gated service polling theory in intelligent traffic system can balance intersections load and set suitable passing time for vehicles to assure the roads open.
DEFF Research Database (Denmark)
Zubov, F. I.; Zhukov, A. E.; Shernyakov, Yu M.;
2014-01-01
The effect of asymmetric barriers on the light-current characteristic (LCC) of a quantum well laser was studied theoretically and experimentally. It is shown that the utilization of asymmetric barriers in a waveguide prevents the nonlinearity of LCC and, consequently, allows rising of the maximum...
Dual emission in asymmetric ``giant'' PbS/CdS/CdS core/shell/shell quantum dots
Zhao, Haiguang; Sirigu, Gianluca; Parisini, Andrea; Camellini, Andrea; Nicotra, Giuseppe; Rosei, Federico; Morandi, Vittorio; Zavelani-Rossi, Margherita; Vomiero, Alberto
2016-02-01
Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton recombination in the PbS core and in the CdS Wz shell, respectively. These results highlight the importance of the driving force leading to preferential crystal growth in asymmetric QDs, and provide a pathway for the rational control of the synthesis of double color emitting giant QDs, leading to the effective exploitation of visible/NIR transparency windows.Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton
Gates controlled parallel-coupled bilayer graphene double quantum dot
Wang, Lin-Jun; Wei, Da; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Chang, A M
2011-01-01
Here we report the fabrication and quantum transport measurements of gates controlled parallel-coupled bilayer graphene double quantum dot. It is shown that the interdot coupling strength of the parallel double dots can be effectively tuned from weak to strong regime by both the in-plane plunger gates and back gate. All the relevant energy scales and parameters of the bilayer graphene parallel-coupled double dot can be extracted from the honeycomb charge stability diagrams revealed through the transport measurements.
Young's Double Slit Experiment in Quantum Field Theory
Kenmoku, Masakatsu
2011-01-01
Young's double slit experiment is formulated in the framework of canonical quantum field theory in view of the modern quantum optics. We adopt quantum scalar fields instead of quantum electromagnetic fields ignoring the vector freedom in gauge theory. The double slit state is introduced in Fock space corresponding to experimental setup. As observables, expectation values of energy density and positive frequency part of current with respect to the double slit state are calculated which give the interference term. Classical wave states are realized by coherent double slit states in Fock space which connect quantum particle states with classical wave states systematically. In case of incoherent sources, the interference term vanishes by averaging random phase angles as expected.
Institute of Scientific and Technical Information of China (English)
Shen Gui-Ping; Cai Cong-Bo; Cai Shu-Hui; Chen Zhong
2009-01-01
A modified correlated spectroscopy (COSY) revamped with asymmetric Z-gradient echo detection sequence was designed to investigate the influence of diffusion behaviour on intermolecular double-quantum coherence signal attenuation during the pre-acquisition period. Theoretical formulas were deduced and experimental measurements and simulations were performed. It is found that the diffusion behaviour of intermolecular double-quantum coherence in the pre-acquisition period may be different from that of conventional single-quantum coherence, depending on the relative orientation of diffusion weighting gradients to coherence selection gradients. When the orientation of the diffusion weighting gradients is parallel or anti-parallel to the orientation of the coherence selection gradients, the diffusion is modulated by the distant dipolar field. This study is helpful for understanding the signal properties in intermolecular double-quantum coherence magnetic resonance imaging.
Mode mixing in asymmetric double trench photonic crystal waveguides
Vlasov, Y A; McNab, S J; Vlasov, Yu. A.
2003-01-01
e investigate both experimentally and theoretically the waveguiding properties of a novel double trench waveguide where a conventional single-mode strip waveguide is embedded in a two dimensional photonic crystal (PhC) slab formed in silicon on insulator (SOI) wafers. We demonstrate that the bandwidth for relatively low-loss (50dB/cm) waveguiding is significantly expanded to 250nm covering almost all the photonic band gap owing to nearly linear dispersion of the TE-like waveguiding mode. The flat transmission spectrum however is interrupted by numerous narrow stop bands. We found that these stop bands can be attributed to anti-crossing between TE-like (positive parity) and TM-like (negative parity) modes. This effect is a direct result of the strong asymmetry of the waveguides that have an upper cladding of air and lower cladding of oxide. To our knowledge this is the first demonstration of the effects of cladding asymmetry on the transmission characteristics of the PhC slab waveguides.
Wang, Xiaogang; Zhao, Daomu
2012-05-21
A double-image encryption technique that based on an asymmetric algorithm is proposed. In this method, the encryption process is different from the decryption and the encrypting keys are also different from the decrypting keys. In the nonlinear encryption process, the images are encoded into an amplitude cyphertext, and two phase-only masks (POMs) generated based on phase truncation are kept as keys for decryption. By using the classical double random phase encoding (DRPE) system, the primary images can be collected by an intensity detector that located at the output plane. Three random POMs that applied in the asymmetric encryption can be safely applied as public keys. Simulation results are presented to demonstrate the validity and security of the proposed protocol.
Deformed quantum double realization of the toric code and beyond
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Observation of intermolecular double-quantum coherence signal dips in nuclear magnetic resonance
Institute of Scientific and Technical Information of China (English)
Shen Gui-Ping; Cai Cong-Bo; Cai Shu-Hui; Chen Zhong
2011-01-01
The correlated spectroscopy revamped by asymmetric Z-gradient echo detection (CRAZED) sequence is modified to investigate intermolecular double-quantum coherence nuclear magnetic resonance signal dips in highly polarized spin systems.It is found that the occurrence of intermolecular double-quantum coherence signal dips is related to sample geometry,field inhomogeneity and dipolar correlation distance.If the field inhomogeneity is refocused,the signal dip occurs at a fixed position whenever the dipolar correlation distance approaches the sample dimension.However,the position is shifted when the field inhomogeneity exists.Experiments and simulations are performed to validate our theoretic analysis.These signal features may offer a unique way to investigate porous structures and may find applications in biomedicine and material science.
A Portable Double-Slit Quantum Eraser with Individual Photons
Dimitrova, T. L.; Weis, A.
2011-01-01
The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper,…
Vertically coupled double quantum rings at zero magnetic field
Malet i Giralt, Francesc; Barranco Gómez, Manuel; Lipparini, Enrico; Mayol Sánchez, Ricardo; Pi Pericay, Martí; Climente, J. I.; Planelles, Josep
2006-01-01
Within local-spin-density functional theory, we have investigated the `dissociation' of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of inter-ring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble thos...
A portable double-slit quantum eraser with individual photons
Energy Technology Data Exchange (ETDEWEB)
Dimitrova, T L [Physics Faculty, University of Plovdiv ' Paissi Hilendarski' , Tzar Assen Str. 24, BG-4000 Plovdiv (Bulgaria); Weis, A, E-mail: doradimitrova@uni-plovdiv.bg [Physics Department, University of Fribourg, Chemin du Musee 3, CH-1700 Fribourg (Switzerland)
2011-11-15
The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper, we present a truly portable double-slit apparatus which demonstrates both the wave-particle duality of light and the phenomenon of quantum erasing. The device can be operated either with strong laser light and screen projection, or with individual photons, in which case quantum interference and quantum erasing are detected by a photomultiplier whose pulses are rendered acoustically by means of a loudspeaker. Alternatively, the phenomena can be displayed using multimedia projection of oscilloscope traces.
Institute of Scientific and Technical Information of China (English)
WANG Zhi-Cheng; XU Bo; CHEN Yong-Hai; SHI Li-Wei; LIANG Zhi-Mei; WANG Zhan-Guo
2008-01-01
Theoretical calculation of electronic energy levels of an asymmetric InAs/ InGaAs/ GaAs quantum-dots-in-a-well (DWELL) structure for infrared photodetectors is performed in the framework of effective-mass envelope-function theory. Our calculated results show that the electronic energy levels in quantum dots (QDs) increase when the asymmetry increases and the ground state energy increases faster than the excited state energies. Furthermore, the results also show that the electronic energy levels in QDs decrease as the size of QDs and the width of quantum well (QW) in the asymmetric DWELL structure increase. Additionally, the effects of asymmetry, the size of QDs and the width of QW on the response peak of asymmetry DWELL photodetectors are also discussed.
Two-dimensional analytical models for asymmetric fully depleted double-gate strained silicon MOSFETs
Institute of Scientific and Technical Information of China (English)
Liu Hong-Xia; Li Jin; Li Bin; Cao Lei; Yuan Bo
2011-01-01
This paper develops the simple and accurate two-dimensional analytical models for new asymmetric double-gate fully depleted strained-Si MOSFET. The models mainly include the analytical equations of the surface potential, surface electric field and threshold voltage, which are derived by solving two dimensional Poisson equation in strained-Si layer.The models are verified by numerical simulation. Besides offering the physical insight into device physics in the model,the new structure also provides the basic designing guidance for further immunity of short channel effect and drain-induced barrier-lowering of CMOS-based devices in nanometre scale.
Wang, Zhiming; Qiao, Zhu; Ye, Sheng; Zhang, Rongguang
2015-04-01
Tandem duplications and fusions of single genes have led to magnificent expansions in the divergence of protein structures and functions over evolutionary timescales. One of the possible results is polydomain enzymes with interdomain cooperativities, few examples of which have been structurally characterized at the full-length level to explore their innate synergistic mechanisms. This work reports the crystal structures of a double-domain phosphagen kinase in both apo and ligand-bound states, revealing a novel asymmetric L-shaped arrangement of the two domains. Unexpectedly, the interdomain connections are not based on a flexible hinge linker but on a rigid secondary-structure element: a long α-helix that tethers the tandem domains in relatively fixed positions. Besides the connective helix, the two domains also contact each other directly and form an interdomain interface in which hydrogen bonds and hydrophobic interactions further stabilize the L-shaped domain arrangement. Molecular-dynamics simulations show that the interface is generally stable, suggesting that the asymmetric domain arrangement crystallographically observed in the present study is not a conformational state simply restrained by crystal-packing forces. It is possible that the asymmetrically arranged tandem domains could provide a structural basis for further studies of the interdomain synergy.
Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes
Yang, Lin'an; Li, Yue; Wang, Ying; Xu, Shengrui; Hao, Yue
2016-04-01
Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al0.15Ga0.85N emitter barrier and a 1.7-nm-thick Al0.25Ga0.75N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A and 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al0.2Ga0.8N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In0.03Ga0.97N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.
Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells
Ben Salem, E.; Chaabani, R.; Jaziri, S.
2016-09-01
We conducted a theoretical study on the electronic properties of a single-layer graphene asymmetric quantum well. Quantification of energy levels is limited by electron-hole conversion at the barrier interfaces and free-electron continuum. Electron-hole conversion at the barrier interfaces can be controlled by introducing an asymmetry between barriers and taking into account the effect of the interactions of the graphene sheet with the substrate. The interaction with the substrate induces an effective mass to carriers, allowing observation of Fabry-Pérot resonances under normal incidence and extinction of Klein tunneling. The asymmetry, between barriers creates a transmission gap between confined states and free-electron continuum, allowing the large graphene asymmetric quantum well to be exploited as a photo-detector operating at mid- and far-infrared frequency regimes.
Bound states in open coupled asymmetrical waveguides and quantum wires
Amore, Paolo; Terrero-Escalante, Cesar A
2011-01-01
The behavior of bound states in asymmetric cross, T and L shaped configurations is considered. Because of the symmetries of the wavefunctions, the analysis can be reduced to the case of an electron localized at the intersection of two orthogonal crossed wires of different width. Numerical calculations show that the fundamental mode of this system remains bound for the widths that we have been able to study directly; moreover, the extrapolation of the results obtained for finite widths suggests that this state remains bound even when the width of one arm becomes infinitesimal. We provide a qualitative argument which explains this behavior and that can be generalized to the lowest energy states in each symmetry class. In the case of odd-odd states of the cross we find that the lowest mode is bounded when the width of the two arms is the same and stays bound up to a critical value of the ratio between the widths; in the case of the even-odd states we find that the lowest mode is unbound up to a critical value of...
Reversible Carriers Tunnelling in Asymmetric Coupled InGaN/GaN Quantum Wells
Institute of Scientific and Technical Information of China (English)
PEI Xiao-Jiang; GUO Li-Wei; WANG Yang; WANG Xiao-Hui; JIA Hai-Qiang; CHEN Hong; ZHOU Jun-Ming; WANG Li; Tamai N
2008-01-01
Temperature-dependent photoluminescence (PL) and time resolved photoluminescence (TRPL) are performed to study the PL characteristics and carrier transfer mechanism in asymmetric coupled InGaN/GaN multiple quantum wells (AS-QWs). Our results reveal that abnormal carrier tunnelling from the wide quantum well (WQW) to the narrow quantum well (NQW) is observed at temperature higher than about lOOK, while a normal carrier tunnelling from the NQW to the WQW is observed at temperature lower than 100 K. The reversible carrier tunnelling between the two QWs makes it possible to explore new types of temperature sensitive emission devices.It is shown that PL internal quantum efficiency (IQE) of the NQW is enhanced to about 46% due to the assistant of the abnormal carrier tunnelling.
Scheme to Implement Optimal Asymmetric Economical Phase-Covariant Quantum Cloning in Cavity QED
Institute of Scientific and Technical Information of China (English)
YANG Chun-Nuan; ZHANG Wen-Hai; HE Jin-Chun; DAI Jie-Lin; HUANG Nian-Ning; YE Liu
2008-01-01
We propose an experimentally feasible scheme to implement the optimal asymmetric economical 1 → 2 phase-covariant quantum cloning in two dimensions based on the cavity QED technique. The protocol is very simple and only two atoms are required. Our scheme is insensitive to the cavity field states and cavity decay. During the processes, the cavity is only virtually excited and it thus greatly prolongs the efficient decoherent time. Therefore, it may be realized in experiment.
Fault-tolerant quantum computation with asymmetric Bacon-Shor codes
Brooks, Peter; Preskill, John
2013-03-01
We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate teleportation, are well suited for hardware platforms with geometrically local gates in two dimensions.
A Class of Asymmetric Gapped Hamiltonians on Quantum Spin Chains and its Characterization II
Ogata, Yoshiko
2016-06-01
We give a characterization of the class of gapped Hamiltonians introduced in Part I (Ogata, A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015). The Hamiltonians in this class are given as MPS (Matrix product state) Hamiltonians. In Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), we list up properties of ground state structures of Hamiltonians in this class. In this Part II, we show the converse. Namely, if a (not necessarily MPS) Hamiltonian H satisfies five of the listed properties, there is a Hamiltonian H' from the class by Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), satisfying the following: The ground state spaces of the two Hamiltonians on the infinite interval coincide. The spectral projections onto the ground state space of H on each finite intervals are approximated by that of H' exponentially well, with respect to the interval size. The latter property has an application to the classification problem with open boundary conditions.
A Class of Asymmetric Gapped Hamiltonians on Quantum Spin Chains and its Characterization II
Ogata, Yoshiko
2016-12-01
We give a characterization of the class of gapped Hamiltonians introduced in Part I (Ogata, A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015). The Hamiltonians in this class are given as MPS (Matrix product state) Hamiltonians. In Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), we list up properties of ground state structures of Hamiltonians in this class. In this Part II, we show the converse. Namely, if a (not necessarily MPS) Hamiltonian H satisfies five of the listed properties, there is a Hamiltonian H' from the class by Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), satisfying the following: The ground state spaces of the two Hamiltonians on the infinite interval coincide. The spectral projections onto the ground state space of H on each finite intervals are approximated by that of H' exponentially well, with respect to the interval size. The latter property has an application to the classification problem with open boundary conditions.
Multiple Nuclear Polarization States in a Double Quantum Dot
Danon, J.; Vink, I.T.; Koppens, F.H.L.; Nowack, K.C.; Vandersypen, L.M.K.; Nazarov, Y.V.
2009-01-01
We observe multiple stable states of nuclear polarization and nuclear self-tuning over a large range of fields in a double quantum dot under conditions of electron spin resonance. The observations can be understood within an elaborated theoretical rate equation model for the polarization in each of
Bose Condensation of Interwell Excitons in Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Timofeev, V. B.; Ni, P. A.
2002-01-01
The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring...
Quantum chemical study on asymmetric catalysis reduction of imine
Institute of Scientific and Technical Information of China (English)
LI; Ming; (李明); TIAN; Anmin; (田安民)
2003-01-01
The quantum chemical method is employed to study the enantioselective reduction of imine with borane catalyzed by chiral oxazaborolidine. All the structures are optimized completely at the B3LYP/6-31G(d) level. The catalysis property of oxazaborolidine is notable. The reduction goes mainly through the formations of the catalyst-borane adduct, the catalyst-borane-imine adduct, and the catalyst-amidoborane adduct and the dissociation of the catalyst-amidoborane adduct with the regeneration of the catalyst. The controlling step for the reduction is the dissociation of the catalyst-amidoborane adduct. The main reduced product predicted theoretically is (R )-sec- ondary amine, which is in agreement with the experiment.
Quantum interference in an asymmetric Mach-Zehnder interferometer
Trenti, A.; Borghi, M.; Mancinelli, M.; Price, H. M.; Fontana, G.; Pavesi, L.
2016-08-01
A re-visitation of the well known free space Mach-Zehnder interferometer is reported here. The coexistence between one-photon and two-photons interference from collinear color entangled photon pairs is investigated. Thisarises from an arbitrarily small unbalance in the arm transmittance. The tuning of such asymmetry is reflected in dramatic changes in the coincidence detection, revealing beatings between one particle and two particle interference patterns. In particular, the role of the losses and of the intrinsic phase imperfectness of the lossy beamsplitter are explored in a single-port excited Mach-Zehnder interferometer. This configuration is especially useful for quantum optics on a chip, where the guiding geometry forces photons to travel in the same spatial mode.
Perturbative quantum gravity in double field theory
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Perturbative quantum gravity in double field theory
Boels, Rutger H
2015-01-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Tunable multi-band chiral metamaterials based on double-layered asymmetric split ring resonators
Jia, Xiuli; Wang, Xiaoou; Meng, Qingxin; Zhou, Zhongxiang
2016-07-01
We have numerically demonstrated chiral metamaterials based on double-layered asymmetric Au film with hollow out design of split ring resonators on either side of the polyimide. Multiple electric dipoles and magnetic dipoles resulted from parallel and antiparallel currents between the eight split ring resonators. Multi-band circular dichroism is found in the visible frequency regime by studying the transmission properties. Huge optical activity and the induced multi-band negative refractive index are obtained at resonance by calculating the optical activity and ellipticity of the transmitted E-fields. Chirality parameter and effective refractive index are retrieved to illustrate the tunable optical properties of the metamaterials. The underlying mechanisms for the observed circular dichroism are analyzed. These metamaterials would offer flexible electromagnetic applications in the infrared and visible regime.
Li, Ruchun; Hu, Zhaoxia; Shao, Xiaofeng; Cheng, Pengpeng; Li, Shoushou; Yu, Wendan; Lin, Worong; Yuan, Dingsheng
2016-01-01
We report a new environmentally-friendly synthetic strategy for large-scale preparation of 16 nm-ultrathin NiCo based layered double hydroxides (LDH). The Ni50Co50-LDH electrode exhibited excellent specific capacitance of 1537 F g-1 at 0.5 A g-1 and 1181 F g-1 even at current density as high as 10 A g-1, which 50% cobalt doped enhances the electrical conductivity and porous and ultrathin structure is helpful with electrolyte diffusion to improve the material utilization. An asymmetric ultracapacitor was assembled with the N-doped graphitic ordered mesoporous carbon as negative electrode and the NiCo LDH as positive electrode. The device achieves a high energy density of 33.7 Wh kg-1 (at power density of 551 W kg-1) with a 1.5 V operating voltage.
Useinov, Arthur
2012-06-01
In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.
Useinov, Arthur
2011-10-22
In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.
Moritake, Yuto; Kanamori, Yoshiaki; Hane, Kazuhiro
2014-07-01
We experimentally demonstrated Fano resonance in metamaterials composed of asymmetric double bars (ADBs) in the optical region. ADB metamaterials were fabricated by a lift-off method, and the optical spectra were measured. Around a wavelength of 1100 nm, measured optical spectra clearly showed sharp Fano resonance due to weak asymmetry of the ADB structures. The highest-quality factor (Q-factor) of the Fano resonance was 7.34. Calculated spectra showed the same tendency as the experimental spectra. Moreover, in a Fano resonant condition, out of phase of induced current flowing along each bar was revealed by electromagnetic field calculations. These antiphase currents decreased radiative loss of the Fano mode, resulting in a high Q-factor of the Fano resonance in ADB metamaterials. As the degree of asymmetry became small, the Q-factor decreased, and the Fano resonance disappeared because the effect of Joule loss became significant.
A fast "hybrid" silicon double quantum dot qubit
Shi, Zhan; Prance, J R; Gamble, John King; Koh, Teck Seng; Shim, Yun-Pil; Hu, Xuedong; Savage, D E; Lagally, M G; Eriksson, M A; Friesen, Mark; Coppersmith, S N
2011-01-01
We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers $S^2=3/4$ ($S=\\half$) and $S_z = -\\half$, with the two different states being singlet and triplet in the doubly occupied dot. The architecture is relatively simple to fabricate, a universal set of fast operations can be implemented electrically, and the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.
Simulating electron spin entanglement in a double quantum dot
Rodriguez-Moreno, M. A.; Hernandez de La Luz, A. D.; Meza-Montes, Lilia
2011-03-01
One of the biggest advantages of having a working quantum-computing device when compared with a classical one, is the exponential speedup of calculations. This exponential increase is based on the ability of a quantum system to create and operate on entangled states. In order to study theoretically the entanglement between two electron spins, we simulate the dynamics of two electron spins in an electrostatically-defined double quantum dot with a finite barrier height between the dots. Electrons are initially confined to separated quantum dots. Barrier height is varied and the spin entanglement as a function of this variation is investigated. The evolution of the system is simulated by using a numerical approach for solving the time-dependent Schrödinger equation for two particles. Partially supported by VIEP-BUAP.
RKKY interaction in a chirally coupled double quantum dot system
Energy Technology Data Exchange (ETDEWEB)
Heine, A. W.; Tutuc, D.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Zwicknagl, G. [Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regensburg (Germany); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, Schafmattstr. 16, 8093 Zürich, Switzerland and Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätstr. 31, 93053 Regens (Germany)
2013-12-04
The competition between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction is investigated in a double quantum dots system, coupled via a central open conducting region. A perpendicular magnetic field induces the formation of Landau Levels which in turn give rise to the so-called Kondo chessboard pattern in the transport through the quantum dots. The two quantum dots become therefore chirally coupled via the edge channels formed in the open conducting area. In regions where both quantum dots exhibit Kondo transport the presence of the RKKY exchange interaction is probed by an analysis of the temperature dependence. The thus obtained Kondo temperature of one dot shows an abrupt increase at the onset of Kondo transport in the other, independent of the magnetic field polarity, i.e. edge state chirality in the central region.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Four stereoisomers of a copper-(Schiff-base) complex with double chiral centers were applied to catalyze the asymmetric cyclopropanation. Two of the stereoisomers were also efficient catalysts affording high enantiomeric excess of up to 91.8%. A mechanism that predicts the observed results accurately was proposed.
The breaking of quantum double symmetries by defect condensation
Bais, F. A.; Mathy, C. J. M.
2007-03-01
In this paper, we study the phenomenon of Hopf or more specifically quantum double symmetry breaking. We devise a criterion for this type of symmetry breaking which is more general than the one originally proposed in F.A. Bais, B.J. Schroers, J.K. Slingerland [Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 (2002) 181601]; Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory, JHEP 05 (2003) 068], and therefore extends the number of possible breaking patterns that can be described consistently. We start by recalling why the extended symmetry notion of quantum double algebras is an optimal tool when analyzing a wide variety of two-dimensional physical systems including quantum fluids, crystals and liquid crystals. The power of this approach stems from the fact that one may characterize both ordinary and topological modes as representations of a single (generally nonabelian) Hopf symmetry. In principle a full classification of defect mediated as well as ordinary symmetry breaking patterns and subsequent confinement phenomena can be given. The formalism applies equally well to systems exhibiting global, local, internal and/or external (i.e. spatial) symmetries. The subtle differences in interpretation for the various situations are pointed out. We show that the Hopf symmetry breaking formalism reproduces the known results for ordinary (electric) condensates, and we derive formulae for defect (magnetic) condensates which also involve the phenomenon of symmetry restoration. These results are applied in two papers which will be published in parallel [C.J.M. Mathy, F.A. Bais, Nematic phases and the breaking of double symmetries, arXiv:cond-mat/0602109, 2006; F.A. Bais, C.J.M. Mathy, Defect mediated melting and the breaking of quantum double symmetries, arXiv:cond-mat/0602101, 2006].
QCAD simulation and optimization of semiconductor double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Nielsen, Erik; Gao, Xujiao; Kalashnikova, Irina; Muller, Richard Partain; Salinger, Andrew Gerhard; Young, Ralph Watson
2013-12-01
We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design
Energy Technology Data Exchange (ETDEWEB)
Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-01-15
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.
Heisenberg double of supersymmetric algebras for noncommutative quantum field theory
Kirchanov, V. S.
2013-09-01
The ground work is laid for the construction of a Heisenberg superdouble in the form of a smash product of a standard Poincaré-Lie quantum-operator superalgebra with coalgebra and its double Lie spatial superalgebra with coalgebra, which are Hopf algebras and a Hopf modular algebra, respectively. Deformation of the superalgebras is realized by Drinfeld twists for the shift and supershift operators. As a result, an extended algebra is obtained, containing a non(anti)commutative superspace and quantum-group generators.
Second-harmonic generation in asymmetric quantum dots in the presence of a static magnetic field
Institute of Scientific and Technical Information of China (English)
Li Xue-Chao; Wang An-Min; Wang Zhao-Liang; Yang Yang
2012-01-01
The second-harmonic generation (SHG) coefficient in an asymmetric quantum dot (QD) with a static magnetic field is theoretically investigated.Within the framework of the effective-mass approximation,we obtain the confined wave functions and energies of electrons in the QD.We also obtain the SHG coefficient by the compact-density-matrix approach and the iterative method.The numerical results for the typical GaAs/AlGaAs QD show that the SHG coefficient depends strongly on the magnitude of magnetic field,parameters of the asymmetric potential and the radius of the QD.The resonant peak shifts with the magnetic field or the radius of the QD changing.
Quantum Theory of Electronic Double-Slit Diffraction
Institute of Scientific and Technical Information of China (English)
WU Xiang-Yao; GUO Yi-Qing; ZHANG Bai-Jun; LI Hai-Bo; LU Jing-Bin; LIU Xiao-Jing; WANG Li; ZHANG Chun-Li; LIU Bing; FAN Xi-Hui
2007-01-01
Phenomena of electron, neutron, atomic and molecular diffraction have been studied in many experiments, and these experiments have been explained by some theoretical works. We study electronic double-slit diffraction with a quantum mechanical approach and obtain the following results: (1) When the ratio of d + a/a = n (n = 1, 2, 3,...),orders n, 2n, 3n,...are missing in diffraction pattern. (2) When the ratio of d+a/a ≠ n (n = 1, 2, 3,...), there is not missing order in diffraction pattern. (3) The slit thickness c has a large affect on the electronic diffraction pattern, which is a new quantum effect. We believe that all the predictions in our work can be tested by the electronic double slit diffraction experiment.
Transient Intersubband Optical Absorption in Double Quantum Well Structure
Institute of Scientific and Technical Information of China (English)
WU Bin-He
2005-01-01
The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the selfconsistent field theory, the transient probe absorption coefficient is calculated. These calculations are beyond the previous steady-state assumption. Transient probe absorption spectra are calculated under different pumping intensity and various pump probe delay.
Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots
Institute of Scientific and Technical Information of China (English)
XUE Peng
2011-01-01
We propose a new structure for quantum computing via spin qubits with high fidelity.Each spin qubit corresponds to two electrons in a nanowire double quantum dot,with the singlet and one of the triplets as the logical qubit states.The entangling gate is effected by virtual charge dipole transitions.We include noise to show the feasibility of this scheme under current experimental conditions.
Quantum Size Effects on Two Electrons and Two Holes in Double-Layer Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang; ZHU Wu
2002-01-01
We propose a procedure to solve exactly the Schrodinger equation for a system of two electrons and two holes in a double-layer quantum dot by using the method of few-body physics. The features of the low-lying spectra have been deduced based on symmetry. The binding energies of the ground state are obtained as a function of the electron-to-hole mass ratio σ for a few values of the quantum dot size.
Nonlinear double Compton scattering in the full quantum regime
Mackenroth, F
2012-01-01
A detailed analysis of the process of two photon emission by an electron scattered from a high-intensity laser pulse is presented. The calculations are performed in the framework of strong-field QED and include exactly the presence of the laser field, described as a plane wave. We investigate the full quantum regime of interaction, where photon recoil plays an essential role in the emission process, and substantially alters the emitted photon spectra as compared to those in previously-studied regimes. We provide a semiclassical explanation for such differences, based on the possibility of assigning a trajectory to the electron in the laser field before and after each quantum photon emission. Our numerical results indicate the feasibility of investigating experimentally the full quantum regime of nonlinear double Compton scattering with already available plasma-based electron accelerator and laser technology.
Yuan, Jian-Hui; Chen, Ni; Mo, Hua; Zhang, Yan; Zhang, Zhi-Hai
2015-12-01
A detailed investigation of the second harmonic generation in symmetrical and asymmetrical Gaussian potential quantum wells under the influence of applied electric field by using the compact-density-matrix approach and the finite difference method. The results show that the second-harmonic generation susceptibility obtained in two cases can reach the magnitude of 10-4 m/V, which depend dramatically on the applied electric field and the structural parameters. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.
Coherent Transport Through a Quantum Dot Embedded in a Double-Slit-Like Aharonov-Bohm Ring
Institute of Scientific and Technical Information of China (English)
黄丽; 游建强; 颜晓红; 韦世豪
2002-01-01
Coherent transport through a quantum dot embedded in one arm ora double-slit-like Aharonov-Bohm (AB) ringis studied using the Green's function approach. We obtain experimental observations such as continuous phaseshift along a single resonance peak and sharp inter-resonance phase drop. The AB oscillations of the differentialconductance of the whole device are calculated by using the nonequilibrium Keldysh formalism. It is shown thatthe oscillating conductance has a continuous bias-voltage-dependent phase shift and is asymmetric in both linearand nonlinear response regimes.
Tuneable frequency up-conversion based on biased asymmetric coupled quantum well structure
Energy Technology Data Exchange (ETDEWEB)
Hu Zhenhua [Department of Physics, Science College, Wuhan University of Technology, 430063, Wuhan, Hubei (China); Huang Dexiu, E-mail: hzh267@sohu.com [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074, Wuhan, Hubei (China)
2011-02-01
The behaviours of the optical nonlinear susceptibility {chi}{sup (3)} responsible for the phase-conjugate beam of frequency conversion in non-degenerate four-wave mixing (NDFWM) are studied for a biased asymmetric coupled quantum well (ACQW) structure. It is shown that the frequency up-conversion peak position determined by {chi}{sup (3)} is very sensitive to the external inverse electric field strength applied among the grown direction of quantum well but its value is insensitive to that. In other words, the frequency up-conversion peak has a large shift but its value maintains a constant when the electric field strength increases in a small bias range. The characteristics of the tuneable-frequency and the power balance of the ACQW structure may provide the high-efficient wavelength conversion in the optical communication system.
Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution
Tang, Guang-Zhao; Sun, Shi-Hai; Xu, Feihu; Chen, Huan; Li, Chun-Yan; Liang, Lin-Mei
2016-09-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all security loopholes on detection. Previous experiments on MDI-QKD required spatially separated signal lasers and complicated stabilization systems. In this paper, we perform a proof-of-principle experimental demonstration of plug-and-play MDI-QKD over an asymmetric channel setting with a single signal laser in which the whole system is automatically stabilized in spectrum, polarization, arrival time, and phase reference. Both the signal laser and the single-photon detectors are in the possession of a common server. A passive timing-calibration technique is applied to ensure the precise and stable overlap of signal pulses. The results pave the way for the realization of a quantum network in which the users only need the encoding devices.
Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
Baart, T. A.; Eendebak, P. T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.
2016-05-01
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
Study of different routes to develop asymmetric double decker silsesquioxane (DDSQ)
Attanayake, Gayanthi Kumari
Silsesquioxane cages can be considered as well-defined nanosized molecules (1-3 nm) and have attracted widening interests due to their possible use as components of resourceful inorganic/organic hybrid materials, as well as their applications in optics, catalysis, polymers and electronics. Double-decker silsesquioxane (DDSQ) nanoparticles have attracted much attention recently due to the ease of which these particles can be incorporated into polymeric materials and their unique capability to reinforce polymers.These systems are of high interest to scientists, due to their unique chemical and physical properties (solubility, non-flammability, oxidation resistance, and very good dielectric properties). For example, the United States Air Force and NASA use DDSQ incorporated polymers as thermoset material and flame retardants. This thesis discussed mainly three projects. One project centered on the research to improve and optimize the synthetic routes for a large scale synthesis of DDSQ functionalized oligoimides. These procedures offer the opportunity to combine several synthetic steps into a single reaction vessel, thereby cutting processing time and costs. The second project discussed is on the synthesis of a novel (phenylethynyl)phenyl DDSQ oligomer that can be used for high temperature application. This oligomer was successfully synthesized through a one pot route with 70% yield by avoiding the tedious separation techniques, fractional distillations and Kugelroher distillation. This novel oligomer will be characterized using TGA (Thermal Gravimetric Analysis) and DSC (Differential Scanning Calorimetry) for future studies. Another novel synthetic approach towards the synthesis of (phenylethynyl)phenyl DDSQ oligomers is also discussed. This new approach was based on Pd-catalyzed silylation of aryl halides. Even though Pd-catalyzed silylation of aryl halides was successful for the T7(iBu) cage, this chemistry was not applicable for DDSQ-H cage. The main project was
Dephasing and hyperfine interaction in carbon nanotubes double quantum dots
DEFF Research Database (Denmark)
Reynoso, Andres Alejandro; Flensberg, Karsten
2012-01-01
We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C......-13 nuclei. Due to the valley and spin degrees of freedom, four bounded states exist for any given longitudinal mode in the quantum dot. At zero magnetic field, the spin-orbit coupling and the valley mixing split those four states into two Kramers doublets. The valley-mixing term for a given dot...... is determined by the intradot disorder; this leads to (i) states in the Kramers doublets belonging to different dots being different, and (ii) nonzero interdot tunneling amplitudes between states belonging to different doublets. We show that these amplitudes give rise to new avoided crossings, as a function...
Spin-dependent thermoelectric transport through double quantum dots
Institute of Scientific and Technical Information of China (English)
Wang Qiang; Xie Hai-Qing; Jiao Hu-Jun; Li Zhi-Jian; Nie Yi-Hang
2012-01-01
We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green's function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.
Electron transport in coupled double quantum wells and wires
Energy Technology Data Exchange (ETDEWEB)
Harff, N.E.; Simmons, J.A.; Lyo, S.K. [and others
1997-04-01
Due to inter-quantum well tunneling, coupled double quantum wells (DQWs) contain an extra degree of electronic freedom in the growth direction, giving rise to new transport phenomena not found in single electron layers. This report describes work done on coupled DQWs subject to inplane magnetic fields B{sub {parallel}}, and is based on the lead author`s doctoral thesis, successfully defended at Oregon State University on March 4, 1997. First, the conductance of closely coupled DQWs in B{sub {parallel}} is studied. B{sub {parallel}}-induced distortions in the dispersion, the density of states, and the Fermi surface are described both theoretically and experimentally, with particular attention paid to the dispersion anticrossing and resulting partial energy gap. Measurements of giant distortions in the effective mass are found to agree with theoretical calculations. Second, the Landau level spectra of coupled DQWs in tilted magnetic fields is studied. The magnetoresistance oscillations show complex beating as Landau levels from the two Fermi surface components cross the Fermi level. A third set of oscillations resulting from magnetic breakdown is observed. A semiclassical calculation of the Landau level spectra is then performed, and shown to agree exceptionally well with the data. Finally, quantum wires and quantum point contacts formed in DQW structures are investigated. Anticrossings of the one-dimensional DQW dispersion curves are predicted to have interesting transport effects in these devices. Difficulties in sample fabrication have to date prevented experimental verification. However, recently developed techniques to overcome these difficulties are described.
Wei, Hai-Rui; Deng, Fu-Guo
2013-07-29
We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.
Polarization converters on double hetero structures containing strained quantum wells
Khalique, U.; van der Tol, J. J. G. M.; Nötzel, R.; Smit, M. K.
2009-02-01
The importance of polarization manipulation is increased as optical fiber systems evolve to higher data rates. Photonic integrated circuits should be insensitive to the state of polarization of the light emanating from fibers if they are to be used as detectors, add-drop mutiplexers or cross connects. Either all the integrated components have to be polarization independent or only one polarization direction should be used. For either method, a compact polarization converter is useful. A model is developed for the mode propagation in the waveguide of the slanted side polarization converter based on double hetero structures. The model is extended to include polarization dependent absorption and mismatch. Polarization converters on different double heterostructures (with and without quantum wells) have been designed and are realized by contact optical lithography. The performance of the realized converters is well described with the model.
Ac response of a coupled double quantum dot
Institute of Scientific and Technical Information of China (English)
Xu Jie; W.Z. Shangguan; Zhan Shi-Chang
2005-01-01
The effect of phase-breaking process on the ac response of a coupled double quantum dot is studied in this paper based on the nonequilibrium Green function formalism. A general expression is derived for the ac current in the presence of electron-phonon interaction. The ac conductance is numerically computed and the results are compared with those in [Anatram M P and Datts S 1995 Phys. Rev. B 51 7632]. Our results reveal that the inter-dot electron tunnelling interplays with that between dots and electron reservoirs, and contributes prominently to the ac current when inter-dot tunnelling coupling is much larger than the tunnelling coupling between dots and electron reservoirs. In addition, the phase-breaking process is found to have a significant effect on the ac transport through the coupled double dot.
The Representations of Quantum Double of Dihedral Groups
Dong, Jingcheng
2011-01-01
Let $k$ be an algebraically closed field of odd characteristic $p$, and let $D_n$ be the dihedral group of order $2n$ such that $p\\mid 2n$. Let $D(kD_n)$ denote the quantum double of the group algebra $kD_n$. In this paper, we describe the structures of all finite dimensional indecomposable left $D(kD_n)$-modules, equivalently, of all finite dimensional indecomposable Yetter-Drinfeld $kD_n$-modules, and classify them.
Non-equilibrium Kondo effect in double quantum dot
Energy Technology Data Exchange (ETDEWEB)
Kiselev, M.N. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K.A.; Molenkamp, L.W
2004-05-01
We investigate theoretically a non-equilibrium transport through a double quantum dot (DQD) in a parallel geometry. It is shown that the resonance Kondo tunneling through a parallel DQD with even occupation and singlet ground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation. Using the renormalization group technique we derive scaling equations and calculate the differential conductance as a function of an auxiliary DC-bias for parallel DQD being in a regime described by SO(4) symmetry.
Double-layer-gate architecture for few-hole GaAs quantum dots
Wang, D. Q.; Hamilton, A. R.; Farrer, I.; Ritchie, D. A.; Klochan, O.
2016-08-01
We report the fabrication of single and double hole quantum dots using a double-layer-gate design on an undoped accumulation mode {{Al}}x{{Ga}}1-x{As}/GaAs heterostructure. Electrical transport measurements of a single quantum dot show varying addition energies and clear excited states. In addition, the two-level-gate architecture can also be configured into a double quantum dot with tunable inter-dot coupling.
Afzal, Muhammad Imran; Lee, Yong Tak
2016-01-01
Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...
Design of GaAs/AlxGa1-xAs asymmetric quantum wells for THz-wave by difference frequency generation
Institute of Scientific and Technical Information of China (English)
CAO Xiao-long; YAO Jian-quan; ZHU Neng-nian; XU De-gang
2012-01-01
The energy levels,wave functions and the second-order nonlinear susecptibilities are calculated in GaAs/Al0.2Ga0.8As/Al0.5Ga0.5As asymmetric quantum well (AQW) by using an asymmetric model based on the parabolic and non-parabolic band.The influence ofnon-parabolicity can not be neglected when analyzing the phenomena in narrow quantum wells and in higher lying subband edges in wider wells.The numerical results show that under double resonance (DR) conditions,the secondorder difference frequency generation (DFG) and optical rectification (OR) generation susceptibilities in the AQW reach 2.5019 μm/V and 13.208 μm/V,respectively,which are much larger than those of the bulk GaAs.Besides,we calculate the absorption coefficient of AQW and find out the two pump wavelengths correspond to the maximum absorption,so appropriate pump beams must be selected to generate terahertz (THz) radiation by DFG.
Formation of spin droplet at ν =5/2 in an asymmetric quantum dot under quantum Hall conditions
Atci, H.; Siddiki, A.
2017-01-01
In this work, a quantum dot that is defined asymmetrically by electrostatic means induced on a GaAs/AlGaAs heterostructure is investigated to unravel the effect of geometric constraints on the formation of spin droplets under quantized Hall conditions. The incompressibility of the excited ν =5/2 state is explored by solving the Schrödinger equation within spin density functional theory, where the confinement potential is obtained self-consistently utilizing the Thomas-Fermi approximation. Our numerical investigations show that the spatial distribution of the ν =2 incompressible strips and electron occupation in the second lowest Landau level considerably differ from the results of the laterally symmetric quantum dots. Our findings yield two important consequences: first, the incompressibility of the intriguing ν =5/2 state is strongly affected by the asymmetry, and second, since the Aharonov-Bohm interference patterns depend on the velocity of the particles, asymmetry yields an additional parameter to adjust the oscillation period, which imposes a boundary condition dependency in observing quasiparticle phases.
Tollerud, Jonathan O
2016-01-01
We identify carrier scattering at densities below which it has previously been observed in semiconductor quantum wells. These effects are evident in the peakshapes of 2D double-quantum spectra, which change as a function of excitation density. At high excitation densities ($\\geq 10^{9}$ carriers/,cm$^{-2}$) we observe untilted peaks similar to those reported in previous experiments. At low excitation densities (<$10^{8}$ carriers cm$^{-2}$) we observe narrower, tilted peaks. Using a simple simulation, we show that tilted peak-shapes are expected in double-quantum spectra when inhomogeneous broadening is much larger than homogeneous broadening, and that fast pure-decoherence of the double-quantum coherence can obscure this peak tilt. These results show that carrier interactions are important at lower densities than previously expected, and that the `natural' double-quantum peakshapes are hidden by carrier interactions at the excitation densities typically used. Furthermore, these results demonstrate that an...
Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot
Wong, Clement H.; Vavilov, Maxim G.
2017-01-01
Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we consider a double quantum dot (DQD) capacitively coupled to a superconducting resonator that is driven by the microwave field of a superconducting transmission line. We analyze the DQD current response using input-output theory and show that the resonator-coupled DQD is a sensitive microwave single photon detector. Using currently available experimental parameters of DQD-resonator coupling and dissipation, including the effects of 1 /f charge noise and phonon noise, we determine the parameter regime for which incident photons are completely absorbed and near-unit ≳98 % efficiency can be achieved. We show that this regime can be reached by using very high quality resonators with quality factor Q ≃105 .
Photoelectric Characteristics of Double Barrier Quantum Dots-Quantum Well Photodetector
Directory of Open Access Journals (Sweden)
M. J. Wang
2015-01-01
Full Text Available The photodetector based on double barrier AlAs/GaAs/AlAs heterostructures and a layer self-assembled InAs quantum dots and In0.15Ga0.85As quantum well (QW hybrid structure is demonstrated. The detection sensitivity and detection ability under weak illuminations have been proved. The dark current of the device can remain at 0.1 pA at 100 K, even lower to 3.05×10-15 A, at bias of −1.35 V. Its current responsivity can reach about 6.8×105 A/W when 1 pw 633 nm light power and −4 V bias are added. Meanwhile a peculiar amplitude quantum oscillation characteristic is observed in testing. A simple model is used to qualitatively describe. The results demonstrate that the InAs monolayer can effectively absorb photons and the double barrier hybrid structure with quantum dots in well can be used for low-light-level detection.
The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation
Jelic, V.; Marsiglio, F.
2012-01-01
The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…
Quantum Interference in Time-Delayed Nonsequential Double Ionization
Maxwell, A S
2015-01-01
We perform a systematic analysis of quantum interference in nonsequential double ionization focusing on the recollision-excitation with subsequent ionization (RESI) mechanism, employing the strong-field approximation (SFA). We find that interference has a major influence on the shape, localization and symmetry of the correlated electron momentum distributions. In particular, the fourfold symmetry with regard to the parallel momentum components observed in previous SFA studies is broken. Two types of interference are observed and thoroughly analyzed, namely that caused by electron indistinguishability and intra-cycle events, and that stemming from different excitation channels. We find that interference is most prominent around the diagonal and anti-diagonal in the parallel-momentum plane and provide fully analytical expressions for most interference patterns encountered. We also show that this interference can be controlled by an appropriate choice of phase and excited-state geometry. This leads a to myriad o...
Spin transport properties in double quantum rings connected in series*
Institute of Scientific and Technical Information of China (English)
Du Jian; Wang Suxin; Pan Jianghong
2011-01-01
A new model of metal/semiconductor/metal double-quantum-ring connected in series is proposed and the transport properties in this model are theoretically studied. The results imply that the transmission coefficient shows periodic variations with increasing semiconductor ring size. The effects of the magnetic field and Rashba spin-orbit interaction on the transmission coefficient for two kinds of spin state electrons are different. The number of the transmission coefficient peaks is related to the length ratio between the upper ann and the half circumference of the ring. In addition, the transmission coefficient shows oscillation behavior with enhanced external magnetic field, and the corresponding average value is related to the two leads' relative position.
Bose condensation of interwell excitons in double quantum wells
Larionov, A V; Ni, P A; Dubonos, S V; Hvam, I; Soerensen, K
2002-01-01
The luminescence of the interwell excitons in the GaAs/AlGaAs double quantum wells, containing large-scale fluctuations of the random potential in the heteroboundary planes, is studied. The properties of the excitons, wherein the excited electron and hole are spatially separated between the neighboring quantum wells by the density and temperature variation within the domain limits of the scale below one micron, are investigated. The interwell excitons by low pumping (below 50 mW) are strongly localized due to the small-scale fluctuations of the random potential. The localized excitons line grows by increase in the resonance excitation capacity through the threshold method. With the temperature growth this line disappears in the spectrum (T sub c <= 3.4 K). The above phenomenon is related to the Bose-Einstein condensation in the quasi-two-dimensional system of the interwell excitons. The critical values of the exciton density and temperature in the studied temperature range (1.5-3.4 K) grow according to the...
Adaptive double chain quantum genetic algorithm for constrained optimization problems
Directory of Open Access Journals (Sweden)
Kong Haipeng
2015-02-01
Full Text Available Optimization problems are often highly constrained and evolutionary algorithms (EAs are effective methods to tackle this kind of problems. To further improve search efficiency and convergence rate of EAs, this paper presents an adaptive double chain quantum genetic algorithm (ADCQGA for solving constrained optimization problems. ADCQGA makes use of double-individuals to represent solutions that are classified as feasible and infeasible solutions. Fitness (or evaluation functions are defined for both types of solutions. Based on the fitness function, three types of step evolution (SE are defined and utilized for judging evolutionary individuals. An adaptive rotation is proposed and used to facilitate updating individuals in different solutions. To further improve the search capability and convergence rate, ADCQGA utilizes an adaptive evolution process (AEP, adaptive mutation and replacement techniques. ADCQGA was first tested on a widely used benchmark function to illustrate the relationship between initial parameter values and the convergence rate/search capability. Then the proposed ADCQGA is successfully applied to solve other twelve benchmark functions and five well-known constrained engineering design problems. Multi-aircraft cooperative target allocation problem is a typical constrained optimization problem and requires efficient methods to tackle. Finally, ADCQGA is successfully applied to solving the target allocation problem.
Adaptive double chain quantum genetic algorithm for constrained optimization problems
Institute of Scientific and Technical Information of China (English)
Kong Haipeng; Li Ni; Shen Yuzhong
2015-01-01
Optimization problems are often highly constrained and evolutionary algorithms (EAs) are effective methods to tackle this kind of problems. To further improve search efficiency and con-vergence rate of EAs, this paper presents an adaptive double chain quantum genetic algorithm (ADCQGA) for solving constrained optimization problems. ADCQGA makes use of double-individuals to represent solutions that are classified as feasible and infeasible solutions. Fitness (or evaluation) functions are defined for both types of solutions. Based on the fitness function, three types of step evolution (SE) are defined and utilized for judging evolutionary individuals. An adaptive rotation is proposed and used to facilitate updating individuals in different solutions. To further improve the search capability and convergence rate, ADCQGA utilizes an adaptive evolution process (AEP), adaptive mutation and replacement techniques. ADCQGA was first tested on a widely used benchmark function to illustrate the relationship between initial parameter values and the convergence rate/search capability. Then the proposed ADCQGA is successfully applied to solve other twelve benchmark functions and five well-known constrained engineering design problems. Multi-aircraft cooperative target allocation problem is a typical constrained optimization problem and requires efficient methods to tackle. Finally, ADCQGA is successfully applied to solving the target allocation problem.
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Asymmetric electron energy sharing in electron-impact double ionization of helium
Silenou Mengoue, M.; Tetchou Nganso, H. M.
2016-12-01
We present the fully fivefold differential cross sections (FDCSs) for (e ,3 e ) processes in helium within the first Born approximation. The calculation is performed for a coplanar geometry in which the incident electron is fast (˜6 keV), the momentum transfer is small (0.24 a.u.), and for an asymmetric energy sharing between both slow ejected electrons at excess energy of 20 eV. Two cases have been considered: E1=15 eV, E2=5 eV and E1=8 eV, E2=12 eV. While waiting for new theoretical and experimental results for confrontations, in particular for asymmetric energy sharing, our results clearly demonstrate that, for the same incident energy, the same momentum transfer and the same excess energy, the (e ,3 e ) process in helium with asymmetric energy sharing between ejected electrons is more likely than the case with symmetric energy sharing. The two- and three-dimensional representation of the FDCSs covering all possible values of the angle of ejections are presented and discussed. The theoretical cross sections are calculated by using a compact-kernel-integral-equation approach associated with the Jacobi matrix method to calculate a three-body wave function and which leads to a full convergence in terms of the basis size.
Photoluminescence enhancement in double Ge/Si quantum dot structures
Zinovieva, A. F.; Zinovyev, V. A.; Nikiforov, A. I.; Timofeev, V. A.; Mudryi, A. V.; Nenashev, A. V.; Dvurechenskii, A. V.
2016-12-01
Luminescence properties of double Ge/Si quantum dot structures were studied at liquid helium temperature depending on the Si spacer thickness d in QD molecules. A seven-fold increase of the integrated photoluminescence intensity was obtained for the structures with optimal thickness d = 2 nm. This enhancement is explained by increasing the overlap integral of electron and hole wave functions. Two main factors promote this increasing. The first one is that the electrons are localized at the QD base edges and their wave functions are the linear combinations of the states of in-plane Δ valleys, which are perpendicular in k-space to the growth direction [001]. This results in the increasing probability of electron penetration into Ge barriers. The second factor is the arrangement of Ge nanoclusters in closely spaced QD groups. The strong tunnel coupling of QDs within these groups increases the probability of hole finding at the QD base edge, that also promotes the increase of the radiative recombination probability.
Double quantum dot Cooper-pair splitter at finite couplings
Hussein, Robert; Jaurigue, Lina; Governale, Michele; Braggio, Alessandro
2016-12-01
We consider the subgap physics of a hybrid double-quantum dot Cooper-pair splitter with large single-level spacings, in the presence of tunneling between the dots and finite Coulomb intra- and interdot Coulomb repulsion. In the limit of a large superconducting gap, we treat the coupling of the dots to the superconductor exactly. We employ a generalized master-equation method, which easily yields currents, noise, and cross-correlators. In particular, for finite inter- and intradot Coulomb interaction, we investigate how the transport properties are determined by the interplay between local and nonlocal tunneling processes between the superconductor and the dots. We examine the effect of interdot tunneling on the particle-hole symmetry of the currents with and without spin-orbit interaction. We show that spin-orbit interaction in combination with finite Coulomb energy opens the possibility to control the nonlocal entanglement and its symmetry (singlet/triplet). We demonstrate that the generation of nonlocal entanglement can be achieved even without any direct nonlocal coupling to the superconducting lead.
Indian Academy of Sciences (India)
S Ghosh; S P Bhattacharyya
2012-01-01
The quantum dynamics of intramolecular H-atom transfer in malonaldehyde is investigated with a model two-dimensional Hamiltonian constructed with the help of available ab initio theoretical data on the relevant portion of the potential energy surface. At zero temperature, the H-atom transfer takes place by tunnelling leading to cis-cis isomerization while the cis-trans channel remains closed. Local excitation of the cis-trans mode by an external field is predicted to quench cis-cis tunnelling isomerization while excitation of the cis-cis mode is found to enhance the isomerization by tunnelling.
Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer
Directory of Open Access Journals (Sweden)
Yang XF
2010-01-01
Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.
Asymmetric transmission: a generic property of lossy periodic interfaces
Plum, E; Zheludev, N I
2010-01-01
Asymmetric transmission of circularly polarized waves is a well-established property of lossy, anisotropic, two-dimensionally chiral patterns. Here we show that asymmetric transmission can be observed for oblique incidence onto any lossy periodically structured plane. Our results greatly expand the range of natural and artificial materials in which directionally asymmetric transmission can be expected making it a cornerstone electromagnetic effect rather than a curiosity of planar chiral metamaterials. Prime candidates for asymmetric transmission at oblique incidence are rectangular arrays of plasmonic spheres or semiconductor quantum dots, lossy double-periodic gratings and planar metamaterial structures.
Zhai, Wangjian
2014-12-01
Electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells is investigated using the effective mass approximation employing the compact density matrix method and the iterative approach. Our results show that the absolute value, the real part and the imaginary part of second-harmonic generation are greatly affected by the height of the Gaussian potential quantum wells, the range of the Gaussian confinement potential and the applied electric field. The relationship between the absolute value and the imaginary part of second-harmonic generation together with the relationship between the absolute value and the real part of second-harmonic generation is studied. It is found that no matter how the height of the Gaussian potential quantum wells, the range of the Gaussian confinement potential and the applied electric field vary, the resonant peaks of the absolute value of second-harmonic generation do not originate from the imaginary part but from the real part.
Time asymmetric quantum theory and the ambiguity of the Z-boson mass and width
Energy Technology Data Exchange (ETDEWEB)
Bohm, A.; Harshman, N.L.; Kaldass, H.; Wickramasekara, S. [Texas Univ., Austin, TX (United States). Dept. of Physics
2000-12-01
Relativistic Gamow vectors emerge naturally in a time asymmetric quantum theory as the covariant kets associated to the resonance pole s=s{sub R} in the second sheet of the analytically continued S-matrix. They are eigenkets of the self-adjoint mass operator with complex eigenvalue {radical}(s{sub R}) and have exponential time evolution with lifetime {tau}=-{Dirac_h}/2Im{radical}(s{sub R}). If one requires that the resonance width {gamma} (defined by the Breit-Wigner lineshape) and the resonance lifetime {tau} always and exactly fulfill the relation {gamma}={Dirac_h}/{tau}, then one is lead to the following parameterization of s{sub R} in terms of resonance mass M{sub R} and width {gamma}{sub R}:s{sub R}=(M{sub R}-i{gamma}/2){sup 2}. Applying this result to the Z-boson implies that M{sub R}{approx}M{sub Z}-26 MeV and {gamma}{sub R} {approx}{gamma}{sub Z}-1.2 MeV are the mass and width of the Z-boson and not the particle data values (M{sub Z},{gamma}{sub Z}) or any other parameterization of the Z-boson lineshape. Furthermore, the transformation properties of these Gamow kets show that they furnish an irreducible representation of the causal Poincare semigroup, defined as a semi-direct product of the homogeneous Lorentz group with the semigroup of space-time translations into the forward light cone. Much like Wigner's unitary irreducible representations of the Poincare group which describe stable particles, these irreducible semigroup representations can be characterized by the spin-mass values (j,s{sub R}=(M{sub R}-i{gamma}/2){sup 2}). (orig.)
Andrist, Ruben S.; Wootton, James R.; Katzgraber, Helmut G.
2015-04-01
Current approaches for building quantum computing devices focus on two-level quantum systems which nicely mimic the concept of a classical bit, albeit enhanced with additional quantum properties. However, rather than artificially limiting the number of states to two, the use of d -level quantum systems (qudits) could provide advantages for quantum information processing. Among other merits, it has recently been shown that multilevel quantum systems can offer increased stability to external disturbances. In this study we demonstrate that topological quantum memories built from qudits, also known as Abelian quantum double models, exhibit a substantially increased resilience to noise. That is, even when taking into account the multitude of errors possible for multilevel quantum systems, topological quantum error-correction codes employing qudits can sustain a larger error rate than their two-level counterparts. In particular, we find strong numerical evidence that the thresholds of these error-correction codes are given by the hashing bound. Considering the significantly increased error thresholds attained, this might well outweigh the added complexity of engineering and controlling higher-dimensional quantum systems.
Spin-orbit effects in carbon-nanotube double quantum dots
DEFF Research Database (Denmark)
Weiss, S; Rashba, E I; Kuemmeth, Ferdinand;
2010-01-01
We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the sp...
Directory of Open Access Journals (Sweden)
KAMBIZ ABEDI
2011-08-01
Full Text Available This paper presents the effects of geometrical structure on microwave and optical properties of traveling wave electroabsorption modulators (TWEAMs based on asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQW active layer. The AICD-SQW active layer structure has advantages such as very low insertion loss, zero chirp, large Stark shift and high extinction ratio in comparison with the intra-step quantum well (IQW structure. Firstly, the influences of the intrinsic (active layer thickness and width on effective optical index and confinement factor are analyzed. Furthermore, the effect of the intrinsic layer thickness on their transmission line microwave properties such as microwave index, microwave loss, andcharacteristic impedance are evaluated. The thickness and width of active layer are changed from 0 μm to 1.4 μm and 1 μm to 3 μm, respectively. Finally, the frequency response of TWEAM based on AICD-SQW active layer is calculated using circuit model.
Quantum phase diagram of Polar Molecules in 1D Double Wire Systems
Chang, Chi-Ming; Wang, Daw-Wei
2007-03-01
We study the quantum phase transitions of fermionic polar molecules loaded in a double wire potential. By tuning the magnitude and direction of external electric field we observed many interesting quantum phases in different parameter range, including an easy-plane spin density wave, a triplet superconducting phase, and a truly long range order of easy-axis ferromagnetic phase in strong interacting regime. We also discuss how these exotic quantum phases can be measured in the existing experimental techniques.
Directory of Open Access Journals (Sweden)
Pengqin Shi
2016-09-01
Full Text Available Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
Shi, Pengqin; Hu, Menghan; Ying, Yaofeng; Jin, Jinshuang
2016-09-01
Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor
DEFF Research Database (Denmark)
Hu, Yongjie; Churchill, Hugh; Reilly, David
2007-01-01
and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin...
Energy Technology Data Exchange (ETDEWEB)
Horsten, H.F. von [Institut fuer Physikalische Chemie, Christian-Albrechts-Universitaet, Olshausenstrasse 40, 24098 Kiel (Germany); Hartke, B. [Institut fuer Physikalische Chemie, Christian-Albrechts-Universitaet, Olshausenstrasse 40, 24098 Kiel (Germany)], E-mail: hartke@phc.uni-kiel.de
2007-09-25
Double proton transfer reactions of pyrazole-guanidine species exhibit unusual energy profiles of a plateau form, different from the standard single and double barrier shapes. We have demonstrated earlier that this leads to a characteristically different quantum dynamical behavior of plateau reactions, when measured appropriately. Here we show that these differences also carry over to traditional measures of reaction probability.
Shifted one-parameter supersymmetric family of quartic asymmetric double-well potentials
Energy Technology Data Exchange (ETDEWEB)
Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, S.L.P. (Mexico); Mancas, Stefan C., E-mail: mancass@erau.edu [Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2014-10-15
Extending our previous work (Rosu, 2014), we define supersymmetric partner potentials through a particular Riccati solution of the form F(x)=(x−c){sup 2}−1, where c is a real shift parameter, and work out the quartic double-well family of one-parameter isospectral potentials obtained by using the corresponding general Riccati solution. For these parametric double well potentials, we study how the localization properties of the two wells depend on the parameter of the potentials for various values of the shifting parameter. We also consider the supersymmetric parametric family of the first double-well potential in the Razavy chain of double well potentials corresponding to F(x)=1/2 sinh2x−2((1+√(2))sinh2x)/((1+√(2))cosh2x+1) , both unshifted and shifted, to test and compare the localization properties. - Highlights: • Quartic one-parameter DWs with an additional shift parameter are introduced. • Anomalous localization feature of their zero modes is confirmed at different shifts. • Razavy one-parameter DWs are also introduced and shown not to have this feature.
DEFF Research Database (Denmark)
Larsen, Christian Albrekt; Vesan, Patrik
2012-01-01
It has been a general finding across Europe that very few job matches are facilitated by public employment services (PES).The article explains this failure by highlighting the existence of a double-sided asymmetric information problem on the labour market. It is argued that although a PES...
Bejan, Doina
2016-10-01
The effects of the potential shape asymmetry on the nonlinear optical absorption and optical rectification in GaAs double quantum dots under intense non-resonant laser field and static electric field were investigated comparatively using the effective mass approximation and the compact density-matrix formalism under steady state conditions. The obtained results show that: (i) for both systems, the optical spectra are redshifted with the increase of the laser intensity only in the presence of the electric field, exceptions appearing at the highest considered laser intensity for both systems and at low laser field intensity for the asymmetric system; (ii) the augment of the static field intensity blueshifts the optical spectra of both systems; (iii) the spectra of the asymmetric system are displaced toward higher energies and show a shoulder-like feature at a given electric field value; (iv) the optical rectification spectra are more intense for the symmetric system.
Energy Technology Data Exchange (ETDEWEB)
Walker, M.E.; Nakane, H.; Cochran, A.; Weston, R.G.; Klein, U.; Pegrum, C.M.; Donaldson, G.B. [Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)
1997-07-01
Novel nondestructive evaluation measurements made using niobium dc superconducting quantum interference devices with integrated asymmetric first-order gradiometers are described. Comparative theoretical and experimental studies of their spatial response have been described, and it is shown that the gradiometric response makes operation possible in an unshielded and electromagnetically noisy environment. As a demonstration of their capabilities, subsurface defects in a multilayer aluminum structure have been located and mapped using induced eddy currents at 70 Hz, with no magnetic shielding around the specimen or cryostat. {copyright} {ital 1997 American Institute of Physics.}
Tunable double quantum dots in InAs nanowires defined by local gate electrodes.
Fasth, Carina; Fuhrer, Andreas; Samuelson, Lars
2006-03-01
We present low-temperature transport measurements on quantum dots induced in homogeneous InAs quantum wires 50 nm in diameter. Quantum dots are induced by electrical depletion of the wire using local gate electrodes with down to 30 nm electrode spacing. This scheme has permitted the realization of fully gate-defined multiple quantum dots along the nanowire [1]. Tunability in double quantum dots is a prerequisite for the system to be operated as a quantum gate. We demonstrate control over the lead tunnel barrier transparencies and, in the case of double quantum dots, the interdot coupling. Using the local gate electrodes also as plunger gates we measure double dot honeycomb stability diagrams which show the transition from a single large dot to two weakly coupled dots at 4.2K. The induced quantum dots can be tuned into the few-electron regime which is shown from Coulomb blockade measurements. We extract values of orbital energy-level spacings, capacitances and capacitive and tunnel interdot coupling for this system. [1] C. Fasth et al., NanoLett 5, 1487 (2005).
Jagadale, Ajay D.; Guan, Guoqing; Li, Xiumin; Du, Xiao; Ma, Xuli; Hao, Xiaogang; Abudula, Abuliti
2016-02-01
CoMn LDH electrode is successfully prepared via facile and cost-effective electrodeposition method. The effect of Co2+/Mn2+ molar ratio on supercapacitive performance is systematically investigated. It is found that the presence of Mn(OH)6 unit in CoMn LDH offers an excellent reversibility as well as highly electrochemical activity for supercapacitor application. The CoMn LDH film with a Co2+/Mn2+ molar ratio of 9:1 loaded on Ni foam electrode exhibits the maximum specific capacitance of 1062.6 F/g at the current density of 0.7 A/g with an excellent cyclic stability of 96.3% over 5000 CD cycles. It indicates that CoMn LDH nanoflakes loaded on Ni foam can minimize the lattice mismatch which leads to an excellent cyclic stability. The asymmetric supercapacitor assembled with CoMn LDH/Ni foam and AC electrodes shows an excellent cyclic life of 84.2% and an energy density of 4.4 Wh/kg with a power density of 2500 W/kg.
Improvement of power characteristics in 850 nm quantum well laser with asymmetric barriers
DEFF Research Database (Denmark)
Zubov, F.I.; Maximov, M.V.; Shernyakov, YuM.;
2015-01-01
Power and spectral characteristics of lasers with asymmetric barrier layers (ABLs) and a wide waveguide are studied. The use of ABLs reduces the saturation of light-current characteristic, associated with the parasitic recombination in the waveguide....
Kubo, T.; Tokura, Y.; Tarucha, S.
2010-01-01
We theoretically investigate spin-dependent electron transport through an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot. In particular, we numerically calculate the Aharonov-Bohm and Aharonov-Casher oscillations of the linear conductance in the Kondo regime. We show that the AC oscillation in the Kondo regime deviates from the sinusoidal form.
Hu, X; Hu, Xuedong
2000-01-01
We study theoretically a double quantum dot hydrogen molecule in the GaAs conduction band as the basic elementary gate for a quantum computer with the electron spins in the dots serving as qubits. Such a two-dot system provides the necessary two-qubit entanglement required for quantum computation. We determine the excitation spectrum of two horizontally coupled quantum dots with two confined electrons, and study its dependence on an external magnetic field. In particular, we focus on the splitting of the lowest singlet and triplet states, the double occupation probability of the lowest states, and the relative energy scales of these states. We point out that at zero magnetic field it is difficult to have both a vanishing double occupation probability for a small error rate and a sizable exchange coupling for fast gating. On the other hand, finite magnetic fields may provide finite exchange coupling for quantum computer operations with small errors. We critically discuss the applicability of the envelope funct...
Alshal, Mohamed A.; Allam, Nageh K.
2016-11-01
A design for a highly efficient modified grating crystalline silicon (c-Si) thin film solar cell is demonstrated and analyzed using the two-dimensional (2-D) finite element method. The suggested grating has a double-sided pyramidal structure. The incorporation of the modified grating in a c-Si thin film solar cell offers a promising route to harvest light into the few micrometers active layer. Furthermore, a layer of silicon nitride is used as an antireflection coating (ARC). Additionally, the light trapping through the suggested design is significantly enhanced by the asymmetry of the top and bottom pyramids. The effects of the thickness of the active layer and facet angle of the pyramid on the spectral absorption, ultimate efficiency ( η), and short-circuit current density ( J sc) are investigated. The numerical results showed 87.9% efficiency improvement over the conventional thin film c-Si solar cell counterpart without gratings.
Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures
Energy Technology Data Exchange (ETDEWEB)
Sadiq, Muhammad Usman; Peters, Frank H.; Corbett, Brian [Tyndall National Institute, Lee Maltings, Cork (Ireland); Department of Physics, University College Cork, Cork (Ireland); O' Callaghan, James; Roycroft, Brendan; Thomas, Kevin; Pelucchi, Emanuele [Tyndall National Institute, Lee Maltings, Cork (Ireland)
2016-04-15
We investigate the electro-optic properties of two oppositely ramped asymmetric quantum well structures in the AlInGaAs material system. The grading of the bandgap in the quantum wells has been achieved by changing the ratio of Al to Ga in the quaternary alloy during the epitaxial growth. The surface normal photo-response and the Fabry-Perot fringe shift in straight waveguides are compared for both structures as a function of applied voltage at 1550 nm for TE-polarized light. The measurements show a change in the refractive index due to a red shift of the excitonic resonances due to the quantum-confined Stark effect. The 10 quantum well structure with a ramp up of the bandgap in the growth direction leads to the figure of merit of the voltage for a π phase shift, V{sub π} by length, L, V{sub π} x L, of 6 as compared to 7 V . mm in the structure with a ramp in opposite direction. Further investigations show that the reduction in V{sub π} is due to increased absorption at high reverse bias which induces a non-linear phase change. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Layered double hydroxides as carriers for quantum dots@silica nanospheres
Stoica, Georgiana; Castelló Serrano, Iván.; Palomares, Emilio
2013-02-01
Quantum dot-hydrotalcite layered nanoplatforms were successfully prepared following a one-pot synthesis. The process is very fast and a priori delamination of hydrotalcite is not a prerequisite for the intercalation of quantum dots. The novel materials were extensively characterized by X-ray diffraction, thermogravimetry, infrared spectroscopy, transmission electron microscopy, true color fluorescence microscopy, photoluminescence, and nitrogen adsorption. The quantum dot-hydrotalcite nanomaterials display extremely high stability in mimicking physiological media such as saline serum (pH 5.5) and PBS (pH 7.2). Yet, quantum dot release from the solid structure is noted. In order to prevent the leaking of quantum dots we have developed a novel strategy which consists on using tailor made double layered hydrotalcites as protecting shells for quantum dots embedded into silica nanospheres without changing either the materials or the optical properties.
Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes.
Steele, G A; Gotz, G; Kouwenhoven, L P
2009-06-01
Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies and research into new device applications. In particular, they have unique properties that make them attractive for studying the coherent properties of single-electron spins. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers, but disorder has prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime. Here, we use local gate voltages applied to an ultraclean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to the tunnelling in the Klein paradox of relativistic quantum mechanics.
Dissipatively driven entanglement of two nuclear spin ensembles in a double quantum dot
Energy Technology Data Exchange (ETDEWEB)
Schuetz, Martin J.A.; Kessler, Eric M.; Cirac, Juan Ignacio; Giedke, Geza [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)
2013-07-01
Typically, quantum information schemes have been discussed in the context of isolated many-body systems subject to unitary dynamics. Here, dissipation has been identified as a mechanism that corrupts the useful quantum properties of the system under study. Recently, however, with the advent of novel ideas such as dissipative engineering, a paradigm shift could be observed in quantum physics. More and more approaches actively utilize dissipation as a driving force behind the emergence of coherent quantum phenomena. In this spirit, we propose a transport scheme for an electrically defined double quantum dot in which the two nuclear ensembles in the host environment are actively pumped into an entangled target state. Based on a self-consistent Holstein-Primakoff approximation, we derive an effective quantum master equation for the nuclear spins which features an unique entangled steady state; accordingly, long lasting entanglement is created deterministically. Prospects for the experimental realization of this proposal are briefly discussed.
Double-semion topological order from exactly solvable quantum dimer models
Qi, Yang; Gu, Zheng-Cheng; Yao, Hong
2015-10-01
We construct a generalized quantum dimer model on two-dimensional nonbipartite lattices, including the triangular lattice, the star lattice, and the kagome lattice. At the Rokhsar-Kivelson (RK) point, we obtain its exact ground states that are shown to be a fully gapped quantum spin liquid with the double-semion topological order. The ground-state wave function of such a model at the RK point is a superposition of dimer configurations with a nonlocal sign structure determined by counting the number of loops in the transition graph. We explicitly demonstrate the double-semion topological order in the ground states by showing the semionic statistics of monomer excitations. We also discuss possible implications of such double-semion resonating valence bond states to candidate quantum spin-liquid systems discovered experimentally and numerically in the past few years.
Impact of Lateral Straggle on the Analog/RF Performance of Asymmetric Gate Stack Double Gate MOSFET
Sivaram, Gollamudi Sai; Chakraborty, Shramana; Das, Rahul; Dasgupta, Arpan; Kundu, Atanu; Sarkar, Chandan K.
2016-09-01
This paper presents a systematic comparative study of Analog and RF performances of an underlapped double gate (U-DG) NMOSFET with Gate Stack (GS) for varying straggle lengths. Asymmetric underlap devices (A-U-DG) have been proposed as one of the remedies for reducing Short Channel Effects (SCE's) with the underlap being present towards the source for sub 20 nm devices. However, the Source to Drain (S/D) implant lateral diffusion leads to a variation in the effective underlap length. This paper investigates the impact of variation of straggle length on the Analog and RF parameters of the device. The RF performance is analyzed by considering the intrinsic capacitances (Cgd, Cgs), intrinsic resistances (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillations (fmax). The circuit performance of the devices are also studied. It is seen that the Analog and RF performances of the devices are improved by optimizing the S/D lateral straggle.
Li, Tao; Long, Gui-Lu
2016-08-01
We propose an effective, scalable, hyperparallel photonic quantum computation scheme in which photonic qubits are hyperencoded both in the spatial degrees of freedom (DOF) and the polarization DOF of each photon. The deterministic hyper-controlled-not (hyper-cnot) gate on a two-photon system is attainable with our interesting interface between the polarized photon and the collective spin wave (magnon) of an atomic ensemble embedded in a double-sided optical cavity, and it doubles the operations in the conventional quantum cnot gate. Moreover, we present a compact hyper-cnotN gate on N +1 hyperencoded photons with only two auxiliary cavity-magnon systems, not more, and it can be faithfully constituted with current experimental techniques. Our proposal enables various applications with the hyperencoded photons in quantum computing and quantum networks.
Electron-nuclear interaction in 13C nanotube double quantum dots
Churchill, Hugh Olen Hill; Bestwick, Andrew J.; Harlow, Jennifer W.; Kuemmeth, Ferdinand; Marcos, David; Stwertka, Carolyn H.; Watson, Susan K.; Marcus, Charles Masamed
2008-01-01
For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource allowing storage and retrieval of quantum information. To investigate the effect of a controllable nuclear environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variabl...
Sum over topologies and double-scaling limit in 2D Lorentzian quantum gravity
Loll, R
2003-01-01
We construct a combined non-perturbative path integral over geometries and topologies for two-dimensional Lorentzian quantum gravity. The Lorentzian structure is used in an essential way to exclude geometries with unacceptably large causality violations. The remaining sum can be performed analytically and possesses a unique and well-defined double-scaling limit, a property which has eluded similar models of Euclidean quantum gravity in the past.
Collective Behavior of a Spin-Aligned Gas of Interwell Excitons in Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Bayer, M.; Hvam, Jørn Märcher;
2005-01-01
The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum wells...... is associated with indirect evidence of the coherence of the collective phase of interwell excitons at temperatures below the critical value....
Double coupling: modeling subjectivity and asymmetric organization in social-ecological systems
Directory of Open Access Journals (Sweden)
David Manuel-Navarrete
2015-09-01
Full Text Available Social-ecological organization is a multidimensional phenomenon that combines material and symbolic processes. However, the coupling between social and ecological subsystem is often conceptualized as purely material, thus reducing the symbolic dimension to its behavioral and actionable expressions. In this paper I conceptualize social-ecological systems as doubly coupled. On the one hand, material expressions of socio-cultural processes affect and are affected by ecological dynamics. On the other hand, coupled social-ecological material dynamics are concurrently coupled with subjective dynamics via coding, decoding, personal experience, and human agency. This second coupling operates across two organizationally heterogeneous dimensions: material and symbolic. Although resilience thinking builds on the recognition of organizational asymmetry between living and nonliving systems, it has overlooked the equivalent asymmetry between ecological and socio-cultural subsystems. Three guiding concepts are proposed to formalize double coupling. The first one, social-ecological asymmetry, expands on past seminal work on ecological self-organization to incorporate reflexivity and subjectivity in social-ecological modeling. Organizational asymmetry is based in the distinction between social rules, which are symbolically produced and changed through human agents' reflexivity and purpose, and biophysical rules, which are determined by functional relations between ecological components. The second guiding concept, conscious power, brings to the fore human agents' distinctive capacity to produce our own subjective identity and the consequences of this capacity for social-ecological organization. The third concept, congruence between subjective and objective dynamics, redefines sustainability as contingent on congruent relations between material and symbolic processes. Social-ecological theories and analyses based on these three guiding concepts would support the
Thermopower in parallel double quantum dots with Rashba spin-orbit interaction
Institute of Scientific and Technical Information of China (English)
Xue Hui-Jie; Lü Tian-Quan; Zhang Hong-Chen; Yin Hai-Tao; Cui Lian; He Ze-Long
2011-01-01
Based on the Green's function technique and the equation of motion approach, this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs), in which Rashba spin-orbit interaction is taken into account. Rashba spin-orbit interaction contributions, even in a magnetic field, are exhibited obviously in the double quantum dots system for the thermoelectric effect. The periodic oscillation of thermopower can be controlled by tunning the Rashba spin-orbit interaction induced phase. The interesting spin-dependent thermoelectric effects will arise which has important influence on thermoelectric properties of the studied system.
Full counting statistics of level renormalization in electron transport through double quantum dots.
Luo, JunYan; Jiao, HuJun; Shen, Yu; Cen, Gang; He, Xiao-Ling; Wang, Changrong
2011-04-13
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
Full counting statistics of level renormalization in electron transport through double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Luo Junyan; Shen Yu; Cen Gang; He Xiaoling; Wang Changrong [School of Science, Zhejiang University of Science and Technology, Hangzhou 310023 (China); Jiao Hujun, E-mail: jyluo@zust.edu.cn [Department of Physics, Shanxi University, Taiyuan, Shanxi 030006 (China)
2011-04-13
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
Equations of motion in Double Field Theory: from classical particles to quantum cosmology
Kan, Nahomi; Shiraishi, Kiyoshi
2012-01-01
The equation of motion for a point particle in the background field of double field theory is considered. We find that the motion is described by a geodesic flow in the doubled geometry. Inspired by analysis on the particle motion, we propose a modified model of quantum string cosmology, which includes two scale factors. The report is based on Phys. Rev. D84 (2011) 124049 [arXiv:1108.5795].
Janjua, Bilal
2013-01-01
A novel design based on an asymmetrically graded-well, Al(a→b)Ga(1-a→1-b) N / Al(c)Ga(1-c) N,where b>c>a, to enhance the optical matrix element of radiative transitions in an AlGaN based UV-LED, is theoretically studied.
Li, Chun-Fang; Wang, Qi
2004-05-01
It is predicted that large and opposite generalized Goos-Hänchen (GGH) shifts may occur simultaneously for TE and TM light beams upon reflection from an asymmetric double-prism configuration when the angle of incidence is below but near the critical angle for total reflection, which may lead to interesting applications in optical devices and integrated optics. Numerical simulations show that the magnitude of the GGH shift can be of the order of beam's width.
Institute of Scientific and Technical Information of China (English)
CHENYong; WANGQi; LIBiao
2004-01-01
We generalize the algebraic method presented by Fan [J.Phys. A: Math. Gen. 36 (2003) 7009)] to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations (NPDE). As an application of the method, we choose a (2+1)-dimensional asymmetric Nizhnik Novikov Vesselov equation and successfully construct new and more general solutions including a series of nontraveling wave and coefficient functions'soliton-like solutions, double-like periodic and trigonometric-like function solutions.
Institute of Scientific and Technical Information of China (English)
CHEN Yong; WANG Qi; LI Biao
2004-01-01
We generalize the algebraic method presented by Fan [J. Phys. A: Math. Gen. 36 (2003) 7009)] to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations(NPDE). As an application of the method, we choose a (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation and successfully construct new and more general solutions including a series of nontraveling wave and coefficient functions' soliton-like solutions, double-like periodic and trigonometric-like function solutions.
Temporal mode sorting using dual-stage quantum frequency conversion by asymmetric Bragg scattering
DEFF Research Database (Denmark)
Christensen, Jesper Bjerge; Reddy, Dileep V.; McKinstrie, C. J.;
2015-01-01
The temporal shape of single photons provides a high-dimensional basis of temporal modes, and can therefore support quantum computing schemes that go beyond the qubit. However, the lack of linear optical components to act as quantum gates has made it challenging to efficiently address specific...
Ruckle, L. J.; Belloni, M.; Robinett, R. W.
2012-01-01
The biharmonic oscillator and the asymmetric linear well are two confining power-law-type potentials for which complete bound-state solutions are possible in both classical and quantum mechanics. We examine these problems in detail, beginning with studies of their trajectories in position and momentum space, evaluation of the classical probability…
Institute of Scientific and Technical Information of China (English)
Taro Arakawa; Ryuji Iino; Tetsuya Ishie; Terumasa Kawabata; Kunio Tada
2003-01-01
An InGaAs/InAlAs five-layer asymmetric coupled quantum well (FACQW) is expected to show very large electrorefractive index change. n in a wideband transparency region. Band structures of the FACQW are analyzed with Luttinger-Kohn Hamiltonian. The electrorefractive characteristics of the FACQW are discussed.
Institute of Scientific and Technical Information of China (English)
Taro; Arakawa; Ryuji; Iino; Tetsuya; Ishie; Terumasa; Kawabata; Kunio; Tada
2003-01-01
An InGaAs/InAlAs five-layer asymmetric coupled quantum well (FACQW) is expected to show very large electrorefractive index change . n in a wideband transparency region. Band structures of the FACQW are analyzed with Luttinger-Kohn Hamiltonian. The electrorefractive characteristics of the FACQW are discussed.
Closed form solution for a double quantum well using Gr\\"obner basis
Acus, A
2011-01-01
Analytical expressions for spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and effective masses are different. This was achieved by Gr\\"obner basis algorithm which allows to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.
Bonora, Marco; Becker, James; Saxena, Sunil
2004-10-01
We show the use of the observer blind spots effect for the elimination of electron spin-echo envelope modulation (ESEEM) peaks in double quantum coherence (DQC) electron spin resonance (ESR). The suppression of ESEEM facilitates the routine and unambiguous extraction of distances from DQC-ESR spectra. This is also the first demonstration of this challenging methodology on commercial instrumentation.
A New Type of Photoelectric Response in a Double Barrier Structure with a Wide Quantum Well
Institute of Scientific and Technical Information of China (English)
ZHOU Xia; ZHENG Hou-Zhi
2005-01-01
@@ We have calculated the photoelectric response in a specially designed double barrier structure. It has been verified that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.
Collective Behavior of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells
DEFF Research Database (Denmark)
Larionov, A. V.; Timofeev, V. B.; Hvam, Jørn Märcher;
2000-01-01
Photoluminescence spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n-i-n structures) have been investigated (an interwell excition in these systems is an electron-hole pair spatially separated by a narrow AlAs barrier). Under resonance excitation by circular polarized light, the...
A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor
DEFF Research Database (Denmark)
Hu, Yongjie; Churchill, Hugh; Reilly, David;
2007-01-01
Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitati...
Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot
DEFF Research Database (Denmark)
Churchill, H O H; Kuemmeth, Ferdinand; Harlow, J W;
2009-01-01
We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time T1 first decreases with a parallel magnetic field and then goes through a minimum in a field of 1.4 T. We attribute...
Optical analogue of 2D heteronuclear double-quantum NMR
Tollerud, Jonathan
2016-01-01
Heteronuclear multi-quantum spectroscopy is a powerful part of the NMR toolbox, commonly used to identify specific sequences of atoms in complex pulse sequences designed to determine the structure of complex molecules, including proteins. Optical coherent multidimensional spectroscopy (CMDS) is analogous to multidimensional NMR and many of the techniques of NMR have been adapted for application in the optical regime. This has been highly successful, with CMDS being used to understand energy transfer in photosynthesis and many body effects in semiconductor nanostructures amongst many other scientific breakthroughs. Experimental challenges have, however, prevented the translation of heteronuclear multi-quantum NMR to the optical regime, where capabilities to isolate signals in otherwise congested spectra, reduce acquisition times and enable more incisive probes of multi-particle correlations and complex electronic systems would have great benefit. Here we utilise a diffraction based pulseshaper to impose the tw...
Energy Technology Data Exchange (ETDEWEB)
Yuan, R.-Y., E-mail: yuanry@cnu.edu.cn [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Zhao, X.; Ji, A.-C. [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Guo, Y., E-mail: guoy66@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Yan, H. [Laboratory of Thin Film Materials, Beijing University of Technology, Beijing 100022 (China)
2015-09-04
Both the charging and orbital quantization energies of InAs quantum dot (QD) typically correspond to the terahertz (THz) region. In this letter, under the asymmetric THz irradiations on two leads, electron transport through a two-level InAs QD is theoretically discussed. We demonstrate that when both the frequencies and amplitudes of THz irradiations on two leads are different with the higher asymmetry, the photon–electron pump effect vanishes, even a negative platform appears on the left of the Coulomb peak and a positive platform occurs on the right of the Coulomb interaction related energy level, respectively. This behavior is favorable for the design of THz optoelectronic device. - Highlights: • Asymmetric terahertz waves are irradiated on two leads in two-level InAs QD system. • Only with different frequencies, a negative current resonance is obtained. • A negative platform appears on the left of the Coulomb peak with higher asymmetry. • For the low terahertz field strength, a positive platform occurs. • We report the behaviors are favorable for the design of THz optoelectronic device.
Gravitational Waves detection and spectroscopy with a Double-slit Quantum Eraser
de Matos, Clovis Jacinto; Armengol, Josep Maria Perdigues
2008-01-01
The interaction between a gravitational wave (GW) and entangled photons in the Walborn's "which-way experiment" on a double-slit quantum eraser is investigated. GWs change the polarization states in an entangled pair introducing decoherence and changing the experimental condition of the double slit quantum eraser. By varying the path of one of the entangled photons one can tune the GW detector to a certain specific wavelength, obtaining, in principle, the profile of the GW spectrum. The presence of GWs can be revealed by searching for entangled photon coincidences in the dark fringes of the recovered interference pattern of the quantum eraser, with the key advantage of discriminating the dark noise counts from the real counts due to photons deviated by the GW with heralded photon techniques. Alternatively, the incomplete destruction of the interference patterns may reveal the interaction of GWs with the photon's polarization. We propose this gedankenexperiment as an improvement to the already existing detecti...
Magnetic Anticrossing of 1D Subbands in Coupled Ballistic Double Quantum Wires
Energy Technology Data Exchange (ETDEWEB)
BLOUNT,MARK A.; MOON,JEONG-SUN; SIMMONS,JERRY A.; LYO,SUNGKWUN K.; WENDT,JOEL R.; RENO,JOHN L.
2000-07-13
We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a s 1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID wire. A broad dip in the magnetoconductance at -6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.
Four-Electron Systems in a Coupled Double-Layer Quantum Dots
Institute of Scientific and Technical Information of China (English)
XIE Wen-Fang
2003-01-01
Making use of the method of few-body physics, the energy spectrum of a four-electron system consisting in a vertically coupled double-layer quantum dot as a function of the strength ofa magnetic field is investigated. Discontinuous ground-state transitions induced by an external magnetic field are shown. We find that, in the strong coupling case, the ground-state transitions depend not only on the external magnetic field B but also on the distance d between double-layer quantum dots. However, in the case of weak coupling, the ground-state transitions occur in the new sequence of the values of the magic angular momentum. Hence, the interlayer separation d and electron-electron interaction strongly affect the ground state of the coupled quantum dots.
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics
DEFF Research Database (Denmark)
Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther
2015-01-01
even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes...... place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our...... results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schro...
Double-slit and electromagnetic models to complete quantum mechanics
De Luca, Jayme
2010-01-01
We analyze a realistic microscopic model for electronic scattering based on the neutral-delay-equations for point charges of the Wheeler-Feynman electrodynamics. We propose a microscopic model according to the electrodynamics of point-charges, complex enough to describe the essential physics. Our microscopic model reaches a simple qualitative agreement with the experimental results as regards interference in double-slit scattering and in electronic scattering by crystals. We discuss our model in the light of existing experimental results, including a qualitative disagreement found for the double-slit experiment. We discuss an approximation for the complex neutral-delay dynamics of our model using piecewise-defined (discontinuous) velocities for all charges and piecewise-constant-velocities for the scattered charge. Our approximation predicts the De Broglie wavelength as an inverse function of the incoming velocity and in the correct order of magnitude. We explain the scattering by crystals in the light of the...
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.
Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas
2015-07-01
In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.
Hyperfine and spin-orbit dynamics in GaAs double quantum dots
Shulman, Michael; Nichol, John; Harvey, Shannon; Pal, Arijeet; Halperin, Bertrand; Umansky, Vladimir; Yacoby, Amir
2015-03-01
Semiconductor quantum dots provide a unique platform for single-particle physics and many-body quantum mechanics. In particular, understanding the dynamics of a single electron interacting with a nuclear spin bath is key to improving spin-based quantum information processing, since the hyperfine interaction limits the performance of many spin qubits. We probe the electron-nuclear interaction by measuring the splitting at the anti-crossing between the electron singlet (S) and m =1 triplet (T +) states in a GaAs double quantum dot. Using Landau-Zener sweeps, we find that the size of this splitting varies by more than an order of magnitude depending on the magnitude and direction of the external magnetic field. These results are consistent with a competition between the spin orbit interaction and the hyperfine interaction, even though the extracted spin orbit length is much larger than the size of the double quantum dot. We confirm these results by using Landau-Zener sweeps to measure the high-frequency correlations in the S-T + splitting that arise from the Larmor precession of the nuclei. These unexpected results have implications for improving the performance of spin-based quantum information processing, as well as improving our understanding of the central spin problem.
States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings
Energy Technology Data Exchange (ETDEWEB)
R-Fulla, M., E-mail: marlonfulla@yahoo.com [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Institución Universitaria Pascual Bravo, A.A. 6564, Medellín (Colombia); Marín, J.H.; Suaza, Y.A. [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Duque, C.A. [Grupo de Materia Condensada-U de A, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)
2014-06-13
The energy structure of an on-axis two-donor system (D{sub 2}{sup 0}) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D{sub 2}{sup 0} complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D{sub 2}{sup 0} energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D{sub 2}{sup 0} complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D{sub 2}{sup 0}→D{sup 0}+D{sup +}+e{sup −}. • We compare the D{sup 0} eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D{sub 2}{sup 0} spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D{sub 2}{sup 0} complex.
Ultraslow optical solitons in tunnel-coupled double semiconductor quantum well
Institute of Scientific and Technical Information of China (English)
Chen Ai-Xi; Xu Yan-Qiu; Deng Li; Zhou Su-Yun
2009-01-01
This paper investigates the nonlinear evolution of the pulse probe field in an asymmetric coupled-quantum well driven coherently by a pulse probe field and two controlled fields.This study shows that,by choosing appropriate physical parameters,self-modulation can precisely balance group velocity dispersion in the investigated system,leading to the formation of ultraslow optical solitons of the probe field.The proposed scheme may lead to the development of the controlled technique of optical buffers and optical delay lines.
Continuous-Variable Entanglement in Tunnel-Coupled Double Quantum Wells
Institute of Scientific and Technical Information of China (English)
L(U) Xin-You; LIU Ji-Bing; HAO Xiang-Ying; HUANG Pei; YANG Xiao-Xue
2009-01-01
This paper investigates the generation and evolution of continuous-variable entanglement in an asymmetric coupled-quantum well (CQW) system. Our numerical results show that this CQW system can be regarded as a source of macroscopic entangled light over a wide range of initial states of the cavity field. This investigation can be used for achieving the macroscopic entangled light in the CQW solid-state medium, which is much more practical than that in an atomic medium because of its flexible design and the controllable interference strength.
Fiber-optics implementation of an asymmetric phase-covariant quantum cloner.
Bartůsková, Lucie; Dusek, Miloslav; Cernoch, Antonín; Soubusta, Jan; Fiurásek, Jaromír
2007-09-21
We present the experimental realization of optimal symmetric and asymmetric phase-covariant 1-->2 cloning of qubit states using fiber optics. The state of each qubit is encoded into a single photon which can propagate through two optical fibers. The operation of our device is based on one- and two-photon interference. We have demonstrated the creation of two copies for a wide range of qubit states from the equator of the Bloch sphere. The measured fidelities of both copies are close to the theoretical values and they surpass the theoretical maximum obtainable with the universal cloner.
Fibre-optics implementation of asymmetric phase-covariant quantum cloner
Bartuskova, L; Dusek, M; Fiurasek, J; Soubusta, J; Bartuskova, Lucie; Cernoch, Antonin; Dusek, Miloslav; Fiurasek, Jaromir; Soubusta, Jan
2006-01-01
We present the experimental realization of optimal symmetric and asymmetric phase-covariant 1->2 cloning of qubit states using fiber optics. State of each qubit is encoded into a single photon which can propagate through two optical fibers. The operation of our device is based on one- and two-photon interference. We have demonstrated creation of two copies of any state of a qubit from the equator of the Bloch sphere. The measured fidelities of both copies are close to the theoretical values and they surpass the theoretical maximum obtainable with the universal cloner.
Cavity-photon-switched coherent transient transport in a double quantum waveguide
Energy Technology Data Exchange (ETDEWEB)
Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)
2014-12-21
We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.
Energy Technology Data Exchange (ETDEWEB)
Curilef, S [Departamento de Fisica, Universidad Catolica del Norte, Antofagasta (Chile); Zander, C [Physics Department, University of Pretoria, Pretoria 0002 (South Africa); Plastino, A R [Physics Department, University of Pretoria, Pretoria 0002 (South Africa)
2006-09-01
The connection between entanglement and the speed of quantum evolution (as measured by the time needed to reach an orthogonal state) is discussed in the case of two quantum particles moving in a one-dimensional double well. The aforementioned connection offers an interesting opportunity of discussing the basic features of quantum entanglement within an elementary context, using concepts and methods usually included in university courses of quantum mechanics.
Bidirectional and Asymmetric Controlled Quantum Information Transmission via Five-qubit Brown State
Fang, Sheng-hui; Jiang, Min
2017-02-01
We put forward a new protocol of deterministic controlled bidirectional quantum information transmission, using a five-qubit Brown state. That is to say Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of the supervisor Charlie. In terms of physical implementations, only a CNOT gate, one Bell-state measurement and one qubit measurement are used in our protocol. Compared with previous study for solely bidirectional quantum teleportation and solely bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose, i.e., no matter whether the transmitted state is known or unknown, the state information can be transmitted with each other via a five-qubit Brown state under the control of the third party as a supervisor.
A Remark on CFT Realization of Quantum Doubles of Subfactors. Case Index < 4
Bischoff, Marcel
2015-01-01
It is well-known that the quantum double $D(N\\subset M)$ of a finite depth subfactor $N\\subset M$, or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. Thus should arise in conformal field theory. We show that for every subfactor $N\\subset M$ with index $[M:N]<4$ the quantum double $D(N\\subset M)$ is realized as the representation category of a completely rational conformal net. In particular, the quantum double of $E_6$ can be realized as a $\\mathbb Z_2$-simple current extension of $\\mathrm{SU}(2)_{10}\\times \\mathrm{Spin}(11)_1$ and thus is not exotic in any sense. As a byproduct we obtain a vertex operator algebra for every such subfactor. We obtain the result by showing that if a subfactor $N\\subset M $ arises from $\\alpha$-induction of completely rational nets $\\mathcal A\\subset \\mathcal B$ and there is a net $\\tilde{\\mathcal A}$ with the opposite braiding, then the quantum $D(N\\subset M)$ is realized by completely rational net. We construct comple...
Quantum frequency doubling based on tripartite entanglement with cavities
Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang
2016-02-01
We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).
Chen, Cathy W. S.; Yang, Ming Jing; Gerlach, Richard; Jim Lo, H.
2006-07-01
In this paper, we investigate the asymmetric reactions of mean and volatility of stock returns in five major markets to their own local news and the US information via linear and nonlinear models. We introduce a four-regime Double-Threshold GARCH (DTGARCH) model, which allows asymmetry in both the conditional mean and variance equations simultaneously by employing two threshold variables, to analyze the stock markets’ reactions to different types of information (good/bad news) generated from the domestic markets and the US stock market. By applying the four-regime DTGARCH model, this study finds that the interaction between the information of domestic and US stock markets leads to the asymmetric reactions of stock returns and their variability. In addition, this research also finds that the positive autocorrelation reported in the previous studies of financial markets may in fact be mis-specified, and actually due to the local market's positive response to the US stock market.
Negative Differential Resistance Probe for Interdot Interactions in a Double Quantum Dot Array.
Pozner, Roni; Lifshitz, Efrat; Peskin, Uri
2015-05-07
Colloidal quantum dots are free-standing nanostructures with chemically tunable electronic properties. In this work, we consider a new STM tip-double quantum dot (DQD)-surface setup with a unique connectivity, in which the tip is coupled to a single dot and the coupling to the surface is shared by both dots. Our theoretical analysis reveals a unique negative differential resistance (NDR) effect attributed to destructive interference during charge transfer from the DQD to the surface. This NDR can be used as a sensitive probe for interdot interactions in DQD arrays.
Charge transport-induced recoil and dissociation in double quantum dots.
Pozner, Roni; Lifshitz, Efrat; Peskin, Uri
2014-11-12
Colloidal quantum dots (CQDs) are free-standing nanostructures with chemically tunable electronic properties. This combination of properties offers intriguing new possibilities for nanoelectromechanical devices that were not explored yet. In this work, we consider a new scanning tunneling microscopy setup for measuring ligand-mediated effective interdot forces and for inducing motion of individual CQDs within an array. Theoretical analysis of a double quantum dot structure within this setup reveals for the first time voltage-induced interdot recoil and dissociation with pronounced changes in the current. Considering realistic microscopic parameters, our approach enables correlating the onset of mechanical motion under bias voltage with the effective ligand-mediated binding forces.
Institute of Scientific and Technical Information of China (English)
DONG; Zhengchao; FU; Hao
2004-01-01
Taking into account the effects of quantum interference and interface scattering, combining the electron current with hole current contribution to tunnel current,we study the coherent quantum transport in normal-metal/d-wave superconductor/normal-metal (NM/d-wave SC/NM) double tunnel junctions by using extended Blonder-Tinkham-Klapwijk (BTK) approach. It is shown that all quasiparticle transport coefficients and conductance spectrum exhibit oscillating behavior with the energy, in which periodic vanishing of Andreev reflection (AR) above superconducting gap is found.In tunnel limit for the interface scattering strength taken very large, there are a series of bound states of quasiparticles formed in SC.
Fluctuation theorem for a double quantum dot coupled to a point-contact electrometer
Energy Technology Data Exchange (ETDEWEB)
Golubev, D. [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Utsumi, Y. [Department of Physics Engineering, Faculty of Engineering, Mie University, Tsu, Mie, 514-8507 (Japan); Marthaler, M. [Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Schön, G. [Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany and Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)
2013-12-04
Motivated by recent experiments on the real-time single-electron counting through a semiconductor GaAs double quantum dot (DQD) by a nearby quantum point contact (QPC), we develop the full-counting statistics of coupled DQD and QPC system. By utilizing the time-scale separation between the dynamics of DQD and QPC, we derive the modified master equation with tunneling rates depending on the counting fields, which fulfill the detailed fluctuation theorem. Furthermore, we derive universal relations between the non-linear corrections to the current and noise, which can be verified in experiments.
Sisyphus Thermalization of Photons in a Cavity-Coupled Double Quantum Dot
Gullans, M. J.; Stehlik, J.; Liu, Y.-Y.; Eichler, C.; Petta, J. R.; Taylor, J. M.
2016-01-01
We investigate the non-classical states of light that emerge in a microwave resonator coupled to a periodically-driven electron in a nanowire double quantum dot (DQD). Under certain drive configurations, we find that the resonator approaches a thermal state at the temperature of the surrounding substrate with a chemical potential given by a harmonic of the drive frequency. Away from these thermal regions we find regions of gain and loss, where the system can lase, or regions where the DQD acts as a single-photon source. These effects are observable in current devices and have broad utility for quantum optics with microwave photons. PMID:27517784
Vibrational effects in charge transport through a molecular double quantum dot
Sowa, Jakub K; Briggs, G Andrew D; Gauger, Erik M
2016-01-01
Recent progress in the field of molecular electronics has revealed the fundamental importance of the coupling between the electronic degrees of freedom and specific vibrational modes. Considering the examples of a molecular dimer and a carbon nanotube double quantum dot, we here theoretically investigate transport through a two-site system that is strongly coupled to a single vibrational mode. Using a quantum master equation approach, we demonstrate that, depending on the relative positions of the two dots, electron-phonon interactions can lead to negative differential conductance and suppression of the current through the system. We also discuss the experimental relevance of the presented results and possible implementations of the studied system.
Asymmetric Stark shift in an impurity doped dome-shaped quantum dot with wetting layer
Niculescu, E. C.; Cristea, M.; Bejan, D.
2017-02-01
The effects of vertical electric field and donor impurity on the electronic properties of the dome-shaped InAs/GaAs quantum dot coupled to its wetting layer were investigated. The dependence of the electron density, energy and Stark shift of the S-, P- and WL-states on the applied electric field was studied with and without impurity. The S- and P-states have no significant qualitative changes in the shape of the wave functions with increasing the electric field, except that they become slightly shifted due to the competition between the field action and the quantum confinement. The wave function of the WL-state is strongly modified in polarized structures. Our results reveal that the Stark shift of electron energies can be fitted with a quadratic dependence on the electric field, the linear and quadratic terms corresponding to the dipole moment and static electron polarizability. Their estimated values reasonable agree with those calculated.
High-frequency manipulation of few-electron double quantum dots-toward spin qubits
Kodera, T.; van der Wiel, W. G.; Ono, K.; Sasaki, S.; Fujisawa, T.; Tarucha, S.
2004-04-01
We use a photon-assisted tunneling (PAT) technique to study the high-frequency response of one- and two-electron states in a semiconductor vertically coupled double-dot system. In particular, PAT associated with two-electron spin states in the spin-blockade regime is observed up to the absorption of 10 photons, indicating the preservation of long relaxation times and hence the robustness of our electron spin device under strong microwave irradiation. An alternative double-dot structure with greater flexibility in tuning the inter-dot coupling is presented and its transport characteristics are discussed. This structure is proposed for high-frequency control of two-electron spin states, as required for quantum computation schemes using electron spins in quantum dots.
Feng, Zimin; Sun, Qing-feng; Wan, Langhui; Guo, Hong
2011-10-19
We report the development and an application of a symbolic tool, called SymGF, for analytical derivations of quantum transport properties using the Keldysh nonequilibrium Green's function (NEGF) formalism. The inputs to SymGF are the device Hamiltonian in the second quantized form, the commutation relation of the operators and the truncation rules of the correlators. The outputs of SymGF are the desired NEGF that appear in the transport formula, in terms of the unperturbed Green's function of the device scattering region and its coupling to the device electrodes. For complicated transport analysis involving strong interactions and correlations, SymGF provides significant assistance in analytical derivations. Using this tool, we investigate coherent quantum transport in a double quantum dot system where strong on-site interaction exists in the side-coupled quantum dot. Results obtained by the higher-order approximation and Hartree-Fock approximation are compared. The higher-order approximation reveals Kondo resonance features in the density of states and conductances. Results are compared both qualitatively and quantitatively to the experimental data reported in the literature.
Bandyopadhyay, S
1999-01-01
Intriguing dichotomies in quantum measurement theory involving the role of the obersever, objective reality, collapse of wavefunctions and actualization of a measurement outcome are cast into a patholigical gedanken experiment involving a single electron in a double quantum dot system coupled via a weak link.
Interplay between electron spin and orbital pseudospin in double quantum dots
Park, Sooa; Yang, S. -R. Eric
2005-01-01
We investigate theoretically spin and orbital pseudospin magnetic properties of a molecular orbital in parabolic and elliptic double quantum dots (DQDs). In our many body calculation we include intra- and inter-dot electron-electron interactions, in addition to the intradot exchange interaction of `p' orbitals. We find for parabolic DQDs that, except for the half or completely filled molecular orbital, spins in different dots are ferromagnetically coupled while orbital pseudospins are antifer...
Correlation Effects on the Coupled Plasmon Modes of a Double Quantum Well
DEFF Research Database (Denmark)
Hill, N. P. R.; Nicholls, J. T.; Linfield, E. H.;
1997-01-01
At temperatures comparable to the Fermi temperature, we have measured a plasmon enhanced Coulomb drag in a GaAs/AlGaAs double quantum well electron system. This measurement provides a probe of the many-body corrections to the coupled plasmon modes, and we present a detailed comparison between...... experiment and theory testing the validity of local field theories. Using a perpendicular magnetic field to raise the magnetoplasmon energy we can induce a crossover to single-particle Coulomb scattering....
Closed form solution for a double quantum well using Groebner basis
Energy Technology Data Exchange (ETDEWEB)
Acus, A [Institute of Theoretical Physics and Astronomy, Vilnius University, A Gostauto 12, LT-01108 Vilnius (Lithuania); Dargys, A, E-mail: dargys@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A Gostauto 11, LT-01108 Vilnius (Lithuania)
2011-07-01
Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Groebner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.
Double-Sided Junctions Enable High-Performance Colloidal-Quantum-Dot Photovoltaics.
Liu, Mengxia; de Arquer, F Pelayo García; Li, Yiying; Lan, Xinzheng; Kim, Gi-Hwan; Voznyy, Oleksandr; Jagadamma, Lethy Krishnan; Abbas, Abdullah Saud; Hoogland, Sjoerd; Lu, Zhenghong; Kim, Jin Young; Amassian, Aram; Sargent, Edward H
2016-06-01
The latest advances in colloidal-quantum-dot material processing are combined with a double-sided junction architecture, which is done by efficiently incorporating indium ions in the ZnO eletrode. This platform allows the collection of all photogenerated carriers even at the maximum power point. The increased depletion width in the device facilitates full carrier collection, leading to a record 10.8% power conversion efficiency.
C*-Structure of Quantum Double for Finite Hopf C*-Algebra
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Let H be a finite Hopf C*-algebra and H' be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf *-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful *-representation so that it becomes a Hopf C*-algebra. The canonical embedding map of H into D(H) is isometric.
Charge sensing of a few-donor double quantum dot in silicon
Energy Technology Data Exchange (ETDEWEB)
Watson, T. F., E-mail: tfwatson15@gmail.com; Weber, B.; Büch, H.; Fuechsle, M.; Simmons, M. Y., E-mail: michelle.simmons@unsw.edu.au [Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia)
2015-12-07
We demonstrate the charge sensing of a few-donor double quantum dot precision placed with atomic resolution scanning tunnelling microscope lithography. We show that a tunnel-coupled single electron transistor (SET) can be used to detect electron transitions on both dots as well as inter-dot transitions. We demonstrate that we can control the tunnel times of the second dot to the SET island by ∼4 orders of magnitude by detuning its energy with respect to the first dot.
Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads
Institute of Scientific and Technical Information of China (English)
YAN Cong-Hua; WU Shao-Quan; HUANG Rui; SUN Wei-Li
2006-01-01
@@ We investigate the spin-flip process through double quantum dots coupled to two ferromagnetic leads in series.By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regime for two different configurations of the leads. It is found that transport shows some remarkable properties depending on the spin-flip strength. These effects may be useful in exploiting the role of electronic correlation in spintronics.
Gutierrez, Rafael M.; Castañeda, Arcesio
2009-08-01
Quantum mechanics explains the existence and properties of the chemical bond responsible for the formation of molecules from isolated atoms. In this work we study quantum states of Double Quantum Wells, DQW, formed from isolated Single Quantum Wells, SQWs, that can be considered metamaterials. Using the quantum chemistry definition of the covalent bond, we discuss molecular states in DQW as a kind of nanochemistry of metamaterials with new properties, in particular new optical properties. An important particularity of such nanochemistry, is the possible experimental control of the geometrical parameters and effective masses characterizing the semiconductor heterostructures represented by the corresponding DQW. This implies a great potential for new applications of the controlled optical properties of the metamaterials. The use of ab initio methods of intensive numerical calculations permits to obtain macroscopic optical properties of the metamaterials from the fundamental components: the spatial distribution of the atoms and molecules constituting the semiconductor layers. The metamaterial new optical properties emerge from the coexistence of many body processes at atomic and molecular level and complex quantum phenomena such as covalent-like bonds at nanometric dimensions.
Energy Technology Data Exchange (ETDEWEB)
An, Xing-Tao, E-mail: anxt2005@163.com [School of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China); Mu, Hui-Ying [Department of Chemistry and Environmental Engineering, Hebei Chemical and Pharmaceutical Vocational Technology College, Shijiazhuang, Hebei 050026 (China); Li, Yu-Xian [College of Physical Science and Information Engineering, Hebei Normal University, and Hebei Advanced Thin Films Laboratory, Shijiazhuang, Hebei 050016 (China); Liu, Jian-Jun [College of Physical Science and Information Engineering, Hebei Normal University, and Hebei Advanced Thin Films Laboratory, Shijiazhuang, Hebei 050016 (China); Physics Department, Shijiazhuang University, Shijiazhuang 050035 (China)
2011-10-31
A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias. -- Highlights: → The spin polarization in the quantum dots can be generated and controlled. → The spin polarization in quantum dots can be detected by the nonferromagnetic leads. → The system our studied is a discrete level spin Hall system.
Electron-nuclear interaction in 13C nanotube double quantum dots
DEFF Research Database (Denmark)
Churchill, H O H; Bestwick, A J; Harlow, J W;
2009-01-01
environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe......For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear...... strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100 ¿µeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information...
Double-Paddle Oscillators as Probes of Quantum Turbulence in the Zero Temperature Limit
Schmoranzer, David; Jackson, Martin; Zemma, Elisa; Luzuriaga, Javier
2016-11-01
We present a technical report on our tests of a double-paddle oscillator as a detector of quantum turbulence in superfluid 4 He at low temperatures ranging from 20 to 1100 mK. The device, known to operate well in the two-fluid regime (Zemma and Luzuriaga in J Low Temp Phys 166:171-181, 2012), is also capable of detecting quantum turbulence in the zero temperature limit. The oscillator demonstrated Lorentzian responses with quality factors of order 10^5 in vacuum, and displayed negative-Duffing resonances in liquid, even at moderate drives. In superfluid He-II at low temperatures, its sensitivity was adversely affected by acoustic damping at higher harmonics. While it successfully created and detected the quantum turbulence, its overall performance does not compare favourably with other oscillators such as tuning forks.
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Spin-orbit effects in carbon-nanotube double quantum dots
DEFF Research Database (Denmark)
Weiss, S; Rashba, E I; Kuemmeth, Ferdinand;
2010-01-01
We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...
Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes.
Liu, Kaihui; Hong, Xiaoping; Wu, Muhong; Xiao, Fajun; Wang, Wenlong; Bai, Xuedong; Ager, Joel W; Aloni, Shaul; Zettl, Alex; Wang, Enge; Wang, Feng
2013-01-01
Van der Waals-coupled materials, ranging from multilayers of graphene and MoS(2) to superlattices of nanoparticles, exhibit rich emerging behaviour owing to quantum coupling between individual nanoscale constituents. Double-walled carbon nanotubes provide a model system for studying such quantum coupling mediated by van der Waals interactions, because each constituent single-walled nanotube can have distinctly different physical structures and electronic properties. Here we systematically investigate quantum-coupled radial-breathing mode oscillations in chirality-defined double-walled nanotubes by combining simultaneous structural, electronic and vibrational characterizations on the same individual nanotubes. We show that these radial-breathing oscillations are collective modes characterized by concerted inner- and outer-wall motions, and determine quantitatively the tube-dependent van der Waals potential governing their vibration frequencies. We also observe strong quantum interference between Raman scattering from the inner- and outer-wall excitation pathways, the relative phase of which reveals chirality-dependent excited-state potential energy surface displacement in different nanotubes.
Characterization of a gate-defined double quantum dot in a Si/SiGe nanomembrane
Knapp, T. J.; Mohr, R. T.; Li, Yize Stephanie; Thorgrimsson, Brandur; Foote, Ryan H.; Wu, Xian; Ward, Daniel R.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.
2016-04-01
We report the fabrication and characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. In the past, all gate-defined quantum dots in Si/SiGe heterostructures were formed on top of strain-graded virtual substrates. The strain grading process necessarily introduces misfit dislocations into a heterostructure, and these defects introduce lateral strain inhomogeneities, mosaic tilt, and threading dislocations. The use of a SiGe nanomembrane as the virtual substrate enables the strain relaxation to be entirely elastic, eliminating the need for misfit dislocations. However, in this approach the formation of the heterostructure is more complicated, involving two separate epitaxial growth procedures separated by a wet-transfer process that results in a buried non-epitaxial interface 625 nm from the quantum dot. We demonstrate that in spite of this buried interface in close proximity to the device, a double quantum dot can be formed that is controllable enough to enable tuning of the inter-dot tunnel coupling, the identification of spin states, and the measurement of a singlet-to-triplet transition as a function of an applied magnetic field.
Controlled Remote Preparation of a Two-Qubit State via an Asymmetric Quantum Channel
Institute of Scientific and Technical Information of China (English)
WANG Zhang-Yin
2011-01-01
I present a new scheme for probabilistic remote preparation of a general two-qubit state from a sender to either of two receivers.The quantum channel is composed of a partial entangled tripartite Greenberger-Horne-Zeilinger (GHZ) state and a W-type state.I try to realize the remote two-qubit preparation by using the usual projective measurement and the method of positive operator-valued measure, respectively.The corresponding success probabilities of the scheme with different methods as well as the total classical communication cost required in this scheme are also calculated.
Andreev and Majorana bound states in single and double quantum dot structures
Silva, Joelson F.; Vernek, E.
2016-11-01
We present a numerical study of the emergence of Majorana and Andreev bound states in a system composed of two quantum dots, one of which is coupled to a conventional superconductor, SC1, and the other connects to a topological superconductor, SC2. By controlling the interdot coupling we can drive the system from two single (uncoupled) quantum dots to double (coupled) dot system configurations. We employ a recursive Green’s function technique that provides us with numerically exact results for the local density of states of the system. We first show that in the uncoupled dot configuration (single dot behavior) the Majorana and the Andreev bound states appear in an individual dot in two completely distinct regimes. Therefore, they cannot coexist in the single quantum dot system. We then study the coexistence of these states in the coupled double dot configuration. In this situation we show that in the trivial phase of SC2, the Andreev states are bound to an individual quantum dot in the atomic regime (weak interdot coupling) or extended over the entire molecule in the molecular regime (strong interdot coupling). More interesting features are actually seen in the topological phase of SC2. In this case, in the atomic limit, the Andreev states appear bound to one of the quantum dots while a Majorana zero mode appears in the other one. In the molecular regime, on the other hand, the Andreev bound states take over the entire molecule while the Majorana state remains always bound to one of the quantum dots.
Shin, Yong Hyeon; Yun, Ilgu
2016-06-01
This paper proposes an analytical model for an asymmetric double-gate metal-oxide-semiconductor field-effect transistor (DG MOSFET) with varying gate-oxide thickness (tox) and flat-band voltage (Vfb) in the subthreshold region. Since such variations cannot be completely avoided, the modeling of their behaviors is essential. The analytical model is developed by solving a 2D Poisson equation with a varying channel doping concentration (NA). To solve the 2D Poisson equation of the asymmetric DG MOSFET, a perturbation method is used to separate the solution of the channel potential into basic and perturbed terms. Since the basic terms can be regarded as the equations derived from a general symmetric doped DG MOSFET, the conventional analytical model is adopted. In addition, a solution related to the perturbed terms for the asymmetric structures is obtained using Fourier series. Based on the obtained channel potential, the electrical characteristics of the drive current (IDS) are expressed in the analytical model. The prediction of the electrical characteristics by the analytical model shows excellent agreement when compared with commercially available 2D numerical device simulation results with respect to not only tox and Vfb variations but also channel length and NA variations.
Afzal, Muhammad Imran; Lee, Yong Tak
2016-12-01
Von Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices. The lattices consisted of inhomogeneous strain-like phases of triangular solitons. The resonance created two-dimensional, inhomogeneously deformed photonic graphene. All parent eigenstates were annihilated. Eigenstates of mildly strained solitons were annihilated at similar rates through one tail and generated Hermitian bounded eigenstates. The strongly strained solitons with positive phase defects were annihilated at exponential rates through one tail, which bounded eigenstates through non-Hermitianally generated exceptional points. Supersymmetry was evident, with preservation of the shapes and relative phase differences of the parent solitons. Localizations of energies generated from annihilations of mildly and strongly strained soliton eigenstates were responsible for geometrical (Berry) and topological phase transitions, respectively. Both contributed to generating a quantum Zeno phase, whereas only strong twists generated topological (Anderson) localization. Anti-bunching-like condensation was also observed.
Janjua, Bilal
2014-04-01
We study the enhanced hole confinement by having a large bandgap AlGaN monolayer insertion (MLI) between the quantum well (QW) and the quantum barrier (QB). The numerical analysis examines the energy band alignment diagrams, using a self-consistent 6 × 6 k ·p method and, considering carrier distribution, recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates), under equilibrium and forward bias conditions. The active region is based on AlaGa1-aN (barrier)/AlbGa1-bN (MLI)/AlcGa1-cN (well)/AldGa1-dN (barrier), where b > d > a > c. A large bandgap AlbGa1-bN mono layer, inserted between the QW and QB, was found to be effective in providing stronger hole confinement. With the proposed band engineering scheme, an increase of more than 30% in spatial overlap of carrier wavefunction was obtained, with a considerable increase in carrier density and direct radiative recombination rates. The single-QW-based UV-LED was designed to emit at 280 nm, which is an effective wavelength for water disinfection.
Gharbi, A.; Touloum, S.; Bouda, A.
2015-04-01
We study the Klein-Gordon equation with noncentral and separable potential under the condition of equal scalar and vector potentials and we obtain the corresponding relativistic quantum Hamilton-Jacobi equation. The application of the quantum Hamilton-Jacobi formalism to the double ring-shaped Kratzer potential leads to its relativistic energy spectrum as well as the corresponding eigenfunctions.
Characterization of a gate-defined double quantum dot in a Si/SiGe nanomembrane
Knapp, T. J.; Mohr, R. T.; Li, Yize Stephanie; Thorgrimsson, Brandur; Foote, Ryan H.; Wu, Xian; Ward, Daniel R.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.
We report the characterization of a gate-defined double quantum dot formed in a Si/SiGe nanomembrane. Previously, all heterostructures used to form quantum dots were created using the strain-grading method of strain relaxation, a method that necessarily introduces misfit dislocations into a heterostructure and thereby degrades the reproducibility of quantum devices. Using a SiGe nanomembrane as a virtual substrate eliminates the need for misfit dislocations but requires a wet-transfer process that results in a non-epitaxial interface in close proximity to the quantum dots. We show that this interface does not prevent the formation of quantum dots, and is compatible with a tunable inter-dot tunnel coupling, the identification of spin states, and the measurement of a singlet-to-triplet transition as a function of the applied magnetic field. This work was supported in part by ARO (W911NF-12-0607), NSF (DMR-1206915, PHY-1104660), and the United States Department of Defense. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressly or implied, of the US Government. T.J. Knapp et al. (2015). arXiv:1510.08888 [cond-mat.mes-hall].
Interacting asymmetric double Rydberg series: the Ba 8snl(l = 5) + 5f{sub j}n'l' case
Energy Technology Data Exchange (ETDEWEB)
Cohen, S [Atomic and Molecular Physics Laboratory, Physics Department, University of Ioannina, GR-45110 Ioannina (Greece); Camus, P [Laboratoire Aime Cotton , Centre National de la Recherche Scientifique II, Batiment 505, Campus d' Orsay, 91405 Orsay Cedex (France); Bolovinos, A [Atomic and Molecular Physics Laboratory, Physics Department, University of Ioannina, GR-45110 Ioannina (Greece)
2005-01-28
The 8snl double Rydberg states of barium with l = 5 and n = 12-15 are populated by employing an isolated core excitation (ICE) scheme in conjunction with the Stark switching technique. The recorded spectra show strong configuration interaction with three adjacent 5f{sub j}n'l' series. One of the latter series is converging to the 5f{sub 5/2} ionization limit and the other two to the higher lying 5f{sub 7/2} one. A multichannel quantum defect theory (MQDT) analysis reveals the presence of low-lying members of double Rydberg series converging to higher ionization thresholds and determining the configuration mixing. At least two perturbers, affecting energy level positions, are identified while a comparison between experimental and fitted excitation profiles points towards the presence of a third one. Finally, theoretical calculations of the 8snl(l = 5) series members quantum defects demonstrate the onset of mutual penetration between the two excited electrons. Nevertheless, the most important quantum defect contributions stem from exchange and polarization effects and thus long-range interactions alone are insufficient for a proper description of the double Rydberg states involved.
Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)
2015-08-15
Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.
Kurian, P; Dunston, G; Lindesay, J
2016-02-21
Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism.
Optimal control of a charge qubit in a double quantum dot with a Coulomb impurity
Coden, Diego S. Acosta; Romero, Rodolfo H.; Ferrón, Alejandro; Gomez, Sergio S.
2017-02-01
We study the efficiency of modulated external electric pulses to produce efficient and fast charge localization transitions in a two-electron double quantum dot. We use a configuration interaction method to calculate the electronic structure of a quantum dot model within the effective mass approximation. The interaction with the electric field is considered within the dipole approximation and optimal control theory is applied to design high-fidelity ultrafast pulses in pristine samples. We assessed the influence of the presence of Coulomb charged impurities on the efficiency and speed of the pulses. A protocol based on a two-step optimization is proposed for preserving both advantages of the original pulse. The processes affecting the charge localization is explained from the dipole transitions of the lowest lying two-electron states, as described by a discrete model with an effective electron-electron interaction.
Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee
2013-01-08
Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.
Photoluminescence study of InGaN/GaN double quantum wells with varying barrier widths
Ryu, M Y; Shin, E J; Lee, J I; Yu, S K; Oh, E S; Park, Y J; Park, H S; Kim, T I
2000-01-01
We report the results of photoluminescence (PL) and time-resolved PL studies on InGaN/GaN double quantum well (DQW) samples with different barrier widths. The barrier-width dependence of the PL emission energy and intensity are discussed. The PL as a function of excitation density can be well explained in terms of the quantum-confined Stark effect (QCSE). The temporal behavior of the PL was also studied. As the barrier width increases, the decay times tau sub 1 and tau sub 2 , decrease from 1.02 ns and 6.99 ns to 0.32 ns and 1.09 ns, respectively. The PL efficiency and the decay lifetime depend on the barrier width.
Electronic structure of GaAs/AlGaAs quantum double rings in lateral electric field
Institute of Scientific and Technical Information of China (English)
Y.Yao; T.Ochiai; T.Mano; T.Kuroda; T.Noda; N.Koguchi; K.Sakoda
2009-01-01
A three-dimensional model of GaAs/A1GaAs quantum double rings in the lateral static electric field is investigated theoretically.The eigenvalue problem with the effective-mass approximation is solved by means of the finite-element method.The energy levels and wave functions of quantum-confined electrons and heavy holes are obtained and show an agreement with our previous theoretical and experimental studies.It is shown in the approximation of neglecting the Coulomb attraction between the electron and heavy hole that a relatively large Stark shift of exciton emission of 4 meV is attainable with an applied electric field of 0.7 kV/cm.
Electronic structures of GaAs/AlxGa1-xAs quantum double rings
Directory of Open Access Journals (Sweden)
Li Shu-Shen
2006-01-01
Full Text Available AbstractIn the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.
Dynamical entanglement formation and dissipation effects in two double quantum dots
Energy Technology Data Exchange (ETDEWEB)
Contreras-Pulido, L D [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Rojas, F [Departamento de Fisica Teorica, Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California 22800 (Mexico)
2006-11-01
We study the static and dynamic formation of entanglement in charge states of a two double quantum dot array with two mobile electrons under the effect of an external driving field. We include dissipation via contact with a phonon bath. By using the density matrix formalism and an open quantum system approach, we describe the dynamical behaviour of the charge distribution (polarization), concurrence (measure of the degree of entanglement) and Bell state probabilities (two qubit states with maximum entanglement) of such a system, including the role of dot asymmetry and temperature effects. Our results show that it is possible to obtain entangled states as well as a most probable Bell state, which can be controlled by the driving field. We also evaluate how the entanglement formation based on charge states deteriorates as the temperature or asymmetry increases.
Solitary and double-layer structures in quantum bi-ion plasma
Shahmansouri, Mehran; Tribeche, Mouloud
2016-06-01
Weak ion-acoustic solitary waves (IASWs) in an unmagnetized quantum plasmas having two-fluid ions and fluid electrons are considered. Using the one-dimensional quantum hydrodynamics model and then the reductive perturbation technique, a generalized form of nonlinear quantum Korteweg-de Vries (KdV) equation governing the dynamics of weak ion acoustic solitary waves is derived. The effects of ion population, warm ion temperature, quantum diffraction, and polarity of ions on the nonlinear properties of these IASWs are analyzed. It is found that our present plasma model may support compressive as well as rarefactive solitary structures. Furthermore, formation and characteristics properties of IA double layers in the present bi-ion plasma model are investigated. The results of this work should be useful and applicable in understanding the wide relevance of nonlinear features of localized electro-acoustic structures in laboratory and space plasma, such as in super-dense astrophysical objects [24] and in the Earth's magnetotail region (Parks [43]. The implications of our results in some space plasma situations are discussed.
Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads
Institute of Scientific and Technical Information of China (English)
HOU Tao; WU Shao-Quan; BI Ai-Hua; YANG Fu-Bin; SUN Wei-Li
2008-01-01
We theoretically study the spin-polarized transport phenomena of the parallel double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the equation-of-motion approach. We analyse the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon both the spin-polarized strength p and the value of the magnetic flux Ф. Moreover, in the parallel configuration, the position of the Kondo peak shifts while it remains unchanged for the antiparallel configuration. These effects might have some potential applications in spintronics.
An Electron-Nucleon Double Spin Solid-State Quantum Computer
Long, G L; Chen, H M; Long, Gui Lu; Ma, Ying-Jun; Chen, Hao-Ming
2003-01-01
An electron-nucleon double spin(ENDOS) solid-state quantum computer scheme is proposed. In this scheme, the qubits are the nuclear spins of phosphorus ion implanted on the (111) surface of $^{28}$Si substrate. An $^{13}$C atom on a scanning tunnelling probe tip is used both to complete single qubit and two-qubit control-not operation, and single qubit measurement. The scheme does not require interactions between qubits, and can accomplish two qubits without the use of SWAP gate. This scheme is scalable, and can be implemented with present-day or near-future technologies.
Hole subband structure in single and double p-type {delta}-doped diamond quantum wells
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Vargas, I. [Facultad de Ciencias, Univ. Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca (Mexico); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Univ. Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)
2007-07-01
Heavy, light, and split-off hole states in single and double p-{delta}-doped diamond quantum wells are studied with the use of a 6 x 6 k.p model. The effective mass Hamiltonian is solved using a local density Thomas-Fermi-Dirac approximation for the description of the band bending profile. The features of the valence band spectrum are briefly discussed in both cases. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
A Remark on CFT Realization of Quantum Doubles of Subfactors: Case Index { < 4}
Bischoff, Marcel
2016-03-01
It is well known that the quantum double {D(Nsubset M)} of a finite depth subfactor {Nsubset M}, or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. It is big open conjecture that all (unitary) modular tensor categories arise from conformal field theory. We show that for every subfactor {Nsubset M} with index {[M:N] construct completely rational nets with the opposite braiding of {{SU(2)}_k} and use the well-known fact that all subfactors with index {[M:N] < 4} arise by {α}-induction from {{SU(2)}_k}.
Relaxation and Dephasing in a Two-Electron 13C Nanotube Double Quantum Dot
DEFF Research Database (Denmark)
Churchill, H O H; Kuemmeth, Ferdinand; Harlow, J W;
2009-01-01
We use charge sensing of Pauli blockade (including spin and isospin) in a two-electron 13C nanotube double quantum dot to measure relaxation and dephasing times. The relaxation time T1 first decreases with a parallel magnetic field and then goes through a minimum in a field of 1.4 T. We attribute...... both results to the spin-orbit-modified electronic spectrum of carbon nanotubes, which at high field enhances relaxation due to bending-mode phonons. The inhomogeneous dephasing time T2* is consistent with previous data on hyperfine coupling strength in 13C nanotubes....
Su, M Y; Sherwin, M S; Huntington, A S; Coldren, L A
2002-01-01
An undoped double quantum well (DQW) was driven with a terahertz (THz) electric field of frequency \\omega_{THz} polarized in the growth direction, while simultaneously illuminated with a near-infrared (NIR) laser at frequency \\omega_{NIR}. The intensity of NIR upconverted sidebands \\omega_{sideband}=\\omega_{NIR} + \\omega_{THz} was maximized when a dc voltage applied in the growth direction tuned the excitonic states into resonance with both the THz and NIR fields. There was no detectable upconversion far from resonance. The results demonstrate the possibility of using gated DQW devices for all-optical wavelength shifting between optical communication channels separated by up to a few THz.
Spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads
Institute of Scientific and Technical Information of China (English)
Yan Cong-Hua; Wu Shao-Quan; Huang Rui; Sun Wei-Li
2008-01-01
We investigate the spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads in series.By means of the slave-boson mean-field approximation,we calculate the density of states in the Kondo regime for two different configurations of the leads.It is found that the transport shows some remarkable properties depending on the spin-flip strength.These effects may be useful in exploiting the role of electronic correlation in spintronics.
The electronic properties of concentric double quantum ring and possibility designing XOR gate
AL-Badry, Lafy. F.
2017-03-01
In this paper I have investigated the Aharonov-Bohm oscillation in concentric double quantum ring. The outer ring attached to leads while the inner ring only tunnel-coupled to the outer ring. The effect of inner ring on electron transport properties through outer ring studied and found that the conductance spectrum consists of two types of oscillations. One is the normal Aharonov-Bohm oscillation, and other is a small oscillations superposed above AB oscillation. The AB oscillation utilized to designing nanoscale XOR gate by choosing the magnetic flux and tuning the gate voltages which realization XOR gate action.
Coherent Coupling of Double Quantum Dots Embedded in a Mesoscopic Ring
Institute of Scientific and Technical Information of China (English)
吴绍全; 王顺金
2003-01-01
We theoretically study the properties of the ground state of a series-coupled double quantum dot embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that two dots can be coupled coherently,which is reflected in the appearance of parity effects and the complex current-phase relation in this system. This system might be a possible candidate for future device applications.
Giant Persistent Current in a Mesoscopic Ring with Parallel-Coupled Double Quantum Dots
Institute of Scientific and Technical Information of China (English)
CHEN Xiong-Wen; WU Shao-Quan; WANG Peng; SUN Wei-Li
2004-01-01
@@ We theoretically study the properties of the ground state of the parallel-coupled double quantum dots embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. Our results show that in this system, the persistent current depends sensitively on both the parity of this system and the size of the ring. Two dots can be coupled coherently, which is reflected in the giant current peak in the strong coupling regime. This system might be a candidate for future device applications.
Zhu, Zhaomin; Zhou, Xing; Chandrasekaran, Karthik; Rustagi, Subhash C.; See, Guan Huei
2007-04-01
In this paper, explicit surface potentials for undoped asymmetric-double-gate (a-DG) metal-oxide-semiconductor field-effect transistors (MOSFETs) suitable for compact model development are presented for the first time. The model is physically derived from Poisson’s equation in each region of operation and adopted in a unified regional approach. The proposed model is physically scalable with oxide/channel thicknesses and has been verified with generic implicit solutions for independent gate biases as well as for different gate/oxide materials. The model is extendable to silicon-on-insulator (SOI) and symmetric-DG (s-DG) MOSFETs. Finally, a continuous, explicit drain-current equation has been derived on the basis of the developed explicit surface-potential solutions.
Energy Technology Data Exchange (ETDEWEB)
Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)
2012-10-15
The dependencies of the binding energies of the lowest four 1s-like exciton states in GaAs-(Ga,Al)As coupled double quantum wells (CDQW) on the geometric parameters of the system are theoretically studied. A variational approach, together with the parabolic band and effective mass approximations, were considered in order to perform the numerical calculations. It is shown that in the case of a symmetric system there is a degeneracy between the heavy-hole even and odd states and this degeneracy can be removed by the presence of a sufficiently narrow middle barrier. In contrast to this fact, the electron even and odd states are never degenerated. It is detected that, if the system is asymmetric, there will appear binding energies anticrossings between the heavy-hole states at the point of the asymmetric {yields} symmetric QW transition. - Highlights: Black-Right-Pointing-Pointer Study of 1s-like exciton states in double quantum wells. Black-Right-Pointing-Pointer Binding energy decreases with the presence of second well. Black-Right-Pointing-Pointer Binding energy of (2,2) state can be larger than (1,1) state. Black-Right-Pointing-Pointer Central barrier can remove degeneracy of states. Black-Right-Pointing-Pointer Anticrossing between states can be induced via symmetries.
Strong spin Seebeck effect in Kondo T-shaped double quantum dots
Wójcik, K. P.; Weymann, I.
2017-02-01
We investigate, taking a theoretical approach, the thermoelectric and spin thermoelectric properties of a T-shaped double quantum dot strongly coupled to two ferromagnetic leads, focusing on the transport regime in which the system exhibits the two-stage Kondo effect. We study the dependence of the (spin) Seebeck coefficient, the corresponding power factor and the figure of merit on temperature, leads’ spin polarization and dot level position. We show that the thermal conductance fulfills a modified Wiedemann-Franz law, also in the regime of suppression of subsequent stages of the Kondo effect by the exchange field resulting from the presence of ferromagnets. Moreover, we demonstrate that the spin thermopower is enhanced at temperatures corresponding to the second stage of Kondo screening. Very interestingly, the spin-thermoelectric response of the system is found to be highly sensitive to the spin polarization of the leads. In some cases spin polarization of the order of 1% is sufficient for a strong spin Seebeck effect to occur. This is explained as a consequence of the interplay between the two-stage Kondo effect and the exchange field induced in the double quantum dot. Due to the possibility of tuning the exchange field by the choice of gate voltage, the spin thermopower may also be tuned to be maximal for desired spin polarization of the leads. All calculations are performed with the aid of the numerical renormalization group technique.
Sato, Kazuo; Nakazawa, Shigeki; Rahimi, Robabeh D.; Nishida, Shinsuke; Ise, Tomoaki; Shimoi, Daisuke; Toyota, Kazuo; Morita, Yasushi; Kitagawa, Masahiro; Carl, Parick; Höfner, Peter; Takui, Takeji
2009-06-01
Electrons with the spin quantum number 1/2, as physical qubits, have naturally been anticipated for implementing quantum computing and information processing (QC/QIP). Recently, electron spin-qubit systems in organic molecular frames have emerged as a hybrid spin-qubit system along with a nuclear spin-1/2 qubit. Among promising candidates for QC/QIP from the materials science side, the reasons for why electron spin-qubits such as molecular spin systems, i.e., unpaired electron spins in molecular frames, have potentialities for serving for QC/QIP will be given in the lecture (Chapter), emphasizing what their advantages or disadvantages are entertained and what technical and intrinsic issues should be dealt with for the implementation of molecular-spin quantum computers in terms of currently available spin manipulation technology such as pulse-based electron-nuclear double resonance (pulsed or pulse ENDOR) devoted to QC/QIP. Firstly, a general introduction and introductory remarks to pulsed ENDOR spectroscopy as electron-nuclear spin manipulation technology is given. Super dense coding (SDC) experiments by the use of pulsed ENDOR are also introduced to understand differentiating QC ENDOR from QC NMR based on modern nuclear spin technology. Direct observation of the spinor inherent in an electron spin, detected for the first time, will be shown in connection with the entanglement of an electron-nuclear hybrid system. Novel microwave spin manipulation technology enabling us to deal with genuine electron-electron spin-qubit systems in the molecular frame will be introduced, illustrating, from the synthetic strategy of matter spin-qubits, a key-role of the molecular design of g-tensor/hyperfine-(A-)tensor molecular engineering for QC/QIP. Finally, important technological achievements of recently-emerging CD ELDOR (Coherent-Dual ELectron-electron DOuble Resonance) spin technology enabling us to manipulate electron spin-qubits are described.
Electron-nuclear interaction in 13C nanotube double quantum dots
Churchill, H. O. H.; Bestwick, A. J.; Harlow, J. W.; Kuemmeth, F.; Marcos, D.; Stwertka, C. H.; Watson, S. K.; Marcus, C. M.
2009-05-01
For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100μeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information processing and memory: the 13C nuclei differ from those in the substrate, are naturally confined to one dimension, lack quadrupolar coupling and have a readily controllable concentration from less than one to 105 per electron.
InGaAsP/InP Double Quantum Well Intermixing Induced by Phosphorus Ion Implantation
Institute of Scientific and Technical Information of China (English)
CHEN Jie; ZHAO Jie; WANG Yong-chen; HAN De-jun
2005-01-01
A quantum well intermixing(QWI) investigation on double quantum well(DQW) structure with two different emitting wavelength caused by phosphorus ion implantation and following rapid thermal annealing (RTA) was carried out by means of photoluminescence(PL). The ion implantation was performed at the energy of 120 kev with the dose ranging from 1 × 1011 cm-2 to 1× 1014 cm-2. The RTA was performed at the temperature of 700 ℃ for 30 s under pure nitrogen protection. The PL measurement implied that the band gap blue-shift from the upper well increases with the ion dose faster than that from lower well and the PL peaks from both QWs remained well separated under the lower dose implantation(～1×1011 cm-2 ) indicating that the implant vacancy distribution affects the QWI. When the ion dose is over ～ 1 × 1012 cm-2 , the band gap blue-shift from both wells increases with the ion dose and finally the two peaks merge together as one peak indicating the ion implantation caused a total intermixing of both quantum wells.
Biebricher, Andreas; Wende, Wolfgang; Escudé, Christophe; Pingoud, Alfred; Desbiolles, Pierre
2009-01-01
Fluorescence microscopy provides a powerful method to directly observe single enzymes moving along a DNA held in an extended conformation. In this work, we present results from single EcoRV enzymes labeled with quantum dots which interact with DNA manipulated by double optical tweezers. The application of quantum dots facilitated accurate enzyme tracking without photobleaching whereas the tweezers allowed us to precisely control the DNA extension. The labeling did not affect the biochemical a...
Energy Technology Data Exchange (ETDEWEB)
Baba, Shoji, E-mail: baba@meso.t.u-tokyo.ac.jp; Sailer, Juergen [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Deacon, Russell S. [Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); RIKEN Advanced Science Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oiwa, Akira [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Shibata, Kenji [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Hirakawa, Kazuhiko [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); JST CREST, 4-1-8 Hon-cho, Kawaguchi-shi, Saitama 332-0012 (Japan); Tarucha, Seigo [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); INQIE, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); QPEC, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656 (Japan)
2015-11-30
We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.
Energy Technology Data Exchange (ETDEWEB)
Tagliaferri, M.L.V., E-mail: marco.tagliaferri@mdm.imm.cnr.it [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Crippa, A. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); De Michielis, M. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mazzeo, G.; Fanciulli, M. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, 20125 Milano (Italy); Prati, E. [Laboratorio MDM, CNR-IMM, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2016-03-11
We report on the fabrication and the characterization of a tunable complementary-metal oxide semiconductor (CMOS) system consisting of two quantum dots and a MOS single electron transistor (MOSSET) charge sensor. By exploiting a compact T-shaped design and few gates fabricated by electron beam lithography, the MOSSET senses the charge state of either a single or double quantum dot at 4.2 K. The CMOS compatible fabrication process, the simplified control over the number of quantum dots and the scalable geometry make such architecture exploitable for large scale fabrication of multiple spin-based qubits in circuital quantum information processing. - Highlights: • Charge sensing of tunable, by position and number, quantum dots is demonstrated. • A compact T-shaped design with five gates at a single metalization level is proposed. • The electrometer is a silicon-etched nanowire acting as a disorder tolerant MOSSET.
Optical phonon lasing and its detection in transport through semiconduc- tor double quantum dots
Okuyama, Rin; Eto, Mikio; Brandes, Tobias
2014-03-01
We theoretically propose optical phonon lasing for a double quantum dot (DQD) fabricated in a semiconductor substrate. No additional cavity or resonator is required. We show that the DQD couples to only two phonon modes that act as a natural cavity. The pumping to the upper level is realized by an electric current through the DQD under a finite bias. Using the rate equation in the Born-Markov-Secular approximation, we analyze the enhanced phonon emission when the level spacing in the DQD is tuned to the phonon energy. We find the phonon lasing when the pumping rate is much larger than the phonon decay rate, whereas anti-bunching of phonon emission is observed when the pumping rate is smaller.[1] Our theory can be also applicable to DQDs embedded in nanomechanical resonators to control the vibrating modes. We discuss detection of amplified modes using the electric current and its noise through the DQD, and another DQD fabricated nearby.
6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Teschner, J.; Vartanov, G.S.
2012-02-15
We revisit the definition of the 6j-symbols from the modular double of U{sub q}(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)
Effects of Magnetic Field on the Valence Bond Property of the Double-Quantum-Dot Molecule
Institute of Scientific and Technical Information of China (English)
王立民; 罗莹; 马本堃
2002-01-01
The effects of the magnetic field on the valence bond property of the double-quantum-dot molecule are numerically studied by the finite element method and perturbation approach because of the absence of cylindrical symmetry in the horizontally coupled dots. The calculation results show that the energy value of the ground state changes differently from that of the first excited state with increasing magnetic field strength, and they cross under a certain magnetic field. The increasing magnetic field makes the covalent bond state change into an ionic bond state, which agrees qualitatively with experimental results and makes ionic bond states remain. The oscillator strength of transition between covalent bond states decreases distinctly with the increasing magnetic field strength, when the molecule is irradiated by polarized light. Such a phenomenon is possibly useful for actual applications.
Courtney, Joseph M; Rienstra, Chad M
2016-08-01
We present a systematic study of dipolar double quantum (DQ) filtering in (13)C-labeled organic solids over a range of magic-angle spinning rates, using the SPC-n recoupling sequence element with a range of n symmetry values from 3 to 11. We find that efficient recoupling can be achieved for values n⩾7, provided that the (13)C nutation frequency is on the order of 100kHz or greater. The decoupling-field dependence was investigated and explicit heteronuclear decoupling interference conditions identified. The major determinant of DQ filtering efficiency is the decoupling interference between (13)C and (1)H fields. For (13)C nutation frequencies greater than 75kHz, optimal performance is observed without an applied (1)H field. At spinning rates exceeding 20kHz, symmetry conditions as low as n=3 were found to perform adequately.
Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer
Institute of Scientific and Technical Information of China (English)
YIN Hai-Tao; L(U) Tian-Quan; LIU Xiao-Jie; XUE Hui-Jie
2009-01-01
@@ We investigate the spin accumulation in a double quantum dot Aharonov-Bohm (AB) interferometer in which both the Rashba spin-orbit (RSO) interaction and intradot Coulomb interaction are taken into account. Due to the existence of the RSO interaction, the electron, flowing through different arms of the AB ring, will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor will induce various interesting interference phenomena. It is found that the electrons of the different spin directions can accumulate in the two dots by properly adjusting the bias and the intradot level with a fixed RSO interaction strength. Moreover, both the magnitude and direction of the spin accumulation in each dot can be conveniently controlled and tuned by the gate voltage acting on the dot or the bias on the lead.
6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories
Teschner, J
2012-01-01
We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories.
Lamperski, Stanisław; Sosnowska, Joanna; Bhuiyan, Lutful Bari; Henderson, Douglas
2014-01-07
Even though ionic liquids are composed of nonspherical ions, it is shown here that the general features of the capacitance of an electrical double layer can be obtained using a charged hard sphere model. We have shown in our earlier studies that at high electrolyte concentrations or large magnitudes of the electrode charge density the fact that the ions have a finite size, and are not point ions, cause the capacitance near the potential of zero charge to increase and change from a minimum to a maximum as the ionic concentration is increased and to decrease as the magnitude of the electrode charge density increases. Here, we show that the asymmetry of the capacitance of an ionic liquid can be explained qualitatively by using spherical ions of different size without attempting to introduce the ionic shape in a detailed manner. This means that the general features of the capacitance of the double layer of an ionic liquid can be studied without using a complex model, although the study of the density or charge profiles of an ionic fluid would require one. However, this is often unnecessary in the analysis of many experiments.
Phase Diagram of the Bose Condensation of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells
DEFF Research Database (Denmark)
Dremin, A. A.; Timofeev, V. B.; Larionov, A. V.
2002-01-01
The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied at low temperatures down to 0.5 K. The properties of excitons whose photoexcited electron and hole...
Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis
Tanabe, Katsuaki
2016-06-01
We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.
Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots.
Tessier, Mickael D; De Nolf, Kim; Dupont, Dorian; Sinnaeve, Davy; De Roo, Jonathan; Hens, Zeger
2016-05-11
Aminophosphines have recently emerged as economical, easy-to-implement precursors for making InP nanocrystals, which stand out as alternative Cd-free quantum dots for optoelectronic applications. Here, we present a complete investigation of the chemical reactions leading to InP formation starting from InCl3 and tris(dialkylamino)phosphines. Using nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction, we demonstrate that injection of the aminophosphine in the reaction mixture is followed by a transamination with oleylamine, the solvent of the reaction. In addition, mass spectrometry and NMR indicate that the formation of InP concurs with that of tetra(oleylamino)phosphonium chloride. The chemical yield of the InP formation agrees with this 4 P(+III) → P(-III) + 3 P(+V) disproportionation reaction occurring, since full conversion of the In precursor was only attained for a 4:1 P/In ratio. Hence it underlines the double role of the aminophosphine as both precursor and reducing agent. These new insights will guide further optimization of high quality InP quantum dots and might lead to the extension of synthetic protocols toward other pnictide nanocrystals.
Mobility modulation in inverted delta doped coupled double quantum well structure
Energy Technology Data Exchange (ETDEWEB)
Sahoo, N. [Department of Electronic Science, Berhampur University, 760007, Odisha (India); Sahu, T., E-mail: tsahu_bu@rediffmail.com [Department of Electronics and Communication Engineering, National Institute of Science and Technology, Palur Hills, Berhampur 761008, Odisha (India)
2016-10-01
We have studied the modulation of electron mobility μ as a function of the electric field perpendicular to the interface plane F{sub p} in a GaAs/AlGaAs double quantum well structure near the resonance of subband states. The functional dependence of μ on F{sub p} exhibits a minimum near the anticrossing of subband states leading to an oscillatory behavior of μ. We show that the oscillatory enhancement of μ becomes more pronounced with increase in the difference between the doping concentrations in the side barriers. The oscillation of μ also increases by varying the widths of the two wells through shifting of the position of the middle barrier. It is interesting to show that the oscillation of μ is always larger when there is doping in barrier towards the substrate side compared to that of the surface side due to the difference in the influence of the interface roughness scattering potential. Further, broadening of the central barrier width increases the peaks of the oscillation of μ mostly due to the changes in the ionized impurity scattering potential. Our results can be utilized for the performance enhancement of quantum well field effect transistor devices.
Mobility modulation in inverted delta doped coupled double quantum well structure
Sahoo, N.; Sahu, T.
2016-10-01
We have studied the modulation of electron mobility μ as a function of the electric field perpendicular to the interface plane Fp in a GaAs/AlGaAs double quantum well structure near the resonance of subband states. The functional dependence of μ on Fp exhibits a minimum near the anticrossing of subband states leading to an oscillatory behavior of μ. We show that the oscillatory enhancement of μ becomes more pronounced with increase in the difference between the doping concentrations in the side barriers. The oscillation of μ also increases by varying the widths of the two wells through shifting of the position of the middle barrier. It is interesting to show that the oscillation of μ is always larger when there is doping in barrier towards the substrate side compared to that of the surface side due to the difference in the influence of the interface roughness scattering potential. Further, broadening of the central barrier width increases the peaks of the oscillation of μ mostly due to the changes in the ionized impurity scattering potential. Our results can be utilized for the performance enhancement of quantum well field effect transistor devices.
Blockade in a silicon double quantum dot via the valley degree of freedom
Perron, Justin; Gullans, Michael J.; Taylor, Jacob M.; Stewart, M. D., Jr.; Zimmerman, Neil M.
Measuring electrical transport through double quantum dots (DQDs) is a useful way of illuminating several aspects of the states of the carriers. We show transport measurements through a silicon DQD formed in a mesa etched nanowire. Comparing the data at positive and negative bias voltage we observe a size asymmetry in the region of allowed current typically associated with Pauli spin blockade (PSB). However, the qualitative features of the asymmetry in our data, including i) lack of odd/even filling, ii) same polarity of asymmetry across many bias triangles, iii) lack of systematic dependence on magnetic field, and iv) a dependence on gate voltages, are all in disagreement with the predictions of PSB. In contrast, we have developed a model based on the selective filling of valley states in the DQD and the conservation of the valley degree of freedom during tunneling that predicts all of the qualitative features in our data. Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899.
Double Chains Quantum Genetic Algorithm%链式双链量子遗传算法
Institute of Scientific and Technical Information of China (English)
陈吕强
2014-01-01
Aiming at the problem that the double chains quantum genetic algorithm has low conver-gence rate and is easy to fall into local optimum value, a new quantum genetic algorithm is proposed. In this algorithm, the population is divided into several groups, and there exists a common member between the two neighboring groups. For example, the last member of the ith group is also the first member of the (i+1)th group. All the members of the same group are updated in the same direction with the same step. At the same time, through the common member, the neighboring groups keep pace with one another. This method can reduce the time complexity, maintain the population diversity, and avoid making the algorithm fall into the local optimum value. The simulation results show that the algorithm is much more efficient in the optimization of complex functions than double chains quantum genetic algorithm.%针对双链量子遗传算法具有收敛速度慢，容易陷入局部最优解等问题，提出一种新的双链量子遗传算法。该算法将种群个体分组，相邻组间有一个共有个体，即第i组的最后一条染色体同时是第i+1组的第一个个体。组内各染色体同方向同步长更新，相邻组间通过共有个体保持组间同步。该方法能很好地降低算法时间复杂度，保持种群个体的多样性，从而避免算法陷入局部最优值。最后通过实验验证该算法对复杂函数的优化结果明显优于双链量子遗传算法。
Forming double layer-encapsulated quantum dots for bio-imaging and cell targeting
Fahmi, Mochamad Zakki; Chang, Jia-Yaw
2013-01-01
We report a simple and effective approach for the preparation of double layer-encapsulated quantum dots (DL-Qdots) composed of alkyl-capping ligands to interdigitate with hydrophobic, protective agents on the surface of AgInS2/ZnS quantum dots (Qdots), which allow phase transfer of hydrophobic Qdots from the organic phase into the aqueous phase. The alkyl-capping ligands consist of a hydrophobic, aliphatic chain and different functional terminal groups (e.g., carboxyl, amine, hydroxyl, and thiol groups) that can serve as reactive sites to chemically couple with other materials. The resulting DL-Qdots bearing various functional groups retain good fluorescence properties and show excellent solubility as well as stability over a range of pH in the aqueous phase. Cytotoxicity studies of DL-Qdots bearing carboxyl groups (DL-Qdots-COOH) were carried out against human cervical (HeLa) cancer cells to elicit no apparent toxicity even at high concentrations of 300 μg mL-1 and 24 h of incubation. To demonstrate their potential biomedical application, DL-Qdots-COOH were further conjugated with folate for staining in HeLa, human liver carcinoma (HepG2), and human breast (MCF-7) cancer cells. Confocal imaging characterization revealed that folate-conjugated DL-Qdots could target most specifically and effectively HeLa cells via folate receptor-mediated targeted delivery compared to HepG2 and MCF-7 cells. The generality and simplicity of this newly developed strategy can possibly be extended to a large variety of hydrophobic Qdots and nanocrystals whose surface protective agents have a long aliphatic chain.
Liu, Xin; Zou, LiLi; Liu, Chenglin; Zhang, Zhi-Hai; Yuan, Jian-Hui
2016-03-01
In the present work, the effects of hydrostatic pressure, temperature, and magnetic field on the nonlinear optical rectification (OR) and second-harmonic generation (SHG) in asymmetrical Gaussian potential quantum well (QW) have been investigated theoretically. Here, the expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. Simultaneously, the energy eigenvalues and their corresponding eigenfunctions have been obtained by using the finite difference method. The energy eigenvalues and the shape of the confined potential are modulated by the hydrostatic pressure, temperature, and magnetic field. So the results of a number of numerical experiments indicate that the nonlinear OR and SHG strongly depends on the hydrostatic pressure, temperature, and magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.
Institute of Scientific and Technical Information of China (English)
Ha Sihua; Ban Shiliang; Zhu Jun
2011-01-01
The ground state binding energies of hydrogenic impurities in strained wurtzite AlxGa1-xN/GaN/AlyGa1-yN quantum wells are calculated numerically by a variational method. The dependence of the binding energy on well width, impurity location and Al concentrations of the left and right barriers is discussed, including the effect of the built-in electric field induced by spontaneous and piezoelectric polarizations. The results show that the change in binding energy with well width is more sensitive to the impurity position and barrier heights than the barrier widths, especially in asymmetric well structures where the barrier widths and/or barrier heights differ. The binding energy as a function of the impurity position in symmetric and asymmetric structures behaves like a map of the spatial distribution of the ground state wave function of the electron. It is also found that the influence on the binding energy from the Al concentration of the left barrier is more obvious than that of the right barrier.
Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)
2015-10-14
Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic
Quantum dots-based double-color imaging of HER2 positive breast cancer invasion
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiu-Li, E-mail: usually.158@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Peng, Chun-Wei, E-mail: pqc278@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Chen, Chuang, E-mail: chenc2469@163.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Yang, Xue-Qin, E-mail: yxqjenny@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hu, Ming-Bai, E-mail: humingbai@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Xia, He-Shun, E-mail: xiaheshun@yahoo.com.cn [Department of Pathology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Liu, Shao-Ping, E-mail: lsp_77@126.com [Department of Oncology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, No 169 Donghu Road, Wuchang District, Wuhan 430071 (China); and others
2011-06-10
Highlights: {yields} HER2 level is closely related to the biologic behaviors of breast cancer cells. {yields} A new method to simultaneously image HER2 and type IV collagen was established. {yields} HER2 status and type IV collagen degradation predict breast cancer invasion. {yields} The complex interactions between tumor and its environment were revealed. -- Abstract: It has been well recognized that human epidermal growth factor receptor 2 (HER2) level in breast cancer (BC) is closely related to the malignant biologic behaviors of the tumor, including invasion and metastasis. Yet, there has been a lack of directly observable evidence to support such notion. Here we report a quantum dots (QDs)-based double-color imaging technique to simultaneously show the HER2 level on BC cells and the type IV collagen in the tumor matrix. In benign breast tumor, the type IV collagen was intact. With the increasing of HER2 expression level, there has been a progressive decrease in type IV collagen around the cancer nest. At HER2 (3+) expression level, there has virtually been a total destruction of type IV collagen. Moreover, HER2 (3+) BC cells also show direct invasion into the blood vessels. This novel imaging method provides direct observable evidence to support the theory that the HER2 expression level is directly related to BC invasion.
Baidya, Santu; Waghmare, Umesh V.; Paramekanti, Arun; Saha-Dasgupta, Tanusri
2016-10-01
Towards the goal of realizing topological phases in thin films of correlated oxide and heterostructures, we propose here a quantum anomalous Hall insulator (QAHI) in ultrathin films of double perovskites based on mixed 3 d -5 d or 3 d -4 d transition-metal ions, grown along the [111] direction. Considering the specific case of ultrathin Ba2FeReO6 , we present a theoretical analysis of an effective Hamiltonian derived from first principles. We establish that a strong spin-orbit coupling at the Re site, t2 g symmetry of the low-energy d bands, polarity of its [111] orientation of perovskite structure, and mixed 3 d -5 d chemistry results in room temperature magnetism with a robust QAHI state of Chern number C =1 and a large band gap. We uncover and highlight a nonrelativistic orbital Rashba-type effect in addition to the spin-orbit coupling, that governs this QAHI state. With a band gap of ˜100 meV in electronic structure and magnetic transition temperature Tc˜300 K estimated by Monte Carlo simulations, our finding of the QAHI state in ultrathin Ba2FeReO6 is expected to stimulate experimental verification along with possible practical applications of its dissipationless edge currents.
A Convergent Iterative Solution of the Quantum Double-well Potential
Friedberg, R; Zhao Wei Qin; Cimenser, A
2001-01-01
We present a new convergent iterative solution for the two lowest quantum wave functions $\\psi_{ev}$ and $\\psi_{od}$ of the Hamiltonian with a quartic double well potential $V$ in one dimension. By starting from a trial function, which is by itself the exact lowest even or odd eigenstate of a different Hamiltonian with a modified potential $V+\\delta V$, we construct the Green's function for the modified potential. The true wave functions, $\\psi_{ev}$ or $\\psi_{od}$, then satisfies a linear inhomogeneous integral equation, in which the inhomogeneous term is the trial function, and the kernel is the product of the Green's function times the sum of $\\delta V$, the potential difference, and the corresponding energy shift. By iterating this equation we obtain successive approximations to the true wave function; furthermore, the approximate energy shift is also adjusted at each iteration so that the approximate wave function is well behaved everywhere. We are able to prove that this iterative procedure converges fo...
Electro-acoustic solitary waves and double layers in a quantum plasma
Dip, P. R.; Hossen, M. A.; Salahuddin, M.; Mamun, A. A.
2017-02-01
A meticulous theoretical investigation has carried out to study the properties related to the higher-order nonlinearity of the electro-acoustic waves, specifically ion-acoustic (IA) waves in an unmagnetized, collisionless, quantum electron-positron-ion (EPI) plasma. The plasma system is supposed to be formed of positively charged inertial heavy ions, inertialess electrons and positrons. The reductive perturbation technique is employed to derive the modified Korteweg-de Vries (mK-dV) equation to analyze the solitary waves (SWs), and the standard Gardner (SG) equation to analyze the higher-order SWs as well as double layers (DLs). The basic features (viz. amplitude, width, phase speed, etc.) of the IA SWs and DLs are examined. The comparison between the mK-dV SWs and SG SWs is also made. It is found that the amplitude, width, phase speed, etc. of the IA SWs and DLs are significantly modified by the effects of the both Fermi temperatures as well as pressures and Bohm potentials of electrons and positrons. Our findings may be useful in explaining the physics behind the formation of the IA waves in both astrophysical and laboratory EPI plasmas (viz. white dwarfs, laser-solid matter interaction experiments, etc.).
Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content
Institute of Scientific and Technical Information of China (English)
Zhao Bi-Jun; Chen Xin; Ren Zhi-Wei; Tong Jin-Hui; Wang Xing-Fu; Li Dan-Wei; Zhuo Xiang-Jing
2013-01-01
The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated.It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell.Under AM1.5G illumination,the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65％ and 13％ compared with those of a normal single-indium-content MQW solar cell.These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.
Magneto-transport studies of a few hole GaAs double quantum dot in tilted magnetic fields
Studenikin, Sergei; Bogan, Alex; Tracy, Lisa; Gaudreau, Louis; Sachrajda, Andy; Korkusinski, Marek; Reno, John; Hargett, Terry
Compared to equivalent electron devices, single-hole spins interact weakly with lattice nuclear spins leading to extended quantum coherence times. This makes p-type Quantum Dots (QD) particularly attractive for practical quantum devices such as qubit circuits, quantum repeaters, quantum sensors etc. where long coherence time is required. Another property of holes is the possibility to tune their g-factor as a result of the strong anisotropy of the valance band. Hole g-factors can be conveniently tuned in situ from a large value to almost zero by tilting the magnetic field relative to the 2D hole gas surface normal. In this work we explore high-bias magneto-transport properties of a p-type double quantum dot (DQD) device fabricated from a GaAs/AlGaAs heterostructures using lateral split-gate technology. A charge detection technique is used to monitor number of holes and tune the p-DQD in a single hole regime around (1,1) and (2,0) occupation states where Pauli spin-blockaded transport is expected. Four states are identified in quantizing magnetic fields within the high-bias current stripe - three-fold triplet and a singlet which allows determining effective heavy hole g-factor as a function of the tilt angle from 90 to 0 degrees.
Edén, Mattias
2010-05-01
Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.
El Kadadra, A.; Fellaoui, K.; Abouelaoualim, D.; Oueriagli, A.
2016-09-01
In this work, we have investigated theoretically the effects of applied electric field on the linear and nonlinear optical properties in a GaN/AlxGa1-xN double inverse parabolic quantum well for different Al concentrations at the well center. Our calculations are based on the potential morphing method in the effective mass approximation. The systematic theoretical investigation contains results with all possible combinations of the involved parameters, such as quantum well width, quantum barrier width, Al concentration at each well center and magnitude of the external electric field. Our results show that the electric fields strengths, the parameter of nanostructure and incident optical intensity have a great effect on the optical characteristics of these nanostructures. Thus, the absorption coefficients which can be suitable for great performance optical modulators and multiple infrared optical device applications can be easily obtained by tuning the external electric field value and the Al concentration at the well center.
Energy Technology Data Exchange (ETDEWEB)
Hirmer, Michael; Hirmer, Marika; Schuh, Dieter; Wegscheider, Werner; Korn, Tobias; Schueller, Christian [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg (Germany)
2010-07-01
Zero-magnetic-field-spin-splitting (ZMFSS) in two-dimensional quantum wells (QW) induced by the structure inversion asymmetry, and its control, are of major importance for both fundamental research and spintronic applications, due to its influence on the dynamics and manipulation of the spin. In hole systems the asymmetry leads to a ZMFSS of the heavy hole (HH) states in third order of the in-plane wave vector k {sub parallel}. In our experiments, we focus on highly p-doped asymmetric 2D AlGaAs/GaAs quantum wells (QW). with different QW widths and spacer thicknesses and the manipulation of the Rashba spin splitting via top gates. We utilize electronic intersubband Raman measurements in backscattering geometry at 4.2 K. Using polarization selection rules, one can distinguish between charge-density excitation (CDE, polarized spectra) and spin-density excitation (SDE, depolarized spectra) in the Raman spectra. In all samples we observe a low-energy SDE with excitation energies in the range of 0-2 meV. Comparing these excitation energies to 8 band k.p calculations of the valence subbands, the SDE can be interpreted as an intersubband excitation of the spin-split HH ground state, reflecting directly the ZMFSS.
Xiaoli, Ji; Fuhua, Yang; Junxi, Wang; Ruifei, Duan; Kai, Ding; Yiping, Zeng; Guohong, Wang; Jinmin, Li
2010-09-01
Asymmetric InGaN/GaN multiple-quantum well (MQW) light-emitting diodes were fabricated to expose the luminescence distribution and explore the hole transport. Under electrical injection, the sample with a wNQW active region in which the first QW nearest the p-side (QW1) is wider than the subsequent QWs shows a single long-wavelength light-emission peak arising from QW1. The inverse nWQW sample with a narrow QW1 shows one short-wavelength peak and one long-wavelength peak emitted separately from QW1 and the subsequent QWs. Increasing the barrier thickness between QW1 and the second QW (QWB1) in the nWQW structure, the long-wavelength peak is suppressed and the total light-emission intensity decreases. It was concluded that the nWQW and thin-QWB1 structure can improve the hole transport, and hence enhance the light-emission from the subsequent QWs and increase the internal quantum efficiency.
On the relation between the modular double of U{sub q}(sl(2,R)) and the quantum Teichmueller theory
Energy Technology Data Exchange (ETDEWEB)
Nidaiev, Iurii; Teschner, Joerg
2013-02-15
We exhibit direct relations between the modular double of U{sub q}(sl(2,R)) and the quantum Teichmueller theory. Explicit representations for the fusion- and braiding operations of the quantum Teichmueller theory are immediate consequences. Our results include a simplified derivation of the Clebsch-Gordan decomposition for the principal series of representation of the modular double of U{sub q}(sl(2,R)).
Electro-optic Effects in Special Asymmetric Quantum Wells%一种特殊的非对称量子阱中的电光效应
Institute of Scientific and Technical Information of China (English)
俞友宾; 郭康贤; 于凤梅
2004-01-01
Recently, there has been an increasing interest in nonlinear optical properties of semiconductor quantum well structures, because of their relevance for studying practical applications and as a probe for the electronic structure of mesoscopic media. In this paper, the nonlinear electro-optic effects in special asymmetric quantum wells are studied. Because of this kind of quantum well is more approximate a practical quantum well between the conduction band and valence band, and it can be realized very easily in experiment. The analytical expressions of electro-optic coefficient have been derived by compact density-matrix approach and the numerical results were presented for GaAs/AlGaAs asymmetric quantum wells. The shape of the quantum well varying with the parameter a and the parameter V0 were plotted. Itis found that the asyrmnetry of the quantum wells enhances with the increase of parameter a. On the contrary, the asymmetry of the quantum walls decreases with the increase of the parameter Vo. The maximum values of the electro-optic coefficient varying with the parameter a and the parameter V0 were plotted. The numerical results show the electro-optic coefficient enhances with the increases of the parameter a and the decrease of the parameter V0. Therefore, it is found that the electro-optic coefficient increases with the enhancement of the quantum wells' asymmetry. The electro-optic coefficient as afunction of the photon energy with different values of parameter a and different values of parameter V0 were also plotted. It can be observed that there are three peak values in the figures, respectively. And it is obvious that the larger the asymmetry of quantum wells is, the bigger the peak value is. It can be seen that with the increase of the asymmetry of quantum well, the peaks move to the low energy side.Moreover, the electro-optic coefficient obtained in this special quantum well is as large as 104 m/V.With the advances of nanofabrication technology recently, it
Energy Technology Data Exchange (ETDEWEB)
Saalwächter, Kay, E-mail: kay.saalwaechter@physik.uni-halle.de [Institut für Physik – NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle (Germany)
2014-08-14
A recent implementation of a double-quantum (DQ) recoupling solid-state NMR experiment, dubbed DQ-DRENAR, provides a quantitative measure of homonuclear dipole-dipole coupling constants in multispin-1/2 systems. It was claimed to be more robust than another, previously known experiment relying on the recording of point-by-point normalized DQ build-up curves. Focusing on the POST-C7 and BaBa-xy16 DQ pulse sequences, I here present an in-depth comparison of both approaches based upon spin-dynamics simulations, stressing that they are based upon very similar principles and that they are largely equivalent when no imperfections are present. With imperfections, it is found that DQ-DRENAR/POST-C7 does not fully compensate for additional signal dephasing related to chemical shifts (CS) and their anisotropy (CSA), which over-compensates the intrinsic CS(A)-related efficiency loss of the DQ Hamiltonian and leads to an apparent cancellation effect. The simulations further show that the CS(A)-related dephasing in DQ-DRENAR can be removed by another phase cycle step or an improved super-cycled wideband version. Only the latter, or the normalized DQ build-up, are unaffected by CS(A)-related signal loss and yield clean pure dipolar-coupling information subject to unavoidable, pulse sequence specific performance reduction related to higher-order corrections of the dipolar DQ Hamiltonian. The intrinsically super-cycled BaBa-xy16 is shown to exhibit virtually no CS(A) related imperfection terms, but its dipolar performance is somewhat more challenged by CS(A) effects than POST-C7, which can however be compensated when applied at very fast MAS (>50 kHz). Practically, DQ-DRENAR uses a clever phase cycle separation to achieve a significantly shorter experimental time, which can also be beneficially employed in normalized DQ build-up experiments.
Energy Technology Data Exchange (ETDEWEB)
Altin, E. [Inonu University, Scientific and Technological Research Center, Malatya (Turkey); Anadolu University, Department of Physics, Eskisehir (Turkey); Hostut, M. [Akdeniz University, Department of Secondary Education of Science and Maths., Division of Physics Education, Antalya (Turkey); Ergun, Y. [Anadolu University, Department of Physics, Eskisehir (Turkey)
2011-12-15
In this study, we investigate dark current voltage characteristics of GaAs/AlGaAs staircase-like asymmetric multiquantum well structure at various temperatures experimentally. The activation energy is calculated by using Arrhenius plots at different voltages. It is found that the activation energy decreased with increasing electric field. This result is evaluated using a barrier lowering effect which is a combination of geometrical and Poole-Frenkel effects. Measured dark current density-voltage (J-V) characteristics compared with the Levine model, 3D carrier drift model and the emission capture model. The best agreement with the experimental results of dark current densities is obtained by the Levine model. (orig.)
Chen, Lixia; He, Fang; Sun, Zuwen; Zhang, Yan; Li, Fengjiao; Huang, Yuan; Gu, Ruisona
2015-02-01
Si single quantum dots (QDs) and Si/Ge double QDs doped TiO2 films were successfully fabricated via layer-by-layer ion beam sputtering assisted by annealing treatment, and their morphology and optical absorption performance were analyzed in this paper. TEM images show that Si QDs and Si/Ge double QDs prepared in the TiO2 matrix are in a uniform size distribution and high density, especially after annealed at 500 °C. XPS results indicate that Si in the TiO2 films mainly exists in the form of elemental Si and SiO2, and Ge is in elemental form. From the optical absorption spectra, the optical response of the TiO2 films is shifted from ultraviolet to visible and near infrared region when they are doped by the QDs, and the Si/Ge double QDs co-doped TiO2 films show better optical response compared with the Si QDs doped TiO2 films, suggesting a hybrid enhanced effect of double QDs.
Universal Set of Quantum Gates for Double-Dot Exchange-Only Spin Qubits Under Realistic Conditions
de Michielis, Marco; Ferraro, Elena; Rotta, Davide; Mazzeo, Giovanni; Tagliaferri, Marco; Crippa, Alessandro; Fanciulli, Marco; Prati, Enrico
2014-03-01
We report on a universal set of quantum logic gates for hybrid qubits. In a hybrid qubit the information is encoded in the spin state of three electrons elettrostatically confined in a silicon double quantum dot (QD), in (2,1) filling. All electrical operations, reduced fabrication complexity and high scalability are the strengths of this technology. Schrieffer-Wolff effective models for both one and two coupled hybrid qubit are developed including the inescapable exchange interaction between electrons in the same QD. Optimal sequences of exchange interactions creating a complete set of quantum operations, namely Hadamard, π/8 and CNOT gates, are obtained by using a search algorithm, based on simplex and genetic ones. Silicon devices have been designed by SDFT-based program and efforts in its fabrication have produced in-plane inter-QDs distances down to 100 nm by means of electron beam lithography. Double QDs devices operating in few electron filling regime have been preliminary characterized at 4.2 K. Second affiliation: DSM, Università degli Studi di Milano-Bicocca, Via Cozzi 53, I-20125 Milano, Italy.
Accardi, Antonio; Barth, Ingo; Kühn, Oliver; Manz, Jörn
2010-10-28
Quantum dynamics simulations of double proton transfer (DPT) in the model porphine, starting from a nonequilibrium initial state, demonstrate that a switch from synchronous (or concerted) to sequential (or stepwise or successive) breaking and making of two bonds is possible. For this proof of principle, we employ the simple model of Smedarchina, Z.; Siebrand, W.; Fernández-Ramos, A. J. Chem. Phys. 2007, 127, 174513, with reasonable definition for the domains D for the reactant R, the product P, the saddle point SP2 which is crossed during synchronous DPT, and two intermediates I = I(1) + I(2) for two alternative routes of sequential DPT. The wavepacket dynamics is analyzed in terms of various properties, from qualitative conclusions based on the patterns of the densities and flux densities, until quantitative results for the time evolutions of the populations or probabilities P(D)(t) of the domains D = R, P, SP2, and I, and the associated net fluxes F(D)(t) as well as the domain-to-domain (DTD) fluxes F(D1,D2) between neighboring domains D1 and D2. Accordingly, the initial synchronous mechanism of the first forward reaction is due to the directions of various momenta, which are imposed on the wavepacket by the L-shaped part of the steep repulsive wall of the potential energy surface (PES), close to the minimum for the reactant. At the same time, these momenta cause initial squeezing followed by rapid dispersion of the representative wavepacket. The switch from the synchronous to sequential mechanism is called indirect, because it is mediated by two effects: First, the wavepacket dispersion; second, relief reflections of the broadened wavepacket from wide regions of the inverse L-shaped steep repulsive wall of the PES close to the minimum for the product, preferably to the domains I = I(1) + I(2) for the sequential DPT during the first back reaction, and also during the second forward reaction, etc. Our analysis also discovers a variety of minor effects, such as
Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.
2012-01-01
The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.
Interband optical absorption in wurtzite MgxZn1-xO/ZnO/MgyZn1-yO asymmetric quantum wells
Gu, Z.; Zhu, Z. N.; Wang, M. M.; Wang, Y. Q.; Wang, M. S.; Qu, Y.; Ban, S. L.
2017-02-01
Based on Fermi golden rule, the optical absorption induced by interband transition of electrons and holes in wurtzite MgxZn1-xO/ZnO/MgyZn1-yO asymmetric quantum wells at room temperature has been discussed. The built-in electric field (BEF) and Poisson potential are considered to calculate the eigenstates and eigenenergies of electrons and holes. The interband optical absorption coefficients (IOACs) influenced by ternary mixed crystal and size effects as functions of incident photon wavelengths are presented. The results indicate that increasing Mg component in left barrier can enhance the BEF to enforce electrons (holes) close to the left (right) interface, so as to reduce the overlapping of their wave functions. Thus the IOAC peak decreases rapidly and presents a blue shift with the increment of Mg component x. Furthermore, the size effect on IOACs is also discussed. The absorption peak is more sensitive to the change of the well width than the left barrier size. The absorption peak reduces sharply and shows a red shift with the increase of the well width. Our results could provide guidance on experiments and device fabrication.
Acoustic phonon modes in asymmetric AlxGa1-xN/GaN/AlyGa1-yN quantum wells
Zan, Y. H.; Ban, S. L.; Chai, Y. J.; Qu, Y.
2017-02-01
Using an elastic continuum model, the dispersion relations and phonon modes of propagating, confined, half space and interface acoustic phonons in asymmetric AlxGa1-xN/GaN/Al1-yGayN quantum wells (QWs) have been solved theoretically with the varieties of Al components x and y. Contrary to the previous conclusions, some regulations for the existence of the above different acoustic phonons are revealed as well as the transition conditions among these modes are also discussed. With increase of wave vectors, the dispersion relations split into several groups. Because the classification of these groups is related to the eigen frequencies of bulk materials forming QWs, phonon modes in these groups will be confined or propagating in different layers of QWs. Furthermore, the gradients of the dispersion relations' asymptotes are the velocities of longitudinal and the transverse acoustic phonons propagating in bulk materials in turns. The properties of the dispersion relations and their phonon modes are also analyzed in depth based on the cut-off conditions. By the changing of Al components x and y, the bottom of these groups will be modified to adjust eigen frequencies of AlxGa1-xN or Al1-yGayN layers. But the propagation properties of acoustic phonon modes will remain unchanged in each section.
Energy Technology Data Exchange (ETDEWEB)
Hirmer, Michael; Hirmer, M.; Schuh, D.; Wegscheider, W.; Korn, T.; Schueller, C. [Institut fuer Experimentelle Physik, Universitaet Regensburg, 93040 Regensburg (Germany)
2011-07-01
Zero-Magnetic-Field-Spin-Splitting (ZMFSS) in 2D quantum wells (QW) induced by the structure inversion asymmetry, and its control, are of major importance for both fundamental research and spintronic applications. In hole systems, the asymmetry leads to a ZMFSS of the heavy hole (HH) states in third order of the in-plane wave vector k. In our experiments, we focus on highly p-doped asymmetric AlGaAs/GaAs QW. We utilize electronic intersubband Raman measurements in backscattering geometry. In all samples we observe a low-energy spin-density excitation (SDE) with energies in the range of 0-3 meV. Samples with higher hole density show a two-component SDE. Comparing these excitation energies to 8 band k.p calculations of the valence subbands, the SDE can be interpreted as an intersubband excitation of the spin-split HH ground state, reflecting directly the ZMFSS. The two components can be attributed to different HH dispersions in different crystallographic directions, the so-called warping. We found that the observed spin splitting increases systematically with increasing hole density p, or by an external electric field. Measurements of the Shubnikov de Haas oscillations showed similar results.
Spin blockade and coherent dynamics of high-spin states in a three-electron double quantum dot
Chen, Bao-Bao; Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Jiang, Hong-Wen; Hu, Xuedong; Guo, Guo-Ping
2017-01-01
Asymmetry in a three-electron double quantum dot (DQD) allows spin blockade, when spin-3/2 (quadruplet) states and spin-1/2 (doublet) states have different charge configurations. We have observed this DQD spin blockade near the (1,2)-(2,1) charge transition using a pulsed-gate technique and a charge sensor. We, then, use this spin blockade to detect Landau-Zener-Stückelberg interference and coherent oscillations between the spin quadruplet and doublet states. Such studies add to our understandings of coherence and control properties of three-spin states in a double dot, which, in turn, would benefit explorations into various qubit encoding schemes in semiconductor nanostructures.
Collective behavior of interwell excitons laterally confined in GaAs/AlGaAs double quantum wells
Energy Technology Data Exchange (ETDEWEB)
Timofeev, V.B.; Gorbunov, A.V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation)
2005-02-01
The luminescence of interwell excitons laterally confined by long range potential fluctuations and with the use of inhomogeneous electric field in n-i-n GaAs/AlGaAs heterostructures double quantum wells has been investigated under variation of excitation power and temperature. Above mobility threshold very narrow interwell exciton line has been observed and its intensity decrease is linearly dependent on temperature growth. The observed phenomena, which were critical to exciton density and temperature, are attributed to the Bose-condensation in laterally confined quasi-two dimensional system of interwell excitons. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Tang, Chi-Shung; Tseng, Shu-Ting; Gudmundsson, Vidar; Cheng, Shun-Jen
2015-03-04
We investigate double finger gate (DFG) controlled spin-resolved resonant transport properties in an n-type quantum channel with a Rashba-Zeeman (RZ) subband energy gap. By appropriately tuning the DFG in the strong Rashba coupling regime, resonant state structures in conductance can be found that are sensitive to the length of the DFG system. Furthermore, a hole-like bound state feature below the RZ gap and an electron-like quasi-bound state feature at the threshold of the upper spin branch can be found that is insensitive to the length of the DFG system.
Energy Technology Data Exchange (ETDEWEB)
Amaha, S., E-mail: s-amaha@riken.jp [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Hatano, T. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Department of Physics, Tohoku University, Sendai-shi, Miyagi 980-8578 (Japan); Tarucha, S. [Quantum Spin Information Project, Japan Science and Technology Agency, ICORP, 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Functional System Research Group, RIKEN Center for Emergent Matter Science, RIKEN, 3-1 Wako-shi, Saitama 351-0198 (Japan); Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Gupta, J. A.; Austing, D. G. [National Research Council of Canada, M50, Montreal Road, Ottawa, Ontario K1A 0R6 (Canada)
2015-04-27
We investigate nuclear spin pumping with five-electron quadruplet spin states in a spin-blockaded weakly coupled vertical double quantum dot device. Two types of hysteretic steps in the leakage current are observed on sweeping the magnetic field and are associated with bidirectional polarization of nuclear spin. Properties of the steps are understood in terms of bias-voltage-dependent conditions for the mixing of quadruplet and doublet spin states by the hyperfine interaction. The hysteretic steps vanish when up- and down-nuclear spin pumping processes are in close competition.
DEFF Research Database (Denmark)
Larionov, A. V.; Timofeev, V. B.; Hvam, Jørn Märcher
2002-01-01
The time evolution and kinetics of photoluminescence (PL) spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n–i–n structures) have been investigated under the pulse resonance excitation of intrawell 1sHH excitons using a pulsed tunable laser. It is found that the collective exciton......, and a significant increase in the radiative decay rate of the condensed phase. The collective exciton phase arises at temperatures T properties of the collective phase of interwell excitons and experimental manifestations of this coherence...
Noncollinear Spin-Orbit Magnetic Fields in a Carbon Nanotube Double Quantum Dot
Hels, M. C.; Braunecker, B.; Grove-Rasmussen, K.; Nygârd, J.
2016-12-01
We demonstrate experimentally that noncollinear intrinsic spin-orbit magnetic fields can be realized in a curved carbon nanotube two-segment device. Each segment, analyzed in the quantum dot regime, shows near fourfold degenerate shell structure allowing for identification of the spin-orbit coupling and the angle between the two segments. Furthermore, we determine the four unique spin directions of the quantum states for specific shells and magnetic fields. This class of quantum dot systems is particularly interesting when combined with induced superconducting correlations as it may facilitate unconventional superconductivity and detection of Cooper pair entanglement. Our device comprises the necessary elements.
Quantum compact model for thin-body double-gate Schottky barrier MOSFETs
Institute of Scientific and Technical Information of China (English)
Luan Su-Zhen; Liu Hong-Xia
2008-01-01
Nanoscale Schottky barrier metal oxide semiconductor field-effect transistors (MOSFETs) are explored by using quantum mechanism effects for thin-body devices. The results suggest that for small nonnegative Schottky barrier heights, even for zero barrier height, the tunnelling current also plays a role in the total on-state current. Owing to the thin body of device, quantum confinement raises the electron energy levels in the silicon, and the tradeoff takes place between the quantum confinement energy and Schottky barrier lowering (SBL). It is concluded that the inclusion of the quantum mechanism effect in this model, which considers an infinite rectangular well with a first-order perturbation in the channel, can lead to the good agreement with numerical result for thin silicon film. The error increases with silicon thickness increasing.
Chuprikov, N L
2011-01-01
By probability theory the probability space to underlie the set of statistical data described by the squared modulus of a coherent superposition of microscopically distinct (sub)states (CSMDS) is non-Kolmogorovian and, thus, such data are mutually incompatible. For us this fact means that the squared modulus of a CSMDS cannot be interpreted as the probability density and quantum mechanics itself, with its current approach to CSMDSs, does not allow a correct statistical interpretation. By the example of a 1D completed scattering and double slit diffraction we develop a new quantum-mechanical approach to CSMDSs, which implies decomposition of the non-Kolmogorovian probability space associated with the squared modulus of a CSMDS into the sum of Kolmogorovian ones. We adapt to CSMDSs the presented by Khrennikov ({\\it Found. of Phys., 35, No. 10, p.1655 (2005)}) concept of real contexts (complexes of physical conditions) to determine uniquely the properties of quantum ensembles. Namely we treat the context to crea...
de Bianchi, Massimiliano Sassoli
2013-01-01
The validity of the assertion that some recent double-slit interference experiments, conducted by Radin et al., would have tested the possible role of the experimenter's mind in the collapse of the quantum wave function, is questioned. It is emphasized that quantum mechanics doesn't need any psychophysical ingredient to explain the measurement processes, and therefore parapsychologists shouldn't resort to the latter to support the possibility of psychokinesis, but search for more convincing explanations.
Energy Technology Data Exchange (ETDEWEB)
Tangmettajittakul, O., E-mail: s-panyakeow@yahoo.com; Changmoung, P., E-mail: s-panyakeow@yahoo.com; Thainoi, S., E-mail: s-panyakeow@yahoo.com; Ratanathammaphan, S., E-mail: s-panyakeow@yahoo.com; Panyakeow, S., E-mail: s-panyakeow@yahoo.com [Semiconductor Device Research Laboratory (Nanotech Center of Excellence) Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok (Thailand)
2013-12-04
In{sub 0.1}Ga{sub 0.9}As/Al{sub 0.3}Ga{sub 0.7}As quantum rings were fabricated by droplet epitaxy technique using molecular beam epitaxy (MBE). 7.5 ML In{sub 0.1}Ga{sub 0.9}As droplets are deposited on Al{sub 0.3}Ga{sub 0.7}As epitaxial layer at 350°C and 250°C. After that, they were crystallized under As{sub 4} pressure of 8×10{sup −6} torr at 250°C. The surface morphology of quantum rings is studied by atomic force microscopy. It is found that quantum rings are not symmetrical due to anisotropic behavior of In and Ga atom migration during crystallization process. The quantum ring density of the sample deposition at 350°C and 250°C are 1×10{sup 9} cm{sup −2} and 2.6×10{sup 9} cm{sup −2}, respectively. Consequently, the asymmetric quantum rings with deposition at 350°C give two photoluminescence (PL) peaks at 1.27 and 1.38 eV at 20K. However, the PL peak of quantum rings with deposition at 350°C is merged with GaAs peak due to the poor size distribution.
A quantum network for implementation of the optimal quantum cloning
Institute of Scientific and Technical Information of China (English)
Dai Jie-Lin; Zhang Wen-Hai
2009-01-01
This paper presents a quantum network to implement the optimal 1→2 quantum cloning in 2 dimensions, including the optimal asymmetric universal, the optimal symmetric phase-covariant, and the asymmetric real state cloning. By only choosing different angles of the single-qubit rotations, the quantum network can implement three optimal quantum cloning.
Institute of Scientific and Technical Information of China (English)
ZHANG Li; SHI Jun-Jie
2007-01-01
Based on the dielectric continuum model and Loudon's uniaxial crystal model,the properties of the quasiconfined (QC) optical phonon dispersions and the electron-QC phonons coupling functions in an asymmetric wurtzite quantum well (QW) are deduced via the method of electrostatic potential expanding.The present theoretical scheme can naturally reduce to the results in symmetric wurtzite QW once a set of symmetric structural parameters are chosen.Numerical calculations on an asymmetric A1N/GaN/Al0.15Ga0.85N wurtzite QW are performed.A detailed comparison with the symmetric wurtzite QW was also performed.The results show that the structural asymmetry of wurtzite QW changes greatly the dispersion frequencies and the electrostatic potential distributions of the QC optical phonon modes.
Electron-nuclear interaction in 13C nanotube double quantum dots
DEFF Research Database (Denmark)
Churchill, H O H; Bestwick, A J; Harlow, J W;
2009-01-01
For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear environm...
Nisticò, Giuseppe
2010-01-01
Double-slit experiment very well lends itself in describing the problem of measuring simultaneously incompatible properties. In such a context, we theoretically design an ideal experiment for spin-7/2 particles, able to produce the entanglement which makes possible the detection.
Hida, Kazuo
1992-03-01
The quantum disordered state (QDOS) of the spin 1/2 double layer square lattice Heisenberg antiferromagnet is studied. Using the dimer expansion from the limit of the large interlayer coupling J', the staggered susceptibility χ, the antiferromagnetic structure factor Sπ and the antiferromagnetic correlation length ξ are calculated up to the 6-th order in the intralayer coupling J. The ratio analysis shows that the QDOS becomes unstable against the Néel ordering at J'/J≃2.56. The critical exponents are not inconsistent with the universality class of the 3-dimensional classical Heisenberg model, suggesting that our QDOS corresponds to that expected in the 2-dimensional square lattice Heisenberg antiferromagnet with unphysically small spin (<0.276). The results of the projector Monte Carlo simulation also confirms the dimer expansion results.
Giant Kondo Resonance of Parallel-Coupled Double Quantum Dots Embedded in an A-B Ring
Institute of Scientific and Technical Information of China (English)
CHEN Xiong-Wen; HE Da-Jiang; SONG Ke-Hui; WU Shao-Quan
2006-01-01
We theoretically study the properties of the ground state of the parallel-coupled double quantum dots embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We find that in this system, the persistent current depends sensitively on both the parity of this system and the size of the ring. In the strong coupling regime, the giant sharp current peak appears, at the same time, the parity dependence of the persistent current disappears. These imply that in the strong coupling regime, there exists giant Kondo resonance and the two dots can be coupled coherently. Thus this system might be a candidate for future device applications.
Tauber, Katharina; Hall, Melanie; Kroutil, Wolfgang; Fabian, Walter M F; Faber, Kurt; Glueck, Silvia M
2011-06-01
The asymmetric bioreduction of activated alkenes catalyzed by flavin-dependent enoate reductases from the OYE-family represents a powerful method for the production of optically active compounds. For its preparative-scale application, efficient and economic NADH-recycling is crucial. A novel enzyme-coupled NADH-recycling system is proposed based on the concurrent oxidation of a sacrificial sec-alcohol catalyzed by an alcohol dehydrogenase (ADH-A). Due to the highly favorable position of the equilibrium of ene-reduction versus alcohol-oxidation, the cosubstrate is only required in slight excess.
Charged excitonic complexes in GaAs/Al0.35Ga0.65As p-i-n double quantum wells
DEFF Research Database (Denmark)
Timofeev, V. B.; Larionov, A. V.; Alessi, M. Grassi;
1999-01-01
Photoluminescence (PL) and PL excitation measurements (PLE) have been performed in GaAs/AlxGa1-xAs double quantum well (QW) structures under different applied electric fields. An emission due to charged excitons (trions) has been identified in the PL spectra similar to 3 meV below the heavy-hole ...
DEFF Research Database (Denmark)
Timofeev, V.B.; Larionov, A.V.; Ioselevich, A.S.;
1998-01-01
The interwell radiative recombination from biased double quantum wells (DQW) in pin GaAs/AlGaAs heterostructures is investigated at different temperatures and external electrical fields. The luminescence line of interwell recombination of spatially separated electron-hole pairs exhibits systemati...
On demand entanglement in double quantum dots via coherent carrier scattering
Energy Technology Data Exchange (ETDEWEB)
Buscemi, F [Department of Electronics, Computer Science and Systems, University of Bologna, Viale Risorgimento 2, I-40136 Bologna (Italy); Bordone, P [Department of Physics, University of Modena and Reggio Emilia, Via Campi 213/A, I-41125 Modena (Italy); Bertoni, A, E-mail: fabrizio.buscemi@unimore.it [Centro S3, CNR-Istituto Nanoscienze, Via Campi 213/A, I-41125, Modena (Italy)
2011-01-15
We show how two qubits encoded in the orbital states of two quantum dots can be entangled or disentangled in a controlled way through their interaction with a weak electron current. The transmission/reflection spectrum of each scattered electron, acting as an entanglement mediator between the dots, shows a signature of the dot-dot entangled state. Strikingly, while a few scattered carriers produce decoherence of the whole two-dot system, a larger number of electrons injected from one lead with proper energy are able to recover its quantum coherence. Our numerical simulations are based on a real-space solution of the three-particle Schroedinger equation with open boundaries. The computed transmission amplitudes are inserted in the analytical expression for the system density matrix to evaluate the entanglement.
Giant Spin-Orbit Splitting in Inverted InAs /GaSb Double Quantum Wells
Nichele, Fabrizio; Kjaergaard, Morten; Suominen, Henri J.; Skolasinski, Rafal; Wimmer, Michael; Nguyen, Binh-Minh; Kiselev, Andrey A.; Yi, Wei; Sokolich, Marko; Manfra, Michael J.; Qu, Fanming; Beukman, Arjan J. A.; Kouwenhoven, Leo P.; Marcus, Charles M.
2017-01-01
Transport measurements in inverted InAs /GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electronlike and holelike states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs /GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in e2/h steps and a nontrivial Berry phase.
Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; LI Chao
2011-01-01
An eavesdropper (Eve) can exploit all the imperfections of a practical quantum key distribution (QKD) system to obtain some information about the secret key,no matter whether these imperfections are from the physical layer or from the post-processing layer.We propose a possible attack on a passive detection QKD system based on the imperfection from the software layer.The analysis shows that Eve can obtain all the information about the key without being discovered.
Ascertaining complementary and incompatible quantum properties by means of double-slit experiments
Energy Technology Data Exchange (ETDEWEB)
Nistico, G [Dipartimento di Matematica, Universita della Calabria, via P. Bucci 30b, 87036, Rende, Italy and Istituto Nazionale Fisica Nucleare (Italy)], E-mail: gnistico@unical.it
2008-03-28
The famous two-slits experiment is used to theoretically introduce the problem of detecting both which-slit (WS) property and another quantum property incompatible with the WS one, together with the measurement of the (complementary) position of the final impact point. General conditions for the existence of solutions are singled out, and a family of solutions is concretely found. Moreover, we theoretically design an ideal experiment which realizes this non-trivial detection.
Xifang, Chen; Wenxia, Zhang; Qianjin, Wang; Jiyang, Fan
Carbon quantum dots (CQDs) have attracted great attention in the past few years due to their low cytotoxicity, exploited various synthesis methods, unexampled abundance of raw materials on earth, and robust near-infrared to near-UV luminescence. Carbon nanoparticles have applications in biological labeling, delivery of drugs and biological molecules into cells, and light emitting diodes and lasing. CQDs generally exist as nanodiamonds or graphite quantum dots according to previous research reports. In this study, we report the first synthesis of the third-allotrope CQDs through carbonization of sucrose and study their luminescence properties. These CQDs have a body-centered cubic structure and each lattice point is composed of eight atoms which form a sub-cube (so called C8 crystal structure). High-resolution transmission electron microscopy and X-ray diffraction confirm the C8 structure of the synthesized carbon nanocrystallites with an average size of 2 nm. The C8 CQDs exhibit double-band luminescence with two peaks centered at around 432 and 520 nm. The study based on the photoluminescence, UV-Vis absorption, Fourier-transform infrared, and X-ray photoelectron spectroscopies reveals that the green emission originates from the C=O related surface defect.
Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement
Samlan, C. T.; Viswanathan, Nirmal K.
2016-07-01
Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.
Energy Technology Data Exchange (ETDEWEB)
Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr–Universität Bochum, 44780 Bochum (Germany)
2015-09-28
With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.
Perspectives for quantum state engineering via high non-linearity in a double-EIT regime
Paternostro, M; Ham, B S
2003-01-01
We analyse the possibilities for quantum state engineering offered by a model for Kerr-type non-linearity enhanced by electromagnetically induced transparency (EIT), which was recently proposed by Petrosyan and Kurizki [{\\sl Phys. Rev. A} {\\bf 65}, 33833 (2002)]. We go beyond the semiclassical treatment and derive a quantum version of the model with both a full Hamiltonian approach and an analysis in terms of dressed states. The preparation of an entangled coherent state via a cross-phase modulation effect is demonstrated. We briefly show that the violation of locality for such an entangled coherent state is robust against low detection efficiency. Finally, we investigate the possibility of a bi-chromatic photon blockade realized via the interaction of a low density beam of atoms with a bi-modal electromagnetic cavity which is externally driven. We show the effectiveness of the blockade effect even when more than a single atom is inside the cavity. The possibility to control two different cavity modes allows ...
Chen, Zhangjin; Liang, Yaqiu; Lin, C D
2010-06-25
Based on the full quantal recollision model and field-free electron impact ionization theory, we calculate the correlated momentum spectra of the two outgoing electrons in strong field nonsequential double ionization (NSDI) of helium to compare with recent experiments. By analyzing the relative strength of binary versus recoil collisions exhibited in the photoelectron spectra, we confirm that the observed fingerlike structure in the experiment is a consequence of the Coulomb interaction between the two emitted electrons. Our result supports the recollision mechanism of strong field NSDI at the most fundamental level.
Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.
2017-02-01
In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.
Conditions for observing emergent SU(4) symmetry in a double quantum dot
Nishikawa, Yunori; Curtin, Oliver J.; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes
2016-06-01
We analyze conditions for the observation of a low-energy SU(4) fixed point in capacitively coupled quantum dots. One problem, due to dots with different couplings to their baths, has been considered by L. Tosi, P. Roura-Bas, and A. A. Aligia, J. Phys.: Condens. Matter 27, 335601 (2015), 10.1088/0953-8984/27/33/335601. They showed how symmetry can be effectively restored via the adjustment of individual gates voltages, but they make the assumption of infinite on-dot and interdot interaction strengths. A related problem is the difference in the magnitudes between the on-dot and interdot strengths for capacitively coupled quantum dots. Here we examine both factors, based on a two-site Anderson model, using the numerical renormalization group to calculate the local spectral densities on the dots and the renormalized parameters that specify the low-energy fixed point. Our results support the conclusions of Tosi et al. that low-energy SU(4) symmetry can be restored, but asymptotically achieved only if the interdot interaction U12 is greater than or of the order of the bandwidth of the coupled conduction bath D , which might be difficult to achieve experimentally. By comparing the SU(4) Kondo results for a total dot occupation ntot=1 and 2, we conclude that the temperature dependence of the conductance is largely determined by the constraints of the Friedel sum rule rather than the SU(4) symmetry and suggest that an initial increase of the conductance with temperature is a distinguishing characteristic feature of an ntot=1 universal SU(4) fixed point.
Senokos, E.; Reguero, V.; Palma, J.; Vilatela, J. J.; Marcilla, Rebeca
2016-02-01
In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V.In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through
Yakunin, M. V.; Krishtopenko, S. S.; Podgornykh, S. M.; Popov, M. R.; Neverov, V. N.; Mikhailov, N. N.; Dvoretsky, S. A.
2016-09-01
The quantum Hall effect (QHE) in a HgTe/CdHgTe double quantum well (DQW) with a tunneling-transparent barrier and the energy spectrum resembling the band structure of bilayer graphene has been investigated. An experimental manifestation of a tunnel gap between the states of light carriers seen as a magnetoresistance (MR) peak in the in-plane magnetic field has been discovered. An unusual structure of the QHE has been observed in a sample with hole conductivity: there is a pronounced peak on a plateau with the number i = 2 and the slopes of this anomalous peak correspond to two peaks of the longitudinal MR. On the other hand, a stable 2-1 plateau-plateau transition has been observed in much higher fields with the position of this transition corresponding to a considerably higher hole density than follows from the pattern of the QHE in weak fields. The anomalous peak is interpreted as a reentrant QHE between the 2-1-2 states. The position of the anomalous peak is immune to IR illumination and the tilting angle of the magnetic field, although these factors strongly affect its amplitude. According to comparison with the calculated structure of magnetic levels, the anomalous peak is attributed to crossing of electron-like and hole-like levels in the valence band. The difference between the hole densities found in weak field and from the 2-1 transition in strong fields is attributed to the effects of redistribution of holes between the localized states in sideband maxima of the valence subband and the ones delocalized in the overlapping levels of light holes.
Kondo, Kenji
2016-01-01
Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.
Energy Technology Data Exchange (ETDEWEB)
Atanasov, Atanas Todorov, E-mail: atanastod@abv.bg [Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora (Bulgaria)
2014-10-06
The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S{sup −1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup −1}): V×S{sup −1} = v{sub gr}×T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S{sup −1} = 4.46⋅10{sup −11}×T{sub dt} was found, where v{sub gr} = 4.46×10{sup −11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v{sub gr}>h/2π and T{sub dt}×M×v{sub gr}{sup 2}>h/2π are valid, where h= 6.626×10{sup −34} J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.
Son, Ji-Su; Honda, Yoshio; Yamaguchi, Masahito; Amano, Hiroshi
2014-01-01
The characteristics of nonpolar a-plane (11\\bar{2}0) GaN (a-GaN) grown using single and double nanopillar SiO2 masks were investigated. The two nanopillar SiO2 masks were directly fabricated on an r-plane sapphire substrate and a-GaN by the epitaxial lateral overgrowth (ELOG) technique. Through the use of the single and double nanopillar SiO2 masks, the crystalline quality and optical properties of a-GaN were markedly improved because of the nanoscale ELOG effect and a number of voids in the single and double nanopillar SiO2 mask areas in comparison with the planar sample. The submicron pit densities of the planar, single, and double nanopillar mask samples were ˜2 × 109, ˜7 × 108, and ˜4 × 108 cm-2, respectively. The internal quantum efficiency (IQE) values at room temperature of three-period InGaN/GaN multiple quantum wells (MQWs) grown using the planar, single, and double nanopillar masks were 45, 60, and 68% at a carrier concentration of 1.0 × 1018 cm-3, respectively.
Towards optimizing two-qubit operations in three-electron double quantum dots
Frees, Adam; Gamble, John King; Mehl, Sebastian; Friesen, Mark; Coppersmith, S. N.
The successful implementation of single-qubit gates in the quantum dot hybrid qubit motivates our interest in developing a high fidelity two-qubit gate protocol. Recently, extensive work has been done to characterize the theoretical limitations and advantages in performing two-qubit operations at an operation point located in the charge transition region. Additionally, there is evidence to support that single-qubit gate fidelities improve while operating in the so-called ``far-detuned'' region, away from the charge transition. Here we explore the possibility of performing two-qubit gates in this region, considering the challenges and the benefits that may present themselves while implementing such an operational paradigm. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Laachir, Abdelhakim; Guesmi, Salaheddine; Saadi, Mohamed; El Ammari, Lahcen; Mentré, Olivier; Vezin, Hervé; Colis, Silviu; Bentiss, Fouad
2016-11-01
A new asymmetric μ2-1,1-azido double bridged cooper (II), with 2,5-bis(2-pyridyl)-1,3,4-thiadiazole (L), has been synthesized and characterized using single crystal X-ray diffraction, FT-IR, UV-Visible spectroscopic and magnetic measurements. The asymmetric unit of the title compound contains half molecule of formula, C12H8CuN10S, which crystallizes in the triclinic system, space group P 1 bar , with a = 6.5916 (4)Å, b = 10.6905 (7) Å, c = 11.5037 (7) Å, α = 106.508 (3)°, β = 105.538 (3)°, γ = 90.233 (4)°, V = 745.99 (8) Å3 and Z = 2. The structure consists of two [CuN5] prismatic polyhedra linked together by edge-sharing to build up a [Cu2N8] dimer arranged in chain. The connectivity along the chain is performed by Nsbnd N edge sharing between dimers. In the crystal, the molecules are linked together by Csbnd H⋯N hydrogen bonds and by π---π interactions between parallel pyridyl rings of neighboring molecules. The interpretation of FT-IR and UV-Vis spectra is consistent with the crystal structure determined by X-ray diffraction. The magnetic properties of the complex confirm the picture of an alternated … Cu-J1-Cu ….J2 … Cu-J1-Cu … magnetic chains. We found in the dimers weak antiferromagnetic exchange interactions J1/k = -5.9 (1) k and between them J2/k = -2.3 k.
Quantum parameter space and double scaling limits in N=1 super Yang-Mills theory
Ferrari, Frank
2003-04-01
We study the physics of N=1 super Yang-Mills theory with the gauge group U(N) and one adjoint Higgs field, by using the recently derived exact effective superpotentials. Interesting phenomena occur for some special values of the Higgs potential couplings. We find critical points with massless glueballs and/or massless monopoles, confinement without a mass gap, and tensionless domain walls. We describe the transitions between regimes with different patterns of gauge symmetry breaking, or, in the matrix model language, between solutions with a different number of cuts. The standard large N expansion is singular near the critical points, with domain wall tensions scaling as a fractional power of N. We argue that the critical points are four-dimensional analogues of the Kazakov critical points that are commonly found in low dimensional matrix integrals. We define a double scaling limit that yields the exact tension of BPS two-branes in the resulting N=1, four-dimensional noncritical string theory. D-brane states can be deformed continuously into closed string solitonic states, and vice versa, along paths that go over regions where the string coupling is strong.
Quantum parameter space and double scaling limits in N=1 super Yang-Mills theory
Ferrari, F
2003-01-01
We study the physics of N=1 super Yang-Mills theory with gauge group U(Nc) and one adjoint Higgs field, by using the recently derived exact effective superpotentials. Interesting phenomena occur for some special values of the Higgs potential couplings. We find critical points with massless glueballs and/or massless monopoles, confinement without a mass gap, and tensionless domain walls. We describe the transitions between regimes with different patterns of gauge symmetry breaking, or, in the matrix model language, between solutions with a different number of cuts. The standard large Nc expansion is singular near the critical points, with domain walls tensions scaling as a fractional power of Nc. We argue that the critical points are four dimensional analogues of the Kazakov critical points that are commonly found in low dimensional matrix integrals. We define a double scaling limit that yields the exact tension of BPS two-branes in the resulting N=1, four dimensional non-critical string theory. D-brane states...
Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well
Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram
2017-02-01
The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.
Tang, Yanqun; Wang, Ruirui; Yang, Ye; Yan, Dongpeng; Xiang, Xu
2016-08-03
The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., E < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is ∼1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs.
Wu, Menghao; Wang, Zhijun; Liu, Junwei; Li, Wenbin; Fu, Huahua; Sun, Lei; Liu, Xin; Pan, Minghu; Weng, Hongming; Dincă, Mircea; Fu, Liang; Li, Ju
2017-03-01
Bandstructure with Dirac cones gives rise to massless Dirac fermions with rich physics, and here we predict rich cone properties in M 3C12S12 and M 3C12O12, where M = Zn, Cd, Hg, Be, or Mg based on recently synthesized Ni3C12S12—class 2D metal-organic frameworks (MOFs). For M 3C12S12, their band structures exhibit double Dirac cones with different Fermi velocities that are n (electron) and p (hole) type, respectively, which are switchable by few-percent strain. The crossing of two cones are symmetry-protected to be non-hybridizing, leading to two independent channels at the same k-point akin to spin-channels in spintronics, rendering ‘conetronics’ device possible. For M 3C12O12, together with conjugated metal-tricatecholate polymers M 3(HHTP)2, the spin-polarized slow Dirac cone center is pinned precisely at the Fermi level, making the systems conducting in only one spin/cone channel. Quantum anomalous Hall effect can arise in MOFs with non-negligible spin-orbit coupling like Cu3C12O12. Compounds of M 3C12S12 and M 3C12O12 with different M, can be used to build spin/cone-selecting heterostructure devices tunable by strain or electrostatic gating, suggesting their potential applications in spintroincs/conetronics.
Transport properties of double-gate SiO{sub 2}-Si-SiO{sub 2} quantum well
Energy Technology Data Exchange (ETDEWEB)
Prunnila, Mika; Ahopelto, Jouni [VTT Information Technology, Microelectronics, P.O. Box 1208, 02044 VTT (Finland); Sakaki, Hiroyuki [University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8503 (Japan)
2005-05-01
We report on fabrication and low temperature transport properties of double-gate SiO{sub 2}-Si-SiO{sub 2} quantum well with a 16.5 nm thick Si layer. The device is fabricated on a silicon-on-insulator substrate utilizing wafer bonding, which enables us to use heavily doped back gate. Transport properties of the device are characterized by low field Hall and high field magnetotransport measurements at 4.2 K and at 0.38 K, respectively. Top (back) Si-SiO{sub 2} interface peak mobility of 1.9 m{sup 2}/Vs (1.0 m{sup 2}/Vs) is measured at 4.2 K. When both gates have a (large) positive bias the Hall carrier density is observed to fall below the value of the expected total carrier density, which is interpreted to arise from the occupancy of the second sub-band in the Si well. This is confirmed by the high field magnetotransport measurements. In quantizing magnetic fields the longitudinal resistivity minima show Landau level filling factor behavior which is typical for weakly coupled bi-layers. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Institute of Scientific and Technical Information of China (English)
CHEN Xiong-Wen; SHI Zhen-Gang; CHEN Bao-Ju; SONG Ke-Hui
2007-01-01
We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov-Bhom (A-B) ring by means of the slave-boson mean-Geld theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this inSuence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for future device applications.
Energy Technology Data Exchange (ETDEWEB)
Lopez, S.Y. [Grupo de Educacion en Ciencias Experimentales y Matematicas-GECEM, Facultad de Educacion, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)
2009-12-15
The photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.
双量子阱中的子带光吸收%Intersubband Optical Absorption in Double Quantum Wells
Institute of Scientific and Technical Information of China (English)
邓永晴; 郭康贤; 于凤梅; 俞友宾; 王瑞强
2005-01-01
Recently, much attention has been focus on the investigation of the electroabsorption in the GaAs/AlGaAs quantum wells (QW's) because of its possibility of designing new types of electro-optic modulators. Much optical properties of the single QW's with different potential has been and being investigated experimently and theoriticaly with different methods. In these few years, the double quantum wells (DQWs) became the focus of the research. In this paper, by using the density matrix formalism and iterated method, the first-and the third-order intersubband optical absorption of double quantum well with infinit boundary was investigated theoretically. Thereafter, a typical GaAs/AlGaAs DQWs is presented to get the results. The results show that the peak absorption varies with the width of the intermediate potential barrier. And it also shows that the absorption decrease as the incident optical intensity increasing.%由于微制造技术的不断发展,如液相外延(LPE),气相外延(VPE),金属有机化学气相沉积(MOCVD)以及分子束外延技术(MBE)等先进的材料生长技术方法也日趋完善,从而使得各种低维半导体量子器件(如半导体、超晶格、量子阱、量子线和量子点等)制造日趋成熟.由于这些低维半导体量子器件具有很强的非线性光效应,而且随着材料、外形、尺寸等的不同,非线性光效应也有很大的差别,更由于其可能存在的广泛的应用前景,所以近年来,一直是人们研究的重点.近来,由于人们相信,利用GaAs/AlGaAs量子阱有可能制造出一些新型的光学仪器,如光开关、光限幅器、光调制器等,所以,对不同势形的GaAs/AlGaAs量子阱的非线性光学特性一直吸引着人们进行理论和实验的研究.而在最近几年,对双量子阱的研究也成为了人们的研究重点.通过密度矩阵和迭代的方法,得到双量子阱中的第一、第三阶子带光吸收表达式,我们将用一个典型的GaAs/AlGaAs双
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
González-Fernández, J. V.; Herrera-Jasso, R.; Ulloa-Castillo, N. A.; Ortega-Gallegos, J.; Castro-García, R.; Lastras-Martínez, L. F.; Lastras-Martínez, A.; Balderas-Navarro, R. E.; Mozume, T.; Gozu, S.
2016-12-01
We report on photoreflectance anisotropy (PRA) spectroscopy of InGaAs/AlAs/AlAsSb coupled double quantum wells (CDQWs) with extremely thin coupling AlAs barriers grown by molecular beam epitaxy (MBE), with no intentional doping. By probing the in-plane interfacial optical anisotropies (OAs), it is shown that PRA spectroscopy has the ability to detect and distinguish semiconductor layers with quantum dimensions, as the anisotropic photoreflectance (PR) signal stems entirely from buried quantum wells (QWs). In order to account for the experimental PRA spectra, a theoretical model at k = 0, based on a linear electro-optic effect through a piezoelectric shear strain, has been employed to quantify the internal electric fields across the QWs. The dimensionalities of the PR lineshapes were tested by using reciprocal (Fourier) space analysis. Such a complementary test is used in order to correctly employ the PRA model developed here.
Abdel-Latif, Mahmoud K
2010-01-01
Electronic excitation energy transfer along a molecular wire depends on the relative orientation of the electronic transition dipole moments of neighboring chromophores. In porphycenes this orientation is changed upon double proton transfer in the electronic ground state. We explore the possibility to trigger such a double proton transfer reaction by means of an infrared pump-dump laser control scheme. To this end a quantum chemical characterization of an asymmetrically substituted porphycene is performed using density functional theory. Ground state geometries, the topology of the potential energy surface for double proton transfer, and S0->S1 transition energies are compared with the parent compound porphycene and a symmetric derivative. Employing a simple two-dimensional model for the double proton transfer, which incorporates sequential and concerted motions, quantum dynamics simulations of the laser driven dynamics are performed which demonstrate tautomerization control. Based on the orientation of the t...
Lai, Feili; Miao, Yue-E; Zuo, Lizeng; Lu, Hengyi; Huang, Yunpeng; Liu, Tianxi
2016-06-01
The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g(-1) at a discharge current density of 1 A g(-1) , based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g(-1) and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg(-1) at the power density of 800.2 W kg(-1) . Therefore, this work presents a novel protocol for the large-scale production of biomass-derived high-performance electrode materials in practical supercapacitor applications.
On new phenomena of photon from modified double slit experiment
Liu, Haisheng
2010-01-01
A modified double slit experiment of light was implemented. In the experiment, a spatial shape filter is used to manipulate the shape of cross section of laser beam. When this modified laser beam was shined on the double slit, the intensity distribution of laser beam on double slit is asymmetrical. In this way, the laser light was directed to pass through only one or two slits of double slit in different sections. So the which-way information is predetermined before the photons pass through the slits. At the same time, the visible interference pattern can be observed on a monitor screen after the double slit. A couple of new phenomena had been observed from this experiment. The results of this experiment raise questions about Wave-Particle Duality model of quantum theory, which is the foundation for the Copenhagen explanation that is generally regarded as the principal interpretation of quantum theory. As the observed properties from this experiment cannot be fully explained using the quantum theory, especial...
Optical Conductivity of Anisotropic Quantum Dots in Magnetic Fields
Institute of Scientific and Technical Information of China (English)
GUO Kang-Xian; CHEN Chuan-Yu
2005-01-01
@@ Optical conductivity of anisotropic double-parabolic quantum dots is investigated with the memory-function approach, and the analytic expression for the optical conductivity is derived. With characteristic parameterspertaining to GaAs, the numerical results are presented. It is shown that: (1) the larger the optical phonon frequency ωLO, the stronger the peak intensity of the optical conductivity, and the more asymmetric the shape of the optical conductivity; (2) the magnetic field enhances the optical conductivity for levels l = 0 and l = 1, with or without electron-LO-phonon interactions; (3) the larger the quantum dot thickness lz, the smaller the optical conductivity σ(ω).
Double slit quantum imaging experiment based on correlation of photon pairs%基于关联光子对的双缝量子成像实验
Institute of Scientific and Technical Information of China (English)
杨青; 夏慧枝; 陈凯
2015-01-01
双缝量子成像实验利用参量下转换过程产生的光子之间的关联性，扫描双缝量子成像。通过采集光子符合计数，绘制扫描位置和光子符合计数关联图，在一维方向重现双缝。根据实验采集数据和绘图结果计算双缝缝间距。%Double slit quantum imaging experiment used the correlation of the photon pairs ,w hich generated by PDC ,to scan the double slit quantum imaging .By collecting the photon coincidence number ,drawing the correlation picture of scanning position and photon coincidence number , the double slit in one‐dimension was reconstructed .The distance of the two slit was calculated in the light of the experiment result .
Energy Technology Data Exchange (ETDEWEB)
Menendez-Miranda, Mario; Fernandez-Arguelles, Maria T.; Costa-Fernandez, Jose M., E-mail: jcostafe@uniovi.es; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo, E-mail: asm@uniovi.es
2014-08-11
Highlights: • The hyphenated system allows unequivocal identification of nanoparticle populations. • AF4 separation permitted detection of unexpected nanosized species in a sample. • ICP-QQQ provides elemental ratios with adequate accuracy in every nanoparticle. • Purity and chemical composition of different quantum dot samples were assessed. - Abstract: Separation and identification of nanoparticles of different composition, with similar particle diameter, coexisting in heterogeneous suspensions of polymer-coated CdSe/ZnS quantum dots (QDs) have been thoroughly assessed by asymmetric flow field-flow fractionation (AF4) coupled on-line to fluorescence and inductively coupled plasma mass spectrometry (ICPMS) detectors. Chemical characterization of any previously on-line separated nanosized species was achieved by the measurement of the elemental molar ratios of every element involved in the synthesis of the QDs, using inorganic standards and external calibration by flow injection analysis (FIA). Such elemental molar ratios, strongly limited so far to pure single nanoparticles suspensions, have been achieved with adequate accuracy by coupling for the first time an ICP-QQQ instrument to an AF4 system. This hyphenation turned out to be instrumental to assess the chemical composition of the different populations of nanoparticles coexisting in the relatively complex mixtures, due to its capabilities to detect the hardly detectable elements involved in the synthesis. Interestingly such information, complementary to that obtained by fluorescence, was very valuable to detect and identify unexpected nanosized species, present at significant level, produced during QDs synthesis and hardly detectable by standard approaches.
Institute of Scientific and Technical Information of China (English)
Xue Hui-Jie; Lü Tian-Quan; Zhang Hong-Chen; Yin Hai-Tao; Cui Lian; He Ze-Long
2012-01-01
The thermoelectric and the thermospin transport properties,including electrical conductivity,Seebeck coefficient,thermal conductivity,and thermoelectric figure of merit,of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique.The periodic Anderson model is used to describe the quantum dot system,the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered.The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects.We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.
Shah, Khurshed A.; Bhat, Bashir Mohi Ud Din
2016-10-01
In this paper we report the effect of external magnetic field and core radius on the excited quantum state energies of an electron confined in the core of a double walled carbon nanotube. The goal is accomplished by using Wentzel-Kramers-Brillioun (WKB) approximation method within the effective mass approximation and confinement potential. All numerical analysis were carried out in a strong confinement regime. The results show that the electron energy increases with the increase in external magnetic field at a given core radii. The electron energy is also found to increase as the core radius of the CNT decreases and for core radius a > 5 nm the energy becomes almost zero. The effect of magnetic field on the excited state energies of the confined electron is more evident for smaller core radius acarbon nanotube quantum dot devices [1].
Probst, B.; Domínguez, F.; Schroer, A.; Yeyati, A. Levy; Recher, P.
2016-10-01
We study the critical Josephson current flowing through a double quantum dot weakly coupled to two superconducting leads. We use analytical as well as numerical methods to investigate this setup in the limit of small and large bandwidth leads in all possible charging states, where we account for on-site interactions exactly. Our results provide clear signatures of nonlocal spin-entangled pairs, which support interpretations of recent experiments [R. S. Deacon, A. Oiwa, J. Sailer, S. Baba, Y. Kanai, K. Shibata, K. Hirakawa, and S. Tarucha, Nat. Commun. 6, 7446 (2015), 10.1038/ncomms8446]. In addition, we find that the ground state with one electron on each quantum dot can undergo a tunable singlet-triplet phase transition in the regime where the superconducting gap in the leads is not too large, which gives rise to an additional new signature of nonlocal Cooper-pair transport.
Institute of Scientific and Technical Information of China (English)
Hong Xue-Kun; Yang Xi-Feng; Feng Jin-Fu; Liu Yu-Shen
2013-01-01
We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage.This device possesses a nonresonant tunneling channel and two resonant tunneling channels.The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot.We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient.This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region.Importantly,an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages.Therefore,the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.
Wang, Chuchu; Zhang, Liandi; Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin; Chen, Zhong
2015-04-01
High-resolution nuclear magnetic resonance spectroscopy is widely used to analyze molecular structures and compositions. Here, we present a pulse sequence that simultaneously detects both intermolecular zero- (iZQC) and double-quantum coherence (iDQC) signals in inhomogeneous fields, offering high-resolution spectra in absolute-value mode after data processing. In comparison with pure iZQC or iDQC spectra, the proposed sequence can provide nearly doubled spectral resolutions and suppressions of strong coupling artifacts. It is the first time that iZQC and iDQC signals can be simultaneously obtained in one single measurement. This sequence may provide an alternative approach to studies of in situ inhomogeneous chemical systems.
Asymmetric tandem organic solar cells
Howells, Thomas J.
where it is used to predict the short-circuit current (Jsc) generation of the sub-cells, which is not accessible experimentally. Current-matching is then used to predict the Jsc of the complete tandem device. . As a support to the optical modelling, ellipsometry measurements of thin films of ClAlPc are presented. These films of known thickness are analysed to extract the complex refractive index for use in optical modelling calculations. A dependence of the complex refractive index on film thickness and substrate is also noted. Finally, the external quantum efficiency (EQE) technique is considered as applied to solar cells, and an additional method is proposed to characterise current balancing in asymmetric tandem cells under illumination. This technique is verified experimentally by two separate sets of data..
2006-11-01
that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition. "Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth." "This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he adds. The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy
Teymoori, Gholamhasan; Pahari, Bholanath; Edén, Mattias
2015-12-01
We provide an experimental, numerical, and high-order average Hamiltonian evaluation of an open-ended series of homonuclear dipolar recoupling sequences, SR2 2p 1 with p = 1, 2, 3, … . While operating at a very low radio-frequency (rf) power, corresponding to a nutation frequency of 1/2 of the magic-angle spinning (MAS) rate (ωnut =ωr / 2), these recursively generated double-quantum (2Q) dipolar recoupling schemes offer a progressively improved compensation to resonance offsets and rf inhomogeneity for increasing pulse-sequence order p. The excellent recoupling robustness to these experimental obstacles, as well as to CSA, is demonstrated for 2Q filtering (2QF) experiments and for driving magnetization transfers in 2D NMR correlation spectroscopy, where the sequences may provide either double or zero quantum dipolar Hamiltonians during mixing. Experimental and numerical demonstrations, which mostly target conditions of "ultra-fast" MAS (≳50 kHz) and high magnetic fields, are provided for recoupling of 13C across a wide range of isotropic and anisotropic chemical shifts, as well as dipolar coupling constants, encompassing [2,3-13C2 ]alanine, [1,3-13C2 ]alanine, diammonium [1,4-13C2 ]fumarate, and [U-13 C]tyrosine. When compared at equal power levels, a superior performance is observed for the SR2p 1 sequences with p ⩾ 3 relative to existing and well-established 2Q recoupling techniques. At ultra-fast MAS, proton decoupling is redundant during the homonuclear dipolar recoupling of dilute spins in organic solids, which renders the family of SR2p 1 schemes the first efficient 2Q recoupling option for general applications, such as 2Q-1Q correlation NMR and high-order multiple-quantum excitation, under truly low-power rf conditions.
Tsai, Chia-Lung; Chen, Yen-Jen
2015-10-19
The feasibility of using InGaN LEDs grown with asymmetric barrier layer (ABL) as transmitters in visible light communications is investigated experimentally. Compared with normal LEDs, the improvement in the spontaneous emission rate due to enhanced carrier localization and better uniformity of carrier distribution in ABL-containing MQWs leads to the fabricated LEDs can exhibit a 32.6% (@ 350 mA) increase in emission intensity and a 10.5% increase in modulation bandwidth. After eliminating the slow-responding phosphorescent components emitting from the phosphor-converted white LEDs, an open eye-diagram at 180 Mb/s is demonstrated over a distance of 100 cm in directed line-of-sight optical links. With the use of proposed LEDs, real-time transmissions of digital TV signals over a moderate distance (~100 cm) in free space is shown to be available in a 150 Mbit/s white LED-based optical link with conventional on-off keying modulation.
Energy Technology Data Exchange (ETDEWEB)
Semenov, Alexander [Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881 (United States); PSL Research University, Observatoire de Paris, Sorbonne Universités, UPMC Univ Paris 06, ENS, UCP, CNRS, UMR8112, LERMA, 5 Place Janssen, 92195 Meudon (France); Dubernet, Marie-Lise [PSL Research University, Observatoire de Paris, Sorbonne Universités, UPMC Univ Paris 06, ENS, UCP, CNRS, UMR8112, LERMA, 5 Place Janssen, 92195 Meudon (France); Babikov, Dmitri, E-mail: dmitri.babikov@mu.edu [Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881 (United States)
2014-09-21
The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H{sub 2}O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm{sup −1} the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm{sup −1} the errors are consistently in the range of 1%–2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n{sup 2}, where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n{sup 3}. Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.
Institute of Scientific and Technical Information of China (English)
王凯; 张成平; 王梦恕
2012-01-01
以青岛胶州湾海底隧道中的不对称双连拱隧道为工程背景,选取主隧道与匝道交叉口段的典型断面建立数值计算模型,针对不同的施工开挖顺序和掘进进尺制订了4种施工方案,并采用有限差分软件FLAC3D进行动态施工的三维数值模拟,计算分析并比较各方案的地表沉降、拱顶沉降和支护结构位移以及围岩应力和支护结构应力的分布情况,明确不对称双连拱隧道施工中结构变形及应力的最不利位置.分析结果表明,先施工中导洞再施工匝道断面右导洞并采用小进尺的施工方案更有利于控制围岩的稳定性,并据此提出了合理的施工方案建议.%Aiming at the asymmetric double-arch tunnel engineering that lies at Jiaozhou Bay in Qingdao, the section located in the intersection between main tunnel and ramb tunnel is chosen as a typical cross section and a three-dimensional model for numerical analysis. Four construction schemes are constituted according to different construction sequences and different digging lengths. Then these schemes are simulated with FLAC3D program. By analyzing ground surface settlement, vault settlement values, displacement of supporting structure, principle stress in surrounding rock, as well as principle stress in supporting structure, the most disadvantage position of structural deformation and stress during construction is determined. It concludes that the surrounding rock deformation could be better controlled by using of the construction sequence that first middle drift and then right hole of ramb tunnel, and the reasonable construction scheme is suggested.
Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2016-10-01
We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.
Simulation of Chaos in Asymmetric Nonlinear Chua's Circuit
Institute of Scientific and Technical Information of China (English)
WANG Yu-fei; QIAO Shu-tong; JIANG Jian-guo
2008-01-01
In order to describe practical chaotic systems exactly, we presented a simple modified Chua's circuit,which contains an asymmetric nonlinear resistive element. Mathematical analysis was made, and simulation study was performed by MATLAB. By varying the value of linear resistor in the circuit, rich variety dynamical behaviors were observed, such as DC equilibrium point, Hopf bifurcation, period-doubling bifurcation,single-scroll strange attractor, periodic windows, and asymmetric double-scroll strange attractor. The extreme sensitivity in the state trajectory with respect to the initial conditions was exhibited; the special characteristic of asymmetric nonlinear Chua's circuit was found also.
量子理论新方法研究光的双缝衍射%Photon Double-slit Diffraction with Quantum Theory Approach
Institute of Scientific and Technical Information of China (English)
严立云; 李宏; 刘晓静; 王婧; 张斯淇; 吴坤朋; 李春红; 吴向尧; 郭义庆
2013-01-01
用量子理论新方法研究光的双缝衍射实验现象,首先用光的量子理论计算光在缝中双缝衍射的波函数,再由基尔霍夫定律计算光的衍射波函数,由衍射强度正比于衍射波函数模方,从而得到光双缝衍射强度的解析式,把量子理论计算结果和经典电磁理论计算结果以及与实验数据三者进行比较,发现量子理论结果与实验数据符合更好,而经典电磁理论计算结果与实验有一定偏差.从而说明量子理论更能精确解释光的衍射现象.该方法还可进一步研究光的单缝、多缝以及光栅衍射的实验现象.%In this paper, the light double-slit diffraction with quantum theory approach is studied. Firstly, the light wave function in slits is calculated, and the diffraction wave function is obtained with Kirchhoff's law. The diffraction intensity is proportional to the diffraction wave function da party. Futhermore, the intensity formula of light double-slit diffraction is obtained; by comparing the quantum theory calculation results and classical electromagnetic theory calculation results and the experimental date, it is found that the calculate result of quantum theory is in accordance with the experment data, but the classical electromagnetic theory calculation result with the experiment date has certain deviation. So, the quantum theory can explain the light diffraction more precisely. The proposed method can also further study the light of the single slit, many slits and grating diffraction experiment phenomena.
Persistent photoeffects in p-i-n GaAs/AlGaAs heterostructures with double quantum wells
DEFF Research Database (Denmark)
Dorozhkin, S.I.; Timofeev, V.B.; Hvam, Jørn Märcher
2001-01-01
Abrupt changes in the capacitance between the p and n regions were observed in a planar p-i-n GaAs/AlGaAs heterostructure with two tunneling-coupled quantum wells exposed to laser irradiation (lambda = 633 nm). These changes can be caused by variations in both temperature (in the vicinity of T...
Teymoori, Gholamhasan; Pahari, Bholanath; Stevensson, Baltzar; Edén, Mattias
2012-09-01
We report novel symmetry-based radio-frequency (rf) pulse sequences for efficient excitation of double-quantum (2Q) coherences under very fast (>60 kHz) magic-angle spinning (MAS) conditions. The recursively generated pulse-scheme series, R22p1R22p-1(p=1,2,3,…), offers broadband 13C-13C recoupling in organic solids at a very low rf power. No proton decoupling is required. A high-order average Hamiltonian theory analysis reveals a progressively enhanced resonance-offset compensation for increasing p, as verified both by numerical simulations and 2Q filtration NMR experiments on 13C2-glycine, [2,3-13C2]alanine, and [U-13C]tyrosine at 14.1 T and 66 kHz MAS, where the pulse schemes with p⩾3 compare favorably to current state-of-the-art recoupling options.
Influence of Width of left Well on Intersubband Transitions in AlxGa1-x N/GaN Double Quantum Wells
Institute of Scientific and Technical Information of China (English)
LEI Shuang-Ying; SHEN Bo; ZHANG Guo-Yi
2008-01-01
Influence of width of lett well in Alx Ga1-x N/GaN double quantum wells (DQWs) on absorption coefficients and wavelengths of the intersubband transitions (ISBTs) is investigated by solving the SchrSdinger and Poisson equations self-consistently. When the width of lett well is 1.79nm, three-energy-level DQ, Ws are realized. The ISBT between the first odd and second odd order subbands (the lodd-2odd ISBT) has a comparable absorption coeffcient with the 1odd-2even ISBT. Their wavelengths are located at 1.3 and 1.55μm, respectively. When the width of lett well is 1.48nm, a four-energy-level DQWs is realized. The calculated results have a possible application to ultrafast two-colour optoeleetronic devices operating within the optical communication wavelength range.
Daqiq, Reza; Ghobadi, Nader
2016-07-01
We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching.
Energy Technology Data Exchange (ETDEWEB)
Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, Miguel E., E-mail: memora@uaem.mx [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, Carlos A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)
2013-01-15
In this work the variations of the exciton-related optical absorption and the change of the refractive index in a GaAs-(Ga,Al)As double quantum well as functions of the geometric parameters of the heterostructure are investigated. The variational method is applied within the framework of the parabolic band and effective mass approximations, in order to obtain the 1s-like exciton energy spectrum. The outcome for the related optical coefficients shows a quenched and redshifted light absorption as a result of the increment in the inner barrier and right-hand well widths, with the possibility of an enhancement of the excitonic contribution to the relative change in the refractive index.
Energy Technology Data Exchange (ETDEWEB)
Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Fu, Haiyan, E-mail: fuhaiyan@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); Yang, Tianming, E-mail: tmyang@mail.scuec.edu.cn [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China); She, Yuanbin, E-mail: sheyb@zjut.edu.cn [State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Ni, Chuang [The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074 (China)
2016-04-15
As a popular detection model, the fluorescence “turn-off” sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence “turn-off” model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10{sup −8} mol L{sup −1} and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs. - Highlights: • A new model based on double QDs is established for pesticide residues detection. • The fluorescent data array sensor is coupled with chmometrics methods. • The sensor can be highly sensitive and selective detection in actual samples.
Energy Technology Data Exchange (ETDEWEB)
Zhang, L. [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China) and Department of Mechanism and Electron, Panyu Polytechnic, Panyu 511483 (China)]. E-mail: zhangli-gz@263.net; Chi Yuemeng [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China); Shi, J.-J. [State Key Laboratory for Mesoscopic Physics, and School of Physics, Peking University, Beijing 100871 (China)
2007-06-25
Based on the density matrix method and the iterative treatment, the second-harmonic generation (SHG) susceptibility of a wurtzite nitride coupling quantum well (CQW) with strong built-in electric fields have been theoretically investigated. The effect of the band non-parabolicity effect has been taken into account. A typical wurtzite GaN/In{sub x}Ga{sub 1-x}N CQW are chosen to perform numerical calculations. The localized properties of the electronic ground state and the low-excited states in the system are analyzed in detail. The calculated SHG coefficients reach the order of magnitude of 10{sup -7}m/V, which is two-order larger than the corresponding values in wurtzite single quantum wells. Moreover, it is confirmed that the SHG coefficients are not monotonic functions of the well width, barrier width and the doped concentration of the CQW systems, but have complicated dependent relations on them. The reasons resulting in these characteristics can be attributed to the intense competition between the strong built-in electric field effect and the quantum size effect for the electronic confined situation in the wurtzite CQWs. The calculated results also show that a strong SHG effect can be realized in the nitride CQW by choosing a group of optimized structural parameters and doped fraction.
Fan, Yao; Liu, Li; Sun, Donglei; Lan, Hanyue; Fu, Haiyan; Yang, Tianming; She, Yuanbin; Ni, Chuang
2016-04-15
As a popular detection model, the fluorescence "turn-off" sensor based on quantum dots (QDs) has already been successfully employed in the detections of many materials, especially in the researches on the interactions between pesticides. However, the previous studies are mainly focused on simple single track or the comparison based on similar concentration of drugs. In this work, a new detection method based on the fluorescence "turn-off" model with water-soluble ZnCdSe and CdSe QDs simultaneously as the fluorescent probes is established to detect various pesticides. The fluorescence of the two QDs can be quenched by different pesticides with varying degrees, which leads to the differences in positions and intensities of two peaks. By combining with chemometrics methods, all the pesticides can be qualitative and quantitative respectively even in real samples with the limit of detection was 2 × 10(-8) mol L(-1) and a recognition rate of 100%. This work is, to the best of our knowledge, the first report on the detection of pesticides based on the fluorescence quenching phenomenon of double quantum dots combined with chemometrics methods. What's more, the excellent selectivity of the system has been verified in different mediums such as mixed ion disruption, waste water, tea and water extraction liquid drugs.
Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline
2010-04-01
The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.
Energy Technology Data Exchange (ETDEWEB)
Khazanova, S. V., E-mail: khazanova@phys.unn.ru; Degtyarev, V. E.; Malekhonova, N. V.; Pavlov, D. A. [Nizhni Novgorod State University (Russian Federation); Baidus, N. V. [Nizhni Novgorod State University, Physical Technical Research Institute (Russian Federation)
2015-01-15
A comprehensive analysis of double tunnel-coupled InGaAs/GaAs quantum well heterostructures is carried out. The real composition profiles of the structures are obtained by high-resolution transmission electron microscopy and energy-dispersive spectrometry. The resultant profiles are compared with the profile obtained by computer simulation. By solving the Schrödinger equation in combination with the Poisson equation, the energy states for quantum-confined heterostructures with initially specified and real composition profiles are calculated. The influence of a number of factors, such as the well width, barrier thickness, and the background doping level on the properties of the heterostructure is thoroughly analyzed. In this manner, the optical characteristics and their dependence on the growth technology and geometric parameters of the structures are studied. Such an approach makes it possible to refine the real geometric parameters of wells and barriers and to correct the parameters of the structure and growth technology in order to improve the optical characteristics.
Spin–orbit-coupled BEC in a double-well potential: Quantum energy spectrum and flat band
Energy Technology Data Exchange (ETDEWEB)
Wang, Wen-Yuan [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Cao, Hui, E-mail: hcao.physics@gmail.com [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Liu, Jie [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100084 (China); Fu, Li-Bin, E-mail: lbfu@iapcm.ac.cn [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100084 (China)
2015-09-04
Spin–orbit-coupled Bose–Einstein condensates (BECs) provide a powerful platform for studies on physical problems in various fields. Here we study the energy spectrum of a tunable spin–orbit-coupled BEC in a double-well potential with adjustable Raman laser intensity. We find in the single-particle spectrum there is a highly degenerate flat band in the ground state of the BEC, which remains stable against changes of the Raman strength. Many-body interactions between atoms remove this high degeneracy. Analytical results for particular cases are obtained by using the perturbation theory, which are in good agreement with the numerical results. - Highlights: • Energy spectrum of a tunable SOC BEC in a double-well potential is obtained. • Single-particle spectrum shows a highly degenerate flat band in the ground state. • Weak interactions between atoms remove this high degeneracy. • Analytical results are obtained by perturbation theory.
Chaotic dephasing in a double-slit scattering experiment
Levnajić, Zoran
2010-01-01
We design a computational experiment in which a quantum particle tunnels into a billiard of variable shape and scatters out of it through a double-slit opening on the billiard's base. The interference patterns produced by the scattered probability currents for a range of energies are investigated in relation to the billiard's geometry which is connected to its classical integrability. Four billiards with hierarchical integrability levels are considered: integrable, pseudo-integrable, weak-mixing and strongly chaotic. In agreement with the earlier result by Casati and Prosen [1], we find the billiard's integrability to have a crucial influence on the properties of the interference patterns. In the integrable case most experiment outcomes are found to be consistent with the constructive interference occurring in the usual double-slit experiment. In contrast to this, non-integrable billiards typically display asymmetric interference patterns of smaller visibility characterized by weakly correlated wave function ...
Active phase compensation of quantum key distribution system
Institute of Scientific and Technical Information of China (English)
CHEN Wei; HAN ZhengFu; MO XiaoFan; XU FangXing; WEI Guo; GUO GuangCan
2008-01-01
Quantum key distribution (QKD) system must be robust enough in practical communication. Besides birefringence of fiber, system performance is notably affected by phase drift. The Faraday-Michelson QKD system can auto-compensate the birefringence of fiber, but phase shift is still a serious problem in its practical operation. In this paper, the major reason of phase drift and its effect on Faraday-Michel-son QKD system is analyzed and an effective active phase compensation scheme is proposed. By this means, we demonstrate a quantum key distribution system which can stably run over 37-km fiber in practical working condition with the long-time averaged quantum bit error rate of 1.59% and the stan-dard derivation of 0.46%. This result shows that the active phase compensation scheme is suitable to be used in practical QKD systems based on double asymmetric interferometers without additional de-vices and thermal controller.
Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel
2016-11-01
Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.
Energy Technology Data Exchange (ETDEWEB)
Lu Liangliang; Xie Wenfang, E-mail: lll516946435@126.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China)
2011-08-01
The linear and nonlinear optical properties such as optical absorption and refractive index change associated with intersubband transitions in a two-electron quantum dot (QD) in the presence of an external electric field have been investigated theoretically by using the perturbation method. The exchange force, which is a strictly quantum mechanical phenomenon, has also been considered. Numerical results on typical GaAs/AlGaAs materials show that an increase of the electric field decreases the oscillator strengths, the peak positions of absorption coefficients as well as the refractive index changes. Additionally, an increase of the confinement frequency (dot size) increases (decreases) the absorption coefficients but does not significantly affect the refractive index changes. It is also observed that the intensity of the illumination and the relaxation time have drastic effects on nonlinear optical properties. Finally, we note that the optical absorption coefficients and refractive index changes of two electrons are about five times higher than that of a one-electron QD.
Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou; Zhao, Ming-Xia
2017-01-01
We propose deterministic schemes for controlled-NOT (CNOT), Toffoli, and Fredkin gates between flying photon qubits and the collective spin wave (magnon) of an atomic ensemble inside double-sided optical microcavities. All the gates can be accomplished with 100% success probability in principle and no additional qubit is required. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We qualified the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques. PMID:28272548
Larionov, A V; Hvam, J; Soerensen, K
2002-01-01
The time evolution and kinetics of the photoluminescence (PL) spectra of the interwall excitons under the pulse resonant excitation of the interwall excitons are studied in the GaAs/AlGaAs binary quantum well. It is established, that the collective exciton phase originates with the time delay relative to the exciting pulse (several nanoseconds), which is conditioned by the density and temperature relaxation to the equilibrium values.The origination of the collective phase of the interwall excitons is accompanied by the strong narrowing of the corresponding photoluminescence line, the superlinear growth of its intensity and large time of change in the degree of the circular polarization.The collective exciton phase originates at the temperatures < 6 K and the interwall excitons densities 3 x 10 sup 1 sup 0 cm sup - sup 2
Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory.
Wu, Tao; Sun, Lei; Shi, Qi; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng
2016-12-21
Charge mobilities of six DNAs and RNAs have been computed using quantum chemistry calculation combined with the Marcus-Hush theory. Based on this simulation model, we obtained quite reasonable results when compared with the experiment, and the obtained charge mobility strongly depends on the molecular reorganization and electronic coupling. Besides, we find that hole mobilities are larger than electron mobilities no matter in DNAs or in RNAs, and the hole mobility of 2L8I can reach 1.09 × 10(-1) cm(2) V(-1) s(-1) which can be applied in the molecular wire. The findings also show that our theoretical model can be regarded as a promising candidate for screening DNA- and RNA-based molecular electronic devices.
Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory
Wu, Tao; Sun, Lei; Shi, Qi; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng
2016-12-01
Charge mobilities of six DNAs and RNAs have been computed using quantum chemistry calculation combined with the Marcus-Hush theory. Based on this simulation model, we obtained quite reasonable results when compared with the experiment, and the obtained charge mobility strongly depends on the molecular reorganization and electronic coupling. Besides, we find that hole mobilities are larger than electron mobilities no matter in DNAs or in RNAs, and the hole mobility of 2L8I can reach 1.09 × 10-1 cm2 V-1 s-1 which can be applied in the molecular wire. The findings also show that our theoretical model can be regarded as a promising candidate for screening DNA- and RNA-based molecular electronic devices.
Energy Technology Data Exchange (ETDEWEB)
Lopes, E.M., E-mail: eldermantovani@yahoo.com.br [Departamento de Física, Química e Biologia, Universidade Estadual Paulista, C. P. 266, Presidente Prudente, São Paulo 17700-000 (Brazil); César, D.F. [Departamento de Física, Universidade Federal de São Carlos, C. P. 676, São Carlos, São Paulo (Brazil); Franchello, F.; Duarte, J.L.; Dias, I.F.L.; Laureto, E. [Departamento de Física, Universidade Estadual de Londrina, C. P. 6001, Londrina, Paraná (Brazil); Elias, D.C.; Pereira, M.V.M.; Guimarães, P.S.S. [Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, C. P. 702, Belo Horizonte, Minas Gerais (Brazil); Quivy, A.A. [Laboratório de Novos Materiais Semicondutores, Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo (Brazil)
2013-12-15
This paper discusses the theoretical and experimental results obtained for the excitonic binding energy (E{sub b}) in a set of single and coupled double quantum wells (SQWs and CDQWs) of GaAs/AlGaAs with different Al concentrations (Al%) and inter-well barrier thicknesses. To obtain the theoretical E{sub b} the method proposed by Mathieu, Lefebvre and Christol (MLC) was used, which is based on the idea of fractional-dimension space, together with the approach proposed by Zhao et al., which extends the MLC method for application in CDQWs. Through magnetophotoluminescence (MPL) measurements performed at 4 K with magnetic fields ranging from 0 T to 12 T, the diamagnetic shift curves were plotted and adjusted using two expressions: one appropriate to fit the curve in the range of low intensity fields and another for the range of high intensity fields, providing the experimental E{sub b} values. The effects of increasing the Al% and the inter-well barrier thickness on E{sub b} are discussed. The E{sub b} reduction when going from the SQW to the CDQW with 5 Å inter-well barrier is clearly observed experimentally for 35% Al concentration and this trend can be noticed even for concentrations as low as 25% and 15%, although the E{sub b} variations in these latter cases are within the error bars. As the Zhao's approach is unable to describe this effect, the wave functions and the probability densities for electrons and holes were calculated, allowing us to explain this effect as being due to a decrease in the spatial superposition of the wave functions caused by the thin inter-well barrier. -- Highlights: • Magnetophotoluminescence results from coupled double quantum wells are reported. • Theoretical and experimental values for excitonic binding energy (E{sub b}) are obtained. • The effects of increasing the inter-well barrier height and thickness on E{sub b} are discussed. • An E{sub b} reduction is observed when going from zero to the 5 Å inter-well barrier
Heteronuclear intermolecular single-quantum coherences in liquid nuclear magnetic resonance
Institute of Scientific and Technical Information of China (English)
Chen Song; Zhu Xiao-Qin; Cai Shu-Hui; Chen Zhong
2008-01-01
This paper analyses the heteronuclear Cosy Revamped by Asymmetric Z-gradient Echo Detection pulse sequence.General theoretical expressions of the pulse sequence with arbitrary flip angles were derived by using dipolar field treatment and signals originating from heteronuclear intermolecular single-quantum coherences (iSQCs) in highly-polarized two spin-1/2 systems were mainly discussed in order to find the optimal flip angles.The results show that signals from heteronuclear iSQCs decay slower than those from intermolecular double-quantum coherences or intermolecular zero-quantum coherences. Magical angle experiments validate that the signals are from heteronuclear iSQCs and insensitive to the imperfection of radio-frequency flip angles. All experimental observations are in excellent agreement with theoretical predictions. The quantum-mechanical treatment leads to similar predictions to the dipolar field treatment.
Kuniba, Atsuo; Sergeev, Sergey
2014-01-01
We introduce a homomorphism from the quantum affine algebras $U_q(D^{(2)}_{n+1}), U_q(A^{(2)}_{2n}), U_q(C^{(1)}_{n})$ to the $n$-fold tensor product of the $q$-oscillator algebra ${\\mathcal A}_q$. Their action commute with the solutions of the Yang-Baxter equation obtained by reducing the solutions of the tetrahedron equation associated with the modular and the Fock representations of ${\\mathcal A}_q$. In the former case, the commutativity is enhanced to the modular double of these quantum affine algebras.
Quantum phase transitions with parity-symmetry breaking and hysteresis
Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.
2016-09-01
Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report, for the first time, the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system consists of an ultracold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunnelling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.
Rajak, Atanu; Divakaran, Uma
2016-04-01
We study the effect of two simultaneous local quenches on the evolution of the Loschmidt echo (LE) and entanglement entropy (EE) of a one dimensional transverse Ising model. In this work, one of the local quenches involves the connection of two spin-1/2 chains at a certain time and the other corresponds to a sudden change in the magnitude of the transverse field at a given site in one of the spin chains. We numerically calculate the dynamics associated with the LE and the EE as a result of such double quenches, and discuss the various timescales involved in this problem using the picture of quasiparticles (QPs) generated as a result of such quenches. We perform a detailed analysis of the probability of QPs produced at the two sites and the nature of the QPs in various phases, and obtain interesting results. More specifically, we find partial reflection of these QPs at the defect center or the site of h-quench, resulting in new timescales which have never been reported before.
Institute of Scientific and Technical Information of China (English)
Zhang Cun-Xi; Nie Yi-Hang; Liang Jiu-Qing
2008-01-01
We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from O to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.
Wang, Lin-Wei; Qu, Ai-Ping; Liu, Wen-Lou; Chen, Jia-Mei; Yuan, Jing-Ping; Wu, Han; Li, Yan; Liu, Juan
2016-02-01
As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, and organic dye imaging of cell nucleus as blue signal by 4‧,6-diamidino-2-phenylindole (DAPI), and to develop a computer-aided automatic method for Ki67 index measurement. The newly developed automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% dye imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting method to measure Ki67 index.
Energy Technology Data Exchange (ETDEWEB)
Tang, Yanqun; Wang, Ruirui; Yang, Ye; Yan, Dongpeng; Xiang, Xu
2016-08-03
The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., E < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is -1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs.
Feng, Jijun; Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo; Hasama, Toshifumi; Ishikawa, Hiroshi
2013-07-01
We demonstrate a compact all-optical Michelson interferometer (MI) gating switch with monolithic integration of two different bandgap energies. Based on the ion-induced intermixing in InGaAs/AlAsSb coupled double quantum wells, the blueshift of the band edge can be tailored. Through phosphorus ion implantation with a dose of 5 × 10(14) cm(-2) and subsequent annealing at 720 °C for 60 s, an implanted sample can acquire a high transmittance compared with the as-grown one. Meanwhile, the cross-phase modulation (XPM) efficiency of a non-implanted sample undergoing the same annealing process decreases little. An implanted part for signal propagation and a non-implanted section for XPM are thus monolithically integrated for an MI switch by an area-selective manner. Full switching of a π-rad nonlinear phase shift is achieved with pump pulse energy of 5.6 pJ at a 10-GHz repetition rate.
Yan, Yun-Jing; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui
2017-05-15
A novel fluorescent sensor nitrogen-doped graphene quantum dots (N-GQDs)/SiO2/molecular imprinting polymer（N-GQDs/SiO2/MIP）was fabricated by surface imprinting and epitope imprinting to recognize and detect the target protein cytochrome c (Cyt C) with fluorescence quenching. In the polymerization process, the C- and N-terminal nonapeptides of Cyt C were selected as the double templates which were fixed by functional monomer (zinc acrylate) through metal chelation and steady six-membered ring. The linear range of fluorescence quenching for this receptor towards Cyt C was 0.20-60μM, and the detection limit was 0.11μM. The precision for six times replicate determination of Cyt C at 30μM was 1.20%, and the imprinting factor (IF) was 3.06. The recoveries of the material to Cyt C in urine were 99.3-114.0%. In brief, this work proposed a strategy to prepare a new type fluorescent imprinting polymer based on N-GQDs and provided an attractive perspective for the detection of protein by using the combination of N-GQDs and molecular imprinting technique.
Asymmetric EPR entanglement in continuous variable systems
Wagner, Katherine; Armstrong, Seiji; Morizur, Jean-Francois; Lam, Ping Koy; Bachor, Hans-Albert
2012-01-01
Continuous variable entanglement can be produced in nonlinear systems or via interference of squeezed states. In many of optical systems, such as parametric down conversion or interference of optical squeezed states, production of two perfectly symmetric subsystems is usually used for demonstrating the existence of entanglement. This symmetry simplifies the description of the concept of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualisation of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal...
Quantum Correlations Evolution Asymmetry in Quantum Channels
Li, Meng; Huang, Yun-Feng; Guo, Guang-Can
2017-03-01
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. Supported by the National Natural Science Foundation of China under Grant Nos. 61327901, 61490711, 61225025, 11474268, and the Fundamental Research Funds for the Central Universities under Grant No. WK2470000018
SU (3) realization of the rigid asymmetric rotor within the IBM
Energy Technology Data Exchange (ETDEWEB)
Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnov, Y.F. [Instituto de Ciencias Nucleares, UNAM (Mexico)
1999-07-01
It is shown that the spectrum of the asymmetric rotor can be realized quantum mechanically in terms of a system of interacting bosons. This is achieved in the SU(3) limit of the interacting boson model by considering higher-order interactions between the bosons. The spectrum corresponds to that of a rigid asymmetric rotor in the limit of infinite boson number. (author)
Lee, J M; Jeon, B H; Kim, J; Lee, D
2015-12-14
We investigated the microscopic mechanism underlying the double-state lasing behavior (simultaneous lasing at the ground state [GS] and excited state [ES]) in InAs/GaAs quantum dot (QD) laser diodes. The ES and GS lasing processes that contributed to double-state lasing were examined experimentally and theoretically. Experiments were conducted in which spontaneous emission from a window of a QD laser diode was examined under lasing conditions, and numerical simulations were performed using a coupled rate equation model of the QD microstates. The findings showed that, when carrier relaxation from the ES to the GS was sufficiently slow, double-state lasing occurred. Additionally, ES lasing was found to arise not from the QD group undergoing GS lasing, but rather from another QD group in which the states were lower in energy and outside of the homogeneous bandwidth.
Realizing Controllable Quantum States
Takayanagi, Hideaki; Nitta, Junsaku
-T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin
Fleming, J.G.; Smith, B.K.
1995-10-10
A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.
Enhancing molecule fluorescence with asymmetrical plasmonic antennas.
Lu, Guowei; Liu, Jie; Zhang, Tianyue; Shen, Hongming; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gu, Ying; He, Yingbo; Wang, Yuwei; Gong, Qihuang
2013-07-21
We propose and justify by the finite-difference time-domain method an efficient strategy to enhance the spontaneous emission of a fluorophore with a multi-resonance plasmonic antenna. The custom-designed asymmetrical antenna consists of two plasmonic nanoparticles with different sizes and is able to couple efficiently to free space light through multiple localized surface plasmon resonances. This design simultaneously permits a large near-field excitation near the antenna as well as a high quantum efficiency, which results in an unusual and significant enhancement of the fluorescence of a single emitter. Such an asymmetrical antenna presents intrinsic advantages over single particle or dimer based antennas made using two identical nanostructures. This promising concept can be exploited in the large domain of light-matter interaction processes involving multiple frequencies.
Asymmetric dark matter models in SO(10)
Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming
2017-02-01
We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant Z2 symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a {126} dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.
Asymmetric Dark Matter Models in SO(10)
Nagata, Natsumi; Zheng, Jiaming
2016-01-01
We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant $\\mathbb{Z}_2$ symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a ${\\bf 126}$ dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.
Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering.
Sun, Kai; Ye, Xiang-Jun; Xu, Jin-Shi; Xu, Xiao-Ye; Tang, Jian-Shun; Wu, Yu-Chun; Chen, Jing-Ling; Li, Chuan-Feng; Guo, Guang-Can
2016-04-22
Einstein-Podolsky-Rosen (EPR) steering describes the ability of one observer to nonlocally "steer" the other observer's state through local measurements. EPR steering exhibits a unique asymmetric property; i.e., the steerability can differ between observers, which can lead to one-way EPR steering in which only one observer obtains steerability in the steering process. This property is inherently different from the symmetric concepts of entanglement and Bell nonlocality, and it has attracted increasing interest. Here, we experimentally demonstrate asymmetric EPR steering for a class of two-qubit states in the case of two measurement settings. We propose a practical method to quantify the steerability. We then provide a necessary and sufficient condition for EPR steering and clearly demonstrate one-way EPR steering. Our work provides new insight into the fundamental asymmetry of quantum nonlocality and has potential applications in asymmetric quantum information processing.
Luo, Xiao-Qing; Fan, Heng; Liu, Wu-Ming
2012-01-01
We investigate the linear and nonlinear properties of the probe and signal optical pulses based on intersubband transitions in an asymmetric GaAs/AlGaAs double quantum wells. It shows that, in the presence of cross-phase modulation, a giant cross-Kerr nonlinearity and mutually matched group velocities of the probe and signal optical pulses can be achieved while realizing the suppression of linear and self-Kerr optical absorption synchronously. These characteristics serve to exhibit an all-optical two-qubit polarization controlled quantum phase gate within efficiently controllable photon-photon entanglement by semiconductor mediation. In addition, by using just polarizing beam and half-wave plates, we propose a practical experimental scheme to discriminate the maximally entangled polarization state of two-qubit through distinguishing two out of the four Bell states. This proposal potentially enables the realization of solid states mediated all-optical quantum computation and information processing.
Asymmetrical international attitudes
Van Oudenhoven, JP; Askevis-Leherpeux, F; Hannover, B; Jaarsma, R; Dardenne, B
2002-01-01
In general, attitudes towards nations have a fair amount of reciprocity: nations either like each other are relatively indifferent to each other or dislike each other Sometimes, however international attitudes are asymmetrical. In this study, we use social identity theory in order to explain asymmet
Asymmetric reactions in continuous flow
Directory of Open Access Journals (Sweden)
Xiao Yin Mak
2009-04-01
Full Text Available An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed.
Asymmetric catalysis with helical polymers
Megens, Rik P.; Roelfes, Gerard
2011-01-01
Inspired by nature, the use of helical biopolymer catalysts has emerged over the last years as a new approach to asymmetric catalysis. In this Concept article the various approaches and designs and their application in asymmetric catalysis will be discussed.
Wu, Shuxing; Hui, Kwan San; Hui, Kwun Nam; Kim, Kwang Ho
2017-01-18
Achieving high energy density while retaining high power density is difficult in electrical double-layer capacitors and in pseudocapacitors considering the origin of different charge storage mechanisms. Rational structural design became an appealing strategy in circumventing these trade-offs between energy and power densities. A hybrid structure consists of chemically converted graphene-encapsulated carbon@nickel-aluminum layered double hydroxide core-shell spheres as spacers among graphene layers (G-CLS) used as an advanced electrode to achieve high energy density while retaining high power density for high-performance supercapacitors. The merits of the proposed architecture are as follows: (1) CLS act as spacers to avoid the close restacking of graphene; (2) highly conductive carbon sphere and graphene preserve the mechanical integrity and improve the electrical conductivity of LDHs hybrid. Thus, the proposed hybrid structure can simultaneously achieve high electrical double-layer capacitance and pseudocapacitance resulting in the overall highly active electrode. The G-CLS electrode exhibited high specific capacitance (1710.5 F g(-1) at 1 A g(-1)) under three-electrode tests. An ASC fabricated using the G-CLS as positive electrode and reduced graphite oxide as negative electrode demonstrated remarkable electrochemical performance. The ASC device operated at 1.4 V and delivered a high energy density of 35.5 Wh kg(-1) at a 670.7 W kg(-1) power density at 1 A g(-1) with an excellent rate capability as well as a robust long-term cycling stability of up to 10 000 cycles.
Energy Technology Data Exchange (ETDEWEB)
Huebel, A.
2007-11-22
In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the
Asymmetry of hole states in vertically coupled Ge double quantum dot%耦合锗量子点中空穴态对称特性研究
Institute of Scientific and Technical Information of China (English)
崔尉; 王茺; 崔灿; 施张胜; 杨宇
2014-01-01
The two lowest single-particle hole states in the vertically coupled Ge/Si double layer quantum dots are investigated numerically by using the single-band heavy hole effective mass approximation and six-band Kronig-Penney model, re-spectively. The calculated results indicate that within the frame of several-band coupled model, the bonding-antibonding ground-state transition and a bonding-antibonding energy anti-crossover phenomenon are observed with interdot dis-tance increasing. These results have not been observed previously in those single-band model calculations. The analysis of the wavefunction component of bonding-antibonding hole state shows that the contribution ratios of light, heavy and spin-orbital-split-off hole states to the characteristic hole wavefunction vary with the increase of the vertical coupled distance, resulting in the ground state wavefunction changing from bonding states to antibonding ones finally.%分别采用单带重空穴近似和六带Kronig-Penney模型，对垂直耦合锗量子点在不同耦合距离下的空穴态特性进行了计算，并探讨了自旋-轨道的相互作用对空穴态对称性的影响。计算结果表明：多带耦合的框架下，随着量子点垂直间距的增大，空穴基态从成键态转变为反键态，而且价带基态能级和第一激发态能级发生反交叉现象，这与单带模型下得到的相应结果存在较大差异。通过分析六带模型计算得到的成、反键态波函数，轻、重空穴态和自旋-轨道分裂态对特征空穴态波函数的贡献比例随着量子点垂直间距的增大发生了转变，并最终导致量子点空穴基态波函数由成键态转变为反键态。
Asymmetric information and economics
Frieden, B. Roy; Hawkins, Raymond J.
2010-01-01
We present an expression of the economic concept of asymmetric information with which it is possible to derive the dynamical laws of an economy. To illustrate the utility of this approach we show how the assumption of optimal information flow leads to a general class of investment strategies including the well-known Q theory of Tobin. Novel consequences of this formalism include a natural definition of market efficiency and an uncertainty principle relating capital stock and investment flow.
Asymmetric extractions in orthodontics
Camilo Aquino Melgaço; Mônica Tirre de Souza Araújo
2012-01-01
INTRODUCTION: Extraction decisions are extremely important in during treatment planning. In addition to the extraction decision orthodontists have to choose what tooth should be extracted for the best solution of the problem and the esthetic/functional benefit of the patient. OBJECTIVE: This article aims at reviewing the literature relating the advantages, disadvantages and clinical implications of asymmetric extractions to orthodontics. METHODS: Keywords were selected in English and Portugue...
Asymmetric Evolutionary Games.
Directory of Open Access Journals (Sweden)
Alex McAvoy
2015-08-01
Full Text Available Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.
Asymmetric extractions in orthodontics
Directory of Open Access Journals (Sweden)
Camilo Aquino Melgaço
2012-04-01
Full Text Available INTRODUCTION: Extraction decisions are extremely important in during treatment planning. In addition to the extraction decision orthodontists have to choose what tooth should be extracted for the best solution of the problem and the esthetic/functional benefit of the patient. OBJECTIVE: This article aims at reviewing the literature relating the advantages, disadvantages and clinical implications of asymmetric extractions to orthodontics. METHODS: Keywords were selected in English and Portuguese and the EndNote 9 program was used for data base search in PubMed, Web of Science (WSc and LILACS. The selected articles were case reports, original articles and prospective or retrospective case-control studies concerning asymmetrical extractions of permanent teeth for the treatment of malocclusions. CONCLUSION: According to the literature reviewed asymmetric extractions can make some specific treatment mechanics easier. Cases finished with first permanent molars in Class II or III relationship in one or both sides seem not to cause esthetic or functional problems. However, diagnosis knowledge and mechanics control are essential for treatment success.
Asymmetric total synthesis of vindoline.
Kato, Daisuke; Sasaki, Yoshikazu; Boger, Dale L
2010-03-24
A concise asymmetric total synthesis of (-)-vindoline (1) is detailed based on a tandem intramolecular [4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole inspired by the natural product structure, in which the tether linking the initiating dienophile and oxadiazole bears a chiral substituent that controls the facial selectivity of the initiating Diels-Alder reaction and sets absolute stereochemistry of the remaining six stereocenters in the cascade cycloadduct. This key reaction introduces three rings and four C-C bonds central to the pentacyclic ring system setting all six stereocenters and introducing essentially all the functionality found in the natural product in a single step. Implementation of the approach also required the development of a unique ring expansion reaction to provide a six-membered ring suitably functionalized for introduction of the Delta (6, 7)-double bond found in the core structure of vindoline and defined our use of a protected hydroxymethyl group as the substituent used to control the stereochemical course of the cycloaddition cascade.
Energy Technology Data Exchange (ETDEWEB)
Odhiambo Oyoko, H. [Department of Physics, Westville Campus, University of KwaZulu-Natal, Private Bag X 54001, Durban 4000 (South Africa); Porras-Montenegro, N. [Departamento de Fisica, Universidad del Valle, AA 25360, Cali (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)
2007-07-01
Using a variational technique within the effective mass approximation we have carried out a comparative study of the effect of hydrostatic pressure and temperature on the shallow-impurity related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As single and double quantum wells. The results show a pressure dependent read-shift and a temperature dependent blue-shift in the optical absorption spectra. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-09-15
The donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings is investigated. The photoionization cross section dependence on the incident photon energy is studied considering the effects of hydrostatic pressure, variations of aluminum concentration, geometries of the structure, and impurity position. The interpretation of the dipole matrix element, which reflects the photoionization probability, is also given. We have found that these parameters can lead to both redshift and blueshift of the photoionization spectrum and also influence the cross section peak value.
Morrison, James
1984-01-01
Asymmetric Synthesis, Volume 4: The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers describes the practical methods of obtaining chiral fragments. Divided into five chapters, this book specifically examines initial chiral transmission and extension. The opening chapter describes the so-called chiral carbon pool, the readily available chiral carbon fragments used as building blocks in synthesis. This chapter also provides a list of 375 chiral building blocks, along with their commercial sources, approximate prices, and methods of synthesis. Schemes involving
Olaizola Ortega, María Norma; Valenciano Llovera, Federico
2012-01-01
This paper provides a new model of network formation that bridges the gap between the two benchmark models by Bala and Goyal, the one-way flow model, and the two-way flow model, and includes both as particular extreme cases. As in both benchmark models, in what we call an "asymmetric flow" network a link can be initiated unilaterally by any player with any other, and the flow through a link towards the player who supports it is perfect. Unlike those models, in the opposite direction there is ...
Boroumand, Samira; Chamjangali, Mansour Arab; Bagherian, Ghadamali
2017-03-01
A simple and sensitive double injection/single detector flow injection analysis (FIA) method is proposed for the simultaneous kinetic determination of ascorbic acid (AA) and uric acid (UA). This method is based upon the difference between the rates of the AA and UA reactions with Fe3 + in the presence of 1, 10-phenanthroline (phen). The absorbance of Fe2 +/1, 10-phenanthroline (Fe-phen) complex obtained as the product was measured spectrophotometrically at 510 nm. To reach a good accuracy in the differential kinetic determination via the mathematical manipulations of the transient signals, different criteria were considered in the selection of the optimum conditions. The multi criteria decision making (MCDM) approach was applied for the selection of the optimum conditions. The importance weights of the evaluation criteria were determined using the analytic hierarchy process, entropy method, and compromised weighting (CW). The experimental conditions (alternatives) were ranked by the technique for order preference by similarity to an ideal solution. Under the selected optimum conditions, the obtained analytical signals were linear in the ranges of 0.50-5.00 and 0.50-4.00 mg L- 1 for AA and UA, respectively. The 3σ detection limits were 0.07 mg L- 1 for AA and 0.12 mg L- 1 for UA. The relative standard deviations for four replicate determinations of AA and UA were 2.03% and 3.30% respectively. The method was also applied for the analysis of analytes in the blood serum, Vitamine C tablets, and tap water with satisfactory results.
Directory of Open Access Journals (Sweden)
Nikolay M. Bogoliubov
2009-04-01
Full Text Available The basic model of the non-equilibrium low dimensional physics the so-called totally asymmetric exclusion process is related to the 'crystalline limit' (q → ∞ of the SU_q(2 quantum algebra. Using the quantum inverse scattering method we obtain the exact expression for the time-dependent stationary correlation function of the totally asymmetric simple exclusion process on a one dimensional lattice with the periodic boundary conditions.
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Oscillating Guided Modes in Graphene-Based Asymmetric Waveguides
Institute of Scientific and Technical Information of China (English)
PENG Ping; ZHANG Peng; LIU Jian-Ke; CAO Zhen-Zhou; LI Guan-Qiang
2012-01-01
We investigate the guided modes in monolayer graphene-based waveguides with asymmetric quantum well structure induced by unequal dc voltages. The dispersion relation for the guided modes is obtained analytically, the structures of the guided modes are discussed under three distinct cases. For the cases of the classical motion and the Klein tunneling, the asymmetric structure does not influence the mode structures dramatically compared with that in the symmetric waveguide. But for the mixing case of the former two, the mode structures and the motion characteristics for the electron and the hole exhibit different behaviors at same condition. The results may be helpful for the practical application of graphene-based quantum devices.
Phase-transfer-catalysed asymmetric synthesis of tetrasubstituted allenes
Hashimoto, Takuya; Sakata, Kazuki; Tamakuni, Fumiko; Dutton, Mark J.; Maruoka, Keiji
2013-03-01
Allenes are molecules based on three carbons connected by two cumulated carbon-carbon double bonds. Given their axially chiral nature and unique reactivity, substituted allenes have a variety of applications in organic chemistry as key synthetic intermediates and directly as part of biologically active compounds. Although the demands for these motivated many endeavours to make axially chiral, substituted allenes by exercising asymmetric catalysis, the catalytic asymmetric synthesis of fully substituted ones (tetrasubstituted allenes) remained largely an unsolved issue. The fundamental obstacle to solving this conundrum is the lack of a simple synthetic transformation that provides tetrasubstituted allenes in the action of catalysis. We report herein a strategy to overcome this issue by the use of a phase-transfer-catalysed asymmetric functionalization of 1-alkylallene-1,3-dicarboxylates with N-arylsulfonyl imines and benzylic and allylic bromides.
Families of asymmetric periodic solutions in the restricted four-body problem
Papadakis, K. E.
2016-12-01
Very recently, we presented five of the basic families of the network of periodic orbits of the restricted four-body problem which are simple, i.e. one intersection with the horizontal x-axis at the half period, symmetric with respect to the same axis and asymmetric with respect to the vertical y-axis. In the present work, using these families, we found series of asymmetric critical orbits for various values of the primaries m2 and m3. From these critical orbits we calculate and present five new families of simple periodic orbits which are asymmetric with respect to both the x- and y-axis. Additionally, we describe a grid method in the (x0, dot{x}0) plane and we obtain initial conditions for new asymmetric double-periodic orbits. We determine ten families of asymmetric double-periodic orbits from the bifurcations of the previous five asymmetric families using the special generating horizontally critical periodic orbits. The stability of each calculated asymmetric periodic orbit is also studied. Characteristic curves as well as stability diagrams of these families are illustrated. In the last section we present the evolution of the five basic families of simple asymmetric periodic orbits when the primaries are the Sun the Jupiter and the 2797 Teucer Asteroid.
Additive Effects on Asymmetric Catalysis.
Hong, Liang; Sun, Wangsheng; Yang, Dongxu; Li, Guofeng; Wang, Rui
2016-03-23
This review highlights a number of additives that can be used to make asymmetric reactions perfect. Without changing other reaction conditions, simply adding additives can lead to improved asymmetric catalysis, such as reduced reaction time, improved yield, or/and increased selectivity.
Institute of Scientific and Technical Information of China (English)
王素新; 李玉现; 王宁; 刘建军
2016-01-01
Owing to their potential applications in topological quantum computation and because of their fundamental interest, Majorana fermions are currently attracting increasing attention. Numerous theoretical and experimental studies exactly show that the quantum dot (QD) structure is a good candidate for the detection of Majorana bound state (MBSs). QD system has many unique transport properties and interesting quantum phenomena, such as quantum interference effect, Fano effect, etc. In addition, compared with a single QD, a coupled QD structure has many adjustable parameters, and thus has more important theoretical and practical value, which provides an excellent platform to detect MBSs. In addition, QD coupled with normal metallic conductor and with superconducting electrode structure exhibits interesting transport properties. One of these properties is the so-called Andreev reflection (AR). Especially, in the subgap regime, the current almost entirely originates from the anomalous Andreev channel; such spectroscopy can thus directly probe any in-gap state. In the present paper, we consider a T-shaped double QD structure with side-coupled to MBSs and investigate the transport properties through the system by adding a normal and a superconducting lead. We calculate the AR conductance through the system in the subgap transport. Here we focus on the effects of MBSs on AR through the system. We find that the AR conductance presents a resonant peak around zero Fermi energy when only one QD (QD1) connects to metal and superconducting leads. As a consequence of quantum interference, when using another QD2 side-attached to QD1, a pair of new Fano-type resonant peaks appear and is distributed aside the zero point and the Fano antiresonant point is at the energy level of the QD2. If an MBS is introduced to couple to QD2, the AR conductance shows several new features. First, a pair of new Fano-type resonance curves appears and the original ones also persist except for the
Implementing of Quantum Cloning with Spatially Separated Quantum Dot Spins
Wen, Jing-Ji; Yeon, Kyu-Hwang; Du, Xin; Lv, Jia; Wang, Ming; Wang, Hong-Fu; Zhang, Shou
2016-07-01
We propose some schemes for implementing optimal symmetric (asymmetric) 1 → 2 universal quantum cloning, optimal symmetric (asymmetric) 1 → 2 phase-covariant cloning, optimal symmetric 1 → 3 economical phase-covariant cloning and optimal symmetric 1 → 3 economical real state cloning with spatially separated quantum dot spins by choosing the single-qubit rotation angles appropriately. The decoherences of the spontaneous emission of QDs, cavity decay and fiber loss are suppressed since the effective long-distance off-resonant interaction between two distant QDs is mediated by the vacuum fields of the fiber and cavity, and during the whole process no system is excited.
The asymmetric sandwich theorem
Simons, Stephen
2011-01-01
We discuss the asymmetric sandwich theorem, a generalization of the Hahn-Banach theorem. As applications, we derive various results on the existence of linear functionals that include bivariate, trivariate and quadrivariate generalizations of the Fenchel duality theorem. Most of the results are about affine functions defined on convex subsets of vector spaces, rather than linear functions defined on vector spaces. We consider both results that use a simple boundedness hypothesis (as in Rockafellar's version of the Fenchel duality theorem) and also results that use Baire's theorem (as in the Robinson-Attouch-Brezis version of the Fenchel duality theorem). This paper also contains some new results about metrizable topological vector spaces that are not necessarily locally convex.
Directory of Open Access Journals (Sweden)
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Institute of Scientific and Technical Information of China (English)
李娜; 孙捷; 王晓静; 孙敬勇; 王兵
2016-01-01
A double quantum dots nanocomposite of CdSe@ SiO2‐CdTe was synthesized based on the electrostatic adsorption .A Cd‐NO complex was formed by the combination of nitric ox‐ide (NO) with Cd ions on the surface of CdTe quantum dots ,which led to CdTe quantum dots fluorescence quenching , without affecting the fluorescence of CdSe quantum dots .Further‐more ,its utility was carried out to detect NO quantitatively according to the linear relationship between the concentrations of NO (0 1.~2 2. μmol/L) and the relevant I603/I532 values of the ratiometric fluorescent sensor .%通过静电吸附作用，合成了CdSe＠ SiO2‐CdTe双量子点的纳米复合物．一氧化氮（NO）与CdTe量子点表面Cd离子结合形成Cd‐NO复合物，引起CdTe量子点荧光猝灭，而不影响CdSe量子点的荧光．当NO浓度在01．～22．μmol／L之间变化时，该探针荧光强度比值 I603／I532符合线性关系（R＝－09．954），从而实现对NO的定量检测．
Jaffe, Arthur
2016-01-01
Here we introduce reflection positive doubles, a general framework for reflection positivity, covering a wide variety of systems in statistical physics and quantum field theory. These systems may be bosonic, fermionic, or parafermionic in nature. Within the framework of reflection positive doubles, we give necessary and sufficient conditions for reflection positivity. We use a reflection-invariant cone to implement our construction. Our characterization allows for a direct interpretation in terms of coupling constants, making it easy to check in concrete situations. We illustrate our methods with numerous examples.
Many worlds interpretation for double slit experiment
Yun, Zinkoo
2014-01-01
As is well known, the double slit experiment contains every key concepts of quantum mechanics such as phase effect, probability wave, quantum interference, quantum superposition. In this article, I will clarify the meaning of quantum superposition in terms of phase effect between states. After applying standard quantum theory, it leads to serious questions about the unitary process of an isolated system. It implies that non collapsing interpretations including many worlds may not be justified. This also could explain that there is no such boundary between classical and quantum domains.
Asymmetric responses of international stock markets to trading volume
Gerlach, Richard; Chen, Cathy W. S.; Lin, Doris S. Y.; Huang, Ming-Hsiang
2006-02-01
The major goal of this paper is to examine the hypothesis that stock returns and return volatility are asymmetric, threshold nonlinear, functions of change in trading volume. A minor goal is to examine whether return spillover effects also display such asymmetry. Employing a double-threshold GARCH model with trading volume as a threshold variable, we find strong evidence supporting this hypothesis in five international market return series. Asymmetric causality tests lend further support to our trading volume threshold model and conclusions. Specifically, an increase in volume is positively associated, while decreasing volume is negatively associated, with the major price index in four of the five markets. The volatility of each series also displays an asymmetric reaction, four of the markets display higher volatility following increases in trading volume. Using posterior odds ratio, the proposed threshold model is strongly favored in three of the five markets, compared to a US news double threshold GARCH model and a symmetric GARCH model. We also find significant nonlinear asymmetric return spillover effects from the US market.
Full counting statistics of renormalized dynamics in open quantum transport system
Energy Technology Data Exchange (ETDEWEB)
Luo, JunYan, E-mail: jyluo@zust.edu.cn [School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023 (China); Shen, Yu; He, Xiao-Ling [School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023 (China); Li, Xin-Qi [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR (China); State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Department of Physics, Beijing Normal University, Beijing 100875 (China); Yan, YiJing [Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR (China)
2011-11-28
The internal dynamics of a double quantum dot system is renormalized due to coupling respectively with transport electrodes and a dissipative heat bath. Their essential differences are identified unambiguously in the context of full counting statistics. The electrode coupling caused level detuning renormalization gives rise to a fast-to-slow transport mechanism, which is not resolved at all in the average current, but revealed uniquely by pronounced super-Poissonian shot noise and skewness. The heat bath coupling introduces an interdot coupling renormalization, which results in asymmetric Fano factor and an intriguing change of line shape in the skewness. -- Highlights: ► We study full counting statistics of electron transport through double quantum dots. ► Essential differences due to coupling to the electrodes and heat bath are identified. ► Level detuning induced by electrodes results in strongly enhanced shot noise and skewness. ► Interdot coupling renormalization due to heat bath leads to asymmetric noise and intriguing skewness.
Kendon, Vivien M; Nemoto, Kae; Munro, William J
2010-08-13
We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
Watermarking in gyrator domain using an asymmetric cryptosystem
Vashisth, Sunanda; Yadav, A. K.; Singh, Hukun; Singh, Kehar
2015-06-01
A watermarking scheme is proposed based on optical asymmetric cryptography using double random phase encoding in the gyrator transform domain. It is based on the phase and amplitude truncation during the encryption process. The scheme is validated through computer simulations showing the scheme's sensitivity to decryption keys and orders of the gyrator transform. The occlusion and noise attacks have also been analysed. The proposed scheme is significantly resistant to both these attacks.
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Zhang, Lei; Gilbert, M.J.
2010-01-01
We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation. The algorithm gives insights into the role of correlation through visualization of two-particle probability...
Luo, Shuai; Ji, Hai-Ming; Yang, Xiao-Guang; Yang, Tao
2013-07-01
The impact of a double-cap procedure using two growth temperatures on the optical characteristics of InAs/InGaAsP/InP quantum dots (QDs) grown by metal-organic chemical vapor deposition has been investigated. With a combination of optimized thickness of the first cap layer and elevated growth temperature for the second cap layer, it is found that the photoluminescence (PL) linewidth of QDs can be significantly reduced from 124 meV to 87 meV at room temperature (RT). This reduction in PL linewidth is likely to be due to the enhanced As/P exchange reaction and indium migration at high growth temperature, which lead to a more uniform QD height distribution. Moreover, the uniformity of the PL peak intensity and peak energy on the wafer surface is evidently improved due to the higher material quality achieved when an elevated temperature is used for the SCL growth.
Duality Computing in Quantum Computers
Institute of Scientific and Technical Information of China (English)
LONG Gui-Lu; LIU Yang
2008-01-01
In this letter, we propose a duality computing mode, which resembles particle-wave duality property when a quantum system such as a quantum computer passes through a double-slit. In this mode, computing operations are not necessarily unitary. The duality mode provides a natural link between classical computing and quantum computing. In addition, the duality mode provides a new tool for quantum algorithm design.
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia)
2014-01-15
The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption.
Asymmetric Gepner Models (Revisited)
Gato-Rivera, B
2010-01-01
We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as th...
Shumilov, A. A.; Vinnichenko, M. Ya; Balagula, R. M.; Vorobjev, L. E.; Firsov, D. A.; Kulagina, M. M.; Vasil'iev, A. P.; Duque, C. A.; Tiutiunnyk, A.; Akimov, V.; Restrepo, R. L.; Tulupenko, V. N.; Ter-Martirosyan, A. L.
2015-11-01
Modulation of refraction index under transverse electric field was studied in structures with multiple tunnel-coupled GaAs/AlGaAs quantum wells in the spectral range corresponding to intersubband light absorption. The change of refraction index in electric field was calculated using Kramers-Kronig relation and experimentally determined spectra of intersubband light absorption in equilibrium conditions and under transverse electric field.
Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation
Zhao, Z; Zhou, X Q; Chen, Y A; Lu, C Y; Karlsson, A; Pan, J W; Zhao, Zhi; Zhang, An-Ning; Zhou, Xiao-Qi; Chen, Yu-Ao; Lu, Chao-Yang; Karlsson, Anders; Pan, Jian-Wei
2004-01-01
We report an experimental realization of both optimal asymmetric cloning and telecloning of single photons by making use of partial teleportation of an unknown state. In the experiment, we demonstrate that, conditioned on the success of partial teleportation of single photons, not only the optimal asymmetric cloning can be accomplished, but also one of two outputs can be transfered to a distant location, realizing the telecloning. The experimental results represented a novel way to achieve the quantum cloning and may have potential applications in the context of quantum cryptography.
改进的双链量子遗传算法在图像去噪中的应用%Improved quantum genetic algorithm with double chains in image denoising
Institute of Scientific and Technical Information of China (English)
国强; 孙宇枭
2016-01-01
针对传统双链量子遗传算法收敛速度慢、搜索精度低、鲁棒性差等不足，提出一种F型双链量子遗传算法（ F＿DCQ⁃GA）。对编码空间进行单值映射处理，在保证量子种群适应度值与相应幅角排序单调性的前提下，缩小算法的搜索空间，增加搜索密度；在量子更新时引入自适应步长因子，使步长随目标函数在搜索点处梯度的变化而变化，有效解决了传统寻优算法普遍存在的全局最优解搜索困难的问题；在染色体变异更新时提出了π／6门，克服了原来非门变异无法更新量子比特概率幅的缺点。将F＿DCQGA优化算法应用于小波阈值去噪的阈值选择机制中，通过仿真证明F＿DCQGA优化算法提高了小波阈值函数的收敛速度和搜索精度，在图像边缘特征提取中可以获得更小的均方误差（ SME ）和更大的峰值信噪比（ RPSN ），同时又保留了大部分高频信息。%To solve the problems of slow convergence speed, low search precision and poor robustness in traditional double chains quantum genetic algorithm, a new double chains quantum genetic algorithm ( F_DCQGA ) is proposed. The coding space is mapped to reduce the algorithm searching space and increases searching density, under the premise of guaranteeing quantum population adaptation and argument population monotonicity. The adaptive step⁃length factor is introduced to the quantum updating, which changes the step⁃length with gradient of objective function in searching points. This could solve the global optimal solution search difficulties caused by oscillatory occurrence in traditional optimization algorithm. Quantumπ/6 gate is presented in chromosome mutation upadating, to overcome the shortcoming that NOT gate can not update quantum bit probability amplitude. The F_DCQGA is applied to the threshold selection of wavelet threshold denoising. Simulation results show that F_DCQGA improves the
Magnetically Modified Asymmetric Supercapacitors Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is for the development of an asymmetric supercapacitor that will have improved energy density and cycle life....
Institute of Scientific and Technical Information of China (English)
贺智明; 梁云飞
2013-01-01
多约束QoS组播路由问题是NP完全问题.提出一种基于双链量子遗传算法的多约束QoS组播路由算法,该算法具有种群多样性、收敛速度快、并行性更高等优点,并对算法具体流程和实现方法进行了详细的描述.实验结果表明,与已有的遗传算法、量子遗传算法相比,该算法有搜索速度快、全局寻优能力强等优点.%Multi-constrained quality-of-service (QoS) routing is an NP complete problem. In this paper we propose a multi-constrained QoS multicast routing algorithm which is based on double chains quantum genetic algorithm ( DCQGA) , the algorithm has the advantages of population diversity, fast convergence speed and better parallelism, etc. We also provide detailed description on specific processes and the implementation means of the algorithm. Experimental results show that compared with existing genetic algorithm and quantum generic algorithm, the proposed algorithm has the advantages of higher search speed and strong global optimisation ability.
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Escuela de Ingenieria de Antioquia, AA 7516 Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)
2013-02-15
The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: Black-Right-Pointing-Pointer Linear and nonlinear intra-band absorption in quantum rings. Black-Right-Pointing-Pointer Threshold energy strongly depends on the hydrostatic pressure. Black-Right-Pointing-Pointer Threshold energy strongly depends on the stoichiometry and sizes of structure. Black-Right-Pointing-Pointer Optical absorption is affected by the incident optical intensity.
Solutions for confluent and double-confluent Heun equations and some applications
Energy Technology Data Exchange (ETDEWEB)
El-Jaick, Lea Jaccoud; Figueiredo, Bartolomeu D.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2008-07-01
This paper examines some solutions for confluent and double-confluent Heun equations and their applications to the Schroedinger equation with quasi-exactly solvable potentials. In the first place, we review two Leaver's solutions in series of regular and irregular confluent hypergeometric functions for the confluent equation [E. W. Leaver, J. Math. Phys. 27, 1238 (1986)] and introduce an additional expansion in series of irregular confluent hypergeometric functions. Then, we find the conditions under which one of these solutions can be written as a linear combination of the others. In the second place, by means of limiting procedures we generate solutions for the double-confluent equation as well as for special limits of both the confluent and double-confluent equations. In the third place, solutions of the Heun equations are used to solve the one-dimensional Schroedinger equation for quasi-exactly solvable potentials. We consider a symmetric and an asymmetric double-Morse potentials which appear in the theory of quantum spin systems [O. B. Zaslavskii and V. V. Ulyanov, Sov. Phys. JETP 60, 991 (1984)], a bottomless volcano-type potential which gives degenerate eigenstates [S. Kar and R. R. Parwani, Europhys. Lett., 80, 30004 (2007)], and a potential which leads to quasi normal modes, that is, to solutions presenting complex energies [H. T. Cho and C. L. Ho, J. Phys. A: Math. Theor. 40, 1325 (2007)]. (author)
Multicatalyst system in asymmetric catalysis
Zhou, Jian
2014-01-01
This book introduces multi-catalyst systems by describing their mechanism and advantages in asymmetric catalysis. Helps organic chemists perform more efficient catalysis with step-by-step methods Overviews new concepts and progress for greener and economic catalytic reactions Covers topics of interest in asymmetric catalysis including bifunctional catalysis, cooperative catalysis, multimetallic catalysis, and novel tandem reactions Has applications for pharmaceuticals, agrochemicals, materials, and flavour and fragrance
Asymmetric cation-binding catalysis
DEFF Research Database (Denmark)
Oliveira, Maria Teresa; Lee, Jiwoong
2017-01-01
and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...
Cohen, R. E.; Lin, Y.
2015-12-01
We have performed quantum Monte Carlo (QMC) simulations and density functional theory calculations to study the equations of state and phase transitions in (Mg,Fe)SiO3 perovskite (Pv, bridgmanite) and post-perovskite (PPv) .[1] The ground-state energies were derived using quantum QMC simulations and the temperature-dependent Helmholtz free energies were calculated within the quasiharmonic approximation and density functional perturbation theory. Quantum Monte Carlo (QMC) within Diffusion Monte Carlo (DMC) is a stochastic numerical solution of Schrödinger's equation within the fixed many-particle nodes obtained, in our case, from a determinant of DFT orbitals. Agreement with experiments is improved over DFT alone. Furthermore, we obtain statistical error bounds on the results, rather than the unconstrained errors of DFT. The Pv-PPv phase boundary calculated from our QMC equations of state is also consistent with experiments, and better than previous DFT computations. In order to understand the H-phase reported in (Mg,Fe)SiO3 [2], we have performed evolutionary structure searching for FeSiO3.[3] We find a new structure type which may be consistent with the experimental observations, but is a lower pressure, less dense, phase. We have built a thermodynamic model for (Mg,Fe)SiO3 perovskite as a function of P and T, and will discuss implications for the location of the phase boundary in D'' and its double crossing [4]. This work is supported by NSF and the ERC Advanced Grant ToMCaT. [1] Y. Lin, R. E. Cohen, S. Stackhouse, K. P. Driver, B. Militzer, L. Shulenburger, and J. Kim, Phys. Rev. B 90 (2014). [2] L. Zhang et al., Science 344, 877 (2014). [3] R. E. Cohen and Y. Lin, Phys. Rev. B 90 (2014). [4] J.W. Hernlund, C. Thomas and P.J. Tackley, Nature 434, 882 (2005).
Asymmetric Flexible Supercapacitor Stack
Directory of Open Access Journals (Sweden)
Leela Mohana Reddy A
2008-01-01
Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert
2006-04-15
The holographic encoding is generalized to subalgebras of QFT localized in double cones. It is shown that as a result of this radically different spacetime encoding the modular group acts geometrically on the holographic image. As a result we obtain a formula for localization entropy which is identical to the previously derived formula for the wedge-localized subalgebra. The symmetry group in the holographic encoding turns out to be the Bondi-Metzner-Sachs group. (author)
Asymmetric vector mesons produced in nuclear collisions
Dremin, I M
2016-01-01
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further detalized in quantum mechanics as the interference of direct and continuum states in Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction ...
Asymmetric vector mesons produced in nuclear collisions
Dremin, I. M.; Nechitailo, V. A.
2016-09-01
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation.
Asymmetric vector mesons produced in nuclear collisions
Energy Technology Data Exchange (ETDEWEB)
Dremin, I.M.; Nechitailo, V.A. [Lebedev Physical Institute, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation)
2016-09-15
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation. (orig.)
Aguiar-Hualde, J. M.; Chiappe, G.; Louis, E.
2007-08-01
The effects of the on-site electron-electron (e-e) interaction U on the electronic transport across two longitudinally embedded quantum dots in the regime in which the antibonding (AB) state of the isolated composite system is aligned with the Fermi level at the leads are investigated. This regime occurs when the dot orbital energy γd is negative and equal in magnitude to the hopping probability between the orbitals on the two dots. In the noninteracting case, the conductance approaches asymptotically the conductance quantum G0=2e2/h as γd decreases; in addition, the contribution of the AB channel to the conductance tends to 1. As shown here, this picture is substantially modified by the e-e interaction. For finite U , the conductance versus γd shows a maximum at which the value G0 is reached, being supported in this case by the two channels (bonding and antibonding); the relative weight of each channel depends on the actual value of the e-e interaction. In the limit γd=-∞ , the conductance is supported only by the AB channel (as in the noninteracting case), but it is always smaller than G0 . While the mechanism underlying these results is mainly one body for small U , the Kondo effect and quantum interference come into play at large U . The effects of the e-e interaction increase significantly as the leads-dots coupling decreases, in particular, the range over which the conductance is non-negligible is significantly narrowed. The possible implications on a physically related system, a hydrogen molecule longitudinally bridging two Pt electrodes, are discussed.
Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots
Childress, L I; Lukin, M D
2003-01-01
We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.
Energy Technology Data Exchange (ETDEWEB)
Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar; Jukam, Nathan [AG Terahertz Spektroskopie und Technologie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Pal, Shovon [AG Terahertz Spektroskopie und Technologie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Scholz, Sven; Kukharchyk, Nadezhda; Ludwig, Arne; Wieck, Andreas D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Dhillon, Sukhdeep; Tignon, Jérôme [Laboratoire Pierre Aigrain, Ecole Normale Supérieure, UMR 8551 CNRS, UPMC, Univ. Paris 6, 75005 Paris (France); Marcadet, Xavier [Alcatel-Thales III-V Lab, Route Départementale 128, 91767 Palaiseau Cedex (France); Bock, Claudia; Kunze, Ulrich [Lehrstuhl für Werkstoffe und Nanoelektronik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
2015-09-14
We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.
Ashmead, John
2010-01-01
Normally we quantize along the space dimensions but treat time classically. But from relativity we expect a high level of symmetry between time and space. What happens if we quantize time using the same rules we use to quantize space? To do this, we generalize the paths in the Feynman path integral to include paths that vary in time as well as in space. We use Morlet wavelet decomposition to ensure convergence and normalization of the path integrals. We derive the Schr\\"odinger equation in four dimensions from the short time limit of the path integral expression. We verify that we recover standard quantum theory in the non-relativistic, semi-classical, and long time limits. Quantum time is an experiment factory: most foundational experiments in quantum mechanics can be modified in a way that makes them tests of quantum time. We look at single and double slits in time, scattering by time-varying electric and magnetic fields, and the Aharonov-Bohm effect in time.
Indian Academy of Sciences (India)
KAUSHIK MAJI
2016-08-01
We propose a variant of the multiconfiguration time-dependent Hartree (MCTDH) method within the framework of Hermite-distributed approximating functional (HDAF) method. The discretized Hamiltonian is a highly banded Toeplitz matrix which significantly reduces computational cost in terms of both storage and number of operations. The method proposed is employed to carry out the study of tunnelling dynamics of two coupled double well oscillators. We have calculated the orthogonality time \\tau , which is a measure of the time interval for an initial state to evolve into its orthogonal state. It is observed that the coupling has a significant effect on \\tau .
Macroscopic quantum resonators (MAQRO)
Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus
2012-01-01
Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...
Quantum ratchets in dissipative chaotic systems.
Carlo, Gabriel G; Benenti, Giuliano; Casati, Giulio; Shepelyansky, Dima L
2005-04-29
Using the method of quantum trajectories, we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for the implementation of the quantum ratchet effect with cold atoms in optical lattices.
Nonlinear effects in asymmetric catalysis.
Satyanarayana, Tummanapalli; Abraham, Susan; Kagan, Henri B
2009-01-01
There is a need for the preparation of enantiomerically pure compounds for various applications. An efficient approach to achieve this goal is asymmetric catalysis. The chiral catalyst is usually prepared from a chiral auxiliary, which itself is derived from a natural product or by resolution of a racemic precursor. The use of non-enantiopure chiral auxiliaries in asymmetric catalysis seems unattractive to preparative chemists, since the anticipated enantiomeric excess (ee) of the reaction product should be proportional to the ee value of the chiral auxiliary (linearity). In fact, some deviation from linearity may arise. Such nonlinear effects can be rich in mechanistic information and can be synthetically useful (asymmetric amplification). This Review documents the advances made during the last decade in the use of nonlinear effects in the area of organometallic and organic catalysis.
Asymmetric distances for binary embeddings.
Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana
2014-01-01
In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.
Purcell effect of asymmetric dipole source distributions in nanowire resonators
DEFF Research Database (Denmark)
Filonenko, Konstantin; Duggen, Lars; Adam, Jost;
Metal nanowire resonators allow subwavelength mode confinement and thereby the strong Purcell effect. Recent progress in fabrication of plasmonic nanowire lasers requires reliable approaches in studying resonators, where metal nanowire is an essential constitutive element. A semi-analytic study......, capable of treating finite-length axially-symmetric nanowire configurations, was reported in. In some nanolaser configurations, however, one needs to treat asymmetric source distributions, e.g. the single quantum dot placed at some distance from the nanowire axis. We investigate the Purcell effect...... of the asymmetric source distributions in proximity to the metal nanowire in two configurations: a metal cylinder truncated by the PEC plates and finite metal cylinder in free-space. In order to evaluate Purcell factor the mode eigenvalues are precalculated using Comsol Multiphysics radio frequency module. We...
Purcell effect of asymmetric dipole source distributions in nanowire resonators
DEFF Research Database (Denmark)
Filonenko, Konstantin; Duggen, Lars; Adam, Jost;
2015-01-01
Metal nanowire resonators allow subwavelength mode confinement and thereby the strong Purcell effect. Recent progress in fabrication of plasmonic nanowire lasers requires reliable approaches in studying resonators, where metal nanowire is an essential constitutive element. A semi-analytic study......, capable of treating finite-length axially-symmetric nanowire configurations, was reported in. In some nanolaser configurations, however, one needs to treat asymmetric source distributions, e.g. the single quantum dot placed at some distance from the nanowire axis. We investigate the Purcell effect...... of the asymmetric source distributions in proximity to the metal nanowire in two configurations: a metal cylinder truncated by the PEC plates and finite metal cylinder in free-space. In order to evaluate Purcell factor the mode eigenvalues are precalculated using Comsol Multiphysics radio frequency module. We...
The Role of Mode Match in Asymmetric Fiber Cavities
Bick, Andreas; Christoph, Philipp; Hellmig, Ortwin; Heinze, Jannes; Sengstock, Klaus; Becker, Christoph
2015-01-01
We study and realize asymmetric fiber-based cavities with optimized mode match to achieve high reflectivity on resonance. This is especially important for mutually coupling two physical systems via light fields, e.g. in quantum hybrid systems. Our detailed theoretical and experimental analysis reveals that on resonance the interference effect between the directly reflected non-modematched light and the light leaking back out of the cavity can lead to large unexpected losses due to the mode filtering of the incoupling fiber. Strong restrictions for the cavity design result out of this effect and we show that planar-concave cavities are clearly best suited. We validate our analytical model using numerical calculations and demonstrate an experimental realization of an asymmetric fiber Fabry-P\\'erot cavity with optimized parameters.
Electron Transport Through a Quantum Wire with a Side-Coupled Quantum Dot:Fano Resonance
Institute of Scientific and Technical Information of China (English)
熊永建; 贺舟波
2004-01-01
The Fano resonance of a quantum wire (QW) with a side-coupled quantum dot (QD) is investigated. The QD has multilevel and is in the Coulomb blockade regime. We show that there are two aspects in contribution to asymmetric Fano dip line shape of conductance: (1) the quantum interference between the resonant level and non-resonant levels, (2) the asymmetric electron occupation of levels in the two sides of a resonant level in the QD. The smearing of the asymmetry of the dip structure with the increasing temperature is partially attributed to fluctuation of electron state in the QD.
The Double Slit Experiment With Polarizers
Holden, M; Sherry, T N
2011-01-01
The double slit experiment provides a standard way of demonstrating how quantum mechanics works. We consider modifying the standard arrangement so that a photon beam incident upon the double slit encounters a polarizer in front of either one or both of the slits.
Asymmetric Synthesis via Chiral Aziridines
DEFF Research Database (Denmark)
Tanner, David Ackland; Harden, Adrian; Wyatt, Paul
1996-01-01
A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...
氦核双缝衍射实验的研究%Rsearch on Double-slit Diffraction of He with Quantum Theory
Institute of Scientific and Technical Information of China (English)
李春红; 吴坤朋; 张斯淇; 王婧; 郭义庆
2012-01-01
Using Schrdinger equation and KCL,we provided a new theoretical descr iption of the diffraction intensity pattern in double-slit experiments with He actom.And we also found the theory calculations and experiment data were consistent when the decoherence effect was considering.%应用薛定谔方程及基尔霍夫定律推导出一种新的关于氦核双缝衍射的强度计算公式,并利用新的衍射强度公式详细研究了氦核的双缝衍射问题.同时,我们也发现在考虑退相干效应时,理论与实验数据符合较好.
Asymmetric GaAs/AlGaAs T wires with large confinement energies
DEFF Research Database (Denmark)
Gislason, Hannes; Langbein, Wolfgang Werner; Hvam, Jørn Märcher
1996-01-01
We report on the design and growth of asymmetric T-shaped quantum wires with large one-dimensional confinement energies. Prior to growth, the optimal structure for a given (110) well width is determined by a calculation, The structures are made by molecular beam epitaxy cleaved edge overgrowth. We...
Two-time quantum transport and quantum diffusion.
Kleinert, P
2009-05-01
Based on the nonequilibrium Green's function technique, a unified theory is developed that covers quantum transport and quantum diffusion in bulk semiconductors on the same footing. This approach, which is applicable to transport via extended and localized states, extends previous semiphenomenological studies and puts them on a firm microscopic basis. The approach is sufficiently general and applies not only to well-studied quantum-transport problems, but also to models, in which the Hamiltonian does not commute with the dipole operator. It is shown that even for the unified treatment of quantum transport and quantum diffusion in homogeneous systems, all quasimomenta of the carrier distribution function are present and fulfill their specific function. Particular emphasis is put on the double-time nature of quantum kinetics. To demonstrate the existence of robust macroscopic transport effects that have a true double-time character, a phononless steady-state current is identified that appears only beyond the generalized Kadanoff-Baym ansatz.
Elsaesser, Thomas; Kievit, Robert; Simons, Jan
1994-01-01
Double Trouble highlights the career of Dutch scriptwriter and television producer Chiem van Houweninge, well-known for his long-running TV comedy series and as author of episodes for TV detective series. Double Trouble gives Van Houweninge's own views on writing and filming in television prime impo
Improving performance of resonant tunneling devices in asymmetric structures
Shi, Jun-jie; Sanders, Barry C.; Pan, Shao-hua; Goldys, E. M.
2001-06-01
Based on the global coherent tunneling model, we present a self-consistent calculation and show that structural asymmetry of double barrier resonant tunneling structures (DBRTSs) significantly modifies the current-voltage characteristics compared to the symmetric structures. Within the framework of the dielectric continuum model, we further investigate the phonon-assisted tunneling (PAT) current in symmetric and asymmetric DBRTSs. Both the interface modes and the confined bulk-like longitudinal-optical phonons are considered. The results indicate that the four higher-frequency interface phonon modes (especially the one which has the largest electron-phonon interaction at either interface of the emitter barrier) dominate the PAT processes. We show that a suitably designed asymmetric structure can produce much larger peak current and absolute value of the negative differential conductivity than its commonly used symmetric counterpart.
Asymmetric Organocatalytic Reactions of α,β-Unsaturated Cyclic Ketones
Directory of Open Access Journals (Sweden)
Giuseppe Bartoli
2011-03-01
Full Text Available The 1,4-conjugate addition of nucleophiles to α,β-unsaturated carbonyl compounds represents one fundamental bond-forming reaction in organic synthesis. The development of effective organocatalysts for the enantioselective conjugate addition of malonate, nitroalkane and other carbon and heteroatom nucleophiles to cycloenones constitutes an important research field and has been explored in recent years. At the same time, asymmetric Diels-Alder reactions have been developed and often a mechanism has been demonstrated to be a double addition rather than synchronous. This review aims to cover literature up to the end of 2010, describing all the different organocatalytic asymmetric 1,4-conjugate additions even if they are listed as transfer hydrogenation, cycloadditions or desymmetrization of aromatic compounds.
Synthesis of Asymmetric Propanetriol Analogues
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
From natural tartaric acid, (R)-2-benzyloxy-3-(2-tetrahydropyranyloxy) propanol 3 was designed and synthesized, and (R)-2-benzyloxy-3-(4-methoxybenzyloxy) propanol 7 was prepared in a new method. They can be used as chiral synthons of lysophosphatidic acid and other compounds with asymmetric propanetriol backbone.
Catalytic Asymmetric Bromocyclization of Polyenes.
Samanta, Ramesh C; Yamamoto, Hisashi
2017-02-01
The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source. Bromocyclization products are obtained in high yields, with good enantiomeric ratios and high diastereoselectivity, and are abundantly found as scaffolds in natural products.
Wu, Wei; Xu, Jing-Bo
2016-09-01
We investigate the quantum phase transition of an atomic ensemble trapped in a single-mode optical cavity via the geometric phase and quantum Fisher information of an extra probe atom which is injected into the optical cavity and interacts with the cavity field. We also find that the geometric quantum correlation between two probe atoms exhibits a double sudden transition phenomenon and show this double sudden transition phenomenon is closely associated with the quantum phase transition of the atomic ensemble. Furthermore, we propose a theoretical scheme to prolong the frozen time during which the geometric quantum correlation remains constant by applying time-dependent electromagnetic field.
Shi, Bei; Lau, Kei May
2016-01-01
The effects of a double-cap procedure on the optical properties of an InAs/InAlGaAs quantum dots (QDs) system grown by metal-organic chemical vapor deposition (MOCVD) have been investigated by atomic force microscopy (AFM) and room temperature photoluminescence (RT-PL) spectroscopy. An optimized QD growth condition has been achieved, with an areal density of 4.6×1010 cm-2. It was found that the thickness and lattice constant of the high temperature second cap layer (SCL) were crucial for improving the integrated PL intensity and line-width of the 1.55 μm emission from the InAs/InAlGaAs QD system grown on a semi-insulating InP (100) substrate. With fine-tuned SCL thickness and lattice constant, the optical performance of the five-stack QDs was enhanced. The improvements can be attributed to the smooth growth front, observed from the AFM images, and the well-balanced stress engineering.
Institute of Scientific and Technical Information of China (English)
詹志明; 刘晓东; 张立辉; 石文星; 李星
2011-01-01
Propose a scheme to realize multi-qubit GHZ states in superconducting quantum-interference devices（SQUIDs） via double Raman transition.In this scheme,the cavity field is only virtually excited and thus the cavity decay can be ignored.The GHZ states are realized by using only two basic states of the SQUID system and the relaxation of excited state of the system are avoided.Base on the points mentioned above,the scheme should be easily realized on experiment.%在腔中通过双Raman作用,在超导量子干涉器件中实现多比特GHZ（Greenberger-Horne-Zeilinger）态的制备.在制备过程中,由于腔场只是被虚激发的,所以腔模的衰减可以忽略.GHZ态的实现只用到了超导系统的两个基态,有效地避免了超导系统激发态的弛豫.
Institute of Scientific and Technical Information of China (English)
解光军; 杨俊安; 庄镇泉
2003-01-01
本文利用量子理论中的双缝干涉实验(Double-slit Interference Experiment)构造了一种全新的量子神经网络(Quantum Neural Network,QNN)模型.通过理论分析,推导出该模型的动力学表达式,并给出相应的训练算法.仿真实验表明,该模型具有学习布尔逻辑函数的功能,特别是两层网络结构能够实现类似异或(XOR)逻辑的学习,体现出了量子计算对传统神经网络的优越性.本文的研究为探索神经网络与量子计算的结合提供了一个新的途径.
Rosati, Fiora; Boersma, Arnold J.; Klijn, Jaap E.; Meetsma, Auke; Feringa, Ben L.; Roelfes, Gerard
2009-01-01
The recently developed concept of DNA-based asymmetric catalysis involves the transfer of chirality from the DNA double helix in reactions using a noncovalently bound catalyst. To date, two generations of DNA-based catalysts have been reported that differ in the design of the ligand for the metal. H
Quesada-Moreno, María Mar; Avilés-Moreno, Juan Ramón; Márquez-García, A A; López-González, Juan Jesús
2014-06-01
The behavior of L-cysteine (C3H7NO2S, (2R)-2-amino-3-sulfanylpropanoic acid) in water at different pH values was analyzed both experimentally and theoretically. The behavior was studied at pH values of 5.21 (at this pH, L-cysteine is a zwitterionic species), 1.00 (protonated species), 8.84 (monodeprotonated species), and 13.00 (dideprotonated species). We carried out a vibrational study using nonchiroptical (IR-Raman) and chiroptical (VCD) techniques complemented by quantum chemical calculations. We adopted a dual strategy, as follows. (i) The hybrid density functionals B3LYP and M062X and the ab initio MP2 method were employed, with the same 6-311++G (d,p) basis set, in order to characterize the relative energies and structures of an extensive set of conformers of L-cysteine. The presence of water was included by utilizing the IEF-PCM implicit solvation model. (ii) The vibrational analysis was made using a chirality-sensitive using a chirality-sensitive technique (VCD) and chirality-insensitive techniques (IR, including MIR and FIR, and Raman), especially in aqueous solution. The results obtained theoretically and experimentally were compared in order to deduce the most stable structures at each pH. Moreover, for the first time, the monodeprotonated anion of L-cysteine was detected in aqueous solution by means of IR, Raman and vibrational circular dichroism (VCD). Finally, analysis of the low-frequency region using the IR and Raman techniques was shown to be a very important way to understanding the conformational preference of the zwitterionic species.
Arias-Hernández, L. A.; Morales-Serrano, A. F.
2002-11-01
In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.
Asymmetric Multilevel Diversity Coding and Asymmetric Gaussian Multiple Descriptions
Mohajer, Soheil; Diggavi, Suhas N
2009-01-01
We consider the asymmetric multilevel diversity (A-MLD) coding problem, where a set of $2^K-1$ information sources, ordered in a decreasing level of importance, is encoded into $K$ messages (or descriptions). There are $2^K-1$ decoders, each of which has access to a non-empty subset of the encoded messages. Each decoder is required to reproduce the information sources up to a certain importance level depending on the combination of descriptions available to it. We obtain a single letter characterization of the achievable rate region for the 3-description problem. In contrast to symmetric multilevel diversity coding, source-separation coding is not sufficient in the asymmetric case, and ideas akin to network coding need to be used strategically. Based on the intuitions gained in treating the A-MLD problem, we derive inner and outer bounds for the rate region of the asymmetric Gaussian multiple description (MD) problem with three descriptions. Both the inner and outer bounds have a similar geometric structure t...
Modelling asymmetric growth in crowded plant communities
DEFF Research Database (Denmark)
Damgaard, Christian
2010-01-01
A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size-asymmetric ......A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size...
Cyclodextrins in Asymmetric and Stereospecific Synthesis
Directory of Open Access Journals (Sweden)
Fliur Macaev
2015-09-01
Full Text Available Since their discovery, cyclodextrins have widely been used as green and easily available alternatives to promoters or catalysts of different chemical reactions in water. This review covers the research and application of cyclodextrins and their derivatives in asymmetric and stereospecific syntheses, with their division into three main groups: (1 cyclodextrins promoting asymmetric and stereospecific catalysis in water; (2 cyclodextrins’ complexes with transition metals as asymmetric and stereospecific catalysts; and (3 cyclodextrins’ non-metallic derivatives as asymmetric and stereospecific catalysts. The scope of this review is to systematize existing information on the contribution of cyclodextrins to asymmetric and stereospecific synthesis and, thus, to facilitate further development in this direction.
The quantum transport properties of double-walled nanotubes%双壁纳米管的量子输运性质
Institute of Scientific and Technical Information of China (English)
吴言宁
2015-01-01
Using the density functional theory combined with the nonequilibrium Green's function, the transport properties of double-walled carbon nanotubes (DWCNTs) and carbon boronitride (CBN) heteronanotubes were investigated. The results show that the hopping between adjacent shells plays a decisive role in the transport of multi-walled nanodevices. With the increase of the hopping, the conductance of DWCNTs shows a dramatic variation, which is independent of the intertube spacing and the H satura-tion of the dangling bonds in the open ends. The BN parts adjust the electronic structure of the CBN heteronanotubes. The tunneling effect exists in the CBN junctions, however, the conductance of them also shows unusual behavior under lower voltage, which is op-posite to that of DWCNTs. The tunneling effects occur in the CBN heteronanotubes. It is believed that the DWCNTs and CBN het-erostructures may find a variety of potential applications for nanodevices and nanotechnology in future.%采用密度泛函理论结合非平衡格林函数研究双壁碳纳米管及其与硼氮复合材料的输运性质，探索内、外管重叠长度对其输运性质的调控。研究结果表明重叠长度对多壁纳米管的输运性质起着至关重要的作用。随着重叠长度的变化，双壁碳纳米管的输运性质表现异常，但是与内、外管间距变化无关，也与开口端的悬挂键是否被氢饱和无关。硼氮调控复合材料纳米管的电子结构和输运性质。内、外管的重叠长度也影响其输运性质，随着重叠长度的变化，输运行为出现异常现象，但是却与碳纳米管表现的行为相反。碳与硼氮复合材料纳米管存在明显的隧道效应。通过改变重叠长度和硼氮比例调节其量子输运性质在未来的纳米器件和纳米技术中有潜在的应用价值。
Quantum cloning machines and the applications
Energy Technology Data Exchange (ETDEWEB)
Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China); Wang, Yi-Nan; Jing, Li [School of Physics, Peking University, Beijing 100871 (China); Yue, Jie-Dong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shi, Han-Duo; Zhang, Yong-Liang; Mu, Liang-Zhu [School of Physics, Peking University, Beijing 100871 (China)
2014-11-20
No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results.
Hobson, Art
2011-01-01
An earlier paper introduces quantum physics by means of four experiments: Youngs double-slit interference experiment using (1) a light beam, (2) a low-intensity light beam with time-lapse photography, (3) an electron beam, and (4) a low-intensity electron beam with time-lapse photography. It's ironic that, although these experiments demonstrate…
Terahertz metamaterial with asymmetric transmission
Singh, R; Menzel, C; Rockstuhl, C; Azad, A K; Cheville, R A; Lederer, F; Zhang, W; Zheludev, N I
2009-01-01
We show for the first time that a planar metamaterial, an array of coupled metal split-ring resonators with a unit cell lacking mirror symmetry, exhibits asymmetric transmission of terahertz radiation propagating through it in opposite directions. This intriguing effect, that is compatible with Lorentz reciprocity and time-reversal, depends on a directional difference in conversion efficiency of the incident circularly polarized wave into one of opposite handedness, that is only possible in lossy low-symmetry planar chiral metamaterials. We show that asymmetric transmission is linked to excitation of enantiomerically sensitive plasmons, these are induced charge-field excitations that depend on the mutual handedness of incident wave and metamaterial pattern. Various bands of positive, negative and zero phase and group velocities have been identified indicating the opportunity to develop polarization sensitive negative index and slow light media based on such metamaterials.
Asymmetric information and macroeconomic dynamics
Hawkins, Raymond J.; Aoki, Masanao; Roy Frieden, B.
2010-09-01
We show how macroeconomic dynamics can be derived from asymmetric information. As an illustration of the utility of this approach we derive the equilibrium density, non-equilibrium densities and the equation of motion for the response to a demand shock for productivity in a simple economy. Novel consequences of this approach include a natural incorporation of time dependence into macroeconomics and a common information-theoretic basis for economics and other fields seeking to link micro-dynamics and macro-observables.