WorldWideScience

Sample records for asymmetric double quantum

  1. Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells

    International Nuclear Information System (INIS)

    We study the temporal and spatial dynamics of two light pulses, a probe and a switch, propagating through an asymmetric double quantum well where tunneling-induced quantum interference may be observed. When such an interference takes place, in the absence of the switch, the quantum well is transparent to the probe which propagates over sufficiently long distances at very small group velocities. In the presence of a relatively strong switch, however, the probe pulse is absorbed due to the quenching of tunneling-induced quantum interference. The probe may be made to vanish even when switch and probe are somewhat delayed with respect to one another. Conversely, our asymmetric double quantum well may be rendered either opaque or transparent to the switch pulse. Such a probe-switch 'reciprocity' can be used to devise a versatile all-optical quantum interference-based solid-state switch for optical communication devices

  2. Enhanced refractive index without absorption in four-level asymmetrical double semiconductor quantum well

    Science.gov (United States)

    Kang, Chengxian; Wang, Zhiping; Yu, Benli

    2016-03-01

    We investigate the absorptive-dispersive properties of a weak probe field in a four-level asymmetrical double semiconductor quantum well. It is found that the enhanced refraction index without absorption can be easily controlled via adjusting properly the corresponding parameters of the system. Our scheme may provide some new possibilities for technological applications in dispersion compensation and solid-state quantum communication for quantum information processing.

  3. Strongly confined tunnel-coupled one-dimensional electron systems from an asymmetric double quantum well

    Science.gov (United States)

    Buchholz, S. S.; Fischer, S. F.; Kunze, U.; Schuh, D.; Abstreiter, G.

    2008-03-01

    Vertically stacked quantum point contacts (QPCs) are prepared by atomic force microscope (AFM) lithography from an asymmetric GaAs/AlGaAs double quantum well (DQW) heterostructure. Top- and back-gate voltages are used to tune the tunnel-coupled QPCs, and back-gate bias cooling is employed to investigate coupled and decoupled one-dimensional (1D) modes. Parity dependent mode coupling is invoked by the particular asymmetry in the vertical DQW confinement.

  4. Asymmetric double quantum well structure as a tunable detector in the far-infrared range

    CERN Document Server

    Shin, U; Park, M J; Lee, S J

    1999-01-01

    The eigenvalues and the wave functions of GaAs/Al sub x Ga sub 1 sub - sub x As asymmetric double quantum well structure have been calculated by using of complex energy method. Based on theoretical calculations, tuning ranges from 9 to 14 mu m are predicted for the proposed asymmetric coupled-quantum-well structure. In addition we calculated the energy eigenvalues and the wave functions of an electron in GaAs/Al sub x Ga sub 1 sub - sub x As single quantum well structure (including delta-perturbation). the variation in E sub 1 , the ground state energy eigenvalue of the electron, depends on the strength and position of the perturbation within the well.

  5. Optical absorption in asymmetric double quantum wells driven by two intense terahertz fields

    International Nuclear Information System (INIS)

    Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field, both polarized along the growth direction. Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors, such as the frequency of the varied terahertz field and the strength of the resonant terahertz field. Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field, the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands. When a varied terahertz field is added into the resonant system, the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states. When the strength of the resonant terahertz field is increased, the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states. The presented results have potential applications in electro-optical devices

  6. Optical absorption in asymmetric double quantum wells driven by two intense terahertz fields

    Institute of Scientific and Technical Information of China (English)

    Wu Hong-Wei; Mi Xian-Wu

    2013-01-01

    Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.Wben the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.

  7. Gain of intersubband Raman lasing in modulation-doped asymmetric coupled double quantum wells

    Science.gov (United States)

    Maung, S. M.; Katayama, S.

    2004-03-01

    A microscopic theory is developed for the laser gain due to stimulated intersubband electronic Raman effect pumped by CO 2 laser in modulation-doped asymmetric coupled double quantum wells. We focus on the charge density excitation mechanism for electronic Raman scattering, taking into account the coupling between intersubband plasmons and LO phonons. Numerical simulations for the temporal variation of stimulated Stokes photon density, subband populations and output Raman laser power are carried out by using the self-consistent conventional rate equations with stimulated Raman gain coefficient.

  8. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  9. Theory of Intersubband Raman Laser in Modulation-doped Asymmetric Coupled Double Quantum Wells

    Science.gov (United States)

    Maung, S. M.; Katayama, S.

    2004-09-01

    A microscopic theory is developed for the laser gain due to stimulated intersubband electronic Raman scattering pumped by CO2 laser in modulation-doped GaAs/AlGaAs asymmetric coupled double quantum wells (ACDQWs). Based on the charge-density-excitation (CDE) mechanism, the formula for electronic Raman scattering cross-section is given, taking into account the coupling between intersubband plasmon and optical phonons including GaAs confined LO phonons and interface phonons. Stimulated Raman gain factor is then derived from the cross-section. The optimization of Raman gain, the gain saturation and threshold condition are also discussed. Numerical analysis for temporal variation of stimulated Stokes photon density, subband populations and output Raman laser power is carried out by using the self-consistent conventional rate equations. The theory can predict the presence or lack of coupled modes in lasing in agreement with the recent experimental results.

  10. Phase control of light propagation via Fano interference in asymmetric double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wen-Xing, E-mail: wenxingyang2@126.com [Department of Physics, Southeast University, Nanjing 210096 (China); Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu 300, Taiwan (China); Lu, Jia-Wei; Zhou, Zhi-Kang; Yang, Long [Department of Physics, Southeast University, Nanjing 210096 (China); Lee, Ray-Kuang [Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu 300, Taiwan (China)

    2014-05-28

    We investigate the light propagation and dynamical control of a weak pulsed probe field in asymmetric double quantum wells via Fano interference, which is caused by tunneling from the excited subbands to the same continuum. Our results show that the system can produce anomalous and normal dispersion regions with negligible absorption by choosing appropriate coupling strength of the tunneling and the Fano interference. Interesting enough, the dispersion can be switched between normal and anomalous by adjusting the relative phase between the pulsed probe and coherent control fields owing to the existence of the perfectly Fano interference. Thus, the relative phase can be regarded as a switch to manipulate light propagation with subluminal or superluminal. The temporal and spatial dynamics of the pulsed probe field with hyperbolic secant envelope are analyzed.

  11. Phase control of light propagation via Fano interference in asymmetric double quantum wells

    International Nuclear Information System (INIS)

    We investigate the light propagation and dynamical control of a weak pulsed probe field in asymmetric double quantum wells via Fano interference, which is caused by tunneling from the excited subbands to the same continuum. Our results show that the system can produce anomalous and normal dispersion regions with negligible absorption by choosing appropriate coupling strength of the tunneling and the Fano interference. Interesting enough, the dispersion can be switched between normal and anomalous by adjusting the relative phase between the pulsed probe and coherent control fields owing to the existence of the perfectly Fano interference. Thus, the relative phase can be regarded as a switch to manipulate light propagation with subluminal or superluminal. The temporal and spatial dynamics of the pulsed probe field with hyperbolic secant envelope are analyzed.

  12. Theory of Raman Lasing due to Coupled Intersubband Plasmon-Phonon Modes in Asymmetric Coupled Double Quantum Wells

    Science.gov (United States)

    Maung, S. M.; Katayama, S.

    2005-06-01

    A theory of Raman laser gain due to coupled intersubband (ISB) plasmon-optical phonon modes in asymmetric coupled double quantum wells (ACDQWs) is presented. Based on the charge-density-excitations (CDE) mechanism, we take into account the electron-electron and electron-phonon (confined LO phonon and interface (IF) phonons) interactions in the scattering cross-section. For Al0.35Ga0.65As/GaAs ACDQWs the calculated coupled mode energies which are responsible for the lasing Stokes emission are well consistent with recent experiments.

  13. Dispersive properties of tunnelling-induced transparency in an asymmetric double quantum well

    Institute of Scientific and Technical Information of China (English)

    苏雪梅; 卓仲畅; 王立军; 高锦岳

    2002-01-01

    We have investigated the dispersive properties of tunnelling-induced transparency in asymmetric double quantumwell structures where two excited states are coupled by resonant tunnelling through a thin barrier in a three-levelsystem of electronic subbands. The intersubband transitions exhibit high dispersion at zero absorption, which leads tothe slow light velocity in this medium as compared with that in vacuum (c=3× 108). The group velocity in a specificGaAs/AlGaAs sample is calculated to be vg=c/4.30. This structure can be used to compensate for the dispersion andenergy loss in fibre optical communications.

  14. Asymmetric effects on the optical properties of double-quantum well systems

    Science.gov (United States)

    Silotia, Poonam; Batra, Kriti; Prasad, Vinod

    2014-02-01

    Linear, nonlinear, and total absorption coefficient and refractive index changes of double-quantum well (DQW) systems are studied theoretically in the presence of external static electric field applied along the growth direction. The analytical expression for the linear and nonlinear optical properties is obtained using density matrix method. Emphasis is laid on the effect of asymmetry in the shapes of DQW system on optical properties. Some interesting results are obtained and explained.

  15. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, R. K.; Das, S.; Panda, A. K.; Sahu, T., E-mail: tsahu-bu@rediffmail.com [Department of Electronics and Communication Engineering, National Institute of Science and Technology, Palur Hills, Berhampur-761 008, Odisha (India)

    2015-11-15

    We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.

  16. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    International Nuclear Information System (INIS)

    We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/AlxGa1-xAs barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices

  17. Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field

    Science.gov (United States)

    Bejan, Doina; Niculescu, Ecaterina Cornelia

    2016-06-01

    We investigated the combined effects of a non-resonant intense laser field and a static electric field on the electronic structure and the nonlinear optical properties (absorption, optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact density-matrix formalism under steady state conditions using the effective mass approximation. Our results show that: (i) the electronic structure and optical properties are sensitive to the dressed potential; (ii) under applied electric fields, an increase of the laser intensity induces a redshift of the optical absorption and rectification spectra; (iii) the augment of the electric field strength leads to a blueshift of the spectra; (iv) for high electric fields the optical spectra show a shoulder-like feature, related with the occurrence of an anti-crossing between the two first excited levels.

  18. Asymmetric quantum cloning machines

    International Nuclear Information System (INIS)

    A family of asymmetric cloning machines for quantum bits and N-dimensional quantum states is introduced. These machines produce two approximate copies of a single quantum state that emerge from two distinct channels. In particular, an asymmetric Pauli cloning machine is defined that makes two imperfect copies of a quantum bit, while the overall input-to-output operation for each copy is a Pauli channel. A no-cloning inequality is derived, characterizing the impossibility of copying imposed by quantum mechanics. If p and p' are the probabilities of the depolarizing channels associated with the two outputs, the domain in (√p,√p')-space located inside a particular ellipse representing close-to-perfect cloning is forbidden. This ellipse tends to a circle when copying an N-dimensional state with N→∞, which has a simple semi-classical interpretation. The symmetric Pauli cloning machines are then used to provide an upper bound on the quantum capacity of the Pauli channel of probabilities px, py and pz. The capacity is proven to be vanishing if (√px, √py, √pz) lies outside an ellipsoid whose pole coincides with the depolarizing channel that underlies the universal cloning machine. Finally, the tradeoff between the quality of the two copies is shown to result from a complementarity akin to Heisenberg uncertainty principle. (author)

  19. 810-nm InGaA1As/A1GaAs double quantum well semiconductor lasers with asymmetric waveguide structures

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Guojun Liu; Zhanguo Li; Mei Li; Xiaohua Wang; Hui Li; Chunming Wan

    2008-01-01

    @@ The 810-nm InGaA1As/A1GaAs double quantum well (QW) semiconductor lasers with asymmetric waveguide structures, grown by molecular beam epitaxy, show high quantum efficiency and high-power conversion efficiency at continuous-wave (CW) power output. The threshold current density and slope efficiency of the device are 180 A/cm2 and 1.3 W/A, respectively. The internal loss and the internal quantum efficiency are 1.7 cm-1 and 93%, respectively. The 70% maximum power conversion efficiency is achieved with narrow far-field patterns.

  20. Electron localization in an asymmetric double quantum well nanostructure (II): Improvement via Fano-type interference

    Energy Technology Data Exchange (ETDEWEB)

    Hamedi, H.R., E-mail: Hamid.r.Hamedi@gmail.com

    2014-10-01

    This letter explores the one dimensional (1D) and two-dimensional (2D) position dependent probe absorption spectrum in a four-subband semiconductor quantum-well (QW) system in presence of Fano-type interference. Compared with obtained results for the maximal detecting probability of electron in Hamedi (2014. Physica B 440, 83) which was 50%, in this paper, we show that the detecting probability and precision of electron localization in one period can be significantly improved and reaches to 100% at the origin of coordinates, through proper tuning the strength of Fano-type interference. Also, the influence of other controlling parameters on the localization behavior of the QW system is discussed. The obtained results may provide some new possibilities for technological applications in laser cooling or nanolithography via high-precision and high-resolution electron localization.

  1. Electron localization in an asymmetric double quantum well nanostructure (II): Improvement via Fano-type interference

    International Nuclear Information System (INIS)

    This letter explores the one dimensional (1D) and two-dimensional (2D) position dependent probe absorption spectrum in a four-subband semiconductor quantum-well (QW) system in presence of Fano-type interference. Compared with obtained results for the maximal detecting probability of electron in Hamedi (2014. Physica B 440, 83) which was 50%, in this paper, we show that the detecting probability and precision of electron localization in one period can be significantly improved and reaches to 100% at the origin of coordinates, through proper tuning the strength of Fano-type interference. Also, the influence of other controlling parameters on the localization behavior of the QW system is discussed. The obtained results may provide some new possibilities for technological applications in laser cooling or nanolithography via high-precision and high-resolution electron localization

  2. Influence of applied electric field on the absorption coefficient and subband distances in asymmetrical AIN/GaN coupled double quantum wells

    Institute of Scientific and Technical Information of China (English)

    Cen Long-Bin; Shen Bo; qin Zhi-Xin; Zhang Guo-Yi

    2009-01-01

    The influence of applied electric fields on the absorption coefficient and subband distances in asymmetrical AlN/GaN coupled double quantum wells (CDQWs) has been investigated by solving Schrodinger and Poisson equations self-consistently. It is found that the absorption coefficient of the intersubband transition (ISBT) between the ground state and the third excited state (1odd -2even) can be equal to zero when the electric fields are applied in asymmetrical A1N/GaN CDQWs,which is related to applied electric fields induced symmetry recovery of these states. Meanwhile,the energy distances between 1odd -2even and 1even - 2even subbands have different relationships from each other with the increase of applied electric fields due to the different polarization-induced potential drops between the lett and the right wells. The results indicate that an electrical-optical modulator operated within the opto-communication wavelength range can be realized in spite of the strong polarization-induced electric fields in asymmetrical AIN/GaN CDQWs.

  3. Time Asymmetric Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Arno R. Bohm

    2011-09-01

    Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.

  4. Excitons in asymmetric quantum wells

    Science.gov (United States)

    Grigoryev, P. S.; Kurdyubov, A. S.; Kuznetsova, M. S.; Ignatiev, I. V.; Efimov, Yu. P.; Eliseev, S. A.; Petrov, V. V.; Lovtcius, V. A.; Shapochkin, P. Yu.

    2016-09-01

    Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.

  5. Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields

    Science.gov (United States)

    Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.

    2016-08-01

    In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.

  6. Symmetric and asymmetric quantum channels in quantum communication systems

    International Nuclear Information System (INIS)

    Symmetric and asymmetric quantum channels which act on bipartite bosonic states are considered. The linear dissipative channel and the quantum teleportation channel are applied. The influences of the symmetric and asymmetric quantum channels on bipartite Gaussian states are investigated by means of the inseparability condition. Furthermore, quantum teleportation and quantum dense coding of continuous variables performed by means of two-mode squeezed-vacuum states under the influence of the noisy quantum channels are discussed

  7. New asymmetric quantum codes over Fq

    Science.gov (United States)

    Ma, Yuena; Feng, Xiaoyi; Xu, Gen

    2016-07-01

    Two families of new asymmetric quantum codes are constructed in this paper. The first family is the asymmetric quantum codes with length n=qm-1 over Fq, where qge 5 is a prime power. The second one is the asymmetric quantum codes with length n=3m-1. These asymmetric quantum codes are derived from the CSS construction and pairs of nested BCH codes. Moreover, let the defining set T1=T2^{-q}, then the real Z-distance of our asymmetric quantum codes are much larger than δ _max+1, where δ _max is the maximal designed distance of dual-containing narrow-sense BCH code, and the parameters presented here have better than the ones available in the literature.

  8. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    International Nuclear Information System (INIS)

    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N2d) of each single δ-doped quantum well are taken to vary within the range of 1.0×1012 to 7.0×1012 cm−2, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system

  9. Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Magdaleno, K.A.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calz. Solidaridad Esq. Paseo a La Bufa S/N. C.P. 98060 Zacatecas (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516 Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-03-15

    In this work, the conduction band electron states and the associated intersubband-related linear and nonlinear optical absorption coefficient and relative refractive index change are calculated for an asymmetric double n-type δ-doped quantum well in a GaAs-matrix. The effects of an external applied static electric field are included. Values of the two-dimensional impurities density (N{sub 2d}) of each single δ-doped quantum well are taken to vary within the range of 1.0×10{sup 12} to 7.0×10{sup 12} cm{sup −2}, consistent with the experimental data growth regime. The optical responses are reported as a function of the δ-doped impurities density and the applied electric field. It is shown that single electron states and the related optical quantities are significantly affected by the structural asymmetry of the double δ-doped quantum well system. In addition, a brief comparison with the free-carrier-related optical response is presented. -- Highlights: • Nonlinear optics in asymmetric double n-type δ-doped quantum well in a GaAs-matrix. • The system is considered under external applied electric field in growth direction. • The 2D impurity density is consistent with the experimental data growth regime. • The optical quantities are significantly affected by the structural asymmetry of the system.

  10. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    International Nuclear Information System (INIS)

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions

  11. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-09-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  12. Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure

    International Nuclear Information System (INIS)

    The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga1-xAlxAs asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.

  13. Nonlinear optical rectification and optical absorption in GaAs-Ga{sub 1-x}Al{sub x}As asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, I. [Department of Physics, Selcuk University, Konya 42075 (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque_echeverri@yahoo.e [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)

    2011-07-15

    The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga{sub 1-x}Al{sub x}As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: {yields} Maxima of the NOA correspond to zero in the NOR. {yields} Electric fields can couple the double quantum wells. {yields} Hydrostatic pressure can couple the double quantum wells. {yields} NOA can increase/decrease with hydrostatic pressure. {yields} Overlap between wave functions depends on the magnetic field.

  14. Colloidal Double Quantum Dots

    Science.gov (United States)

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  15. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  16. Quantum optics of lossy asymmetric beam splitters.

    Science.gov (United States)

    Uppu, Ravitej; Wolterink, Tom A W; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-07-25

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2×2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers. PMID:27464096

  17. Quantum optics of lossy asymmetric beam splitters

    CERN Document Server

    Uppu, Ravitej; Tentrup, Tristan B H; Pinkse, Pepijn W H

    2016-01-01

    We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.

  18. Generation of infrared entangled light in asymmetric semiconductor quantum wells

    Science.gov (United States)

    Lü, Xin-You; Wu, Jing; Zheng, Li-Li; Huang, Pei

    2010-12-01

    We proposed a scheme to achieve two-mode CV entanglement with the frequencies of entangled modes in the infrared range in an asymmetric semiconductor double-quantum-wells (DQW), where the required quantum coherence is obtained by inducing the corresponding intersubband transitions (ISBTs) with a classical field. By numerically simulating the dynamics of system, we show that the entanglement period can be prolonged via enhancing the intensity of classical field, and the generation of entanglement doesn't depend intensively on the initial condition of system in our scheme. Moreover, we also show that a bipartite entanglement amplifier can be realized in our scheme. The present research provides an efficient approach to achieve infrared entangled light in the semiconductor nanostructure, which may have significant impact on the progress of solid-state quantum information theory.

  19. Lateral current density fronts in asymmetric double-barrier resonant-tunneling structures

    OpenAIRE

    Rodin, Pavel; Schoell, Eckehard

    2003-01-01

    We present a theoretical analysis and numerical simulations of lateral current density fronts in bistable resonant-tunneling diodes with Z-shaped current-voltage characteristics. The bistability is due to the charge accumulation in the quantum well of the double-barrier structure. We focus on asymmetric structures in the regime of sequential incoherent tunneling and study the dependence of the bistability range, the front velocity and the front width on the structure parameters. We propose a ...

  20. Semiconductor double quantum dot micromaser.

    Science.gov (United States)

    Liu, Y-Y; Stehlik, J; Eichler, C; Gullans, M J; Taylor, J M; Petta, J R

    2015-01-16

    The coherent generation of light, from masers to lasers, relies upon the specific structure of the individual emitters that lead to gain. Devices operating as lasers in the few-emitter limit provide opportunities for understanding quantum coherent phenomena, from terahertz sources to quantum communication. Here we demonstrate a maser that is driven by single-electron tunneling events. Semiconductor double quantum dots (DQDs) serve as a gain medium and are placed inside a high-quality factor microwave cavity. We verify maser action by comparing the statistics of the emitted microwave field above and below the maser threshold. PMID:25593187

  1. Bound states in a hyperbolic asymmetric double-well

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, R. R., E-mail: richard.hartmann@dlsu.edu.ph [Physics Department, De La Salle University, 2401 Taft Avenue, Manila (Philippines)

    2014-01-15

    We report a new class of hyperbolic asymmetric double-well whose bound state wavefunctions can be expressed in terms of confluent Heun functions. An analytic procedure is used to obtain the energy eigenvalues and the criterion for the potential to support bound states is discussed.

  2. Three-party quantum teleportation with asymmetric states

    International Nuclear Information System (INIS)

    In this paper, we consider the three-party quantum teleportation using non-symmetric states. Considering all possible teleportation scenarios in the three-party quantum teleportation, we show that the asymmetric teleportation would carry more information than symmetrical ones. We also discuss the relation between teleportation protocols and quantum states classficition

  3. Spin-polarized current in double quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Ai-Xian; Duan Su-Qing

    2012-01-01

    We analyze the transport through asymmetric double quantum dots with an inhomogeneous Zeeman splitting in the presence of crossed dc and ac magnetic fields.A strong spin-polarized current can be obtained by changing the dc magnetic field.It is mainly due to the resonant tunnelling.But for the ferromagnetic right electrode,the electron spin resonance also plays an important role in transport.We show that the double quantum dots with three-level mixing under crossed dc and ac magnetic fields can act not only as a bipolar spin filter but also as a spin inverter under suitable conditions.

  4. The Quantum Double in Integrable Quantum Field Theory

    OpenAIRE

    Bernard, D.; Leclair, A.

    1992-01-01

    Various aspects of recent works on affine quantum group symmetry of integrable 2d quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. Multiplicative presentations of the Yangian double are analyzed.

  5. Tripartite fully asymmetric universal quantum cloning

    International Nuclear Information System (INIS)

    Full text: We investigate the universal asymmetric cloning of states in a Hilbert space of arbitrary dimension d. We derive the class of optimal and fully asymmetric universal 1 → 3 cloners, which produce three copies, each having a different fidelity. A simple parametric expression for the maximum achievable cloning fidelity triplets will be provided. As a side-product, we also prove the optimality of the 1 → 2 asymmetric cloning machines that have been proposed in the literature. (author)

  6. Asymmetric double-well potential for single-atom interferometry

    International Nuclear Information System (INIS)

    We consider the evolution of a single-atom wave function in a time-dependent double-well interferometer in the presence of a spatially asymmetric potential. We examine a case where a single trapping potential is split into an asymmetric double well and then recombined again. The interferometer involves a measurement of the first excited state population as a sensitive measure of the asymmetric potential. Based on a two-mode approximation a Bloch vector model provides a simple and satisfactory description of the dynamical evolution. We discuss the roles of adiabaticity and asymmetry in the double-well interferometer. The Bloch model allows us to account for the effects of asymmetry on the excited state population throughout the interferometric process and to choose the appropriate splitting, holding, and recombination periods in order to maximize the output signal. We also compare the outcomes of the Bloch vector model with the results of numerical simulations of the multistate time-dependent Schroedinger equation

  7. Controlling the flow of information in quantum cloners: asymmetric cloning

    International Nuclear Information System (INIS)

    We show that the distribution of information at the output of the quantum cloner can be efficiently controlled via preparation of the quantum cloner. We present a universal cloning network with the help of which asymmetric cloning can be performed. (author)

  8. Double-slit quantum eraser

    International Nuclear Information System (INIS)

    We report a quantum eraser experiment which actually uses a Young double slit to create interference. The experiment can be considered an optical analogy of an experiment proposed by Scully, Englert, and Walther [Nature (London) 351, 111 (1991)]. One photon of an entangled pair is incident on a Young double slit of appropriate dimensions to create an interference pattern in a distant detection region. Quarter-wave plates, oriented so that their fast axes are orthogonal, are placed in front of each slit to serve as which-path markers. The quarter-wave plates mark the polarization of the interfering photon and thus destroy the interference pattern. To recover interference, we measure the polarization of the other entangled photon. In addition, we perform the experiment under 'delayed erasure' circumstances

  9. Concerted Electronic and Nuclear Fluxes During Coherent Tunnelling in Asymmetric Double-Well Potentials.

    Science.gov (United States)

    Bredtmann, Timm; Manz, Jörn; Zhao, Jian-Ming

    2016-05-19

    The quantum theory of concerted electronic and nuclear fluxes (CENFs) during coherent periodic tunnelling from reactants (R) to products (P) and back to R in molecules with asymmetric double-well potentials is developed. The results are deduced from the solution of the time-dependent Schrödinger equation as a coherent superposition of two eigenstates; here, these are the two states of the lowest tunnelling doublet. This allows the periodic time evolutions of the resulting electronic and nuclear probability densities (EPDs and NPDs) as well as the CENFs to be expressed in terms of simple sinusodial functions. These analytical results reveal various phenomena during coherent tunnelling in asymmetric double-well potentials, e.g., all EPDs and NPDs as well as all CENFs are synchronous. Distortion of the symmetric reference to a system with an asymmetric double-well potential breaks the spatial symmetry of the EPDs and NPDs, but, surprisingly, the symmetry of the CENFs is conserved. Exemplary application to the Cope rearrangement of semibullvalene shows that tunnelling of the ideal symmetric system can be suppressed by asymmetries induced by rather small external electric fields. The amplitude for the half tunnelling, half nontunnelling border is as low as 0.218 × 10(-8) V/cm. At the same time, the delocalized eigenstates of the symmetric reference, which can be regarded as Schrödinger's cat-type states representing R and P with equal probabilities, get localized at one or the other minima of the asymmetric double-well potential, representing either R or P. PMID:26799383

  10. Control of indirect exciton population in an asymmetric quantum dot molecule

    International Nuclear Information System (INIS)

    We analyze the problem of coherent population transfer to the indirect exciton state in an asymmetric double semiconductor quantum dot molecule that interacts with an external electromagnetic field. Using the controlled rotation method, we obtain analytical solutions of the time-dependent Schrödinger equation and determine closed-form conditions for the parameters of the applied field and the quantum system that lead to complete population transfer to the indirect exciton state, in the absence of decay effects. Then, by numerical solution of the relevant density matrix equations we study the influence of decay mechanisms to the efficiency of population transfer.

  11. Quantum asymmetric cryptography with symmetric keys

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on quantum encryption,we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme,which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore,the state-estimation attack to a prior QPKC scheme is demonstrated.

  12. Quantum Stackelberg Duopoly of Continuous Distributed Asymmetric Information

    Institute of Scientific and Technical Information of China (English)

    WANG Xia; YANG Xiao-Hua; MIAO Lin; ZHOU Xiang; HU Cheng-Zheng

    2007-01-01

    The minimal quantization structure is employed to investigate the quantum version of the Stackelberg duopoly with continuous distributed asymmetric information, I.e. The first mover has incomplete information that obeys a continuous distribution while the second mover has complete information. It is found that the effects of the positive quantum entanglement on the outcomes exhibit many interesting features due to the information asymmetry. Moreover, although the first-mover advantage is counteracted by the information asymmetry, the positive quantum entanglement still enhances the first-mover advantage and improves the first-mover tolerance of the information asymmetry beyond the classical limit.

  13. Distribution of quantum Fisher information in asymmetric cloning machines

    Science.gov (United States)

    Xiao, Xing; Yao, Yao; Zhou, Lei-Ming; Wang, Xiaoguang

    2014-12-01

    An unknown quantum state cannot be copied and broadcast freely due to the no-cloning theorem. Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce two nonidentical copies. As one might expect, improving the QFI of one copy results in decreasing the QFI of the other copy. It is perhaps also unsurprising that asymmetric phase-covariant cloning outperforms universal cloning in distributing QFI since a priori information of the input state has been utilized. However, interesting results appear when we compare the distributabilities of fidelity (which quantifies the full information of quantum states), and QFI (which only captures the information of relevant parameters) in asymmetric cloning machines. Unlike the results of fidelity, where the distributability of symmetric cloning is always optimal for any d-dimensional cloning, we find that any asymmetric cloning outperforms symmetric cloning on the distribution of QFI for d cloning strategies could be worse than symmetric ones when d > 18.

  14. An asymmetric relativistic model for classical double radio sources

    CERN Document Server

    Arshakian, T G

    2000-01-01

    There is substantial observational evidence against the symmetric relativistic model of FRII radio sources. An asymmetric relativistic model is proposed which takes account of both relativistic effects and intrinsic/environmental asymmetries to explain the structural asymmetries of their radio lobes. A key parameter of the model is the jet-side of the double sources, which is estimated for 80% of the FRII sources in the 3CRR complete sample. Statistical analyses of the properties of these sources show that the asymmetric model is in agreement with a wide range of observational data, and that the relativistic and intrinsic asymmetry effects are of comparable importance. Intrinsic/environmental asymmetry effects are more important at high radio luminosities and small physical scales. The mean translational speed of the lobes is found to be 0.11c, consistent with the speeds found from spectral ageing arguments. According to a Gaussian model, the standard deviation of lobe speeds is 0.04c. The results are in agre...

  15. Pentamode metamaterials with asymmetric double-cone elements

    International Nuclear Information System (INIS)

    Pentamode metamaterials are a very interesting set of artificial solids. They are difficult to compress but flow easily, hence imitating somehow the behaviours of liquids. In this paper, three-dimensional (3D) pentamode metamaterials based on the asymmetric double-cone element (ADCE) are proposed. The ADCE is composed by two connected truncated cones with different thin diameters. The phonon band structures of the ADCEs pentamode metamaterials are numerically analysed by using the finite element method (FEM). Besides the single phonon mode, the complete 3D band gaps are also found in the phonon band structures. Here, the influence of the degree of asymmetry of ADCE to the figure of merit (FOM), which is the ratio of bulk modulus and shear modulus, is discussed. The FOM can be increased by 21–30% (at FOM ≥ 103) when the degree of asymmetry m ranges from 0.4 to 0.6. (paper)

  16. Independently tunable double Fano resonances in asymmetric MIM waveguide structure.

    Science.gov (United States)

    Qi, Jiwei; Chen, Zongqiang; Chen, Jing; Li, Yudong; Qiang, Wu; Xu, Jingjun; Sun, Qian

    2014-06-16

    In this paper, an asymmetric plasmonic structure composed of a MIM (metal-insulator-metal) waveguide and a rectangular cavity is reported, which can support double Fano resonances originating from two different mechanisms. One of Fano resonance originates from the interference between a horizontal and a vertical resonance in the rectangular cavity. And the other is induced by the asymmetry of the plasmonic structure. Just because the double Fano resonances originate from two different mechanisms, each Fano resonance can be well tuned independently by changing the parameters of the rectangular cavity. And during the tuning process, the FOMs (figure of merit) of both the Fano resonances can keep unchanged almost with large values, both larger than 650. Such, the transmission spectra of the plasmonic structure can be well modulated to form transmission window with the position and the full width at half maximum (FWHM) can be tuned freely, which is useful for the applications in sensors, nonlinear and slow-light devices. PMID:24977564

  17. Binding energies of indirect excitons in double quantum well systems

    Science.gov (United States)

    Rossokhaty, Alex; Schmult, Stefan; Dietsche, Werner; von Klitzing, Klaus; Kukushkin, Igor

    2011-03-01

    A prerequisite towards Bose-Einstein condensation is a cold and dense system of bosons. Indirect excitons in double GaAs/AlGaAs quantum wells (DQWs) are believed to be suitable candidates. Indirect excitons are formed in asymmetric DQW structures by mass filtering, a method which does not require external electric fields. The exciton density and the electron-hole balance can be tuned optically. Binding energies are measured by a resonant microwave absorption technique. Our results show that screening of the indirect excitons becomes already relevant at densities as low as ~ 5 × 109 cm-2 and results in their destruction.

  18. Double-partition Quantum Cluster Algebras

    DEFF Research Database (Denmark)

    Jakobsen, Hans Plesner; Zhang, Hechun

    2012-01-01

    A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....

  19. Entanglement via tunable Fano-type interference in asymmetric semiconductor quantum wells

    International Nuclear Information System (INIS)

    Entanglement is realized in asymmetric coupled double quantum wells (DQWs) trapped in a doubly resonant cavity by means of Fano-type interference through a tunneling barrier, which is different from the previous studies on entanglement induced by strong external driven fields in atomic media. We investigate the generation and evolution of entanglement and show that the strength of Fano interference can influence effectively the degree of the entanglement between two cavity modes and the enhanced entanglement can be generated in this DQW system. The present investigation may provide research opportunities in quantum entangled experiments in the DQW solid-state nanostructures and may result in a substantial impact on the technology for entanglement engineering in quantum information processing.

  20. Entanglement via tunable Fano-type interference in asymmetric semiconductor quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiangying, E-mail: xyhao.321@163.co [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Li Jiahua, E-mail: ai_li@126.co [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lv Xinyou; Si Liugang; Yang Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2009-10-12

    Entanglement is realized in asymmetric coupled double quantum wells (DQWs) trapped in a doubly resonant cavity by means of Fano-type interference through a tunneling barrier, which is different from the previous studies on entanglement induced by strong external driven fields in atomic media. We investigate the generation and evolution of entanglement and show that the strength of Fano interference can influence effectively the degree of the entanglement between two cavity modes and the enhanced entanglement can be generated in this DQW system. The present investigation may provide research opportunities in quantum entangled experiments in the DQW solid-state nanostructures and may result in a substantial impact on the technology for entanglement engineering in quantum information processing.

  1. Entanglement via tunable Fano-type interference in asymmetric semiconductor quantum wells

    Science.gov (United States)

    Hao, Xiangying; Li, Jiahua; Lv, Xin-You; Si, Liu-Gang; Yang, Xiaoxue

    2009-10-01

    Entanglement is realized in asymmetric coupled double quantum wells (DQWs) trapped in a doubly resonant cavity by means of Fano-type interference through a tunneling barrier, which is different from the previous studies on entanglement induced by strong external driven fields in atomic media. We investigate the generation and evolution of entanglement and show that the strength of Fano interference can influence effectively the degree of the entanglement between two cavity modes and the enhanced entanglement can be generated in this DQW system. The present investigation may provide research opportunities in quantum entangled experiments in the DQW solid-state nanostructures and may result in a substantial impact on the technology for entanglement engineering in quantum information processing.

  2. Dynamical Localization in an Asymmetric Two-Electron Quantum Dot Molecule by an Alternating-Current Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-Shen; CHEN Hao

    2004-01-01

    @@ We investigate the dynamics of two interacting electrons in an asymmetric double coupled quantum dot under an ac electric field. The numerical results demonstrate that dynamical localization and Rabi oscillation still exist in such a system under the stronger electron correlation. The two electrons can be regarded as a quasiparticle,which move together between two dots similarly to a boson. The dynamics of two electrons in such a quantum system are mainly confined in a Q subspace, which is constructed by two double-occupied states.

  3. Electromagnetically induced grating in asymmetric quantum wells via Fano interference.

    Science.gov (United States)

    Zhou, Fengxue; Qi, Yihong; Sun, Hui; Chen, Dijun; Yang, Jie; Niu, Yueping; Gong, Shangqing

    2013-05-20

    We propose a scheme for obtaining an electromagnetically induced grating in an asymmetric semiconductor quantum well (QW) structure via Fano interference. In our structure, owing to Fano interference, the diffraction intensity of the grating, especially the first-order diffraction, can be significantly enhanced. The diffraction efficiency of the grating can be controlled efficiently by tuning the control field intensity, the interaction length, the coupling strength of tunneling, etc. This investigation may be used to develop novel photonic devices in semiconductor QW systems. PMID:23736445

  4. Double-pass quantum volume hologram

    International Nuclear Information System (INIS)

    We propose a scheme for parallel, spatially multimode quantum memory for light. The scheme is based on the propagation in different directions of a quantum signal wave and strong classical reference wave, like in a classical volume hologram and the previously proposed quantum volume hologram [D. V. Vasilyev et al., Phys. Rev. A 81, 020302(R) (2010)]. The medium for the hologram consists of a spatially extended ensemble of cold spin-polarized atoms. In the absence of the collective spin rotation during the interaction, two passes of light for both storage and retrieval are required, and therefore the present scheme can be called a double-pass quantum volume hologram. The scheme is less sensitive to diffraction and therefore is capable of achieving a higher density of storage of spatial modes as compared to the previously proposed thin quantum hologram [D. V. Vasilyev et al., Phys. Rev. A 77, 020302(R) (2008)], which also requires two passes of light for both storage and retrieval. However, the present scheme allows one to achieve a good memory performance with a lower optical depth of the atomic sample as compared to the quantum volume hologram. A quantum hologram capable of storing entangled images can become an important ingredient in quantum information processing and quantum imaging.

  5. Double Acceptor Interaction in Semimagnetic Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Merwyn Jasper D. Reuben

    2011-01-01

    Full Text Available The effect of geometry of the semimagnetic Quantum Dot on the Interaction energy of a double acceptor is computed in the effective mass approximation using the variational principle. A peak is observed at the lower dot sizes as a magnetic field is increased which is attributed to the reduction in confinement.

  6. Luminescence upconversion in colloidal double quantum dots.

    Science.gov (United States)

    Deutsch, Zvicka; Neeman, Lior; Oron, Dan

    2013-09-01

    Luminescence upconversion nanocrystals capable of converting two low-energy photons into a single photon at a higher energy are sought-after for a variety of applications, including bioimaging and photovoltaic light harvesting. Currently available systems, based on rare-earth-doped dielectrics, are limited in both tunability and absorption cross-section. Here we present colloidal double quantum dots as an alternative nanocrystalline upconversion system, combining the stability of an inorganic crystalline structure with the spectral tunability afforded by quantum confinement. By tailoring its composition and morphology, we form a semiconducting nanostructure in which excited electrons are delocalized over the entire structure, but a double potential well is formed for holes. Upconversion occurs by excitation of an electron in the lower energy transition, followed by intraband absorption of the hole, allowing it to cross the barrier to a higher energy state. An overall conversion efficiency of 0.1% per double excitation event is achieved. PMID:23912060

  7. Nonadiabatic Geometric Quantum Computation with Asymmetric Superconducting Quantum Interference Device

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We propose a method of controlling the dc-SQUID(superconductiong quantum interference device)system by changing the gate voltages,which controls the amplitude of the fictitious magnetic fields Bz,and the externally applied current that produces the piercing magnetic flux Φx for the dc-SQUID system,we have also introduced a physical model for the dc-SQUID system.Using this physical model,one can obtain the non-adiabatic geometric phase gate for the single qubit and the non-adiabatic conditional geometric phase gate (controlled NOT gate) for the two qubits.It is shown that when the gate voltage and the externally applied current of the dc-SQUID system satisfies an appropriate constraint condition,the charge state evolution can be controlled exactly on a dynamic phase free path.The non-adiabatic evolution of the charge states is given as well.

  8. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering.

    Science.gov (United States)

    Cavalcanti, D; Skrzypczyk, P; Aguilar, G H; Nery, R V; Ribeiro, P H Souto; Walborn, S P

    2015-01-01

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks. PMID:26235944

  9. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering

    Science.gov (United States)

    Cavalcanti, D.; Skrzypczyk, P.; Aguilar, G. H.; Nery, R. V.; Ribeiro, P. H. Souto; Walborn, S. P.

    2015-08-01

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.

  10. A double-slit quantum eraser

    OpenAIRE

    Walborn, S. P.; Cunha, M. O. Terra; Padua, S.; Monken, C. H.

    2001-01-01

    We report a quantum eraser experiment which actually uses a Young double-slit to create interference. The experiment can be considered an optical analogy of an experiment proposed by Scully, Englert and Walther. One photon of an entangled pair is incident on a Young double-slit of appropriate dimensions to create an interference pattern in a distant detection region. Quarter-wave plates, oriented so that their fast axes are orthogonal, are placed in front of each slit to serve as which-path m...

  11. Tunneling rate in double quantum dots

    Science.gov (United States)

    Filikhin, Igor; Matinyan, Sergei; Vlahovic, Branislav

    2014-03-01

    We study spectral properties of electron tunneling in double quantum dots (DQDs) (and double quantum wells (DQWs)) and their relation to the geometry. In particular we compare the tunneling in DQW with chaotic and regular geometry, taking into account recent evidence about regularization of the tunneling rate when the QW geometry is chaotic. Our calculations do not support this assumption. We confirm high influence of the QW geometry boundaries on the rate fluctuation along the spectrum. The factors of the effective mass anisotropy and violation of the symmetry of DQD and DQW are also considered. Generally, we found that the small violation of the symmetry drastically affects tunneling. This work is supported by the NSF (HRD-0833184) and NASA (NNX09AV07A).

  12. Energy transfer processes in ZnSe/(Zn,Mn)Se double quantum wells

    Science.gov (United States)

    Jankowski, Stephanie; Horst, Swantje; Chernikov, Alexej; Chatterjee, Sangam; Heimbrodt, Wolfram

    2009-10-01

    The complex interplay of energy transfer and tunneling processes in a series of asymmetric ZnSe/(Zn,Mn)Se double quantum-well (DQW) structures is investigated. Steady-state and time-resolved photoluminescence at low temperatures and external magnetic fields up to 7 T in this system show remarkable differences to earlier studies on CdTe/(Cd,Mn)Te DQWs. The pure quantum-mechanical tunneling process is only a minor contribution to the magnetic field dependence of the emission even in case of small barriers and strong QW coupling. The experimental results are supported by quantum-well calculations.

  13. Young's Double Slit Experiment in Quantum Field Theory

    OpenAIRE

    Kenmoku, Masakatsu; Kume, Kenji

    2011-01-01

    Young's double slit experiment is formulated in the framework of canonical quantum field theory in view of the modern quantum optics. We adopt quantum scalar fields instead of quantum electromagnetic fields ignoring the vector freedom in gauge theory. The double slit state is introduced in Fock space corresponding to experimental setup. As observables, expectation values of energy density and positive frequency part of current with respect to the double slit state are calculated which give th...

  14. The Application of The Double Queue Asymmetric Gated Service Polling Control Theory in Intelligent Traffic System

    Directory of Open Access Journals (Sweden)

    Zhao Yi Fan

    2016-01-01

    Full Text Available paper presents a new use of double queues asymmetric gated service polling system in the intelligent traffic light control system.Usually there are more vehicles in main road than minor road,so there are more green light time be needed in the main road.From the computer simulation and theory analysis,we can find that the application of double queues asymmetric gated service polling theory in intelligent traffic system can balance intersections load and set suitable passing time for vehicles to assure the roads open.

  15. Simultaneous measurements of plasma flow and ion temperature using the asymmetric double probe

    International Nuclear Information System (INIS)

    The asymmetric double probe method is extended to measure not only the ion temperature but also plasma flow in the tokamak edge plasma under a strong magnetic field. The plasma flow or the Mach number is determined by the ratio of ion saturation currents of the double probe pins, where the axes of the cylindrical pins are oriented perpendicular to the magnetic field and face up-or downstream. An experiment was performed in the JFT-2M tokamak. (author)

  16. Dual emission in asymmetric ``giant'' PbS/CdS/CdS core/shell/shell quantum dots

    Science.gov (United States)

    Zhao, Haiguang; Sirigu, Gianluca; Parisini, Andrea; Camellini, Andrea; Nicotra, Giuseppe; Rosei, Federico; Morandi, Vittorio; Zavelani-Rossi, Margherita; Vomiero, Alberto

    2016-02-01

    Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton recombination in the PbS core and in the CdS Wz shell, respectively. These results highlight the importance of the driving force leading to preferential crystal growth in asymmetric QDs, and provide a pathway for the rational control of the synthesis of double color emitting giant QDs, leading to the effective exploitation of visible/NIR transparency windows.Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton

  17. Time-symmetrized description of nonunitary time asymmetric quantum evolution

    International Nuclear Information System (INIS)

    We discuss how systems which evolve manifestly asymmetrically in time can be described within the framework of the time-symmetrized quantum mechanics. An obvious case of asymmetry arises when a pure state evolves into a mixed state via effectively non-unitary evolution. A two-state method for finding the intermediate probability in postselected systems under such evolution is developed and the time-symmetry aspects of the method are explicitly considered. A specific feature is the existence of the so-called second scenario in which the state originating from the postselection measurement evolves under different evolution superoperator than the state from the preselection measurement. The evolution of the second scenario is explicitly defined. We illustrate the method with two characteristic examples: the spontaneous deexcitation of atoms and the systems approaching thermal equilibrium. We consider the systems with two energy levels and calculate the time-symmetrized probability of finding the system in excited state, under general preselection and postselection conditions. The consequences of the asymmetry of the time evolution on this probability are discussed. It is demonstrated that the arrow of time can be reconstructed in some special cases of postselected systems, while, for a general system, this is not the case. (paper)

  18. From Skew-Cyclic Codes to Asymmetric Quantum Codes

    CERN Document Server

    Ezerman, Martianus Frederic; Sole, Patrick; Yemen, Olfa

    2010-01-01

    We introduce an additive but not $\\F_{4}$-linear map $S$ from $\\F_{4}^{n}$ to $\\F_{4}^{2n}$ and exhibit some of its interesting structural properties. If $C$ is a linear $[n,k,d]_4$-code, then $S(C)$ is an additive $(2n,2^{2k},2d)_4$-code. If $C$ is an additive cyclic code then $S(C)$ is an additive quasi-cyclic code of index $2$. Moreover, if $C$ is a module $\\theta$-cyclic code, a recently introduced type of code which will be explained below, then $S(C)$ is equivalent to an additive cyclic code if $n$ is odd and to an additive quasi-cyclic code of index $2$ if $n$ is even. Given any $(n,M,d)_4$-code $C$, the code $S(C)$ is self-orthogonal under the trace Hermitian inner product. Since the mapping $S$ preserves nestedness, it can be used as a tool in constructing additive asymmetric quantum codes.

  19. Real two-stage Kondo effect in parallel double quantum dot

    International Nuclear Information System (INIS)

    We study the two-stage Kondo effect in asymmetric parallel double quantum dots. In the triplet, the magnetic moment screenings on two dots occur at the same Kondo temperature. In the critical regime of the triplet–singlet quantum phase transition, a two-stage Kondo screening accompanied with two kinds of Kondo resonance with two energy scales is observed. This is contrast to previous works, in which the Kondo peak in the second screening has not been observed. For large asymmetry of the Kondo coupling, the Kondo resonance in the second step is very weak, which indicates that the screening occurs mainly between two dots and is not a real Kondo screening. Therefore, the side-coupled double quantum dots, which have been extensively studied in the literature, are not an ideal candidate to show a real two-stage Kondo screening. - Highlights: • A real two-stage Kondo screening is not observable in side-coupled 2 quantum dots. • A two-stage Kondo screening is observed in asymmetric parallel 2 quantum dots. • The Kosterlitz–Thouless-type quantum phase transition is studied

  20. Tunneling and energy splitting in an asymmetric double-well potential

    International Nuclear Information System (INIS)

    An asymmetric double-well potential is considered, assuming that the minima of the wells are quadratic with a frequency ω and the difference of the minima is close to a multiple of hω. A WKB wave function is constructed on both sides of the local maximum between the wells, by matching the WKB function to the exact wave functions near the classical turning points. The continuities of the wave function and its first derivative at the local maximum then give the energy-level splitting formula, which not only reproduces the instanton result for a symmetric potential, but also elucidates the appearance of resonances of tunneling in the asymmetric potential

  1. 3D Lorentzian Quantum Gravity from the asymmetric ABAB matrix model

    OpenAIRE

    Ambjørn, J.; Jurkiewicz, J.; Loll, R.; Vernizzi, G

    2003-01-01

    The asymmetric ABAB-matrix model describes the transfer matrix of three-dimensional Lorentzian quantum gravity. We study perturbatively the scaling of the ABAB-matrix model in the neighbourhood of its symmetric solution and deduce the associated renormalization of three-dimensional Lorentzian quantum gravity.

  2. Topological Excitations in Double-Layer Quantum Hall systems

    OpenAIRE

    Moon, Kyungsun

    1996-01-01

    Double-layer quantum Hall systems with spontaneous broken symmetry can exhibit a novel manybody quantum Hall effect due to the strong interlayer coherence. When the layer separation becomes close to the critical value, quantum fluctuations can destroy the interlayer coherence and the quantum Hall effect will disappear. We calculate the renormalized isospin stiffness $\\rho_s$ due to quantum fluctuations within the Hartree-Fock-RPA formalism. The activation energy of the topological excitations...

  3. Dual emission in asymmetric "giant" PbS/CdS/CdS core/shell/shell quantum dots.

    Science.gov (United States)

    Zhao, Haiguang; Sirigu, Gianluca; Parisini, Andrea; Camellini, Andrea; Nicotra, Giuseppe; Rosei, Federico; Morandi, Vittorio; Zavelani-Rossi, Margherita; Vomiero, Alberto

    2016-02-21

    Semiconducting nanocrystals optically active in the infrared region of the electromagnetic spectrum enable exciting avenues in fundamental research and novel applications compatible with the infrared transparency windows of biosystems such as chemical and biological optical sensing, including nanoscale thermometry. In this context, quantum dots (QDs) with double color emission may represent ultra-accurate and self-calibrating nanosystems. We present the synthesis of giant core/shell/shell asymmetric QDs having a PbS/CdS zinc blende (Zb)/CdS wurtzite (Wz) structure with double color emission close to the near-infrared (NIR) region. We show that the double emission depends on the excitation condition and analyze the electron-hole distribution responsible for the independent and simultaneous radiative exciton recombination in the PbS core and in the CdS Wz shell, respectively. These results highlight the importance of the driving force leading to preferential crystal growth in asymmetric QDs, and provide a pathway for the rational control of the synthesis of double color emitting giant QDs, leading to the effective exploitation of visible/NIR transparency windows. PMID:26837955

  4. Current-phase relation of a ballistic asymmetric double superconductor-normal-metal-superconductor junction

    International Nuclear Information System (INIS)

    The zero-temperature current-phase (I-φ) relation (CPR) of a mesoscopic, ballistic, and asymmetrically stacked, double superconductor-normal-metal-superconduc tor (SNS) junction is studied. Here φ is the phase difference between the two superconducting end-electrodes. The lack of configuration symmetry in such asymmetric SNSNS junctions forbids a simple choice of values for the phase φ2 of the middle superconductor. We propose to determine the values of φ2 by equating the currents in the two normal regions. Two features in the CPR are found. First, the CPR of the asymmetric junction has a cutoff feature, whose origin is best demonstrated in the long middle superconductor (large L2) cases, when the critical current of the double SNS junction is bounded by the SNS junction that has the longer normal region. This cutoff feature is more pronounced for longer L2 and for higher degree of junction asymmetry. Second, in regions other than the cutoff region, the CPR of the asymmetric junction deviates only within a few percent from the CPR of the symmetric junction which has the same total length LTotal in the normal regions and the same L2. This is in contrast with the greater sensitivity the CPR has to the changes in LTotal or L2. (orig.)

  5. Electron Transport through Magnetic Superlattices with Asymmetric Double-Barrier Units in Graphene

    International Nuclear Information System (INIS)

    We investigate the transport properties through magnetic superlattices with asymmetric double-barrier units in monolayer graphene. In N-periodic asymmetric double-barrier units, there is (N − 1)-fold resonant peak splitting for transmission, but the splitting is (2N − 1)-fold in N-periodic symmetric units. The transmission depends not only on the value of incident wavevectors but also on the value and the direction of transverse wavevectors. This renders the structure's efficient wavevector filters. In addition, the conductance of standard electrons with a parabolic energy spectrum is suppressed more strongly than that of Dirac electrons, whereas the resonances are more pronounced for Dirac electrons than for standard ones. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Quantum theory of light double-slit diffraction

    OpenAIRE

    Wu, Xiang-Yao; Li, Hong; Zhang, Bo-Jun; Ma, Ji; Liu, Xiao-Jing; Ba, Nuo; Dong, He; Zhang, Si-Qi; Wang, Jing; Wu, Yi-Heng; Yin, Xin-Guo

    2013-01-01

    In this paper, we study the light double-slit diffraction experiment with quantum theory approach. Firstly, we calculate the light wave function in slits by quantum theory of photon. Secondly, we calculate the diffraction wave function with Kirchhoff's law. Thirdly, we give the diffraction intensity of light double-slit diffraction, which is proportional to the square of diffraction wave function. Finally, we compare calculation result of quantum theory and classical electromagnetic theory wi...

  7. The Double Rotation as Invariant of Motion in Quantum Mechanics

    OpenAIRE

    Zeps, Dainis

    2010-01-01

    Quantum mechanics may loose its weirdness if systematically geometric algebra methods would be used more and more. Crucial aspect is to find laws of quantum mechanics be present in macroworld in form of description of motions rather than objects. To help to reach this goal we suggest to use double rotation as one of base invariants in quantum mechanics.

  8. Young's Double Slit Experiment in Quantum Field Theory

    CERN Document Server

    Kenmoku, Masakatsu

    2011-01-01

    Young's double slit experiment is formulated in the framework of canonical quantum field theory in view of the modern quantum optics. We adopt quantum scalar fields instead of quantum electromagnetic fields ignoring the vector freedom in gauge theory. The double slit state is introduced in Fock space corresponding to experimental setup. As observables, expectation values of energy density and positive frequency part of current with respect to the double slit state are calculated which give the interference term. Classical wave states are realized by coherent double slit states in Fock space which connect quantum particle states with classical wave states systematically. In case of incoherent sources, the interference term vanishes by averaging random phase angles as expected.

  9. Statistical electron excitation in a double quantum dot induced by two independent quantum point contacts

    OpenAIRE

    Gasser, U.; Gustavsson, S.; Küng, B.; Ensslin, K.; Ihn, T.; Driscoll, D C; Gossard, A. C.

    2008-01-01

    We investigate experimentally the influence of current flow through two independent quantum point contacts to a nearby double quantum dot realized in a GaAs-AlGaAs heterostructure. The observed current through the double quantum dot can be explained in terms of coupling to a bosonic bath. The temperature of the bath depends on the power generated by the current flow through the quantum point contact. We identify the dominant absorption and emission mechanisms in a double quantum dot as an int...

  10. Independently tunable double electromagenetically induced transparency-like resonances in asymmetric plasmonic waveguide resonator system

    Science.gov (United States)

    Yu, Da-Ming; Wang, Ling-Ling; Lin, Qi; Zhai, Xiang; Li, Hong-Ju; Xia, Sheng-Xuan

    2016-05-01

    Double electromagnetically induced transparency (EIT)-like resonances are numerically achieved by detuning and bright-dark coupling in an asymmetric plasmonic waveguide resonator system. The transmission properties of the system are simulated by the finite-difference time-domain (FDTD) method. Just because double EIT-like resonances originate from different mechanisms, a single EIT-like resonance can be well tuned independently, namely, one induced transparency window can be tuned in the horizontal direction while the other one is nearly invariable. The present design idea will be applicable in highly integrated optical circuits. Moreover, the formation of double EIT-like resonances may play a guiding role when designing plasmonic devices.

  11. Deformed quantum double realization of the toric code and beyond

    Science.gov (United States)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  12. Magnetophonon resonance in double quantum wells

    Science.gov (United States)

    Ploch, D.; Sheregii, E. M.; Marchewka, M.; Wozny, M.; Tomaka, G.

    2009-05-01

    The experimental results obtained for the magnetotransport in pulsed magnetic fields in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells and different values of the electron density are reported. The magnetophonon resonance (MPR) was observed for both types of structures within the temperature range 77-125 K. Four kinds of LO phonons are taken into account to interpret the MPR oscillations in the DQW and a method of the Landau level calculation in the DQW is elaborated for this aim. The peculiarity of the MPR in the DQW is the large number of the Landau levels caused by SAS splitting of the electron states (splitting on the symmetric and anti-symmetric states) and the large number of the phonon assistance electron transitions between Landau levels. The significant role of the carrier statistics is shown too. The behavior of the electron states in the DQWs at comparably high temperatures has been studied using the MPR. It is shown that the Huang and Manasreh [Manasreh [Phys. Rev. B 54, 2044 (1996)] model involving screening of exchange interaction is confirmed.

  13. A noniterative asymmetric triple excitation correction for the density-fitted coupled-cluster singles and doubles method: Preliminary applications

    Science.gov (United States)

    Bozkaya, Uǧur

    2016-04-01

    An efficient implementation of the asymmetric triples correction for the coupled-cluster singles and doubles [ΛCCSD(T)] method [S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 5243 (1998); T. D. Crawford and J. F. Stanton, Int. J. Quantum Chem. 70, 601 (1998)] with the density-fitting [DF-ΛCCSD(T)] approach is presented. The computational time for the DF-ΛCCSD(T) method is compared with that of ΛCCSD(T). Our results demonstrate that the DF-ΛCCSD(T) method provide substantially lower computational costs than ΛCCSD(T). Further application results show that the ΛCCSD(T) and DF-ΛCCSD(T) methods are very beneficial for the study of single bond breaking problems as well as noncovalent interactions and transition states. We conclude that ΛCCSD(T) and DF-ΛCCSD(T) are very promising for the study of challenging chemical systems, where the coupled-cluster singles and doubles with perturbative triples method fails.

  14. Optical toroidal dipolar response by an asymmetric double-bar metamaterial

    CERN Document Server

    Dong, Zheng-Gao; Rho, Junsuk; Li, Jia-Qi; Lu, Changgui; Yin, Xiaobo; Zhang, X; 10.1063/1.4757613

    2012-01-01

    We demonstrate that the toroidal dipolar response can be realized in the optical regime by designing a feasible nanostructured metamaterial, comprising asymmetric double-bar magnetic resonators assembled into a toroid-like configuration. It is confirmed numerically that an optical toroidal dipolar moment dominates over other moments. This response is characterized by a strong confinement of an E-field component at the toroid center, oriented perpendicular to the H-vortex plane. The resonance-enhanced optical toroidal response can provide an experimental avenue for various interesting optical phenomena associated with the elusive toroidal moment.

  15. A Portable Double-Slit Quantum Eraser with Individual Photons

    Science.gov (United States)

    Dimitrova, T. L.; Weis, A.

    2011-01-01

    The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper,…

  16. Condensate Splitting in an Asymmetric Double Well for Atom Chip Based Sensors

    International Nuclear Information System (INIS)

    We report on the adiabatic splitting of a Bose-Einstein condensate of 87Rb atoms by an asymmetric double-well potential located above the edge of a perpendicularly magnetized TbGdFeCo film atom chip. By controlling the barrier height and double-well asymmetry, the sensitivity of the axial splitting process is investigated through observation of the fractional atom distribution between the left and right wells. This process constitutes a novel sensor for which we infer a single shot sensitivity to gravity fields of δg/g≅2x10-4. From a simple analytic model, we propose improvements to chip-based gravity detectors using this demonstrated methodology

  17. A portable double-slit quantum eraser with individual photons

    OpenAIRE

    Dimitrova, Todorka Lulcheva; Weis, Antoine

    2012-01-01

    The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave–particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper, we present a truly portable double-slit apparatus which demonstrates both the wave–particle duality of light and the phenomenon of quantum erasing....

  18. Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes

    Science.gov (United States)

    Yang, Lin'an; Li, Yue; Wang, Ying; Xu, Shengrui; Hao, Yue

    2016-04-01

    Asymmetric quantum-well (QW) structures including the asymmetric potential-barrier and the asymmetric potential-well are proposed for AlGaN/GaN/AlGaN resonant tunneling diodes (RTDs). Theoretical investigation gives that an appropriate decrease in Al composition and thickness for emitter barrier as well as an appropriate increase of both for collector barrier can evidently improve the negative-differential-resistance characteristic of RTD. Numerical simulation shows that RTD with a 1.5-nm-thick GaN well sandwiched by a 1.3-nm-thick Al0.15Ga0.85N emitter barrier and a 1.7-nm-thick Al0.25Ga0.75N collector barrier can yield the I-V characteristic having the peak current (Ip) and the peak-to-valley current ratio (PVCR) of 0.39 A and 3.6, respectively, about double that of RTD with a 1.5-nm-thick Al0.2Ga0.8N for both barriers. It is also found that an introduction of InGaN sub-QW into the diode can change the tunneling mode and achieve higher transmission coefficient of electron. The simulation demonstrates that RTD with a 2.8-nm-thick In0.03Ga0.97N sub-well in front of a 2.0-nm-thick GaN main-well can exhibit the I-V characteristic having Ip and PVCR of 0.07 A and 11.6, about 7 times and double the value of RTD without sub-QW, respectively. The purpose of improving the structure of GaN-based QW is to solve apparent contradiction between the device structure and the device manufacturability of new generation RTDs for sub-millimeter and terahertz applications.

  19. Enhanced confinement energy in strained asymmetric T-shaped quantum wires

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Hvam, Jørn Märcher; Langbein, W.

    2001-01-01

    A new type of T-shaped quantum wire, based on a sri strained asymmetric structure, has been grown and characterised. A narrow GaAs well is overgrown on an multi quantum well structure consisting of wide InAlGaAs c ells with Al0.3Ga0.7As barriers. Since the lattice constants of the InAlGaAs wells ......-10 meV is found for In molefractions of 10% and 15%, in the multi quantum wells. For an In mole fraction of 20% no quantum wire states are observed, probably due to dislocation formation in the overgrown layers.......A new type of T-shaped quantum wire, based on a sri strained asymmetric structure, has been grown and characterised. A narrow GaAs well is overgrown on an multi quantum well structure consisting of wide InAlGaAs c ells with Al0.3Ga0.7As barriers. Since the lattice constants of the InAlGaAs wells...

  20. Asymmetric and double-cathode-pad wire chambers for the LHCb muon system

    CERN Document Server

    Kachtchouk, A; Riegler, W; Schmidt, B; Schneider, T; Souvorov, V

    2005-01-01

    We present results from two types of Multi-Wire Proportional Chambers (MWPCs) with wire pitch of 1.5 mm and cathode–cathode distance of 5 mm intended for triggering purposes in the LHCb experiment. Both prototypes use cathode readout because this allows arbitrary segmentation in order to achieve the required granularity. One MWPC prototype uses a symmetric wire–cathode distance (2.5/2.5 mm) with double cathode readout, which doubles the signal compared to reading only one cathode. The second prototype uses an asymmetric wire–cathode distance (1.25/3.75 mm) with single cathode readout which also doubles the signal and in addition reduces the width of the induced charge distribution and therefore reduces the crosstalk for small cathode pads. We also performed a dedicated optimization of readout traces and guard traces in order to reduce the pad–pad crosstalk. Both prototypes show a few hundred volts of operating plateau defined as the region with 99% efficiency in a 20 ns time window. Close to the plate...

  1. The Application of Asymmetric Entangled States in Quantum Game

    CERN Document Server

    Li, Y; Qin, G; Du, Jiangfeng; Li, Ye; Qin, Gan

    2005-01-01

    In the present letter, we propose a more general entangling operator to the quantization of Cournot economic model, in which players can access to a continuous set of strategies. By analyzing the relation between the von Neumann entropy of the entangled state and the total profit of two players precisely, we find that the total profit at the Nash equilibrium always achieves its maximal value as long as the entropy tends to infinity. Moreover, since the asymmetry is introduced in the entangled state, the quantum model shows some kind of "encouraging" and "suppressing" effect in profit functions of different players.

  2. Full time nonexponential decay in double-barrier quantum structures

    OpenAIRE

    Garcia-Calderon, Gaston; Villavicencio, Jorge

    2006-01-01

    We examine an analytical expression for the survival probability for the time evolution of quantum decay to discuss a regime where quantum decay is nonexponential at all times. We find that the interference between the exponential and nonexponential terms of the survival amplitude modifies the usual exponential decay regime in systems where the ratio of the resonance energy to the decay width, is less than 0.3. We suggest that such regime could be observed in semiconductor double-barrier reso...

  3. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  4. Output voltage calculations in double barrier magnetic tunnel junctions with asymmetric voltage behavior

    KAUST Repository

    Useinov, Arthur

    2011-10-22

    In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR-V curves, output voltages and I-V characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR-V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series. © 2012 Elsevier B.V. All rights reserved.

  5. Large Scale Synthesis of NiCo Layered Double Hydroxides for Superior Asymmetric Electrochemical Capacitor

    Science.gov (United States)

    Li, Ruchun; Hu, Zhaoxia; Shao, Xiaofeng; Cheng, Pengpeng; Li, Shoushou; Yu, Wendan; Lin, Worong; Yuan, Dingsheng

    2016-01-01

    We report a new environmentally-friendly synthetic strategy for large-scale preparation of 16 nm-ultrathin NiCo based layered double hydroxides (LDH). The Ni50Co50-LDH electrode exhibited excellent specific capacitance of 1537 F g-1 at 0.5 A g-1 and 1181 F g-1 even at current density as high as 10 A g-1, which 50% cobalt doped enhances the electrical conductivity and porous and ultrathin structure is helpful with electrolyte diffusion to improve the material utilization. An asymmetric ultracapacitor was assembled with the N-doped graphitic ordered mesoporous carbon as negative electrode and the NiCo LDH as positive electrode. The device achieves a high energy density of 33.7 Wh kg-1 (at power density of 551 W kg-1) with a 1.5 V operating voltage.

  6. Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure

    Science.gov (United States)

    Zhang, Bing-Hua; Wang, Ling-Ling; Li, Hong-Ju; Zhai, Xiang; Xia, Sheng-Xuan

    2016-06-01

    Asymmetric plasmonic waveguides with a shoulder-coupled rectangle cavity are proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. The symmetry breaking of the structure results in a new discrete mode supported by the cavity. The extreme interference between two discrete states and an intrinsic wide continuous state gives rise to novel double Fano resonances with symmetric and anti-symmetric configurations. Coupled-mode theory (CMT) further confirms that two Fano profiles originate from the different coupling conditions of the cavity modes with the waveguides. Moreover, the sensing characters are performed. The Fano responses with the higher sensitivity and figure of merit (FOM) up to 57 are realized. Undoubtedly, the studied structure will play an important role in the nano-integrated plasmonic devices for optical switching and sensing.

  7. Tunable multi-band chiral metamaterials based on double-layered asymmetric split ring resonators

    Science.gov (United States)

    Jia, Xiuli; Wang, Xiaoou; Meng, Qingxin; Zhou, Zhongxiang

    2016-07-01

    We have numerically demonstrated chiral metamaterials based on double-layered asymmetric Au film with hollow out design of split ring resonators on either side of the polyimide. Multiple electric dipoles and magnetic dipoles resulted from parallel and antiparallel currents between the eight split ring resonators. Multi-band circular dichroism is found in the visible frequency regime by studying the transmission properties. Huge optical activity and the induced multi-band negative refractive index are obtained at resonance by calculating the optical activity and ellipticity of the transmitted E-fields. Chirality parameter and effective refractive index are retrieved to illustrate the tunable optical properties of the metamaterials. The underlying mechanisms for the observed circular dichroism are analyzed. These metamaterials would offer flexible electromagnetic applications in the infrared and visible regime.

  8. Bosonization study of quantum phase transitions in the one-dimensional asymmetric Hubbard model

    OpenAIRE

    Wang, Z. G.; Chen, Y G; Gu, S. J.

    2007-01-01

    The quantum phase transitions in the one-dimensional asymmetric Hubbard model are investigated with the bosonization approach. The conditions for the phase transition from density wave to phase separation, the correlation functions and their exponents are obtained analytically. Our results show that the difference between the hopping integrals for up- and down-spin electrons is crucial for the happening of the phase separation. When the difference is large enough, the phase separation will ap...

  9. Temporal mode sorting using dual-stage quantum frequency conversion by asymmetric Bragg scattering.

    Science.gov (United States)

    Christensen, Jesper B; Reddy, Dileep V; McKinstrie, C J; Rottwitt, K; Raymer, M G

    2015-09-01

    The temporal shape of single photons provides a high-dimensional basis of temporal modes, and can therefore support quantum computing schemes that go beyond the qubit. However, the lack of linear optical components to act as quantum gates has made it challenging to efficiently address specific temporal-mode components from an arbitrary superposition. Recent progress towards realizing such a "quantum pulse gate," has been proposed using nonlinear optical signal processing to add coherently the effect of multiple stages of quantum frequency conversion. This scheme, called temporal-mode interferometry [D. V. Reddy, Phys. Rev. A 91, 012323 (2015)], has been shown in the case of three-wave mixing to promise near-unity mode-sorting efficiency. Here we demonstrate that it is also possible to achieve high mode-sorting efficiency using four-wave mixing, if one pump pulse is long and the other short - a configuration we call asymmetrically-pumped Bragg scattering. PMID:26368430

  10. Quantum interference in an asymmetric Mach-Zehnder interferometer

    Science.gov (United States)

    Trenti, A.; Borghi, M.; Mancinelli, M.; Price, H. M.; Fontana, G.; Pavesi, L.

    2016-08-01

    A re-visitation of the well known free space Mach-Zehnder interferometer is reported here. The coexistence between one-photon and two-photons interference from collinear color entangled photon pairs is investigated. Thisarises from an arbitrarily small unbalance in the arm transmittance. The tuning of such asymmetry is reflected in dramatic changes in the coincidence detection, revealing beatings between one particle and two particle interference patterns. In particular, the role of the losses and of the intrinsic phase imperfectness of the lossy beamsplitter are explored in a single-port excited Mach-Zehnder interferometer. This configuration is especially useful for quantum optics on a chip, where the guiding geometry forces photons to travel in the same spatial mode.

  11. Bose Condensation of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Timofeev, V. B.; Ni, P. A.; Dubonos, S. V.; Hvam, Jørn Märcher; Soerensen, K.

    2002-01-01

    The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring...

  12. Cotunneling effects in GaAs vertical double quantum dot

    OpenAIRE

    Badrutdinov, A. O.; Huang, S. M.; Kono, K; Ono, K.; Tayurskii, D. A.

    2010-01-01

    We observed lifting of Coulomb blockade in GaAs vertical double quantum dot with low potential barriers, induced by cotunneling mechanisms at dilution fridge temperature of 10 mK. Several distinct features were observed, compared to single dot case, and appropriate explanation for them was given

  13. Multiple Nuclear Polarization States in a Double Quantum Dot

    NARCIS (Netherlands)

    Danon, J.; Vink, I.T.; Koppens, F.H.L.; Nowack, K.C.; Vandersypen, L.M.K.; Nazarov, Y.V.

    2009-01-01

    We observe multiple stable states of nuclear polarization and nuclear self-tuning over a large range of fields in a double quantum dot under conditions of electron spin resonance. The observations can be understood within an elaborated theoretical rate equation model for the polarization in each of

  14. Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities

    OpenAIRE

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-01-01

    We present some deterministic schemes to construct universal quantum gates, that is, controlled- NOT, three-qubit Toffoli, and Fredkin gates, between flying photon qubits and stationary electron-spin qubits assisted by quantum dots inside double-sided optical microcavities. The control qubit of our gates is encoded on the polarization of the moving single photon and the target qubits are encoded on the confined electron spins in quantum dots inside optical microcavities. Our schemes for these...

  15. Perturbative quantum gravity in double field theory

    Science.gov (United States)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  16. Development of a theory of the variable quantum yield of the photoproducts from asymmetric bilirubin

    International Nuclear Information System (INIS)

    Full text: Bilirubin (BR) is the molecule responsible for neonatal jaundice, curable by phototherapy, and hence has been extensively studied. It is an asymmetric bichromophoric molecule; the excited states of the chromophores undergo the Davidoff (exciton, electric dipole) interaction. One of the peculiarities of BR is that the quantum yield of its photoproducts varies with wavelength. An account of the development of a theory for this will be given: part was given at a previous Wagga conference. It may well be that the Davidoff interaction parameter varies with wavelength, even though a constant interaction parameter gives rise to a variable quantum yield. Differences in the linewidths of the Davidoff lines also affect the quantum yield behaviour

  17. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2015-01-15

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.

  18. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well

    International Nuclear Information System (INIS)

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well

  19. Quantum information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit

    OpenAIRE

    Braunstein, Samuel L.; Buzek, Vladimir; Hillery, Mark

    2000-01-01

    We show that for any Hilbert-space dimension, the optimal universal quantum cloner can be constructed from essentially the same quantum circuit, i.e., we find a universal design for universal cloners. In the case of infinite dimensions (which includes continuous variable quantum systems) the universal cloner reduces to an essentially classical device. More generally, we construct a universal quantum circuit for distributing qudits in any dimension which acts covariantly under generalized disp...

  20. A fast "hybrid" silicon double quantum dot qubit

    CERN Document Server

    Shi, Zhan; Prance, J R; Gamble, John King; Koh, Teck Seng; Shim, Yun-Pil; Hu, Xuedong; Savage, D E; Lagally, M G; Eriksson, M A; Friesen, Mark; Coppersmith, S N

    2011-01-01

    We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers $S^2=3/4$ ($S=\\half$) and $S_z = -\\half$, with the two different states being singlet and triplet in the doubly occupied dot. The architecture is relatively simple to fabricate, a universal set of fast operations can be implemented electrically, and the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

  1. Single electron tunneling in double and triple quantum wells

    Science.gov (United States)

    Filikhin, I.; Karoui, A.; Vlahovic, B.

    2016-03-01

    Electron localization and tunneling in laterally distributed double quantum well (DQW) and triple quantum well (TQW) are studied. Triangular configuration for the TQWs as well as various quantum well (QW) shapes and asymmetry are considered. The effect of adding a third well to a DQW is investigated as a weakly coupled system. InAs/GaAs DQWs and TQWs were modeled using single subband effective mass approach with effective potential simulating the strain effect. Electron localization dynamics in DQW and TQW over the whole spectrum is studied by varying the inter-dot distances. The electron tunneling appeared highly sensitive to small violations of the DQW mirror symmetry. We show that the presence of a third dot increases the tunneling in the DQW. The dependence of the tunneling in quantum dot (QD) arrays on inter-dot distances is also discussed.

  2. Second-harmonic generation in asymmetric quantum dots in the presence of a static magnetic field

    Institute of Scientific and Technical Information of China (English)

    Li Xue-Chao; Wang An-Min; Wang Zhao-Liang; Yang Yang

    2012-01-01

    The second-harmonic generation (SHG) coefficient in an asymmetric quantum dot (QD) with a static magnetic field is theoretically investigated.Within the framework of the effective-mass approximation,we obtain the confined wave functions and energies of electrons in the QD.We also obtain the SHG coefficient by the compact-density-matrix approach and the iterative method.The numerical results for the typical GaAs/AlGaAs QD show that the SHG coefficient depends strongly on the magnitude of magnetic field,parameters of the asymmetric potential and the radius of the QD.The resonant peak shifts with the magnetic field or the radius of the QD changing.

  3. QCAD simulation and optimization of semiconductor double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Xujiao [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalashnikova, Irina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard Partain [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinger, Andrew Gerhard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Young, Ralph Watson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    We present the Quantum Computer Aided Design (QCAD) simulator that targets modeling quantum devices, particularly silicon double quantum dots (DQDs) developed for quantum qubits. The simulator has three di erentiating features: (i) its core contains nonlinear Poisson, e ective mass Schrodinger, and Con guration Interaction solvers that have massively parallel capability for high simulation throughput, and can be run individually or combined self-consistently for 1D/2D/3D quantum devices; (ii) the core solvers show superior convergence even at near-zero-Kelvin temperatures, which is critical for modeling quantum computing devices; (iii) it couples with an optimization engine Dakota that enables optimization of gate voltages in DQDs for multiple desired targets. The Poisson solver includes Maxwell- Boltzmann and Fermi-Dirac statistics, supports Dirichlet, Neumann, interface charge, and Robin boundary conditions, and includes the e ect of dopant incomplete ionization. The solver has shown robust nonlinear convergence even in the milli-Kelvin temperature range, and has been extensively used to quickly obtain the semiclassical electrostatic potential in DQD devices. The self-consistent Schrodinger-Poisson solver has achieved robust and monotonic convergence behavior for 1D/2D/3D quantum devices at very low temperatures by using a predictor-correct iteration scheme. The QCAD simulator enables the calculation of dot-to-gate capacitances, and comparison with experiment and between solvers. It is observed that computed capacitances are in the right ballpark when compared to experiment, and quantum con nement increases capacitance when the number of electrons is xed in a quantum dot. In addition, the coupling of QCAD with Dakota allows to rapidly identify which device layouts are more likely leading to few-electron quantum dots. Very efficient QCAD simulations on a large number of fabricated and proposed Si DQDs have made it possible to provide fast feedback for design

  4. Maximally extended sl(2|2) as a quantum double

    CERN Document Server

    Beisert, Niklas; Hecht, Reimar

    2016-01-01

    We derive the universal R-matrix of the quantum-deformed enveloping algebra of centrally extended sl(2|2) using Drinfeld's quantum double construction. We are led to enlarging the algebra by additional generators corresponding to an sl(2) automorphism. For this maximally extended algebra we construct a consistent Hopf algebra structure where the extensions exhibit several uncommon features. We determine the corresponding universal R-matrix containing some non-standard functions. Curiously, this Hopf algebra has one extra deformation parameter for which the R-matrix does not factorize into products of exponentials.

  5. Hall Drag in Correlated Double Layer Quantum Hall Systems

    OpenAIRE

    Yang, Kun

    1998-01-01

    We show that in the limit of zero temperature, double layer quantum Hall systems exhibit a novel phenomena called Hall drag, namely a current driven in one layer induces a voltage drop in the other layer, in the direction perpendicular to the driving current. The two-by-two Hall resistivity tensor is quantized and proportional to the ${\\bf K}$ matrix that describes the topological order of the quantum Hall state, even when the ${\\bf K}$ matrix contains a zero eigenvalue, in which case the Hal...

  6. Catalytic asymmetric synthesis of spirocyclic azlactones by a double Michael-addition approach.

    Science.gov (United States)

    Weber, Manuel; Frey, Wolfgang; Peters, René

    2013-06-17

    Spirocyclic azlactones are shown to be useful precursors of cyclic quaternary amino acids, such as the constrained cyclohexane analogues of phenylalanine. These compounds are of interest as building blocks for the synthesis of artificial peptide analogues with controlled folds in the peptide backbone. They were prepared in the present study by a step- and atom-economic catalytic asymmetric tandem approach, requiring two steps starting from N-benzoyl glycine and divinylketones. The key of this protocol is the enantioselective formation of the azlactone spirocycles, which involves a PdII-catalyzed double 1,4-addition of an in situ generated azlactone intermediate to the dienone (a formal [5+1] cycloaddition). As the catalyst, a planar chiral ferrocene bispalladacycle was used. Mechanistic studies suggest a monometallic reaction pathway. Although the diastereoselectivity was found to be moderate, the enantioselectivity is usually high for the formation of the azlactone spirocycles, which contain up to three contiguous stereocenters. Spectroscopic studies have shown that the spirocycles often prefer a twist over a chair conformation of the cyclohexanone moiety. PMID:23613333

  7. Oscillation of electron mobility in parabolic double quantum well structure due to applied electric field

    International Nuclear Information System (INIS)

    We show that oscillation of low temperature electron mobility μ can be obtained by applying an electric field F along the growth direction of the asymmetrically barrier delta doped AlxGa1-xAs parabolic double quantum well structure. The drastic changes in the subband Fermi energies and distributions of subband wave functions as a function of F yield nonmonotonic intra- and intersubband scattering rate matrix elements mediated by intersubband effects. The oscillatory enhancement of μ, which is attributed to the subband mobilities governed by the ionized impurity scattering, magnifies with increase in well width and decrease in height of the parabolic structure potential. The results can be utilized for nanoscale low temperature device applications

  8. Ground state normalized binding energy of impurity in asymmetric quantum wells under hydrostatic pressure

    Science.gov (United States)

    Akbas, H.; Sucu, S.; Minez, S.; Dane, C.; Akankan, O.; Erdogan, I.

    2016-06-01

    We have studied and computed variationally the impurity energy, impurity energy turning points, and ground state normalized binding energy as functions of the impurity position for shallow impurity in asymmetric quantum wells under hydrostatic pressure. We found that the normalized binding energy significantly depends on the asymmetry of the well, besides depending on the impurity position and hydrostatic pressure. Also, the dependence of the positive normalized binding energy on the pressure can be used to find out the degree of the asymmetry of the well or the impurity position in the well.

  9. Electric field effect on the nonlinear optical properties in asymmetrical Gaussian potential quantum wells

    Science.gov (United States)

    Zhang, Zhi-Hai; Zou, LiLi; Liu, Chenglin; Yuan, Jian-Hui

    2015-09-01

    In the present work, the optical absorption coefficients (OACs) and the changes in the refractive index (RI) in asymmetrical Gaussian potential quantum wells (QWs) with the applied electric field are studied in detail. We find both energy and wavefunction for low-lying state are wrong in the previous work (Guo and Du, 2013; Wu et al., 2014; Zhai, 2014). Simultaneously, we obtain new and reliable results via the differential method. Finally, the applied electric field, well width, and well depth have great influence on the optical absorption coefficients and refractive index changes in this system.

  10. Anomalous capacitance of quantum well double-barrier diodes

    Science.gov (United States)

    Boric, Olga; Tolmunen, Timo J.; Kollberg, Erik; Frerking, Margaret A.

    1992-01-01

    The S-parameters of several different quantum well double barrier diodes have been measured. A technique has been developed for measuring whisker contacted diodes with an HP 8510B automatic network analyzer. Special coaxial mounts using K-connectors were designed to enable measurements up to 20 GHz. The voltage-dependent conductance and capacitance were derived from the measured reflection coefficient of each device. The C/V characteristics were observed to exhibit an anomalous increase at voltages corresponding to the negative differential resistance region (NDR). These are the first reported S-parameter measurements in the negative differential resistance region of quantum well double barrier diodes. A theory is presented that explains, in part, the observed results.

  11. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  12. Thermoelectric effect in a parallel double quantum dot structure

    OpenAIRE

    Gong, Wei-Jiang; Wei, Guo-Zhu

    2011-01-01

    We discuss the thermoelectric properties assisted by the Fano effect of a parallel double quantum dot (QD) structure. By adjusting the couplings between the QDs and leads, we facilitate the nonresonant and resonant channels for the Fano interference. It is found that at low temperature, Fano lineshapes appear in the electronic and thermal conductance spectra, which can also be reversed by an applied local magnetic flux with its phase factor $\\phi=\\pi$. And, the Fano effect contributes decisiv...

  13. Second harmonic generation in an asymmetric rectangular quantum well under hydrostatic pressure

    International Nuclear Information System (INIS)

    The effects of structure parameters and hydrostatic pressure on the electronic states and the second harmonic generation (SHG) susceptibility of asymmetric rectangular quantum well (ARQW) are studied. The asymmetry of the potential can be controlled by changing the structural parameters and this adjustable asymmetry is important for optimizing the SHG susceptibility. We have calculated analytically the electronic states in ARQW within the framework of the envelope function approach. Numerical results for Al xl Ga1-xl As/GaAs/Al xr Ga1-xr As quantum well are presented. The results obtained show that the hydrostatic pressure and the structure parameters of ARQW significantly influence the SHG susceptibility. This behavior in the SHG susceptibility gives a new degree of freedom in regions of interest for device applications

  14. Spin polarization and conductance of the laterally asymmetric quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, G.V.; Chuburin, Yu.P., E-mail: chuburin@ftiudm.ru

    2014-06-13

    We calculate conductance and polarization for the laterally asymmetric quantum point contact. We consider both Rashba coupling and spin–orbit interaction induced by asymmetric lateral confinement, without external magnetic field. We show that a conductance plateau may appear at 0.5G{sub 0}(G{sub 0}=2e{sup 2}/h), without Rashba coupling and lateral spin–orbit interaction. For a spin-polarized injected current, the lateral spin–orbit interaction gives additional control of the conductance by varying the side gates potential. For unpolarized electrons, the spin polarization arises along all coordinate axes. There is a possibility of switching of spin polarization by the gates potential. - Highlights: • Spin-dependent conductance for the laterally asymmetric quasi-1D system is studied. • The 0.5 conductance feature may appear without spin–orbit interaction. • The lateral spin–orbit interaction gives the control of the spin polarization. • For unpolarized electrons the lateral spin–orbit coupling is a switch of polarization.

  15. Dynamical cooling of nuclear spins in double quantum dots

    International Nuclear Information System (INIS)

    Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.

  16. The connection between noise and quantum correlations in a double quantum dot

    OpenAIRE

    Bodoky, F.; Belzig, W.; Bruder, C.

    2007-01-01

    We investigate the current and noise characteristics of a double quantum dot system. The strong correlations induced by the Coulomb interaction create entangled two-electron states and lead to signatures in the transport properties. We show that the interaction parameter phi, which measures the admixture of the double-occupancy contribution to the singlet state and thus the degree of entanglement, can be directly accessed through the Fano factor of super-Poissonian shot noise.

  17. Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes

    Science.gov (United States)

    Florjanczyk, Jan; Brun, Todd; Center for Quantum Information Science; Technology Team

    We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.

  18. Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson-Nernst-Planck Model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hainan; Thiele, Alexander; Pilon, Laurent [UCLA

    2013-11-15

    This paper presents a generalized modified Poisson–Nernst–Planck (MPNP) model derived from first principles based on excess chemical potential and Langmuir activity coefficient to simulate electric double-layer dynamics in asymmetric electrolytes. The model accounts simultaneously for (1) asymmetric electrolytes with (2) multiple ion species, (3) finite ion sizes, and (4) Stern and diffuse layers along with Ohmic potential drop in the electrode. It was used to simulate cyclic voltammetry (CV) measurements for binary asymmetric electrolytes. The results demonstrated that the current density increased significantly with decreasing ion diameter and/or increasing valency |zi| of either ion species. By contrast, the ion diffusion coefficients affected the CV curves and capacitance only at large scan rates. Dimensional analysis was also performed, and 11 dimensionless numbers were identified to govern the CV measurements of the electric double layer in binary asymmetric electrolytes between two identical planar electrodes of finite thickness. A self-similar behavior was identified for the electric double-layer integral capacitance estimated from CV measurement simulations. Two regimes were identified by comparing the half cycle period τCV and the “RC time scale” τRC corresponding to the characteristic time of ions’ electrodiffusion. For τRC ← τCV, quasi-equilibrium conditions prevailed and the capacitance was diffusion-independent while for τRC → τCV, the capacitance was diffusion-limited. The effect of the electrode was captured by the dimensionless electrode electrical conductivity representing the ratio of characteristic times associated with charge transport in the electrolyte and that in the electrode. The model developed here will be useful for simulating and designing various practical electrochemical, colloidal, and biological systems for a wide range of applications.

  19. Spin-dependent thermoelectric transport through double quantum dots

    Institute of Scientific and Technical Information of China (English)

    Wang Qiang; Xie Hai-Qing; Jiao Hu-Jun; Li Zhi-Jian; Nie Yi-Hang

    2012-01-01

    We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green's function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.

  20. Bose Condensation of Interwell Excitons in Double Quantum Wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Timofeev, V. B.; Ni, P. A.; Dubonos, S. V.; Hvam, Jørn Märcher; Soerensen, K.

    2002-01-01

    The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring...... quantum wells were studied as functions of density and temperature within the domains on the scale less than one micron. For this purpose, the surfaces of the samples were coated with a metallic mask containing specially prepared holes (windows) of a micron size an less for the photoexcitation and...... observation of luminescence. For weak pumping (less than 50 µW), the interwell excitons are strongly localized because of small-scale fluctuations of a random potential, and the corresponding photoluminescence line is inhomogeneously broadened (up to 2.5 meV). As the resonant excitation power increases, the...

  1. Polarization converters on double hetero structures containing strained quantum wells

    Science.gov (United States)

    Khalique, U.; van der Tol, J. J. G. M.; Nötzel, R.; Smit, M. K.

    2009-02-01

    The importance of polarization manipulation is increased as optical fiber systems evolve to higher data rates. Photonic integrated circuits should be insensitive to the state of polarization of the light emanating from fibers if they are to be used as detectors, add-drop mutiplexers or cross connects. Either all the integrated components have to be polarization independent or only one polarization direction should be used. For either method, a compact polarization converter is useful. A model is developed for the mode propagation in the waveguide of the slanted side polarization converter based on double hetero structures. The model is extended to include polarization dependent absorption and mismatch. Polarization converters on different double heterostructures (with and without quantum wells) have been designed and are realized by contact optical lithography. The performance of the realized converters is well described with the model.

  2. Ac response of a coupled double quantum dot

    Institute of Scientific and Technical Information of China (English)

    Xu Jie; W.Z. Shangguan; Zhan Shi-Chang

    2005-01-01

    The effect of phase-breaking process on the ac response of a coupled double quantum dot is studied in this paper based on the nonequilibrium Green function formalism. A general expression is derived for the ac current in the presence of electron-phonon interaction. The ac conductance is numerically computed and the results are compared with those in [Anatram M P and Datts S 1995 Phys. Rev. B 51 7632]. Our results reveal that the inter-dot electron tunnelling interplays with that between dots and electron reservoirs, and contributes prominently to the ac current when inter-dot tunnelling coupling is much larger than the tunnelling coupling between dots and electron reservoirs. In addition, the phase-breaking process is found to have a significant effect on the ac transport through the coupled double dot.

  3. Quantum theory of electronic double-slit diffraction

    OpenAIRE

    Wu, Xiang-Yao; Zhang, Bai-Jun; Liu, Xiao-Jing; Wang, Li; Liu, Bing; Fan, Xi-Hui; Guo, Yi-Qing

    2006-01-01

    The phenomena of electron, neutron, atomic and molecular diffraction have been studied by many experiments, and these experiments are explained by some theoretical works. In this paper, we study electronic double-slit diffraction with quantum mechanical approach. We can obtain the results: (1) When the slit width $a$ is in the range of $3\\lambda\\sim 50\\lambda$ we can obtain the obvious diffraction patterns. (2) when the ratio of $\\frac{d+a}{a}=n (n=1, 2, 3,\\cdot\\cdot\\cdot)$, order $2n, 3n, 4n...

  4. Controlling Below-Threshold Nonsequential Double Ionization via Quantum Interference

    CERN Document Server

    Maxwell, A S

    2015-01-01

    We show through simulation that quantum interference in non-sequential double ionization can be used to control the recollision with subsequent ionization (RESI) mechanism. This includes the shape, localization and symmetry of RESI electron-momentum distributions, which may be shifted from a correlated to an anti-correlated distribution or vice versa, far below the direct ionization threshold intensity. As a testing ground, we reproduce recent experimental results by employing specific coherent superpositions of excitation channels. We examine two types of interference, from electron indistinguishability and intra-cycle events, and from different excitation channels.

  5. Localized double-quantum-filtered 1H NMR spectroscopy

    Science.gov (United States)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  6. Double-layer-gate architecture for few-hole GaAs quantum dots

    Science.gov (United States)

    Wang, D. Q.; Hamilton, A. R.; Farrer, I.; Ritchie, D. A.; Klochan, O.

    2016-08-01

    We report the fabrication of single and double hole quantum dots using a double-layer-gate design on an undoped accumulation mode {{Al}}x{{Ga}}1-x{As}/GaAs heterostructure. Electrical transport measurements of a single quantum dot show varying addition energies and clear excited states. In addition, the two-level-gate architecture can also be configured into a double quantum dot with tunable inter-dot coupling.

  7. Double-layer-gate architecture for few-hole GaAs quantum dots.

    Science.gov (United States)

    Wang, D Q; Hamilton, A R; Farrer, I; Ritchie, D A; Klochan, O

    2016-08-19

    We report the fabrication of single and double hole quantum dots using a double-layer-gate design on an undoped accumulation mode [Formula: see text]/GaAs heterostructure. Electrical transport measurements of a single quantum dot show varying addition energies and clear excited states. In addition, the two-level-gate architecture can also be configured into a double quantum dot with tunable inter-dot coupling. PMID:27389108

  8. Entanglement evolution in the open quantum systems consisting of asymmetric oscillators

    Science.gov (United States)

    Afshar, Davood; Mehrabankar, Somayeh; Abbasnezhad, Farkhondeh

    2016-03-01

    Using the theory of open quantum systems, we study the entanglement evolution in two and three-mode systems consisting of uncoupled harmonic oscillators which interact with a thermal bath as the environment. The evolution of the system is obtained with the use of the master equation in the Lindblad form with the Markovian approximation. The coherent states of a spinless charged particle in an anisotropic harmonic potential and a uniform magnetic field are considered as the initial states of two and three-mode systems. Then by the use of the positive partial transpose criterion for three-mode system and the logarithmic negativity for two-mode system, the entanglement evolution is obtained as a function of the temperature, dissipation coefficient, magnetic field and asymmetric parameter. In both two and three-mode systems, by increasing the dissipation coefficient and temperature, the entanglement sudden death occurs sooner. Also, for certain values of the magnetic field and asymmetric parameter which depend on the other parameters, the entanglement survives the most.

  9. Generalized asymmetric phase-covariant quantum cloning within a nonextensive approach

    Science.gov (United States)

    Boudjema, R.; Hamici, A.-H.; Hachemane, M.; Smida, A.

    2016-01-01

    In this paper, we present a generalized transformation of the optimal asymmetric 1longrightarrow 2 phase-covariant quantum cloning. This generalization is based on the deformed forms of the exponential that emerge from nonextensive statistical mechanics. In particular, two distinct definitions of the q-exponential are discussed. The case where the cloning is symmetric is also studied. In order to highlight the influence of nonextensive treatment on the perfection of clones and entanglement, the effect of the q-index has been clearly illustrated in figures depicting the fidelities in terms of the entanglement parameter θ for different values of q. Our study shows that due to the intrinsic properties of the system, the entanglement is not preserved. Thus, entanglement can be controlled by the nonextensive parameter. As an illustration, the incoherent attack on the BB84 protocol has also been considered in the economical case.

  10. Supersymmetrically bounding of asymmetric states and quantum phase transitions by anti-crossing of symmetric states

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...

  11. Energy dynamics in ZnSe/ZnMnSe double-quantum-well structures

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Stephanie; Heimbrodt, Wolfram; Horst, Swantje; Chernikov, Alexej; Chatterjee, Sangam [Department of Physics and Material Sciences Center, Phillipps-University Marburg (Germany)

    2009-07-01

    Asymmetric ZnSe/ZnMnSe double-quantum-well (DQW) structures with different barrier width have been grown between dilute magnetic ZnMnSe cladding layers on a (100)GaAs substrate with a ZnSe buffer. The DQWs have been studied by cw and time resolved spectroscopy in external magnetic fields up to 7 Tesla. The ZnSe quantum wells are under tensile strain in these DQW structures yielding the light-hole exciton states to be the energetically lowest lying states. This is the main difference to earlier papers, where tunnelling of carriers and excitons have been studied in DQW structures with heavy hole excitons being the lowest lying states. In the magnetic field we were able to change the barrier height, to split the states of the wells due to the Giant-Zeeman-effect of the ZnMnSe barriers and to manipulate the radiationless energy transfer processes between the 3d-internal transitions and the excitonic states. As a result of the sophisticated interaction of these mechanisms a unique excitation energy dynamics was found and is discussed in detail.

  12. Andreev reflection and Aharonov-Bohm oscillations through a parallel-coupled double quantum dot with spin-flip scattering

    International Nuclear Information System (INIS)

    Using nonequilibrium Green's function techniques, we investigate Andreev reflection and Aharonov-Bohm oscillations through a parallel-coupled double quantum dot connected with a ferromagnetic lead and a superconductor lead. The possibility of controlling Andreev reflection and Aharonov-Bohm oscillations of the system is explored by tuning the interdot coupling, the gate voltage, the magnetic flux, and the intradot spin-flip scattering. When the spin-flip scattering increases, Fano resonant peaks resulting from the asymmetrical levels of the two quantum dots begin to split, and Aharonov-Bohm oscillations are suppressed. Due to the interdot coupling, one strongly and one weakly coupled state of the system can be formed. The magnetic flux can exchange the function of the two states, which leads to a swap effect.

  13. Zeros in single-channel transmission through double quantum dots.

    Science.gov (United States)

    Rotter, I; Sadreev, A F

    2005-04-01

    By using a simple model we consider single-channel transmission through a double quantum dot that consists of two single dots coupled by a wire of finite length L . Each of the two single dots is characterized by a few energy levels only, and the wire is assumed to have only one level whose energy depends on the length L . The transmission is described by using S matrix theory and the effective non-Hermitian Hamilton operator H(eff) of the system. The decay widths of the eigenstates of H(eff) depend strongly on energy. The model explains the origin of the transmission zeros of the double dot that is considered by us. Mostly, they are caused by (destructive) interferences between neighboring levels and are of first order. When, however, both single dots are identical and their transmission zeros are of first order, those of the double dot are of second order. First-order transmission zeros cause phase jumps of the transmission amplitude by pi, while there are no phase jumps related to second-order transmission zeros. In this latter case, a phase jump occurs due to the fact that the width of one of the states vanishes when crossing the energy of the transmission zero. The parameter dependence of the widths of the resonance states is determined by the spectral properties of the two single dots. PMID:15903767

  14. Two-dimensional double-quantum spectroscopy: peak shapes as a sensitive probe of carrier interactions in quantum wells

    CERN Document Server

    Tollerud, Jonathan O

    2016-01-01

    We identify carrier scattering at densities below which it has previously been observed in semiconductor quantum wells. These effects are evident in the peakshapes of 2D double-quantum spectra, which change as a function of excitation density. At high excitation densities ($\\geq 10^{9}$ carriers/,cm$^{-2}$) we observe untilted peaks similar to those reported in previous experiments. At low excitation densities (<$10^{8}$ carriers cm$^{-2}$) we observe narrower, tilted peaks. Using a simple simulation, we show that tilted peak-shapes are expected in double-quantum spectra when inhomogeneous broadening is much larger than homogeneous broadening, and that fast pure-decoherence of the double-quantum coherence can obscure this peak tilt. These results show that carrier interactions are important at lower densities than previously expected, and that the `natural' double-quantum peakshapes are hidden by carrier interactions at the excitation densities typically used. Furthermore, these results demonstrate that an...

  15. The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation

    Science.gov (United States)

    Jelic, V.; Marsiglio, F.

    2012-01-01

    The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…

  16. Double Rashba Quantum Dots Ring as a Spin Filter

    Directory of Open Access Journals (Sweden)

    Chi Feng

    2008-01-01

    Full Text Available AbstractWe theoretically propose a double quantum dots (QDs ring to filter the electron spin that works due to the Rashba spin–orbit interaction (RSOI existing inside the QDs, the spin-dependent inter-dot tunneling coupling and the magnetic flux penetrating through the ring. By varying the RSOI-induced phase factor, the magnetic flux and the strength of the spin-dependent inter-dot tunneling coupling, which arises from a constant magnetic field applied on the tunneling junction between the QDs, a 100% spin-polarized conductance can be obtained. We show that both the spin orientations and the magnitude of it can be controlled by adjusting the above-mentioned parameters. The spin filtering effect is robust even in the presence of strong intra-dot Coulomb interactions and arbitrary dot-lead coupling configurations.

  17. Quantum chaos and the double-slit experiment

    International Nuclear Information System (INIS)

    We report on the numerical simulation of the double-slit experiment, where the initial wave packet is bounded inside a billiard domain with perfectly reflecting walls. If the shape of the billiard is such that the classical ray dynamics is regular, we obtain interference fringes whose visibility can be controlled by changing the parameters of the initial state. However, if we modify the shape of the billiard thus rendering classical (ray) dynamics fully chaotic, the interference fringes disappear and the intensity on the screen becomes the (classical) sum of intensities for the two corresponding one-slit experiments. Thus we show a clear and fundamental example in which transition to chaotic motion in a deterministic classical system, in absence of any external noise, leads to a profound modification in the quantum behavior

  18. Spin transport properties in double quantum rings connected in series*

    Institute of Scientific and Technical Information of China (English)

    Du Jian; Wang Suxin; Pan Jianghong

    2011-01-01

    A new model of metal/semiconductor/metal double-quantum-ring connected in series is proposed and the transport properties in this model are theoretically studied. The results imply that the transmission coefficient shows periodic variations with increasing semiconductor ring size. The effects of the magnetic field and Rashba spin-orbit interaction on the transmission coefficient for two kinds of spin state electrons are different. The number of the transmission coefficient peaks is related to the length ratio between the upper ann and the half circumference of the ring. In addition, the transmission coefficient shows oscillation behavior with enhanced external magnetic field, and the corresponding average value is related to the two leads' relative position.

  19. Transport, Charge Sensing, and Quantum Control in Si/SiGe Double Quantum Dots

    Science.gov (United States)

    Wang, Ke; Koppinen, Panu; Dovzhenko, Yuliya; Petta, Jason

    2011-03-01

    Si/SiGe quantum dots hold great promise as ultra-coherent qubits. In comparison with the GaAs system, Si has a weaker hyperfine interaction due to the zero nuclear spin of 28 Si and smaller spin-orbit coupling due to its lighter atomic weight. However, the fabrication of highly controllable Si/SiGe quantum dots is complicated by valley degeneracy, the larger effective electron mass, and the difficulty of obtaining high quality samples. Here we develop a robust fabrication process for depletion mode Si/SiGe quantum dots, demonstrating high quality ohmic contacts and low-leakage Pd top gates. We report DC transport measurements as well as charge sensing in single and double quantum dots. The quantum dot gate electrode pattern allows a relatively high level of control over the confinement potential, tunneling rates, and electron occupation. Funded by the Sloan and Packard Foundations, NSF, and DARPA QuEST. We thank Jag Shah for logistical support.

  20. Two-band electron transport in a double quantum well

    Science.gov (United States)

    Fletcher, R.; Tsaousidou, M.; Smith, T.; Coleridge, P. T.; Wasilewski, Z. R.; Feng, Y.

    2005-04-01

    The carrier densities and mobilities have been measured for the first two populated subbands in a GaAs double quantum well (DQW) as a function of the top gate voltage Vg . The densities and quantum mobilities ( μiq , i=1,2 ) were obtained from the de Haas-Shubnikov oscillations. The transport mobilities (μit) were determined from the semiclassical low-field magnetoresistance with intersubband scattering taken into account. At 0.32K the experimental data on both μit and μiq , as a function of Vg , lie on two curves which cross at the resonance point as expected from theoretical considerations. At 1.09K and 4.2K the μit curves no longer cross at resonance, but show a gap. The reason for this is not known. The mobilities have been calculated in the low-temperature limit within the Boltzmann framework by assuming that they are limited by scattering due to ionized impurities located at the outside interfaces. The assumption of short-range scattering is justified by the relatively small value of the ratio μit/μiq that is measured in the present system. The theoretical values obtained for μit and μiq are in reasonable agreement with the experiment for all values of Vg examined. We have also calculated the resistivity and intersubband scattering rates of the DQW as a function of Vg and again find good agreement with measured values.

  1. Adaptive double chain quantum genetic algorithm for constrained optimization problems

    Institute of Scientific and Technical Information of China (English)

    Kong Haipeng; Li Ni; Shen Yuzhong

    2015-01-01

    Optimization problems are often highly constrained and evolutionary algorithms (EAs) are effective methods to tackle this kind of problems. To further improve search efficiency and con-vergence rate of EAs, this paper presents an adaptive double chain quantum genetic algorithm (ADCQGA) for solving constrained optimization problems. ADCQGA makes use of double-individuals to represent solutions that are classified as feasible and infeasible solutions. Fitness (or evaluation) functions are defined for both types of solutions. Based on the fitness function, three types of step evolution (SE) are defined and utilized for judging evolutionary individuals. An adaptive rotation is proposed and used to facilitate updating individuals in different solutions. To further improve the search capability and convergence rate, ADCQGA utilizes an adaptive evolution process (AEP), adaptive mutation and replacement techniques. ADCQGA was first tested on a widely used benchmark function to illustrate the relationship between initial parameter values and the convergence rate/search capability. Then the proposed ADCQGA is successfully applied to solve other twelve benchmark functions and five well-known constrained engineering design problems. Multi-aircraft cooperative target allocation problem is a typical constrained optimization problem and requires efficient methods to tackle. Finally, ADCQGA is successfully applied to solving the target allocation problem.

  2. Experimental demonstration of optimal universal asymmetric quantum cloning of polarization states of single photons by partial symmetrization

    Czech Academy of Sciences Publication Activity Database

    Černoch, Antonín; Soubusta, Jan; Čelechovská, L.; Dušek, M.; Fiurášek, J.

    2009-01-01

    Roč. 80, č. 6 (2009), 062306/1-062306/6. ISSN 1050-2947 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : kvantová informace * asymetrické klonování * částečná symetrizace quantum information * asymmetric cloning * partial symmetrization Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.866, year: 2009

  3. Intersubband absorption with difference-frequency generation in GaAs asymmetric quantum wells

    International Nuclear Information System (INIS)

    An asymmetric quantum well (AQW) is designed to emit terahertz (THz) waves by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.5As. The characteristics of absorption coefficients are analysed under the parabolic and non-parabolic energy-band conditions in detail. We find that the absorption coefficients vary with the two pump optical intensities, and they reach the maxima when the pump wavelengths are given as λp1 = 9.70 μm and λp2 = 10.64 μm, respectively. Compared with non-parabolic conditions, the total absorption coefficient under parabolic conditions shows a blue shift, which is due to the increase in the energy difference between the ground and excited states. By adjusting the two pump optical intensities, the wave vector phase-matching condition inside the AQW is satisfied. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Tunnelling process in ZnSe/ZnMnSe double-quantum-well structures

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Stephanie; Niebling, Tobias; Heimbrodt, Wolfram [Phillipps-University Marburg (Germany). Department of Physics and Matrial Science Center

    2008-07-01

    Asymmetric ZnSe/ZnMnSe double-quantum-well (DQW) structures with different barrier width have been grown between ZnMnSe cladding layers on a (100)GaAs substrate with a ZnSe buffer. The ZnSe wells are under tensile strain in these DQW structures yielding the light-hole exciton states to be the energetically lowest lying states. This is different to earlier papers, where tunnelling of carriers and excitons have been studied in DQW structures made of diluted magnetic semiconductors with heavy hole excitons to be the lowest lying states. In an external magnetic field we were able to manipulate the barrier height due to Giant Zeeman effect of the ZnMnSe barriers. Hence we can study the tunnelling processes in these structures in dependence of the height and width of the barrier by photoluminescence, photomodulated reflectivity as well as time resolved measurements. Surprisingly, very different results to heavy hole tunnelling have been found. The obtained results and differences will be discussed in detail.

  5. Dynamics of atom tunnelling in a symmetric double well coupled to an asymmetric double well: The case of malonaldehyde

    Indian Academy of Sciences (India)

    S Ghosh; S P Bhattacharyya

    2012-01-01

    The quantum dynamics of intramolecular H-atom transfer in malonaldehyde is investigated with a model two-dimensional Hamiltonian constructed with the help of available ab initio theoretical data on the relevant portion of the potential energy surface. At zero temperature, the H-atom transfer takes place by tunnelling leading to cis-cis isomerization while the cis-trans channel remains closed. Local excitation of the cis-trans mode by an external field is predicted to quench cis-cis tunnelling isomerization while excitation of the cis-cis mode is found to enhance the isomerization by tunnelling.

  6. Hysteresis in the Quantum Hall Regimes in Electron Double-Quantum Structures

    Science.gov (United States)

    Pan, W.; Reno, J. L.; Simmons, J. A.

    2005-04-01

    We present in this paper the experimental results of transport hysteresis in an extremely imbalanced electron double-quantum-well (DQW) structure. The ratio of the top layer density (ntop) to bottom layer density (nbot) is continuously tuned by applying voltage to a front gate. Under a condition when the top layer is nearly depleted (ntop ~ 3×1010 cm-2) while the bottom layer remains at nbot = 1.9 × 1011 cm-2, the hysteresis is absent in the B sweeps as long as the total Landau level filling ν < 1 and the 2D electron systems are in the fractional quantum Hall effect regime. Surprisingly, a large hysteresis is observed during the gate sweeps at the same values of B and ntop. We attribute this unexpected hysteresis to the formation of an insulating state, probably a weakly pinned Wigner solid state, in the top layer.

  7. The Double Quantum Dot Feline Cousin of Schroedinger's Cat: An Experimental Testbed for a Discourse of Quantum Measurement Dichotomies

    OpenAIRE

    Bandyopadhyay, Supriyo

    1999-01-01

    Intriguing dichotomies in quantum measurement theory involving the role of the obersever, objective reality, collapse of wavefunctions and actualization of a measurement outcome are cast into a patholigical gedanken experiment involving a single electron in a double quantum dot system coupled via a weak link.

  8. Quantum confinement of a hydrogenic donor in a double quantum well: Through diamagnetic susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, G.; Nithiananthi, P., E-mail: nithyauniq@gmail.com [Nanostructure Lab, Department of Physics, Gandhigram Rural University, Gandhigram, Tamilnadu (India)

    2015-06-24

    Diamagnetic susceptibility of a randomly distributed donor in a GaAs/Al{sub 0.3}Ga{sub 0.7}As Double Quantum Well has been calculated in its ground state as a function of barrier and well width. It is shown that the modification in the barrier and well dimension significantly influences the dimensional character of the donor through modulating the subband distribution and in turn the localization of the donor. The effect of barrier and well thickness on the interparticle distance has also been observed. Interestingly it opens up the possibility of tuning the susceptibility and monitoring the tunnel coupling among the wells.

  9. Quantum confinement of a hydrogenic donor in a double quantum well: Through diamagnetic susceptibility

    International Nuclear Information System (INIS)

    Diamagnetic susceptibility of a randomly distributed donor in a GaAs/Al0.3Ga0.7As Double Quantum Well has been calculated in its ground state as a function of barrier and well width. It is shown that the modification in the barrier and well dimension significantly influences the dimensional character of the donor through modulating the subband distribution and in turn the localization of the donor. The effect of barrier and well thickness on the interparticle distance has also been observed. Interestingly it opens up the possibility of tuning the susceptibility and monitoring the tunnel coupling among the wells

  10. Quantum spin and charge pumping through double quantum dots with ferromagnetic leads

    International Nuclear Information System (INIS)

    The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green's function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring. -- Highlights: → We theoretically investigate the pumping of electrons through double quantum dots attached to ferromagnetic leads. → An oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. → When both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration. → By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. → When only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions.

  11. A Novel Method for Calculation of Strain Energy Release Rate of Asymmetric Double Cantilever Laminated Composite Beams

    Science.gov (United States)

    Shokrieh, M. M.; Zeinedini, A.

    2014-06-01

    In this research, a novel data reduction method for calculation of the strain energy release rate ( SERR) of asymmetric double cantilever beams ( ADCB) is presented. For this purpose the elastic beam theory ( EBT) is modified and the new method is called as the modified elastic beam theory ( MEBT). Also, the ADCB specimens are modeled using ABAQUS/Standard software. Then, the initiation of delamination of ADCB specimens is modeled using the virtual crack closure technique ( VCCT). Furthermore, magnitudes of the SERR for different samples are also calculated by an available data reduction method, called modified beam theory ( MBT). Using the hand lay-up method, different laminated composite samples are manufactured by E-glass/epoxy unidirectional plies. In order to measure the SERR, all samples are tested using an experimental setup. The results determined by the new data reduction method ( MEBT) show good agreements with the results of the VCCT and the MBT.

  12. Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields

    OpenAIRE

    Busl, Maria; Platero, Gloria

    2010-01-01

    We analyze transport through both a double quantum dot and a triple quantum dot with inhomogeneous Zeeman splittings in the presence of crossed dc and ac magnetic fields. We find that strongly spin-polarized current can be achieved by tuning the relative energies of the Zeeman-split levels of the dots, by means of electric gate voltages: depending on the energy level detuning, the double quantum dot works either as spin-up or spin-down filter. We show that a triple quantum dot in series under...

  13. Photoluminescence of n-doped double quantum well—electron subbands under influence of in-plane magnetic fields

    Science.gov (United States)

    Orlita, M.; Byszewski, M.; Döhler, G. H.; Grill, M.; Hlídek, P.; Malzer, S.; Zvára, M.

    2006-08-01

    We report on photoluminescence (PL) measurements of a GaAs/AlGaAs double quantum well (DQW) in high magnetic fields. Measurements were carried out on a selectively contacted symmetric p- δn-DQW- δn-p structure, which allows a variation of the electron density in DQW by a p-n bias and simultaneously a tilting of DQW, when a p-p bias is applied. Attention was paid to phenomena in in-plane magnetic fields, theoretically studied by Huang and Lyo (HL), [Phys. Rev. B 59, (1999) 7600]. In this paper, we compare our results for both symmetric and asymmetric DQWs with the theoretical model made by HL. Whereas the spectra from a symmetric DQW fully confirmed the theoretical predictions, the results gained from DQW with an electric-field-induced asymmetry did not allow a proper study of anticipated effects. The reasons for that are discussed.

  14. Kinetic analysis of the thermal isomerisation pathways in an asymmetric double azobenzene switch

    NARCIS (Netherlands)

    Robertus, Jort; Reker, Siebren F.; Pijper, Thomas C.; Deuzeman, Albert; Browne, Wesley R.; Feringa, Ben L.

    2012-01-01

    Here we report a photochemical and kinetic study of the thermal relaxation reaction of a double azobenzene system, in which two azobenzene photochromic units are connected via a phenyl ring. Upon UV irradiation, three thermally unstable isomers are formed. Kinetic studies using arrayed H-1-NMR spect

  15. Shifted one-parameter supersymmetric family of quartic asymmetric double-well potentials

    International Nuclear Information System (INIS)

    Extending our previous work (Rosu, 2014), we define supersymmetric partner potentials through a particular Riccati solution of the form F(x)=(x−c)2−1, where c is a real shift parameter, and work out the quartic double-well family of one-parameter isospectral potentials obtained by using the corresponding general Riccati solution. For these parametric double well potentials, we study how the localization properties of the two wells depend on the parameter of the potentials for various values of the shifting parameter. We also consider the supersymmetric parametric family of the first double-well potential in the Razavy chain of double well potentials corresponding to F(x)=1/2 sinh2x−2((1+√(2))sinh2x)/((1+√(2))cosh2x+1) , both unshifted and shifted, to test and compare the localization properties. - Highlights: • Quartic one-parameter DWs with an additional shift parameter are introduced. • Anomalous localization feature of their zero modes is confirmed at different shifts. • Razavy one-parameter DWs are also introduced and shown not to have this feature

  16. Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M

    2015-01-01

    The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation. PMID:25542679

  17. Hysteresis in the quantum Hall regimes in electron double quantum well structures

    Science.gov (United States)

    Pan, W.; Reno, J. L.; Simmons, J. A.

    2005-04-01

    We present here experimental results on magnetotransport coefficients in electron double quantum well (DQW) structures. Consistent with previous studies, transport hysteresis is is observed in the electron DQWs. Furthermore, in our gated DQW samples, by varying the top layer Landau level filling (νtop) while maintaining a relatively constant filling factor in the bottom layer (νbot) , we are able to explain the sign of Rxx(up)-Rxx(down) , where Rxx(up) is the magnetoresistance when the gate voltage Vg is swept up and Rxx(down) when Vg is swept down. Interestingly, at small magnetic fields hysteresis is generally stronger when the top quantum well is in the even integer quantum Hall effect (IQHE) regime (e.g., νtop=2 ) than in the odd IQHE regime (e.g, νtop=1 ). While at higher B fields, the hysteresis at νtop=1 becomes the strongest. The switching occurs around the B field at νbot=3 .

  18. Unusual quantum magnetic-resistive oscillations in a superconducting structure of two circular asymmetric loops in series

    International Nuclear Information System (INIS)

    Highlights: • We found a coupling between quantum states of two asymmetric circular loops in series. • Distance between the loops was such large that the coupling should not be expected. • In order to detect the coupling we measured two types of quantum voltage oscillations. • Rectified direct and dc voltages versus normal magnetic field were recorded. • The rectified voltage appeared in the loops biased by an ac (without a dc component). -- Abstract: We measured both quantum oscillations of a rectified time-averaged direct voltage Vrec(B) and a dc voltage Vdc(B) as a function of normal magnetic field B, in a thin-film aluminum structure of two asymmetric circular loops in series at temperatures below the superconducting critical temperature Tc. The Vrec(B) and Vdc(B) voltages were observed in the structure biased only with an alternating current (without a dc component) and only with a direct current (without an ac component), respectively. The aim of the measurements was to find whether interaction (nonlinear coupling) exists between quantum magnetic-resistive states of two loops at a large distance from each other. The distance between the loop centers was by an order of magnitude longer than the Ginzburg–Landau coherence length ξ(T). At such distance, one would not expect to detect any interaction between the quantum states of the loops. But we did find such an interaction. Moreover, we found that Vdc(B) functions (like Vrec(B) ones) can be used to describe the quantum states of the loops

  19. Repulsion of Single-well Fundamental Edge Magnetoplasmons in Double Quantum Wells

    OpenAIRE

    Balev, O. G.; Vasilopoulos, P.

    1998-01-01

    A {\\it microscopic} treatment of fundamental edge magnetoplasmons (EMPs) along the edge of a double quantum well (DQW) is presented for strong magnetic fields, low temperatures, and total filling factor \

  20. EFFECTS OF GEOMETRICAL STRUCTURE ON MICROWAVE AND OPTICAL PROPERTIES OF TRAVELING WAVE ELECTROABSORPTION MODULATORS BASED ON ASYMMETRIC COUPLED STRAINED QUANTUM WELLS ACTIVE LAYER

    Directory of Open Access Journals (Sweden)

    KAMBIZ ABEDI

    2011-08-01

    Full Text Available This paper presents the effects of geometrical structure on microwave and optical properties of traveling wave electroabsorption modulators (TWEAMs based on asymmetric intra-step-barrier coupled double strained quantum wells (AICD-SQW active layer. The AICD-SQW active layer structure has advantages such as very low insertion loss, zero chirp, large Stark shift and high extinction ratio in comparison with the intra-step quantum well (IQW structure. Firstly, the influences of the intrinsic (active layer thickness and width on effective optical index and confinement factor are analyzed. Furthermore, the effect of the intrinsic layer thickness on their transmission line microwave properties such as microwave index, microwave loss, andcharacteristic impedance are evaluated. The thickness and width of active layer are changed from 0 μm to 1.4 μm and 1 μm to 3 μm, respectively. Finally, the frequency response of TWEAM based on AICD-SQW active layer is calculated using circuit model.

  1. Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer

    Directory of Open Access Journals (Sweden)

    Yang XF

    2010-01-01

    Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.

  2. Spin-coupled double-quantum-dot behavior inside a single-molecule transistor

    OpenAIRE

    Bernand-Mantel, A.; Seldenthuis, J. S.; Beukman, A.; van der Zant, H. S. J.; Meded, V.; Chandrasekhar, R; Fink, K.; Ruben, M; Evers, F.

    2010-01-01

    We report on the observation of Kondo and split Kondo peaks in single-molecule transistors containing a single spin transition molecule with a Fe2+ ion. Coulomb blockade characteristics reveal a double quantum dot behavior in a parallel configuration, making our system a molecular equivalent to a semiconducting double-quantum-dot system. As the gate voltage is increased the charging of the second dot by an additional electron induces a splitting of the Kondo peak. We discuss possible origins ...

  3. Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor

    Science.gov (United States)

    Jagadale, Ajay D.; Guan, Guoqing; Li, Xiumin; Du, Xiao; Ma, Xuli; Hao, Xiaogang; Abudula, Abuliti

    2016-02-01

    CoMn LDH electrode is successfully prepared via facile and cost-effective electrodeposition method. The effect of Co2+/Mn2+ molar ratio on supercapacitive performance is systematically investigated. It is found that the presence of Mn(OH)6 unit in CoMn LDH offers an excellent reversibility as well as highly electrochemical activity for supercapacitor application. The CoMn LDH film with a Co2+/Mn2+ molar ratio of 9:1 loaded on Ni foam electrode exhibits the maximum specific capacitance of 1062.6 F/g at the current density of 0.7 A/g with an excellent cyclic stability of 96.3% over 5000 CD cycles. It indicates that CoMn LDH nanoflakes loaded on Ni foam can minimize the lattice mismatch which leads to an excellent cyclic stability. The asymmetric supercapacitor assembled with CoMn LDH/Ni foam and AC electrodes shows an excellent cyclic life of 84.2% and an energy density of 4.4 Wh/kg with a power density of 2500 W/kg.

  4. Spin-orbit effects in carbon-nanotube double quantum dots

    DEFF Research Database (Denmark)

    Weiss, S; Rashba, E I; Kuemmeth, Ferdinand;

    2010-01-01

    We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...

  5. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor

    DEFF Research Database (Denmark)

    Hu, Yongjie; Churchill, Hugh; Reilly, David;

    2007-01-01

    between the dots and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to...

  6. Practical quantum repeaters with linear optics and double-photon guns

    OpenAIRE

    Kok, Pieter; Williams, Colin P.; Dowling, Jonathan P.

    2002-01-01

    We show how to create practical, efficient, quantum repeaters, employing double-photon guns, for long-distance optical quantum communication. The guns create polarization-entangled photon pairs on demand. One such source might be a semiconducter quantum dot, which has the distinct advantage over parametric down-conversion that the probability of creating a photon pair is close to one, while the probability of creating multiple pairs vanishes. The swapping and purifying components are implemen...

  7. Nuclear Spin Dynamics in Double Quantum Dots: Multi-Stability, Dynamical Polarization, Criticality and Entanglement

    OpenAIRE

    Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.

    2014-01-01

    We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically-defined double quantum dot (DQD) in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective ...

  8. Time resolved quantum dynamics of double ionization in strong laser fields

    OpenAIRE

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Eckhardt, Bruno; Zakrzewski, Jakub

    2006-01-01

    Quantum calculations of a 1+1-dimensional model for double ionization in strong laser fields are used to trace the time evolution from the ground state through ionization and rescattering to the two electron escape. The subspace of symmetric escape, a prime characteristic of nonsequential double ionization, remains accessible by a judicious choice of 1-d coordinates for the electrons. The time resolved ionization fluxes show the onset of single and double ionization, the sequence of events du...

  9. Therm splitting in a quantum mechanical double center problem for the Dirac equation

    International Nuclear Information System (INIS)

    An asymptotic (by large internuclear distance) theory of a quantum mechanical double center problem for the Dirac equation is presented. An asymptotic behaviour of the double center wave function of the Dirac electron for the system: an arbitrary ion plus atom is constructed. By using this function the leading term of the therm splitting asymptotic in the relativistic double center problem is found. 37 refs

  10. Broadband Absorption Enhancement in Thin Film Solar Cells Using Asymmetric Double-Sided Pyramid Gratings

    Science.gov (United States)

    Alshal, Mohamed A.; Allam, Nageh K.

    2016-07-01

    A design for a highly efficient modified grating crystalline silicon (c-Si) thin film solar cell is demonstrated and analyzed using the two-dimensional (2-D) finite element method. The suggested grating has a double-sided pyramidal structure. The incorporation of the modified grating in a c-Si thin film solar cell offers a promising route to harvest light into the few micrometers active layer. Furthermore, a layer of silicon nitride is used as an antireflection coating (ARC). Additionally, the light trapping through the suggested design is significantly enhanced by the asymmetry of the top and bottom pyramids. The effects of the thickness of the active layer and facet angle of the pyramid on the spectral absorption, ultimate efficiency (η), and short-circuit current density (J sc) are investigated. The numerical results showed 87.9% efficiency improvement over the conventional thin film c-Si solar cell counterpart without gratings.

  11. Quantum double actions on operator algebras and orbifold quantum field theories

    International Nuclear Information System (INIS)

    Starting from a local quantum field theory with an unbroken compact symmetry group G in 1+1 dimensional spacetime we construct disorder fields implementing gauge transformations on the fields (order variables) localized in a wedge region. Enlarging the local algebras by these disorder fields we obtain a nonlocal field theory, the fixpoint algebras of which under the appropriately extended action of the group G are shown to satisfy Haag duality in every simple sector. The specifically 1+1 dimensional phenomenon of violation of Haag duality of fixpoint nets is thereby clarified. In the case of a finite group G the extended theory is acted upon in a completely canonical way by the quantum double D(G) and satisfies R-matrix commutation relations as well as a Verlinde algebra. Furthermore, our methods are suitable for a concise and transparent approach to bosonization. The main technical ingredient is a strengthened version of the split property which should hold in all reasonable massive theories. In the appendices (part of) the results are extended to arbitary locally compact groups and our methods are adapted to chiral theories on the circle. (orig.)

  12. Coupling capacitance between double quantum dots tunable by the number of electrons in Si quantum dots

    International Nuclear Information System (INIS)

    Tunability of capacitive coupling in the Si double-quantum-dot system is discussed by changing the number of electrons in quantum dots (QDs), in which the QDs are fabricated using pattern-dependent oxidation (PADOX) of a Si nanowire and multi-fine-gate structure. A single QD formed by PADOX is divided into multiple QDs by additional oxidation through the gap between the fine gates. When the number of electrons occupying the QDs is large, the coupling capacitance increases gradually and almost monotonically with the number of electrons. This phenomenon is attributed to the gradual growth in the effective QD size due to the increase in the number of electrons in the QDs. On the other hand, when the number of electrons changes in the few-electron regime, the coupling capacitance irregularly changes. This irregularity can be observed even up to 40 electrons. This behavior is attributable the rough structure of Si nano-dots made by PADOX. This roughness is thought to induce complicated change in the electron wave function when an electron is added to or subtracted from a QD

  13. Quantum Hall effect in an InAs /AlSb double quantum well

    Science.gov (United States)

    Yakunin, M. V.; Podgornykh, S. M.; Sadofyev, Yu. G.

    2009-01-01

    Double quantum wells (DQWs) were first implemented in the InAs /AlSb heterosystem, which is characterized by a large Landé g factor ∣g∣=15 of the InAs layers forming the well, much larger than the bulk g factor ∣g∣=0.4 of the GaAs in conventional GaAs /AlGaAs DQWs. The quality of the samples is good enough to permit observation of a clear picture of the quantum Hall effect (QHE). Despite the small tunneling gap, which is due to the large barrier height (1.4eV), features with odd filling factors ν =3,5,7,… are present in the QHE, due to collectivized interlayer states of the DQW. When the field is rotated relative to the normal to the layers, the ν =3 state is suppressed, confirming the collectivized nature of that state and denying that it could owe its existence to a strong asymmetry of the DQW. Previously the destruction of the collectivized QHE states by a parallel field had been observed only for the ν =1 state. The observation of a similar effect for ν =3 in an InAs /AlSb DQW may be due to the large bulk g factor of InAs.

  14. Quantum fluctuations of the antiferro-antiferromagnetic double-layer

    Institute of Scientific and Technical Information of China (English)

    Jiang Wei; Zhu Cheng-Bo; Yu Gui-Hong; Lo Veng-Cheong

    2009-01-01

    This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature.It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists,there will be no acoustic energy branch in the system. The anisotropy constant,antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.

  15. Experimental evidence of resonant tunneling via localized DQW states in an asymmetric triple barrier structure

    Science.gov (United States)

    Velásquez, Rober

    2003-04-01

    In this work we report on field-induced features appearing in the tunneling current traces of a biased asymmetric triple barrier resonant tunneling device in the presence of an in-plane magnetic field. A theoretical model that satisfactorily explains the origin of these features is discussed. The reported data evidences the localized nature of the quantum states in thin layer asymmetric double-quantum-well structures.

  16. Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer

    Science.gov (United States)

    Guo, Hui-Qiang; Tang, Wei-Yue; Liu, Liang; Wei, Jian; Li, Da-Lai; Feng, Jia-Feng; Han, Xiu-Feng

    2015-07-01

    Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions (DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top MgO barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFeB DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter αmag. With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state (antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process αmag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles (θ) to the easy axis of the free layer, the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance. Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00106, 2012CB927400, 2010CB934401, and 2014AA032904), the National High Technology Research and Development Program of China (Grant No. 2014AA032904), and the National Natural Science Foundation of China (Grant Nos. 11434014 and 11104252).

  17. Transport hysteresis in AlGaAs/GaAs double quantum well systems with InAs quantum dots

    International Nuclear Information System (INIS)

    We report on the charge storage effect of InAs quantum dots (QDs) embedded in the upper well of the AlGaAs/GaAs double quantum well structure. Zero field longitudinal resistivity and Hall resistance at weak magnetic fields exhibited a hysteresis effect during the sweeping of the gate voltage due to the accumulation of charges in the quantum dots. On reverse sweeping the gate voltage, the accumulated charges are prevented from being rapidly depleted due to the screening effect of the upper two-dimensional electron gas, which could significantly enhance the operation and reliability of QD-based non-volatile memory devices

  18. Double coupling: modeling subjectivity and asymmetric organization in social-ecological systems

    Directory of Open Access Journals (Sweden)

    David Manuel-Navarrete

    2015-09-01

    Full Text Available Social-ecological organization is a multidimensional phenomenon that combines material and symbolic processes. However, the coupling between social and ecological subsystem is often conceptualized as purely material, thus reducing the symbolic dimension to its behavioral and actionable expressions. In this paper I conceptualize social-ecological systems as doubly coupled. On the one hand, material expressions of socio-cultural processes affect and are affected by ecological dynamics. On the other hand, coupled social-ecological material dynamics are concurrently coupled with subjective dynamics via coding, decoding, personal experience, and human agency. This second coupling operates across two organizationally heterogeneous dimensions: material and symbolic. Although resilience thinking builds on the recognition of organizational asymmetry between living and nonliving systems, it has overlooked the equivalent asymmetry between ecological and socio-cultural subsystems. Three guiding concepts are proposed to formalize double coupling. The first one, social-ecological asymmetry, expands on past seminal work on ecological self-organization to incorporate reflexivity and subjectivity in social-ecological modeling. Organizational asymmetry is based in the distinction between social rules, which are symbolically produced and changed through human agents' reflexivity and purpose, and biophysical rules, which are determined by functional relations between ecological components. The second guiding concept, conscious power, brings to the fore human agents' distinctive capacity to produce our own subjective identity and the consequences of this capacity for social-ecological organization. The third concept, congruence between subjective and objective dynamics, redefines sustainability as contingent on congruent relations between material and symbolic processes. Social-ecological theories and analyses based on these three guiding concepts would support the

  19. Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq, Muhammad Usman; Peters, Frank H.; Corbett, Brian [Tyndall National Institute, Lee Maltings, Cork (Ireland); Department of Physics, University College Cork, Cork (Ireland); O' Callaghan, James; Roycroft, Brendan; Thomas, Kevin; Pelucchi, Emanuele [Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2016-04-15

    We investigate the electro-optic properties of two oppositely ramped asymmetric quantum well structures in the AlInGaAs material system. The grading of the bandgap in the quantum wells has been achieved by changing the ratio of Al to Ga in the quaternary alloy during the epitaxial growth. The surface normal photo-response and the Fabry-Perot fringe shift in straight waveguides are compared for both structures as a function of applied voltage at 1550 nm for TE-polarized light. The measurements show a change in the refractive index due to a red shift of the excitonic resonances due to the quantum-confined Stark effect. The 10 quantum well structure with a ramp up of the bandgap in the growth direction leads to the figure of merit of the voltage for a π phase shift, V{sub π} by length, L, V{sub π} x L, of 6 as compared to 7 V . mm in the structure with a ramp in opposite direction. Further investigations show that the reduction in V{sub π} is due to increased absorption at high reverse bias which induces a non-linear phase change. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Study of electro-optic effect in asymmetrically ramped AlInGaAs multiple quantum well structures

    International Nuclear Information System (INIS)

    We investigate the electro-optic properties of two oppositely ramped asymmetric quantum well structures in the AlInGaAs material system. The grading of the bandgap in the quantum wells has been achieved by changing the ratio of Al to Ga in the quaternary alloy during the epitaxial growth. The surface normal photo-response and the Fabry-Perot fringe shift in straight waveguides are compared for both structures as a function of applied voltage at 1550 nm for TE-polarized light. The measurements show a change in the refractive index due to a red shift of the excitonic resonances due to the quantum-confined Stark effect. The 10 quantum well structure with a ramp up of the bandgap in the growth direction leads to the figure of merit of the voltage for a π phase shift, Vπ by length, L, Vπ x L, of 6 as compared to 7 V . mm in the structure with a ramp in opposite direction. Further investigations show that the reduction in Vπ is due to increased absorption at high reverse bias which induces a non-linear phase change. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Determination of energy scales in few-electron double quantum dots

    OpenAIRE

    Taubert, Daniela; Schuh, D.; Wegscheider, W.; Ludwig, Stefan

    2011-01-01

    The capacitive couplings between gate-defined quantum dots and their gates vary considerably as a function of applied gate voltages. The conversion between gate voltages and the relevant energy scales is usually performed in a regime of rather symmetric dot-lead tunnel couplings strong enough to allow direct transport measurements. Unfortunately, this standard procedure fails for weak and possibly asymmetric tunnel couplings, often the case in realistic devices. We have developed methods to d...

  2. Time resolved quantum dynamics of double ionization in strong laser fields

    CERN Document Server

    Prauzner-Bechcicki, J S; Sacha, K; Zakrzewski, J; Eckhardt, Bruno; Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub

    2006-01-01

    Quantum calculations of a 1+1-dimensional model for double ionization in strong laser fields are used to trace the time evolution from the ground state through ionization and rescattering to the two electron escape. The subspace of symmetric escape, a prime characteristic of nonsequential double ionization, remains accessible by a judicious choice of 1-d coordinates for the electrons. The time resolved ionization fluxes show the onset of single and double ionization, the sequence of events during the pulse, and the influences of pulse duration, and reveal the relative importance of sequential and non-sequential double ionization, even when ionization takes place during the same field cycle.

  3. Determining the electronic triplet-singlet transition probability in double quantum dots: Analogy with the double slit experiment

    OpenAIRE

    Domínguez, Fernando; Platero, Gloria

    2009-01-01

    We apply an elementary measurement scheme to calculate the electronic triplet-singlet transition mediated by hyperfine interaction in a double quantum dot. We show how the local character of the hyperfine interaction and the nuclear back-action process (flip-flop) are crucial to cancel destructive interferences of the triplet-singlet transition probability. It is precisely this cancellation which differentiates the hyperfine interaction from an anisotropic magnetic field which mixes the tripl...

  4. Dual-wavelength of 1.3um and 1.55um AlGaSb/GaSb asymmetric quantum-well laser

    OpenAIRE

    Sim, Steven K. H.; Mutamba, Kabula; Herbert Li, E.

    1999-01-01

    A dual-wavelength laser diode of 1.3um and 1.55um operating wavelength is under analysis. The structure of this laser diode involves an asymmetric dual quantum-well of AlGaSb/GaSb . The longer-wavelength quantum-well is doped with a 50A Si at the barrier near the well. This will enable a localized intermixing during an anneal under a SiNx cap, while the shorter-wavelength quantum-well is not affected. The area where GaSb is exposed has no intermixing in both the quantum-wells. It is possible ...

  5. Fano effect and Andreev bound states in T-shape double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Calle, A.M.; Pacheco, M. [Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile); Orellana, P.A., E-mail: orellana@ucn.cl [Departamento de Física, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile)

    2013-09-02

    In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling.

  6. Fano effect and Andreev bound states in T-shape double quantum dots

    International Nuclear Information System (INIS)

    In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling

  7. Increasing wavefunction overlap of carriers in an asymmetrically graded quantum well with polarizationeffect-band-engineering

    KAUST Repository

    Janjua, Bilal

    2013-01-01

    A novel design based on an asymmetrically graded-well, Al(a→b)Ga(1-a→1-b) N / Al(c)Ga(1-c) N,where b>c>a, to enhance the optical matrix element of radiative transitions in an AlGaN based UV-LED, is theoretically studied.

  8. Dissipatively driven entanglement of two nuclear spin ensembles in a double quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, Martin J.A.; Kessler, Eric M.; Cirac, Juan Ignacio; Giedke, Geza [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

    2013-07-01

    Typically, quantum information schemes have been discussed in the context of isolated many-body systems subject to unitary dynamics. Here, dissipation has been identified as a mechanism that corrupts the useful quantum properties of the system under study. Recently, however, with the advent of novel ideas such as dissipative engineering, a paradigm shift could be observed in quantum physics. More and more approaches actively utilize dissipation as a driving force behind the emergence of coherent quantum phenomena. In this spirit, we propose a transport scheme for an electrically defined double quantum dot in which the two nuclear ensembles in the host environment are actively pumped into an entangled target state. Based on a self-consistent Holstein-Primakoff approximation, we derive an effective quantum master equation for the nuclear spins which features an unique entangled steady state; accordingly, long lasting entanglement is created deterministically. Prospects for the experimental realization of this proposal are briefly discussed.

  9. Dissipatively driven entanglement of two nuclear spin ensembles in a double quantum dot

    International Nuclear Information System (INIS)

    Typically, quantum information schemes have been discussed in the context of isolated many-body systems subject to unitary dynamics. Here, dissipation has been identified as a mechanism that corrupts the useful quantum properties of the system under study. Recently, however, with the advent of novel ideas such as dissipative engineering, a paradigm shift could be observed in quantum physics. More and more approaches actively utilize dissipation as a driving force behind the emergence of coherent quantum phenomena. In this spirit, we propose a transport scheme for an electrically defined double quantum dot in which the two nuclear ensembles in the host environment are actively pumped into an entangled target state. Based on a self-consistent Holstein-Primakoff approximation, we derive an effective quantum master equation for the nuclear spins which features an unique entangled steady state; accordingly, long lasting entanglement is created deterministically. Prospects for the experimental realization of this proposal are briefly discussed.

  10. Non-Equilibrium Electron Transport through a Double Quantum Dot System: Study of Two Exchange Coupled Quantum Dots in a 4-Terminal Geometry

    OpenAIRE

    Koerting, Verena

    2007-01-01

    In this thesis we study two exchange-coupled quantum dots with an emphasis on non-equilibrium physics. Assuming a single electron on each quantum dot, the double quantum dot system is characterized by an interplay between the Kondo spin coupling of the dots with the leads and the spin-exchange coupling between the dots. We find that a finite voltage on one quantum dot drives the other quantum dot out of equilibrium.

  11. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther;

    2015-01-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett.97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found...... reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics....

  12. Thermopower in parallel double quantum dots with Rashba spin-orbit interaction

    Institute of Scientific and Technical Information of China (English)

    Xue Hui-Jie; Lü Tian-Quan; Zhang Hong-Chen; Yin Hai-Tao; Cui Lian; He Ze-Long

    2011-01-01

    Based on the Green's function technique and the equation of motion approach, this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs), in which Rashba spin-orbit interaction is taken into account. Rashba spin-orbit interaction contributions, even in a magnetic field, are exhibited obviously in the double quantum dots system for the thermoelectric effect. The periodic oscillation of thermopower can be controlled by tunning the Rashba spin-orbit interaction induced phase. The interesting spin-dependent thermoelectric effects will arise which has important influence on thermoelectric properties of the studied system.

  13. Relaxation of electron energy in the polar semiconductor double quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Khás, Zdeněk; Zdeněk, Petr; Čerňanský, Marian; Lin, C. Y.

    2002-01-01

    Roč. 314, - (2002), s. 490-493. ISSN 0921-4526 R&D Projects: GA AV ČR IAA1010113; GA MŠk OC P5.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum dots * relaxation * double quantum dots * electron-photon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.609, year: 2002

  14. Tunable Molecular Resonances of Double Quantum Dots Embedded in an Aharonov-Bohm Interferometer

    OpenAIRE

    Kang, Kicheon; Cho, Sam Young

    2002-01-01

    We investigate resonant tunneling through molecular states of coupled double quantum dots embedded in an Aharonov-Bohm (AB) interferometer. The conductance through the system consists of two resonances associated with the bonding and the antibonding quantum states. We predict that the two resonances are composed of a Breit-Wigner resonance and a Fano resonance, those widths and Fano factor depending on the AB phase very sensitively. Further, we point out that the bonding properties, such as t...

  15. Full characterization of a carbon nanotube based parallel double quantum dot

    OpenAIRE

    Abulizi, Gulibusitan; Baumgartner, Andreas; Schönenberger, Christian

    2016-01-01

    We have measured the differential conductance of a parallel carbon nanotube (CNT) double quantum dot (DQD) with strong inter-dot capacitance and inter-dot tunnel coupling. Nominally, the device consists of a single CNT with two contacts. However, we identify two sets of Coulomb blockade (CB) diamonds that do not block transport individually, which suggests that two quantum dots (QDs) are contacted in parallel. We find strong and periodic anti-crossings in the gate and bias dependence, which a...

  16. From Classical Mechanics with Doubled Degrees of Freedom to Quantum Field Theory for Nonconservative System

    OpenAIRE

    Kuwahara, Y; Nakamura, Y; Yamanaka, Y

    2013-01-01

    The $2 \\times 2$-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [Phys. Rev. Lett. 110, 174301 (2013)]. We show that the Galley's Hamilto...

  17. Top-gate defined double quantum dots in InAs nanowires

    OpenAIRE

    Pfund, A.; Shorubalko, I.; Leturcq, R.; Ensslin, K.

    2006-01-01

    We present low temperature transport measurements on double quantum dots in InAs nanowires grown by metal-organic vapor phase epitaxy. Two dots in series are created by lithographically defined top-gates with a procedure involving no extra insulating layer. We demonstrate the full tunability from strong to weak coupling between the dots. The quantum mechanical nature of the coupling leads to the formation of a molecular state extending over both dots. The excitation spectra of the individual ...

  18. Equations of motion in Double Field Theory: from classical particles to quantum cosmology

    CERN Document Server

    Kan, Nahomi; Shiraishi, Kiyoshi

    2012-01-01

    The equation of motion for a point particle in the background field of double field theory is considered. We find that the motion is described by a geodesic flow in the doubled geometry. Inspired by analysis on the particle motion, we propose a modified model of quantum string cosmology, which includes two scale factors. The report is based on Phys. Rev. D84 (2011) 124049 [arXiv:1108.5795].

  19. Asymmetric quantum telecloning of d-level systems and broadcasting of entanglement to different locations using the 'many-to-many' communication protocol

    International Nuclear Information System (INIS)

    We propose a generalization of quantum teleportation: the so-called many-to-many quantum communication of the information of a d-level system from N spatially separated senders to M>N receivers situated at different locations. We extend the concept of asymmetric telecloning from qubits to d-dimensional systems. We investigate the broadcasting of entanglement by using local 1→2 optimal universal asymmetric Pauli machines and show that the maximal fidelities of the two final entangled states are obtained when symmetric machines are applied. Cloning of entanglement is studied using a nonlocal optimal universal asymmetric cloning machine and we show that the symmetric machine optimally copies the entanglement. The 'many-to-many' teleportation scheme is applied in order to distribute entanglement shared between two observers to two pairs of spatially separated observers

  20. Simulated quantum annealing of double-well and multiwell potentials.

    Science.gov (United States)

    Inack, E M; Pilati, S

    2015-11-01

    We analyze the performance of quantum annealing as a heuristic optimization method to find the absolute minimum of various continuous models, including landscapes with only two wells and also models with many competing minima and with disorder. The simulations performed using a projective quantum Monte Carlo (QMC) algorithm are compared with those based on the finite-temperature path-integral QMC technique and with classical annealing. We show that the projective QMC algorithm is more efficient than the finite-temperature QMC technique, and that both are inferior to classical annealing if this is performed with appropriate long-range moves. However, as the difficulty of the optimization problem increases, classical annealing loses efficiency, while the projective QMC algorithm keeps stable performance and is finally the most effective optimization tool. We discuss the implications of our results for the outstanding problem of testing the efficiency of adiabatic quantum computers using stochastic simulations performed on classical computers. PMID:26651813

  1. InGaAs/InAlAs Five Layer Asymmetric Coupled Quantum Well (FACQW) for Ultra-Wideband Ultrafast Optical Modulators

    Institute of Scientific and Technical Information of China (English)

    Taro; Arakawa; Ryuji; Iino; Tetsuya; Ishie; Terumasa; Kawabata; Kunio; Tada

    2003-01-01

    An InGaAs/InAlAs five-layer asymmetric coupled quantum well (FACQW) is expected to show very large electrorefractive index change . n in a wideband transparency region. Band structures of the FACQW are analyzed with Luttinger-Kohn Hamiltonian. The electrorefractive characteristics of the FACQW are discussed.

  2. Current resonances and current platforms in a two-level InAs quantum dot with asymmetric terahertz irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, R.-Y., E-mail: yuanry@cnu.edu.cn [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Zhao, X.; Ji, A.-C. [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Guo, Y., E-mail: guoy66@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Yan, H. [Laboratory of Thin Film Materials, Beijing University of Technology, Beijing 100022 (China)

    2015-09-04

    Both the charging and orbital quantization energies of InAs quantum dot (QD) typically correspond to the terahertz (THz) region. In this letter, under the asymmetric THz irradiations on two leads, electron transport through a two-level InAs QD is theoretically discussed. We demonstrate that when both the frequencies and amplitudes of THz irradiations on two leads are different with the higher asymmetry, the photon–electron pump effect vanishes, even a negative platform appears on the left of the Coulomb peak and a positive platform occurs on the right of the Coulomb interaction related energy level, respectively. This behavior is favorable for the design of THz optoelectronic device. - Highlights: • Asymmetric terahertz waves are irradiated on two leads in two-level InAs QD system. • Only with different frequencies, a negative current resonance is obtained. • A negative platform appears on the left of the Coulomb peak with higher asymmetry. • For the low terahertz field strength, a positive platform occurs. • We report the behaviors are favorable for the design of THz optoelectronic device.

  3. Fast response of the optical nonlinearity in a GaAs/AlGaAs asymmetric triple quantum well structure

    CERN Document Server

    Ahn, S H; Sawaki, N

    1999-01-01

    The time response of the optical nonlinear behavior in a GaAs/AlGaAs asymmetric triple quantum well structure is estimated by using a picosecond pump-probe method at 77 K. From the results of the transmission of the probe pulse as a function of the delay time at the excitation wavelengths, a rise time of 5 approx 10 ps and a fall time of 8 approx 16 ps are obtained. The nonlinear behavior is attributed to the triple resonance of the electronic states due to the build-up of the internal field induced by the separation of photo-excited electrons and holes. It is found that the rise time is determined by the tunneling transfer time of the electrons in the narrowest well to an adjacent well separated by a thin potential barrier.

  4. A duality map for the quantum symplectic double

    CERN Document Server

    Allegretti, Dylan G L

    2016-01-01

    This paper is a continuation of the author's work with Kim (arXiv:1509.01567), which provided a natural $q$-deformation of Fock and Goncharov's canonical basis for the coordinate ring of a cluster variety associated to a punctured surface. Here we consider a cluster variety called the symplectic double, defined for an oriented disk with finitely many marked points on its boundary. We construct a natural map from the tropical integral points of the symplectic double into its quantized algebra of rational functions. Using this construction, we extend the results of arXiv:1509.01567 to the case of a disk with marked points.

  5. On the relation between the modular double of Uq(sl(2,R)) and the quantum Teichmueller theory

    International Nuclear Information System (INIS)

    We exhibit direct relations between the modular double of Uq(sl(2,R)) and the quantum Teichmueller theory. Explicit representations for the fusion- and braiding operations of the quantum Teichmueller theory are immediate consequences. Our results include a simplified derivation of the Clebsch-Gordan decomposition for the principal series of representation of the modular double of Uq(sl(2,R)).

  6. Transient gain-absorption of the probe field in triple quantum dots coupled by double tunneling

    Science.gov (United States)

    Tian, Si-Cong; Zhang, Xiao-Jun; Wan, Ren-Gang; Zhao, Shuai; Wu, Hao; Shu, Shi-Li; Wang, Li-Jie; Tong, Cun-Zhu

    2016-06-01

    The transient gain-absorption property of the probe field in a linear triple quantum dots coupled by double tunneling is investigated. It is found that the additional tunneling can dramatically affect the transient behaviors under the transparency condition. The dependence of transient behaviors on other parameters, such as probe detuning, the pure dephasing decay rate of the quantum dots and the initial conditions of the population, are also discussed. The results can be explained by the properties of the dressed states generated by the additional tunneling. The scheme may have important application in quantum information network and communication.

  7. From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems

    Science.gov (United States)

    Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.

    2013-12-01

    The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom [1]. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.

  8. From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Y., E-mail: a.kuwahara1224@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp

    2013-12-09

    The 2×2-matrix structure of Green's functions is a common feature for the real-time formalisms of quantum field theory under thermal situations, such as the closed time path formalism and Thermo Field Dynamics (TFD). It has been believed to originate from quantum nature. Recently, Galley has proposed the Hamilton's principle with initial data for nonconservative classical systems, doubling each degree of freedom. We show that the Galley's Hamilton formalism can be extended to quantum field and that the resulting theory is naturally identical with nonequilibrium TFD.

  9. Majorana fermions in the interacting T-shaped double quantum dot

    Science.gov (United States)

    Napitu, B. D.

    2015-11-01

    Non-equilibrium transport properties of the interacting T-shaped double quantum dot coupled with the topological superconductor are analyzed within the Keldysh Green's function formalism. The low energy characteristics are found to be influenced by the interplay of quantum interference, electronic correlation, and the Majorana induced interaction such that the system can be driven onto either Kondo, Fano or Majorana dominated regime. It is demonstrated that the presence of the Majorana fermions at the edges of superconducting wire can be realized in the differential conductance and the zero-frequency shot noise when the system's low energy is strongly influenced by the quantum interference effect.

  10. Quantum dynamics of a particle interacting with a double barrier

    International Nuclear Information System (INIS)

    Following a previously developed method, the problem of a particle scattered by a double barrier is studied. Instead of the simple transmission or reflection, the more difficult case of the arrival in the region between the barriers is considered and solved explicitly by using matrix methods

  11. The geometry of the Double Gyroid wire network: Quantum and Classical

    CERN Document Server

    Kaufmann, Ralph M; Wehefritz-Kaufmann, Birgit

    2010-01-01

    Quantum wire networks have recently become of great interest. Here we deal with a novel nano material structure of a Double Gyroid wire network. We use methods of commutative and non-commutative geometry to describe this wire network. Its non--commutative geometry is closely related to non-commutative 3-tori as we discuss in detail.

  12. Tunnelling through a GaAs/(AlGa) as coupled double-quantum-well heterostructure

    International Nuclear Information System (INIS)

    A splitting of the main resonant peaks is observed in the current-voltage characteristics of a double-quantum-well resonant tunnelling device, due to coupling between well states. Under a high magnetic field applied in the current direction, the peaks collapse into a single peak and from the magnetotunnelling data we are able to estimate the energy splitting between the coupled states

  13. A New Type of Photoelectric Response in a Double Barrier Structure with a Wide Quantum Well

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xia; ZHENG Hou-Zhi

    2005-01-01

    @@ We have calculated the photoelectric response in a specially designed double barrier structure. It has been verified that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.

  14. Double-resonance spectroscopy of InAs/GaAs self-assembled quantum dots

    NARCIS (Netherlands)

    Murdin, B. N.; Hollingworth, A. R.; Barker, J. A.; Clarke, D. G.; Findlay, P. C.; Pidgeon, C. R.; Wells, J. P. R.; Bradley, I. V.; Malik, S.; Murray, R.

    2000-01-01

    We present far-/near-infrared double resonance measurements of self-assembled InAs/GaAs quantum dots. The far-infrared resonance is unambiguously associated with a bound-bound intraband transition in the neutral dots. The results show that the interband photoluminescence (PL) lines originate from co

  15. A tunable single-mode double-ring quantum-cascade laser

    International Nuclear Information System (INIS)

    The design, fabrication and characterization of a monolithic double-ring quantum- cascade laser (DRQCL) are described. At a wavelength of 4.6 µm, we demonstrate tunable, single-mode operation of a DRQCL and use it as a source for spectroscopy of CO gas. (paper)

  16. Theoretical Analysis About Quantum Noise Squeezing of Optical Fields From an Intracavity Frequency-Doubled Laser

    Science.gov (United States)

    Zhang, Kuanshou; Xie, Changde; Peng, Kunchi

    1996-01-01

    The dependence of the quantum fluctuation of the output fundamental and second-harmonic waves upon cavity configuration has been numerically calculated for the intracavity frequency-doubled laser. The results might provide a direct reference for the design of squeezing system through the second-harmonic-generation.

  17. Young's double-slit experiment with single photons and quantum eraser

    Science.gov (United States)

    Rueckner, Wolfgang; Peidle, Joseph

    2013-12-01

    An apparatus for a double-slit interference experiment in the single-photon regime is described. The apparatus includes a which-path marker that destroys the interference as well as a quantum eraser that restores it. We present data taken with several light sources, coherent and incoherent and discuss the efficacy of these as sources of single photons.

  18. Nonequilibrium electron spin polarization in a double quantum dot. Lande mechanism

    OpenAIRE

    Serebrennikov, Yuri A.

    2005-01-01

    In moderately strong magnetic fields, the difference in Lande g-factors in each of the dots of a coupled double quantum dot device may induce oscillations between singlet and triplet states of the entangled electron pair and lead to a nonequilibrium electron spin polarization. We will show that this polarization may partially survive the rapid inhomogeneous decoherence due to random nuclear magnetic fields.

  19. Correlation Effects on the Coupled Plasmon Modes of a Double Quantum Well

    DEFF Research Database (Denmark)

    Hill, N. P. R.; Nicholls, J. T.; Linfield, E. H.; Pepper, M.; Ritchie, D. A.; Jones, G. A. C.; Hu, Ben Yu-Kuang; Flensberg, Karsten

    1997-01-01

    At temperatures comparable to the Fermi temperature, we have measured a plasmon enhanced Coulomb drag in a GaAs/AlGaAs double quantum well electron system. This measurement provides a probe of the many-body corrections to the coupled plasmon modes, and we present a detailed comparison between exp...

  20. Closed form solution for a double quantum well using Gr\\"obner basis

    CERN Document Server

    Acus, A

    2011-01-01

    Analytical expressions for spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and effective masses are different. This was achieved by Gr\\"obner basis algorithm which allows to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.

  1. Asymmetric transmission: a generic property of two-dimensional periodic patterns

    International Nuclear Information System (INIS)

    Asymmetric transmission of circularly polarized waves is a well-established property of lossy, anisotropic, two-dimensionally chiral patterns. Here we show that asymmetric transmission can be observed for oblique incidence onto any lossy periodically structured plane. Our results greatly expand the range of natural and artificial materials in which directionally asymmetric transmission can be expected, making it a cornerstone electromagnetic effect rather than a curiosity of planar chiral metamaterials. Prime candidates for asymmetric transmission at oblique incidence are rectangular arrays of plasmonic spheres or semiconductor quantum dots, lossy double-periodic gratings and planar metamaterial structures

  2. Optical analogue of 2D heteronuclear double-quantum NMR

    CERN Document Server

    Tollerud, Jonathan

    2016-01-01

    Heteronuclear multi-quantum spectroscopy is a powerful part of the NMR toolbox, commonly used to identify specific sequences of atoms in complex pulse sequences designed to determine the structure of complex molecules, including proteins. Optical coherent multidimensional spectroscopy (CMDS) is analogous to multidimensional NMR and many of the techniques of NMR have been adapted for application in the optical regime. This has been highly successful, with CMDS being used to understand energy transfer in photosynthesis and many body effects in semiconductor nanostructures amongst many other scientific breakthroughs. Experimental challenges have, however, prevented the translation of heteronuclear multi-quantum NMR to the optical regime, where capabilities to isolate signals in otherwise congested spectra, reduce acquisition times and enable more incisive probes of multi-particle correlations and complex electronic systems would have great benefit. Here we utilise a diffraction based pulseshaper to impose the tw...

  3. Double-slit and electromagnetic models to complete quantum mechanics

    CERN Document Server

    De Luca, Jayme

    2010-01-01

    We analyze a realistic microscopic model for electronic scattering based on the neutral-delay-equations for point charges of the Wheeler-Feynman electrodynamics. We propose a microscopic model according to the electrodynamics of point-charges, complex enough to describe the essential physics. Our microscopic model reaches a simple qualitative agreement with the experimental results as regards interference in double-slit scattering and in electronic scattering by crystals. We discuss our model in the light of existing experimental results, including a qualitative disagreement found for the double-slit experiment. We discuss an approximation for the complex neutral-delay dynamics of our model using piecewise-defined (discontinuous) velocities for all charges and piecewise-constant-velocities for the scattered charge. Our approximation predicts the De Broglie wavelength as an inverse function of the incoming velocity and in the correct order of magnitude. We explain the scattering by crystals in the light of the...

  4. Double-slit and electromagnetic models to complete quantum mechanics

    OpenAIRE

    De Luca, Jayme

    2010-01-01

    We analyze a realistic microscopic model for electronic scattering with the neutral differential delay equations of motion of point charges of the Wheeler-Feynman electrodynamics. We propose a microscopic model according to the electrodynamics of point charges, complex enough to describe the essential physics. Our microscopic model reaches a simple qualitative agreement with the experimental results as regards interference in double-slit scattering and in electronic scattering by crystals. We...

  5. Quantum chaos and the double-slit experiment

    OpenAIRE

    Casati, Giulio; Prosen, Tomaz

    2004-01-01

    We report on the numerical simulation of the double-slit experiment, where the initial wave-packet is bounded inside a billiard domain with perfectly reflecting walls. If the shape of the billiard is such that the classical ray dynamics is regular, we obtain interference fringes whose visibility can be controlled by changing the parameters of the initial state. However, if we modify the shape of the billiard thus rendering classical (ray) dynamics fully chaotic, the interference fringes disap...

  6. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongxing; Wu, Jiarui [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gu, Ying, E-mail: ygu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2014-09-15

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.

  7. Four-Electron Systems in a Coupled Double-Layer Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2003-01-01

    Making use of the method of few-body physics, the energy spectrum of a four-electron system consisting in a vertically coupled double-layer quantum dot as a function of the strength ofa magnetic field is investigated. Discontinuous ground-state transitions induced by an external magnetic field are shown. We find that, in the strong coupling case, the ground-state transitions depend not only on the external magnetic field B but also on the distance d between double-layer quantum dots. However, in the case of weak coupling, the ground-state transitions occur in the new sequence of the values of the magic angular momentum. Hence, the interlayer separation d and electron-electron interaction strongly affect the ground state of the coupled quantum dots.

  8. Magnetic Anticrossing of 1D Subbands in Coupled Ballistic Double Quantum Wires

    International Nuclear Information System (INIS)

    We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a s 1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID wire. A broad dip in the magnetoconductance at -6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands

  9. Quantum mechanical compact modeling of symmetric double-gate MOSFETs using variational approach

    International Nuclear Information System (INIS)

    A physics-based analytical model for symmetrically biased double-gate (DG) MOSFETs considering quantum mechanical effects is proposed. Schrödinger's and Poisson's equations are solved simultaneously using a variational approach. Solving the Poisson and Schrödinger equations simultaneously reveals quantum mechanical effects (QME) that influence the performance of DG MOSFETs. The inversion charge and electrical potential distributions perpendicular to the channel are expressed in closed forms. We systematically evaluated and analyzed the potentials and inversion charges, taking QME into consideration, in Si based double gate devices. The effect of silicon thickness variation in inversion-layer charge and potentials are quantitatively defined. The analytical solutions provide good physical insight into the quantization caused by quantum confinement under various gate biases. (semiconductor devices)

  10. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    International Nuclear Information System (INIS)

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.

  11. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  12. Low Temperature Photoluminescence Kinetics of Double-Ring Structured GaAs Quantum Dots.

    Science.gov (United States)

    Myoung, Soung; Mun, Ok Mi; Yim, Sang-Youp; Kim, Jong Su

    2015-11-01

    This work is focused on spectroscopically characterizing kinetic properties of concentric quantum-ring complexes of GaAs quantum dots. Quantum-ring (or double-ring) GaAs quantum dots, embedded in an Al0.3Ga0.7As barrier layer, were grown by a droplet epitaxy method during molecular beam epitaxy on a GaAs (001) substrate. Emission peaks of photoluminescence spectra with different excitation power, were measured as 702 nm at 0.17 mW and 690 nm at 400 mW, were blue-shifted as the excitation power increased. In addition, excitation laser power dependence of time-resolved photoluminescence of double-ring GaAs quantum dots at 10 K under 400 nm excitation wavelength was performed, revealing that photoluminescence lifetime slowly decreased in comparison to that of single disc-like quantum dots as excitation power increased, implying that carrier transfer between inner ring and outer ring could slow down the decay process. The luminescence lifetime at 10 K increased from 245 to 409 ps in the range from 0.17 to 400 mW of excitation power. PMID:26726575

  13. Sequential double Auger decay in atoms: A quantum informatic analysis

    International Nuclear Information System (INIS)

    We theoretically show that the process of inner-shell photoionization in an atom A, followed by the spontaneous sequential emission of two Auger electrons, produces various kinds of spin-entangled states of three flying electronic qubits. All properties of these states are completely pre-determined by the total spin quantum numbers of the electronic states of four atomic species (i.e., A, A+*, A2+*, A3+) participating in this process in the Russell-Saunders coupling. These tripartite states are readily characterized experimentally by measuring only energies of the three emitted electrons, without requiring any entanglement witness or other such protocols.

  14. Sequential double Auger decay in atoms: A quantum informatic analysis

    Science.gov (United States)

    Parida, S.; Chandra, N.

    2009-05-01

    We theoretically show that the process of inner-shell photoionization in an atom A, followed by the spontaneous sequential emission of two Auger electrons, produces various kinds of spin-entangled states of three flying electronic qubits. All properties of these states are completely pre-determined by the total spin quantum numbers of the electronic states of four atomic species (i.e., A, A, A, A) participating in this process in the Russell-Saunders coupling. These tripartite states are readily characterized experimentally by measuring only energies of the three emitted electrons, without requiring any entanglement witness or other such protocols.

  15. States of an on-axis two-hydrogenic-impurity complex in concentric double quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    R-Fulla, M., E-mail: marlonfulla@yahoo.com [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Institución Universitaria Pascual Bravo, A.A. 6564, Medellín (Colombia); Marín, J.H.; Suaza, Y.A. [Escuela de Física, Universidad Nacional de Colombia, A.A. 3840, Medellín (Colombia); Duque, C.A. [Grupo de Materia Condensada-U de A, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)

    2014-06-13

    The energy structure of an on-axis two-donor system (D{sub 2}{sup 0}) confined in GaAs concentric double quantum rings under the presence of magnetic field and hydrostatic pressure was analyzed. Based on structural data for the double quantum ring morphology, a rigorous adiabatic procedure was implemented to separate the electrons' rapid in-plane motions from the slow rotational ones. A one-dimensional equation with an effective angular-dependent potential, which describes the two-electron rotations around the common symmetry axis of quantum rings was obtained. It was shown that D{sub 2}{sup 0} complex characteristic features are strongly dependent on the quantum ring geometrical parameters. Besides, by changing the hydrostatic pressure and magnetic field strengths, it is possible to tune the D{sub 2}{sup 0} energy structure. Our results are comparable to those previously reported for a single and negative ionized donor in a spherical quantum dot after a selective setting of the geometrical parameters of the structure. - Highlights: • We report the eigenenergies of a D{sub 2}{sup 0} complex in concentric double quantum rings. • Our model is versatile enough to analyze the dissociation process D{sub 2}{sup 0}→D{sup 0}+D{sup +}+e{sup −}. • We compare the D{sup 0} eigenenergies in horn toroidal and spherical shaped quantum dots. • We show the effects of hydrostatic pressure and magnetic field on the D{sub 2}{sup 0} spectrum. • The use of hydrostatic pressure provides higher thermal stability to the D{sub 2}{sup 0} complex.

  16. Measurements of ion temperature and flow velocity using symmetric and asymmetric double probes in the boundary plasma of the JFT-2M tokamak

    International Nuclear Information System (INIS)

    The radial profiles of the ion temperature as well as the flow velocity have been measured by using rotatable symmetric and asymmetric double probes in the boundary plasma of the JFT-2M tokamak. It has been found that the ion temperature is higher than the electron temperature by a factor of about 10, and the flow velocity is 0.2-0.3 of the ion sound velocity in the SOL for both ohmic and NB injection heating. These data can help to determine the cross-field thermal diffusivity in tokamak boundary plasma. (author)

  17. Double-Resonance g Factor Measurements by Quantum Jump Spectroscopy

    OpenAIRE

    Quint, W; Nikoobakht, B.; Jentschura, U. D.

    2007-01-01

    With the advent of high-precision frequency combs that can bridge large frequency intervals, new possibilities have opened up for the laser spectroscopy of atomic transitions. Here, we show that laser spectroscopic techniques can also be used to determine the ground-state g factor of a bound electron: Our proposal is based on a double-resonance experiment, where the spin state of a ground-state electron is constantly being read out by laser excitation to the atomic L shell, while the spin fli...

  18. Observation of conductance doubling in an Andreev quantum point contact

    Science.gov (United States)

    Kjaergaard, M.; Nichele, F.; Suominen, H.; Nowak, M.; Wimmer, M.; Akhmerov, A.; Folk, J.; Flensberg, K.; Shabani, J.; Palmstrom, C.; Marcus, C.

    One route to study the non-Abelian nature of excitations in topological superconductors is to realise gateable two dimensional (2D) semiconducting systems, with spin-orbit coupling in proximity to an s-wave superconductor. Previous work on coupling 2D electron gases (2DEG) with superconductors has been hindered by a non-ideal interface and unstable gateability. We report measurements on a gateable 2DEG coupled to superconductors through a pristine interface, and use aluminum grown in situ epitaxially on an InGaAs/InAs electron gas. We demonstrate quantization in units of 4e2 / h in a quantum point contact (QPC) in such hybrid systems. Operating the QPC as a tunnel probe, we observe a hard superconducting gap, overcoming the soft-gap problem in 2D superconductor/semiconductor systems. Our work paves way for a new and highly scalable system in which to pursue topological quantum information processing. Research supported by Microsoft Project Q and the Danish National Research Foundation.

  19. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  20. Quantum fluctuations of mesoscopic damped mutual capacitance coupled double resonance RLC circuit in thermal excitation state

    Institute of Scientific and Technical Information of China (English)

    XU Xing-Lei

    2007-01-01

    Mesoscopic damped mutual capacitance coupled double resonance circuit is quantized by the method of damped harmonic oscillator quantization. Hamiltonian is diagonalized by the method of unitary transformation. The energy spectra of this circuit are given. The quantum fluctuations of the charge and current of each loop are investigated by the method of thermofield dynamics (TFD) in thermal excitation state,thermal squeezed vacuum state,thermal vacuum state and vacuum state. It is shown that the quantum fluctuations of the charge and current are related to not only circuit inherent parameter and coupled magnitude,but also quantum number of excitation,squeezed coefficients,squeezed angle and environmental temperature. And the quantum fluctuations increase with the increase of temperature and decay with time.

  1. Quantum frequency doubling based on tripartite entanglement with cavities

    Science.gov (United States)

    Juan, Guo; Zhi-Feng, Wei; Su-Ying, Zhang

    2016-02-01

    We analyze the entanglement characteristics of three harmonic modes, which are the output fields from three cavities with an input tripartite entangled state at fundamental frequency. The entanglement properties of the input beams can be maintained after their frequencies have been up-converted by the process of second harmonic generation. We have calculated the parametric dependences of the correlation spectrum on the initial squeezing factor, the pump power, the transmission coefficient, and the normalized analysis frequency of cavity. The numerical results provide references to choose proper experimental parameters for designing the experiment. The frequency conversion of the multipartite entangled state can also be applied to a quantum communication network. Project supported by the National Natural Science Foundation of China (Grant No. 91430109), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401110004), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011005-3).

  2. Majorana fermion modulated nonequilibrium transport through double quantum dots

    International Nuclear Information System (INIS)

    Nonequilibrium electronic transports through a double-QD-Majorana coupling system are studied with a purpose to extract the information to identify Majorana bound states (MBSs). It is found that MBSs can help form various transport processes, including the nonlocal crossed Andreev reflection, local resonant Andreev reflection, and cotunneling, depending on the relative position of two dot levels. These processes enrich the signature of average currents and noise correlations to probe the nature of MBSs. We further demonstrate the switching between the current peaks of crossed Andreev reflection and cotunneling, which is closely related to the nonlocal nature of Majorana fermions. We also propose effective physical pictures to understand these Majorana-assisted transports. - Highlights: • Majorana fermions are characterized in the signature of currents and noises. • Three types of tunneling mechanisms are realized separately. • The switching of crossed Andreev reflection and cotunneling is realized. • Concrete physical pictures are proposed to understand Majorana-assisted transports

  3. Analytical model for an asymmetric double-gate MOSFET with gate-oxide thickness and flat-band voltage variations in the subthreshold region

    Science.gov (United States)

    Shin, Yong Hyeon; Yun, Ilgu

    2016-06-01

    This paper proposes an analytical model for an asymmetric double-gate metal-oxide-semiconductor field-effect transistor (DG MOSFET) with varying gate-oxide thickness (tox) and flat-band voltage (Vfb) in the subthreshold region. Since such variations cannot be completely avoided, the modeling of their behaviors is essential. The analytical model is developed by solving a 2D Poisson equation with a varying channel doping concentration (NA). To solve the 2D Poisson equation of the asymmetric DG MOSFET, a perturbation method is used to separate the solution of the channel potential into basic and perturbed terms. Since the basic terms can be regarded as the equations derived from a general symmetric doped DG MOSFET, the conventional analytical model is adopted. In addition, a solution related to the perturbed terms for the asymmetric structures is obtained using Fourier series. Based on the obtained channel potential, the electrical characteristics of the drive current (IDS) are expressed in the analytical model. The prediction of the electrical characteristics by the analytical model shows excellent agreement when compared with commercially available 2D numerical device simulation results with respect to not only tox and Vfb variations but also channel length and NA variations.

  4. Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems

    Science.gov (United States)

    Yanay, Yariv; Sankey, Jack C.; Clerk, Aashish A.

    2016-06-01

    We study the effect of cavity damping asymmetries on backaction in a "membrane-in-the-middle" optomechanical system, where a mechanical mode modulates the coupling between two photonic modes. We show that when the energy difference between the optical modes dominates (i.e., in the adiabatic limit) this system generically realizes a dissipative optomechanical coupling, with an effective position-dependent photonic damping rate. The resulting quantum noise interference can be used to ground-state cool a mechanical resonator in the unresolved sideband regime. We explicitly demonstrate how quantum noise interference controls linear backaction effects and show that this interference persists even outside the adiabatic limit. For a one-port cavity in the extreme bad cavity limit, the interference allows one to cancel all linear backaction effects. This allows continuous measurements of position-squared, with no stringent constraints on the single-photon optomechanical coupling strength. In contrast, such a complete cancellation is not possible in the good cavity limit. This places strict bounds on the optomechanical coupling required for quantum nondemolition measurements of mechanical energy, even in a one-port device.

  5. Vibrational effects in charge transport through a molecular double quantum dot

    CERN Document Server

    Sowa, Jakub K; Briggs, G Andrew D; Gauger, Erik M

    2016-01-01

    Recent progress in the field of molecular electronics has revealed the fundamental importance of the coupling between the electronic degrees of freedom and specific vibrational modes. Considering the examples of a molecular dimer and a carbon nanotube double quantum dot, we here theoretically investigate transport through a two-site system that is strongly coupled to a single vibrational mode. Using a quantum master equation approach, we demonstrate that, depending on the relative positions of the two dots, electron-phonon interactions can lead to negative differential conductance and suppression of the current through the system. We also discuss the experimental relevance of the presented results and possible implementations of the studied system.

  6. Electronic structures of GaAs/Al x Ga1-x As quantum double rings

    OpenAIRE

    Li Shu-Shen; Xia Jian-Bai

    2006-01-01

    AbstractIn the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different sh...

  7. Fluctuation theorem for a double quantum dot coupled to a point-contact electrometer

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, D. [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Utsumi, Y. [Department of Physics Engineering, Faculty of Engineering, Mie University, Tsu, Mie, 514-8507 (Japan); Marthaler, M. [Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Schön, G. [Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany and Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)

    2013-12-04

    Motivated by recent experiments on the real-time single-electron counting through a semiconductor GaAs double quantum dot (DQD) by a nearby quantum point contact (QPC), we develop the full-counting statistics of coupled DQD and QPC system. By utilizing the time-scale separation between the dynamics of DQD and QPC, we derive the modified master equation with tunneling rates depending on the counting fields, which fulfill the detailed fluctuation theorem. Furthermore, we derive universal relations between the non-linear corrections to the current and noise, which can be verified in experiments.

  8. Spin-dependent Fano effect through parallel-coupled double quantum dots

    International Nuclear Information System (INIS)

    Based on the nonequilibrium Green' function method, the spin-dependent Fano effect through parallel-coupled double quantum dots has been investigated by taking account of both Rashba spin-orbit interaction and intradot Coulomb interaction. It is shown that the quantum interference through the bonding, antibonding states and through their Coulomb blockade counterparts may result in two Breit-Wigner resonances and two Fano resonances in the conductance spectra. Moreover, the Fano lineshape of the two spin components can be modulated by Rashba spin-orbit interaction when the magnetic flux is switched on.

  9. Fano Effect in T-Shaped Double Quantum Dot Structure with Decoherence Effect

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; GAO Wen-Zhu; WANG Ji-Biao; GONG Wei-Jiang; LI Ran; ZHENG Yi-Song; XU Dong-Hui; LIU Yu; DUAN Yi-Shi; LU Tian-Quan

    2008-01-01

    By introducing a floating lead to mimic the decoherence mechanism, the Fano effect in the linear conductance spectrum of a T-shaped double quantum dot structure is studied. We find that even in the case that the self-energy arising from the decoherence mechanism is much smMler than the coupling strength between the connected quantum dot and the conducting lead, the Fano lineshape can be largely destroyed. In addition, the decoherence renders the high-order electron transmission paths unimportant to contributing to the Fano lineshape.

  10. Charge sensing of excited states in an isolated double quantum dot

    DEFF Research Database (Denmark)

    C. Johnson, A.; M. Marcus, C.; P. Hanson, M.;

    2005-01-01

    Pulsed electrostatic gating combined with capacitive charge sensing is used to perform excited state spectroscopy of an electrically isolated double-quantum-dot system. The tunneling rate of a single charge moving between the two dots is affected by the alignment of quantized energy levels......; measured tunneling probabilities thereby reveal spectral features. Two pulse sequences are investigated, one of which, termed latched detection, allows measurement of a single tunneling event without repetition. Both provide excited-state spectroscopy without electrical contact to the double-dot system....

  11. Linear and total intersubband transitions in the step-like GaAs/GaAlAs asymmetric quantum well as dependent on intense laser field

    Science.gov (United States)

    Ozturk, Emine

    2015-11-01

    In this study, for a step-like GaAs- Ga_{1-x}AlxAs asymmetric quantum well (AQW) the linear and total intersubband optical absorption coefficients and the refractive index changes are calculated as dependent on the intense laser field (ILF) and the right quantum well (RQW) width. Our results show that the location and the magnitude of all absorption coefficients and refractive index changes depend on ILF and the asymmetric parameter ( d=LR/LL). Also, we showed that both ILF and d provide an important effect on the electronic and optical properties of step-like quantum well, and the changes of the energy levels, the dipole moment matrix elements and the resonant peak values of the absorption coefficients are dependent on the shape of the confinement potential. While for different asymmetric parameters the intersubband absorption spectrum shows blue shift up to the different critical ILF values, this spectrum shows red shift for ILF values greater than certain values. By considering the variation of the energy difference as dependent on the RQW width, for step-like QW the absorption spectrum shows blue or red shift. Especially, step-like QWs are used for producing terahertz radiation from intersubband transitions and they have more tunable structure parameters (the left (right) quantum well width, LL(LR), and the confinement potential in the left (right) hand side, VL (VR) with respect to other asymmetric QWs (in the present study we used LR=LL/2, LL, 3 L L/2 and V R = 2 V L/3 values). This case provides a new degree of freedom for controlling the optical properties in quantum wells (QWs). In addition, the nonlinear optics underlying the application of the ILF to asymmetric potential heterostructures becomes a subject of present-day interest. In conclusion: i) The electronic and optical properties of the step-like AQW vary by increasing ILF. ii) ILF leads to major modifications on the shape of the confining potential. iii) The position and the size of all absorption

  12. Pt/CdTe/Pt asymmetric nano-Schottky diodes from colloidal quantum dots

    Directory of Open Access Journals (Sweden)

    Jayakrishna Khatei

    2011-12-01

    Full Text Available We have fabricated nano-Schottky diodes of CdTe QDs with platinum metal electrodes in metal-semiconductor-metal planar configuration by drop-casting. The observed high value of ideality factor (13.3 of the diode was possibly due to the presence of defects in colloidal QDs. We observed asymmetry and non-linear nature of I-V characteristics between forward and reverse directions, which has been explained in terms of size distributions of quantum dots due to coffee ring effect.

  13. Charge sensed Pauli blockade in a metal-oxide-semiconductor lateral double quantum dot.

    Science.gov (United States)

    Nguyen, Khoi T; Lilly, Michael P; Nielsen, Erik; Bishop, Nathan; Rahman, Rajib; Young, Ralph; Wendt, Joel; Dominguez, Jason; Pluym, Tammy; Stevens, Jeffery; Lu, Tzu-Ming; Muller, Richard; Carroll, Malcolm S

    2013-01-01

    We report Pauli blockade in a multielectron silicon metal-oxide-semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet-triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing and shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement. PMID:24199677

  14. Confined acoustic and optical plasmons in double-layered quantum-wire arrays with strong tunneling

    Science.gov (United States)

    Dethlefsen, A. F.; Heyn, Ch.; Heitmann, D.; Schüller, C.

    2006-05-01

    We investigate electronic excitations in GaAs-AlxGa1-xAs double-layered quantum wire arrays with strong tunneling coupling by resonant inelastic light scattering. By applying an external electric field, we can change the one-dimensional (1D) electron density and the symmetry of the double quantum-well (DQW) structure at the same time. We identify confined optical 1D intersubband plasmons (COP) and confined acoustic 1D intersubband plasmons (CAP). Due to the tunneling coupling, the energies of the CAP exhibit a minimum for a symmetric DQW potential, whereas the energies of the COP are dominated by the total carrier density, and are nearly insensitive to the symmetry of the potential.

  15. Enhancement of Hole Confinement by Monolayer Insertion in Asymmetric Quantum-Barrier UVB Light Emitting Diodes

    KAUST Repository

    Janjua, Bilal

    2014-04-01

    We study the enhanced hole confinement by having a large bandgap AlGaN monolayer insertion (MLI) between the quantum well (QW) and the quantum barrier (QB). The numerical analysis examines the energy band alignment diagrams, using a self-consistent 6 × 6 k ·p method and, considering carrier distribution, recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates), under equilibrium and forward bias conditions. The active region is based on AlaGa1-aN (barrier)/AlbGa1-bN (MLI)/AlcGa1-cN (well)/AldGa1-dN (barrier), where b > d > a > c. A large bandgap AlbGa1-bN mono layer, inserted between the QW and QB, was found to be effective in providing stronger hole confinement. With the proposed band engineering scheme, an increase of more than 30% in spatial overlap of carrier wavefunction was obtained, with a considerable increase in carrier density and direct radiative recombination rates. The single-QW-based UV-LED was designed to emit at 280 nm, which is an effective wavelength for water disinfection.

  16. Radiation emission from an asymmetric quantum dot coupled to a plasmonic nanostructure

    International Nuclear Information System (INIS)

    We propose a scheme for controlling the absorption and RFS of a quantum dot (QD) with broken inversion symmetry interacting with a plasmonic nanostructure. The QD is described as a two-level atom-like system with a permanent dipole moment in the excited state. A linearly polarized laser field drives the optical transition of the QD and produces localized surface plasmons in the MNP. The influence of plasmonic effects between the nanoparticle and the dot is analyzed using the Green tensor method. We found terahertz (THz) emission in the resonance fluorescence spectrum when the laser frequency lies above the transition frequency. The position and strength of the THz peaks is controlled by means of the dot-nanoparticle separation. The quantum nature of the emitted THz photons is analyzed by evaluating the second-order fluorescence intensity correlation function. We found a periodic alternation of photon bunching and anti-bunching with a period that depends on the polarization of the driving field. (paper)

  17. Comment on "Linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field"

    Science.gov (United States)

    Yuan, Jian-Hui; Zhang, Zhi-Hai

    2015-12-01

    Guo and Du (2013) reported theirs result for the linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field. We find both the energy and the corresponding wavefunction for the low-lying state are wrong to applied in their works. For the same set of parameters studied by Guo and Du, we obtain new and reliable results via the differential method.

  18. C*-Structure of Quantum Double for Finite Hopf C*-Algebra

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Let H be a finite Hopf C*-algebra and H' be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf *-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful *-representation so that it becomes a Hopf C*-algebra. The canonical embedding map of H into D(H) is isometric.

  19. Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads

    Institute of Scientific and Technical Information of China (English)

    YAN Cong-Hua; WU Shao-Quan; HUANG Rui; SUN Wei-Li

    2006-01-01

    @@ We investigate the spin-flip process through double quantum dots coupled to two ferromagnetic leads in series.By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regime for two different configurations of the leads. It is found that transport shows some remarkable properties depending on the spin-flip strength. These effects may be useful in exploiting the role of electronic correlation in spintronics.

  20. The R-matrix of quantum doubles of Nichols algebras of diagonal type

    Energy Technology Data Exchange (ETDEWEB)

    Angiono, Iván, E-mail: angiono@famaf.unc.edu.ar [FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba Medina Allende s/n, Ciudad Universitaria (5000) Córdoba (Argentina); Yamane, Hiroyuki, E-mail: hiroyuki@sci.u-toyama.ac.jp [University of Toyama, Faculty of Science, Gofuku 3190, Toyama-shi, Toyama 930-8555 (Japan)

    2015-02-15

    Let H be the quantum double of a Nichols algebra of diagonal type. We compute the R-matrix of 3-tuples of modules for general finite-dimensional highest weight modules over H. We also calculate a multiplicative formula for the universal R-matrix when H is finite dimensional. We show the unicity of a PBW basis (or a Lusztig-type Poincaré-Birkhoff-Witt basis) with a given convex order.

  1. Magnetotransport in a time-modulated double quantum point contact system

    OpenAIRE

    Tang, Chi-Shung; Torfason, Kristinn; Gudmundsson, Vidar

    2010-01-01

    We report on a time-dependent Lippmann-Schwinger scattering theory that allows us to study the transport spectroscopy in a time-modulated double quantum point contact system in the presence of a perpendicular magnetic field. Magnetotransport properties involving inter-subband and inter-sideband transitions are tunable by adjusting the time-modulated split-gates and the applied magnetic field. The observed magnetic field induced Fano resonance feature may be useful for the application of quant...

  2. Charge sensing of a few-donor double quantum dot in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Watson, T. F., E-mail: tfwatson15@gmail.com; Weber, B.; Büch, H.; Fuechsle, M.; Simmons, M. Y., E-mail: michelle.simmons@unsw.edu.au [Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2015-12-07

    We demonstrate the charge sensing of a few-donor double quantum dot precision placed with atomic resolution scanning tunnelling microscope lithography. We show that a tunnel-coupled single electron transistor (SET) can be used to detect electron transitions on both dots as well as inter-dot transitions. We demonstrate that we can control the tunnel times of the second dot to the SET island by ∼4 orders of magnitude by detuning its energy with respect to the first dot.

  3. Tunable terahertz detection based on a grating-gated double-quantum-well FET

    Science.gov (United States)

    Popov, V. V.; Teperik, T. V.; Tsymbalov, G. M.; Peralta, X. G.; Allen, S. J.; Horing, N. J. M.; Wanke, M. C.

    2004-04-01

    We model resonant terahertz photoconductance recently observed in field-effect transistors with a double-quantum-well (DQW) channel. Comparison of the measured THz resonant photoresponse to the calculated THz absorption spectrum establishes that the resonances are determined by standing plasma waves in the DQW channel under metallic portions of the grating gate. It is found theoretically that the DQW asymmetry mixes the acoustic and optical plasmons resulting in a rather intense ac electric field between the QWs.

  4. Closed form solution for a double quantum well using Gröbner basis

    Science.gov (United States)

    Acus, A.; Dargys, A.

    2011-07-01

    Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Gröbner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.

  5. Closed form solution for a double quantum well using Groebner basis

    Energy Technology Data Exchange (ETDEWEB)

    Acus, A [Institute of Theoretical Physics and Astronomy, Vilnius University, A Gostauto 12, LT-01108 Vilnius (Lithuania); Dargys, A, E-mail: dargys@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A Gostauto 11, LT-01108 Vilnius (Lithuania)

    2011-07-01

    Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Groebner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.

  6. Bohmian prediction about a two double-slit experiment and its disagreement with standard quantum mechanics

    OpenAIRE

    Golshani, M; Akhavan, O.

    2001-01-01

    The significance of proposals that can predict different results for standard and Bohmian quantum mechanics have been the subject of many discussions over the years. Here, we suggest a particular experiment (a two double-slit experiment) and a special detection process, that we call selective detection, to distinguish between the two theories. Using our suggested experiment, it is shown that the two theories predict different observable results at the individual level for a geometrically symm...

  7. Dynamic characteristics of double-barrier nanostructures with asymmetric barriers of finite height and widths in a strong ac electric field

    Energy Technology Data Exchange (ETDEWEB)

    Chuenkov, V. A., E-mail: v.a.chuenkov@mail.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-12-15

    The theory of the interaction of a monoenergetic flow of injected electrons with a strong high-frequency ac electric field in resonant-tunneling diode (RTD) structures with asymmetric barriers of finite height and width is generalized. In the quasi-classical approximation, electron wavefunctions and tunneling functions in the quantum well and barriers are found. Analytical expressions for polarization currents in RTDs are derived in both the general case and in a number of limiting cases. It is shown that the polarization currents and radiation power in RTDs with asymmetric barriers strongly depend on the ratio of the probabilities of electron tunneling through the emitter and collector barriers. In the quantum mode, when δ = ε − ε{sub r} = ħω ≪ Γ (ε is the energy of electrons injected in the RTD, ħ is Planck’s constant, ω is the ac field frequency, ε{sub r} and Γ are the energy and width of the resonance level, respectively), the active polarization current in a field of E ≈ 2.8ħω/ea (e is the electron charge and a is the quantum-well width) reaches a maximum equal in magnitude to 84% of the direct resonant current, if the probability of electron tunneling through the emitter barrier is much higher than that through the collector barrier. The radiation-generation power at frequencies of ω = 10{sup 12}–10{sup 13} s{sup −1} can reach 10{sup 5}–10{sup 6} W/cm{sup 2} in this case.

  8. Quantum effect peculiarities in 2D structures GaAs/n-InGaAs/GaAs with double quantum well

    International Nuclear Information System (INIS)

    The resistivity ρxx (B,T) for a low mobility dilute 2D electron gas in GaAs/n-InGaAs/GaAs double quantum wells exhibits a monotonic 'insulating-like' temperature dependence at T = 1.8-70 K (dρxx(T)/dTxy(B,T)/dTcτ ∼ 1. This temperature interval corresponds to diffusive and ballistic regimes (kBTτ/h/2π = 0.1-3.8) for our samples. The electron density is on a 'metallic' side (n>nc) of the so-called B=0 2D metal-insulator transition. Due to this anomalous σxy(B,T) T-dependence we observed some peculiarities of the insulator-quantum Hall state (with ν=10) transition in low magnetic fields

  9. Formation of a self-consistent double quantum well in a wide p-type quantum well

    Science.gov (United States)

    Alshanskiǐ, G. A.; Yakunin, M. V.

    2004-11-01

    The process of formation of self-consistent double quantum wells (DQWs) in a wide p-type quantum well in the presence of uniaxial strain is investigated. A feature of p-type systems is the structure of the valence band, which consists of two branches of energy dispersion—light and heavy holes. It is shown that this feature leads to significant splitting of the subbands of symmetric and antisymmetric states, as a result of which it is difficult to form states of the DQW with a vanishingly small tunneling gap; a uniaxial strain, by lifting the degeneracy of the band, suppresses this property, so that the two ground subbands of the size quantization of the DQW remain degenerate to high energies.

  10. Molecular states in double quantum wells: nanochemistry for metatmaterials with new optical properties

    Science.gov (United States)

    Gutierrez, Rafael M.; Castañeda, Arcesio

    2009-08-01

    Quantum mechanics explains the existence and properties of the chemical bond responsible for the formation of molecules from isolated atoms. In this work we study quantum states of Double Quantum Wells, DQW, formed from isolated Single Quantum Wells, SQWs, that can be considered metamaterials. Using the quantum chemistry definition of the covalent bond, we discuss molecular states in DQW as a kind of nanochemistry of metamaterials with new properties, in particular new optical properties. An important particularity of such nanochemistry, is the possible experimental control of the geometrical parameters and effective masses characterizing the semiconductor heterostructures represented by the corresponding DQW. This implies a great potential for new applications of the controlled optical properties of the metamaterials. The use of ab initio methods of intensive numerical calculations permits to obtain macroscopic optical properties of the metamaterials from the fundamental components: the spatial distribution of the atoms and molecules constituting the semiconductor layers. The metamaterial new optical properties emerge from the coexistence of many body processes at atomic and molecular level and complex quantum phenomena such as covalent-like bonds at nanometric dimensions.

  11. The Double Quantum Dot Feline Cousin of Schrödinger's Cat An Experimental Test bed for a Discourse of Quantum Measurement Dichotomies

    CERN Document Server

    Bandyopadhyay, S

    1999-01-01

    Intriguing dichotomies in quantum measurement theory involving the role of the obersever, objective reality, collapse of wavefunctions and actualization of a measurement outcome are cast into a patholigical gedanken experiment involving a single electron in a double quantum dot system coupled via a weak link.

  12. Evolution of the spin-split quantum Hall states with magnetic field tilt in the InAs-based double quantum wells

    NARCIS (Netherlands)

    M.V. Yakunin; A. de Visser; G. Galistu; S.M. Podgornykh; Y.G. Sadofyev; N.G. Shelushinina; G.I. Harus

    2009-01-01

    Development of quantum Hall peculiarities due to mobility gap between spin-split magnetic levels with addition of the parallel magnetic field component B|| is analyzed in double quantum wells (DQW) created in InGaAs/GaAs and InAs/AlSb heterosystems chosen due to their relatively large bulk g-factors

  13. Detector-induced backaction on the counting statistics of a double quantum dot.

    Science.gov (United States)

    Li, Zeng-Zhao; Lam, Chi-Hang; Yu, Ting; You, J Q

    2013-01-01

    Full counting statistics of electron transport is of fundamental importance for a deeper understanding of the underlying physical processes in quantum transport in nanoscale devices. The backaction effect from a detector on the nanoscale devices is also essential due to its inevitable presence in experiments. Here we investigate the backaction of a charge detector in the form of a quantum point contact (QPC) on the counting statistics of a biased double quantum dot (DQD). We show that this inevitable QPC-induced backaction can have profound effects on the counting statistics under certain conditions, e.g., changing the shot noise from being sub-Poissonian to super-Poissonian, and changing the skewness from being positive to negative. Also, we show that both Fano factor and skewness can be either enhanced or suppressed by increasing the energy difference between two single-dot levels of the DQD under the detector-induced backaction. PMID:24149587

  14. Bohmian prediction about a two double-slit experiment and its disagreement with standard quantum mechanics

    International Nuclear Information System (INIS)

    The significance of proposals that can predict different results for standard and Bohmian quantum mechanics have been the subject of many discussions over the years. Here, we suggest a particular experiment (a two double-slit experiment) and a special detection process, that we call selective detection, to distinguish between the two theories. Using our suggested experiment, it is shown that the two theories predict different observable results at the individual level. However, at the ensemble level, their predictions are the same for a geometrically symmetric arrangement. On the other hand, we have shown that at the statistical level, if we use our selective detection, then either the predictions of the two theories differ or, where standard quantum mechanics is silent or vague, Bohmian quantum mechanics makes explicit predictions. (author)

  15. Electron-nuclear interaction in 13C nanotube double quantum dots

    DEFF Research Database (Denmark)

    Churchill, H O H; Bestwick, A J; Harlow, J W;

    2009-01-01

    For coherent electron spins, hyperfine coupling to nuclei in the host material can either be a dominant source of unwanted spin decoherence or, if controlled effectively, a resource enabling storage and retrieval of quantum information. To investigate the effect of a controllable nuclear...... environment on the evolution of confined electron spins, we have fabricated and measured gate-defined double quantum dots with integrated charge sensors made from single-walled carbon nanotubes with a variable concentration of 13C (nuclear spin I=1/2) among the majority zero-nuclear-spin 12C atoms. We observe...... strong isotope effects in spin-blockaded transport, and from the magnetic field dependence estimate the hyperfine coupling in 13C nanotubes to be of the order of 100 ¿µeV, two orders of magnitude larger than anticipated. 13C-enhanced nanotubes are an interesting system for spin-based quantum information...

  16. Controlled high-fidelity navigation in the charge stability diagram of a double quantum dot

    International Nuclear Information System (INIS)

    We propose an efficient control protocol for charge transfer in a double quantum dot. We consider numerically a two-dimensional model system, where the quantum dots are subjected to time-dependent electric fields corresponding to experimental gate voltages. Our protocol enables navigation in the charge stability diagram from a state to another through controllable variation of the fields. We show that the well-known adiabatic Landau–Zener transition—when supplemented with a time-dependent field tailored with optimal control theory—can remarkably improve the transition speed. The results also lead to a simple control scheme obtained from the experimental charge stability diagram that requires only a single parameter. Eventually, we can achieve the ultrafast performance of the composite pulse protocol that allows the system to be driven at the quantum speed limit. (paper)

  17. Tunnel magnetoresistance and linear conductance of double quantum dots strongly coupled to ferromagnetic leads

    Energy Technology Data Exchange (ETDEWEB)

    Weymann, Ireneusz, E-mail: weymann@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland)

    2015-05-07

    We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition from the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.

  18. Analysis of low energy response and possible emergent SU(4) Kondo state in a double quantum dot

    OpenAIRE

    Nishikawa, Yunori; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes

    2013-01-01

    We examine the low energy behavior of a double quantum dot in a regime where spin and pseudospin excitations are degenerate. The individual quantum dots are described by Anderson impurity models with an on-site interaction $U$ which are capacitively coupled by an interdot interaction $U_{12}

  19. Position dependence of the particle density in a double-chain section of a linear network in a totally asymmetric simple exclusion process

    Science.gov (United States)

    Pesheva, N. C.; Brankov, J. G.

    2013-06-01

    We report here results on the study of the totally asymmetric simple exclusion process, defined on an open network, consisting of head and tail simple-chain segments with a double-chain section inserted in between. Results of numerical simulations for relatively short chains reveal an interesting feature of the network. When the current through the system takes its maximum value, a simple translation of the double-chain section forward or backward along the network leads to a sharp change in the shape of the density profiles in the parallel chains, thus affecting the total number of particles in that part of the network. In the symmetric case of equal injection and ejection rates α=β>1/2 and equal lengths of the head and tail sections, the density profiles in the two parallel chains are almost linear, characteristic of the coexistence line (shock phase). Upon moving the section forward (backward), their shape changes to the one typical for the high- (low-) density phases of a simple chain. The total bulk density of particles in a section with a large number of parallel chains is evaluated too. The observed effect might have interesting implications for the traffic flow control as well as for biological transport processes in living cells. An explanation of this phenomenon is offered in terms of a finite-size dependence of the effective injection and ejection rates at the ends of the double-chain section.

  20. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    International Nuclear Information System (INIS)

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A2+. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A2+. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion

  1. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  2. Controllable coupling and quantum correlation dynamics of two double quantum dots coupled via a transmission line resonator

    CERN Document Server

    Wu, Qin-Qin; Kuang, Le-Man

    2010-01-01

    We propose a theoretical scheme to generate a controllable and switchable coupling between two double-quantum-dot (DQD) spin qubits by using a transmission line resonator (TLR) as a bus system. We study dynamical behaviors of quantum correlations described by entanglement correlation (EC) and discord correlation (DC) between two DQD spin qubits when the two spin qubits and the TLR are initially prepared in $X$-type quantum states and a coherent state, respectively. We demonstrate that in the EC death regions there exist DC stationary states in which the stable DC amplification or degradation can be generated during the dynamical evolution. It is shown that these DC stationary states can be controlled by initial-state parameters, the coupling, and detuning between qubits and the TLR. We reveal the full synchronization and anti-synchronization phenomena in the EC and DC time evolution, and show that the EC and DC synchronization and anti-synchronization depends on the initial-state parameters of the two DQD spi...

  3. Why Public Employment Services Always Fail. Double-sided Asymmetric Information and the Replacement of Low-skill Workers in six European Countries

    DEFF Research Database (Denmark)

    Larsen, Christian Albrekt; Vesan, Patrik

    2012-01-01

    It has been a general finding across Europe that very few job matches are facilitated by public employment services (PES).The article explains this failure by highlighting the existence of a double-sided asymmetric information problem on the labour market. It is argued that although a PES...... potentially reduces search costs, both employers and employees have strong incentives not to use PES. The reason is that employers try to avoid the ‘worst’ employees, and employees try to avoid the ‘worst’ employers. Therefore these services get caught in a low-end equilibrium that is almost impossible to...... escape. The mechanisms leading to this low-end equilibrium are illustrated by means of qualitative interviews with 40 private employers in six European countries....

  4. Detection of DNA double-strand breaks in synchronous cultures of CHO cells by means of asymmetric field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    A pulsed field gel electrophoresis technique, asymmetric field inversion gel electrophoresis (AFIGE), was used to evaluate induction by X-rays of DNA damage in CHO cells. The fraction of DNA activity released from the plug (FAR) was used as a measure for the amount of radiation-induced DNA damage, predominantly DNA double-strand breaks (dsb) (Stamato and Denko 1990), and was determined at various stages of growth and phases of the cell cycle in a range of doses between zero and 70 Gy. It is concluded that caution needs to be exercised before differences observed in the FAR between different cell lines or between various phases of the cell cycle after exposure to a given dose of radiation are interpreted as suggesting differences in the induction of DNA dsb. (author)

  5. Effect of asymmetrical double-pockets and gate-drain underlap on Schottky barrier tunneling FET: Ambipolar conduction vs. high frequency performance

    Science.gov (United States)

    Shaker, Ahmed; Ossaimee, Mahmoud; Zekry, A.

    2016-08-01

    In this paper, a proposed structure based on asymmetrical double pockets SB-TFET with gate-drain underlap is presented. 2D extensive modeling and simulation, using Silvaco TCAD, were carried out to study the effect of both underlap length and pockets' doping on the transistor performance. It was found that the underlap from the drain side suppresses the ambipolar conduction and doesn't enhance the high-frequency characteristics. The enhancement of the high-frequency characteristics could be realized by increasing the doping of the drain pocket over the doping of the source pocket. An optimum choice was found which gives the conditions of minimum ambipolar conduction, maximum ON current and maximum cut-off frequency. These enhancements render the device more competitive as a nanometer transistor.

  6. The influence of carrier dynamics on double-state lasing in quantum dot lasers at variable temperature

    International Nuclear Information System (INIS)

    It is shown in analytical form that the carrier capture from the matrix as well as carrier dynamics in quantum dots plays an important role in double-state lasing phenomenon. In particular, the de-synchronization of hole and electron captures allows one to describe recently observed quenching of ground-state lasing, which takes place in quantum dot lasers operating in double-state lasing regime at high injection. From the other side, the detailed analysis of charge carrier dynamics in the single quantum dot enables one to describe the observed light-current characteristics and key temperature dependences

  7. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    Science.gov (United States)

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. PMID:26682627

  8. Phase transfer and point-spread function of the human eye determined by a new asymmetric double-pass method.

    OpenAIRE

    Navarro, Rafael; M. A. Losada

    1995-01-01

    A recent study has shown that the double-pass method provides a good estimate of the ocular modulation transfer function (MTF) but that it does not yield the phase transfer function (PTF) [J. Opt. Soc. Am. A 12, 195 (1995)]. Therefore, one cannot recover the true retinal point-spread function (PSF). We present a modification of the double-pass method to overcome this problem. The key is to break the symmetry between the two passes. By using an unexpanded Gaussian input beam, we produce ...

  9. Electron-correlation driven capture and release in double quantum dots

    International Nuclear Information System (INIS)

    We recently predicted that the interatomic Coulombic electron capture (ICEC) process, a long-range electron correlation driven capture process, is achievable in gated double quantum dots (DQDs). In ICEC an incoming electron is captured by one quantum dot (QD) and the excess energy is used to remove an electron from the neighboring QD. In this work we present systematic full three-dimensional electron dynamics calculations in quasi-one dimensional model potentials that allow for a detailed understanding of the connection between the DQD geometry and the reaction probability for the ICEC process. We derive an effective one-dimensional approach and show that its results compare very well with those obtained using the full three-dimensional calculations. This approach substantially reduces the computation times. The investigation of the electronic structure for various DQD geometries for which the ICEC process can take place clarify the origin of its remarkably high probability in the presence of two-electron resonances. (paper)

  10. Electronic structures of GaAs/AlxGa1-xAs quantum double rings

    Directory of Open Access Journals (Sweden)

    Li Shu-Shen

    2006-01-01

    Full Text Available AbstractIn the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings (QDRs are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.

  11. Nonmonotonic behaviors of Fano factor in double quantum dot connected with Luttinger liquid electrodes

    International Nuclear Information System (INIS)

    In this study, we discuss the behavior of the Fano factor in a double quantum dot (DQD) connected with Luttinger liquid (LL) electrodes. At the Toulouse point, we study the dependence of the Fano factor on the bias voltage, the energy level of the dots, the interdot coupling, and the asymmetry parameter. We show that the behavior of the Fano factor in a DQD is similar to that in a single quantum dot (SQD); however, it behaves nonmonotonically with bias voltage and three local extrema can occur. The condition for the occurrence of nonmonotonic behavior is determined, and it is shown that local extrema result from the mixing of the bare energy levels of the dots caused by the interdot coupling. The influence of the Klein factor on the conductance in a DQD and the limitation of the perturbation calculation for a DQD are discussed.

  12. Nonmonotonic behaviors of Fano factor in double quantum dot connected with Luttinger liquid electrodes.

    Science.gov (United States)

    Kawaguchi, Satoshi

    2009-09-30

    In this study, we discuss the behavior of the Fano factor in a double quantum dot (DQD) connected with Luttinger liquid (LL) electrodes. At the Toulouse point, we study the dependence of the Fano factor on the bias voltage, the energy level of the dots, the interdot coupling, and the asymmetry parameter. We show that the behavior of the Fano factor in a DQD is similar to that in a single quantum dot (SQD); however, it behaves nonmonotonically with bias voltage and three local extrema can occur. The condition for the occurrence of nonmonotonic behavior is determined, and it is shown that local extrema result from the mixing of the bare energy levels of the dots caused by the interdot coupling. The influence of the Klein factor on the conductance in a DQD and the limitation of the perturbation calculation for a DQD are discussed. PMID:21832386

  13. Dilute nitride based double-barrier quantum-well infrared photodetector operating in the near infrared

    International Nuclear Information System (INIS)

    Near-infrared detection is reported for a double-barrier quantum-well infrared photodetector based on a 30-A GaAs1-yNy (y≅0.01) quantum well. The growth procedure using plasma-assisted molecular-beam epitaxy is described. The as-grown sample exhibits a detection wavelength of 1.64 μm at 25 K. The detection peak strengthens and redshifts to 1.67 μm following rapid thermal annealing at 850 deg. C for 30 s. The detection peak position is consistent with the calculated band structure based on the band-anticrossing model for nitrogen incorporation into GaAs

  14. Magnetoresistance of One-Dimensional Subbands in Tunnel-Coupled Double Quantum Wires

    International Nuclear Information System (INIS)

    We study the low-temperature in-plane magnetoresistance of tunnel-coupled quasi-one-dimensional quantum wires. The wires are defined by two pairs of mutually aligned split gates on opposite sides of a < 1 micron thick AlGaAs/GaAs double quantum well heterostructure, allowing independent control of their widths. In the ballistic regime, when both wires are defined and the field is perpendicular to the current, a large resistance peak at 6 Tesla is observed with a strong gate voltage dependence. The data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands

  15. Conductance peak splitting in hole transport through a SiGe double quantum dot

    International Nuclear Information System (INIS)

    We have observed the splitting of Coulomb oscillation peaks in coupled Si0.9Ge0.1 double quantum dots at 4.2 K. The quantum dots are formed by trench isolation, which means that the dots can be made much smaller than possible with the surface-gated approach. A dot diameter of 50 nm or less increases the charging energy and, therefore, the operating temperature of the device compared to previous approaches. A simulation of the results using parameters calculated from the lithographic dimensions of the device shows that a good fit to the experimental data can be achieved with a realistic interdot capacitance value. [copyright] 2001 American Institute of Physics

  16. Photoluminescence study of InGaN/GaN double quantum wells with varying barrier widths

    CERN Document Server

    Ryu, M Y; Shin, E J; Lee, J I; Yu, S K; Oh, E S; Park, Y J; Park, H S; Kim, T I

    2000-01-01

    We report the results of photoluminescence (PL) and time-resolved PL studies on InGaN/GaN double quantum well (DQW) samples with different barrier widths. The barrier-width dependence of the PL emission energy and intensity are discussed. The PL as a function of excitation density can be well explained in terms of the quantum-confined Stark effect (QCSE). The temporal behavior of the PL was also studied. As the barrier width increases, the decay times tau sub 1 and tau sub 2 , decrease from 1.02 ns and 6.99 ns to 0.32 ns and 1.09 ns, respectively. The PL efficiency and the decay lifetime depend on the barrier width.

  17. Thickness effects on the Coulomb drag rate in double quantum layer systems

    Science.gov (United States)

    Vazifehshenas, T.; Eskourchi, A.

    2007-02-01

    In this paper, we have investigated the effect of quantum layer thickness on Coulomb drag phenomenon in a double quantum well (DQW) system, in which the electrons momentum can transfer from one layer to another. We have applied the full random phase approximation (RPA) in dynamical dielectric matrix of this coupled two-dimensional electron gas (2DEG) system in order to obtain an improved result for temperature-dependent rate of momentum transfer. We have calculated the drag rate transresistivity for various well thicknesses at low and intermediate temperatures in Fermi-scale and for different electron gas densities. It has been obtained that the Coulomb drag rate increases with increasing the well width when the separation between the wells remains unchanged.

  18. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  19. Spin blocking effect in symmetric double quantum well due to Rashba spin-orbit coupling

    Science.gov (United States)

    Souma, Satofumi; Ogawa, Matsuto; Sekine, Yoshiaki; Sawada, Atsushi; Koga, Takaaki

    2013-03-01

    We report a theoretical study of the spin-dependent electronic current flowing laterally through the In0.53Ga0.47As/In0.52Al0.48As double quantum well (DQW) structure, where the values of the Rashba spin-orbit parameter αR are opposite in sign but equal in magnitude between the constituent quantum wells. By tuning the channel length of DQW and the magnitude of the externally applied in-plane magnetic field, one can block the transmission of one spin (e.g., spin-up) component, enabling us to obtain a spin-polarized current. Our experimental progress toward realizing the proposed device is also reported. This work was supported by JSPS KAKENHI Grant Number 23360001 and 22104007

  20. Dynamical entanglement formation and dissipation effects in two double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Pulido, L D [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Rojas, F [Departamento de Fisica Teorica, Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California 22800 (Mexico)

    2006-11-01

    We study the static and dynamic formation of entanglement in charge states of a two double quantum dot array with two mobile electrons under the effect of an external driving field. We include dissipation via contact with a phonon bath. By using the density matrix formalism and an open quantum system approach, we describe the dynamical behaviour of the charge distribution (polarization), concurrence (measure of the degree of entanglement) and Bell state probabilities (two qubit states with maximum entanglement) of such a system, including the role of dot asymmetry and temperature effects. Our results show that it is possible to obtain entangled states as well as a most probable Bell state, which can be controlled by the driving field. We also evaluate how the entanglement formation based on charge states deteriorates as the temperature or asymmetry increases.

  1. Electronic structure of GaAs/AlGaAs quantum double rings in lateral electric field

    Institute of Scientific and Technical Information of China (English)

    Y.Yao; T.Ochiai; T.Mano; T.Kuroda; T.Noda; N.Koguchi; K.Sakoda

    2009-01-01

    A three-dimensional model of GaAs/A1GaAs quantum double rings in the lateral static electric field is investigated theoretically.The eigenvalue problem with the effective-mass approximation is solved by means of the finite-element method.The energy levels and wave functions of quantum-confined electrons and heavy holes are obtained and show an agreement with our previous theoretical and experimental studies.It is shown in the approximation of neglecting the Coulomb attraction between the electron and heavy hole that a relatively large Stark shift of exciton emission of 4 meV is attainable with an applied electric field of 0.7 kV/cm.

  2. Three-dimensional gravity and Drinfel'd doubles: Spacetimes and symmetries from quantum deformations

    International Nuclear Information System (INIS)

    We show how the constant curvature spacetimes of 3d gravity and the associated symmetry algebras can be derived from a single quantum deformation of the 3d Lorentz algebra sl(2,R). We investigate the classical Drinfel'd double of a 'hybrid' deformation of sl(2,R) that depends on two parameters (η,z). With an appropriate choice of basis and real structure, this Drinfel'd double agrees with the 3d anti-de Sitter algebra. The deformation parameter η is related to the cosmological constant, while z is identified with the inverse of the speed of light and defines the signature of the metric. We generalise this result to de Sitter space, the three-sphere and 3d hyperbolic space through analytic continuation in η and z; we also investigate the limits of vanishing η and z, which yield the flat spacetimes (Minkowski and Euclidean spaces) and Newtonian models, respectively.

  3. Improved Quantum Efficiency of Organic Light Emitting Diodes with Gradiently Doped Double Emitting Zone

    Institute of Scientific and Technical Information of China (English)

    高文宝; 姜文龙; 孙家鑫; 冯晶; 侯晶莹; 刘式墉

    2003-01-01

    We investigate electroluminescent characteristics of gradiently doped organic light-emitting diodes, which were gradiently doped in both the hole and the electron-transporting layer to form a double emitting zone. The device structure was ITO/(15nm) CuPc/(60nm)NPB:rubrene/(30nm)Alqs:rubrene/(20nm)Alqs/(0.5nm)LiF/Al. We observed that charge carriers were well trapped by the dopant molecules and the main emitting zone was localized at the NPB:rubrene side close to the interface of NPB:rubrene/Alqs:rubrene. The quantum efficiency (cd/A) was enhanced to 5.89 cd/A at 6 V. We attributed this improvement to the charge carriers trapping and the emitting of the double emitting zone.

  4. Quantum Faraday Effect in Double-Dot Aharonov-Bohm Ring

    OpenAIRE

    Kang, Kicheon

    2011-01-01

    We investigate Faraday's law of induction manifested in the quantum state of Aharonov-Bohm loops. In particular, we propose a flux-switching experiment for a double-dot AB ring to verify the phase shift induced by Faraday's law. We show that the induced {\\em Faraday phase} is geometric and nontopological. Our study demonstrates that the relation between the local phases of a ring at different fluxes is not arbitrary but is instead determined by Faraday's inductive law, which is in strong cont...

  5. Spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads

    Institute of Scientific and Technical Information of China (English)

    Yan Cong-Hua; Wu Shao-Quan; Huang Rui; Sun Wei-Li

    2008-01-01

    We investigate the spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads in series.By means of the slave-boson mean-field approximation,we calculate the density of states in the Kondo regime for two different configurations of the leads.It is found that the transport shows some remarkable properties depending on the spin-flip strength.These effects may be useful in exploiting the role of electronic correlation in spintronics.

  6. On the Role of Quantum Events in Double-Slit Experiments

    OpenAIRE

    Schuster, R

    2010-01-01

    We formulate the Schr\\"odinger equation as the equation of motion of a small external influence which serves as the initial boundary condition of a physical system in classical laboratory space. The Hilbert space of possible external influences for a given physical system is then equivalent to the Hilbert space of a quantum system without spin. We discuss the double-slit experiment in the context of this approach and show that wave-particle dualism reduces to the choice of a basis in the geom...

  7. Tunneling relaxation of holes in double quantum wells with nonideal heteroboundaries

    International Nuclear Information System (INIS)

    This paper presents a calculation of the tunneling relaxation rate of holes in double quantum wells when the holes are scattered at heteroboundary roughnesses. Because of mixing of the light- and heavy-hole states (which are described analytically in the approximation of strongly differing effective masses), the interwell tunneling mechanism changes at the splitting energy of the tunnel-coupled levels increases. The dependence of the tunneling relaxation rate on the splitting energy is compared with the experimental results. 7 refs., 2 figs

  8. Hole subband structure in single and double p-type {delta}-doped diamond quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Vargas, I. [Facultad de Ciencias, Univ. Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca (Mexico); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Univ. Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2007-07-01

    Heavy, light, and split-off hole states in single and double p-{delta}-doped diamond quantum wells are studied with the use of a 6 x 6 k.p model. The effective mass Hamiltonian is solved using a local density Thomas-Fermi-Dirac approximation for the description of the band bending profile. The features of the valence band spectrum are briefly discussed in both cases. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells

    CERN Document Server

    Su, M Y; Sherwin, M S; Huntington, A S; Coldren, L A

    2002-01-01

    An undoped double quantum well (DQW) was driven with a terahertz (THz) electric field of frequency \\omega_{THz} polarized in the growth direction, while simultaneously illuminated with a near-infrared (NIR) laser at frequency \\omega_{NIR}. The intensity of NIR upconverted sidebands \\omega_{sideband}=\\omega_{NIR} + \\omega_{THz} was maximized when a dc voltage applied in the growth direction tuned the excitonic states into resonance with both the THz and NIR fields. There was no detectable upconversion far from resonance. The results demonstrate the possibility of using gated DQW devices for all-optical wavelength shifting between optical communication channels separated by up to a few THz.

  10. Multi-Photon Quantum Key Distribution Based on Double-Lock Encryption

    OpenAIRE

    Chan, Kam Wai Clifford; Rifai, Mayssaa El; Verma, Pramode K.; Kak, Subhash; Chen, Yuhua

    2015-01-01

    This paper presents a multi-stage, multi-photon quantum key distribution protocol based on the double-lock cryptography. It exploits the asymmetry in the detection strategies between the legitimate users and the eavesdropper. The security analysis of the protocol is presented with coherent states under the intercept-resend attack, the photon number splitting attack, and the man-in-the-middle attack. It is found that the mean photon number can be much larger than one. This complements the rece...

  11. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    FANG Dong-Kai; WU Shao-Quan; ZOU Cheng-Yi; ZHAO Guo-Ping

    2012-01-01

    We theoretically investigate the effect of electronic correlations (including spin and Coulomb correlations) on magnetotransport through a parallel double quantum dot coupled to ferromagnetic leads.Within the framework of the generalized master equation,we analyze the current,differential conductance and tunnel magnetoresistance versus bias for different electron correlations.Our results reveal that spin correlations can induce a giant tunnel magnetoresistance,while Coulomb correlations can lead to the occurrence of negative tunnel magetoresistance and negative differential conductance,and the relevant underlying physics of this problem is discussed.

  12. Entropy, fidelity, and double orthogonality for resonance states in two-electron quantum dots

    CERN Document Server

    Pont, Federico M; Serra, Pablo; Toloza, Julio H

    2010-01-01

    Resonance states of a two-electron quantum dot are studied using a variational expansion with both real basis-set functions and complex scaling methods. The two-electron entanglement (linear entropy) is calculated as a function of the electron repulsion at both sides of the critical value, where the ground (bound) state becomes a resonance (unbound) state. The linear entropy and fidelity and double orthogonality functions are compared as methods for the determination of the real part of the energy of a resonance. The complex linear entropy of a resonance state is introduced using complex scaling formalism.

  13. Spin-dependent quantum interference in Aharonov-Bohm ring embedded with two double-quantum-dot molecules.

    Science.gov (United States)

    Wang, Xiaofei; Liu, Xiaojie; Zhao, Xueyang; Yin, Haitao; Wan, Weilong; Feng, Li

    2014-03-01

    The spin polarized transport properties through an Aharonov-Bohm ring embedded with a double quantum dot-molecule in each arm with Rashba spin-orbit (RSO) interaction is theoretically studied in the framework of the equation of motion of Green's function. Based on molecular state representation, the anti-resonance phenomenon in the conductance spectrum is readily explained. We found that the position of antiresonant peaks in conductance spectrum is determined by the interdot coupling strengths. Moreover, the magnitude of conductance of each spin component can be manipulated by the Rashba spin orbit interaction strength. Especially only one spin component electron can be allowed to transport through this structure by modulating the strength of RSO interaction properly. PMID:24745284

  14. Exciton-related energies of the 1s-like states of excitons in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)

    2012-10-15

    The dependencies of the binding energies of the lowest four 1s-like exciton states in GaAs-(Ga,Al)As coupled double quantum wells (CDQW) on the geometric parameters of the system are theoretically studied. A variational approach, together with the parabolic band and effective mass approximations, were considered in order to perform the numerical calculations. It is shown that in the case of a symmetric system there is a degeneracy between the heavy-hole even and odd states and this degeneracy can be removed by the presence of a sufficiently narrow middle barrier. In contrast to this fact, the electron even and odd states are never degenerated. It is detected that, if the system is asymmetric, there will appear binding energies anticrossings between the heavy-hole states at the point of the asymmetric {yields} symmetric QW transition. - Highlights: Black-Right-Pointing-Pointer Study of 1s-like exciton states in double quantum wells. Black-Right-Pointing-Pointer Binding energy decreases with the presence of second well. Black-Right-Pointing-Pointer Binding energy of (2,2) state can be larger than (1,1) state. Black-Right-Pointing-Pointer Central barrier can remove degeneracy of states. Black-Right-Pointing-Pointer Anticrossing between states can be induced via symmetries.

  15. Wide single-mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms

    International Nuclear Information System (INIS)

    We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm−1 at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current

  16. Wide single-mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Liu, Peter Q. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Institute of Quantum Electronics, ETH Zürich, 8093 Zürich (Switzerland); Wang, Xiaojun; Fan, Jen-Yu; Troccoli, Mariano [AdTech Optics, Inc., City of Industry, California 91748 (United States)

    2013-11-18

    We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.

  17. Quantum transport of bosonic cold atoms in double-well optical lattices

    International Nuclear Information System (INIS)

    We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultracold bosonic atoms in a double-well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well tunneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as noninteracting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can be measured in the time-of-flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the noninteracting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.

  18. Low voltage operation of electro-absorption modulator promising for high-definition 3D imaging application using a three step asymmetric coupled quantum well structure

    International Nuclear Information System (INIS)

    In this paper, we propose a transmission type electro-absorption modulator (EAM) operating at 850 nm having low operating voltage and high absorption change with low insertion loss using a novel three step asymmetric coupled quantum well (3 ACQW) structure which can be used as an optical image shutter for high-definition (HD) three dimensional (3D) imaging. Theoretical calculations show that the exciton red shift of 3 ACQW structure is more than two times larger than that of rectangular quantum well (RQW) structure while maintaining high absorption change. The EAM having coupled cavities with 3 ACQW structure shows a wide spectral bandwidth and high amplitude modulation at a bias voltage of only -8V, which is 41% lower in operating voltage than that of RQW, making the proposed EAM highly attractive as an optical image shutter for HD 3D imaging applications

  19. Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xingfei; Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2014-04-21

    We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (Z{sub s}T ≈ 4.5) accompanying with a small charge figure of merit (Z{sub c}T ≈ 0) can be generated due to the remarkable bipolar effect. Further, when the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that Z{sub s}T is enhanced while Z{sub c}T is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results.

  20. Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot

    International Nuclear Information System (INIS)

    We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (ZsT ≈ 4.5) accompanying with a small charge figure of merit (ZcT ≈ 0) can be generated due to the remarkable bipolar effect. Further, when the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that ZsT is enhanced while ZcT is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results

  1. Extreme beam attenuation in double-slit experiments: Quantum and subquantum scenarios

    Science.gov (United States)

    Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.

    2015-02-01

    Combining high and low probability densities in intensity hybrids, we study some of their properties in double-slit setups. In particular, we connect to earlier results on beam attenuation techniques in neutron interferometry and study the effects of very small transmission factors, or very low counting rates, respectively, at one of the two slits. We use a "superclassical" modeling procedure which we have previously shown to produce predictions identical with those of standard quantum theory. Although in accordance with the latter, we show that there are previously unexpected new effects in intensity hybrids for transmission factors below a ≲ 10-4, which can eventually be observed with the aid of weak measurement techniques. We denote these as quantum sweeper effects, which are characterized by the bunching together of low counting rate particles within very narrow spatial domains. We give an explanation of this phenomenology by the circumstance that in reaching down to ever weaker channel intensities, the nonlinear nature of the probability density currents becomes ever more important, a fact which is generally not considered-although implicitly present-in standard quantum mechanics.

  2. InGaAsP/InP Double Quantum Well Intermixing Induced by Phosphorus Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; ZHAO Jie; WANG Yong-chen; HAN De-jun

    2005-01-01

    A quantum well intermixing(QWI) investigation on double quantum well(DQW) structure with two different emitting wavelength caused by phosphorus ion implantation and following rapid thermal annealing (RTA) was carried out by means of photoluminescence(PL). The ion implantation was performed at the energy of 120 kev with the dose ranging from 1 × 1011 cm-2 to 1× 1014 cm-2. The RTA was performed at the temperature of 700 ℃ for 30 s under pure nitrogen protection. The PL measurement implied that the band gap blue-shift from the upper well increases with the ion dose faster than that from lower well and the PL peaks from both QWs remained well separated under the lower dose implantation(~1×1011 cm-2 ) indicating that the implant vacancy distribution affects the QWI. When the ion dose is over ~ 1 × 1012 cm-2 , the band gap blue-shift from both wells increases with the ion dose and finally the two peaks merge together as one peak indicating the ion implantation caused a total intermixing of both quantum wells.

  3. Quantum states of charge carriers and longitudinal conductivity in double periodic n-type semiconductor lattice structures in electric field

    International Nuclear Information System (INIS)

    Quantum states of charge carriers in double periodic semiconductor superlattices of n-type quantum dots with Rashba spin–orbit coupling in an electron gas have been calculated in the one-electron approximation in the presence of mutually perpendicular electric and magnetic fields. For these structures in weak constant electric field, the solution to the quasi-classical kinetic Boltzmann equation shows that the states of carriers in magnetic Landau minibands with negative differential conductivity are possible

  4. Superconducting transport in single and parallel double InAs quantum dot Josephson junctions with Nb-based superconducting electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shoji, E-mail: baba@meso.t.u-tokyo.ac.jp; Sailer, Juergen [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Deacon, Russell S. [Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); RIKEN Advanced Science Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Oiwa, Akira [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Shibata, Kenji [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Hirakawa, Kazuhiko [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); JST CREST, 4-1-8 Hon-cho, Kawaguchi-shi, Saitama 332-0012 (Japan); Tarucha, Seigo [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan); INQIE, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); QPEC, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656 (Japan)

    2015-11-30

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field, and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots, we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  5. Superconducting Transport in single and parallel double InAs Quantum Dot Josephson Junctions with Nb-based Superconducting Electrodes

    OpenAIRE

    Baba, Shoji; Sailer, Juergen; Deacon, Russell S.; Oiwa, Akira; Shibata, Kenji; Hirakawa, Kazuhiko; Tarucha, Seigo

    2015-01-01

    We report conductance and supercurrent measurements for InAs single and parallel double quantum dot Josephson junctions contacted with Nb or NbTiN superconducting electrodes. Large superconducting gap energy, high critical field and large switching current are observed, all reflecting the features of Nb-based electrodes. For the parallel double dots we observe an enhanced supercurrent when both dots are on resonance, which may reflect split Cooper pair tunneling.

  6. Error Thresholds for Abelian Quantum Double Models: Increasing the bit-flip Stability of Topological Quantum Memory

    OpenAIRE

    Andrist, Ruben S.; Wootton, James R.; Katzgraber, Helmut G.

    2014-01-01

    Current approaches for building quantum computing devices focus on two-level quantum systems which nicely mimic the concept of a classical bit, albeit enhanced with additional quantum properties. However, rather than artificially limiting the number of states to two, the use of d-level quantum systems (qudits) could provide advantages for quantum information processing. Among other merits, it has recently been shown that multi-level quantum systems can offer increased stability to external di...

  7. Magnetic-field-induced V-shaped quantized conductance staircase in a double-layer quantum point contact

    International Nuclear Information System (INIS)

    We show that the low-temperature conductance (G) of a quantum point contact consisting of ballistic tunnel-coupled double-layer quantum-well wires is modulated by an in-layer magnetic field B due to the anticrossing. B creates a V-shaped quantum staircase for G, causing it to decrease in steps of 2e2/h to a minimum and then increase to a maximum, where G may saturate or decrease again at higher B's. Relevance of the result to recent data is discussed. copyright 1999 The American Physical Society

  8. Magnetotransport in double quantum well with inverted energy spectrum: HgTe/CdHgTe

    Science.gov (United States)

    Yakunin, M. V.; Suslov, A. V.; Popov, M. R.; Novik, E. G.; Dvoretsky, S. A.; Mikhailov, N. N.

    2016-02-01

    We present an experimental study of the double-quantum-well (DQW) system made of two-dimensional layers with inverted energy band spectrum: HgTe. The magnetotransport reveals a considerably larger overlap of the conduction and valence subbands than in known HgTe single quantum wells (QW), which may be regulated here by an applied gate voltage Vg. This large overlap manifests itself in a much higher critical field Bc separating the range above it with a plain behavior of the Hall magnetoresistance ρx y(B ) , where the quantum peculiarities shift linearly with Vg, and the range below with a complicated behavior. In the latter case, specific structures in ρx y(B ) are formed like a double-N -shaped ρx y(B ) , reentrant sign-alternating quantum Hall effect with transitions into a zero-filling-factor state, etc., which are clearly manifested here due to better magnetic quantization at high fields, as compared to the features seen earlier in a single HgTe QW. The coexisting electrons and holes were found in the whole investigated range of positive and negative Vg as revealed (i) from fits to the low-field N -shaped ρx y(B ) , (ii) from the Fourier analysis of oscillations in ρx x(B ) , and (iii) from a specific behavior of ρx y(B ) at high positive Vg. A peculiar feature here is that the found electron density n remains almost constant in the whole range of investigated Vg while the hole density p drops down from the value a factor of 6 larger than n at extreme negative Vg to almost zero at extreme positive Vg passing through the charge-neutrality point. We show that this difference between n and p stems from an order of magnitude larger density of states for holes in the lateral valence subband maxima than for electrons in the conduction subband minimum. We analyze our observations on the basis of a calculated picture of magnetic levels in a DQW and suggest that their specificity is due to (i) a nonmonotonic course of the valence subband magnetic levels and an

  9. Quantum correlation via quantum coherence

    OpenAIRE

    Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing

    2014-01-01

    Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition--------quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes ...

  10. A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor

    International Nuclear Information System (INIS)

    A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔVTHQM) and the gate capacitance (Cg) degradation. First of all, ΔVTHQM induced by quantum mechanical (QM) effects is modeled. The Cg degradation is then modeled by introducing the inversion layer centroid. With ΔVTHQM and the Cg degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulation results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET

  11. 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, J.; Vartanov, G.S.

    2012-02-15

    We revisit the definition of the 6j-symbols from the modular double of U{sub q}(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)

  12. Magnetotransport through an Aharonov–Bohm ring with parallel double quantum dots coupled to ferromagnetic leads

    International Nuclear Information System (INIS)

    Using the Keldysh nonequilibrium Green function and equation-of-motion technique, this paper studies the magnetotransport through an Aharonov–Bohm (AB) ring with parallel double quantum dots coupled to ferromagnetic leads. It calculates the transmission probability in both the equilibrium and the nonequilibrium case, analyses the conductance and the tunnel magnetoresistance for various parameters, and obtains some new results. These results show that this system is provided with an excellent spin filtering property, and that a large tunnelling magnetoresistance and a negative tunnelling magnetoresistance can arise by adjusting relative parameters; these facts indicate that this system is a possible candidate for spin valve transistors, and has important applications in spintronics. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Spin Accumulation in a Double Quantum Dot Aharonov–Bohm Interferometer

    International Nuclear Information System (INIS)

    We investigate the spin accumulation in a double quantum dot Aharonov–Bohm (AB) interferometer in which both the Rashba spin–orbit (RSO) interaction and intradot Coulomb interaction are taken into account. Due to the existence of the RSO interaction, the electron, flowing through different arms of the AB ring, will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor will induce various interesting interference phenomena. It is found that the electrons of the different spin directions can accumulate in the two dots by properly adjusting the bias and the intradot level with a fixed RSO interaction strength. Moreover, both the magnitude and direction of the spin accumulation in each dot can be conveniently controlled and tuned by the gate voltage acting on the dot or the bias on the lead

  14. Tunable spin selective transport and quantum phase transition in parallel double dot system

    Science.gov (United States)

    Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao

    2016-02-01

    We study theoretically the spin selective transport and the quantum phase transition (QPT) in a double dot device by means of the numerical renormalization group technique. When the gate voltage ε is in the Kondo regime and the interdot hopping t is large enough, a first order QPT between local spin singlet and Sz=1 of the triplet is observed as the magnetic field B increases. Beyond the Kondo regime, the QPTs depend closely on ε and t, and perfect spin filter is found, where the effect of spin filtering could easily be manipulated by tuning external parameters. We show that the interplay between the Zeeman effect and the antiferromagnetic interdot hopping, and occupancy switching are responsible for the QPT and the spin selective transport.

  15. Detection of single electron spin resonance in a double quantum dota)

    Science.gov (United States)

    Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.

    2007-04-01

    Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.

  16. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer

    Institute of Scientific and Technical Information of China (English)

    YIN Hai-Tao; L(U) Tian-Quan; LIU Xiao-Jie; XUE Hui-Jie

    2009-01-01

    @@ We investigate the spin accumulation in a double quantum dot Aharonov-Bohm (AB) interferometer in which both the Rashba spin-orbit (RSO) interaction and intradot Coulomb interaction are taken into account. Due to the existence of the RSO interaction, the electron, flowing through different arms of the AB ring, will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor will induce various interesting interference phenomena. It is found that the electrons of the different spin directions can accumulate in the two dots by properly adjusting the bias and the intradot level with a fixed RSO interaction strength. Moreover, both the magnitude and direction of the spin accumulation in each dot can be conveniently controlled and tuned by the gate voltage acting on the dot or the bias on the lead.

  17. Coherently driven double-quantum dot at finite bias: Analogy with lasers and beyond

    Science.gov (United States)

    Kulkarni, Manas; Cotlet, Ovidiu; Liu, Yinyu; Petersson, Karl; Stehlik, George; Petta, Jason; Tureci, Hakan

    2014-03-01

    Hybrid circuit-QED systems consisting of a double-quantum dot (DQD) coupled to a microwave resonator provide a unique platform to explore non-equilibrium impurity physics with coupled light-matter systems. We present a theoretical and experimental study of photonic and electronic transport properties of such a system. We obtain a Hamiltonian and the Liouvillian super-operators considering systematically both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number and nonequilibrium steady state electron current and show that the system realizes an unconventional version of a single-atom laser. Our analytical results are compared to numerically exact ones establishing regimes of validity of various analytical models. Finally, we compare our findings to experimental measurements.

  18. Photon-assisted tunneling and charge dephasing in a carbon nanotube double quantum dot

    Science.gov (United States)

    Mavalankar, A.; Pei, T.; Gauger, E. M.; Warner, J. H.; Briggs, G. A. D.; Laird, E. A.

    2016-06-01

    We report microwave-driven photon-assisted tunneling in a suspended carbon nanotube double quantum dot. From the resonant linewidth at a temperature of 13 mK, the charge-dephasing time is determined to be 280 ±30 ps. The linewidth is independent of driving frequency, but increases with increasing temperature. The moderate temperature dependence is inconsistent with expectations from electron-phonon coupling alone, but consistent with charge noise arising in the device. The extracted level of charge noise is comparable with that expected from previous measurements of a valley-spin qubit, where it was hypothesized to be the main cause of qubit decoherence. Our results suggest a possible route towards improved valley-spin qubits.

  19. Fano interference in a parallel double quantum dot interferometer modified by the decoherence effect

    International Nuclear Information System (INIS)

    By introducing floating leads to mimic the decoherence mechanism, we study the influence of the decoherence effect on the Fano interference in electron transport through a parallel double quantum dot (QD) structure. We find that when the decoherence effect is incorporated in the resonant channel, the Fano interference can apparently be suppressed, especially in the case of φ = π (φ is the phase due to the presence of a local magnetic flux). On the other hand, if the decoherence effect is introduced into the nonresonant channel, the Fano antiresonance is independent of the strengthening of the decoherence effect. If the magnetic flux is absent, the Fano antiresonance valley will be widened by the decoherence. When φ = π, the Fano lineshape in the conductance spectrum is robust. By analyzing the electron motion is this system, we clarified all the results. We hope that these results will be helpful for relevant experiments.

  20. Fano interference in a parallel double quantum dot interferometer modified by the decoherence effect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chuan-Jing; Ren, Feng-Zhang [Henan University of Science and Technology, Luoyang (China); Gong, Wei-Jiang [Northeastern university, Shenyang (China)

    2014-03-15

    By introducing floating leads to mimic the decoherence mechanism, we study the influence of the decoherence effect on the Fano interference in electron transport through a parallel double quantum dot (QD) structure. We find that when the decoherence effect is incorporated in the resonant channel, the Fano interference can apparently be suppressed, especially in the case of φ = π (φ is the phase due to the presence of a local magnetic flux). On the other hand, if the decoherence effect is introduced into the nonresonant channel, the Fano antiresonance is independent of the strengthening of the decoherence effect. If the magnetic flux is absent, the Fano antiresonance valley will be widened by the decoherence. When φ = π, the Fano lineshape in the conductance spectrum is robust. By analyzing the electron motion is this system, we clarified all the results. We hope that these results will be helpful for relevant experiments.

  1. Effects of Magnetic Field on the Valence Bond Property of the Double-Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The effects of the magnetic field on the valence bond property of the double-quantum-dot molecule are numerically studied by the finite element method and perturbation approach because of the absence of cylindrical symmetry in the horizontally coupled dots. The calculation results show that the energy value of the ground state changes differently from that of the first excited state with increasing magnetic field strength, and they cross under a certain magnetic field. The increasing magnetic field makes the covalent bond state change into an ionic bond state, which agrees qualitatively with experimental results and makes ionic bond states remain. The oscillator strength of transition between covalent bond states decreases distinctly with the increasing magnetic field strength, when the molecule is irradiated by polarized light. Such a phenomenon is possibly useful for actual applications.

  2. Optical and Structural Properties of Zn-Cd-Mn-Se Double Quantum Well Systems

    Science.gov (United States)

    Matsumoto, Takashi; Ohmori, Kenta; Kodama, Kazuki; Hishikawa, Masao; Fukasawa, Sakyo; Iwasaki, Fumiaki; Muranaka, Tsutomu; Nabetani, Yoichi

    2011-05-01

    Double quantum well (DQW) structures consisting of a ZnCdSe well and a ZnCdMnSe well separated by a ZnSe barrier are grown with molecular beam epitaxy (MBE). The DQW structures are characterized by using X-ray diffraction measurement and simulation. Thickness of each well layer is designed so that the lowest energy level of ZnCdMnSe well is close to the excited level of the ZnCdSe well. Optical properties of the DQWs are studied with photoluminescence (PL) and reflection spectra in external magnetic fields up to 8 T in the Faraday geometry. Exciton transfer from ZnCdMnSe well to ZnCdSe well is observed in magneto PL with energy selective photoexcitation. Exciton energies in ground and excited states are estimated from PL excitation spectra and reflection spectra.

  3. Intersubband transitions and refractive index changes in coupled double quantum well with different well shapes

    Science.gov (United States)

    Ozturk, Emine; Sokmen, Ismail

    2011-10-01

    In this study, both the linear intersubband transitions and the refractive index changes in coupled double quantum well (DQW) with different well shapes for different electric fields are theoretically calculated within framework of the effective mass approximation. Results obtained show that intersubband transitions and the energy levels in coupled DQW can importantly be modified and controlled by the electric field strength and direction. By considering the variation of the energy differences, it should point out that by varying electric field we can obtain a blue or red shift in the intersubband optical transitions. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easy obtained by tuning applied electric field strength and direction.

  4. Diamagnetic susceptibility: An indicator of pressure induced donor localization in a double quantum well

    Science.gov (United States)

    Vignesh, G.; Nithiananthi, P.

    2016-04-01

    The influence of pressure along the growth axis on carrier localization in GaAs/Al0.3Ga0.7As Double Quantum Well (DQW) is studied under strongly coupled regime and isolated regimes of the well. The effective mass approximation combined with variation technique is adopted with the inclusion of mismatches in effective mass and dielectric constants of the well and barrier material. Effect of the barrier and well on carrier localization is investigated by observing the diamagnetic susceptibility (χdia) for various impurity locations (zi) and the critical limit of the barrier (Lb ≈ 50 Å) for tunneling has also been estimated. The effect of Γ-Χ crossover due to the application of pressure on the donor localization is picturized through diamagnetic susceptibility.

  5. Valence band localized states in double quantum wells from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Arcesio Castaneda; Gutierrez, Rafael M. [Universidad Antonio Narino, Bogota (Colombia)

    2011-12-15

    The electrostatic potentials and electronic structure of an AlAs/GaAs double quantum well (DQW) heterostructure are determined through ab initio computations. The study of the potentials along the growth direction establishes a clear relation between the microscopic structure and the relevant macroscopic properties of the heterostructure, namely, the DQW dimensions and the band offsets. At nanometric scale, the one electron effective potential energy is a DQW and the valence band edge electronic states are confined along the growth direction. Such states coincide qualitatively with those analytically obtained through the so-called envelope function/effective mass approximation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Anticrossing Gap between Pairs of the Subbands in AlxGa1-xN/GaN Double Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    LEI Shuang-Ying; SHEN Bo; ZHANG Guo-Yi

    2006-01-01

    @@ Dependences of anticrossing gaps between pairs of subbands in Alx Ga1-x N/GaN double quantum wells (DQWs) on the width and the Al composition of the central barrier of the DQWs and on the well width of the DQWs have been investigated by solving the Schrodinger and Poisson equations self-consistently.

  7. Electron-related nonlinearities in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells under the effects of intense laser field and applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos, Mexico (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.es [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Kasapoglu, E.; Sari, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Soekmen, I. [Dokuz Eyluel University, Physics Department, 35160 Buca, Izmir (Turkey)

    2013-03-15

    The combined effects of intense laser radiation and applied electric fields on the intersubband-related linear and nonlinear optical properties in GaAs-based quantum wells are discussed. It is shown that for asymmetric double quantum well, the increasing laser field intensity causes progressive redshifts in the peak positions of the second and third harmonic coefficients. However, the resonant peaks of the nonlinear optical rectification can suffer a blueshift or a redshift, depending on the laser strengths. The same feature appears in the case of the resonant peaks corresponding to the total coefficients of optical absorption and relative change in the refractive index. - Highlights: Black-Right-Pointing-Pointer Nonlinear optical properties in double quantum wells. Black-Right-Pointing-Pointer Increasing laser field intensity causes redshifts in the peak positions. Black-Right-Pointing-Pointer Resonant peak of second order nonlinearities can be blue-shifted. Black-Right-Pointing-Pointer Relative change in refractive index depends of the applied electric field. Black-Right-Pointing-Pointer The energy position depends of the laser field parameter.

  8. Electron-related nonlinearities in GaAs–Ga1−xAlxAs double quantum wells under the effects of intense laser field and applied electric field

    International Nuclear Information System (INIS)

    The combined effects of intense laser radiation and applied electric fields on the intersubband-related linear and nonlinear optical properties in GaAs-based quantum wells are discussed. It is shown that for asymmetric double quantum well, the increasing laser field intensity causes progressive redshifts in the peak positions of the second and third harmonic coefficients. However, the resonant peaks of the nonlinear optical rectification can suffer a blueshift or a redshift, depending on the laser strengths. The same feature appears in the case of the resonant peaks corresponding to the total coefficients of optical absorption and relative change in the refractive index. - Highlights: ► Nonlinear optical properties in double quantum wells. ► Increasing laser field intensity causes redshifts in the peak positions. ► Resonant peak of second order nonlinearities can be blue-shifted. ► Relative change in refractive index depends of the applied electric field. ► The energy position depends of the laser field parameter.

  9. Photon-assisted Shot noise of the double quantum dot interferometer in weak Kondo regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Li-Li [Department of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com [Department of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Wang, Jian [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2012-05-07

    The shot noise of a parallel double quantum dot (DQD) system under the perturbation of microwave fields is investigated in the weak Kondo regime. Peak-valley structures exhibit in the differential conductance and shot noise, and side resonant peaks emerge around the Kondo peak due to the absorption and emission of photons. The shot noise is sensitively dependent on the adjusting approach through changing the gate voltages. Large resonant Fano factor accompanying photon-induced side peaks appear by simultaneously varying the two gate voltages. The photon suppression and enhancement of shot noise have been evaluated corresponding to the coherent and incoherent current correlation. The destructive interference causes the suppression of shot noise by changing the Aharonov–Bohm phase. -- Highlights: ► The photon-assisted shot noise of the parallel quantum dots. ► The perturbation of microwave fields in the Kondo regime. ► Peak-valley structure and large resonant Fano factor. ► The destructive interference caused suppression of shot noise.

  10. Quantum properties of a binary bosonic mixture in a double well

    Science.gov (United States)

    Mujal, Pere; Juliá-Díaz, Bruno; Polls, Artur

    2016-04-01

    This work contains a detailed analysis of the properties of the ground state of a two-component two-site Bose-Hubbard model, which captures the physics of a binary mixture of Bose-Einstein condensates trapped in a double-well potential. The atom-atom interactions within each species and among the two species are taken as variable parameters, while the hopping terms are kept fixed. To characterize the ground state, we use observables such as the imbalance of population and its quantum uncertainty. The quantum many-body correlations present in the system are further quantified by studying the degree of condensation of each species, the entanglement between the two sites, and the entanglement between the two species. The latter is measured by means of the Schmidt gap, the von Neumann entropy, or the purity obtained after tracing out a part of the system. A number of relevant states are identified, e.g., Schrödinger catlike many-body states, in which the outcome of the population imbalance of both components is completely correlated, and other states with even larger von Neumann entropy which have a large spread in Fock space.

  11. Aminophosphines: A Double Role in the Synthesis of Colloidal Indium Phosphide Quantum Dots.

    Science.gov (United States)

    Tessier, Mickael D; De Nolf, Kim; Dupont, Dorian; Sinnaeve, Davy; De Roo, Jonathan; Hens, Zeger

    2016-05-11

    Aminophosphines have recently emerged as economical, easy-to-implement precursors for making InP nanocrystals, which stand out as alternative Cd-free quantum dots for optoelectronic applications. Here, we present a complete investigation of the chemical reactions leading to InP formation starting from InCl3 and tris(dialkylamino)phosphines. Using nuclear magnetic resonance (NMR) spectroscopy and single crystal X-ray diffraction, we demonstrate that injection of the aminophosphine in the reaction mixture is followed by a transamination with oleylamine, the solvent of the reaction. In addition, mass spectrometry and NMR indicate that the formation of InP concurs with that of tetra(oleylamino)phosphonium chloride. The chemical yield of the InP formation agrees with this 4 P(+III) → P(-III) + 3 P(+V) disproportionation reaction occurring, since full conversion of the In precursor was only attained for a 4:1 P/In ratio. Hence it underlines the double role of the aminophosphine as both precursor and reducing agent. These new insights will guide further optimization of high quality InP quantum dots and might lead to the extension of synthetic protocols toward other pnictide nanocrystals. PMID:27111735

  12. Electronic coupling in ZnO/MgZnO double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Zippel, Jan; Lange, Martin; Benndorf, Gabriele; Lenzner, Joerg; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius [Universitaet Leipzig (Germany). Institut fuer Experimentelle Physik II

    2009-07-01

    The band-gap of ZnO can be tuned from about 3 eV to 4.5 eV by alloying with Cd or Mg, respectively. This allows the realization of quantum well (QW) structures emitting between the blue and the near UV (NUV) part of the electromagnetic spectrum. In this contribution we focus on the electronic coupling of ZnO/Mg{sub x}Zn{sub 1-x}O double quantum well (DQW) structures. Besides structures with two identical wells, we fabricated DQW*s with different thickness. All samples were grown by pulsed-laser deposition on a-plane sapphire substrate. The thickness of the barrier between the two QWs was varied from 1 nm up to 6 nm for well widths of 2 nm and 4.5 nm. The magnesium content (x) in the barrier was determined by photoluminescence measurements to be about 14% for all samples. All samples are investigated using cathodoluminescence at room temperature and at 10 K. With decreasing barrier thickness between the two QWs we observed a clear red shift of the QW luminescence proving the coupling between the QWs at room temperature. The observed shift is in good agreement with effective mass theory. For the structures with different well width, an additional peak between the two direct excitonic transitions occurs.

  13. Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-06-01

    We conduct numerical simulations for an autonomous information engine comprising a set of coupled double quantum dots using a simple model. The steady-state entropy production rate in each component, heat and electron transfer rates are calculated via the probability distribution of the four electronic states from the master transition-rate equations. We define an information-engine efficiency based on the entropy change of the reservoir, implicating power generators that employ the environmental order as a new energy resource. We acquire device-design principles, toward the realization of corresponding practical energy converters, including that (1) higher energy levels of the detector-side reservoir than those of the detector dot provide significantly higher work production rates by faster states' circulation, (2) the efficiency is strongly dependent on the relative temperatures of the detector and system sides and becomes high in a particular Coulomb-interaction strength region between the quantum dots, and (3) the efficiency depends little on the system dot's energy level relative to its reservoir but largely on the antisymmetric relative amplitudes of the electronic tunneling rates.

  14. Spin-polarized current through a lateral double quantum dot with spin-orbit interaction

    International Nuclear Information System (INIS)

    We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin-orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies

  15. Spin-resolved Andreev transport through double-quantum-dot Cooper pair splitters

    Science.gov (United States)

    Trocha, Piotr; Weymann, Ireneusz

    2015-06-01

    We investigate the Andreev transport through double-quantum-dot Cooper pair splitters with ferromagnetic leads. The analysis is performed with the aid of the real-time diagrammatic technique in the sequential tunneling regime. We study the dependence of the Andreev current, the differential conductance, and the tunnel magnetoresistance on various parameters of the model in both the linear and nonlinear response regimes. In particular, we analyze the spin-resolved transport in the crossed Andreev reflection regime, where a blockade of the current occurs due to enhanced occupation of the triplet state. We show that in the triplet blockade, finite intradot correlations can lead to considerable leakage current due to direct Andreev reflection processes. Furthermore, we find additional regimes of current suppression resulting from enhanced occupation of singlet states, which decreases the rate of crossed Andreev reflection. We also study how the splitting of Andreev bound states, triggered by either dot level detuning, finite hopping between the dots, or finite magnetic field, affects the Andreev current. While in the first two cases the number of Andreev bound states is doubled, whereas transport properties are qualitatively similar, in the case of finite magnetic field further level splitting occurs, leading to a nontrivial behavior of spin-resolved transport characteristics, and especially that of tunneling magnetoresistance. Finally, we discuss the entanglement fidelity between split Cooper pair electrons and show that by tuning the device parameters, fidelity can reach unity.

  16. Interference effects in a double quantum dot system with inter-dot Coulomb correlations

    International Nuclear Information System (INIS)

    Electron transport through a double quantum dot system is studied with the use of the Green function formalism based on the equation of motion method, and an interplay between interference and Coulomb blockade effects due to inter-dot correlations is discussed. A double structure with two Fano resonances (or antiresonances) is found in the conductance spectrum. Fano features are weakly influenced by the presence of Coulomb interaction but the conductance is strongly suppressed in the energy region with the Fermi level in the leads close to the aligned levels of both dots. This Coulomb blockade effect takes place when the coupling between the dots is of repulsive character. On the other hand, the conductance of an artificial molecule with attractive inter-dot coupling is only slightly modified in this energy region. As a sign of the coupling can be easily changed in a presence of an external magnetic field by changes of the magnetic flux there is the possibility to control variations of the conductance, which may be important from the application point of view

  17. Dephasing in an Aharonov-Bohm interferometer containing a lateral double quantum dot induced by coupling with a quantum dot charge sensor

    International Nuclear Information System (INIS)

    We theoretically investigated the dephasing in an Aharonov-Bohm interferometer containing a lateral double quantum dot induced by coupling with a quantum dot charge sensor. We employed the interpolative second-order perturbation theory to include the charge sensing Coulomb interaction. It is shown that the visibility of the Aharonov-Bohm oscillation of the linear conductance decreases monotonically as the sensing Coulomb interaction increases. In particular, for a weak sensing interaction regime, the visibility decreases parabolically, and it behaves linearly for a strong sensing interaction regime.

  18. Quantum-classical transition for an analog of the double-slit experiment in complex collisions: Dynamical decoherence in quantum many-body systems

    International Nuclear Information System (INIS)

    We study coherent superpositions of clockwise and anticlockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of a famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D2 chemical reaction. Thus we demonstrate the quantum-classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment

  19. Evolution of the spin-split quantum Hall states with magnetic field tilt in the InAs-based double quantum wells

    OpenAIRE

    Yakunin, M.V.; Visser, de, P.H.B.; Galistu, G.; Podgornykh, S.M.; Sadofyev, Y.G.; Shelushinina, N. G.; Harus, G. I.

    2009-01-01

    Development of quantum Hall peculiarities due to mobility gap between spin-split magnetic levels with addition of the parallel magnetic field component B|| is analyzed in double quantum wells (DQW) created in InGaAs/GaAs and InAs/AlSb heterosystems chosen due to their relatively large bulk g-factors. In InGaAs/GaAs DQWs, the nonmonotonous behavior of these peculiarities is observed and explained within single-electron approach in terms of competition between enhanced spin splitting and locali...

  20. Double-diffusive natural convection in an asymmetric trapezoidal enclosure: unsteady behavior in the laminar and the turbulent-flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Papanicolaou, E.; Belessiotis, V. [Demokritos National Center for Scientific Research, Attiki (Greece). Solar and Other Energy Systems Lab.

    2005-01-01

    In the present work the natural convective heat and mass transfer in an asymmetric, trapezoidal enclosure is studied numerically. Such a configuration is encountered in greenhouse-type solar stills, where natural convection in the enclosed humid air due to vertical temperature and concentration gradients between the saline water and the transparent cover, plays a decisive role. In this double-diffusion problem, the relative magnitude of the thermal and the concentration (or solutal) Rayleigh numbers, expressed by their ratio N is a key parameter. The two-dimensional flow equations, expressed here in a stream function-vorticity ({psi} - {omega}) formulation, along with the energy and concentration equations are solved. Due to the large values of the Rayleigh numbers encountered under realistic conditions (10{sup 7} {<=} Ra {<=} 10{sup 10}), mostly turbulent flow conditions prevail. A two-equation, low-Reynolds number turbulence model has thus been selected and a curvilinear coordinate system is employed, allowing for better matching of the computational grid to the enclosure geometry. The numerical solutions yield a multi-cellular flow field, with the number of cells depending on the Rayleigh number for a fixed Lewis number and geometry. For a positive value of N (N = 1) the solution is qualitatively similar to the case with only thermal buoyancy present (N = 0). However, for negative values (N=-1), more complex unsteady phenomena arise, having a different nature in the laminar and the turbulent flow regime, which are both investigated. Correlations for the mean convective heat and mass transfer coefficients are obtained for a wide range of Rayleigh numbers, and comparisons are made for the different values of N, showing lower values and different rate of increase with Ra for N = -1. (author)

  1. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well

    International Nuclear Information System (INIS)

    An asymmetric quantum well (AQW) is designed to emit a terahertz (THz) wave by using difference frequency generation (DFG) with the structure of GaAs/Al0.2Ga0.8As/Al0.5Ga0.5As under a doubly resonant condition. It is found that the second-order nonlinear susceptibility χ(2) varies with the two pump wavelengths, and it can reach the peak value of 1.61 μm/V when the wavelengths are given as λp1 = 9.756 μm and λp2 = 10.96 μm, respectively. The numerical results show that the refractive index of one pump wave in the AQW is concerned with not only its own wavelength but also the other wavelength. Phase-matching inside the AQW can be obtained through the tuning of the two pump wavelengths. (fundamental areas of phenomenology(including applications))

  2. The role of permanent dipoles on the intensity-dependent nonlinear optical properties in asymmetric coupled quantum wells under a static electric field

    Science.gov (United States)

    Karabulut, Ibrahim; Paspalakis, Emmanuel

    2016-07-01

    We study theoretically the intensity-dependent nonlinear optical properties of an asymmetric coupled quantum well under a static electric field. Effects such as nonlinear absorption, optical rectification and refractive index are investigated theoretically by using the density matrix equations including the permanent dipole terms. Our results show that the effects of the permanent dipoles on the corresponding optical processes depend crucially on the direction and strength of the static electric field, especially for large optical intensities. Another interesting result of this work is that the nonlinear optical spectra studied here saturate with an increasing optical intensity and specifically the optical spectra in the case that the permanent dipoles are considered reach saturation for lower intensities than when the permanent dipoles are not considered.

  3. MOCVD growth of A1GaInP/GaInP quantum well laser diode with asymmetric cladding structure for high power applications

    Institute of Scientific and Technical Information of China (English)

    Peixu Li; Ling Wang; Shuqiang Li; Wei Xia; Xin Zhang; Qingmin Tang; Zhongxiang Ren; Xiangang Xu

    2009-01-01

    In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD),we design a new type quantum well LD with an asymmetric cladding structure.The structure is grown by metal organic chemical vapor deposition (MOCVD).For the devices with 100-μm-wide stripe and 1000-#m-long cavity under continuous-wave (CW) operation condition,the typical threshold current is 190 mA,the slope efficiency is 1.31 W/A,the wall-plug efficiency reaches 63%,and the maximum output power reaches higher than 7 W.And the internal absorption value decreases to 1.5 cm-1.

  4. High mobility back-gated InAs/GaSb double quantum well grown on GaSb substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Binh-Minh, E-mail: mbnguyen@hrl.com, E-mail: MSokolich@hrl.com; Yi, Wei; Noah, Ramsey; Thorp, Jacob; Sokolich, Marko, E-mail: mbnguyen@hrl.com, E-mail: MSokolich@hrl.com [HRL Laboratories, 3011 Malibu Canyon Rd, Malibu, California 90265 (United States)

    2015-01-19

    We report a backgated InAs/GaSb double quantum well device grown on GaSb substrate. The use of the native substrate allows for high materials quality with electron mobility in excess of 500 000 cm{sup 2}/Vs at sheet charge density of 8 × 10{sup 11} cm{sup −2} and approaching 100 000 cm{sup 2}/Vs near the charge neutrality point. Lattice matching between the quantum well structure and the substrate eliminates the need for a thick buffer, enabling large back gate capacitance and efficient coupling with the conduction channels in the quantum wells. As a result, quantum Hall effects are observed in both electron and hole regimes across the hybridization gap.

  5. Optical detection of symmetric and antisymmetric states in double quantum wells at room temperature

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Marcelli, A.; Piccinini, M.; Cebulski, J.

    2009-09-01

    We studied the optical reflectivity of a specially grown double quantum well (DQW) structure characterized by a rectangular shape and a high electron density at room temperature. Assuming that the QWs depth is known, reflectivity spectra in the mid-IR range allow to carry out the precise measurements of the SAS-gap values (the energy gap between the symmetric and anti-symmetric states) and the absolute energies of both symmetric and antisymmetric electron states. The results of our experiments are in favor of the existence of the SAS splitting in the DQWs at room temperature. Here we have shown that the SAS gap increases proportionally to the subband quantum number and the optical electron transitions between symmetric and antisymmetric states belonging to different subbands are allowed. These results were used for interpretation of the beating effect in the Shubnikov-de Haas (SdH) oscillations at low temperatures (0.6 and 4.2 K). The approach to the calculation of the Landau-levels energies for DQW structures developed earlier [D. Ploch , Phys. Rev. B 79, 195434 (2009)] is used for the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to explain the beating effect in the SdH oscillations, one should introduce two different quasi-Fermi levels characterizing the two electron subsystems regarding symmetry properties of their wave functions, symmetric and antisymmetric ones. These states are not mixed neither by electron-electron interaction nor probably by electron-phonon interaction.

  6. Magnetic breakdown and quantum magnetotransport with a constant pseudospin under tilted magnetic fields in an n-InxGa1-xAs/GaAs double quantum well

    International Nuclear Information System (INIS)

    A procedure is proposed for precise scanning of the (Bperpendicular , Bparallel) plane between the magnetic field projections that are perpendicular and parallel to (quasi-)two-dimensional layers when measuring their longitudinal and Hall magnetoresistances. Investigations of a n-InxGa1-xAs/GaAs double quantum well (x ∼ 0.2) performed using this procedure make it possible to reveal a number of the features of the magnetoresistance, which appear due to a complex energy spectrum of the double quantum well in a parallel field, and to separate them from the structures associated with the magnetic breakdown. The trajectories representing the features of the magnetoresistance in the (Bperpendicular , Bparallel) plane are described by the semiclassical calculations of the quantization of the energy spectrum of the double quantum well under the action of the perpendicular field component. The structures appearing due to the magnetic breakdown are amplified with increasing the total magnetic field magnitude and, in the samples with low mobility, completely suppress the features caused by the motion of an electron with a constant pseudospin component. The peaks corresponding to the magnetic breakdown are split in a strong parallel field due to the spin splitting of the Landau levels. These splittings correspond to the effective Lande factor vertical bar g* vertical bar ∼ 3

  7. Effective temperature and the fluctuation theorem in a double quantum dot coupled to a point-contact electrometer

    International Nuclear Information System (INIS)

    We study single-electron transport through a double quantum dot (DQD) monitored by a capacitively coupled quantum point-contact (QPC) electrometer. We derive the full counting statistics for the coupled DQD - QPC system and obtain the joint probability distribution of the charges transferred through the DQD and the QPC consistent with the fluctuation theorem for four terminal system. For the two-terminal DQD system, the FT is not necessarily satisfied. It is due to the back action caused by the shot noise of the QPC, and the FT for the DQD is modified with an “effective temperature”.

  8. Quantum fluctuations of mesoscopic damped double resonance RLC circuit with mutual capacitance inductance coupling in thermal excitation state

    Science.gov (United States)

    Xu, Xing-Lei; Li, Hong-Qi; Wang, Ji-Suo

    2007-08-01

    Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling is proposed. The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case. It is shown that the fluctuations not only depend on circuit inherent parameters, but also rely on excitation quantum number and squeezing parameter. Moreover, due to the finite environmental temperature and damped resistance, the fluctuations increase with the temperature rising, and decay with time.

  9. Quantum fluctuations of mesoscopic damped double resonance RLC circuit witn mutual capacitance-inductance coupling in thermal excitation state

    Institute of Scientific and Technical Information of China (English)

    Xu Xing-Lei; Li Hong-Qi; Wang Ji-Suo

    2007-01-01

    Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics(TFD),the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling iS proposed.The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case.It is shown that the fluctuations not only depend on circuit inherent parameters.but also rely on excitation quantum number and squeezing parameter.Moreover.due to the finite environmental temperature and damped resistance,the fluctuations increase with the temperature rising.and decay with time.

  10. Phase Diagram of the Bose Condensation of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells

    DEFF Research Database (Denmark)

    Dremin, A. A.; Timofeev, V. B.; Larionov, A. V.; Hvam, Jørn Märcher; Soerensen, K.

    2002-01-01

    The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n–i–n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied at low temperatures down to 0.5 K. The properties of excitons whose photoexcited electron and hole are...... spatially separated in the neighboring quantum wells by a tunneling barrier were studied as functions of density and temperature. The studies were performed within domains about one micron in size, which played the role of macroscopic traps for interwell excitons. For this purpose, the sample surface was...

  11. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  12. Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.

    1999-01-01

    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.

  13. Sub-Poissonian photon emission in coupled double quantum dots-cavity system

    Science.gov (United States)

    Ye, Han; Peng, Yi-Wei; Yu, Zhong-Yuan; Zhang, Wen; Liu, Yu-Min

    2015-11-01

    In this work, we theoretically analyze the few-photon emissions generated in a coupled double quantum dots (CDQDs)-single mode microcavity system, under continuous wave and pulse excitation. Compared with the uncoupled case, strong sub-Poissonian character is achieved in a CDQDs-cavity system at a certain laser frequency. Based on the proposed scheme, single photon generation can be obtained separately under QD-cavity resonant condition and off-resonant condition. For different cavity decay rates, we reveal that laser frequency detunings of minimum second-order autocorrelation function are discrete and can be divided into three regions. Moreover, the non-ideal situation where two QDs are not identical is discussed, indicating the robustness of the proposed scheme, which possesses sub-Poissonian character in a large QD difference variation range. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61401035), the Beijing Excellent Ph.D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2015ZC05).

  14. Ultrafast double-quantum NMR spectroscopy with optimized sensitivity for the analysis of mixtures.

    Science.gov (United States)

    Rouger, Laetitia; Gouilleux, Boris; Pourchet-Gellez, Mariane; Dumez, Jean-Nicolas; Giraudeau, Patrick

    2016-02-15

    Ultrafast (UF) 2D NMR enables the acquisition of 2D spectra within a single-scan. This methodology has become a powerful analytical tool, used in a large array of applications. However, UF NMR spectroscopy still suffers from the need to compromise between sensitivity, spectral width and resolution. With the commonly used UF-COSY pulse sequence, resolution issues are compounded by the presence of strong auto-correlation signals, particularly in the case of samples with high dynamic ranges. The recently proposed concept of UF Double Quantum Spectroscopy (DQS) allows a better peak separation as it provides a lower spectral peak density. This paper presents the detailed investigation of this new NMR tool in an analytical chemistry context. Theoretical calculations and numerical simulations are used to characterize the modulation of peak intensities as a function of pulse-sequence parameters, and thus enable a significant enhancement of the sensitivity. The analytical comparison of UF-COSY and UF-DQS shows similar performances, however the ultrafast implementation of the DQS approach is found to have some sensitivity advantages over its conventional counterpart. The analytical performance of the pulse sequence is illustrated by the quantification of taurine in complex mixtures (homemade and commercial energy drinks). The results demonstrate the high potential of this experiment, which forms a valuable alternative to UF-COSY spectra when the latter are characterized by strong overlaps and high dynamic ranges. PMID:26865359

  15. Transport and Charge Manipulation in a Single Electron Silicon Double Quantum Dot

    Science.gov (United States)

    Wang, K.; Payette, C.; Dovzhenko, Y.; Petta, J. R.

    2013-03-01

    Silicon is one of the most promising candidates for ultra-coherent qubits due to its relatively early position in periodical table and the absence of nuclear spin in its naturally abundant isotope. Here we demonstrate a reliable recipe that enables us to reproducibly fabricate an accumulation mode few electron double quantum dot (DQD). We demonstrate tunable interdot tunnel coupling at single electron occupancy in the device. The charge state of the qubit is monitored by measuring the amplitude of the radio frequency signal that is reflected from a resonant circuit coupled to a charge sensor. By applying microwave radiation to the depletion gates, we probe the energy level structure of the DQD using photon assisted tunneling (PAT). We apply bursts of microwave radiation and monitor the dependence of the PAT peak height on the burst period to extract the charge relaxation time, T1. By experimentally tuning the charge qubit Hamiltonian, we measure the tunnel coupling and detuning dependence of T1. Supported by the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the U.S. Government.

  16. Electrical and Optical Gain Lever Effects in InGaAs Double Quantum Well Diode Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M D; Goddard, L L; Bond, T C; Nikolic, R J; Vernon, S P; Kallman, J S; Behymer, E M

    2007-01-03

    In multisection laser diodes, the amplitude or frequency modulation (AM or FM) efficiency can be improved using the gain lever effect. To study gain lever, InGaAs double quantum well (DQW) edge emitting lasers have been fabricated with integrated passive waveguides and dual sections providing a range of split ratios from 1:1 to 9:1. Both the electrical and the optical gain lever have been examined. An electrical gain lever with greater than 7 dB enhancement of AM efficiency was achieved within the range of appropriate DC biasing currents, but this gain dropped rapidly outside this range. We observed a 4 dB gain in the optical AM efficiency under non-ideal biasing conditions. This value agreed with the measured gain for the electrical AM efficiency under similar conditions. We also examined the gain lever effect under large signal modulation for digital logic switching applications. To get a useful gain lever for optical gain quenched logic, a long control section is needed to preserve the gain lever strength and a long interaction length between the input optical signal and the lasing field of the diode must be provided. The gain lever parameter space has been fully characterized and validated against numerical simulations of a semi-3D hybrid beam propagation method (BPM) model for the coupled electron-photon rate equation. We find that the optical gain lever can be treated using the electrical injection model, once the absorption in the sample is known.

  17. MBE growth and characterization of TlInGaAsN double quantum well structures

    Science.gov (United States)

    Krishnamurthy, D.; Shanthi, S.; Kim, K. M.; Sakai, Y.; Ishimaru, M.; Hasegawa, S.; Asahi, H.

    2009-03-01

    In the pursuit of reducing the temperature dependence of the emission wavelengths of devices, TlInGaAsN double quantum well (DQW) structures with different barriers grown on GaAs substrates by molecular beam epitaxy (MBE) were investigated. Higher Tl incorporation, a key parameter to reduce temperature dependence, could be obtained in the TlGaAsN barrier samples. However, the presence of many dislocations and very rough interfaces together with phase separation reduced the photoluminescence (PL) characteristics. DQW structures with combined barriers of TlGaAsN+TlGaAs+TlGaAsN and those consisting of TlGaAsN with reduced N composition showed improved crystalline characteristics. The (2 2 4) reciprocal space maps of these two samples did not show any diffraction corresponding to phase segregation. However, cross-sectional transmission electron microscopy (X-TEM) images revealed the presence of inhomogeneity (i.e., the presence of nearly perfect regions with good interfaces as well as regions with rough interfaces) in these samples.

  18. Transient photoluminescence spectroscopy of spin injection dynamics in double quantum wells of diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kayanuma, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Seo, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Nishibayashi, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Murayama, A. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Oka, Y. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)]. E-mail: oka@tagen.tohoku.ac.jp; Buyanova, I.A. [Department of Physics and Measurement Technology, Linkoeping University, 58183 Linkoeping (Sweden); Chen, W.M. [Department of Physics and Measurement Technology, Linkoeping University, 58183 Linkoeping (Sweden)

    2006-07-15

    Dynamics of spin injection has been studied in double quantum wells (DQWs) composed of diluted magnetic and non-magnetic semiconductors. Picosecond-transient photoluminescence (PL) of excitons in the DQWs has been measured in magnetic field. In the Cd{sub 1-} {sub x} Mn {sub x} Te-based DQWs, the PL intensity of the magnetic well (MW) excitons decays faster with decreasing barrier width from 12 to 2 nm. This provides the evidence for carrier tunneling from the MW to the non-magnetic well (NW) through the barrier layer. The degree of circular polarization in the transient PL of the NW exciton in magnetic field shows marked evidence for spin injection and rapid spin relaxation in the DQW system. In the Zn{sub 1-} {sub y} Mn {sub y} Se-based DQWs, the degree of circle polarization in the NW exciton PL at 3 T shows a rise with a time constant of 400 ps, while the PL of the MW exciton decays within 50 ps. The observed result is interpreted by the individual spin injection for electrons and holes from the MW to the NW. The results of the transient PL of excitons in the DQWs are compared with the transient absorptions of excitons studied by the pump-and-probe spectroscopy.

  19. Indeterminate form 0/0 and tunneling in double quantum wells

    Science.gov (United States)

    Filikhin, Igor; Vlahovic, Branislav

    2015-03-01

    We study single electron tunneling between localized and delocalized states in double InAs/GaAs quantum wells (DQWs). Spectral distribution of localized (or delocalized) states demonstrates high sensitivity on inter-dot distance. The tunneling goes consecutively from the higher energy levels to the ground state when the inter-dot distance decreases. The spectrum is presented by set of quasi-doublets and may be described by three parts: localized states, delocalized states, and states with different probability for localization in each QW of DQW. For the last states, the ratio W/ ΔE of the wave functions overlapping integral W and the electron energy difference ΔE of isolated left and right QWs is a weight coefficient in the expansion of wave function on the basis of the wave functions of isolated QWs. In case of weakly coupled QWs in DQW the indeterminate form 0/0 takes a place for the electron wave function. It is found that a small violation of the DQW shape symmetry drastically affects tunneling. This effect also appears as a numerical instability calculations for small variations of input parameters of numerical procedure. This work is supported by the NSF (HRD-1345219) and NASA (NNX09AV07A).

  20. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences

    Science.gov (United States)

    Bao, Jianfeng; Cui, Xiaohong; Huang, Yuqing; Zhong, Jianhui; Chen, Zhong

    2015-08-01

    High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia.

  1. Resolution enhancement in MR spectroscopy of red bone marrow fat via intermolecular double-quantum coherences

    International Nuclear Information System (INIS)

    High-resolution 1H magnetic resonance spectroscopy (MRS) is generally inaccessible in red bone marrow (RBM) tissues using conventional MRS techniques. This is because signal from these tissues suffers from severe inhomogeneity in the main static B0 field originated from the intrinsic honeycomb structures in trabecular bone. One way to reduce effects of B0 field inhomogeneity is by using the intermolecular double quantum coherence (iDQC) technique, which has been shown in other systems to obtain signals insensitive to B0 field inhomogeneity. In the present study, we employed an iDQC approach to enhance the spectral resolution of RBM. The feasibility and performance of this method for achieving high resolution MRS was verified by experiments on phantoms and pig vertebral bone samples. Unsaturated fatty acid peaks which overlap in the conventional MRS were well resolved and identified in the iDQC spectrum. Quantitative comparison of fractions of three types of fatty acids was performed between iDQC spectra on the in situ RMB and conventional MRS on the extracted fat from the same RBM. Observations of unsaturated fatty acids with iDQC MRS may provide valuable information and may hold potential in diagnosis of diseases such as obesity, diabetes, and leukemia. (paper)

  2. Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content

    Institute of Scientific and Technical Information of China (English)

    Zhao Bi-Jun; Chen Xin; Ren Zhi-Wei; Tong Jin-Hui; Wang Xing-Fu; Li Dan-Wei; Zhuo Xiang-Jing

    2013-01-01

    The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated.It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell.Under AM1.5G illumination,the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65% and 13% compared with those of a normal single-indium-content MQW solar cell.These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.

  3. Quantum Oscillations of Tunnel Magnetoresistance Induced by Spin-Wave Excitations in Ferromagnet-Ferromagnet-Ferromagnet Double Barrier Tunnel Junctions

    OpenAIRE

    Chen, Xi; Zheng, Qing-Rong; Su, Gang

    2008-01-01

    The possibility of quantum oscillations of the tunnel conductance and magnetoresistance induced by spin-wave excitations in a ferromagnet-ferromagnet-ferromagnet double barrier tunnel junction, when the magnetizations of the two side ferromagnets are aligned antiparallel to that of the middle ferromagnet, is investigated in a self-consistent manner by means of Keldysh nonequilibrium Green function method. It has been found that owing to the s-d exchange interactions between conduction electro...

  4. Electric-dipole-induced spin resonance in a lateral double quantum dot incorporating two single domain nanomagnets

    OpenAIRE

    Forster, F.; Mühlbacher, M.; Schuh, D.; Wegscheider, W.; S. Ludwig

    2015-01-01

    On-chip magnets can be used to implement relatively large local magnetic field gradients in na- noelectronic circuits. Such field gradients provide possibilities for all-electrical control of electron spin-qubits where important coupling constants depend crucially on the detailed field distribution. We present a double quantum dot (QD) hybrid device laterally defined in a GaAs / AlGaAs het- erostructure which incorporates two single domain nanomagnets. They have appreciably different coercive...

  5. Tracing the interwell plasmon in a grid-gated double-quantum-well field-effect transistor

    Science.gov (United States)

    Popov, Vyacheslav V.; Teperik, Tatiana V.; Zayko, Yuriy N.; Horing, Norman J. M.; Fateev, Denis V.

    2005-06-01

    The terahertz (THz) absorption spectra of plasmon modes in a grid-gated double-quantum-well (DQW) field-effect transistor (FET) structute is analyzed theoretically and numerically using the scattering matrix approach and is shown to faithfully reproduce strong resonant features of recent experimental observations of THz photoconductivity in such a structure. No traces ofthe interwell plasmon is found in THz absorption spectra.

  6. Spin accumulation in a double-quantum-dot Aharonov–Bohm interferometer induced by Fano–Rashba effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Haina [College of Sciences, Northeastern University, Shenyang 110819 (China); Han, Yu [Department of Physics, Liaoning University, Shenyang 110036 (China); Wang, Yan [College of Sciences, Northeastern University, Shenyang 110819 (China); Gong, Wei-Jiang, E-mail: gwjneu@163.com [College of Sciences, Northeastern University, Shenyang 110819 (China)

    2013-06-15

    Motivated by the results in the previous work (Phys. Rev. B 73, 235301), we investigate the nonequilibrium spin accumulation in a double-quantum-dot Aharonov–Bohm interferometer, by considering a local Rashba interaction in this structure. It is found that the spin accumulation is determined by the nonresonant transmission and Rashba interaction. Namely, the Fano–Rashba effect is a necessary condition to achieve the spin accumulation in the quantum dot of the resonant channel. Furthermore, the spin accumulation can be adjusted by the shift of the level of the nonresonant-channel quantum dot. When the intradot Coulomb interactions are taken into account within the Hubbard-I approximation, the spin accumulation is fully manipulated.

  7. Spin accumulation in a double-quantum-dot Aharonov–Bohm interferometer induced by Fano–Rashba effect

    International Nuclear Information System (INIS)

    Motivated by the results in the previous work (Phys. Rev. B 73, 235301), we investigate the nonequilibrium spin accumulation in a double-quantum-dot Aharonov–Bohm interferometer, by considering a local Rashba interaction in this structure. It is found that the spin accumulation is determined by the nonresonant transmission and Rashba interaction. Namely, the Fano–Rashba effect is a necessary condition to achieve the spin accumulation in the quantum dot of the resonant channel. Furthermore, the spin accumulation can be adjusted by the shift of the level of the nonresonant-channel quantum dot. When the intradot Coulomb interactions are taken into account within the Hubbard-I approximation, the spin accumulation is fully manipulated

  8. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  9. Shaped electric fields for fast optimal manipulation of electron spin and position in a double quantum dot

    Science.gov (United States)

    Budagosky, J. A.; Khomitsky, D. V.; Sherman, E. Ya.; Castro, Alberto

    2016-01-01

    We use quantum optimal control theory algorithms to design external electric fields that drive the coupled spin and orbital dynamics of an electron in a double quantum dot, subject to the spin-orbit coupling and Zeeman magnetic fields. We obtain time profiles of multifrequency electric field pulses which increase the rate of spin-flip transitions by several orders of magnitude in comparison with monochromatic fields, where the spin Rabi oscillations were predicted to be very slow. This precise (with fidelity higher than 1 ×10-4 ) and fast (at the time scale of the order of 0.1 ns, comparable with the Zeeman spin rotation and the interdot tunneling time) simultaneous control of the spin and position is achieved while keeping the electron in the four lowest tunneling- and Zeeman-split levels through the duration of the pulse. The proposed algorithms suggest effective applications in spintronics and quantum information devices.

  10. Imaging of subbands in InAs/GaSb double quantum wells by low-temperature scanning tunneling spectroscopy

    Science.gov (United States)

    Suzuki, K.; Kanisawa, K.; Perraud, S.; Ueki, M.; Takashina, K.; Hirayama, Y.

    2007-04-01

    The spatial distribution of the electron local density of states (LDOS) in InAs/GaSb double quantum wells (DQWs) was investigated by low-temperature scanning tunneling spectroscopy on cleaved surfaces. For DQW with a thick central barrier, clear standing wave patterns corresponding to subbands confined to each InAs single quantum well appeared in the spatial variation of LDOS spectra. In contrast, for the DQW with a thin central barrier, the standing wave patterns extended over both quantum wells. The deviation of the pattern arising from the asymmetry due to a slight difference of the well thickness appeared clearly. The observed spectra are well explained by the calculated LDOS taken to be the sum of LDOS contributed from all energetically accessible subbands.

  11. On the relation between the modular double of U{sub q}(sl(2,R)) and the quantum Teichmueller theory

    Energy Technology Data Exchange (ETDEWEB)

    Nidaiev, Iurii; Teschner, Joerg

    2013-02-15

    We exhibit direct relations between the modular double of U{sub q}(sl(2,R)) and the quantum Teichmueller theory. Explicit representations for the fusion- and braiding operations of the quantum Teichmueller theory are immediate consequences. Our results include a simplified derivation of the Clebsch-Gordan decomposition for the principal series of representation of the modular double of U{sub q}(sl(2,R)).

  12. Quantum Theory and Time Asymmetry

    OpenAIRE

    Zeh, H. D.

    2003-01-01

    The relation between quantum measurement and thermodynamically irreversible processes is investigated. The reduction of the state vector is fundamentally asymmetric in time and shows an observer-relatedness which may explain the double interpretation of the state vector as a representation of physical states as well as of information about them. The concept of relevance being used in all statistical theories of irreversible thermodynamics is shown to be based on the same observer-relatedness....

  13. Neutron diffraction studies of a high resolution double crystal (+n,-m) setting containing Si(220) and Si(311) bent perfect crystals in symmetric and fully asymmetric diffraction geometry, respectively

    International Nuclear Information System (INIS)

    In this paper studies of neutron diffraction properties of the double crystal (+n,-m) setting containing Si(220) and Si(311) bent perfect crystals (BPC) in symmetric and fully asymmetric diffraction (FAD) geometry with the output beam expansion (OBE), respectively, are presented. Namely, our attention was focused on the properties of the FAD geometry of the BPC Si(311) crystal slab. It has been found that after a beam expansion this FAD geometry can provide a monochromatic beam of a rather large cross-section and of very small divergence with some possible application use.

  14. Luminescence of double quantum wells subject to in-plane magnetic fields

    Science.gov (United States)

    Orlita, M.; Grill, R.; Hlídek, P.; Zvára, M.; Döhler, G. H.; Malzer, S.; Byszewski, M.

    2005-10-01

    We report on photoluminescence (PL) measurements of a symmetric GaAs/AlGaAs double quantum well (DQW) in high magnetic fields. For this study, a selectively contacted p-δn-DQW-δn-p structure was chosen, allowing an independent tuning of the electron density in the DQW and thus a creation of a two-dimensional electron gas. Our attention was focused on phenomena in in-plane magnetic fields, where the field-induced depopulation of the antibonding subband observable in the PL spectra as a so-called N -type kink was predicted by Huang and Lyo (HL) [Phys. Rev. B 59, 7600 (1999)]. Whereas the equivalent behavior has been observed several times in the electric transport measurements and a proper theoretical description has been found, to the best of our knowledge, no PL experiment in a direct comparison with the theoretical model developed by HL has ever been published. We carried out a self-consistent calculation based on their model and achieved a good agreement with our experimental results. Additionally, the influence of the excitonic interaction on the PL spectra, not taken into account by HL, is also discussed. This enables us to explain small deviations from the HL theory. The interpretation of the in-plane magnetic field measurements is supported by the experiment with the magnetic field in the perpendicular orientation that allows a sufficiently accurate estimation of the electron density in the DQW. Distinctive renormalization effects of DQW subbands at various electron densities are also observed and discussed.

  15. Evolution of the spin-split quantum Hall states with magnetic field tilt in the InAs-based double quantum wells

    International Nuclear Information System (INIS)

    Development of quantum Hall peculiarities due to mobility gap between spin-split magnetic levels with addition of the parallel magnetic field component B|| is analyzed in double quantum wells (DQW) created in InGaAs/GaAs and InAs/AlSb heterosystems chosen due to their relatively large bulk g-factors. In InGaAs/GaAs DQWs, the nonmonotonous behavior of these peculiarities is observed and explained within single-electron approach in terms of competition between enhanced spin splitting and localization of electrons in the layers of DQW with increased B||. In InAs/AlSb DQW, the tunneling connection between the layers is very weak due to high barrier, nevertheless the collective odd-numbered peculiarities are revealed that exist due to spontaneous interlayer phase coherence. B|| destroys these states that is manifested, in particular, in the suppression of the peculiarity for filling factor v = 3.

  16. Evolution of the spin-split quantum Hall states with magnetic field tilt in the InAs-based double quantum wells

    Science.gov (United States)

    Yakunin, M. V.; de Visser, Anne; Galistu, Gianni; Podgornykh, S. M.; Sadofyev, Yu G.; Shelushinina, N. G.; Harus, G. I.

    2009-02-01

    Development of quantum Hall peculiarities due to mobility gap between spin-split magnetic levels with addition of the parallel magnetic field component B|| is analyzed in double quantum wells (DQW) created in InGaAs/GaAs and InAs/AlSb heterosystems chosen due to their relatively large bulk g-factors. In InGaAs/GaAs DQWs, the nonmonotonous behavior of these peculiarities is observed and explained within single-electron approach in terms of competition between enhanced spin splitting and localization of electrons in the layers of DQW with increased B||. In InAs/AlSb DQW, the tunneling connection between the layers is very weak due to high barrier, nevertheless the collective odd-numbered peculiarities are revealed that exist due to spontaneous interlayer phase coherence. B|| destroys these states that is manifested, in particular, in the suppression of the peculiarity for filling factor v = 3.

  17. Evolution of the spin-split quantum Hall states with magnetic field tilt in the InAs-based double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Yakunin, M V; Podgornykh, S M; Shelushinina, N G; Harus, G I [Institute of Metal Physics, 620041 Ekaterinburg (Russian Federation); Visser, Anne de; Galistu, Gianni [Van der Waals - Zeeman Institute, University of Amsterdam, 1018 XE Amsterdam (Netherlands); Sadofyev, Yu G [Ryazan State Radioengineering University, 390005 Ryazan (Russian Federation)], E-mail: yakunin@imp.uran.ru

    2009-02-01

    Development of quantum Hall peculiarities due to mobility gap between spin-split magnetic levels with addition of the parallel magnetic field component B{sub ||} is analyzed in double quantum wells (DQW) created in InGaAs/GaAs and InAs/AlSb heterosystems chosen due to their relatively large bulk g-factors. In InGaAs/GaAs DQWs, the nonmonotonous behavior of these peculiarities is observed and explained within single-electron approach in terms of competition between enhanced spin splitting and localization of electrons in the layers of DQW with increased B{sub ||}. In InAs/AlSb DQW, the tunneling connection between the layers is very weak due to high barrier, nevertheless the collective odd-numbered peculiarities are revealed that exist due to spontaneous interlayer phase coherence. B{sub ||} destroys these states that is manifested, in particular, in the suppression of the peculiarity for filling factor v = 3.

  18. Towards automated multi-dimensional quantum dynamical investigations of double-minimum potentials: Principles and example applications

    International Nuclear Information System (INIS)

    Graphical abstract: An efficient potential energy surface generation and a general quantum-dynamics code are linked together, establishing an automatic procedure to study vibrational dynamics. The capabilities of this procedure are illustrated for tunneling splitting in the double-minimum potential of H2O2 and for a model reactive process based on the enantiomeric inversion of PHDCl. Abstract: A multi-coordinate expansion of potential energy surfaces has been used to perform quantum dynamical calculations for reactions showing double-minimum potentials. Starting from the transition state, a fully automated algorithm for exploring the multi-dimensional potential energy surface represented by arbitrary internal or normal coordinates allows for an accurate description of the relevant regions for vibrational dynamics calculations. An interface to our multi-purpose quantum-dynamics program MRPROPA enables routine calculations for simple chemical reactions. Illustrative calculations involving potential energy surfaces obtained from explicitly-correlated coupled-cluster calculations, CCSD(T)-F12a, are provided for the tunneling splittings in the isotopologues of hydrogen peroxide and for reaction dynamics based on the enantiomeric inversion of PHDCl.

  19. Molecular beam epitaxy growth of 1.55 μm GaInNAs(Sb) double quantum wells with bright and narrow photoluminescence

    Science.gov (United States)

    Gupta, J. A.; Sproule, G. I.; Wu, X.; Wasilewski, Z. R.

    2006-05-01

    GaInNAs(Sb)/GaNAs double quantum well (DQW) structures were grown on GaAs substrates using solid-source molecular beam epitaxy with N 2/Ar gas mixtures in a radio frequency plasma cell. A novel method of in situ antimony mass spectrometry is introduced which permits flux monitoring in the presence of large arsenic background pressures. For a DQW sample grown without Sb, bright and narrow (38.1 meV) room temperature photoluminescence (PL) emission at 1509 nm was achieved after optimized rapid thermal annealing. In two samples grown with antimony fluxes of approximately 0.012 and 0.028 monolayers/s the PL intensity improved and very bright PL was observed at 1518 and 1551 nm with linewidths of 33.1 and 35.0 meV, respectively. The integrated PL intensities of each of these two samples was equivalent to the emission for a reference GaInNAs/GaAs DQW sample emitting closer to 1.3 μm. More strikingly, the intensity of the Sb-free 1509 nm sample was only lower by a factor of 2. This suggests that the N 2/Ar plasma approach has benefits for the material quality, as well as providing efficient flux control, yielding good material even without Sb. High-resolution X-ray diffraction and transmission electron microscopy measurements indicate excellent crystal quality for all samples. Secondary ion mass spectrometry reveals a dramatic tendency for Sb segregation during growth, resulting in very asymmetric incorporation with most of the Sb atoms located at the top interface.

  20. Fatigue in asymmetric-field-driven ferroelectric thin films

    International Nuclear Information System (INIS)

    The polarization fatigue problems in asymmetric-field-driven ferroelectric thin films is investigated in present Letter. The refreshment of fatigue induced by the application of asymmetric voltage to the top and bottom electrodes is modeled by asymmetric Schottky voltage barrier of a quantum well structure. The fatigue behavior under various asymmetric driving voltages and asymmetric driving pulses have been studied. Theoretical calculations are shown to be in agreement with experimental results

  1. Non-collinear spin-orbit magnetic fields in a carbon nanotube double quantum dot

    OpenAIRE

    Hels, Morten Canth; Braunecker, Bernd; Grove-Rasmussen, Kasper; Nygård, Jesper

    2016-01-01

    We demonstrate experimentally that non-collinear intrinsic spin-orbit magnetic fields can be realized in a curved carbon nanotube two-segment device. Each segment, analyzed in the quantum dot regime, shows near four-fold degenerate shell structure allowing for identification of the spin-orbit coupling and the angle between the two segments. Furthermore, we determine the four unique spin directions of the quantum states for specific shells and magnetic fields. This class of quantum dot systems...

  2. On the donor states in double InxGa1−xN/InyGa1−yN/GaN staggered quantum wells

    International Nuclear Information System (INIS)

    We have calculated the binding energies of the donor states, 1s and 2p±, with respect to the lowest sub-band energy in a double quantum well composed of wurtzite InGaN staggered quantum wells with GaN barriers. All the energies and the wavefunctions were calculated by applying the variational methods. We have found that the binding energies of donors placed in the right quantum well are larger and independent of the middle barrier width of up to 40 Å. This is because of the strong built-in electric field which brings more confinement to the donor wavefunctions in the right staggered quantum well. The binding energies are found to be strong functions of the donor position in the double quantum well system which is the consequence of the large asymmetry introduced by the built-in electric field. (paper)

  3. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  4. Double metal waveguide InGaAs/AlInAs quantum cascade lasers emitting at 24 μm

    International Nuclear Information System (INIS)

    A study on far-infrared In0.53Ga0.47As/Al0.48In0.52As quantum cascade lasers operating with a double metal waveguide is presented. To increase the laser upper state lifetime, a diagonal bound-to-continuum transition scheme is used in the active region. The observed threshold current density at 50 K is 5.7 kA/cm2, and the maximum operation temperature is 240 K. The laser emission wavelength is 24.4 μm, which is the longest wavelength in the mid-infrared quantum cascade lasers so far reported.

  5. Efficient coupling of double-metal terahertz quantum cascade lasers to flexible dielectric-lined hollow metallic waveguides.

    Science.gov (United States)

    Wallis, R; Degl'Iinnocenti, R; Jessop, D S; Ren, Y; Klimont, A; Shah, Y D; Mitrofanov, O; Bledt, C M; Melzer, J E; Harrington, J A; Beere, H E; Ritchie, D A

    2015-10-01

    The growth in terahertz frequency applications utilising the quantum cascade laser is hampered by a lack of targeted power delivery solutions over large distances (>100 mm). Here we demonstrate the efficient coupling of double-metal quantum cascade lasers into flexible polystyrene lined hollow metallic waveguides via the use of a hollow copper waveguide integrated into the laser mounting block. Our approach exhibits low divergence, Gaussian-like emission, which is robust to misalignment error, at distances > 550 mm, with a coupling efficiency from the hollow copper waveguide into the flexible waveguide > 90%. We also demonstrate the ability to nitrogen purge the flexible waveguide, increasing the power transmission by up to 20% at 2.85 THz, which paves the way for future fibre based terahertz sensing and spectroscopy applications. PMID:26480141

  6. Quantum dynamics of a binary mixture of BECs in a double-well potential: a Holstein-Primakoff approach

    Energy Technology Data Exchange (ETDEWEB)

    Citro, Roberta; Naddeo, Adele [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Via Ponte Don Melillo, 84084 Fisciano (Saudi Arabia) (Italy); Orignac, Edmond, E-mail: citro@sa.infn.it, E-mail: naddeo@sa.infn.it, E-mail: Edmond.Orignac@ens-lyon.fr [Laboratoire de Physique, CNRS-UMR5672, Ecole Normale Superieure de Lyon, 46, Allee d' Italie, 69364 Lyon Cedex 07 (France)

    2011-06-14

    We study the quantum dynamics of a binary mixture of Bose-Einstein condensates (BECs) in a double-well potential starting from a two-mode Bose-Hubbard Hamiltonian. Focussing on the regime where the number of atoms is very large, a mapping onto an SU(2) spin problem together with a Holstein-Primakoff transformation is performed. The quantum evolution of the number difference of bosons between the two wells is investigated for different initial conditions, which range from the case of a small imbalance between the two wells to a coherent spin state. The results show an instability towards a phase separation above a critical positive value of the interspecies interaction while the system evolves towards a coherent tunnelling regime for negative interspecies interactions. A comparison with a semiclassical approach is discussed together with some implications on the experimental realization of phase separation with cold atoms.

  7. Inelastic Fano interference induced by interdot-phonon exchange in a T-shaped double quantum dot

    International Nuclear Information System (INIS)

    We study the phonon-assisted Fano interference of the linear conductance spectrum by taking into account the interdot-phonon exchange in a T-shaped double quantum dot (QD), where a central QD is coupled to a side QD and two nonmagnetic or ferromagnetic electrodes. Unlike the usual Fano interference between different elastic channels, this new-type Fano interference is shown to arise from electron waves tunneling coherently through phonon-assisted bonding and antibonding states. The inelastic Fano effect, characterized by a significant resonance and a zero-value antiresonance of conductances due to destructive quantum interference, is strongly dependent on the interdot coupling and interdot electron-phonon interactions (EPI) strength. We also examine that the introduction of ferromagnetic leads does not destroy either the elastic Fano interference or the inelastic one but richens their lineshapes.

  8. Rashba spin-orbit coupling effects on the optical properties of double quantum wire under magnetic field

    Science.gov (United States)

    Karaaslan, Y.; Gisi, B.; Sakiroglu, S.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2016-05-01

    We investigate the effects of Rashba spin-orbit interaction on the optical absorption coefficients and refractive index changes associated with transitions between the first two lower-lying electronic levels in double quantum wire. The wire system represented by a symmetric, double quartic-well confinement potential is subjected to a perpendicular magnetic field. The analytical expressions of the linear and third-order nonlinear optical absorption coefficients and refractive index changes are obtained by using the compact-density matrix formalism and iterative scheme. Optical properties are investigated as a function of structural parameter, magnetic field, Rashba spin-orbit interaction and photon energies. Numerical results reveal that competing effects between spin-orbit interaction and magnetic field modify strongly the optical properties and can be altered by these parameters.

  9. Enhance Carrier Density Distributions between Double Quantum Wells Violet Ingan Laser Diode by Using Alingan as a Blocking Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Rafid A; Ibrahim, Kamarulazizi, E-mail: rafid_alabdali@yahoo.com, E-mail: kamarul@usm.my [Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2011-02-15

    Enhancement of carrier (electron and hole) density distributions between double quantum wells (QWs) violet InGaN laser diode (LD) has numerically been obtained by using quaternary AlInGaN as a blocking layer (BL) instead of conventional ternary AlGaN BL. Simulation results indicate that the quaternary BL has a higher refractive index and optical intensity inside the active region than the ternary BL which leads to reducing the threshold current of the LD from 16.42 mA with ternary BL to 13.67 mA with quaternary BL.

  10. Spin-Polarized Transport through the T-Shaped Double Quantum Dots with Fano-Kondo Interaction

    Institute of Scientific and Technical Information of China (English)

    YANG Fu-Bin; WU Shao-Quan; SUN Wei-Li

    2007-01-01

    We theoretically investigate the spin-polarized transport properties of the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We calculate the density of states and the liner conductance in this system with both parallel and antiparallel lead-polarization alignments, and our results show that the transport properties of this system depend on both the tunnelling strength between the two dots and the spin-polarized strength p. This system is a possible candidate for spin valve transistors in the spintronics.

  11. Millimeter wave mixing using plasmon and bolometric response in a double-quantum-well field-effect transistor

    Science.gov (United States)

    Lee, Mark; Wanke, M. C.; Reno, J. L.

    2005-01-01

    Heterodyne mixing characteristics of a double-quantum-well field-effect transistor (DQW FET) from 94 to 145GHz are reported. The DQW FET exhibits two physically distinct mixing responses. Near pinch-off, the device behaves as a broadband bolometric mixer with intermediate frequency (IF) bandwidth of 620MHz. Away from pinch-off it shows an electrically tunable resonant plasmon response. Mixing on a plasmon resonance yields an IF with significant harmonic distortion, signaling a complicated nonlinear mechanism, and shows a wide IF bandwidth >2GHz.

  12. Stereoscopic Oscillations of the n-InGaAs/GaAs Double Quantum Well Magnetoresistance Under Tilted Magnetic Fields

    Science.gov (United States)

    Yakunin, M. V.; Arapov, Yu. G.; Neverov, V. N.; Podgornyh, S. M.; Shelushinina, N. G.; Harus, G. I.; Zvonkov, B. N.; Uskova, E. A.

    Precise scanning of the (B⊥,B‖)-plane while measuring magnetoresistance of the n-InGaAs/GaAs double quantum well (DQW) reveals a number of peculiarities connected with intricate DQW energy spectrum, which are analyzed on the basis of quasiclassical calculations. Magnetic breakdown effects are also considered. Peaks due to the latter mechanism reveal spin-splittings (in spite of lower mobilities as compared with the traditional n-GaAs/AlGaAs DQWs) corresponding to an enhanced effective Lande g-factor.

  13. Voltage-Controlled Emission Wavelength Switching in a Pseudomorphic Si1-xGex/Si Double Quantum Well

    Science.gov (United States)

    Yasuhara, Nozomu; Fukatsu, S.

    2004-04-01

    Voltage-controlled emission wavelength switching (VCEWS) is demonstrated in a pseudomorphic Si1-xGex/Si double quantum well (DQW). Under cw excitation, photoluminescence (PL) of the DQW was found to exhibit a clear switchover of emission wavelengths under longitudinal electric field, where an extinction ratio of more than 100 was obtained. In the time domain, antiphase oscillations of PL decays synchronized with the polarity switch of driving voltages were observed. The unique band line-up of pseudomorphic Si1-xGex/Si QWs which makes loosely bound electrons susceptible to longitudinal electric fields underlies the operation of VCEWS.

  14. Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue

    Science.gov (United States)

    Ooms, Kristopher J.; Vega, Alexander J.; Polenova, Tatyana; Cannella, Marco; Marcolongo, Michele

    2015-09-01

    The analysis of double and zero quantum filtered 2H NMR spectra obtained from D2O perfused in the nucleus pulposus of human intervertebral disc tissue samples is reported. Fitting the spectra with a three-site model allows for residual quadrupolar couplings and T2 relaxation times to be measured. The analysis reveals changes in both the couplings and relaxation times as the tissue begins to show signs of degradation. The full analysis demonstrates that information about tissue hydration, water collagen interactions, and sample heterogeneity can be obtained and used to better understand the biochemical differences between healthy and degraded tissue.

  15. Geometrical asymmetry effects on energy and momentum transfer rates in a double-quantum-well structure: Linear regime

    International Nuclear Information System (INIS)

    We investigate theoretically the effect of spatial asymmetry on energy and momentum transfer rates in a double-quantum-well system using balance equation approach. Our study is limited to the linear regime where the applied electric field is sufficiently weak. We calculate the screened potential by using the random phase approximation and the Hubbard approximation for the cases of high and low electron densities, respectively. Our numerical results predict that the spatial asymmetry affects, considerably, both the energy transfer and drag rates as a result of changes in plasmon modes. Also, we find that the spatial asymmetry effect disappears at lower temperatures by inclusion of the short-range interaction

  16. Spin-dependent coherent transport in a double quantum dot system

    Science.gov (United States)

    Petrosyan, L. S.; Shahbazyan, T. V.

    2015-09-01

    We study spin-resolved resonant tunneling in a system of two quantum dots sandwiched between doped quantum wells. In the coherent (Dicke) regime, i.e., when quantum dot separation is smaller than the Fermi wavelength in a two-dimensional electron gas in quantum wells, application of an in-plane magnetic field leads to a pronounced spin-resolved structure of conductance peak line shape even for very small Zeeman splitting of the quantum dots' resonant levels. In the presence of electron-gas spin-orbit coupling, this spin-resolved structure is washed out due to Fermi surface deformation in the momentum space. We also show that Aharonov-Bohm flux penetrating the area enclosed by tunneling electron pathways completely destroys the conductance spin structure.

  17. Quantum compact model for thin-body double-gate Schottky barrier MOSFETs

    Institute of Scientific and Technical Information of China (English)

    Luan Su-Zhen; Liu Hong-Xia

    2008-01-01

    Nanoscale Schottky barrier metal oxide semiconductor field-effect transistors (MOSFETs) are explored by using quantum mechanism effects for thin-body devices. The results suggest that for small nonnegative Schottky barrier heights, even for zero barrier height, the tunnelling current also plays a role in the total on-state current. Owing to the thin body of device, quantum confinement raises the electron energy levels in the silicon, and the tradeoff takes place between the quantum confinement energy and Schottky barrier lowering (SBL). It is concluded that the inclusion of the quantum mechanism effect in this model, which considers an infinite rectangular well with a first-order perturbation in the channel, can lead to the good agreement with numerical result for thin silicon film. The error increases with silicon thickness increasing.

  18. A quantum-mathematical model to state single photon (electron) double slit experiment, Fraunhofer and Fresnel diffractions

    Science.gov (United States)

    Rahmani Nejad, Akbar; Olia, M. A.

    2009-08-01

    This paper provides a complete physical model associated with mathematical analysis and formulation that is based on Schrödinger equation and Feynman path integral. This model answers to single Photon (electron) double slit experiment with high degree of accuracy. It also gives a new method of analysis and formulation for Fresnel and Fraunhofer diffractions that are completely according to the Schrödinger equation and Feynman path concept. The results of these methods are precisely in agreement with the near field and far field diffraction experiments. In other words the new formulation in all above mentioned phenomena i.e. single photon (electron) double slit experiment, Fresnel and Fraunhofer diffractions are completely confirmed by lab experiments(measurements). Lab experiments mean common intensity and pattern experiments resulting from Fresnel (near field) diffraction, Fraunhofer (far field) diffraction and patterns resulting in single photon (electron) lab experiment. The resultant formulas are sketched and calculated by matlab program, the resultant graphs and values are compared with lab experiments in each section. This analysis substitutes wave function and probability density function concepts instead of interference of light beams emitted from infinitesimal pinholes or classical interpretation of near field diffraction and far field diffraction phenomena. The ultimate goal of this paper is to give a very accurate answer to the single particle double slit experiment and also to unify diffraction concept of classical optics in to quantum mechanics, deleting the traditional concept of phases in classical optics and substituting the concept of deflection of Feynman paths. The above mentioned analysis may be a glad tiding to a reliable method to unify classical optics in to quantum mechanics.

  19. From a 1D completed scattering and double slit diffraction to the quantum-classical problem for isolated systems

    CERN Document Server

    Chuprikov, N L

    2011-01-01

    By probability theory the probability space to underlie the set of statistical data described by the squared modulus of a coherent superposition of microscopically distinct (sub)states (CSMDS) is non-Kolmogorovian and, thus, such data are mutually incompatible. For us this fact means that the squared modulus of a CSMDS cannot be interpreted as the probability density and quantum mechanics itself, with its current approach to CSMDSs, does not allow a correct statistical interpretation. By the example of a 1D completed scattering and double slit diffraction we develop a new quantum-mechanical approach to CSMDSs, which implies decomposition of the non-Kolmogorovian probability space associated with the squared modulus of a CSMDS into the sum of Kolmogorovian ones. We adapt to CSMDSs the presented by Khrennikov ({\\it Found. of Phys., 35, No. 10, p.1655 (2005)}) concept of real contexts (complexes of physical conditions) to determine uniquely the properties of quantum ensembles. Namely we treat the context to crea...

  20. A micro-photoluminescence study of vertically stacked InGaAs-GaAs double-layer quantum dots

    International Nuclear Information System (INIS)

    The optical properties of In0.5Ga0.5As-GaAs single-layer quantum dots (SL-QDs) and three vertically stacked double-layer quantum dots (DL-QDs) with different spacer thicknesses, grown by solid-source molecular beam epitaxy (MBE) in Stranski-Krastonow (S-K) growth mode, are investigated by micro-photoluminescence (μ-PL) spectroscopy. Interestingly, μ-PL spectra of all DL-QDs are observed at energies lower by approximately 40 meV, compared with those of SL-QDs, indicating the effective coupling of DL-QDs, along with multiple sub-peaks on the right shoulder of the luminescence center. A reduction in overall energies of the quantum dot (QD) in terms of electronic coupling, and the creation of multiple energy states in terms of mutual interactions among the DL-QDs of different sizes and shapes, are considered to be possible reasons for this phenomenon. The excitation-power-dependent μ-PL spectra also show state-filling effects in the lowest energy levels of the DL-QDs.

  1. Asymmetrical In{sub 0.1}Ga{sub 0.9}As/Al{sub 0.3}Ga{sub 0.7}As quantum rings and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Tangmettajittakul, O., E-mail: s-panyakeow@yahoo.com; Changmoung, P., E-mail: s-panyakeow@yahoo.com; Thainoi, S., E-mail: s-panyakeow@yahoo.com; Ratanathammaphan, S., E-mail: s-panyakeow@yahoo.com; Panyakeow, S., E-mail: s-panyakeow@yahoo.com [Semiconductor Device Research Laboratory (Nanotech Center of Excellence) Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok (Thailand)

    2013-12-04

    In{sub 0.1}Ga{sub 0.9}As/Al{sub 0.3}Ga{sub 0.7}As quantum rings were fabricated by droplet epitaxy technique using molecular beam epitaxy (MBE). 7.5 ML In{sub 0.1}Ga{sub 0.9}As droplets are deposited on Al{sub 0.3}Ga{sub 0.7}As epitaxial layer at 350°C and 250°C. After that, they were crystallized under As{sub 4} pressure of 8×10{sup −6} torr at 250°C. The surface morphology of quantum rings is studied by atomic force microscopy. It is found that quantum rings are not symmetrical due to anisotropic behavior of In and Ga atom migration during crystallization process. The quantum ring density of the sample deposition at 350°C and 250°C are 1×10{sup 9} cm{sup −2} and 2.6×10{sup 9} cm{sup −2}, respectively. Consequently, the asymmetric quantum rings with deposition at 350°C give two photoluminescence (PL) peaks at 1.27 and 1.38 eV at 20K. However, the PL peak of quantum rings with deposition at 350°C is merged with GaAs peak due to the poor size distribution.

  2. Gain of intersubband Raman lasing in modulation-doped GaAs/AlGaAs coupled double quantum wells tuned by an external bias

    Science.gov (United States)

    Miura, M.; Katayama, S.

    2007-04-01

    The calculated gain of intersubband Raman laser (IRL) consisting of modulation-doped GaAs/AlGaAs coupled double quantum wells (CDQWs) is presented as a function of external electric field. The maximum Raman gain for the coupled collective intersubband plasmon and the confined LO phonon modes exhibits remarkable dc field dependence. This field dependence is attributed to the variation of both Raman tensor and dynamical response function in CDQWs tuned by external bias. It is pointed out that the application of dc bias is efficient technique to fabricate the tunable mid-infrared IRL, in addition to optimization of coupled double quantum wells structures.

  3. Quantum noise in ac-driven resonant-tunneling double barrier structures: Photon-assisted tunneling vs. electron anti-bunching

    OpenAIRE

    Hammer, Jan; Belzig, Wolfgang

    2011-01-01

    We study the quantum noise of the electronic current in a double-barrier system with a single resonant level. In the framework of the Landauer formalism, we treat the double barrier as a quantum coherent scattering region that can exchange photons with a coupled electric field, e.g., a laser beam or a periodic ac bias voltage. As a consequence of the manifold parameters that are involved in this system, a complicated steplike structure arises in the nonsymmetrized current-current autocorrelat...

  4. Quantum measurements are physical processes. Comment on "Consciousness and the double-slit interference pattern: Six experiments," By Dean Radin et al. [Physics Essays 25, 2 (2012)

    CERN Document Server

    de Bianchi, Massimiliano Sassoli

    2013-01-01

    The validity of the assertion that some recent double-slit interference experiments, conducted by Radin et al., would have tested the possible role of the experimenter's mind in the collapse of the quantum wave function, is questioned. It is emphasized that quantum mechanics doesn't need any psychophysical ingredient to explain the measurement processes, and therefore parapsychologists shouldn't resort to the latter to support the possibility of psychokinesis, but search for more convincing explanations.

  5. Double-donor complex in vertically coupled quantum dots in a threading magnetic field.

    Science.gov (United States)

    Manjarres-García, Ramón; Escorcia-Salas, Gene Elizabeth; Manjarres-Torres, Javier; Mikhailov, Ilia D; Sierra-Ortega, José

    2012-01-01

    We consider a model of hydrogen-like artificial molecule formed by two vertically coupled quantum dots in the shape of axially symmetrical thin layers with on-axis single donor impurity in each of them and with the magnetic field directed along the symmetry axis. We present numerical results for energies of some low-lying levels as functions of the magnetic field applied along the symmetry axis for different quantum dot heights, radii, and separations between them. The evolution of the Aharonov-Bohm oscillations of the energy levels with the increase of the separation between dots is analyzed. PMID:23013550

  6. Quantum dynamics of double-qubits in a spin star lattice with an XY interaction

    OpenAIRE

    Jing, Jun; Lü, Zhi-guo

    2006-01-01

    The dynamics of two coupled spins-1/2 interacting with a spin-bath via the quantum Heisenberg XY coupling is studied. The pair of central spins served as a quantum open subsystem are initially prepared in two types of states: the product states and the Bell states. The bath, which consists of $N$ (in the thermodynamic limit $N\\to\\infty$) mutually coupled spins-1/2, is in a thermal state at the beginning. By the Holstein-Primakoff transformation, the model can be treated effectively as two spi...

  7. Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity

    International Nuclear Information System (INIS)

    Abstract We propose a deterministic and scalable scheme to construct a two-qubit controlled-NOT (CNOT) gate and realize entanglement swapping between photonic qubits using a quantum-dot (QD) spin in a double-sided optical microcavity. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive and heralded way. We assess the feasibility of the scheme and show that the scheme can work in both the weak coupling and the strong coupling regimes. The scheme opens promising perspectives for long-distance photonic quantum communication and distributed quantum information processing.

  8. Broadly tunable and low-quantum-defect Yb3+-doped double tungstate channel waveguide lasers

    NARCIS (Netherlands)

    Geskus, D.; Aravazhi, S.; Wörhoff, K.; Pollnau, M.

    2011-01-01

    We present microstructured channel waveguide lasers in KGd1-xLux(WO4)2:Yb3+ with a tuning range from 980-1045 nm and a record-low quantum defect of 0.7%. Extension of the tuning range seems feasible in cavities with lower loss.

  9. A quantum network for implementation of the optimal quantum cloning

    Institute of Scientific and Technical Information of China (English)

    Dai Jie-Lin; Zhang Wen-Hai

    2009-01-01

    This paper presents a quantum network to implement the optimal 1→2 quantum cloning in 2 dimensions, including the optimal asymmetric universal, the optimal symmetric phase-covariant, and the asymmetric real state cloning. By only choosing different angles of the single-qubit rotations, the quantum network can implement three optimal quantum cloning.

  10. A quantum network for implementation of the optimal quantum cloning

    International Nuclear Information System (INIS)

    This paper presents a quantum network to implement the optimal 1 → 2 quantum cloning in 2 dimensions, including the optimal asymmetric universal, the optimal symmetric phase-covariant, and the asymmetric real state cloning. By only choosing different angles of the single-qubit rotations, the quantum network can implement three optimal quantum cloning. (general)

  11. How to produce quantum entanglement for ascertaining incompatible properties in double-slit experiments

    CERN Document Server

    Nisticò, Giuseppe

    2010-01-01

    Double-slit experiment very well lends itself in describing the problem of measuring simultaneously incompatible properties. In such a context, we theoretically design an ideal experiment for spin-7/2 particles, able to produce the entanglement which makes possible the detection.

  12. Quantum Schubert polynomials and quantum Schur functions

    OpenAIRE

    Kirillov, Anatol N.

    1997-01-01

    We introduce the quantum multi-Schur functions, quantum factorial Schur functions and quantum Macdonald polynomials. We prove that for restricted vexillary permutations the quantum double Schubert polynomial coincides with some quantum multi-Schur function and prove a quantum analog of the Nagelsbach-Kostka and Jacobi-Trudi formulae for the quantum double Schubert polynomials in the case of Grassmannian permutations. We prove, also, an analog of the Billey-Jockusch-Stanley formula for quantum...

  13. A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Concistre, Maria, E-mail: mariac@soton.ac.uk; Johannessen, Ole G.; McLean, Neville [University of Southampton, School of Chemistry (United Kingdom); Bovee-Geurts, Petra H. M. [Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences (Netherlands); Brown, Richard C. D. [University of Southampton, School of Chemistry (United Kingdom); DeGrip, Willem J. [Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences (Netherlands); Levitt, Malcolm H., E-mail: mhl@soton.ac.uk [University of Southampton, School of Chemistry (United Kingdom)

    2012-07-15

    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-{sup 13}C{sub 2}-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature ({approx}120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40 Degree-Sign , it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed.

  14. Influence of Rashba spin-orbit coupling on Fano-Kondo effect in a parallel double-quantum-dot structure

    International Nuclear Information System (INIS)

    Electron transport through a parallel double-quantum-dot structure is theoretically studied with one dot in the Kondo region and the other one in the region of local Rashba interaction. The coupling between the Kondo dot and the electron reservoirs is found to offer a reference channel for electron travels, and the connection of the Rashba dot and the leads is found to afford a resonant channel. The interplay of these two mechanisms gives rise to the Fano effect, which also depends on the adjustment of the Rashba field. We then conclude that in this structure, the Fano interference is more robust because it causes a quenching of the Kondo resonance. In the presence of a local magnetic flux, the quenched Kondo resonance becomes determined by the electron spin, which is helpful for spin manipulation.

  15. Influence of Rashba spin-orbit coupling on Fano-Kondo effect in a parallel double-quantum-dot structure

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Jing; Wang, Yungang; Wang, Yu; Wang, Huimin; Han, Yu [Liaoning University, Shenyang (China)

    2014-02-15

    Electron transport through a parallel double-quantum-dot structure is theoretically studied with one dot in the Kondo region and the other one in the region of local Rashba interaction. The coupling between the Kondo dot and the electron reservoirs is found to offer a reference channel for electron travels, and the connection of the Rashba dot and the leads is found to afford a resonant channel. The interplay of these two mechanisms gives rise to the Fano effect, which also depends on the adjustment of the Rashba field. We then conclude that in this structure, the Fano interference is more robust because it causes a quenching of the Kondo resonance. In the presence of a local magnetic flux, the quenched Kondo resonance becomes determined by the electron spin, which is helpful for spin manipulation.

  16. Improvement of Efficiency and Brightness of Red Organic Light-Emitting Devices Using Double-Quantum-Well Configuration

    Science.gov (United States)

    Mi, Rui; Cheng, Gang; Zhao, Yi; Xie, Wen-Fa; Hou, Jing-Ying; Ding, Tao; Liu, Shi-Yong

    2004-03-01

    We present red double-quantum-well organic light-emitting devices (DQW-OLEDs), in which N,N-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyo-4,4'-diamine (NPB) is used as potential barriers and hole transport layer, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-thtramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped tris (8-hydroxyquinoline) aluminium (Alq3) as potential wells and emitter, undoped Alq3 as electron transport layer, respectively. The turn-on voltage is about 4 V. The maximum brightness and electroluminescent (EL) efficiency of the DQW device can reach 5916 cd m-2 at 16 V and 2.85 cd A-1 at 7 V, respectively. In addition, the EL efficiency of the DQW device is relatively independent of the drive voltage in the range from 5 V to 16 V.

  17. Improvement of Efficiency and Brightness of Red Organic Light-Emitting Devices Using Double-Quantum-Well Configuration

    Institute of Scientific and Technical Information of China (English)

    MI Rui; CHENG Gang; ZHAO Yi; XIE Wen-Fa; HOU Jing-Ying; DING Tao; LIU Shi-Yong

    2004-01-01

    @@ We present red double-quantum-well organic light-emitting devices (DQW-OLEDs), in which N,N-bis-(1-naphthyl)N,N′-diphenyl-1,1′-biphenyo-4,4'-diamine (NPB) is used as potential barriers and hole transport layer, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7, 7-thtramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped tris (8-hydroxyquinoline) aluminum (Alq3) as potential wells and emitter, undoped Alq3 as electron transport layer, respectively. The turn-on voltage is about 4 V. The maximum brightness and electroluminescent (EL) efficiency of the DQW device can reach 5916cd m-2 at 16 V and 2.85cd A-1 at 7 V, respectively. In addition, the EL efficiency of the DQW device is relatively independent of the drive voltage in the range from 5 V to 16 V.

  18. Absorption of terahertz radiation by plasmon modes in a grid-gated double-quantum-well field-effect transistor

    Science.gov (United States)

    Popov, V. V.; Polischuk, O. V.; Teperik, T. V.; Peralta, X. G.; Allen, S. J.; Horing, N. J. M.; Wanke, M. C.

    2003-09-01

    The terahertz absorption spectrum of plasmon modes in a grid-gated double-quantum-well (DQW) field-effect transistor structure is analyzed theoretically and numerically using a first principles electromagnetic approach and is shown to faithfully reproduce important physical features of recent experimental observations. We find that the essential character of the response—multiple resonances corresponding to spatial harmonics of standing plasmons under the metal grating—is caused by the static spatial modulation of electron density in the channel. Higher order plasmon modes become more optically active as the depth of the electron density modulation in the DQW tends towards unity. The maximum absorbance, at plasma resonance, is shown to be 1/2. Furthermore, the strongest absorption also occurs when the standing plasmon resonance coincides with the fundamental dipole mode of the ungated portion of the channel.

  19. Pump-probe spectroscopy of spin-injection dynamics in double quantum wells of diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Nishibayashi, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)]. E-mail: nishi@tagen.tohoku.ac.jp; Aoshima, I. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Souma, I. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Murayama, A. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan); Oka, Y. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2006-07-15

    Dynamics of spin injection has been investigated in a double quantum well (DQW) composed of a diluted magnetic semiconductor by the pump-probe transient absorption spectroscopy in magnetic field. The DQW consists of a non-magnetic well (NMW) of CdTe and a magnetic well (MW) of Cd{sub 0.92}Mn{sub 0.08}Te. The MW shows a transient absorption saturation in the exciton band for more than 200 ps after the optical pumping, while the exciton photoluminescence does not arise from the MW. In the NMW, the circular polarization degree of the transient absorption saturation shows an increase with increasing time. The results are interpreted by the individual tunneling of spin-polarized electrons and holes from the MW to the NMW with different tunneling times. Depolarization processes of the carrier spins in the MW and the NMW are also discussed.

  20. The Optical Kerr Effect in Wurtzite GaN-BASED Double Quantum Wells:. Influences of Piezoelectricity and Spontaneous Polarization

    Science.gov (United States)

    Zhang, L.

    Taking the influences of piezoelectricity and spontaneous polarization into consideration, the nonlinear optical Kerr effect in a nitride semiconductor coupling double quantum well (DQW) has been theoretically investigated by using the compact density matrix approach and iterative treatment. The electronic eigenstates in a nitride DQW are exactly solved based on the built-in electric field model already constituted in recent reference. The band non-parabolicity effect of nitride heterostructures has been taken into account. A typical wurtzite GaN/AlGaN DQW is chosen to perform numerical calculations. The calculated results reveal that the optical Kerr coefficients sensitively depend on the structural parameters of the coupling DQW system. Moreover, a strong optical Kerr effect can be realized in the nitride DQW by choosing a group of optimum structural parameters and doped fraction.

  1. A simple double quantum coherence ESR sequence that minimizes nuclear modulations in Cu2+-ion based distance measurements

    Science.gov (United States)

    Ruthstein, Sharon; Ji, Ming; Shin, Byong-kyu; Saxena, Sunil

    2015-08-01

    Double quantum coherence (DQC) ESR is a sensitive method to measure magnetic dipolar interactions between spin labels. However, the DQC experiment on Cu2+ centers presents a challenge at X-band. The Cu2+ centers are usually coordinated to histidine residues in proteins. The electron-nuclear interaction between the Cu2+ ion and the remote nitrogen in the imidazole ring can interfere with the electron-electron dipolar interaction. Herein, we report on a modified DQC experiment that has the advantage of reduced contributions from electron-nuclear interactions, which enhances the resolution of the DQC signal to the electron-electron dipolar modulations. The modified pulse-sequence is verified on Cu2+-NO system in a polyalanine-based peptide and on a coupled Cu2+ system in a polyproline-based peptide. The modified DQC data were compared with the DEER data and good agreement was found.

  2. Interwell radiative recombination in the presence of random potential fluctuations in GaAs/AlGaAs biased double quantum wells

    DEFF Research Database (Denmark)

    Timofeev, V.B.; Larionov, A.V.; Ioselevich, A.S.;

    1998-01-01

    The interwell radiative recombination from biased double quantum wells (DQW) in pin GaAs/AlGaAs heterostructures is investigated at different temperatures and external electrical fields. The luminescence line of interwell recombination of spatially separated electron-hole pairs exhibits systematic...

  3. On demand entanglement in double quantum dots via coherent carrier scattering

    CERN Document Server

    Buscemi, Fabrizio; Bertoni, Andrea

    2010-01-01

    We show how two qubits encoded in the orbital states of two quantum dots can be entangled or disentangled in a controlled way through their interaction with a weak electron current. The transmission/reflection spectrum of each scattered electron, acting as an entanglement mediator between the dots, shows a signature of the dot-dot entangled state. Strikingly, while few scattered carriers produce decoherence of the whole two-dots system, a larger number of electrons injected from one lead with proper energy is able to recover its quantum coherence. Our numerical simulations are based on a real-space solution of the three-particle Schroedinger equation with open boundaries. The computed transmission amplitudes are inserted in the analytical expression of the system density matrix in order to evaluate the entanglement.

  4. Electric transport through c-nanotubes and grapheme nanoribbons double quantum dots coupled by a superconductor

    OpenAIRE

    Guerra Castro, Juan Manuel

    2014-01-01

    Abstract. Graphene has become a promising material for technological applications and research in fundamental physics due to its rich physical properties. A detailed study of its hexagonal crystalline structure has been performed and has revealed its unusual electronic properties of great interest in nanotechnology and quantum electronics[1, 2, 3]. Charge carriers exitations with energies near the Fermi can be approximated by an effective Weyl-Dirac Hamiltonian thus implying re...

  5. Ascertaining complementary and incompatible quantum properties by means of double-slit experiments

    International Nuclear Information System (INIS)

    The famous two-slits experiment is used to theoretically introduce the problem of detecting both which-slit (WS) property and another quantum property incompatible with the WS one, together with the measurement of the (complementary) position of the final impact point. General conditions for the existence of solutions are singled out, and a family of solutions is concretely found. Moreover, we theoretically design an ideal experiment which realizes this non-trivial detection

  6. Quantum confinement effects and source-to-drain tunneling in ultra-scaled double-gate silicon n-MOSFETs

    Institute of Scientific and Technical Information of China (English)

    Jiang Xiang-Wei; Li Shu-Shen

    2012-01-01

    By using the linear combination of bulk band (LCBB) method incorporated with the top of the barrier splitting (TBS) model,we present a comprehensive study on the quantum confinement effects and the source-to-drain tunneling in the ultra-scaled double-gate (DG) metal-oxide-semiconductor field-effect transistors (MOSFETs).A critical body thickness value of 5 nm is found,below which severe valley splittings among different X valleys for the occupied charge density and the current contributions occur in ultra-thin silicon body structures.It is also found that the tunneling current could be nearly 100% with an ultra-scaled channel length.Different from the previous simulation results,it is found that the source-to-drain tunneling could be effectively suppressed in the ultra-thin body thickness (2.0 nm and below) by the quantum confinement and the tunneling could be suppressed down to below 5% when the channel length approaches 16 nm regardless of the body thickness.

  7. TlGaInNAs/GaAs double quantum well structures: Effect of barrier layers and substrate orientation

    Science.gov (United States)

    Krishnamurthy, D.; Matsumoto, T.; Fujiwara, A.; Hasegawa, S.; Asahi, H.

    2007-04-01

    The quinary TlGaInNAs-based double quantum well (DQW) structures were grown on GaAs substrates by electron cyclotron resonance (ECR)-MBE and the samples were probed by secondary ion mass spectroscopy (SIMS). Light emitting diodes (LEDs) were fabricated using these DQW wafers and their electroluminescence (EL) behaviors were studied at different temperatures. The effects of different barrier layers and substrate orientations on the amount of Tl incorporation and on the temperature dependency of the EL peak wavelengths of the LEDs were studied. Higher incorporation of Tl into the quantum well (QW) region and the ensuing change in the temperature dependency of the peak wavelengths owing to the TlGaAs barrier layer are reported. GaAs substrates having (3 1 1)B orientation were found to allow more Tl incorporation as compared to (1 0 0) and (3 1 1)A oriented substrates. The LEDs fabricated out of the TlGaInNAs/TlGaAs/(3 1 1)B GaAs DQW structures showed the least temperature dependency of the EL peak wavelengths exemplifying the usefulness of Tl in the QW as well as barrier region.

  8. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  9. Quantum model for double ionization of atoms in strong laser fields

    CERN Document Server

    Prauzner-Bechcicki, Jakub S; Eckhardt, Bruno; Zakrzewski, Jakub

    2007-01-01

    Double ionization of atoms in strong laser pulses is discussed by use of a simplified atomic model. Each electron is allowed to move along the lines indicated by the positions of the Stark saddles when the phase of the field changes. The effective two dimensional model resembles to a large extend the known 1+1 dimensional aligned electrons model, but enables correlated escape of electrons with equal momenta -- the phenomenon observed experimentally. The time-dependent solution of the Schrodinger equation allows us to discuss in detail the time dynamics of the ionization process, formation of electronic wavepackets and the development of the final momenta distribution. In particular, we are able to distinguish between sequential double ionization, where electrons escape during different half-cycles of the pulse, and non-sequential one, where they escape during the same half-cycle. We consider the dependence of the measurable quantities on the absolute phase of the light pulse.

  10. The role of the indirect tunneling processes and asymmetry in couplings in orbital Kondo transport through double quantum dots

    International Nuclear Information System (INIS)

    A system of two quantum dots attached to external electrodes is considered theoretically in the orbital Kondo regime. In general, the double dot system is coupled via both Coulomb interaction and direct hopping. Moreover, the indirect hopping processes between the dots (through the leads) are also taken into account. To investigate the system’s electronic properties we apply the slave-boson mean field (SBMF) technique. With the help of the SBMF approach the local density of states for both dots and the transmission (as well as linear and differential conductance) is calculated. We show that Dicke- and Fano-like line shapes may emerge in the transport characteristics of the double dot system. Moreover, we observed that these modified Kondo resonances are very susceptible to the change of the indirect coupling’s strength. We have also shown that the Kondo temperature becomes suppressed with increasing asymmetry in the dot-lead couplings when there is no indirect coupling. Moreover, when the indirect coupling is turned on the Kondo temperature becomes suppressed. By allowing a relative sign of the nondiagonal elements of the coupling matrix with left and right electrodes, we extend our investigations to become more generic. Finally, we have also included the level renormalization effects due to indirect tunneling, which are mostly neglected. (paper)

  11. Interlayer Hall effect in double quantum wells subject to in-plane magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Kolorenč, Jindřich; Smrčka, Ludvík; Středa, Pavel

    2002-01-01

    Roč. 66, č. 8 (2002), s. 085301-1 - 085301-7. ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754; GA ČR GA202/01/0764 Institutional research plan: CEZ:AV0Z1010914 Keywords : double-layer two-dimensional electron system * magnetotransport * Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  12. Dynamical nuclear spin polarization and the Zamboni effect in gated double quantum dots

    OpenAIRE

    Ramon, Guy; Hu, Xuedong

    2006-01-01

    A dynamical nuclear polarization scheme is studied in gated double dots. We demonstrate that a small polarization ($\\sim 0.5%$) is sufficient to enhance the singlet decay time by two orders of magnitude. This enhancement is attributed to an equilibration process between the nuclear reservoirs in the two dots accompanied by reduced fluctuations in the Overhauser fields, that are mediated by the electron-nuclear spin hyperfine interaction.

  13. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr–Universität Bochum, 44780 Bochum (Germany)

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  14. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

    International Nuclear Information System (INIS)

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure

  15. Double-layer antiferromagnetic quantum spin-1/2 Heisenberg model: study of the ground state

    International Nuclear Information System (INIS)

    The crossover from two-dimensional to three-dimensional behavior in the quasi-two-dimensional quantum Heisenberg antiferromagnetic model in the presence of a magnetic field, at T=0 (ground state), is studied by using effective-field theory. In the model a nearest neighbour spin pair interacts with strength J in the xy-plane and with λJ (0=c is obtained as a function of parameter λ, where we have different values of the classical case (Ising model) Hc/J=4+2λ

  16. $FSZ$-groups and Frobenius-Schur Indicators of Quantum Doubles

    OpenAIRE

    Miodrag IOVANOV; Mason, Geoffrey; Montgomery, Susan

    2012-01-01

    We study the higher Frobenius-Schur indicators of the representations of the Drinfel'd double of a finite group G, in particular the question as to when all the indicators are integers. This turns out to be an interesting group-theoretic question. We show that many groups have this property, such as alternating and symmetric groups, PSL_2(q), M_{11}, M_{12} and regular nilpotent groups. However we show there is an irregular nilpotent group of order 5^6 with non-integer indicators.

  17. Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction

    OpenAIRE

    Zuppardo, M.; Santos, J.P.; De Chiara, G; Paternostro, M.; Semiao, F. L.; Palma, G. M.

    2014-01-01

    We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited f...

  18. Asymmetric collider

    International Nuclear Information System (INIS)

    The study of CP violation in beauty decay is one of the key challenges facing high energy physics. Much work has not yielded a definitive answer how this study might best be performed. However, one clear conclusion is that new accelerator facilities are needed. Proposals include experiments at asymmetric electron-positron colliders and in fixed-target and collider modes at LHC and SSC. Fixed-target and collider experiments at existing accelerators, while they might succeed in a first observation of the effect, will not be adequate to study it thoroughly. Giomataris has emphasized the potential of a new approach to the study of beauty CP violation: the asymmetric proton collider. Such a collider might be realized by the construction of a small storage ring intersecting an existing or soon-to-exist large synchrotron, or by arranging collisions between a large synchrotron and its injector. An experiment at such a collider can combine the advantages of fixed-target-like spectrometer geometry, facilitating triggering, particle identification and the instrumentation of a large acceptance, while the increased √s can provide a factor > 100 increase in beauty-production cross section compared to Tevatron or HERA fixed-target. Beams crossing at a non-zero angle can provide a small interaction region, permitting a first-level decay-vertex trigger to be implemented. To achieve large √s with a large Lorentz boost and high luminosity, the most favorable venue is the high-energy booster (HEB) at the SSC Laboratory, though the CERN SPS and Fermilab Tevatron are also worth considering

  19. Possible origin of double-peak emission in InGaN quantum wells on m-plane free-standing GaN substrates

    Science.gov (United States)

    Sakai, Shigeta; Yamaguchi, Atsushi A.; Kurihara, Kaori; Nagao, Satoru

    2016-05-01

    A new theoretical model has been proposed to explain the origin of the double-peak emission observed characteristically in m-plane InGaN quantum wells (QWs). Although the emission spectrum with a double-peak structure is generally regarded as evidence of In compositional phase separation or extended crystal defects that generate localized energy states, such crystal irregularities cannot be observed by transmission electron microscopy or three-dimensional atom probe in the QWs. It has been clarified, by our model, that only the slowly decaying tailing of the density of states can cause the double-peak structure. This is consistent with experimental results, and furthermore, the measured temperature and In composition dependences of photoluminescence spectra with the double-peak emission can also be successfully reproduced by theoretical calculation based on our model.

  20. Combined Aharonov-Bohm and Zeeman spin-polarization effects in a double quantum dot ring

    International Nuclear Information System (INIS)

    A mesoscale Aharonov-Bohm (AB) ring with a quantum dot (QD) embedded in each arm is computationally modeled for unique transmission properties arising from a combination of AB effects and Zeeman splitting of the QD energy levels. A tight-binding Hamiltonian is solved, providing analytical expressions for the transmission as a function of system parameters. Transmission resonances with spin-polarized output are presented for cases involving either a perpendicular field, or a parallel field, or both. The combination of the AB-effect with Zeeman splitting allows sensitive control of the output resonances of the device, manifesting in spin-polarized states which separate and cross as a function of applied field. In the case with perpendicular flux, the AB-oscillations exhibit atypical non-periodicity, and Fano-type resonances appear as a function of magnetic flux due to the flux-dependent shift in the QD energy levels via the Zeeman effect.

  1. Lasing and transport in a multilevel double quantum dot system coupled to a microwave oscillator

    Science.gov (United States)

    Karlewski, Christian; Heimes, Andreas; Schön, Gerd

    2016-01-01

    We study a system of two quantum dots, each with several discrete levels, which are coherently coupled to a microwave oscillator. They are attached to electronic leads and coupled to a phonon bath, both leading to inelastic processes. For a simpler system with a single level in each dot it has been shown that a population inversion can be created by electron tunneling, which in a resonance situation leads to lasing-type properties of the oscillator. In the multilevel system several resonance situations may arise, some of them relying on a sequence of tunneling processes which also involve nonresonant, inelastic transitions. The resulting photon number in the oscillator and the current-voltage characteristic are highly sensitive to these properties and accordingly can serve as a probe for microscopic details.

  2. Conditions for observing emergent SU(4) symmetry in a double quantum dot

    Science.gov (United States)

    Nishikawa, Yunori; Curtin, Oliver J.; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes

    2016-06-01

    We analyze conditions for the observation of a low-energy SU(4) fixed point in capacitively coupled quantum dots. One problem, due to dots with different couplings to their baths, has been considered by L. Tosi, P. Roura-Bas, and A. A. Aligia, J. Phys.: Condens. Matter 27, 335601 (2015), 10.1088/0953-8984/27/33/335601. They showed how symmetry can be effectively restored via the adjustment of individual gates voltages, but they make the assumption of infinite on-dot and interdot interaction strengths. A related problem is the difference in the magnitudes between the on-dot and interdot strengths for capacitively coupled quantum dots. Here we examine both factors, based on a two-site Anderson model, using the numerical renormalization group to calculate the local spectral densities on the dots and the renormalized parameters that specify the low-energy fixed point. Our results support the conclusions of Tosi et al. that low-energy SU(4) symmetry can be restored, but asymptotically achieved only if the interdot interaction U12 is greater than or of the order of the bandwidth of the coupled conduction bath D , which might be difficult to achieve experimentally. By comparing the SU(4) Kondo results for a total dot occupation ntot=1 and 2, we conclude that the temperature dependence of the conductance is largely determined by the constraints of the Friedel sum rule rather than the SU(4) symmetry and suggest that an initial increase of the conductance with temperature is a distinguishing characteristic feature of an ntot=1 universal SU(4) fixed point.

  3. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance

    Science.gov (United States)

    Senokos, E.; Reguero, V.; Palma, J.; Vilatela, J. J.; Marcilla, Rebeca

    2016-02-01

    In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V.In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through

  4. Spin filter effects in an Aharonov-Bohm ring with double quantum dots under general Rashba spin-orbit interactions

    Science.gov (United States)

    Kondo, Kenji

    2016-01-01

    Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.

  5. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance.

    Science.gov (United States)

    Senokos, E; Reguero, V; Palma, J; Vilatela, J J; Marcilla, Rebeca

    2016-02-14

    In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m(2) g(-1), high electrical conductivity (3.5 × 10(5) S m(-1)) and mechanical properties in the high-performance range including toughness (35 J g(-1)) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg(-1) and 14 Wh kg(-1), respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10,000 cycles of charge-discharge at 3.5 V. PMID:26809811

  6. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2014-10-01

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S-1 (m) of organisms is proportional to their generation time Tgt(s) via growth rate v (m s-1): V×S-1 = vgr×Tr. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m3), minimum and maximum doubling time Tdt (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program `Statistics' is used for calculations. In result i) the analytical relationship from type: V×S-1 = 4.46ṡ10-11×Tdt was found, where vgr = 4.46×10-11 m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate vgr satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×vgr>h/2π and Tdt×M×vgr2>h/2π are valid, where h= 6.626×10-34 Jṡs is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?

  7. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Atanas Todorov, E-mail: atanastod@abv.bg [Department of Physics and Biophysics, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora (Bulgaria)

    2014-10-06

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S{sup −1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup −1}): V×S{sup −1} = v{sub gr}×T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S{sup −1} = 4.46⋅10{sup −11}×T{sub dt} was found, where v{sub gr} = 4.46×10{sup −11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v{sub gr}>h/2π and T{sub dt}×M×v{sub gr}{sup 2}>h/2π are valid, where h= 6.626×10{sup −34} J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.

  8. Towards optimizing two-qubit operations in three-electron double quantum dots

    Science.gov (United States)

    Frees, Adam; Gamble, John King; Mehl, Sebastian; Friesen, Mark; Coppersmith, S. N.

    The successful implementation of single-qubit gates in the quantum dot hybrid qubit motivates our interest in developing a high fidelity two-qubit gate protocol. Recently, extensive work has been done to characterize the theoretical limitations and advantages in performing two-qubit operations at an operation point located in the charge transition region. Additionally, there is evidence to support that single-qubit gate fidelities improve while operating in the so-called ``far-detuned'' region, away from the charge transition. Here we explore the possibility of performing two-qubit gates in this region, considering the challenges and the benefits that may present themselves while implementing such an operational paradigm. This work was supported in part by ARO (W911NF-12-0607) (W911NF-12-R-0012), NSF (PHY-1104660), ONR (N00014-15-1-0029). The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  9. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.

    Science.gov (United States)

    Lai, Feili; Miao, Yue-E; Zuo, Lizeng; Lu, Hengyi; Huang, Yunpeng; Liu, Tianxi

    2016-06-01

    The development of biomass-based energy storage devices is an emerging trend to reduce the ever-increasing consumption of non-renewable resources. Here, nitrogen-doped carbonized bacterial cellulose (CBC-N) nanofibers are obtained by one-step carbonization of polyaniline coated bacterial cellulose (BC) nanofibers, which not only display excellent capacitive performance as the supercapacitor electrode, but also act as 3D bio-template for further deposition of ultrathin nickel-cobalt layered double hydroxide (Ni-Co LDH) nanosheets. The as-obtained CBC-N@LDH composite electrodes exhibit significantly enhanced specific capacitance (1949.5 F g(-1) at a discharge current density of 1 A g(-1) , based on active materials), high capacitance retention of 54.7% even at a high discharge current density of 10 A g(-1) and excellent cycling stability of 74.4% retention after 5000 cycles. Furthermore, asymmetric supercapacitors (ASCs) are constructed using CBC-N@LDH composites as positive electrode materials and CBC-N nanofibers as negative electrode materials. By virtue of the intrinsic pseudocapacitive characteristics of CBC-N@LDH composites and 3D nitrogen-doped carbon nanofiber networks, the developed ASC exhibits high energy density of 36.3 Wh kg(-1) at the power density of 800.2 W kg(-1) . Therefore, this work presents a novel protocol for the large-scale production of biomass-derived high-performance electrode materials in practical supercapacitor applications. PMID:27135301

  10. Quantum Grothendieck polynomials

    OpenAIRE

    Kirillov, Anatol N.

    1996-01-01

    We study the algebraic aspects of (small) quantum equivariant $K$-theory of flag manifold. Lascoux-Sch\\"utzenberger's type formula for quantum double and quantum double dual Grothendieck polynomials and the quantum Cauchy identity for quantum Grothendieck polynomials are obtained.

  11. Topological Constraints on Chain-Folding Structure of Semicrystalline Polymer as Studied by 13C-13C Double Quantum NMR

    Science.gov (United States)

    Hong, Youlee; Miyoshi, Toshikazu

    Chain-folding process is a prominent feature of long polymer chains during crystallization. Over the last half century, much effort has been paid to reveal the chain trajectory. Even though various chain-folding models as well as theories of crystallization at molecule levels have been proposed, they could be not reconciled due to the limited experimental evidences. Recent development of double quantum NMR with selective isotope labeling identified the chain-trajectory of 13C labeled isotactic poly(1-butene). The systematic experiments covered a wide range of parameters, i.e. kinetics, concentration, and molecular weight (Mw) . It was demonstrated that i) adjacent re-entry site was invariant as a function of crystallization temperature (Tc) , concentration, andMw, ii) long-range order of adjacent re-entry sequence is independence of kinetics at a given concentration while it decreased with increasing the polymer concentration at a given Tc due to the increased interruption between the chains, and iii) high Mw chains led to the multilayer folded structures in single crystals, but the melt state induced the identical short adjacent sequences of long and short polymer over a wide range of Tc due to the entanglements. The behaviors indicated that the topological restriction plays significant roles in the chain-folding process rather than the kinetics. The proposed framework to control the chain-folding structure presents a new perspective into the chain organization by either the intra- or inter-chain interaction. National Science Foundation Grants DMR-1105829 and 1408855.

  12. Kondo Resonance versus Fano Interference in Double Quantum Dots Coupled to a Two-Lead One-Ring System

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiong-Wen; SHI Zhen-Gang; CHEN Bao-Ju; SONG Ke-Hui

    2007-01-01

    We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov-Bhom (A-B) ring by means of the slave-boson mean-Geld theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this inSuence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for future device applications.

  13. Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO4 Photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanqun; Wang, Ruirui; Yang, Ye; Yan, Dongpeng; Xiang, Xu

    2016-08-03

    The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., E < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is -1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs.

  14. Observation of large Zeeman splitting in GaGdN/AlGaN ferromagnetic semiconductor double quantum well superlattices

    Science.gov (United States)

    Zhou, YiKai; Almokhtar, Mohamed; Kubo, Hitoshi; Mori, Nobuya; Emura, Shuichi; Hasegawa, Shigehiko; Asahi, Hajime

    2012-07-01

    Symmetric GaGdN/AlGaN (Gd concentration: 2%) and GaN/AlGaN double quantum well superlattices (DQW-SLs) were grown by radio-frequency plasma-assisted molecular-beam epitaxy on GaN (0001) templates. Atomic steps were observed on all the sample surfaces by atomic force microscope. X-ray diffraction θ/2θ scan curves exhibited well-defined satellite structures. Room temperature ferromagnetism was confirmed for the GaGdN/AlGaN DQW-SL samples by using alternating gradient magnetometer. Strong photoluminescence was observed from both GaGdN and GaN QWs at higher energy side of GaN excitonic peak. Magneto-photoluminescence spectra for GaGdN/AlGaN DQW-SL samples showed a large magnetic field dependence of the excitonic energy by applying a magnetic field up to 7 T. The observed strong redshift of excitonic PL indicated an enhancement of Zeeman splitting of the free carrier energy levels in magnetic GaGdN/AlGaN DQW-SL. Enhanced g-factor was estimated to be about 60 for GaGdN/AlGaN DQW-SL sample with QW thickness of 1 nm.

  15. Properties of InGaAs/InAlAs double quantum wells toward spin-filtering application

    Science.gov (United States)

    Koga, Takaaki; Yokota, Shoichiro; Yamashige, Takashi; Sawada, Atsushi; Matsuura, Toru; Faniel, Sebastien; Souma, Satofumi; Sekine, Yoshiaki; Sugiyama, Hiroki

    2014-03-01

    We recently determined the intrinsic constant for the Rashba effect in (001)InP-matched InGaAs/InAlAs quantum wells (QW). We now apply this knowledge to band-engineer a spin-filter based on the double QW (DQW). Firstly, we studied the subband energy spectra of the InGaAs/InAlAs DQW from the beatings in the Shubnikov de Haas (SdH) oscillations. The basic properties obtained here provide useful information to refine the device structures for the spin-filter devices based on the DQW system. In our DQW samples, a thin barrier layer of In0.52Al0.48As (dB = 1.5 ~5 nm) is sandwiched with non-doped QW layers of In0.53Ga0.47As (dQW = 10 nm). By carefully tuning the doping densities above and below the DQW part and the top-gate voltage, the potential profile of this DQW should be ideally made symmetric about the middle barrier layer, though not yet realized in our experiment. The experimental results of our not-yet-ideal DQW samples showed clear beatings in the SdH data, which originate from both the subband and Rashba splittings. We report on our successful separation of these two effects based on the proper band-bending assumptions. This work was supported by JSPS KAKENHI Grant Number 23360001.

  16. Photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, S.Y. [Grupo de Educacion en Ciencias Experimentales y Matematicas-GECEM, Facultad de Educacion, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2009-12-15

    The photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  17. Optical properties of double quantum wires under the combined effect of spin-orbit interaction and in-plane magnetic field

    Science.gov (United States)

    Sakiroglu, S.; Gisi, B.; Karaaslan, Y.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2016-07-01

    In this work, we investigate the intersubband optical absorption coefficients and refractive index changes for transitions between the lower-lying electronic levels of double quantum wires formed by a symmetric, double quartic-well potential. The system is subjected to an external in-plane magnetic field and Rashba and Dresselhaus spin-orbit couplings are taken into account. The analytical expressions of the linear and nonlinear absorption coefficients and refractive index changes are obtained by using the compact density-matrix approach and iterative method. The dependence of the optical characteristics on the magnetic field, spin-orbit interactions, quantum wire radius, structural parameter and photon energies has been examined. Numerical results exhibit that the optical properties are considerably sensitive to the strength and orientation of magnetic field as well as to the spin-orbit couplings and thus can be controlled by these parameters.

  18. Phonon confinement effect on the polaron states in a double quantum ring structure in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Yeranosyan, Mkrtich A., E-mail: myeranos@ysu.am [Yerevan State University, Faculty of Physics, Department of Solid State Physics, 1 Alex Manoogian, Yerevan 0025 (Armenia); State Engineering University of Armenia, Department of Microelectronics and Biomedical Devices, 105, V. Teryan, Yerevan 0009 (Armenia); Vartanian, Arshak L., E-mail: vardan@ysu.am [Yerevan State University, Faculty of Physics, Department of Solid State Physics, 1 Alex Manoogian, Yerevan 0025 (Armenia); Shahbandari, Abbas [Farhangiyan University, Bahonar Street, Niyayesh Cross, Farahzadi Avenue, Sanat Square, Tehran 1939614464 (Iran, Islamic Republic of); Kirakosyan, Albert A. [Yerevan State University, Faculty of Physics, Department of Solid State Physics, 1 Alex Manoogian, Yerevan 0025 (Armenia)

    2015-01-01

    In the framework of effective mass approximation the polaron problem in double quantum ring structures in the presence of perpendicular electric and magnetic fields with taken into account the effect of phonon confinement is considered. We derived general expressions for the normalized eigenfunctions of the confined optical and interface optical phonon modes and the dispersion relation for interface optical phonons as well as electron–confined optical phonon and electron–interface optical phonon Fröhlich interaction Hamiltonians in the double quantum ring system. Results reveal that the electron–optical phonon coupling leads to the decrease of the electron ground state energy. We have shown that the polaron energy exhibits a pronounced local maximum (minimuum) in dependence on an electric (magnetic) field which corresponds to the sharp decrease (increase) of the polaronic contributions due to confined optical and interface optical phonon modes.

  19. Photoluminescence energy transitions in GaAs-Ga1-xAlxAs double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    International Nuclear Information System (INIS)

    The photoluminescence energy transitions in GaAs-Ga1-xAlxAs coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  20. Positive Correlations in Tunneling through coupled Quantum Dots

    OpenAIRE

    Sprekeler, H.; Kiesslich, G.; Wacker, A; Schoell, E.

    2003-01-01

    Due to the Fermi-Dirac statistics of electrons the temporal correlations of tunneling events in a double barrier setup are typically negative. Here, we investigate the shot noise behavior of a system of two capacitively coupled quantum dot states by means of a Master equation model. In an asymmetric setup positive correlations in the tunneling current can arise due to the bunching of tunneling events. The underlying mechanism will be discussed in detail in terms of the current-current correla...