WorldWideScience

Sample records for astrophysical reaction rates

  1. Indirect techniques for astrophysical reaction rates determinations

    Science.gov (United States)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  2. Impact of THM reaction rates for astrophysics

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Moroni, P. G. Prada; Puglia, S. M. R.; Romano, S.; Sergi, M. L.

    2015-10-01

    Burning reaction S(E)-factor determinations are among the key ingredients for stellar models when one has to deal with energy generation evaluation and the genesis of the elements at stellar conditions. To by pass the still present uncertainties in extrapolating low-energies values, S(E)-factor measurements for charged-particle induced reactions involving light elements have been made available by devote Trojan Horse Method (THM) experiments. The recent results are here discussed together with their impact in astrophysics.

  3. Astrophysical Reaction Rates as a Challenge for Nuclear Reaction Theory

    OpenAIRE

    Rauscher, T.

    2010-01-01

    The relevant energy ranges for stellar nuclear reactions are introduced. Low-energy compound and direct reactions are discussed. Stellar modifications of the cross sections are presented. Implications for experiments are outlined.

  4. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications

    OpenAIRE

    Goriely, S.; Hilaire, S; Koning, A.J.

    2008-01-01

    Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. The reaction code TALYS has been recently updated to estimate t...

  5. Tables of nuclear cross sections and reaction rates: An addendum to the paper 'Astrophysical reaction rates from satistical model calculations'

    International Nuclear Information System (INIS)

    In a previous publication (ATOMIC DATA AND NUCLEAR DATA TABLES75, 1 (2000)), we gave seven-parameter analytical fits to theoretical reaction rates derived from nuclear cross sections calculated in the statistical model (Hauser-Feshbach formalism) for targets with 10≤Z≤83 (Ne to Bi) and for a mass range reaching the neutron and proton driplines. Reactions considered were (n,γ), (n,p), (n,α), (p,γ), (p,α), (α,γ), and their inverse reactions. Here, we present the theoretical nuclear cross sections and astrophysical reaction rates from which those rate fits were derived, and we provide these data as on-line electronic files. Corresponding to the fitted rates, two complete data sets are provided, one of which includes a phenomenological treatment of shell quenching for neutron-rich nuclei

  6. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    OpenAIRE

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-01-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measure or calculate them. The present paper presents for the first time a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN so as to make these nuclear data packages easily accessible to astrophysicists for a large variety of applications. BRUSLIB is made of two parts. The first one c...

  7. Complete inclusion of parity-dependent level densities in the statistical description of astrophysical reaction rates

    CERN Document Server

    Loens, Hans Peter; Martínez-Pinedo, Gabriel; Rauscher, Thomas; Thielemann, Friedrich-Karl

    2008-01-01

    Microscopic calculations show a strong parity dependence of the nuclear level density at low excitation energy of a nucleus. Previously, this dependence has either been neglected or only implemented in the initial and final channels of Hauser-Feshbach calculations. We present an indirect way to account for a full parity dependence in all steps of a reaction, including the one of the compound nucleus formed in a reaction. To illustrate the impact on astrophysical reaction rates, we present rates for neutron captures in isotopic chains of Ni and Sn. Comparing with the standard assumption of equipartition of both parities, we find noticeable differences in the energy regime of astrophysical interest caused by the parity dependence of the nuclear level density found in the compound nucleus even at sizeable excitation energies.

  8. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    CERN Document Server

    Aikawa, M; Goriely, S; Jorissen, A; Takahashi, K

    2005-01-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measure or calculate them. The present paper presents for the first time a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN so as to make these nuclear data packages easily accessible to astrophysicists for a large variety of applications. BRUSLIB is made of two parts. The first one contains the 1999 NACRE compilation based on experimental data for 86 reactions with (mainly) stable targets up to Si. The second part of BRUSLIB concerns nuclear reaction rate predictions calculated within a statistical Hauser-Feshbach approximation, which limits the reliability of the rates to reactions producing compound nuclei with a high enough level density. These calculations make use of global and coherent microscopic nuclear models for the quantities entering the rate calculations. The use of such models is utterl...

  9. Observation of double pygmy resonances in $^{195,196}$Pt and enhanced astrophysical reaction rates

    CERN Document Server

    Giacoppo, F; Eriksen, T K; Görgen, A; Guttormsen, M; Hagen, T W; Larsen, A C; Kheswa, B V; Klintefjord, M; Koehler, P E; Nyhus, H T; Renstr\\om, T; Sahin, E; Siem, S; Tornyi, T G

    2014-01-01

    Our measurements of $^{195,196}$Pt $\\gamma$-strength functions show a double-humped enhancement in the $E_{\\gamma}= 4-8$ MeV region. For the first time, the detailed shape of these resonances is revealed for excitation energies in the quasicontinuum. We demonstrate that the corresponding neutron-capture cross sections and astrophysical reaction rates are increased by up to a factor of 2 when these newly observed pygmy resonances are included. These results lend credence to theoretical predictions of enhanced reaction rates due to such pygmy resonances and hence are important for a better understanding of r-process nucleosynthesis.

  10. Determining astrophysical three-body radiative capture reaction rates from inclusive Coulomb break-up measurements

    CERN Document Server

    Casal, J; Arias, J M; Gómez-Camacho, J

    2016-01-01

    A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly-bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of $B(E1)$ distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to $^{11}$Li ($^{9}$Li+n+n) and $^6$He ($^{4}$He+n+n) three-body systems for which some data exist.

  11. Determining astrophysical three-body radiative capture reaction rates from inclusive Coulomb break-up measurements

    Science.gov (United States)

    Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.

    2016-04-01

    A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of B (E 1 ) distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to 11Li (9Li+n +n ) and 6He (4He+n +n ) three-body systems for which some data exist.

  12. Nuclear astrophysics from direct reactions

    OpenAIRE

    2008-01-01

    Accurate nuclear reaction rates are needed for primordial nucleosynthesis and hydrostatic burning in stars. The relevant reactions are extremely difficult to measure directly in the laboratory at the small astrophysical energies. In recent years direct reactions have been developed and applied to extract low-energy astrophysical S-factors. These methods require a combination of new experimental techniques and theoretical efforts, which are the subject of this presentation.

  13. Large scale survey of lifetimes and reaction rates for the astrophysical r-process

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Jochen; Reinhard, Paul-Gerhard [Institut fuer Theoretische Physik II, Universitaet Erlangen-Nuernberg (Germany); Loens, Hans Peter; Martinez-Pinedo, Gabriel; Langanke, Karlheinz [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2010-07-01

    We present a large scale survey of lifetimes and reaction rates in the regime of SHE for extremely neutron rich nuclei relevant for the astrophysical r-process. The three competing decay channels spontaneous fission, {alpha}-decay and {beta}-decay are compared. Lifetimes and reaction rates are calculated on the basis of the self-consistent Skyrme-Hartree-Fock model. Where the tunneling probability for spontaneous fission is estimated by the WKB approximation. To get the necessary ingredients for this approximation namely the collective masses and the corrected potential energy surface self-consistent cranking is used. The halflife for {alpha}-decay are calculated from the Q{sub {alpha}} reaction energies using an estimate based on the Viola systematics.

  14. BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics

    Science.gov (United States)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-10-01

    Nuclear reaction rates are quantities of fundamental importance in astrophysics. Substantial efforts have been devoted in the last decades to measuring or calculating them. This paper presents a detailed description of the Brussels nuclear reaction rate library BRUSLIB and of the nuclear network generator NETGEN. BRUSLIB is made of two parts. The first one contains the 1999 NACRE compilation based on experimental data for 86 reactions with (mainly) stable targets up to Si. BRUSLIB provides an electronic link to the published, as well as to a large body of unpublished, NACRE data containing adopted rates, as well as lower and upper limits. The second part of BRUSLIB concerns nuclear reaction rate predictions to complement the experimentally-based rates. An electronic access is provided to tables of rates calculated within a statistical Hauser-Feshbach approximation, which limits the reliability of the rates to reactions producing compound nuclei with a high enough level density. These calculations make use of global and coherent microscopic nuclear models for the quantities entering the rate calculations. The use of such models makes the BRUSLIB rate library unique. A description of the Nuclear Network Generator NETGEN that complements the BRUSLIB package is also presented. NETGEN is a tool to generate nuclear reaction rates for temperature grids specified by the user. The information it provides can be used for a large variety of applications, including Big Bang nucleosynthesis, the energy generation and nucleosynthesis associated with the non-explosive and explosive hydrogen to silicon burning stages, or the synthesis of the heavy nuclides through the s-, α- and r-, rp- or p-processes.

  15. STARLIB: A Next-generation Reaction-rate Library for Nuclear Astrophysics

    Science.gov (United States)

    Sallaska, A. L.; Iliadis, C.; Champange, A. E.; Goriely, S.; Starrfield, S.; Timmes, F. X.

    2013-07-01

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, γ), (p, α), (α, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  16. STARLIB: A NEXT-GENERATION REACTION-RATE LIBRARY FOR NUCLEAR ASTROPHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Sallaska, A. L. [National Institute of Standards and Technology, Gaithersburg, MD 20899-8462 (United States); Iliadis, C.; Champange, A. E. [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, C.P. 226, B-1050 Brussels (Belgium); Starrfield, S.; Timmes, F. X., E-mail: anne.sallaska@nist.gov [Arizona State University, Tempe, AZ 85287-1504 (United States)

    2013-07-15

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, where uncertainties are rigorously defined. In STARLIB, experimental rates are supplemented with: (1) theoretical TALYS rates for reactions for which no experimental input is available, and (2) laboratory and theoretical weak rates. STARLIB includes all types of reactions of astrophysical interest to Z = 83, such as (p, {gamma}), (p, {alpha}), ({alpha}, n), and corresponding reverse rates. Strong rates account for thermal target excitations. Here, we summarize our Monte Carlo formalism, introduce the library, compare methods of correcting rates for stellar environments, and discuss how to implement our library in Monte Carlo nucleosynthesis studies. We also present a method for accessing STARLIB on the Internet and outline updated Monte Carlo-based rates.

  17. Measurement of (alpha,n) reaction cross sections of erbium isotopes for testing astrophysical rate predictions

    CERN Document Server

    Kiss, G G; Rauscher, T; Török, Zs; Csedreki, L; Fülöp, Zs; Gyürky, Gy; Halász, Z

    2015-01-01

    The $\\gamma$-process in core-collapse and/or type Ia supernova explosions is thought to explain the origin of the majority of the so-called $p$ nuclei (the 35 proton-rich isotopes between Se and Hg). Reaction rates for $\\gamma$-process reaction network studies have to be predicted using Hauser-Feshbach statistical model calculations. Recent investigations have shown problems in the prediction of $\\alpha$-widths at astrophysical energies which are an essential input for the statistical model. It has an impact on the reliability of abundance predictions in the upper mass range of the $p$ nuclei. With the measurement of the $^{164,166}$Er($\\alpha$,n)$^{167,169}$Yb reaction cross sections at energies close to the astrophysically relevant energy range we tested the recently suggested low energy modification of the $\\alpha$+nucleus optical potential in a mass region where $\\gamma$-process calculations exhibit an underproduction of the $p$ nuclei. Using the same optical potential for the $\\alpha$-width which was der...

  18. New $^{32}$Cl(p,$\\gamma$)$^{33}$Ar reaction rate for astrophysical rp-process calculations

    CERN Document Server

    Schatz, H; Brown, B A; Clément, R; Sakharuk, A A; Sherrill, B M

    2005-01-01

    The $^{32}$Cl(p,$\\gamma$)$^{33}$Ar reaction rate is of potential importance in the rp-process powering type I X-ray bursts. Recently Clement et al. \\cite{CBB04} presented new data on excitation energies for low lying proton unbound states in $^{33}$Ar obtained with a new method developed at the National Superconducting Cyclotron Laboratory. We use their data, together with a direct capture model and a USD shell model calculation to derive a new reaction rate for use in astrophysical model calculations. In particular, we take into account capture on the first excited state in $^{32}$Cl, and also present a realistic estimate of the remaining uncertainties. We find that the $^{32}$Cl(p,$\\gamma$)$^{33}$Ar reaction rate is dominated entirely by capture on the first excited state in $^{32}$Cl over the whole temperature range relevant in X-ray bursts. In the temperature range from 0.2 to 1 GK the rate is up to a factor of 70 larger than the previously recommended rate based on shell model calculations only. The unce...

  19. New Astrophysical Reaction Rates for 18F(p, α)15O and 18F(p, γ)19Ne

    Institute of Scientific and Technical Information of China (English)

    SHU Neng-Chuan(舒能川); D. W. Bardayan; J. C. Blackmon; CHEN Yong-Shou(陈永寿); R. L. Kozub; P. D. Parker; M. S. Smith

    2003-01-01

    The rates of the thermonuclear 18F(p, α)15O and 18F(p,γ)19Ne reactions in hot astrophysical environments are needed to understand gamma-ray emission from nova explosions. The rates for these reactions have been uncertain due to discrepancies in recent measurements, as well as to a lack of a comprehensive examination of the available structure information in the compound nucleus 19Ne. We have examined the latest experimental measurements with radioactive and stable beams, and made estimates of the unmeasured 19Ne nuclear level parameters, to generate new rates with uncertainties for these reactions. The rates are expressed as numerical values over the temperature range relevant for stellar explosions, as well as analytical expressions as functions of temperature in a format suitable for use in astrophysical simulations. Comparisons with the previous rate calculations are carried out, and the astrophysical implications are briefly discussed.

  20. Calculation of astrophysical reaction rate of 82Ge(n,γ)83Ge

    Institute of Scientific and Technical Information of China (English)

    WANG Mian; CHEN Yong-Shou; LI Zhi-Hong; LIU Wei-Ping; SHU Neng-Chuan

    2009-01-01

    The neutron capture reaction on a neutron-rich near closed-shell nucleus 82Ge may play an important role in the r-process following the fallout from nuclear statistical equilibrium in core-collapse supernovae.By carrying out a DWBA analysis for the experimental angular distribution of 82Ge(d, p)83Ge reaction we obtain the single particle spectroscopic factors, S2,5/2 and S0,1/2 for the ground and first excited states of 83Ge=82Ge(⊕)n, respectively. And then these spectroscopic factors are used to calculate the direct capture cross sections for the 82Ge(n, γ)83Ge reaction at energies of astrophysical interest. The optical potential for neutron scattering on unstable nucleus 82Ge is not known experimentally. We employed a real folding potential which was calculated by using the proper 82Ge density distribution and an effective nucleon-nucleon force DDM3Y.The neutron capture reactions on neutron-rich closed-shell nuclei are expected to be dominated by the direct capture to bound states. We will show that the direct capture rates on these nuclei are sensitive to the structure of the low-lying states.

  1. Nuclear reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Rayet, M. (Universite Libre de Bruxelles (BE))

    1990-06-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects.

  2. Two effects relevant for the study of astrophysical reaction rates: gamma transitions in capture reactions and Coulomb suppression of the stellar enhancement

    CERN Document Server

    Rauscher, T

    2008-01-01

    Nucleosynthesis processes involve reactions on several thousand nuclei, both close to and far off stability. The preparation of reaction rates to be used in astrophysical investigations requires experimental and theoretical input. In this context, two interesting aspects are discussed: (i) the relevant gamma transition energies in astrophysical capture reactions, and (ii) the newly discovered Coulomb suppression of the stellar enhancement factor. The latter makes a number of reactions with negative Q value more favorable for experimental investigation than their inverse reactions, contrary to common belief.

  3. Photoneutron reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Varlamov, V. V., E-mail: Varlamov@depni.sinp.msu.ru; Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  4. Nacre II:. AN Update and Extension of the Nacre Compilation of Charged-Particle Thermonuclear Reaction Rates for Astrophysics

    Science.gov (United States)

    Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.

    2013-03-01

    The status of a new evaluation of astrophysical nuclear reaction rates, referred as NACRE- II, is reported. It includes 19 radiative capture and 15 transfer reactions on targets with mass numbers A < 16. This work is meant to supersede the NACRE compilation. Post-NACRE experimental data are taken into account. Extrapolations of the astrophysical S-factor to largely sub-Coulomb energies are based on the use of the potential model and of the distorted wave Born approximation (DWBA) for capture and transfer reactions, respectively. Adopted rates and their lower and upper limits are provided. Here, we illustrate with some results the general procedure followed in the construction of NACRE-II.

  5. NACRE II: An Update of the NACRE Compilation of Atarget<16 Charged-Particle Thermonuclear Reaction Rates for Astrophysics

    Science.gov (United States)

    Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.

    2011-10-01

    We report on the status of a new evaluation of the rates in astrophysical conditions of 19 capture and 15 transfer reactions on stable targets with mass numbers A<16, referred as NACRE-II. This work is meant to supersede the NACRE compilation. Post-NACRE experimental data are taken into account. Extrapolations of the astrophysical S-factor to largely sub-Coulomb energies are based on the use of the potential model and of the distorted wave Born approximation for capture and transfer reactions, respectively. Adopted rates and their lower and upper limits are provided. Here, we illustrate the general procedure followed in the NACRE-II construction with two examples.

  6. Transfer reactions in nuclear astrophysics

    Science.gov (United States)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  7. STARLIB: A Next-Generation Reaction-Rate Library for Nuclear Astrophysics

    CERN Document Server

    Sallaska, A L; Champagne, A E; Goriely, S; Starrfield, S; Timmes, F X

    2013-01-01

    STARLIB is a next-generation, all-purpose nuclear reaction-rate library. For the first time, this library provides the rate probability density at all temperature grid points for convenient implementation in models of stellar phenomena. The recommended rate and its associated uncertainties are also included. Currently, uncertainties are absent from all other rate libraries, and, although estimates have been attempted in previous evaluations and compilations, these are generally not based on rigorous statistical definitions. A common standard for deriving uncertainties is clearly warranted. STARLIB represents a first step in addressing this deficiency by providing a tabular, up-to-date database that supplies not only the rate and its uncertainty but also its distribution. Because a majority of rates are lognormally distributed, this allows the construction of rate probability densities from the columns of STARLIB. This structure is based on a recently suggested Monte Carlo method to calculate reaction rates, w...

  8. Determination of astrophysical 12N(p,g)13O reaction rate from the 2H(12N, 13O)n reaction and its astrophysical implications

    CERN Document Server

    Guo, B; Li, Zhihong; Wang, Y B; Yan, S Q; Li, Y J; Shu, N C; Han, Y L; Bai, X X; Chen, Y S; Liu, W P; Yamaguchi, H; Binh, D N; Hashimoto, T; Hayakawa, S; Kahl, D; Kubono, S; He, J J; Hu, J; Xu, S W; Iwasa, N; Kume, N; Li, Zhihuan

    2012-01-01

    The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The $^{12}$N($p$,\\,$\\gamma$)$^{13}$O reaction is an important branching point in the rap-processes, which are believed to be alternative paths to the slow 3$\\alpha$ process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the $^2$H($^{12}$N,\\,$^{13}$O)$n$ proton transfer reaction at $E_{\\mathrm{c.m.}}$ = 8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of $^{13}$O$_\\mathrm{g.s.}$ $\\rightarrow$ $^{12}$N + $p$ was extracted to be 3.92 $\\pm$ 1.47 fm$^{-1}$ from the measured angular distribution and utilized to compute the direct component in the $^{12}$N($p$,\\,$\\gamma$)$^{13}$O reaction. The direct astrophysical S-factor at zero energy was then found to be 0.39 $\\pm$ 0.15 keV b. By considering ...

  9. An Updated 6Li(p, α)3He Reaction Rate at Astrophysical Energies with the Trojan Horse Method

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Pizzone, R. G.; Tognelli, E.; Tumino, A.; Degl'Innocenti, S.; Prada Moroni, P. G.; La Cognata, M.; Pappalardo, L.; Sergi, M. L.

    2013-05-01

    The lithium problem influencing primordial and stellar nucleosynthesis is one of the most interesting unsolved issues in astrophysics. 6Li is the most fragile of lithium's stable isotopes and is largely destroyed in most stars during the pre-main-sequence (PMS) phase. For these stars, the convective envelope easily reaches, at least at its bottom, the relatively low 6Li ignition temperature. Thus, gaining an understanding of 6Li depletion also gives hints about the extent of convective regions. For this reason, charged-particle-induced reactions in lithium have been the subject of several studies. Low-energy extrapolations of these studies provide information about both the zero-energy astrophysical S(E) factor and the electron screening potential, Ue . Thanks to recent direct measurements, new estimates of the 6Li(p, α)3He bare-nucleus S(E) factor and the corresponding Ue value have been obtained by applying the Trojan Horse method to the 2H(6Li, α 3He)n reaction in quasi-free kinematics. The calculated reaction rate covers the temperature window 0.01 to 2T 9 and its impact on the surface lithium depletion in PMS models with different masses and metallicities has been evaluated in detail by adopting an updated version of the FRANEC evolutionary code.

  10. Low-energy enhancement of nuclear γ strength and its impact on astrophysical reaction rates

    Directory of Open Access Journals (Sweden)

    Larsen A. C.

    2014-03-01

    Full Text Available An unexpected enhancement in the low-energy part of the γ-strength function for light and medium-mass nuclei has been discovered at the Oslo Cyclotron Laboratory. This enhancement could lead to an increase in the neutron-capture rates up to two orders of magnitude for very exotic, neutron-rich nuclei. However, it is still an open question whether this structure persists when approaching the neutron drip line.

  11. Low-energy enhancement of nuclear γ strength and its impact on astrophysical reaction rates

    OpenAIRE

    Larsen A.C.; Blasi N.; Bracco A.; Bürger A.; Camera F.; Eriksen T.K.; Giacoppo F.; Goriely S.; Guttormsen M.; Görgen A.; Hagen T. W.; Harissopulos S.; Koehler P.E.; Leoni S.; Million B.

    2014-01-01

    An unexpected enhancement in the low-energy part of the γ-strength function for light and medium-mass nuclei has been discovered at the Oslo Cyclotron Laboratory. This enhancement could lead to an increase in the neutron-capture rates up to two orders of magnitude for very exotic, neutron-rich nuclei. However, it is still an open question whether this structure persists when approaching the neutron drip line.

  12. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from Major Evaluated Data Libraries

    OpenAIRE

    Pritychenko, B.; Mughabghab, S.F.

    2012-01-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-...

  13. Study on Fitting Method for Nuclear Astrophysics Reaction Rate%核天体物理反应率拟合方法研究

    Institute of Scientific and Technical Information of China (English)

    周勇; 李志宏; 张海黔

    2015-01-01

    In large-scale nuclear astrophysics network computing,the nuclear astrophys-ics reaction rates were usually fitted to numerical reaction rates concerning temperature in order to reduce the input nuclear parameters.By analyzing the existing databases adopted internationally,a new fitting method was present in this paper,which can give much better fitting results than REACLIB and NACRE.This new fitting method can be applicable to direct reaction rates,isolated and narrow resonance reaction rates,multi-resonant reaction rates,subthreshold states and broad low energy resonances reaction rates,and is convenient to build nuclear astrophysics reaction rate data library.%为进行大规模核天体网络运算,通常将核天体物理反应率拟合为与温度相关的数值表达式,以简化程序中的核物理输入量。通过分析国际上常用的几种核天体物理数据库,本工作得到了一种新的拟合方法,其对反应率的拟合精度较目前国际上通用的 REACLIB和 NACRE 数据库的拟合方法的有明显改善。该拟合方法适用于直接反应和窄共振、宽共振、阈下共振和多谐共振反应,方便建立核天体物理反应率数据库。

  14. Astrophysical Impact of the Updated 9Be(p,α)6Li and 10B(p,α)7Be Reaction Rates As Deduced By THM

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Prada Moroni, P. G.

    2015-10-01

    The complete understanding of the stellar abundances of lithium, beryllium, and boron represents one of the most interesting open problems in astrophysics. These elements are largely used to probe stellar structure and mixing phenomena in different astrophysical scenarios, such as pre-main-sequence or main-sequence stars. Their different fragility against (p,α) burning reactions allows one to investigate different depths of the stellar interior. Such fusion mechanisms are triggered at temperatures between T ≈ (2-5) × {10}6 K, thus defining a corresponding Gamow energy between ≈ 3-10 keV, where S(E)-factor measurements need to be performed to get reliable reaction rate evaluations. The Trojan Horse Method is a well defined procedure to measure cross sections at Gamow energies overcoming the uncertainties due to low-energy S(E)-factor extrapolation as well as electron screening effects. Taking advantage of the {\\mathtt{THM}} measure of the 9Be(p,α)6Li and 10B(p,α)7Be cross sections, the corresponding reaction rates have been calculated and compared with the evaluations by the NACRE collaboration, widely used in the literature. The impact on surface abundances of the updated 9Be and 10B (p,α) burning rates is discussed for pre-MS stars.

  15. AN UPDATED {sup 6}Li(p, {alpha}){sup 3}He REACTION RATE AT ASTROPHYSICAL ENERGIES WITH THE TROJAN HORSE METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Lamia, L.; Spitaleri, C.; Sergi, M. L. [Dipartimento di Fisica e Astronomia, Universita di Catania, I-95123 Catania (Italy); Pizzone, R. G.; Tumino, A.; La Cognata, M. [INFN-Laboratori Nazionali del Sud, I-95125 Catania (Italy); Tognelli, E.; Degl' Innocenti, S.; Prada Moroni, P. G. [Dipartimento di Fisica, Universita di Pisa, I-56127 Pisa (Italy); Pappalardo, L. [Dipartimento di Fisica e Scienze della Terra, Universita di Ferrara, I-44100 Ferrara (Italy)

    2013-05-01

    The lithium problem influencing primordial and stellar nucleosynthesis is one of the most interesting unsolved issues in astrophysics. {sup 6}Li is the most fragile of lithium's stable isotopes and is largely destroyed in most stars during the pre-main-sequence (PMS) phase. For these stars, the convective envelope easily reaches, at least at its bottom, the relatively low {sup 6}Li ignition temperature. Thus, gaining an understanding of {sup 6}Li depletion also gives hints about the extent of convective regions. For this reason, charged-particle-induced reactions in lithium have been the subject of several studies. Low-energy extrapolations of these studies provide information about both the zero-energy astrophysical S(E) factor and the electron screening potential, U{sub e} . Thanks to recent direct measurements, new estimates of the {sup 6}Li(p, {alpha}){sup 3}He bare-nucleus S(E) factor and the corresponding U{sub e} value have been obtained by applying the Trojan Horse method to the {sup 2}H({sup 6}Li, {alpha} {sup 3}He)n reaction in quasi-free kinematics. The calculated reaction rate covers the temperature window 0.01 to 2T{sub 9} and its impact on the surface lithium depletion in PMS models with different masses and metallicities has been evaluated in detail by adopting an updated version of the FRANEC evolutionary code.

  16. The H2 + CO ↔ H2CO Reaction: Rate Constants and Relevance to Hot and Dense Astrophysical Media

    Science.gov (United States)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2016-07-01

    A theoretical thermochemical and kinetic investigation of the thermal H2 + CO ↔ H2CO reaction was performed for a temperature range from 200 to 4000 K. Geometries and vibrational frequencies of reactants, product, and transition state (TS) were obtained at CCSD/cc-pVxZ (x = T and Q) levels and scaling factors were employed to consider anharmonicity effects on vibrational frequencies, zero-point energies, and thermal corrections provided by these methodologies. Enthalpies Gibbs energies, and rate constants for this reaction were determined by including a complete basis set extrapolation correction for the electronic properties calculated at CCSD(T)/cc-pVyZ (y = Q and 5) levels. Our study indicates that enthalpy changes for this reaction are highly dependent on temperature. Moreover, forward and reverse (high-pressure limit) rate constants were obtained from variational TS theory with quantum tunneling corrections. Thus, modified Arrhenius’ equations were fitted by means of the best forward and reverse rate constant values, which provide very reliable estimates for these quantities within the temperature range between 700 and 4000 K. To our knowledge, this is the first kinetic study done for the forward H2 + CO \\to H2CO process in a wide temperature range. Finally, these results can be used to explain the formaldehyde abundance in hot and dense interstellar media, possibly providing data about the physical conditions associated with H2CO masers close to massive star-forming regions.

  17. Calculations of Maxwellian-averaged Cross Sections and Astrophysical Reaction Rates Using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3 and ENDF/B-VI.8 Evaluated Nuclear Reaction Data Libraries

    OpenAIRE

    Pritychenko, B.; Mughaghab, S. F.; Sonzogni, A. A.

    2009-01-01

    We calculated the Maxwellian-averaged cross sections (MACS) and astrophysical reaction rates of the stellar nucleosynthesis reactions (n,$\\gamma$), (n,fission), (n,p), (n,$\\alpha$) and (n,2n) using the ENDF/B-VII.0-, JEFF-3.1-, JENDL-3.3-, and ENDF/B-VI.8-evaluated nuclear-data libraries. Four major nuclear reaction libraries were processed under the same conditions for Maxwellian temperatures ({\\it kT}) ranging from 1 keV to 1 MeV. We compare our current calculations of the {\\it s}-process n...

  18. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L. [Laboratori Nazionali del Sud-INFN, Catania (Italy); Mukhamedzhanov, A. M. [Cyclotron Institute Texas A and M University-College Station, Texas (United States); Typel, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH-Theorie Darmstadt (Germany); Tognelli, E.; Degl' Innocenti, S.; Prada Moroni, P. G. [Dipartimento di Fisica, Università di Pisa, and INFN-Sezione di Pisa, Pisa (Italy); Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S. [Nuclear Physics Institute of ASCR-Rez near Prague (Czech Republic); Lamia, L., E-mail: tumino@lns.infn.it [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy)

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (≤1 Myr) with masses ≥1 M {sub ☉}.

  19. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  20. Observation of low-lying resonances in the quasicontinuum of 195,196Pt and enhanced astrophysical reaction rates

    Directory of Open Access Journals (Sweden)

    Giacoppo F.

    2015-01-01

    Full Text Available An excess of strength on the low-energy tail of the giant dipole resonance recently has been observed in the γ-decay from the quasicontinuum of 195,196Pt. The nature of this phenomenon is not yet fully investigated. If this feature is present also in the γ-ray strength of the neutron-rich isotopes, it can affect the neutron-capture reactions involved in the formation of heavy-elements in stellar nucleosynthesis. The experimental level density and γ-ray strength function of 195,196Pt are presented together with preliminary calculations of the corresponding neutron-capture cross sections.

  1. Direct measurements of astrophysically important α-induced reactions

    Science.gov (United States)

    Avila, Melina

    2016-03-01

    Understanding stellar evolution is one of the primary objectives of nuclear astrophysics. Reaction rates involving α-particles are often key nuclear physics inputs in stellar models. For instance, there are numerous (α , p) reactions fundamental for the understanding of X-ray bursts and the production of 44Ti in core-collapse supernovae. Furthermore, some (α , n) reactions are considered as one of the main neutron sources in the s-process. However, direct measurements of these reactions at relevant astrophysical energies are experimentally challenging because of their small cross section and intensity limitation of radioactive beams. The active target system MUSIC offers a unique opportunity to study (α , p) and (α , n) reactions because its segmented anode allows the investigation of a large energy range in the excitation function with a single measurement. Recent results on the direct measurement of (α , n) and (α , p) measurements in the MUSIC detector will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User.

  2. A chemical reaction network solver for the astrophysics code NIRVANA

    Science.gov (United States)

    Ziegler, U.

    2016-02-01

    Context. Chemistry often plays an important role in astrophysical gases. It regulates thermal properties by changing species abundances and via ionization processes. This way, time-dependent cooling mechanisms and other chemistry-related energy sources can have a profound influence on the dynamical evolution of an astrophysical system. Modeling those effects with the underlying chemical kinetics in realistic magneto-gasdynamical simulations provide the basis for a better link to observations. Aims: The present work describes the implementation of a chemical reaction network solver into the magneto-gasdynamical code NIRVANA. For this purpose a multispecies structure is installed, and a new module for evolving the rate equations of chemical kinetics is developed and coupled to the dynamical part of the code. A small chemical network for a hydrogen-helium plasma was constructed including associated thermal processes which is used in test problems. Methods: Evolving a chemical network within time-dependent simulations requires the additional solution of a set of coupled advection-reaction equations for species and gas temperature. Second-order Strang-splitting is used to separate the advection part from the reaction part. The ordinary differential equation (ODE) system representing the reaction part is solved with a fourth-order generalized Runge-Kutta method applicable for stiff systems inherent to astrochemistry. Results: A series of tests was performed in order to check the correctness of numerical and technical implementation. Tests include well-known stiff ODE problems from the mathematical literature in order to confirm accuracy properties of the solver used as well as problems combining gasdynamics and chemistry. Overall, very satisfactory results are achieved. Conclusions: The NIRVANA code is now ready to handle astrochemical processes in time-dependent simulations. An easy-to-use interface allows implementation of complex networks including thermal processes

  3. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  4. Expressions for the 18F(p, α) 15O and 18F (p, γ) 19Ne Astrophysical Reaction Rates

    Institute of Scientific and Technical Information of China (English)

    N.Shu; M.S.Smith; D.W.Bardayan; J.C.Blackmon; D.W.Bardayan; R.L.Kozub; P.D.Parker; Y.S.Chen

    2001-01-01

    Hydrogen is burned explosively in stellar explosions such as novae, X-ray bursts, X-ray pulsars, and supemovae, as well as possibly in other exotic astrophysical environments such as accretion disks around black holes, Thorne-Zytkow objects, and supermassive stars. Temperatures in these environments range from 107 to 109 K and above, and densities from 102 to 106g/cm3. In such sites,

  5. On thermonuclear reaction rates

    OpenAIRE

    Hans J. Haubold; Mathai, Arak Mathai

    1996-01-01

    Nuclear reactions govern major aspects of the chemical evolution of galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the cases of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are als...

  6. Nuclear reactions in astrophysics: Recent experimental and theoretical studies, and further quests

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. (Inst. d' Astronomie et d' Astrophysique, Univ. Libre, Brussels (Belgium))

    1992-03-09

    A brief review is presented of recent theoretical and experimental efforts that have led to an improvement in our knowledge of nuclear reaction rates of interest in astrophysics. Emphasis is also put on the still existing (sometimes very large) uncertainties that affect some important rates. This is especially the case when short-lived nuclei are involved in the entrance channel. (orig.).

  7. Modern Theories of Low-Energy Astrophysical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rocco Schiavilla

    2004-02-01

    We summarize recent ab initio studies of low-energy electroweak reactions of astrophysical interest, relevant for both big bang nucleosynthesis and solar neutrino production. The calculational methods include direct integration for np radiative and pp weak capture, correlated hyperspherical harmonics for reactions of A=3,4 nuclei, and variational Monte Carlo for A=6,7 nuclei. Realistic nucleon-nucleon and three-nucleon interactions and consistent current operators are used as input.

  8. Direct reactions for nuclear structure and nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine Louise [Univ. of Tennessee, Knoxville, TN (United States)

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  9. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    Science.gov (United States)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  10. Trojan Horse technique to measure nuclear astrophysics rearrangement reactions

    Science.gov (United States)

    Spitaleri, Claudio

    2013-03-01

    The knowledge of nucleosynthesis and of energy production in stars requires an increasingly precise measurement of nuclear fusion reactions at the Gamow energy. Because of the Coulomb barrier reaction cross sections in astrophysics cannot be accessed directly at ultra -low energies, unless very favorable conditions are met. Moreover, the energies characterizing nuclear processes in several astrophysical contexts are so low that the presence of atomic electrons must be taken into account. Theoretical extrapolations of available data are then needed to derive astrophysical S(E)-factors. To overcome these experimental difficulties the Trojan Horse Method (THM) has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available. While the theory has been discussed in detail in some theoretical works, present in the scientific literature, also in relation to different types of excitation functions (e.g. non-resonant and resonant), work on detailed methodology used to extract the events to be considered for the bare nucleus cross section measurements is still on going. In this work we will present some critical points in the application of THM that deserve to be discussed in more detail.

  11. Test of statistical model cross section calculations for $\\alpha$-induced reactions on $^{107}$Ag at energies of astrophysical interest

    CERN Document Server

    Yalcin, C; Rauscher, T; Kiss, G G; Özkan, N; Güray, R T; Halász, Z; Szücs, T; Fülöp, Zs; Korkulu, Z; Somorjai, E

    2015-01-01

    Astrophysical reaction rates, which are mostly derived from theoretical cross sections, are necessary input to nuclear reaction network simulations for studying the origin of $p$ nuclei. Past experiments have found a considerable difference between theoretical and experimental cross sections in some cases, especially for ($\\alpha$,$\\gamma$) reactions at low energy. Therefore, it is important to experimentally test theoretical cross section predictions at low, astrophysically relevant energies. The aim is to measure reaction cross sections of $^{107}$Ag($\\alpha$,$\\gamma$)$^{111}$In and $^{107}$Ag($\\alpha$,n)$^{110}$In at low energies in order to extend the experimental database for astrophysical reactions involving $\\alpha$ particles towards lower mass numbers. Reaction rate predictions are very sensitive to the optical model parameters and this introduces a large uncertainty into theoretical rates involving $\\alpha$ particles at low energy. We have also used Hauser-Feshbach statistical model calculations to s...

  12. Dielectronic Recombination Rates In Astrophysical Plasmas

    CERN Document Server

    Bachari, F; Maero, G; Quarati, P; Bachari, Fatima; Ferro, Fabrizio; Maero, Giancarlo; Quarati, Piero

    2006-01-01

    In this work we introduce a new expression of the plasma Dielecronic Recombination (DR) rate as a function of the temperature, derived assuming a small deformation of the Maxwell-Boltzmann distribution and containing corrective factors, in addition to the usual exponential behaviour, caused by non-linear effects in slightly non ideal plasmas. We then compare the calculated DR rates with the experimental DR fits in the low temperature region.

  13. Influences of the astrophysical environment on nuclear decay rates

    International Nuclear Information System (INIS)

    In many astronomical environments, physical conditions are so extreme that nuclear decay rates can be significantly altered from their laboratory values. Such effects are relevant to a number of current problems in nuclear astrophysics. Experiments related to these problems are now being pursued, and will be described in this talk. 19 refs., 5 figs

  14. Approximate penetration factors for nuclear reactions of astrophysical interest

    Science.gov (United States)

    Humblet, J.; Fowler, W. A.; Zimmerman, B. A.

    1987-01-01

    The ranges of validity of approximations of P(l), the penetration factor which appears in the parameterization of nuclear-reaction cross sections at low energies and is employed in the extrapolation of laboratory data to even lower energies of astrophysical interest, are investigated analytically. Consideration is given to the WKB approximation, P(l) at the energy of the total barrier, approximations derived from the asymptotic expansion of G(l) for large eta, approximations for small values of the parameter x, applications of P(l) to nuclear reactions, and the dependence of P(l) on channel radius. Numerical results are presented in tables and graphs, and parameter ranges where the danger of serious errors is high are identified.

  15. Studying astrophysical reactions with low-energy RI beams at CRIB

    Directory of Open Access Journals (Sweden)

    Yamaguchi H.

    2016-01-01

    Full Text Available Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the radioactive-isotope (RI beams at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study (CNS, the University of Tokyo. A typical measurement performed at CRIB is the elastic resonant scattering with the inverse kinematics. One recent experiment was on the α resonant scattering with 7Li and 7Be beams. This study is related to the astrophysical 7Li/7Be(α,γ reactions, important at hot p-p chain and νp-process in supernovae. There have also been measurements based on other experimental methods. The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α15O reaction at astrophysical energies via the three body reaction 2H(18F, α15On. The 18F(p, α 15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  16. Experimental study of the astrophysical gamma-process reaction 124Xe(alpha,gamma)128Ba

    CERN Document Server

    Halász, Z; Gyürky, Gy; Elekes, Z; Fülöp, Zs; Szücs, T; Kiss, G G; Szegedi, N; Rauscher, T; Görres, J; Wiescher, M

    2016-01-01

    The synthesis of heavy, proton rich isotopes in the astrophysical gamma-process proceeds through photodisintegration reactions. For the improved understanding of the process, the rates of the involved nuclear reactions must be known. The reaction 128Ba(g,a)124Xe was found to affect the abundance of the p nucleus 124Xe. Since the stellar rate for this reaction cannot be determined by a measurement directly, the aim of the present work was to measure the cross section of the inverse 124Xe(a,g)128Ba reaction and to compare the results with statistical model predictions. Of great importance is the fact that data below the (a,n) threshold was obtained. Studying simultaneously the 124Xe(a,n)127Ba reaction channel at higher energy allowed to further identify the source of a discrepancy between data and prediction. The 124Xe + alpha cross sections were measured with the activation method using a thin window 124Xe gas cell. The studied energy range was between E = 11 and 15 MeV close above the astrophysically relevant...

  17. Alpha induced reaction cross section measurements on 162Er for the astrophysical gamma process

    CERN Document Server

    Kiss, G G; Rauscher, T; Török, Zs; Fülöp, Zs; Gyürky, Gy; Halász, Z; Somorjai, E

    2014-01-01

    The cross sections of the 162Er(a,g,)166Yb and 162Er(a,n)165Yb reactions have been measured for the first time. The radiative alpha capture reaction cross section was measured from Ec.m. = 16.09 down to Ec.m. = 11.21 MeV, close to the astrophysically relevant region (which lies between 7.8 and 11.48 MeV at 3 GK stellar temperature). The 162Er(a,n)165Yb reaction was studied above the reaction threshold between Ec.m. = 12.19 and 16.09 MeV. The fact that the 162Er(a,g)166Yb cross sections were measured below the (a,n) threshold at first time in this mass region opens the opportunity to study directly the a-widths required for the determination of astrophysical reaction rates. The data clearly show that compound nucleus formation in this reaction proceeds differently than previously predicted.

  18. Astrophysics

    International Nuclear Information System (INIS)

    Volume 5 of the proceedings contains 62 papers of which 61 have been incorporated in INIS. They are divided by subject into several groups: early-type stars, late-type stars, binaries and multiple systems, theoretical considerations, ultraviolet stellar spectra, high energy astrophysics and binary stars. Many papers dealt with variable stars, star development and star models. (M.D.). 200 figs., 38 tabs., 1189 refs

  19. The Trojan Horse Method as a tool for investigating astrophysically relevant fusion reactions

    Directory of Open Access Journals (Sweden)

    Lamia L.

    2016-01-01

    Full Text Available The Trojan Horse Method (THM has been largely adopted for investigating astrophysically relevant charged-particle induced reactions at Gamow energies. Indeed, THM allows one to by pass extrapolation procedures, thus overcoming this source of uncertainty. Here, the recent THM results and their impact in astrophysics are going to be discussed.

  20. The Trojan Horse Method as a tool for investigating astrophysically relevant fusion reactions

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Prada Moroni, P. G.

    2016-05-01

    The Trojan Horse Method (THM) has been largely adopted for investigating astrophysically relevant charged-particle induced reactions at Gamow energies. Indeed, THM allows one to by pass extrapolation procedures, thus overcoming this source of uncertainty. Here, the recent THM results and their impact in astrophysics are going to be discussed.

  1. The Trojan Horse Method as a tool for investigating astrophysically relevant fusion reactions

    OpenAIRE

    Lamia L.; Spitaleri C.; Tognelli E.; Degl’Innocenti S.; Pizzone R.G.; Prada Moroni P.G.

    2016-01-01

    The Trojan Horse Method (THM) has been largely adopted for investigating astrophysically relevant charged-particle induced reactions at Gamow energies. Indeed, THM allows one to by pass extrapolation procedures, thus overcoming this source of uncertainty. Here, the recent THM results and their impact in astrophysics are going to be discussed.

  2. Bayesian Estimation of Thermonuclear Reaction Rates

    CERN Document Server

    Iliadis, Christian; Coc, Alain; Timmes, Frank; Starrfield, Sumner

    2016-01-01

    The problem of estimating non-resonant astrophysical S-factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied in the past to this problem, all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extra-solar planets, gravitational waves, and type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We present the first astrophysical S-factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the d(p,$\\gamma$)$^3$He, $^3$He($^3$He,2p)$^4$He, and $^3$He($\\alpha$,$\\gamma$)$^7$Be reactions,...

  3. Nuclear astrophysical plasmas: ion distribution functions and fusion rates

    OpenAIRE

    2005-01-01

    This article illustrates how very small deviations from the Maxwellian exponential tail, while leaving unchanged bulk quantities, can yield dramatic effects on fusion reaction rates and discuss several mechanisms that can cause such deviations.

  4. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Science.gov (United States)

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Tumino, A.

    2014-05-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  5. Direct Reactions with Exotic Nuclei, Nuclear Structure and Astrophysics

    CERN Document Server

    Baur, G

    2006-01-01

    Intermediate energy Coulomb excitation and dissociation is a useful tool for nuclear structure and astrophysics studies. Low-lying strength in nuclei far from stability was discovered by this method. The effective range theory for low-lying strength in one-neutron halo nuclei is summarized and extended to two-neutron halo nuclei. This is of special interest in view of recent rather accurate experimental results on the low-lying electric dipole strength in $^{11}$Li. Another indirect approach to nuclear astrophysics is the Trojan horse method. It is pointed out that it is a suitable tool to investigate subthreshold resonances.

  6. Trojan Horse as an indirect technique in nuclear astrophysics. Resonance reactions

    OpenAIRE

    Mukhamedzhanov, A. M.; Blokhintsev, L.D.; Irgaziev, B. F.; Kadyrov, A. S.; M. La Cognata; Spitaleri, C.(Dip. di Fisica e Astronomia, Univ. di Catania, via S. Sofia, Catania, Italy); Tribble, R. E.

    2007-01-01

    The Trojan Horse method is a powerful indirect technique that provides information to determine astrophysical factors for binary rearrangement processes $x + A \\to b + B$ at astrophysically relevant energies by measuring the cross section for the Trojan Horse reaction $a + A \\to y+ b + B$ in quasi-free kinematics. We present the theory of the Trojan Horse method for resonant binary subreactions based on the half-off-energy-shell R matrix approach which takes into account the off-energy-shell ...

  7. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A.; Gulino, M. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Università degli Studi di Enna Kore, Enna (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.

  8. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.

    2014-05-01

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.

  9. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  10. A High-Precision Determination of the Astrophysical Rate for Production of ^9Be

    Science.gov (United States)

    Arnold, C. W.; Clegg, T. B.; Karwowski, H. J.; Rich, G. C.; Tompkins, J. R.; Howell, C. R.

    2010-11-01

    New cross section measurements of the astrophysically important ^9Be(γ,n) reaction have been made from 1.5 to 5.18 MeV. The measurements were made using the nearly monoenergetic circularly polarized γ-ray beam at Triangle Universities Nuclear Laboratory's High Intensity γ-ray Source. Measurements over narrow resonances employed beams with energy spread dE/E <= 1%. The energy-dependent absolute efficiency of the neutron counter used in this work was measured to ± 3% accuracy. New resonance parameters for the 4 lowest lying states in ^9Be were determined. A new reaction rate for α+ α+ n has been determined to better than ± 5%. The present rate is ˜ 25% larger than two widely accepted rates [1-2] in the temperature range important for r-process nucleosynthesis. The implications of this new rate on r-process and nuclear abundance predictions will be discussed.[4pt] [1] C. Angulo et al. Nuc. Phys. A 656 (1999) 3-183. [0pt] [2] K. Sumiyoshi et al. Nuc. Phys A 709 (2002) 467-486.

  11. Trojan Horse as an indirect technique in nuclear astrophysics. Resonance reactions

    CERN Document Server

    Mukhamedzhanov, A M; Irgaziev, B F; Kadyrov, A S; La Cognata, M; Spitaleri, C; Tribble, R E

    2007-01-01

    The Trojan Horse method is a powerful indirect technique that provides information to determine astrophysical factors for binary rearrangement processes $x + A \\to b + B$ at astrophysically relevant energies by measuring the cross section for the Trojan Horse reaction $a + A \\to y+ b + B$ in quasi-free kinematics. We present the theory of the Trojan Horse method for resonant binary subreactions based on the half-off-energy-shell R matrix approach which takes into account the off-energy-shell effects and initial and final state interactions.

  12. Coulomb dissociation reactions on molybdenum isotopes for astrophysics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ershova, Olga

    2012-03-09

    Within the present work, photodissociation reactions on {sup 100}Mo, {sup 93}Mo and {sup 92}Mo isotopes were studied by means of the Coulomb dissociation method at the LAND setup at GSI. As a result of the analysis of the present experiment, integrated Coulomb excitation cross sections of the {sup 100}Mo({gamma},n), {sup 100}Mo({gamma},2n), {sup 93}Mo({gamma},n) and {sup 92}Mo({gamma},n) reactions were determined. A second important topic of the present thesis is the investigation of the efficiency of the CsI gamma detector. The data taken with the gamma calibration sources shortly after the experiment were used for the investigation. In addition, a test experiment in refined conditions was conducted within the framework of this thesis. Numerous GEANT3 simulations of the detector were performed in order to understand various aspects of its performance. As a result, the efficiency of the detector was determined to be approximately a factor of 2 lower than the efficiency expected from the simulation. (orig.)

  13. Direct study of the alpha-nucleus optical potential at astrophysical energies using the 64Zn(p,alpha)61Cu reaction

    CERN Document Server

    Gyürky, Gy; Halász, Z; Kiss, G G; Szücs, T

    2014-01-01

    In the model calculations of heavy element nucleosynthesis processes the nuclear reaction rates are taken from statistical model calculations which utilize various nuclear input parameters. It is found that in the case of reactions involving alpha particles the calculations bear a high uncertainty owing to the largely unknown low energy alpha-nucleus optical potential. Experiments are typically restricted to higher energies and therefore no direct astrophysical consequences can be drawn. In the present work a (p,alpha) reaction is used for the first time to study the alpha-nucleus optical potential. The measured 64Zn(p,alpha)61Cu cross section is uniquely sensitive to the alpha-nucleus potential and the measurement covers the whole astrophysically relevant energy range. By the comparison to model calculations, direct evidence is provided for the incorrectness of global optical potentials used in astrophysical models.

  14. Measurement of reaction rates of interest in stellar structure and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Terrasi, F.; D`Onofrio, A. [Dipt. di Scienze Ambientali, Seconda Univ. di Napoli, Caserta (Italy)]|[INFN, Napoli (Italy); Campajola, L.; Imbriani, G. [INFN, Napoli (Italy)]|[Dipt. di Scienze Fisiche, Univ. Federico II, Napoli (Italy); Gialanella, L. [INFN, Napoli (Italy)]|[Dipt. di Scienze Fisiche, Univ. Federico II, Napoli (Italy)]|[Inst. fuer Experimentalphysik III, Ruhr-Univ. Bochum, Bochum (Germany); Greife, U.; Rolfs, C.; Strieder, F.; Trautvetter, H.P. [Inst. fuer Experimentalphysik III, Ruhr-Univ. Bochum, Bochum (Germany); Roca, V.; Romano, M. [INFN, Napoli (Italy)]|[Dipt. di Scienze Fisiche, Univ. Federico II, Napoli (Italy); Straniero, O. [Osservatorio Astronomico di Collurania, Teramo (Italy)

    1998-06-01

    Accurate determinations of reaction rates at astrophysical energies are very important in stellar structure and evolution studies. The cases of two key reactions, namely {sup 7}Be(p,{gamma}){sup 8}B and {sup 12}C({alpha},{gamma}){sup 16}O are discussed, both from the point of view of their astrophysical interest and of the experimental difficulties in the measurement of their cross section. (orig.)

  15. Databases and tools for nuclear astrophysics applications. BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    Science.gov (United States)

    Xu, Y.; Goriely, S.; Jorissen, A.; Chen, G. L.; Arnould, M.

    2013-01-01

    An update of a previous description of the BRUSLIB + NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-Hartree-Fock-Bogoliubov model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8 ≤ Z ≤ 110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100 000 Hauser-Feshbach neutron-, proton-, α-, and γ-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer reactions and 19 charged-particle radiative captures on stable targets with mass numbers A < 16. NACRE II features the inclusion of experimental data made available after the publication of NACRE in 1999 and up to 2011. In addition, the extrapolation of the available data to the very low energies of astrophysical relevance is improved through the systematic use of phenomenological potential models. Uncertainties in the rates are also evaluated on this basis. Finally, the latest release v10.0 of the web-based tool NETGEN is presented. In addition to the data already used in the previous NETGEN package, it contains in a fully documented form the new BRUSLIB and NACRE II data, as well as new experiment-based radiative neutron capture cross sections. The full new versions of BRUSLIB, NACRE II, and NETGEN are available electronically from the nuclear database at http://www.astro.ulb.ac.be/NuclearData. The nuclear material is presented in

  16. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  17. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M., E-mail: lacognata@lns.infn.it [Laboratori Nazionali del Sud - INFN, Catania (Italy); Kiss, G. G. [ATOMKI, Debrecen (Hungary); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A& M University, College Station, Texas (United States); Spitaleri, C. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Department of Physics and Astronomy, University of Catania, Catania (Italy); Trippella, O. [Sezione di Perugia - INFN, Perugia (Italy)

    2015-10-15

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization to direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.

  18. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    Science.gov (United States)

    La Cognata, M.; Kiss, G. G.; Mukhamedzhanov, A. M.; Spitaleri, C.; Trippella, O.

    2015-10-01

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization to direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.

  19. Light elements burning reaction rates at stellar temperatures as deduced by the Trojan Horse measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lamia, L. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy); Spitaleri, C. [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania, Italy and INFN-Laboratori Nazionali del Sud, Catania (Italy); La Cognata, M.; Palmerini, S.; Sergi, M. L. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Puglia, S. M. R. [INFN-Laboratori Nazionali del Sud, Catania, Italy and Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania (Italy)

    2015-02-24

    Experimental nuclear astrophysics aims at determining the reaction rates for astrophysically relevant reactions at their Gamow energies. For charged-particle induced reactions, the access to these energies is usually hindered, in direct measurements, by the presence of the Coulomb barrier between the interacting particles or by electron screening effects, which make hard the determination of the bare-nucleus S(E)-factor of interest for astrophysical codes. The use of the Trojan Horse Method (THM) appears as one of the most suitable tools for investigating nuclear processes of interest for astrophysics. Here, in view of the recent TH measurements, the main destruction channels for deuterium ({sup 2}H), for the two lithium {sup 6,7}Li isotopes, for the {sup 9}Be and the one for the two boron {sup 10,11}B isotopes will be discussed.

  20. Light elements burning reaction rates at stellar temperatures as deduced by the Trojan Horse measurements

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; La Cognata, M.; Palmerini, S.; Puglia, S. M. R.; Sergi, M. L.

    2015-02-01

    Experimental nuclear astrophysics aims at determining the reaction rates for astrophysically relevant reactions at their Gamow energies. For charged-particle induced reactions, the access to these energies is usually hindered, in direct measurements, by the presence of the Coulomb barrier between the interacting particles or by electron screening effects, which make hard the determination of the bare-nucleus S(E)-factor of interest for astrophysical codes. The use of the Trojan Horse Method (THM) appears as one of the most suitable tools for investigating nuclear processes of interest for astrophysics. Here, in view of the recent TH measurements, the main destruction channels for deuterium (2H ), for the two lithium 6,7Li isotopes, for the 9Be and the one for the two boron 10,11B isotopes will be discussed.

  1. Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    CERN Document Server

    Xu, Yi; Jorissen, Alain; Chen, Guangling; Arnould, Marcel; 10.1051/0004-6361/201220537

    2012-01-01

    An update of a previous description of the BRUSLIB+NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-HFB model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8<=Z<=110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100000 Hauser-Feshbach n-, p-, a-, and gamma-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer react...

  2. Investigating the astrophysical 22Ne(p, γ23Na and 22Mg(p, γ23Al reactions with a multi-channel scattering formalism

    Directory of Open Access Journals (Sweden)

    Fraser P. R.

    2014-03-01

    Full Text Available The reaction 22Ne(p, γ23Na is key to the NeNa cycle of stellar nucleogenesis, and better understanding of the 22Mg(p, γ23Al reaction is needed to understand the 22Na puzzle in ONe white dwarf novae. We aim to study these reactions using a multi-channel algebraic scattering (MCAS formalism for low-energy nucleon-nucleus scattering, recently expanded to investigate radiative capture. As a first step towards this goal, we here calculate the energy levels of the mass-23 (Ne, Mg, Na, Al nuclei. This is not only because the resonant structure of these nuclei are related to the astrophysical -rates of interest, but also because the interaction parameters determined for describing the energy levels are an integral part of the future calculation of the astrophysical reactions when using the MCAS scheme.

  3. Investigating the astrophysical 22Ne(p,γ)23Na and 22Mg(p,γ)23Al reactions with a multi-channel scattering formalism

    International Nuclear Information System (INIS)

    The reaction 22Ne(p,γ)23Na is key to the NeNa cycle of stellar nucleogenesis, and a better understanding of the 22Mg(p,γ)23Al reaction is needed to understand the 22Na puzzle in ONe white dwarf novae. We aim at studying these reactions using a multi-channel algebraic scattering (MCAS) formalism for low-energy nucleon-nucleus scattering, recently expanded to investigate radiative capture. As a first step towards this goal, we here calculate the energy levels of the mass-23 (Ne, Mg, Na, Al) nuclei. This is not only because the resonant structure of these nuclei are related to the astrophysical γ-rates of interest, but also because the interaction parameters determined for describing the energy levels are an integral part of the future calculation of the astrophysical reactions when using the MCAS scheme. (authors)

  4. A compilation of charged-particle induced thermonuclear reaction rates

    CERN Document Server

    Angulo, C; Rayet, M; Descouvemont, P; Baye, D; Leclercq-Willain, C; Coc, A; Barhoumi, S; Aguer, P; Rolfs, C; Kunz, R; Hammer, J W; Mayer, A; Paradelis, T; Kossionides, S; Chronidou, C; Spyrou, K; Degl'Innocenti, S; Fiorentini, G; Ricci, B; Zavatarelli, S; Providência, C; Wolters, H; Soares, J; Grama, C; Rahighi, J; Shotter, A; Rachti, M L

    1999-01-01

    Low-energy cross section data for 86 charged-particle induced reactions involving light (1 <= Z <= 14), mostly stable, nuclei are compiled. The corresponding Maxwellian-averaged thermonuclear reaction rates of relevance in astrophysical plasmas at temperatures in the range from 10 sup 6 K to 10 sup 1 sup 0 K are calculated. These evaluations assume either that the target nuclei are in their ground state, or that the target states are thermally populated following a Maxwell-Boltzmann distribution, except in some cases involving isomeric states. Adopted values complemented with lower and upper limits of the rates are presented in tabular form. Analytical approximations to the adopted rates, as well as to the inverse/direct rate ratios, are provided.

  5. A compilation of charged-particle induced thermonuclear reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Angulo, C.; Arnould, M.; Rayet, M.; Descouvemont, P.; Baye, D.; Leclercq-Willain, C.; Coc, A.; Barhoumi, S.; Aguer, P.; Rolfs, C.; Kunz, R.; Hammer, J.W.; Mayer, A.; Paradellis, T.; Kossionides, S.; Chronidou, C.; Spyrou, K.; Degl' Innocenti, S.; Fiorentini, G.; Ricci, B.; Zavatarelli, S.; Providencia, C.; Wolters, H.; Soares, J.; Grama, C.; Rahighi, J.; Shotter, A.; Rachti, M. Lamehi

    1999-08-23

    Low-energy cross section data for 86 charged-particle induced reactions involving light (1 {<=} Z {<=} 14), mostly stable, nuclei are compiled. The corresponding Maxwellian-averaged thermonuclear reaction rates of relevance in astrophysical plasmas at temperatures in the range from 10{sup 6} K to 10{sup 10} K are calculated. These evaluations assume either that the target nuclei are in their ground state, or that the target states are thermally populated following a Maxwell-Boltzmann distribution, except in some cases involving isomeric states. Adopted values complemented with lower and upper limits of the rates are presented in tabular form. Analytical approximations to the adopted rates, as well as to the inverse/direct rate ratios, are provided.

  6. Nuclear reaction rates and the primordial nucleosynthesis

    OpenAIRE

    Mishra, Abhishek; Basu, D. N.

    2011-01-01

    The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. We investigate the effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight. We have studied these yields as functions of evolution time or temperature. We find that using these new reaction rates results in only a littl...

  7. Three-body Effects for the p(pe^-, ν_e)d Reaction in Nuclear Astrophysics.

    Science.gov (United States)

    Kim, Yeong E.; Zubarev, Alexander L.

    1996-05-01

    We have investigated three-body effect for p(pe^-, ν_e)d reaction in nuclear astrophysics. Solutions of three-body equation for the initial pep state show that two-proton dynamics does not depend on the electron degrees of freedom and hence the conventional adiabatic approximation is valid for energy sector (E_ep/E_pp) > 10-3 where E_ep and E_pp are the relative kinetic energies between e and p, and between p and p, respectively. For the energy sector (E_ep/E_pp) ≈ 10-3, an exact solution of the three-body equation is required. For the energy sector (E_ep/E_pp) GFC) can occur between two protons. Our estimate of the GFC effect indicates that the previous conventional estimate of the pep solar neutrino flux may be an underestimate at least by a factor of two. Implications of our results for the solar neutrino problem are described. At lower temperatures, the GFC effect becomes more significant, and p(pe^-, ν_e)d may dominate over p(p,e^+ ν_e)d. The enhancement of the reaction rate for p(pe^-, νe )d at lower temperatures due to the GFC effect may offer possible explanations for some of long-standing anomalies in astrophysical and geophysical problems.

  8. Trojan Horse method and radioactive ion beams: study of $^{18}$F(p,$\\alpha$)$^{15}$O reaction at astrophysical energies

    CERN Document Server

    Gulino, M; Rapisarda, G G; Kubono, S; Lamia, L; La Cognata, M; Yamaguchi, H; Hayakawa, S; Wakabayashi, Y; Iwasa, N; Kato, S; Komatsubara, H; Teranishi, T; Coc, A; De Séréville, N; Hammache, F; Spitaleri, C

    2012-01-01

    The Trojan Horse Method was applied for the first time to a Radioactive Ion Beam induced reaction to study the reaction $^{18}$F(p,$\\alpha$)$^{15}$O via the three body reaction $^{18}$F(d,$\\alpha$ $^{15}$O)n at the low energies relevant for astrophysics. The abundance of $^{18}$F in Nova explosions is an important issue for the understanding of this astrophysical phenomenon. For this reason it is necessary to study the nuclear reactions that produce or destroy $^{18}$F in Novae. $^{18}$F(p,$\\alpha$)$^{15}$O is one of the main $^{18}$F destruction channels. Preliminary results are presented in this paper.

  9. Trojan Horse method and radioactive ion beams: study of 18F(p,α)15O reaction at astrophysical energies

    Science.gov (United States)

    Gulino, M.; Cherubini, S.; Rapisarda, G. G.; Kubono, S.; Lamia, L.; La Cognata, M.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, H.; Teranishi, T.; Coc, A.; De Séréville, N.; Hammache, F.; Spitaleri, C.

    2013-03-01

    The Trojan Horse Method was applied for the first time to a Radioactive Ion Beam induced reaction to study the reaction 18F(p,α)15O via the three body reaction 18F(d,α 15O)n at the low energies relevant for astrophysics. The abundance of 18F in Nova explosions is an important issue for the understanding of this astrophysical phenomenon. For this reason it is necessary to study the nuclear reactions that produce or destroy 18F in Novae. 18F(p,α)15O is one of the main 18F destruction channels. Preliminary results are presented in this paper.

  10. The Rate Laws for Reversible Reactions.

    Science.gov (United States)

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  11. Resonance reaction rate of 21Na(p,γ)22Mg

    Institute of Scientific and Technical Information of China (English)

    Liu Hong-Lin; Liu Men-Quan; Liu Jing-Jing; Luo Zhi-Quan

    2007-01-01

    By using the new Coulomb screening model and most recent experimental results, this paper calculates the resonance reaction rates of 21Na(p,γ)22Mg. The derived result shows that the effect of electron screening on resonant reaction is prominent in astrophysical interesting temperature range. In conjunction with the experimental results, the recommended rates of21Na(p,γ)22Mg would increase at least 10%, which undoubtedly affect the nucleosynthesis of some heavier nuclei in a variety of astrophysical sites.

  12. Millimeter and Submillimeter Studies of O(^1D) Insertion Reactions to Form Molecules of Astrophysical Interest

    Science.gov (United States)

    Hays, Brian; Wehres, Nadine; Deprince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob; Widicus Weaver, Susanna L.

    2015-06-01

    While both the number of detected interstellar molecules and their chemical complexity continue to increase, understanding of the processes leading to their formation is lacking. Our research group combines laboratory spectroscopy, observational astronomy, and astrochemical modeling for an interdisciplinary examination of the chemistry of star and planet formation. This talk will focus on our laboratory studies of O(^1D) insertion reactions with organic molecules to produce molecules of astrophysical interest. By employing these reactions in a supersonic expansion, we are able to produce interstellar organic reaction intermediates that are unstable under terrestrial conditions; we then probe the products using millimeter and submillimeter spectroscopy. We benchmarked this setup using the well-studied O(^1D) + methane reaction to form methanol. After optimizing methanol production, we moved on to study the O(^1D) + ethylene reaction to form vinyl alcohol (CH_2CHOH), and the O(^1D) + methyl amine reaction to form aminomethanol (NH_2CH_2OH). Vinyl alcohol measurements have now been extended up to 450 GHz, and the associated spectral analysis is complete. A possible detection of aminomethanol has also been made, and continued spectral studies and analysis are underway. We will present the results from these experiments and discuss future applications of these molecular and spectroscopic techniques.

  13. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    Science.gov (United States)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  14. Jitter Suppression Via Reaction Wheel Passive Isolation for the NASA Advanced X-Ray Astrophysics Facility

    Science.gov (United States)

    Pendergast, Karl J.; Schauwecker, Chris J.

    1998-01-01

    Text: Third in the series of NASA great observatories, the Advanced X-ray Astrophysics Facility (AXAF) is scheduled for launch from the Space Shuttle in September 1998. Following in the path of the Hubble Space Telescope and the Compton Gamma Ray Observatory, this telescope will image light at x-ray wavelengths, facilitating the detailed study of such phenomena as supernovae and quasars. The AXAF program is sponsored by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Due to exacting requirements on the performance of the AXAF optical system, it is necessary to reduce the transmission of reaction wheel jitter disturbances to the observatory. This reduction is accomplished via use of a passive mechanical isolation system which acts as an interface between the reaction wheels and the spacecraft central structure.

  15. First application of the Trojan horse method with a radioactive ion beam: Study of the 18F (p,α ) 15O reaction at astrophysical energies

    Science.gov (United States)

    Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, T.; Teranishi, T.; Coc, A.; de Séréville, N.; Hammache, F.; Kiss, G.; Bishop, S.; Binh, D. N.

    2015-07-01

    Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan horse method is applied for the first time to a radioactive ion beam-induced reaction studying the 18F (p ,α )15O process at low energies relevant to astrophysics via the three-body reaction 2H (18F ,α15O ) n . The knowledge of the 18F (p,α ) 15O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in 19Ne and possibly interference effects among them. The results reported in literature are not satisfactory and new investigations of the 18F (p,α ) 15O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S factor has been extracted considering also interference effects.

  16. Nuclear astrophysics at DRAGON

    Energy Technology Data Exchange (ETDEWEB)

    Hager, U. [Colorado School of Mines, Golden, Colorado (United States)

    2014-05-02

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented.

  17. Reaction Order Ambiguity in Integrated Rate Plots

    Science.gov (United States)

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  18. Effective reaction rates for diffusion-limited reaction cycles

    Science.gov (United States)

    Nałecz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  19. REACLIB: A Reaction Rate Library for the Era of Collaborative Science

    Science.gov (United States)

    Meisel, Zachary

    2008-10-01

    Thermonuclear reaction rates and weak decay rates are of great importance to modern nuclear astrophysics. They are critical in the study of many topics such as Big Bang Nucleosynthesis, X-ray bursts, Supernovae, and S-process element formation, among others. The Joint Institute for Nuclear Astrophysics (JINA) has been created to increase connectivity amongst nuclear astrophysicists in our modern age of highly collaborative science. Within JINA there has been an effort to create a frequently updated and readily accessible database of thermonuclear reactions and weak decay rates. This database is the REACLIB library, which can be accessed at the web address: http://www.nscl.msu.edu/˜nero/db/. Here I will discuss the JINA REACLIB Project, including a new procedure to fit reaction rates as a function of temperature that takes full advantage of physicality. With these updated reaction rates, astrophysical modelers will no longer have to worry about the adverse effects of using obsolete reaction rate libraries lacking physical behavior.

  20. Nuclear astrophysics data at ORNL

    International Nuclear Information System (INIS)

    There is a new program of evaluation and dissemination of nuclear data of critical importance for nuclear astrophysics within the Physics Division of Oak Ridge National Laboratory. Recent activities include determining the rates of the important 14O(α,p)17 F and 17F(p,γ) 18Ne reactions, disseminating the Caughlan and Fowler reaction rate compilation on the World Wide Web, and evaluating the 17O(p,α)14N reaction rate. These projects, which are closely coupled to current ORNL nuclear astrophysics research, are briefly discussed along with future plans

  1. 12C+12C reactions at astrophysical energies: Tests of targets behaviour under beam bombardment

    International Nuclear Information System (INIS)

    12C(12C,α)20Ne and 12C(12C,p)23Na are the most important reactions during the carbon burning phase in stars. Direct measurements at the relevant astrophysical energy (E=1.5±0.3MeV) are very challenging because of the extremely small cross sections involved and of the high beam-induced background originating from impurities in the targets. In addition, persistent resonant structures at low energies are not well understood and make the extrapolation of the cross section from high energy data very uncertain. As a preliminary step towards the measurements of the 12C(12C,α)20Ne and 12C(12C,p)23Na reactions we intend to investigate the behaviour of targets under beam bombardment, specifically the quantitative measurement of hydrogen and deuterium content of highly pure stable carbon targets in relation to target temperature. Experiments are taking place at the CIRCE accelerator in Caserta, Italy and preliminary results are presented here

  2. Some limitations of detailed balance for inverse reaction calculations in the astrophysical p-process

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, D.G.; Gardner, M.A.

    1990-12-05

    p-Process modeling of some rare but stable proton-rich nuclei requires knowledge of a variety of neutron, charged particle, and photonuclear reaction rates at temperatures of 2 to 3 {times} 10{sup 9} {degrees}K. Detailed balance is usually invoked to obtain the stellar photonuclear rates, in spite of a number of well-known constraints. In this work we attempt to calculate directly the stellar rates for ({gamma},n) and ({gamma},{alpha}) reactions on {sup 151}Eu. These are compared with stellar rates obtained from detailed balance, using the same input parameters for the stellar (n,{gamma}) and ({alpha},{gamma}) reactions on {sup 150}Eu and {sup 147}Pm, respectively. The two methods yielded somewhat different results, which will be discussed along with some sensitivity studies. 16 refs., 7 figs.

  3. Measurement of cross section and astrophysical factor of the d(d,p)t reaction using the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Rinollo, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy)]|[Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Romano, S. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy)]|[Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Spitaleri, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy)]|[Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Bonomo, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy)]|[Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Cherubini, S. [Ruhr-Universitaet Bochum (Germany); Del Zoppo, A.; Figuera, P. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); La Cognata, M. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy)]|[Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Lamia, L.; Musumarra, A.; Pellegriti, M.G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy)]|[Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Pizzone, R.G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Rolfs, C.; Schuermann, D.; Strieder, F. [Ruhr-Universitaet Bochum (Germany); Tudisco, S.; Tumino, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy)]|[Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy)

    2005-07-25

    Knowledge about reactions involving deuterium is required for a correct understanding of stellar and primordial nucleosynthesis processes, and also in planning fusion reactors for energy production. We have studied the d(d,p)t reaction in the energy range from 1.5 MeV down to astrophysical energies by means of the Trojan Horse Method applied to the three-body {sup 6}Li(d,pt){alpha} reaction, at a beam energy of 14 MeV. Protons and tritons have been detected in coincidence and identified. Quasi-free events have been kinematically selected, in order to extract the cross section and the astrophysical factor, and compare them with the values measured for the direct d(d,p)t process.

  4. First application of the Trojan Horse Method with a Radioactive Ion Beam: study of the $^{18}$F($p,{\\alpha}$)$^{15}$O}} reaction at astrophysical energies

    CERN Document Server

    Cherubini, S; Spitaleri, C; Rapisarda, G G; La Cognata, M; Lamia, L; Pizzone, R G; Romano, S; Kubono, S; Yamaguchi, H; Hayakawa, S; Wakabayashi, Y; Iwasa, N; Kato, S; Komatsubara, T; Teranishi, T; Coc, A; de Séréville, N; Hammache, F; Kiss, G; Bishop, S; Binh, D N

    2015-01-01

    Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan Horse Method is applied for the first time to a radioactive ion beam induced reaction studying the $^{18}$F($p,{\\alpha}$)$^{15}$O process at low energies relevant to astrophysics via the three body reaction $^{2}$H($^{18}$F,${\\alpha}^{15}$O)n. The knowledge of the $^{18}$F($p, {\\alpha}$)$^{15}$O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in $^{19}$Ne and possibly interference effects among them. The results reported in Literature are not satisfactory and new investigations of the $^{18}$F($p,{\\alpha}$)$^{15}$O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astro...

  5. Reaction rate of the proton radiative capture on 3H

    CERN Document Server

    Dubovichenko, S B; Afanasyeva, N V

    2016-01-01

    Calculations of the reaction rate of the proton radiative capture on 3H at temperatures from 0.01 T9 up to 5 T9, which are based on the theoretical results for the astrophysical S factor and take into account the latest experimental data, were carried out. Theoretical results for the S factor at energies from 1 keV up to 5 MeV were obtained in the framework of the modified potential cluster model with the classification of orbital states according to Young tableaux. On the basis of used nuclear model of the interaction of p and 3H particles there was shown possibility of description the latest experimental data for the S factor at the energy range from 50 keV up to 5 MeV.

  6. Recent results in nuclear astrophysics

    CERN Document Server

    Coc, Alain; Kiener, Juergen

    2016-01-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified e.g. 12C(alpha,gamma)16O for stellar evolution, or 13C(alpha,n)16O and 22Ne(alpha,n)25Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics,...

  7. Predicting the capture rate in the Sun from a direct detection signal independently of the astrophysics

    Science.gov (United States)

    Herrero-Garcia, Juan

    2016-05-01

    The goal of the works on which this talk is based is to relate a direct detection signal with neutrino limits from the Sun independently of the astrophysics. In order to achieve this we derive a halo-independent lower bound on the dark matter capture rate in the Sun from a direct detection signal, with which one can set upper limits on the branching ratios into different channels from the absence of a high-energy neutrino flux in neutrino observatories. We also extend this bound to the case of inelastic scattering, both endothermic and exothermic. From two inelastic signals we show how the dark matter mass, the mass difference of the states and the couplings to neutrons and protons can be obtained. Furthermore, one can also pin down the exothermic/endothermic nature of the scattering, and therefore a precise lower bound on the solar capture rate is predicted. We also discuss isospin violation and uncertainties due to form factors.

  8. Study of the {sup 7}Li (p,{alpha}){sup 4}He Reaction at Astrophysical Energies Through the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Pellegriti, M.G.; Aliotta, M.; Cherubini, S.; Lattuada, M.; Miljanic, D.; Pizzone, R.G.; Romano, S.; Soic, N.; Spitaleri, C.; Zadro, M.; Zappala, R.A.

    2000-12-31

    The Trojan Horse Method has been applied to obtain information about {sup 7}Li(p,{alpha}),{sup 4}He reaction at astrophysical energies. The {sup 7}Li(d,{alpha} n){sup 4}He reaction has been used and the two body reaction cross section for the {sup 7}Li(p,{alpha}){sup 4}He has been extracted together with its astrophysical factor S(E).

  9. Reaction rates for mesoscopic reaction-diffusion kinetics.

    Science.gov (United States)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  10. Reaction rates for mesoscopic reaction-diffusion kinetics

    Science.gov (United States)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  11. Reaction rates for a generalized reaction-diffusion master equation.

    Science.gov (United States)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  12. Reaction rates for a generalized reaction-diffusion master equation

    Science.gov (United States)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  13. A Modified activation method for reaction total cross section and yield measurements at low astrophysically relevant energies

    Science.gov (United States)

    Artemov, S. V.; Igamov, S. B.; Karakhodjaev, A. A.; Radyuk, G. A.; Tojiboyev, O. R.; Salikhbaev, U. S.; Ergashev, F. Kh.; Nam, I. V.; Aliev, M. K.; Kholbaev, I.; Rumi, R. F.; Khalikov, R. I.; Eshkobilov, Sh. Kh.; Muminov, T. M.

    2016-07-01

    The activation method is proposed for collection of the sufficient statistics during the investigation of the nuclear astrophysical reactions at low energies with the short-living residual nuclei formation. The main feature is a multiple cyclical irradiation of a target by an ion beam and measurement of the radioactivity decay curve. The method was tested by the yield measurement of the 12C(p,γ)13N reaction with detecting the annihilation γγ- coincidences from 13N(β+ν)13C decay at the two-arm scintillation spectrometer.

  14. Trojan Horse Method and RIBs: The {sup 18}F(p,{alpha}){sup 15}O reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, S.; Gulino, M.; Rapisarda, G. G.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, H.; Teranishi, T.; Coc, A.; De Sereville, N.; Hammache, F. [Dipartimento di Fisica ed Astronomia, Universita di Catania and INFN-LNS, Catania (Italy); INFN-LNS, Catania (Italy) and UniKORE, Enna (Italy)

    2012-11-12

    The abundance of {sup 18}F in Nova explosions is an important issue for the understanding of this astrophysical phenomenon. For this reason it is necessary to study the nuclear reactions that produce or destroy this isotope in novae. Among these latter processes, the {sup 18}F(p,{alpha}){sup 15}O is one of the main {sup 18}F destruction channels. We report here on the preliminary results of the first experiment that applies the Trojan Horse Method to a Radioactive Ion Beam induced reaction. The experiment was performed using the CRIB apparatus of the Center for Nuclear Study of The Tokyo University.

  15. The fluorine destruction in stars: First experimental study of the {sup 19}F(p,{alpha}){sup 16}O reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M.; Mukhamedzhanov, A.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, V.; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Z.; Kiss, G. G.; Kroha, V.; Lamia, L.; Mrazek, J.; Palmerini, S.; Piskor, S.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S. [INFN-LNS, Catania (Italy); Cyclotron Institute, Texas A and M University, College Station, Texas (United States); University of Catania and INFN-LNS, Catania (Italy); and others

    2012-11-12

    The {sup 19}F(p,{alpha}){sup 16}O reaction is an important fluorine destruction channel in the proton-rich outer layers of asymptotic giant branch (AGB) stars and it might also play a role in hydrogendeficient post-AGB star nucleosynthesis. So far, available direct measurements do not reach the energy region of astrophysical interest (E{sub cm}{approx} 300 keV), because of the hindrance effect of the Coulomb barrier. The Trojan Horse (TH) method was thus used to access this energy region, by extracting the quasi-free contribution to the {sup 2}H({sup 19}F,{alpha}{sup 16}O)n reaction. The TH measurement of the {alpha}{sub 0} channel, which is the dominant one at such energies, shows the presence of resonant structures not observed before that cause an increase of the reaction rate at astrophysical temperatures up to a factor of 1.7, with potential important consequences for stellar nucleosynthesis.

  16. Theoretical reaction rates of the $^{12}$C($\\alpha$,$\\gamma$)$^{16}$O reaction from the potential model

    CERN Document Server

    Katsuma, M

    2015-01-01

    The radiative capture cross sections of $^{12}$C($\\alpha$,$\\gamma$)$^{16}$O and derived reaction rates are calculated from the direct capture potential model. The resulting $S$-factor at low energies is found to be dominated by $E$2 transition to the $^{16}$O ground state. The $E$1 and $E$2 $S$-factors at $E_{c.m.}=0.3$ MeV are $S_{E1}\\approx3$ keV~b and $S_{E2}=150^{+41}_{-17}$ keV~b, respectively. The sum of the cascade transition through the excited state of $^{16}$O is $S_{\\rm casc}= 18\\pm4.5$ keV~b. The derived reaction rates at low temperatures seem to be concordant with those from the previous evaluation. For astrophysical applications, our reaction rates below $T_9=3$ are provided in an analytic expression.

  17. The Astrophysical S-factor for the 2H(, )6Li Nuclear Reaction at Low-Energies

    Indian Academy of Sciences (India)

    H. Sadeghi; A. Moghadasi; M. Ghamary

    2014-12-01

    The alpha radiative capture reactions are the key to understand about primordial nucleosynthesis and the observed abundance of light nucleus in stars. The astrophysical S-factor for the process 2H(, )6Li has been calculated at the low-energies relevant to big-bang nucleosynthesis and in comparison with laboratory data. On the basis of the model, the alpha radiative capture process is studied by using the two-and three-body electromagnetic currents. The bound and resonance states of 6Li are calculated via an inverse process, deuteron- photodisintegration of a 6Li nucleus. In comparison with other theoretical approaches and available laboratory data, excellent agreement is achieved for the astrophysical S-factor of this process.

  18. Few-Body Problems in Experimental Nuclear Astrophysics

    DEFF Research Database (Denmark)

    Fynbo, H.O.U.

    2013-01-01

    The 3α-reaction is one of the key reactions in nuclear astrophysics. Since it is a three-body reaction direct measurement is impossible, and therefore the reaction rate must be estimated theoretically. In this contribution I will discuss uncertainties in this reaction rate both at very low...

  19. Two-temperature reaction and relaxation rates

    Science.gov (United States)

    Kolesnichenko, E.; Gorbachev, Yu.

    2016-09-01

    Within the method of solving the kinetic equations for gas mixtures with internal degrees of freedom developed by the authors and based on the approximate summational invariants (ASI) concept, gas-dynamic equations for a multi-temperature model for the spatially inhomogeneous case are derived. For the two-temperature case, the expressions for the non-equilibrium reaction and relaxation rates are obtained. Special attention is drawn to corresponding thermodynamic equations. Different possibilities of introducing the gas-dynamic variables related to the internal degrees of freedom are considered. One is based on the choice of quantum numbers as the ASI, while the other is based on the choice of internal (vibrational) energy as the ASI. Limits to a one-temperature situation are considered in all the cases. For the cutoff harmonic oscillator model, explicit expressions for the reaction and relaxation rates are derived.

  20. An approximate classical unimolecular reaction rate theory

    Science.gov (United States)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  1. Non-explosive hydrogen and helium burnings: abundance predictions from the NACRE reaction rate compilation

    Science.gov (United States)

    Arnould, M.; Goriely, S.; Jorissen, A.

    1999-07-01

    The abundances of the isotopes of the elements from C to Al produced by the non-explosive CNO, NeNa and MgAl modes of hydrogen burning, as well as by helium burning, are calculated with the thermonuclear rates recommended by the European compilation of reaction rates for astrophysics (NACRE). The impact of nuclear physics uncertainties on the derived abundances is discussed in the framework of a simple parametric astrophysical model. These calculations have the virtue of being a guide in the selection of the nuclear uncertainties that have to be duly analyzed in detailed model stars, particularly in order to perform meaningful confrontations between abundance observations and predictions. They are also hoped to help nuclear astrophysicists pinpointing the rate uncertainties that have to be reduced most urgently. An electronic version of this paper, with colour figures, is available at {\\it http://astro.ulb.ac.be}

  2. New measurement of the d(d,p)t reaction at astrophysical energies via the Trojan-horse method

    OpenAIRE

    Li, Chengbo; Wen, Qungang; Fu, Yuanyong; Zhou, Jing; Zhou, Shuhua; Meng, Qiuying; Spitaleri, C.(Dip. di Fisica e Astronomia, Univ. di Catania, via S. Sofia, Catania, Italy); A. Tumino; Pizzone, R. G.; Lamia, L

    2015-01-01

    The study of d(d,p)t reaction is very important for the nucleosynthesis in both standard Big Bang and stellar evolution, as well as for the future fusion reactors planning of energy production. The d(d,p)t bare nucleus astrophysical S(E) factor has been measured indirectly at energies from about 400 keV down to several keV by means of the Trojan horse method applied to the quasi-free process $\\rm {}^2H({}^6Li,pt){}^4He$ induced at a lithium beam energy of 9.5 MeV, which is closer to the zero ...

  3. New determination of 12C(α,γ)16O reaction rate

    Science.gov (United States)

    Oulebsir, N.

    2015-12-01

    The reaction 12C(α,γ)16O was investigated through the direct α-transfer reaction (7Li,t) at 28 and 34 MeV incident energies. We determined the reduced α-widths of the sub-threshold 2+ and 1- states of 16O from the DWBA analysis of the transfer reaction 12C(7Li,t)16O performed at two incident energies. The obtained result for the 2+ and 1- sub-threshold resonances as introduced in the R-matrix fitting of radiative capture and elastic-scattering data to determine the E2 and E1 S-factor from 0.01MeV to 4.2MeV in the center-of-mass energy. After determining the astrophysic factor of 12C(α,γ)16O S(E) with Pierre Descouvement code, I determined numerically the new reaction rate of this reaction at a different stellar temperature (0.06 Gk-2 GK). The 12C(α,γ)16O reaction rate at T9 = 0.2 is [7.21-2.25+2.15] × 10-15 cm3 s-1 mol-1. Some comparisons and discussions about our new 12C(α,γ)16O reaction rate are presented. The agreements of the reaction rate below T9 = 2 between our results and with those proposed by NACRE indicate that our results are reliable, and they could be included in the astrophysical reaction rate network.

  4. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    International Nuclear Information System (INIS)

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility nTOF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed

  5. Fusion Reaction Rate in an Inhomogeneous Plasma

    Energy Technology Data Exchange (ETDEWEB)

    S. Son; N.J. Fisch

    2004-09-03

    The local fusion rate, obtained from the assumption that the distribution is a local Maxwellian, is inaccurate if mean-free-paths of fusing particles are not sufficiently small compared with the inhomogeneity length of the plasma. We calculate the first order correction of P0 in terms of the small spatial gradient and obtain a non-local modification of P(sub)0 in a shock region when the gradient is not small. Use is made of the fact that the fusion reaction cross section has a relatively sharp peak as a function of energy.

  6. LUNA: Nuclear astrophysics underground

    International Nuclear Information System (INIS)

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions

  7. LUNA: Nuclear astrophysics underground

    Energy Technology Data Exchange (ETDEWEB)

    Best, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-02-24

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions.

  8. Non-explosive hydrogen and helium burnings Abundance predictions from the NACRE reaction rate compilation

    CERN Document Server

    Arnould, M; Jorissen, A

    1999-01-01

    The abundances of the isotopes of the elements from C to Al produced by the non-explosive CNO, NeNa and MgAl modes of hydrogen burning, as well as by helium burning, are calculated with the thermonuclear rates recommended by the European compilation of reaction rates for astrophysics (NACRE: details about NACRE may be found at http://astro.ulb.ac.be. This electronic address provides many data of nuclear astrophysics interest and also offers the possibility of generating interactively tables of reaction rates for networks and temperature grids selected by the user). The impact of nuclear physics uncertainties on the derived abundances is discussed in the framework of a simple parametric astrophysical model. These calculations have the virtue of being a guide in the selection of the nuclear uncertainties that have to be duly analyzed in detailed model stars, particularly in order to perform meaningful confrontations between abundance observations and predictions. They are also hoped to help nuclear astrophysici...

  9. Indirect methods in nuclear astrophysics

    CERN Document Server

    Bertulani, C A; Mukhamedzhanov, A; Kadyrov, A S; Kruppa, A; Pang, D Y

    2015-01-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  10. Indirect methods in nuclear astrophysics

    Science.gov (United States)

    Bertulani, C. A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-04-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  11. Experimental Study of the {sup 6}Li(d,{alpha}){sup 4}He Reaction and its Astrophysical Implications via the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Pizzone, R.G.; Aliotta, M.; Blagus, S.; Cherubini, S.; Figuera, P.; Lattuada, M; Milin, M.; Miljanic, D.; Pellegriti, M.G.; Rendic, D.; Romano, S.; Soic, N.; Spitaleri, C.; Zadro, M.; Zappala, R.A.

    2000-12-31

    The {sup 6}Li(d, {alpha}){sup 4}He reaction, whose astrophysical importance is connected to the primordial nucleosynthesis in the framework of the Inhomogeneous Big Bang, has been studied by using the Trojan Horse Method (THM). We derive and discuss the cross section and the astrophysical S(E)-factor for E{sub cm}=0.025-0.7 MeV. Results are compared with data from a direct measurement.

  12. Test of Determination of (p,γ) Astrophysical S-Factors Using the Asymptotic Normalization Coefficients from Neutron Transfer Reactions

    Institute of Scientific and Technical Information of China (English)

    GUO Bing; LI Zhi-Hong; LIU Wei-Ping; BAI Xi-Xiang

    2007-01-01

    The asymptotic normalization coefficients (ANCs) for the virtual decay 17O→16O+n are derived from the angular distributions of the 16O(d, p)17O reaction leading to the ground and first excited states of 17O, respectively, using the distorted wave Born approximation and the adiabatic wave approximation. The ANCs of 17F are then extracted according to charge symmetry of mirror nuclei and used to calculate the astrophysical S-factors of 16O(p,γ)17F leading to the first two states of 17F. The present results are in good agreement with those from the direct measurement. This provides a test of this indirect method to determine direct astrophysical S-factors of(p, γ) reaction. In addition, the S-factors at zero energy for the direct captures to the ground and first excited states of 17F are presented, without the uncertainty associated with the extrapolation from higher energies in direct measurement.

  13. High-energy direct reactions with exotic nuclei and low-energy nuclear astrophysics

    CERN Document Server

    Baur, G

    2006-01-01

    Indirect methods in nuclear astrophysics are discussed. Recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei is presented. Coulomb dissociation of a halo nucleus bound by a zero-range potential is proposed as a homework problem (for further references see G. Baur and S. Typel, nucl-th/0504068). It is pointed out that the Trojan-Horse method (G. Baur, F. R\\"{o}sel, D. Trautmann and R. Shyam, Phys. Rep. 111 (1984) 333) is a suitable tool to investigate subthreshold resonances.

  14. The Influence of Reaction Rates on the Final p-Abundances

    CERN Document Server

    Rapp, W; Schatz, H; Käppeler, F K

    2004-01-01

    The astrophysical p-process is responsible for the origin of the proton rich nuclei,which are heavier than iron. A huge network involving thousands of reaction rates is necessary to calculate the final p-abundances. But not all rates included in the network have a strong influence on the p-nuclei abundances. The p-process was investigated using a full nuclear reaction network for a type II supernovae explosion when the shock front passes through the O/Ne layer. Calculations were done with a multi-layer model adopting the seed of a pre-explosion evolution of a 25 mass star. In extensive simulations we investigated the impact of single reaction rates on the final p-abundances. The results are important for the strategy of future experiments in this field.

  15. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    International Nuclear Information System (INIS)

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  16. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains.

  17. Investigations of astrophysically interesting nuclear reactions by the use of gas target techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.W. [Inst. fuer Strahlenphysik, Univ. Stuttgart, Stuttgart (Germany)

    1998-06-01

    A brief review of the common properties of windowless and recirculating gas targets is presented. As example the Stuttgart gas target facility Rhinoceros in the extended and in the supersonic jet mode with its properties and techniques is explained, also with respect to gas purification techniques. Furthermore several typical experiments from the field of nuclear astrophysics with characteristic results are described (D({alpha},{gamma}){sup 6}Li, {sup 15}N({alpha},{gamma}){sup 19}F, {sup 16}O(p,{gamma}){sup 17}F, {sup 16}O({alpha},{gamma}){sup 20}Ne, {sup 20}Ne({alpha},{gamma}){sup 24}Mg, {sup 21}Ne({alpha},n){sup 24}Mg, {sup 18}O({alpha},n){sup 21}Ne, {sup 17}O({alpha},n){sup 20}Ne). In several cases the experimental sensitivity could be raised by up to a factor of 10{sup 6}. (orig.)

  18. Investigations of astrophysically interesting nuclear reactions by the use of gas target techniques

    International Nuclear Information System (INIS)

    A brief review of the common properties of windowless and recirculating gas targets is presented. As example the Stuttgart gas target facility Rhinoceros in the extended and in the supersonic jet mode with its properties and techniques is explained, also with respect to gas purification techniques. Furthermore several typical experiments from the field of nuclear astrophysics with characteristic results are described (D(α,γ)6Li, 15N(α,γ)19F, 16O(p,γ)17F, 16O(α,γ)20Ne, 20Ne(α,γ)24Mg, 21Ne(α,n)24Mg, 18O(α,n)21Ne, 17O(α,n)20Ne). In several cases the experimental sensitivity could be raised by up to a factor of 106. (orig.)

  19. OH+ in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He

    CERN Document Server

    Gomez-Carrasco, S; Lique, F; Bulut, N; Klos, J; Roncero, O; Aguado, A; Aoiz, F J; Castillo, J F; Goicoechea, J R; Etxaluze, M; Cernicharo, J

    2014-01-01

    The rate constants required to model the OH$^+$ observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H$_2(v=0,J=0,1)$+ O$^+$($^4S$) $\\rightarrow$ H + OH$^+(X ^3\\Sigma^-, v', N)$ reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to asses the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sections in the $0.01-$1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH$^+$ have been obtained for all astronomically significant ro-vibrational bands involving the $X^3\\Sigma^-$ and/or $A^3\\Pi$ electronic states. For this purpose the potential energy curves and electric dipole transition moments for seven e...

  20. Multi-detector setup for nuclear astrophysical reaction studies on the low energy ion beam

    International Nuclear Information System (INIS)

    The multi-detector setup assembled on the basis of the ion beam from 'SOKOL' electrostatic accelerator is described. The setup allows one to measure three various spectra in a single experiment: prompt gamma-quanta from nuclear reactions, positrons from the decays of radioactive nuclei formed in the reactions and coincidence spectrum of annihilation gamma-quanta. (authors)

  1. Modeling of DNA zipper reaction rates

    Science.gov (United States)

    Landon, Preston; Sanchez, Casey; Mo, Alexander; Lal, Ratnesh

    2012-02-01

    DNA zippers are a thermodynamically driven system consisting of three DNA oligonucleotides. Two of the strands are designed to create a small helix the third is designed to invade and separated the helix. A zipper system consisting of a normal strand (N), a weak strand (W), and an opening strand (O). N is made up of normal DNA bases, while W is engineered with inosine bases substituted for guanine. Inosine forms one less hydrogen bond with cytosine than guanine. By varying the number and order of inosine, W is engineered to provide less than natural bonding affinities to N in forming the [N:W] helix. When O is introduced (a natural complement of N), it competitively displaces W from [N:W] and forms [N:O]. DNA zippers have been used to create new DNA devices such as springs and tweezers and to create functionalized DNA origami structures. Currently, The basic principles and interactions of DNA zippers are not well understood. Here we will report the results on an investigation of several different DNA zipper constructs designed to aid in the creation of a mathematical prediction of the reaction rate for DNA zippers.

  2. Thermonuclear reaction rates from statistical model calculations

    International Nuclear Information System (INIS)

    The quality of statistical model predictions for thermonuclear reaction rates is based on the accuracy of theoretical determinations of particle and photon transmission coefficients as well as of level densities of excited states in nuclei. The square well potentials for neutrons, protons and alpha particles, used in previous approaches, have been replaced in this work by realistic optical potentials which reproduce nicely experimental data, e.g. the neutron strength functions. E1 γ-transitions are calculated in the framework of the Giant Dipole Resonance model. The width ΓGDR(A.Z) is based on a macroscopic-microscopic model which results in a good agreement with the observed shell structure. The nuclear level densities are still computed with the aid of the back-shifted Fermi-gas model. The relation between the level density parameters a and δ and the shell correction term of nuclear mass formulae is obtained by using the most recent experimental level densities at the neutron separation energy. Cross sections predictions obtained within this framework are expected to lie safety within a factor of 2 of experimental values

  3. Global transmission coefficients in Hauser-Feshbach calculations for astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, T. [Inst. fuer Physik, Univ. Basel, Basel (Switzerland)

    1998-06-01

    The current status of optical potentials employed in the prediction of thermonuclear reaction rates for astrophysics in the Hauser-Feshbach formalism is discussed. Special emphasis is put on {alpha}+nucleus potentials. Further experimental efforts are motivated. (orig.)

  4. Determination by transfer reaction of alpha widths in fluorine for astrophysical interest; Determination par reaction de transfert de largeurs alpha dans le fluor 19. Applications a l'astrophysique

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Santos, F. de

    1995-04-15

    The nucleosynthesis of fluorine is not known. Several astrophysical models predict the alpha radiative capture onto N{sup 15} as the main fluorine production reaction. In the expression of the reaction rate, one parameter is missing: the alpha width of the resonance on the E = 4.377 MeV level in fluorine. A direct measurement is excluded due to the very low cross-section expected. We have determined this alpha width using a transfer reaction followed by analyses with FR-DWBA (Finite Range Distorted Wave Born Approximation) in a simple cluster alpha model. This experiment was carried out with a Li{sup 7} beam with E = 28 MeV onto a N{sup 15} gas target. The 16 first levels were studied. Spectroscopic factors were extracted for most of them. Alpha widths for unbound levels were determined. Many alpha width were compared with known values from direct reaction and the differences lie within the uncertainty range (factor 2). The alpha width for the E = 4.377 MeV level was determined ({gamma}{sub {alpha}} = 1.5*10{sup -15} MeV), its value is about 60 times weaker than the used value. The influence of our new rate was studied in AGB (Asymptotic Giant Branch) stars during thermal pulses. In this model the alteration is sensitive. (author)

  5. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    OpenAIRE

    Reifarth René; Litvinov Yuri A.; Endres Anne; Göbel Kathrin; Heftrich Tanja; Glorius Jan; Koloczek Alexander; Sonnabend Kerstin; Travaglio Claudia; Weigand Mario

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will ...

  6. Study of the 3He(α,γ)7Be and 3H(α,γ)7Li reactions at astrophysical energies

    Science.gov (United States)

    Sadeghi, H.; Ghasemi, R.

    2014-06-01

    We have studied the important astrophysical 3He(α,γ)7Be and 3H(α,γ)7Li reactions in the framework of a potential model. 3He(α,γ)7Be and 3H(α,γ)7Li processes are key reactions in both bigbang nucleosynthesis and the p-p chain of hydrogen-burning in stars. The stellar 3He(α,γ)7Be and 3H(α,γ)7Li reactions were analyzed at low energies on the basis of a direct radiative capture mechanism. The astrophysical S-factors near zero energy were calculated without using the effective expansion of the S-factor or the asymptotic wave functions. In this paper, 3He(α,γ)7Be and 3H(α,γ)7Li radiative capture reactions at very low energies are taken as a case study. Using the M3Y potential, we have calculated the astrophysical S-factors for the E1 transition. In comparison with other theoretical methods and available experimental data, excellent agreement is achieved for the astrophysical S-factors of these processes.

  7. The Trojan-Horse Method applied to the {sup 6}Li(p,{alpha}){sup 3}He reaction down to astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A.; Spitaleri, C.; Pappalardo, L.; Cherubini, S.; Del Zoppo, A.; La Cognata, M.; Musumarra, A.; Pellegriti, M.G.; Pizzone, R.G.; Rinollo, A.; Romano, S.; Typel, S

    2004-04-05

    The Trojan-Horse Method has been applied to the three-body d({sup 6}Li,{alpha}{sup 3}He)n break-up reaction in order to extract the bare nucleus S(E) factor for the {sup 6}Li(p,{alpha}){sup 3}He down to astrophysical energies.

  8. Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Science.gov (United States)

    Cyburt, R. H.; Amthor, A. M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K.

    2016-10-01

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ), (α, γ), and (α, p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  9. OH{sup +} in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Carrasco, Susana [Facultad de Química, Unidad Asociada CSIC-USAL, Universidad de Salamanca, E-37008 Salamanca (Spain); Godard, Benjamin [LERMA, CNRS UMR 8112, Observatoire de Paris, F-92195 Meudon (France); Lique, François [LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, F-76058 Le Havre (France); Bulut, Niyazi [Department of Physics, Firat University, 23169 Elazig (Turkey); Kłos, Jacek [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021 (United States); Roncero, Octavio [Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, E-28006 Madrid (Spain); Aguado, Alfredo [Facultad de Ciencias, Unidad Asociada de Química-Física Aplicada CSIC-UAM, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Aoiz, F. Javier; Castillo, Jesús F. [Departamento de Química Física I, Unidad Asociada de Química-Física CSIC-UCM, Facultad de Química, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Goicoechea, Javier R.; Etxaluze, Mireya; Cernicharo, José, E-mail: octavio.roncero@csic.es [Instituto de Ciencia de Materiales (ICMM-CSIC), C.S.I.C., Sor Juana Inés de la Cruz, 3, Cantoblanco, E-28049 Madrid (Spain)

    2014-10-10

    The rate constants required to model the OH{sup +} observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H{sub 2}(v = 0, J = 0, 1) + O{sup +}({sup 4} S) → H + OH{sup +}(X {sup 3}Σ{sup –}, v', N) reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to assess the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sections in the 0.01-1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH{sup +} have been obtained for all astronomically significant rovibrational bands involving the X {sup 3}Σ{sup –} and/or A {sup 3}Π electronic states. For this purpose, the potential energy curves and electric dipole transition moments for seven electronic states of OH{sup +} are calculated with ab initio methods at the highest level, including spin-orbit terms, and the rovibrational levels have been calculated including the empirical spin-rotation and spin-spin terms. Third, the state-to-state rate constants for inelastic collisions between He and OH{sup +}(X {sup 3}Σ{sup –}) have been calculated using a time-independent close coupling method on a new potential energy surface. All these rates have been implemented in detailed chemical and radiative transfer models. Applications of these models to various astronomical sources show that inelastic collisions dominate the excitation of the rotational levels of OH{sup +}. In the models considered, the excitation resulting from the chemical formation of OH{sup +} increases the line fluxes by about 10% or less depending on the density of the gas.

  10. On the Rate of Change of Period for Accelerated Motion and Their Implications in Astrophysics Effect

    Directory of Open Access Journals (Sweden)

    Rajamohan R.

    2007-04-01

    Full Text Available We have derived in this paper, the relationship that needs to be satisfied when length measurements are expressed in two different units. Interesting relationships emerge when the smaller of the two units chosen is a function of time. We relate these results to the expected periodicities in the observed data when a system of objects are revolving around a common center of mass. We find that these results are highly intriguing and can equally well account for some of the major results in the field of astrophysics.

  11. Measurement of Astrophysical S Factor for Low Energy ~2H(d,γ)~4He Reaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In the energy range of 10-100 keV, the 2H(d,γ)4He reaction is of fundamental importance for the determination of deuteron burning and the 4He abundance in astronuclear processes. The observation of

  12. Electron capture rates in stars studied with heavy ion charge exchange reactions

    CERN Document Server

    Bertulani, C A

    2015-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean $\\sim$ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  13. Stellar Astrophysics and a Fundamental Description of Thermonuclear Reactions ? 04-ERD-058 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W E; Navratil, P; Libby, S B

    2007-02-22

    Report on the progress achieved in 04-ERD-058. The primary goal of the project was to investigate new methods to provide a comprehensive understanding of how reactions between light nuclei proceed in hot, dense environments, such as stellar interiors. The project sought to develop an entirely new theoretical framework to describe the dynamics of nuclear collisions based on the fundamental nuclear interactions. Based on the new theoretical framework, new computational tools were developed to address specific questions in nuclear structure and reactions. A full study of the true nature of the three-nucleon interaction was undertaken within the formalism of effective field theory. We undertook a preliminary theoretical study of the quantum corrections to electron screening in thermal plasmas to resolve a discrepancy exhibited in previous theoretical approaches.

  14. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Reifarth René

    2015-01-01

    Full Text Available Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,γ, (n,p, (n,α, (n,2n, or (n,f, could be investigated.

  15. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    Science.gov (United States)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  16. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    CERN Document Server

    Reifarth, René; Endres, Anne; Göbel, Kathrin; Heftrich, Tanja; Glorius, Jan; Koloczek, Alexander; Sonnabend, Kerstin; Travaglio, Claudia; Weigand, Mario

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,$\\gamma$), (n,p), (n,$\\alpha$), (n,2n), or (n,f), could be investigated.

  17. Typewriting rate as a function of reaction time.

    Science.gov (United States)

    Hayes, V; Wilson, G D; Schafer, R L

    1977-12-01

    This study was designed to determine the relationship between reaction time and typewriting rate. Subjects were 24 typists ranging in age from 19 to 39 yr. Reaction times (.001 sec) to a light were recorded for each finger and to each alphabetic character and three punctuation marks. Analysis of variance yielded significant differences in reaction time among subjects and fingers. Correlation between typewriting rate and average reaction time to the alphabetic characters and three punctuation marks was --.75. Correlation between typewriting rate and the difference between the reaction time of the hands was --.42. Factors influencing typewriting rate may include reaction time of the fingers, difference between the reaction time of the hands, and reaction time to individual keys on the typewriter. Implications exist for instructional methodology and further research. PMID:604897

  18. Reduced transition probabilities for 4He radiative capture reactions at astrophysical energies

    International Nuclear Information System (INIS)

    The reduced transition probabilities from an electric quadrupole B(E2) and reduced transition probabilities from a magnetic dipole B(M1) between the ground state and the first excited state have been calculated for the 3He(α,γ)7Be, 8Be(α,γ)12C and 12C(α,γ)16O radiative capture reactions with the M3Y potential. These reactions are important in stellar evolution. The calculated B(M1) and B(E2) for 7Be nuclei are found to be 1.082 × 10−3 e2 fm2 and 1.921 e2 fm4 from transitions 3/2− to 1/2−, respectively. The obtained values for reduced transition probabilities B(E2) for the 12C and 16O nuclei from transitions 0+ to 2+ are 12.54 e2 fm4 and 14.18 e2 fm4, respectively. The results are in satisfactory agreement with available experimental data

  19. The 25Mg(p,g)Al reaction at low astrophysical energies

    CERN Document Server

    Strieder, F; Formicola, A; Imbriani, G; Junker, M; Bemmerer, D; Best, A; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; DiLeva, A; Elekes, Z; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Lemut, A; Marta, M; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Terrasi, F; Trautvetter, H P

    2011-01-01

    In the present work we report on a new measurement of resonance strengths in the reaction 25Mg(p,gamma)26Al at E_cm= 92 and 189 keV. This study was performed at the LUNA facility in the Gran Sasso underground laboratory using a 4pi BGO summing crystal. For the first time the 92 keV resonance was directly observed and a resonance strength omega-gamma=(2.9+/-0.6)x10E-10 eV was determined. Additionally, the gamma-ray branchings and strength of the 189 keV resonance were studied with a high resolution HPGe detector yielding an omega-gamma value in agreement with the BGO measurement, but 20% larger compared to previous works.

  20. 78Kr(α,γ) reaction of astrophysical interest in inverse kinematics and the electronic screening effect on the beta decay

    International Nuclear Information System (INIS)

    The thesis is constituted of two different topics related to astrophysics. The titles of these topics are: 'Alpha capture reaction in inverse kinematics, measurement of 78Kr(α,γ)82Sr reaction' and 'Measurement of the radioactive decay of 19O and 19Ne implanted in niobium'. The goal of the first part of the thesis was to establish an experimental technique for measuring radiative alpha capture reaction at low energies in inverse kinematics. The measurement of these reactions is very important in astrophysics since it will help to improve the reliability of alpha particle optical model potentials which are used for prediction of cross sections of nuclear reaction used in different astrophysical models of supernovae explosions. In this part we insisted on a technical feasibility of this type of experiment. In the second part of the thesis, we examined the influence of the environment on the beta decay probability, in particular the influence of the electronic screening of Coulomb barrier of nuclei induced by Cooper pairs in superconductors. The indication of an extremely weak effect was noticed. (author)

  1. Measurement of the 2H(d ,p ) 3H reaction at astrophysical energies via the Trojan-horse method

    Science.gov (United States)

    Li, Chengbo; Wen, Qungang; Fu, Yuanyong; Zhou, Jing; Zhou, Shuhua; Meng, Qiuying; Spitaleri, C.; Tumino, A.; Pizzone, R. G.; Lamia, L.

    2015-08-01

    The study of the 2H(d ,p ) 3H reaction is very important for the nucleosynthesis in both the standard Big Bang and stellar evolution, as well as for the future fusion reactor's planning of energy production. The 2H(d ,p ) 3H bare nucleus astrophysical S (E ) factor has been measured indirectly at energies from about 400 keV down to several keV by means of the Trojan-horse method applied to the quasifree process 2H(6Li ,p t ) 4He induced at a lithium beam energy of 9.5 MeV, which is closer to the zero-quasifree-energy point. An accurate analysis leads to the determination of the Sbare(0 ) =56.7 ±2.0 keV b and of the corresponding electron screening potential Ue=13.2 ±4.3 eV. In addition, this work gives an updated test for the Trojan-horse nucleus invariance by comparing with previous indirect investigations using the 3He=(d +p ) breakup.

  2. Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    CERN Document Server

    Cyburt, R H; Heger, A; Johnson, E; Keek, L; Meisel, Z; Schatz, H; Smith, K

    2016-01-01

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,$\\gamma$), ($\\alpha$,$\\gamma$), and ($\\alpha$,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reac...

  3. Charged-Particle Thermonuclear Reaction Rates: II. Tables and Graphs of Reaction Rates and Probability Density Functions

    CERN Document Server

    Iliadis, Christian; Champagne, Art; Coc, Alain; Fitzgerald, Ryan

    2010-01-01

    Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this series (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, "lower limit", "nominal value" and "upper limit" of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters {\\mu} and {\\sigma} at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rat...

  4. Enzymatic spectrophotometric reaction rate determination of aspartame

    Directory of Open Access Journals (Sweden)

    Trifković Kata T.

    2015-01-01

    Full Text Available Aspartame is an artificial sweetener of low caloric value (approximately 200 times sweeter than sucrose. Aspartame is currently permitted for use in food and beverage production in more than 90 countries. The application of aspartame in food products requires development of rapid, inexpensive and accurate method for its determination. The new assay for determination of aspartame was based on set of reactions that are catalyzed by three different enzymes: α-chymotrypsin, alcohol oxidase and horseradish peroxidase. Optimization of the proposed method was carried out for: (i α-chymotrypsin activity; (ii time allowed for α-chymotrypsin action, (iii temperature. Evaluation of the developed method was done by determining aspartame content in “diet” drinks, as well as in artificial sweetener pills. [Projekat Ministarstva nauke Republike Srbije, br. III46010

  5. New Measurements of the Astrophysically Important ^44Ti Radionuclide Through the ^40Ca(α,γ)^44Ti Reaction

    Science.gov (United States)

    Robertson, Daniel; Becker, Hans-Werner; Collon, Philippe; Goerres, Joachim; Wiescher, Michael

    2010-11-01

    The relatively short-lived radionuclide ^44Ti (t1/2=58.9 ± 0.3 yrs), is of considerable importance in the study of nucleosynthesis in explosive stellar environments. It's production predominantly through the ^40Ca(α,γ)^44Ti reaction, takes place during α-rich freeze-out, in the inner most layers of a core-collapse supernova. A number of experimental studies have been previously performed to determine the stellar reaction rate. These studies included prompt γ-ray measurements from in-beam experiments, atom counting techniques utilizing accelerator mass spectrometry (AMS) and multi energy step measurements at the DRAGON recoil mass separator. The resulting calculated reaction rates show drastic disagreement. New results from experiments at the DTL, Bochum and NSL, Notre Dame, used both gamma spectroscopy and AMS techniques to measure the reaction, and investigate the discrepancies in both the experimental and predicted results. Final results of the experiments and their impact on the reaction rate will be discussed.

  6. Reevaluation of thermonuclear reaction rate of 50Fe(p,gamma)51Co

    CERN Document Server

    Zhang, L P; Chai, W D; Hou, S Q; Zhang, L Y

    2016-01-01

    The thermonuclear rate of the 50Fe(p,gamma)51Co reaction in the Type I X-ray bursts (XRBs) temperature range has been reevaluated based on a recent precise mass measurement at CSRe lanzhou, where the proton separation energy Sp=142+/-77 keV has been determined firstly for the 51Co nucleus. Comparing to the previous theoretical predictions, the experimental Sp value has much smaller uncertainty. Based on the nuclear shell model and mirror nuclear structure information, we have calculated two sets of thermonuclear rates for the 50Fe(p,gamma)51Co reaction by utilizing the experimental Sp value. It shows that the statistical-model calculations are not ideally applicable for this reaction primarily because of the low density of low-lying excited states in 51Co. In this work, we recommend that a set of new reaction rate based on the mirror structure of 51Cr should be incorporated in the future astrophysical network calculations.

  7. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  8. Nuclear astrophysics and the Trojan Horse Method

    Science.gov (United States)

    Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A. M.; Pizzone, R. G.

    2016-04-01

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach.

  9. Nuclear astrophysics and the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Laboratori Nazionali del Sud - INFN, Catania (Italy); La Cognata, M.; Pizzone, R.G. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Lamia, L. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Mukhamedzhanov, A.M. [Texas A and M University, Cyclotron Institute, College Station, TX (United States)

    2016-04-15

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach. (orig.)

  10. The Unity of Chemistry and Physics: Absolute Reaction Rate Theory

    OpenAIRE

    Hinne Hettema

    2012-01-01

    Henry Eyring's absolute rate theory explains the size of chemical reaction rate constants in terms of thermodynamics, statistical mechanics, and quantum chemistry. In addition it uses a number of unique concepts such as the 'transition state'. A key feature of the theory is that the explanation it provides relies on the comparison of reaction rate constant expressions derived from these individual theories. In this paper, the example is used to develop a naturalized notion of reduction and th...

  11. Charged-Particle Thermonuclear Reaction Rates: III. Nuclear Physics Input

    OpenAIRE

    Iliadis, Christian; Longland, Richard; Champagne, Art; Coc, Alain

    2010-01-01

    The nuclear physics input used to compute the Monte Carlo reaction rates and probability density functions that are tabulated in the second paper of this series (Paper II) is presented. Specifically, we publish the input files to the Monte Carlo reaction rate code RatesMC, which is based on the formalism presented in the first paper of this series (Paper I). This data base contains overwhelmingly experimental nuclear physics information. The survey of literature for this review was concluded ...

  12. Energy diffusion controlled reaction rate in dissipative Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    Deng Mao-Lin; Zhu Wei-Qiu

    2007-01-01

    In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first-passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kramers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.

  13. Neutron Reactions in Astrophysics

    CERN Document Server

    Reifarth, R; Käppeler, F

    2014-01-01

    The quest for the origin of matter in the Universe had been the subject of philosophical and theological debates over the history of mankind, but quantitative answers could be found only by the scientific achievements of the last century. A first important step on this way was the development of spectral analysis by Kirchhoff and Bunsen in the middle of the 19$^{\\rm th}$ century, which provided first insight in the chemical composition of the sun and the stars. The energy source of the stars and the related processes of nucleosynthesis, however, could be revealed only with the discoveries of nuclear physics. A final breakthrough came eventually with the compilation of elemental and isotopic abundances in the solar system, which are reflecting the various nucleosynthetic processes in detail. This review is focusing on the mass region above iron, where the formation of the elements is dominated by neutron capture, mainly in the slow ($s$) and rapid ($r$) processes. Following a brief historic account and a sketc...

  14. Theory of Crowding Effects on Bimolecular Reaction Rates.

    Science.gov (United States)

    Berezhkovskii, Alexander M; Szabo, Attila

    2016-07-01

    An analytical expression for the rate constant of a diffusion-influenced bimolecular reaction in a crowded environment is derived in the framework of a microscopic model that accounts for: (1) the slowdown of diffusion due to crowding and the dependence of the diffusivity on the distance between the reactants, (2) a crowding-induced attractive short-range potential of mean force, and (3) nonspecific reversible binding to the crowders. This expression spans the range from reaction to diffusion control. Crowding can increase the reaction-controlled rate by inducing an effective attraction between reactants but decrease the diffusion-controlled rate by reducing their relative diffusivity. PMID:27096470

  15. Stellar $\\beta^{\\pm}$ decay rates of iron isotopes and its implications in astrophysics

    CERN Document Server

    Nabi, Jameel-Un

    2014-01-01

    $\\beta$-decay and positron decay are believed to play a consequential role during the late phases of stellar evolution of a massive star culminating in a supernova explosion. Recently the microscopic calculation of weak-interaction mediated rates on key isotopes of iron was introduced using the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory with improved model parameters. Here I discuss in detail the improved calculation of $\\beta^{\\pm}$ decay rates for iron isotopes ($^{54,55,56}$Fe) in stellar environment. The pn-QRPA theory allows a microscopic "state-by-state" calculation of stellar rates as explained later in text. Excited state Gamow-Teller distributions are much different from ground state and a microscopic calculation of decay rates from these excited states greatly increases the reliability of the total decay rate calculation specially during the late stages of stellar evolution. The reported decay rates are also compared with earlier calculations. The positron decay rates a...

  16. Shell Model Analysis of the ^45V(p,γ) thermonuclear reaction rate relevant to ^44Ti production in core-collapse supernovae

    Science.gov (United States)

    Horoi, M.; Jora, R.; Zelevinsky, V.; Murphy, A. St. J.; Boyd, R. N.

    2001-10-01

    A reliable estimate of the ^45V(p,γ) reaction rate is necessary in order to reduce a large uncertainty in the production of ^44Ti in core collapse supernovae. We performed a theoretical analysis of the astrophysical factors and reaction rates including resonances in ^46Cr associated with the analog states in ^46Ti. Full fp shell model calculations are performed to predict positive parity states in ^46Ti situated in the Gamow window, which have a significant proton spectroscopic factor. The uncertainty of the reaction rate associated with electric dipole gamma decays to the negative parity low-lying states is also discussed.

  17. LUNA: Nuclear Astrophysics Deep Underground

    OpenAIRE

    Broggini, Carlo; Bemmerer, Daniel; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-01-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The mai...

  18. New High-Precision Measurement of the Reaction Rate of the 18O(p,alpha)15N Reaction via THM

    CERN Document Server

    La Cognata, M; Mukhamedzhanov, A M; Irgaziev, B; Tribble, R E; Banu, A; Cherubini, S; Coc, A; Crucilla, V; Goldberg, V Z; Gulino, M; Kiss, G G; Lamia, L; Chengbo, L; Mrazek, J; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L; Tabacaru, G; Trache, L; Trzaska, W; Tumino, A

    2009-01-01

    The 18O(p,alpha)15N reaction rate has been extracted by means of the Trojan-Horse method. For the first time the contribution of the 20-keV peak has been directly evaluated, giving a value about 35% larger than previously estimated. The present approach has allowed to improve the accuracy of a factor 8.5, as it is based on the measured strength instead of educated guesses or spectroscopic measurements. The contribution of the 90-keV resonance has been determined as well, which turned out to be of negligible importance to astrophysics.

  19. Non-resonant triple alpha reaction rate at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, T.; Tamii, A.; Aoi, N.; Fujita, H.; Hashimoto, T.; Miki, K.; Ogata, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Carter, J.; Donaldson, L.; Sideras-Haddad, E. [Schools of Physics, University of Witwatersrand, Johannesburg 2050 (South Africa); Furuno, T.; Kawabata, T. [Departments of Physics, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Kamimura, M. [RIKEN Nishina Center, Wako, Saitama, 351-0198 (Japan); Nemulodi, F.; Neveling, R.; Smit, F. D.; Swarts, C. [iThemba Laboratory for Accelerator Based Sciences Somerset, West, 7129 (South Africa)

    2014-05-02

    Our experimental goal is to study the non-resonant triple alpha reaction rate at low temperture (T < 10{sup 8} K). The {sup 13}C(p,d) reaction at 66 MeV has been used to probe the alpha-unbound continuum state in {sup 12}C just below the 2{sup nd} 0{sup +} state at 7.65 MeV. The transition strength to the continuum state is predicted to be sensitive to the non-resonant triple alpha reaction rate. The experiment has been performed at iThemba LABS. We report the present status of the experiment.

  20. Angle-integrated measurements of the {sup 26}Al(d, n){sup 27}Si reaction cross section: a probe of spectroscopic factors and astrophysical resonance strengths

    Energy Technology Data Exchange (ETDEWEB)

    Kankainen, A.; Woods, P.J.; Doherty, D.T.; Estrade, A.; Lotay, G. [University of Edinburgh, Edinburgh (United Kingdom); Nunes, F.; Schatz, H.; Brown, B.A.; Browne, J.; Meisel, Z.; Zegers, R. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Michigan State University, JINA Center for the Evolution of the Elements, East Lansing, MI (United States); Langer, C.; Montes, F.; Pereira, J.; Stevens, J. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Michigan State University, JINA Center for the Evolution of the Elements, East Lansing, MI (United States); Bader, V.; Gade, A.; Stroberg, R.; Scott, M. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Baugher, T.; Bazin, D.; Kontos, A.; Noji, S.; Recchia, F.; Weisshaar, D. [Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Perdikakis, G. [Michigan State University, JINA Center for the Evolution of the Elements, East Lansing, MI (United States); Central Michigan University, Mount Pleasant, MI (United States); Redpath, T.; Wimmer, K. [Central Michigan University, Mount Pleasant, MI (United States); Seweryniak, D. [Argonne National Laboratory, Argonne, IL (United States)

    2016-01-15

    Measurements of angle-integrated cross sections to discrete states in {sup 27}Si have been performed studying the {sup 26}Al(d, n) reaction in inverse kinematics by tagging states by their characteristic γ-decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the {sup 26}Al(p, γ){sup 27}Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment. (orig.)

  1. Analysis of reaction schemes using maximum rates of constituent steps.

    Science.gov (United States)

    Motagamwala, Ali Hussain; Dumesic, James A

    2016-05-24

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  2. Dependence of Reaction Rate Constants on Density in Supercritical Fluids

    Institute of Scientific and Technical Information of China (English)

    WANGTao; SHENZhongyao

    2002-01-01

    A new method,which correlates rate constants of chemical reactions and density or pressure in supercritical fluids,was developed.Based on the transition state theory and thermodynamic principles, the rate constant can be reasonably correlated with the density of the supercritical fluid,and a correlation equation was obtained. Coupled with the equation of state (EOS) of a supercritical solvent,the effect of pressure on reaction rate constant could be represented.Two typical systems were used to test this method.The result indicates that this method is suitable for dilute supercritical fluid solutions.

  3. The Unity of Chemistry and Physics: Absolute Reaction Rate Theory

    Directory of Open Access Journals (Sweden)

    Hinne Hettema

    2012-12-01

    Full Text Available Henry Eyring's absolute rate theory explains the size of chemical reaction rate constants in terms of thermodynamics, statistical mechanics, and quantum chemistry. In addition it uses a number of unique concepts such as the 'transition state'. A key feature of the theory is that the explanation it provides relies on the comparison of reaction rate constant expressions derived from these individual theories. In this paper, the example is used to develop a naturalized notion of reduction and the unity of science. This characterization provides the necessary clues to the sort of inter-theoretic linkages that are present in the theory of reaction rates. The overall theory is then further characterized as a theory network, establishing connections between non-reductive notions of inter-theory connections. This characterization also sheds new light on the unity of science.

  4. State Space Path Integrals for Electronically Nonadiabatic Reaction Rates

    CERN Document Server

    Duke, Jessica Ryan

    2016-01-01

    We present a state-space-based path integral method to calculate the rate of electron transfer (ET) in multi-state, multi-electron condensed-phase processes. We employ an exact path integral in discrete electronic states and continuous Cartesian nuclear variables to obtain a transition state theory (TST) estimate to the rate. A dynamic recrossing correction to the TST rate is then obtained from real-time dynamics simulations using mean field ring polymer molecular dynamics. We employ two different reaction coordinates in our simulations and show that, despite the use of mean field dynamics, the use of an accurate dividing surface to compute TST rates allows us to achieve remarkable agreement with Fermi's golden rule rates for nonadiabatic ET in the normal regime of Marcus theory. Further, we show that using a reaction coordinate based on electronic state populations allows us to capture the turnover in rates for ET in the Marcus inverted regime.

  5. Cross section and reaction rate of 92Mo(p,gamma)93Tc determined from thick target yield measurements

    CERN Document Server

    Gyürky, Gy; Fülöp, Zs; Halász, Z; Kiss, G G; Somorjai, E; Szücs, T

    2013-01-01

    For the better understanding of the astrophysical gamma-process the experimental determination of low energy proton- and alpha-capture cross sections on heavy isotopes is required. The existing data for the 92Mo(p,gamma)93Tc reaction are contradictory and strong fluctuation of the cross section is observed which cannot be explained by the statistical model. In this paper a new determination of the 92Mo(p,gamma)93Tc and 98Mo(p,gamma)99mTc cross sections based on thick target yield measurements are presented and the results are compared with existing data and model calculations. Reaction rates of 92Mo(p,gamma)93Tc at temperatures relevant for the gamma-process are derived directly from the measured thick target yields. The obtained rates are a factor of 2 lower than the ones used in astrophysical network calculations. It is argued that in the case of fluctuating cross sections the thick target yield measurement can be more suited for a reliable reaction rate determination.

  6. Reaction rate in an evanescent random walkers system

    CERN Document Server

    Ré, Miguel A

    2015-01-01

    Diffusion mediated reaction models are particularly ubiquitous in the description of physical, chemical or biological processes. The random walk schema is a useful tool for formulating these models. Recently, evanescent random walk models have received attention in order to include finite lifetime processes. For instance, activated chemical reactions, such as laser photolysis, exhibit a different asymptotic limit when compared with immortal walker models. A diffusion limited reaction model based on a one dimensional continuous time random walk on a lattice with evanescent walkers is presented here. The absorption probability density and the reaction rate are analytically calculated in the Laplace domain. A finite absorption rate is considered, a model usually referred to as imperfect trapping. Short and long time behaviors are analyzed.

  7. The Feasibility of direct measurement of the {sup 44}Ti(α, p){sup 47}V and {sup 40}Ca(α, p){sup 43}Sc reactions in forward kinematics at astrophysically relevant temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abdullah, T. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany); The Hashemite University, Physics Department, P.O. Box 150459, Zarqa (Jordan); Akhmadaliev, S.; Bemmerer, D.; Sobiella, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany); Ayranov, M. [Directorate-General for Energy, European Commission, Luxembourg (Luxembourg); Dressler, R.; Schumann, D.; Stowasser, T. [Paul Scherrer Institute, Laboratory of Radiochemistry and Environmental Chemistry, Villigen PSI (Switzerland); Elekes, Z. [Institute for Nuclear Research of the Hungarian Academy of Sciences (MTA ATOMKI), Debrecen (Hungary); Kivel, N. [Paul Scherrer Institute, Nuclear Energy and Safety, Hot Laboratory Division, Villigen PSI (Switzerland); Schmidt, K.; Takacs, M.P. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany); Technische Universitaet Dresden, Institute of Nuclear and Particle Physics, Dresden (Germany); Zuber, K. [Technische Universitaet Dresden, Institute of Nuclear and Particle Physics, Dresden (Germany)

    2014-09-15

    Understanding the synthesis of radioactive {sup 44}Ti in the α-rich freeze-out following core-collapse supernovae may help to better interpret such explosive events. The γ-ray lines from the decay of {sup 44}Ti have been observed by space-based γ-ray telescopes from two supernova remnants. It is believed that the {sup 44}Ti(α, p){sup 47}V reaction dominates the destruction of {sup 44}Ti, while the {sup 40}Ca(α, p){sup 43}Sc reaction removes fuel from the main {sup 44}Ti production reaction {sup 40}Ca(α, γ){sup 44}Ti. Here we report on a possible technique to determine both reaction rates at astrophysically relevant energies in forward kinematics. The first reaction will be performed using a 1-10 MBq {sup 44}Ti target. Two important concerns are considered to make this study possible: The amount of stable Ti in the radioactive target, which will be prepared via spallation reactions at Paul Scherrer Institute (PSI), and the degree of radioactive contaminations in the experimental setup due to sputtered {sup 44}Ti atoms after intensive irradiations. Several online and offline measurements in parallel with Monte Carlo simulations were performed to investigate these issues. (orig.)

  8. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  9. Unscreened cross-sections for nuclear astrophysics via the Trojan Horse Method

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Sergi, M. L.

    2014-12-01

    The bare nucleus astrophysical S(E) factor is the Nuclear Physics parameter to determine the reaction rates in stellar plasmas. Whilst not being accessed in direct measurements, it can be easily determined using the Trojan Horse Method, successful indirect technique for nuclear astrophysics. The basic features of the method will be discussed and some recent results will be presented.

  10. Measurement of the 13C(α, n)16O reaction at astrophysical energies using the Trojan Horse Method. Focus on the -3 keV sub-threshold resonance

    Science.gov (United States)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2014-03-01

    Most of the nuclei in the mass range 90 ≲ A ≲ 208 are produced through the so-called s-process, namely through a series of neutron capture reactions on seed nuclei followed by β-decays. The 13C(α, n)16O reaction is the neutron source for the main component of the s-process. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≲ 108 K, corresponding to an energy interval of 140 - 230 keV. In this region, the astrophysical S(E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Direct measurements could not soundly establish its contribution owing to the cross section suppression at astrophysical energies determined by the Coulomb barrier between interacting nuclei. Indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method turns out to be very suited for the study of the 13C(α, n)16O reaction as it allows us to access the low as well as the negative energy re- gion, in particular in the case of resonance reactions. We have applied the Trojan HorseMethod to the 13C(6Li, n16O)d quasi-free reaction. By using the modified R-matrix approach, the asymptotic normalization coefficient {( {tilde C{α 13{{C}}}17{{O(1/}{{{2}}{ + }}{{)}}}} )^2} of the 6.356 MeV level has been deduced as well as the n-partial width, allowing to attain an unprecedented accuracy for the 13C(α, n)16O astrophysical factor. A preliminary analysis of a partial data set has lead to {( {tilde C{α 13{{C}}}17{{O(1/}{{{2}}{ + }}{{)}}}} )^2} = 6.7 - 0.6 + 0.9 {{f}}{{{m}} - 1}, slightly larger than the values in the literature, determining a 13C(α, n)16O reaction rate in agreement with the most results in the literature at ˜ 108 K, with enhanced accuracy thanks to this innovative approach.

  11. Measurement of the 13C(α, n16O reaction at astrophysical energies using the Trojan Horse Method. Focus on the -3 keV sub-threshold resonance

    Directory of Open Access Journals (Sweden)

    La Cognata M.

    2014-03-01

    Full Text Available Most of the nuclei in the mass range 90 ≲ A ≲ 208 are produced through the so-called s-process, namely through a series of neutron capture reactions on seed nuclei followed by β-decays. The 13C(α, n16O reaction is the neutron source for the main component of the s-process. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures ≲ 108 K, corresponding to an energy interval of 140 − 230 keV. In this region, the astrophysical S(E-factor is dominated by the −3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. Direct measurements could not soundly establish its contribution owing to the cross section suppression at astrophysical energies determined by the Coulomb barrier between interacting nuclei. Indirect measurements and extrapolations yielded inconsistent results, calling for further investigations. The Trojan Horse Method turns out to be very suited for the study of the 13C(α, n16O reaction as it allows us to access the low as well as the negative energy re- gion, in particular in the case of resonance reactions. We have applied the Trojan HorseMethod to the 13C(6Li, n16Od quasi-free reaction. By using the modified R-matrix approach, the asymptotic normalization coefficient (C˜α13 C17O(1/2+2${\\left( {\\tilde C_{{\\alpha ^{13}}{\\rm{C}}}^{17{\\rm{O(1/}}{{\\rm{2}}^{\\rm{ + }}}{\\rm{}}}} \\right^2}$ of the 6.356 MeV level has been deduced as well as the n-partial width, allowing to attain an unprecedented accuracy for the 13C(α, n16O astrophysical factor. A preliminary analysis of a partial data set has lead to (C˜α13C17O(1/2+2 = 6.7−0.6+0.9 fm−1,${\\left( {\\tilde C_{{\\alpha ^{13}}{\\rm{C}}}^{17{\\rm{O(1/}}{{\\rm{2}}^{\\rm{ + }}}{\\rm{}}}} \\right^2}\\, = \\,6.7_{ - 0.6}^{ + 0.9}\\,{\\rm{f}}{{\\rm{m}}^{ - 1}},$ slightly larger than the values in the literature, determining a 13C(α, n16O reaction rate in agreement with the most results in the literature at ∼ 108 K

  12. Reaction Rate Sensitivity of the gamma-Process Path

    OpenAIRE

    Rauscher, T.

    2004-01-01

    The location of the (gamma,p)/(gamma,n) and (gamma,alpha)/(gamma,n) line at gamma-process temperatures is discussed, using recently published reaction rates based on global Hauser-Feshbach calculations. The results can directly be compared to previously published, classic gamma-process discussions. The nuclei exhibiting the largest sensitivity to uncertainties in nuclear structure and reaction parameters are specified.

  13. Effects of Surfactants on the Rate of Chemical Reactions

    Directory of Open Access Journals (Sweden)

    B. Samiey

    2014-01-01

    Full Text Available Surfactants are self-assembled compounds that depend on their structure and electric charge can interact as monomer or micelle with other compounds (substrates. These interactions which may catalyze or inhibit the reaction rates are studied with pseudophase, cooperativity, and stoichiometric (classical models. In this review, we discuss applying these models to study surfactant-substrate interactions and their effects on Diels-Alder, redox, photochemical, decomposition, enzymatic, isomerization, ligand exchange, radical, and nucleophilic reactions.

  14. Study of astrophysically important resonant states in 30 S using the 32S(p,t30 S reaction

    Directory of Open Access Journals (Sweden)

    Wrede C.

    2010-03-01

    Full Text Available A small fraction (< 1% of presolar SiC grains is suggested to have been formed in the ejecta of classical novae. The 29P(p,γ30S reaction plays an important role in understanding the Si isotopic abundances in such grains, which in turn provide us with information on the nature of the probable white dwarf progenitor’s core, as well as the peak temperatures achieved during nova outbursts, and thus the nova nucleosynthetic path. The 29P(p,γ30S reaction rate at nova temperatures is determined by two low-lying 3+ and 2+ resonances above the proton threshold at 4399 keV in 30S. Despite several experimental studies in the past, however, only one of these two states has only been observed very recently. We have studied the 30S nuclear structure via the 32S(p,t 30S reaction at 5 laboratory angles between 9° to 62°. We have observed 14 states, eleven of which are above the proton threshold, including two levels at 4692.7 ± 4.5 keV and 4813.8 ± 3.4 keV that are candidates for the 3+ and the previously “issing” 2+ state, respectively.

  15. RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    KAUST Repository

    Suleimanov, Yu.V.

    2013-03-01

    We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH 4, OH+CH4 and H+C2H6 reactions. © 2012 Elsevier B.V. All rights reserved.

  16. The microscopic folding potential describing elastic scattering and astrophysical S factor of 12C + 12C fusion reaction at low energies

    International Nuclear Information System (INIS)

    The 12C + 12C reaction is important to understand the nuclear burning in stellar evolution. In this work, we calculate the 12C + 12C microscopic potential based on the effective nucleon-nucleon (NN) interaction and the wave functions of interaction nuclei. The Optical Model analysis for elastic scattering angular distributions of 12C + 12C system at energies near to the Coulomb barrier agrees well with the experimental data, which makes sure the applicability of our obtained potential. The Barrier Penetration Model (BPM) and WKB approximation are applied to estimate the astrophysical S factor, which is reasonable to measurement results. (author)

  17. A transition in the spatially integrated reaction rate of bimolecular reaction-diffusion systems

    Science.gov (United States)

    Arshadi, Masoud; Rajaram, Harihar

    2015-09-01

    Numerical simulations of diffusion with bimolecular reaction demonstrate a transition in the spatially integrated reaction rate—increasing with time initially, and transitioning to a decrease with time. In previous work, this reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), leading to predictions that front motion scales as √t, and correspondingly the spatially integrated reaction rate decreases as the square root of time 1/√t. We present a general nondimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the spatially integrated reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients, and initial concentrations of the two species. Numerical simulation results confirm the theoretical estimates of the transition time. We present illustrative calculations in the context of in situ chemical oxidation for remediation of fractured rock systems where contaminants are largely dissolved in the rock matrix. We consider different contaminants of concern (COCs), including TCE, PCE, MTBE, and RDX. While the early time regime is very short lived for TCE, it can persist over months to years for MTBE and RDX, due to slow oxidation kinetics.

  18. Introduction to Nuclear Astrophysics

    International Nuclear Information System (INIS)

    In the first lecture of this volume, we will present the basic fundamental ideas regarding nuclear processes occurring in stars. We start from stellar observations, will then elaborate on some important quantum-mechanical phenomena governing nuclear reactions, continue with how nuclear reactions proceed in a hot stellar plasma and, finally, we will provide an overview of stellar burning stages. At the end, the current knowledge regarding the origin of the elements is briefly summarized. This lecture is directed towards the student of nuclear astrophysics. Our intention is to present seemingly unrelated phenomena of nuclear physics and astrophysics in a coherent framework.

  19. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  20. The astrophysical r-process and its dependence on properties of nuclei far from stability: Beta strength functions and neutron capture rates

    International Nuclear Information System (INIS)

    The question of the astrophysical site of the rapid neutron capture (r-) process which is believed to be responsible for the production of the heavy elements in the universe has been a problem in astrophysics for more than two decades. The solution of this problem is not only dependent on the development of realistic astrophysical supernova models, i.e. correct treatment of the hydrodynamics of gravitational collapse and supernova explosion and the equation of state of hot and dense matter, but is shown in this paper to be very sensitive also to 'standard' nuclear physics properties of nuclei far from stability such as beta decay properties and neutron capture rates. For both of the latter, strongly oversimplifying assumptions, not applying the development in nuclear physics during the last decade, have been made in almost all r-process calculations performed up to now. A critical discussion of the state of the art of such calculations seems therefore to be indicated. In this paper procedures are described which allow one to obtain: 1) β-decay properties (decay rates, β-delayed neutron emissions and fission rates); 2) neutron capture rates for neutron-rich nuclei considerably improved over what has been used up to now. The beta strength functions are calculated for approx. equal to6000 nuclei between beta stability line and neutron drip line. By hydrodynamical supernova explosion calculations using realistic stellar models it is shown that as a consequence of the improved β-rates explosive He burning is a convincing alternative site to the 'classical' r-process whose existence still is questionable. The new β-rates will be important also for the investigation of further astrophysical sites producing heavy elements such as the r(n)-processes in explosive C or Ne burning. (orig.)

  1. Reaction rates in squeezed polaron bands controlled by quantum statistics

    OpenAIRE

    Georgiev, Mladen; Gochev, Alexander

    2006-01-01

    Reaction rates are often defined using classical statistics for introducing the thermal occupation probabilities. Its predictions for the temperature dependence of a rate are found in reasonable agreement with experiments. In view of the applications to polaronic systems at lower temperatures under strongly quantized conditions, we now extend the definition so as to incorporate quantum statistics as well, Fermi-Dirac for polarons and Bose-Einstein for bipolarons. We find both extensions feasi...

  2. Helium Burning Reaction Rate Uncertainties and Consequences for Supernovae

    Science.gov (United States)

    Tur, C.; Heger, A.; Austin, S. M.

    2007-10-01

    The triple alpha and ^12C(,)^16O reaction rates determine the carbon to oxygen ratio at the completion of core helium burning in stars, which, in turn, influences the later stellar burning stages. We explored the dependence of massive star evolution and nucleosynthesis yields on the experimental uncertainties in the triple alpha rate (10 to 12%) and the ^12C(,)^16O rate (25 to 35%) using full stellar models followed to core collapse and including supernova explosion. The production factors of medium-weight elements obtained by using the Lodders (2003) solar abundances for the initial star composition, rather than the abundances of Anders & Grevesse (1989), provide a less stringent constraint on the ^12C(,)^16O rate. Variations within the current uncertainties in both reaction rates, however, induce significant changes in the central carbon abundance at core carbon ignition and in the mass of the supernova remnant. An experiment is being carried out by an NSCL/WMU collaboration to improve the accuracy of the triple alpha reaction rate.

  3. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...

  4. Finite temperature amplitudes and reaction rates in Thermofield dynamics

    CERN Document Server

    Rakhimov, A M

    2001-01-01

    We propose a method for calculating the reaction rates and transition amplitudes of generic process taking place in a many body system in equilibrium. The relationship of the scattering and decay amplitudes as calculated in Thermo Field Dynamics the conventional techniques is established. It is shown that in many cases the calculations are relatively easy in TFD.

  5. Solar reaction rates, non-extensivity and quantum uncertainty

    OpenAIRE

    Lavagno, A; Quarati, P

    2001-01-01

    We show that in weakly non-ideal plasmas, like the solar interior, both non-extensivity and quantum uncertainty (a' la Galitskii and Yakimets) should be taken into account to derive equilibrium ion distribution functions and to estimate nuclear reaction rates and solar neutrino fluxes.

  6. Applications of the Trojan Horse method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio, E-mail: spitaleri@lns.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud-INFN, Catania (Italy)

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  7. Applications of the Trojan Horse method in nuclear astrophysics

    Science.gov (United States)

    Spitaleri, Claudio

    2015-02-01

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  8. Recent developments in semiclassical mechanics: eigenvalues and reaction rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H.

    1976-04-01

    A semiclassical treatment of eigenvalues for a multidimensional non-separable potential function and of the rate constant for a chemical reaction with an activation barrier is presented. Both phenomena are seen to be described by essentially the same semiclassical formalism, which is based on a construction of the total Hamiltonian in terms of the complete set of ''good'' action variables (or adiabatic invariants) associated with the minimum in the potential energy surface for the eigenvalue case, or the saddle point in the potential energy surface for the case of chemical reaction.

  9. Rate Constant Calculation for Thermal Reactions Methods and Applications

    CERN Document Server

    DaCosta, Herbert

    2011-01-01

    Providing an overview of the latest computational approaches to estimate rate constants for thermal reactions, this book addresses the theories behind various first-principle and approximation methods that have emerged in the last twenty years with validation examples. It presents in-depth applications of those theories to a wide range of basic and applied research areas. When doing modeling and simulation of chemical reactions (as in many other cases), one often has to compromise between higher-accuracy/higher-precision approaches (which are usually time-consuming) and approximate/lower-preci

  10. Pore size and the lab-field reaction rate riddle

    Science.gov (United States)

    Emmanuel, S.; Ague, J. J.; Walderhaug, O.

    2009-12-01

    Pore size is usually thought to influence the rate of crystal growth during diagenesis and metamorphism by controlling the ratio of surface area to fluid volume. However, theory suggests that in micron-scale to nanometer-scale pores, interfacial energy effects can also become important. We used mercury porosimetry to investigate the pore-size distributions in naturally cemented sandstone adjacent to stylolites and found that quartz precipitation was inhibited in pores smaller than 10 microns in diameter. We demonstrate that standard kinetic models cannot reproduce the observed pore-size patterns in mineralized samples; by contrast, excellent fits with the data are obtained when interfacial energy effects are taken into account. Moreover, as such micron-scale pores comprise the overwhelming majority of surface area in the sandstone, average reaction rates for the rock are significantly reduced. Reaction rates in geological media determined in field studies can be orders of magnitude lower than those measured in laboratory experiments, and we propose that reduced reaction rates in rocks with micron-scale porosity could account for the apparent paradox.

  11. Neutrino Astrophysics

    CERN Document Server

    Volpe, Cristina

    2016-01-01

    We summarize the progress in neutrino astrophysics and emphasize open issues in our understanding of neutrino flavor conversion in media. We discuss solar neutrinos, core-collapse supernova neutrinos and conclude with ultra-high energy neutrinos.

  12. Nuclear astrophysics

    CERN Document Server

    Arnould, M

    1999-01-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding some of the many facets of the Universe through the knowledge of the microcosm of the atomic nucleus. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other sub-fields of physics and chemistry have also contributed to that advance. Many long-standing problems remain to be solved, however, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endanger old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experime...

  13. Nuclear astrophysics

    International Nuclear Information System (INIS)

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized

  14. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  15. Suppression of Excited-State Contributions to Stellar Reaction Rates

    CERN Document Server

    Rauscher, T

    2013-01-01

    It has been shown in previous work [Phys. Rev. Lett. 101, 191101 (2008); Phys. Rev. C 80, 035801 (2009)] that a suppression of the stellar enhancement factor (SEF) occurs in some endothermic reactions at and far from stability. This effect is re-evaluated using the ground-state contributions to the stellar reaction rates, which were shown to be better suited to judge the importance of excited state contributions than the previously applied SEFs. An update of the tables shown in Phys. Rev. C 80, 035801 (2009) is given. The new evalution finds 2350 cases (out of a full set of 57513 reactions) for which the ground-state contribution is larger in the reaction direction with negative reaction Q-value than in the exothermic direction, thus providing exceptions to the commonly applied Q-value rule. The results confirm the Coulomb suppression effect but lead to a larger number of exceptions than previously found. This is due to the fact that often a large variation in the g.s. contribution does not lead to a sizeable...

  16. Application of semiclassical methods to reaction rate theory

    International Nuclear Information System (INIS)

    This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e. most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. In SCTST, the Hamiltonian is expanded about the barrier and the ''good'' action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a ''prereactive'' partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation

  17. Application of semiclassical methods to reaction rate theory

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, R.

    1993-11-01

    This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e. most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. In SCTST, the Hamiltonian is expanded about the barrier and the ``good`` action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a ``prereactive`` partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation.

  18. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A<16

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y. [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles (Belgium); Takahashi, K. [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles (Belgium); GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles (Belgium); Arnould, M., E-mail: marnould@ulb.ac.be [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles (Belgium); Ohta, M. [Hirao School of Management, Konan University, Kobe (Japan); Department of Physics, Konan University, Kobe (Japan); Utsunomiya, H. [Department of Physics, Konan University, Kobe (Japan)

    2013-11-20

    An update of the NACRE compilation [3] is presented. This new compilation, referred to as NACRE II, reports thermonuclear reaction rates for 34 charged-particle induced, two-body exoergic reactions on nuclides with mass number A<16, of which fifteen are particle-transfer reactions and the rest radiative capture reactions. When compared with NACRE, NACRE II features in particular (1) the addition to the experimental data collected in NACRE of those reported later, preferentially in the major journals of the field by early 2013, and (2) the adoption of potential models as the primary tool for extrapolation to very low energies of astrophysical S-factors, with a systematic evaluation of uncertainties. As in NACRE, the rates are presented in tabular form for temperatures in the 10{sup 6}≲T⩽10{sup 10} K range. Along with the ‘adopted’ rates, their low and high limits are provided. The new rates are available in electronic form as part of the Brussels Library (BRUSLIB) of nuclear data. The NACRE II rates also supersede the previous NACRE rates in the Nuclear Network Generator (NETGEN) for astrophysics. [ (http://www.astro.ulb.ac.be/databases.html)].

  19. Development of a Monte Carlo code for the data analysis of the 18F(p,α)15O reaction at astrophysical energies

    International Nuclear Information System (INIS)

    Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called 'narrow systems' because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclear fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of 'hot hydrogen burning' are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as 13N and 18F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of 18F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of 18F. Among these, the 18F(p,α)15O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the 18F(p,α)15O reaction, using a beam of 18F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the Monte Carlo code developed to be used in the data

  20. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  1. Reaction rate constant for radiative association of CF{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Öström, Jonatan, E-mail: jonatan.ostrom@gmail.com; Gustafsson, Magnus, E-mail: magnus.gustafsson@ltu.se [Applied Physics, Division of Materials Science, Department of Engineering Science and Mathematics, Luleå University of Technology, 97187 Luleå (Sweden); Bezrukov, Dmitry S. [Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Nyman, Gunnar [Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg (Sweden)

    2016-01-28

    Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C{sup +}) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1{sup 1}Π → X{sup 1}Σ{sup +} and rovibrational transitions on the X{sup 1}Σ{sup +} and a{sup 3}Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit–Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius–Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10–250 K, the rate constant is about 10{sup −21} cm{sup 3} s{sup −1}, rising toward 10{sup −16} cm{sup 3} s{sup −1} for a temperature of 30 000 K.

  2. Primordial lithium: New reaction rates, new abundances, new constraints

    International Nuclear Information System (INIS)

    Newly measured nuclear reaction rates for 3H(α,γ)7Li (higher than previous values) and 7Li(p,α)4He (lower than previous values) are shown to increase the 7Li yield from big bang nucleosynthesis for lower baryon to photon ratio (eta ≤ 4 x 10-10); the yield for higher eta is not affected. New, independent determinations of Li abundances in extreme Pop II stars are in excellent agreement with the earlier work of the Spites and give continued confidence in the use of 7Li in big bang baryon density determinations. The new 7Li constraints imply a lower limit on eta of 2 x 10-10 and an upper limit of 5 x 10-10. This lower limit to eta is concordant with that obtained from considerations of D + 3He. The upper limit is consistent with, but even more restrictive than, the D bound. With the new rates, any observed primordial Li/H ratio below 10-10 would be inexplicable by the standard big bang nucleosynthesis. A review is made of the strengths and possible weaknesses of utilizing conclusions drawn from big bang lithium considerations. An appendix discusses the null effect of a factor of 32 increase in the experimental rate for the D(d,γ)4He reaction. 28 refs., 1 fig

  3. Competition between the compound and the pre-compound emission processes in α-induced reactions at near astrophysical energy to well above it

    Science.gov (United States)

    Sharma, Manoj Kumar; Sharma, Vijay Raj; Yadav, Abhiskek; Singh, Pushpendra P.; Singh, B. P.; Prasad, R.

    2016-04-01

    The study of pre-compound emission in α-induced reactions, particularly at the low incident energies, is of considerable interest as the pre-compound emission is more likely to occur at higher energies. With a view to study the competition between the compound and the pre-compound emission processes in α-induced reactions at different energies and with different targets, a systematics for neutron emission channels in targets 51V, 55Mn, 93Nb, 121, 123Sb and 141Pr at energy ranging from astrophysical interest to well above it, has been developed. The off-line γ-ray-spectrometry based activation technique has been adopted to measure the excitation functions. The experimental excitation functions have been analysed within the framework of the compound nucleus mechanism based on the Weisskopf-Ewing model and the pre-compound emission calculations based on the geometry dependent hybrid model. The analysis of the data shows that experimental excitation functions could be reproduced only when the pre-compound emission, simulated theoretically, is taken into account. The strength of pre-compound emission process for each system has been obtained by deducing the pre-compound fraction. Analysis of data indicates that in α-induced reactions, the pre-compound emission process plays an important role, particularly at the low incident energies, where the pure compound nucleus process is likely to dominate.

  4. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Bruxelles (Belgium); Takahashi, K. [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  5. Nuclear astrophysics

    Science.gov (United States)

    Arnould, M.; Takahashi, K.

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  6. Evaluation of antioxidants using oxidation reaction rate constants

    Institute of Scientific and Technical Information of China (English)

    SHI Yan; ZHAN Xiancheng; MA Lie; LI Linli; LI Chengrong

    2007-01-01

    An evaluation method for the capacity of antioxidants to protect drugs against oxidation is presented.As a new viewpoint,to determine the priority of the competitive oxidations between the antioxidant and the protected drug,and to compare the drug-protection capacity of antioxidants,it is important to determine their oxidation rate constants using chemical kinetics instead of standard oxidation (or reduction) potentials.Sodium sulfite,sodium bisulfite and sodium pyrosulfite were used as models for the determination of oxidation reaction rate constants in aqueous solutions.In the experiments,sufficient air was continually infused into the solution to keep the concentration of dissolved oxygen constant.The residual concentrations of the antioxidants were determined by iodimetry,and the concentration of dissolved oxygen by oxygen electrode.The data were fitted by linear regressions to obtain the reaction rate constants.It was found that the degradation of sodium sulfite,sodium bisulfite or sodium pyrosulfite obeyed pseudo zero-order kinetics in the buffer solutions.Because of the ionization equilibrium,these three antioxidants have the same ion form in solutions at a definite pH value and therefore their apparent rate constants were essentially the same.The average apparent rate constants of the three antioxidants at 25~C are (1.34±0.03)×10-3 at pH 6.8,(1.20±0.02) x 10-3 at pH 4.0 and (6.58±0.02)×10-3 mol.L-1.h-1 at pH 9.2,respectively.

  7. Neutrino astrophysics

    International Nuclear Information System (INIS)

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  8. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  9. Reaction rates in a theory of mechanochemical pathways.

    Science.gov (United States)

    Quapp, Wolfgang; Bofill, Josep Maria

    2016-10-15

    If one applies mechanical stress to a molecule in a defined direction then one generates a new, effective potential energy surface (PES). Changes for minima and saddle points (SP) by the stress are described by Newton trajectories on the original PES (Quapp and Bofill, Theor. Chem. Acc. 2016, 135, 113). The barrier of a reaction fully breaks down for the maximal value of the norm of the gradient of the PES along a pulling Newton trajectory. This point is named barrier breakdown point (BBP). Depending on the pulling direction, different reaction pathways can be enforced. If the exit SP of the chosen pulling direction is not the lowest SP of the reactant valley, on the original PES, then the SPs must change their role anywhere: in this case the curve of the log(rate) over the pulling force of a forward reaction can show a deviation from the normal concave curvature. We discuss simple, two-dimensional examples for this model to understand more deeply the mechanochemistry of molecular systems under a mechanical stress. © 2016 Wiley Periodicals, Inc. PMID:27556915

  10. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  11. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    International Nuclear Information System (INIS)

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments

  12. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    Science.gov (United States)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wischer, M.; Mrazek, J.; Kroha, V.

    2016-05-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  13. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    Science.gov (United States)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  14. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    OpenAIRE

    Sergi M.L.; Spitaleri C.; La Cognata M.; Lamia L.; Pizzone R.G.; Rapisarda G.G.; Mukhamedzhanov A.; Irgaziev B.; Tang X.D.; Wischer M.; Mrazek J.; Kroha V.

    2016-01-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in ...

  15. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α14N Reaction Studied via THM

    Directory of Open Access Journals (Sweden)

    Sergi M.L.

    2016-01-01

    Full Text Available In recent years, the Trojan Horse Method (THM has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  16. Reaction rate theory of radiation exposure: Effects of the dose rate on mutation frequencies

    CERN Document Server

    Manabe, Yuichiro; Nakamura, Issei

    2014-01-01

    We develop a kinetic reaction model for the cells having the irradiated DNA molecules due to the ionizing radiation exposure. Our theory simultaneously accounts for the time-dependent reactions of the DNA damage, the DNA mutation, the DNA repair, and the proliferation and apoptosis of cells in a tissue with a minimal set of model parameters. In contrast to the existing theories for the radiation exposition, we do not assume the relationships between the total dose and the induced mutation frequency. We show good agreement between theory and experiment. Importantly, our result shows a new perspective that the key ingredient in the study of the irradiated cells is the rate constants depending on the dose rate. Moreover, we discuss the universal scaling function for mutation frequencies due to the irradiation at low dose rates.

  17. The reaction sup 1 sup 6 O(p, gamma) sup 1 sup 7 F and it astrophysical aspect

    CERN Document Server

    Burtebaev, N; Ibraeva, E T; Sagindykov, S

    2000-01-01

    The differential sections of radiation capture reaction sup 1 sup 6 O(p, gamma) sup 1 sup 7 F with use cluster folding potential and the averaged velocities have calculated. The good agreement with available experimental data was obtained. The calculation of averaged velocities shows a great sensitivity their of low energies range of Maxwell distribution. (author)

  18. Nuclear Astrophysics with LUNA

    Science.gov (United States)

    Broggini, Carlo

    2016-04-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions which power the stars and synthesize the chemical elements. Deep underground in the Gran Sasso Laboratory the cross section of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The main results obtained during the 'solar' phase of LUNA are reviewed and their influence on our understanding of the properties of the neutrino and of the Sun is discussed. We then describe the current LUNA program mainly devoted to the study of the nucleosynthesis of the light elements in AGB stars and Classical Novae. Finally, the future of LUNA towards the study of helium and carbon burning with a new 3.5 MV accelerator is outlined.

  19. Study of the neutron and proton capture reactions 10,11b(n, g), 11b(p, g), 14c(p, g), and 15n(p, g) at thermal and astrophysical energies

    CERN Document Server

    Dubovichenko, Sergey

    2014-01-01

    We have studied the neutron-capture reactions 10,11B(n, g) and the role of the 11B(n, g) reaction in seeding r-process nucleosynthesis. The possibility of the description of the available experimental data for cross sections of the neutron capture reaction on 10B at thermal and astrophysical energies, taking into account the resonance at 475 keV, was considered within the framework of the modified potential cluster model (MPCM) with forbidden states and accounting for the resonance behavior of the scattering phase shifts. In the framework of the same model the possibility of describing the available experimental data for the total cross sections of the neutron radiative capture on 11B at thermal and astrophysical energies were considered with taking into account the 21 and 430 keV resonances. Description of the available experimental data on the total cross sections and astrophysical S-factor of the radiative proton capture on 11B to the ground state of 12C was treated at astrophysical energies. The possibili...

  20. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  1. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  2. LUNA: Nuclear Astrophysics Deep Underground

    CERN Document Server

    Broggini, Carlo; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-01-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The main results obtained by LUNA in the last twenty years are reviewed, and their influence on the comprehension of the properties of the neutrino, of the Sun and of the Universe itself are discussed. Future directions of underground nuclear astrophysics towards the study of helium and carbon burning and of stellar neutron sources in stars are pointed out.

  3. Neutrino Astrophysics

    OpenAIRE

    Haxton, W. C.

    2000-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric an...

  4. Manual Choice Reaction Times in the Rate-Domain

    Directory of Open Access Journals (Sweden)

    Chris eHarris

    2014-06-01

    Full Text Available Over the last 150 years, human manual reaction times (RTs have been recorded countless times. Yet, our understanding of them remains remarkably poor. RTs are highly variable with positively skewed frequency distributions, often modelled as an inverse Gaussian distribution reflecting a stochastic rise to threshold (diffusion process. However, latency distribution of saccades are very close to the reciprocal Normal, suggesting that ‘rate’ (reciprocal RT may be the more fundamental variable. We explored whether this phenomenon extends to choice manual RTs. We recorded two-alternative choice RTs from 24 subjects, each with 4 blocks of 200 trials with two task difficulties (easy vs. difficult discrimination and two instruction sets (urgent vs. accurate. We found that rate distributions were, indeed, very close to Normal, shifting to lower rates with increasing difficulty and accuracy, and for some blocks subjects they appeared to become left-truncated, but still close to Normal. Using autoregressive techniques, we found temporal sequential dependencies for lags of at least 3. We identified a transient and steady-state component in each block. Because rates were Normal, we were able to estimate autoregressive weights using the Box-Jenkins technique, and convert to a moving average model using z-transforms to show explicit dependence on stimulus input. We also found a spatial sequential dependence for the previous 3 lags depending on whether the laterality of previous trials was repeated or alternated. This was partially dissociated from temporal dependency as it only occurred in the easy tasks. We conclude that 2-alternative choice manual RT distributions are close to reciprocal Normal and not the inverse Gaussian. This is not consistent with stochastic rise to threshold models, and we propose a simple optimality model in which reward is maximized to yield to an optimal rate, and hence an optimal time to respond. We discuss how it might be

  5. An introduction to nuclear astrophysics

    International Nuclear Information System (INIS)

    The role of nuclear reactions in astrophysics is described. Stellar energy generation and heavy element nucleosynthesis is explained in terms of specific sequences of charged-particle and neutron induced reactions. The evolution and final states of stars are examined. 20 refs. 11 figs., 2 tabs

  6. An efficient nonclassical quadrature for the calculation of nonresonant nuclear fusion reaction rate coefficients from cross section data

    Science.gov (United States)

    Shizgal, Bernie D.

    2016-08-01

    Nonclassical quadratures based on a new set of half-range polynomials, Tn(x) , orthogonal with respect to w(x) =e - x - b /√{ x } for x ∈ [ 0 , ∞) are employed in the efficient calculation of the nuclear fusion reaction rate coefficients from cross section data. The parameter b = B /√{kB T } in the weight function is temperature dependent and B is the Gamow factor. The polynomials Tn(x) satisfy a three term recurrence relation defined by two sets of recurrence coefficients, αn and βn. These recurrence coefficients define in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which the astrophysical function can be expressed as a lower order polynomial in the relative energy, the convergence of the thermal average of the reactive cross section with this nonclassical quadrature is extremely rapid requiring in many cases 2-4 quadrature points. The results are compared with other libraries of nuclear reaction rate coefficient data reported in the literature.

  7. New measurement of $\\rm S_{bare}(E)$ factor of the d(d,p)t reaction at astrophysical energies via the Trojan-horse method

    CERN Document Server

    Li, Chengbo; Fu, Yuanyong; Zhou, Jing; Zhou, Shuhua; Meng, Qiuying; Spitaleri, C; Tumino, A; Pizzone, R G; Lamia, L

    2015-01-01

    The study of d(d,p)t reaction is very important for the nucleosynthesis in both standard Big Bang and stellar evolution, as well as for the future fusion reactor planning of energy production. The d(d,p)t bare nucleus astrophysical S(E) factor has been measured indirectly at energies from about 400 keV down to several keV by means of the Trojan horse method applied to the quasi-free process $\\rm {}^2H({}^6Li,pt){}^4He$ induced at the lithium beam energy of 9.5 MeV, which is closer to the zero quasi-free energy point, in CIAE HI-13 tandem accelerator laboratory. An accurate analysis leads to the determination of the d(d,p)t $\\rm S(E)$ factor $\\rm S_{bare}(0)=56.7 \\pm 2.0 keV*b$ and of the corresponding electron screening potential $\\rm U_e = 13.2 \\pm 4.3 eV$. In addition, this work also gives an updated test for the Trojan horse nucleus invariance comparing with previous indirect investigations using $\\rm {}^3He=(d+p)$ breakup.

  8. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A<16

    Science.gov (United States)

    Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.; Ohta, M.; Utsunomiya, H.

    2013-11-01

    An update of the NACRE compilation [3] is presented. This new compilation, referred to as NACRE II, reports thermonuclear reaction rates for 34 charged-particle induced, two-body exoergic reactions on nuclides with mass number A<16, of which fifteen are particle-transfer reactions and the rest radiative capture reactions. When compared with NACRE, NACRE II features in particular (1) the addition to the experimental data collected in NACRE of those reported later, preferentially in the major journals of the field by early 2013, and (2) the adoption of potential models as the primary tool for extrapolation to very low energies of astrophysical S-factors, with a systematic evaluation of uncertainties.

  9. Astrophysical cosmology

    Science.gov (United States)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  10. Revision of the 15N(p, γ)16O reaction rate and oxygen abundance in H-burning zones

    Science.gov (United States)

    Caciolli, A.; Mazzocchi, C.; Capogrosso, V.; Bemmerer, D.; Broggini, C.; Corvisiero, P.; Costantini, H.; Elekes, Z.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Lemut, A.; Marta, M.; Menegazzo, R.; Palmerini, S.; Prati, P.; Roca, V.; Rolfs, C.; Rossi Alvarez, C.; Somorjai, E.; Straniero, O.; Strieder, F.; Terrasi, F.; Trautvetter, H. P.; Vomiero, A.

    2011-09-01

    Context. The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T ≃ 30 × 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the red giant branch (RGB) phase of the star or to the pollution of the primordial gas by an early population of massive asymptotic giant branch (AGB) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. Aims: The activation of this cycle depends on the rate of the 15N(p, γ)16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. Methods: We present a new measurement of the 15N(p, γ)16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 × 106 K and 780 × 106 K. This range includes the 15N(p, γ)16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. Results: With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level.

  11. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  12. Few-body models for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    P. Descouvemont

    2014-02-01

    Full Text Available We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the 2H(d, γ4He, 2H(d, p3H and 2H(d, n3He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  13. Computational Astrophysics

    Science.gov (United States)

    Mickaelian, A. M.; Astsatryan, H. V.

    2015-07-01

    Present astronomical archives that contain billions of objects, both Galactic and extragalactic, and the vast amount of data on them allow new studies and discoveries. Astrophysical Virtual Observatories (VO) use available databases and current observing material as a collection of interoperating data archives and software tools to form a research environment in which complex research programs can be conducted. Most of the modern databases give at present VO access to the stored information, which makes possible also a fast analysis and managing of these data. Cross-correlations result in revealing new objects and new samples. Very often dozens of thousands of sources hide a few very interesting ones that are needed to be discovered by comparison of various physical characteristics. VO is a prototype of Grid technologies that allows distributed data computation, analysis and imaging. Particularly important are data reduction and analysis systems: spectral analysis, SED building and fitting, modelling, variability studies, cross correlations, etc. Computational astrophysics has become an indissoluble part of astronomy and most of modern research is being done by means of it.

  14. Nuclear Data for Astrophysical Modeling

    CERN Document Server

    Pritychenko, Boris

    2016-01-01

    Nuclear physics has been playing an important role in modern astrophysics and cosmology. Since the early 1950's it has been successfully applied for the interpretation and prediction of astrophysical phenomena. Nuclear physics models helped to explain the observed elemental and isotopic abundances and star evolution and provided valuable insights on the Big Bang theory. Today, the variety of elements observed in stellar surfaces, solar system and cosmic rays, and isotope abundances are calculated and compared with the observed values. Consequently, the overall success of the modeling critically depends on the quality of underlying nuclear data that helps to bring physics of macro and micro scales together. To broaden the scope of traditional nuclear astrophysics activities and produce additional complementary information, I will investigate applicability of the U.S. Nuclear Data Program (USNDP) databases for astrophysical applications. EXFOR (Experimental Nuclear Reaction Data) and ENDF (Evaluated Nuclear Dat...

  15. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  16. Determination of 8B(p,gamma)9C reaction rate from 9C breakup

    CERN Document Server

    Fukui, Tokuro; Minomo, Kosho; Yahiro, Masanobu

    2012-01-01

    The astrophysical factor of the 8B(p,gamma)9C at zero energy, S18(0), is determined from three-body model analysis of 9C breakup processes. The elastic breakup 208Pb(9C,p8B)208Pb at 65 MeV/nucleon and the one-proton removal reaction of 9C at 285 MeV/nucleon on C and Al targets are calculated with the continuum-discretized coupled-channels method (CDCC) and the eikonal reaction theory (ERT), respectively. The asymptotic normalization coefficient (ANC) of 9C in the p-8B configuration extracted from the two reactions show good consistency, in contrast to in the previous studies. As a result of the present analysis, S18(0) = 66 \\pm 10 eVb is obtained.

  17. Indirect techniques in nuclear astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

    CERN Document Server

    Mukhamedzhanov, A M; Brown, B A; Burjan, V; Cherubini, S; Gagliardi, C A; Irgaziev, B F; Kroha, V; Nunes, F M; Pirlepesov, F; Pizzone, R G; Romano, S; Spitaleri, C; Tang, X D; Trache, L; Tribble, R E; Tumino, A

    2005-01-01

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reac...

  18. Big-Bang reaction rates within the R-matrix model

    Science.gov (United States)

    Descouvemont, P.; Adahchour, A.; Angulo, C.; Coc, A.; Vangioni-Flam, E.

    2005-07-01

    We use the R-matrix theory to fit S-factor data on nuclear reactions involved in Big Bang nucleosynthesis. We derive the reaction rates with associated uncertainties, which are evaluated on statistical grounds. We provide S factors and reaction rates in tabular and graphical formats (available at http://pntpm3.ulb.ac.be/bigbang).

  19. Big-Bang reaction rates within the R-matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P. [Physique Nucleaire Theorique et Physique Mathematique, CP229, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Adahchour, A. [Physique Nucleaire Theorique et Physique Mathematique, CP229, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Angulo, C. [Centre de Recherches du Cyclotron, Universite catholique de Louvain, Chemin du cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Coc, A. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS/IN2P3/UPS, Bat. 104, F-91405 Orsay Campus (France); Vangioni-Flam, E. [Institut d' Astrophysique de Paris, CNRS, 98 bis Bd. Arago, F-75014 Paris (France)

    2005-07-25

    We use the R-matrix theory to fit S-factor data on nuclear reactions involved in Big Bang nucleosynthesis. We derive the reaction rates with associated uncertainties, which are evaluated on statistical grounds. We provide S factors and reaction rates in tabular and graphical formats (available at http://pntpm3.ulb.ac.be/bigbang)

  20. Nuclear astrophysics with neutrons

    Science.gov (United States)

    Dillmann, I.; Reifarth, R.

    2012-04-01

    Neutrons play a crucial role in astrophysics during the heavy element nucleosynthesis. The largest fraction of isotopes heavier than iron is produced by neutron capture processes on short (r process) and long timescales (s process). During the ``slow neutron capture process'' (s process) heavier elements are produced by successive captures of in-situ produced neutrons from the reactions 13C(α,n)16O and 22Ne(α,n)25Mg (with densities of 106-1010 cm-3) in the interior of stars and following β-decays. With this scenario the reaction path runs along the valley of stability up to 209Bi and produces about 50% of the solar abundances of the heavy elements. Important nuclear physics parameters for s-process nucleosynthesis are neutron capture cross sections (for En = 0.3-300 keV, corresponding to stellar temperatures between kT= 8 and 90 keV) and β-decay half-lives. Neutron capture measurements can be performed via activation in a quasi-stellar neutron spectrum utilizing several (p,n) reactions, or by the time-of-flight technique. The ``rapid neutron capture process'' (r process) is responsible for the remaining 50% of the solar abundances. Here neutrons with densities of 1020-1030 cm-3 are captured on a very fast timescale (ms) during a Core Collapse Supernova in a region close to the forming neutron star. The r-process nuclei are thus very short-lived, neutron-rich isotopes up to the actinides, which can only be produced and investigated at large-scale radioactive-beam facilities. Here the most important nuclear physics parameters are masses, half-lives, and at later stages also β-delayed neutrons. This paper will summarize the role of neutrons in nuclear astrophysics and give a short overview about the related astrophysics programs at the GSI Helmholtz research center and the FRANZ facility in Germany.

  1. Comparative study of Gamow-Teller strength distributions in the odd-odd nucleus 50V and its impact on electron capture rates in astrophysical environments

    CERN Document Server

    Nabi, Jameel-Un; 10.1103/PhysRevC.76.055803

    2011-01-01

    Gamow-Teller (GT) strength transitions are an ideal probe for testing nuclear structure models. In addition to nuclear structure, GT transitions in nuclei directly affect the early phases of Type Ia and Type-II supernovae core collapse since the electron capture rates are partly determined by these GT transitions. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. Recent nucleosynthesis calculations show that odd-odd and odd-A nuclei cause the largest contribution in the rate of change of lepton-to-baryon ratio. In the present manuscript, we have calculated the GT strength distributions and electron capture rates for odd-odd nucleus 50V by using the pn-QRPA theory. At present 50V is the first experimentally available odd-odd nucleus in fp-shell nuclei. We also compare our GT strength distribution with the recently measured results of a 50V(d,2He)50Ti experiment, with the earlier work ...

  2. Radiative Magnetic Reconnection in Astrophysics

    CERN Document Server

    Uzdensky, Dmitri A

    2015-01-01

    I review a new rapidly growing area of high-energy plasma astrophysics --- radiative magnetic reconnection, i.e., a reconnection regime where radiation reaction influences reconnection dynamics, energetics, and nonthermal particle acceleration. This influence be may be manifested via a number of astrophysically important radiative effects, such as radiation-reaction limits on particle acceleration, radiative cooling, radiative resistivity, braking of reconnection outflows by radiation drag, radiation pressure, viscosity, and even pair creation at highest energy densities. Self-consistent inclusion of these effects in magnetic reconnection theory and modeling calls for serious modifications to our overall theoretical approach to the problem. In addition, prompt reconnection-powered radiation often represents our only observational diagnostic tool for studying remote astrophysical systems; this underscores the importance of developing predictive modeling capabilities to connect the underlying physical condition...

  3. Integrating Out Astrophysical Uncertainties

    CERN Document Server

    Fox, Patrick J; Weiner, Neal

    2010-01-01

    Underground searches for dark matter involve a complicated interplay of particle physics, nuclear physics, atomic physics and astrophysics. We attempt to remove the uncertainties associated with astrophysics by developing the means to map the observed signal in one experiment directly into a predicted rate at another. We argue that it is possible to make experimental comparisons that are completely free of astrophysical uncertainties by focusing on {\\em integral} quantities, such as $g(v_{min})=\\int_{v_{min}} dv\\, f(v)/v $ and $\\int_{v_{thresh}} dv\\, v g(v)$. Direct comparisons are possible when the $v_{min}$ space probed by different experiments overlap. As examples, we consider the possible dark matter signals at CoGeNT, DAMA and CRESST-Oxygen. We find that expected rate from CoGeNT in the XENON10 experiment is higher than observed, unless scintillation light output is low. Moreover, we determine that S2-only analyses are constraining, unless the charge yield $Q_y< 2.4 {\\, \\rm electrons/keV}$. For DAMA t...

  4. Nuclear Astrophysics with the Trojan Horse Method

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Lamia, L.; Pizzone, R. G.; Cherubini, S.; Gulino, M.; La Cognata, M.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-01-01

    The Trojan Horse Method (THM) represents the indirect path to determine the bare nucleus astrophysical S(E) factor for reactions between charged particles at astrophysical energies. This is done by measuring the quasi free cross section of a suitable three body process. The basic features of the THM will be presented together with some applications to demonstrate its practical use.

  5. Trojan Horse Method: recent results in nuclear astrophysics

    Science.gov (United States)

    Spitaleri, C.; Lamia, L.; Gimenez Del Santo, M.; Burjan, V.; Carlin, N.; Li, Chengbo; Cherubini, S.; Crucilla, V.; Gulino, M.; Hons, Z.; Kroha, V.; Irgaziev, B.; La Cognata, M.; Mrazek, J.; Mukhamedzhanov, M.; Munhoz, M. G.; Palmerini, S.; Pizzone, R. G.; Puglia, M. R.; Rapisarda, G. G.; Romano, S.; Sergi, L.; Zhou, Shu-Hua; Somorjai, E.; Souza, F. A.; Tabacaru, G.; Szanto de Toledo, A.; Tumino, A.; Wen, Qungang; Wakabayashi, Y.; Yamaguchi, H.

    2015-07-01

    The accurate knowledge of thermonuclear reaction rates is important in understanding the energy generation, the neutrinos luminosity and the synthesis of elements in stars. The physical conditions under which the majority of astrophysical reactions proceed in stellar environments make it difficult or impossible to measure them under the same conditions in the laboratory. That is why different indirect techniques are being used along with direct measurements. The Trojan Horse Method (THM) is introduced as an independent technique to obtain the bare nucleus astrophysical S(E)-factor. As examples the results of recent the application of THM to the 2H(11B, σ08Be)n and 2H(10B, σ07Be)n reactions are presented.

  6. Women's Self-Disclosure of HIV Infection: Rates, Reasons, Reactions.

    Science.gov (United States)

    Simoni, Jane M.; And Others

    1995-01-01

    A survey of 65 ethnically diverse women revealed relatively low rates of disclosure of HIV-positive serostatus to extended family members, somewhat higher rates for immediate family members, and highest rates for lovers or friends. Spanish-speaking Latinas were less likely to disclose their serostatus than English-speaking Latinas, African…

  7. Classical reaction probabilities, cross sections and rate constants for the O( 1D) + H2 → OH + H reaction

    Science.gov (United States)

    Alexander, A. J.; Aoiz, F. J.; Bañares, L.; Brouard, M.; Herrero, V. J.; Simons, J. P.

    1997-10-01

    Reaction probabilitiers total reaction cross sections as a function of collision energy, and rate constants have been calculated using the quasi-classical trajectory (QCT) method for the O( 1D) + H 2 reaction on several ab initio potential energy surfaces (PES), including the recent one by Ho, Hollebeck, Rabitz, Harding and Schatz. Detailed QCT results on the Schinke and Lester PES are compared with recent time-dependent wavepacket calculations on the same PES, showing good agreement. The QCT thermal rate constants calculated on the PES of Ho et al. are in better accord with the experimental determinations than those calculated on the Schinke-Lester PES.

  8. Comparative study of Gamow-Teller strength distributions in the odd-odd nucleus V50 and its impact on electron capture rates in astrophysical environments

    Science.gov (United States)

    Nabi, Jameel-Un; Sajjad, Muhammad

    2007-11-01

    Gamow-Teller (GT) strength transitions are an ideal probe for testing nuclear structure models. In addition to nuclear structure, GT transitions in nuclei directly affect the early phases of Type Ia and Type-II supernovae core collapse since the electron capture rates are partly determined by these GT transitions. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. Recent nucleosynthesis calculations show that odd-odd and odd-A nuclei cause the largest contribution in the rate of change of lepton-to-baryon ratio. In the present manuscript, we have calculated the GT strength distributions and electron capture rates for odd-odd nucleus V50 by using the pn-QRPA theory. At present V50 is the first experimentally available odd-odd nucleus in fp-shell nuclei. We also compare our GT strength distribution with the recently measured results of a V50(d, He2)Ti50 experiment, with the earlier work of Fuller, Fowler, and Newman (referred to as FFN) and subsequently with the large-scale shell model calculations. One curious finding of the paper is that the Brink's hypothesis, usually employed in large-scale shell model calculations, is not a good approximation to use at least in the case of V50. SNe Ia model calculations performed using FFN rates result in overproduction of Ti50, and were brought to a much acceptable value by employing shell model results. It might be interesting to study how the composition of the ejecta using presently reported QRPA rates compare with the observed abundances.

  9. Recent Progress in Nuclear Astrophysics

    OpenAIRE

    Langanke, K

    1999-01-01

    The manuscript reviews progress achieved in recent years in various aspects of nuclear astrophysics, including stellar nucleosynthesis, nuclear aspects of supernova collapse and explosion, neutrino-induced reactions and their possible role in the supernova mechanism and nucleosynthesis, explosive hydrogen burning in binary systems, and finally the observation of $\\gamma$-rays from supernova remnants.

  10. Rate constants of reactions of {kappa}-carrageenan with hydrated electron and hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Abad, L.V. [Nuclear Professional School, School of Engineering Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City (Philippines)], E-mail: lvabad@pnri.dost.gov.ph; Saiki, S.; Kudo, H.; Muroya, Y.; Katsumura, Y. [Nuclear Professional School, School of Engineering Laboratory, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Rosa, A.M. de la [Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City (Philippines)

    2007-12-15

    The rate constants for the reactions of {kappa}-carrageenan with hydrated electron and hydroxyl radical was investigated by pulse radiolysis and laser photolysis. The kinetics of the reaction of hydrated electron indicates no seeming reaction with {kappa}-carrageenan. On the other hand, hydroxyl radical reacts very rapidly with {kappa}-carrageenan at a rate constant of approximately 1.2 x 10{sup 9} M{sup -1} s{sup -1}. This rate constant varies with pH.

  11. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    Science.gov (United States)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  12. Trends in Nuclear Astrophysics

    CERN Document Server

    Schatz, Hendrik

    2016-01-01

    Nuclear Astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  13. The Rate of the Proton-Proton Reaction

    OpenAIRE

    Kamionkowski, Marc; Bahcall, John N.

    1993-01-01

    We re-evaluate the matrix element for the proton-proton reaction which is important for stellar-evolution calculations and for the solar-neutrino problem. We self-consistently determine the effect of vacuum polarization on the matrix element by first correcting the low-energy scattering data to account for vacuum polarization. We then calculate the proton-proton wave function by integrating the Schrodinger equation with vacuum polarization included. We use improved data for proton-proton scat...

  14. Study of the astrophysically important $\\boldsymbol{^{23}\\mathrm{Na}(\\alpha,p)^{26}\\mathrm{Mg}}$ and $\\boldsymbol{^{23}\\mathrm{Na}(\\alpha,n)^{26}\\mathrm{Al}}$ reactions

    CERN Document Server

    Avila, M L; Almaraz-Calderon, S; Ayangeakaa, A D; Dickerson, C; Hoffman, C R; Jiang, C L; Kay, B P; Lai, J; Nusair, O; Pardo, R C; Santiago-Gonzalez, D; Talwar, R; Ugalde, C

    2016-01-01

    The $^{23}$Na$(\\alpha,p)^{26}$Mg and $^{23}$Na$(\\alpha,n)^{26}$Al reactions are important for our understanding of the $^{26}$Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using $^{4}$He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the $^{23}$Na$(\\alpha,p)^{26}$Mg and the $^{23}$Na$(\\alpha,n)^{26}$Al reactions are in good agreement with previous experiments, and with statistical model calculations.

  15. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Peter McInerney

    2014-01-01

    Full Text Available As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.

  16. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase.

    Science.gov (United States)

    McInerney, Peter; Adams, Paul; Hadi, Masood Z

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition. PMID:25197572

  17. Nuclear astrophysics with real photons—the data acquisition system of the NEPTUN tagger setup

    Science.gov (United States)

    Elvers, M.; Hasper, J.; Müller, S.; Savran, D.; Schnorrenberger, L.; Sonnabend, K.; Zilges, A.

    2008-01-01

    Photodissociation reactions play an important role in p-process nucleosynthesis. A precise knowledge of the energy dependence of a cross section is mandatory to determine the reaction rates for astrophysical network calculations. The NEPTUN tagger setup constructed at the S-DALINAC will provide high resolution measurements of (γ,n), (γ,p) and (γ, α) reactions. Besides a general overview on this setup its data acquisition system will be explained in more detail.

  18. Nonradial and nonpolytropic astrophysical outflows IX. Modeling T Tauri jets with a low mass-accretion rate

    CERN Document Server

    Sauty, C; Lima, J J G; Tsinganos, K; Cayatte, V; Globus, N

    2011-01-01

    Context: A large sample of T Tauri stars exhibits optical jets, approximately half of which rotate slowly, only at ten per cent of their breakup velocity. The disk-locking mechanism has been shown to be inefficient to explain this observational fact. Aims: We show that low mass accreting T Tauri stars may have a strong stellar jet component that can effectively brake the star to the observed rotation speed. Methods: By means of a nonlinear separation of the variables in the full set of the MHD equations we construct semi- analytical solutions describing the dynamics and topology of the stellar component of the jet that emerges from the corona of the star. Results: We analyze two typical solutions with the same mass loss rate but different magnetic lever arms and jet radii. The first solution with a long lever arm and a wide jet radius effectively brakes the star and can be applied to the visible jets of T Tauri stars, such as RY Tau. The second solution with a shorter lever arm and a very narrow jet radius ma...

  19. The trojan horse method as indirect technique in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A; Spitaleri, C; Cherubini, S; Crucilla, V; Fu, C; Gulino, M; La Cognata, M; Lamia, L; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L [Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria - Universita di Catania, Catania (Italy); Elekes, Z; Fueloep, Z; Gyuerky, G; Kiss, G; Mukhamedzhanov, A [ATOMKI - Debrecen (Hungary); Goldberg, V [Cyclotron Institute, Texas A and M University, College Station (United States); Rolfs, C [Ruhr-Universitaet, Bochum (Germany)], E-mail: tumino@lns.infn.it (and others)

    2008-05-15

    The Trojan Horse Method is a successful indirect technique for nuclear astrophysics. It allows one to measure astrophysical rearrangement reactions down to the relevant energies, providing a successful alternative path to measure the astrophysical S(E) factor. The basic features will be discussed and some recent results will be presented.

  20. NACRE II: an update of the NACRE compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number $A < 16$

    CERN Document Server

    Xu, Yi; Goriely, Stephane; Arnould, Marcel; Ohta, Masahisa; Utsunomiya, Hiroaki

    2013-01-01

    An update of the NACRE compilation [Angulo et al., Nucl. Phys. A 656 (1999) 3] is presented. This new compilation, referred to as NACRE II, reports thermonuclear reaction rates for 34 charged-particle induced, two-body exoergic reactions on nuclides with mass number $A<16$, of which fifteen are particle-transfer reactions and the rest radiative capture reactions. When compared with NACRE, NACRE II features in particular (1) the addition to the experimental data collected in NACRE of those reported later, preferentially in the major journals of the field by early 2013, and (2) the adoption of potential models as the primary tool for extrapolation to very low energies of astrophysical $S$-factors, with a systematic evaluation of uncertainties. As in NACRE, the rates are presented in tabular form for temperatures in the $10^{6}$ $\\simeq\\leq$ T $\\leq$ $10^{10}$ K range. Along with the 'adopted' rates, their low and high limits are provided. The new rates are available in electronic form as part of the Brussels...

  1. Evolutionary implications of the new triple-alpha nuclear reaction rate for low mass stars

    CERN Document Server

    Dotter, Aaron

    2009-01-01

    Context: Ogata et al. (2009; hereafter OKK) presented a theoretical determination of the triple-alpha nuclear reaction rate. Their rate differs from the NACRE rate by many orders of magnitude at temperatures relevant for low mass stars. Aims: We explore the evolutionary implications of adopting the OKK triple-alpha reaction rate in low mass stars and compare the results with those obtained using the NACRE rate. Methods: The triple-alpha reaction rates are compared by following the evolution of stellar models at 1 and 1.5 Msol with Z=0.0002 and Z=0.02. Results: Results show that the OKK rate has severe consequences for the late stages of stellar evolution in low mass stars. Most notable is the shortening--or disappearance--of the red giant phase. Conclusions: The OKK triple-alpha reaction rate is incompatible with observations of extended red giant branches and He burning stars in old stellar systems.

  2. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    Science.gov (United States)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  3. Interlaboratory reaction rate program. 12th progress report, November 1976-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Lippincott, E.P.; McElroy, W.N.; Preston, C.C. (comps.)

    1980-09-01

    The Interlaboratory Reaction Rate UILRR) program is establishing the capability to accurately measure neutron-induced reactions and reaction rates for reactor fuels and materials development programs. The goal for the principal fission reactions, /sup 235/U, /sup 238/U and /sup 239/Pu, is an accuracy to within +- 5% at the 95% confidence level. Accurate measurement of other fission and nonfission reactions is also required, but to a lesser accuracy, between +- 5% and 10% at the 95% confidence level. A secondary program objective is improvement in knowledge of the nuclear parameters involved in the standarization of fuels and materials dosimetry measurements of neutron flux, spectra, fluence and burnup.

  4. Measurement of sub threshold resonance contributions to fusion reactions: the case of the 13C(α, n16O astrophysical neutron source

    Directory of Open Access Journals (Sweden)

    La Cognata M.

    2015-01-01

    of the 6.356 MeV level was deduced. For the first time, the Trojan Horse Method and the asymptotic normalization coefficient were used in synergy. Our indirect approach lead to (C̃17O(1/2+α13C2 = 7.7−1.5+1.6 fm−1, slightly larger than the values in the literature, determining a 13C(α, n16O reaction rate slightly larger than the one in the literature at temperatures lower than 108 K, with enhanced accuracy.

  5. The nuclear fusion reaction rate based on relativistic equilibrium velocity distribution

    OpenAIRE

    Liu, Jian-Miin

    2002-01-01

    The Coulomb barrier is in general much higher than thermal energy. Nuclear fusion reactions occur only among few protons and nuclei with higher relative energies than Coulomb barrier. It is the equilibrium velocity distribution of these high-energy protons and nuclei that participates in determining the rate of nuclear fusion reactions. In the circumstance it is inappropriate to use the Maxwellian velocity distribution for calculating the nuclear fusion reaction rate. We use the relativistic ...

  6. Controlling the emotional heart: heart rate biofeedback improves cardiac control during emotional reactions.

    Science.gov (United States)

    Peira, Nathalie; Fredrikson, Mats; Pourtois, Gilles

    2014-03-01

    When regulating negative emotional reactions, one goal is to reduce physiological reactions. However, not all regulation strategies succeed in doing that. We tested whether heart rate biofeedback helped participants reduce physiological reactions in response to negative and neutral pictures. When viewing neutral pictures, participants could regulate their heart rate whether the heart rate feedback was real or not. In contrast, when viewing negative pictures, participants could regulate heart rate only when feedback was real. Ratings of task success paralleled heart rate. Participants' general level of anxiety, emotion awareness, or cognitive emotion regulation strategies did not influence the results. Our findings show that accurate online heart rate biofeedback provides an efficient way to down-regulate autonomic physiological reactions when encountering negative stimuli. PMID:24373886

  7. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase

    OpenAIRE

    Peter McInerney; Paul Adams; Hadi, Masood Z.

    2014-01-01

    As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differe...

  8. New determination of the 13C(a, n)16O reaction rate and its influence on the s-process nucleosynthesis in AGB stars

    CERN Document Server

    Guo, B; Lugaro, M; Buntain, J; Pang, D Y; Li, Y J; Su, J; Yan, S Q; Bai, X X; Chen, Y S; Fan, Q W; Jin, S J; Karakas, A I; Li, E T; Li, Z C; Lian, G; Liu, J C; Liu, X; Shi, J R; Shu, N C; Wang, B X; Wang, Y B; Zeng, S; Liu, W P

    2012-01-01

    We present a new measurement of the $\\alpha$-spectroscopic factor ($S_\\alpha$) and the asymptotic normalization coefficient (ANC) for the 6.356 MeV 1/2$^+$ subthreshold state of $^{17}$O through the $^{13}$C($^{11}$B, $^{7}$Li)$^{17}$O transfer reaction and we determine the $\\alpha$-width of this state. This is believed to have a strong effect on the rate of the $^{13}$C($\\alpha$, $n$)$^{16}$O reaction, the main neutron source for {\\it slow} neutron captures (the $s$-process) in asymptotic giant branch (AGB) stars. Based on the new width we derive the astrophysical S-factor and the stellar rate of the $^{13}$C($\\alpha$, $n$)$^{16}$O reaction. At a temperature of 100 MK our rate is roughly two times larger than that by \\citet{cau88} and two times smaller than that recommended by the NACRE compilation. We use the new rate and different rates available in the literature as input in simulations of AGB stars to study their influence on the abundances of selected $s$-process elements and isotopic ratios. There are ...

  9. Direct Measurement of the Astrophysical ^{38}K(p,γ)^{39}Ca Reaction and Its Influence on the Production of Nuclides toward the End Point of Nova Nucleosynthesis.

    Science.gov (United States)

    Lotay, G; Christian, G; Ruiz, C; Akers, C; Burke, D S; Catford, W N; Chen, A A; Connolly, D; Davids, B; Fallis, J; Hager, U; Hutcheon, D A; Mahl, A; Rojas, A; Sun, X

    2016-04-01

    We have performed the first direct measurement of the ^{38}K(p,γ)^{39}Ca reaction using a beam of radioactive ^{38}K. A proposed ℓ=0 resonance in the ^{38}K+p system has been identified at 679(2) keV with an associated strength of 120_{-30}^{+50}  meV. Upper limits of 1.16 (3.5) and 8.6 (26) meV at the 68% (95%) confidence level were also established for two further expected ℓ=0 resonances at 386 and 515 keV, respectively. The present results have reduced uncertainties in the ^{38}K(p,γ)^{39}Ca reaction rate at temperatures of 0.4 GK by more than 2 orders of magnitude and indicate that Ar and Ca may be ejected in observable quantities by oxygen-neon novae. However, based on the newly evaluated rate, the ^{38}K(p,γ)^{39}Ca path is unlikely to be responsible for the production of Ar and Ca in significantly enhanced quantities relative to solar abundances. PMID:27081974

  10. Thermonuclear reaction rate of 17O(p,γ)18F-a high-current, low-energy study at sea level

    International Nuclear Information System (INIS)

    Classical novae are thought to be the dominant source of 17O in our Galaxy. These energetic events produce 18F that, as it decays to 18O, drives the ejection of nuclear 'ash' into the interstellar medium. The importance of the non-resonant component of the 17O(p,γ)18F reaction is well established, and numerous studies have been performed to analyze this reaction. However, the temperature regime relevant to explosive hydrogen burning during classical novae corresponds to very low proton bombarding energies. At these low energies, the Coulomb barrier suppresses the reaction yield in the laboratory, and environmental backgrounds dominate the detected signal making it difficult to differentiate the direct capture γ-cascade from background. At the Laboratory for Experimental Nuclear Astrophysics (LENA), our electron cyclotron resonance (ECR) ion source produces intense, low-energy proton beam (∼ 2.0 mA at the target), and these high currents boost the reaction yield. The LENA facility also has a coincidence detector setup that reduces environmental background contributions and boosts signal-to-noise. The sensitivity afforded by γγ -coincidence and high beam current allowed us to probe the 17O(p,γ)18F reaction within the classical nova Gamow window. Improved 17O(p,γ)18F direct capture reaction rates are currently being determined, and our progress will be reported. (author)

  11. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

    2015-08-07

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.

  12. Underground nuclear astrophysics: Why and how

    Energy Technology Data Exchange (ETDEWEB)

    Best, A.; Laubenstein, M. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (AQ) (Italy); Caciolli, A. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN, Padova (Italy); Fueloep, Zs.; Gyuerky, Gy. [Institute for Nuclear Research (MTA Atomki), Debrecen (Hungary); Napolitani, E. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Rigato, V. [Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Roca, V. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Napoli (Italy); INFN, Napoli (Italy); Szuecs, T. [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden (Germany)

    2016-04-15

    The goal of nuclear astrophysics is to measure cross-sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross-sections are very low due to the suppression of the Coulomb barrier. Cosmic-ray-induced background can seriously limit the determination of reaction cross-sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross-section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given. (orig.)

  13. Underground nuclear astrophysics: why and how

    CERN Document Server

    Best, A; Fülöp, Zs; Gyürky, Gy; Laubenstein, M; Napolitani, E; Rigato, V; Roca, V; Szücs, T

    2016-01-01

    The goal of nuclear astrophysics is to measure cross sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross sections are very low due to the suppression of the Coulomb barrier. Cosmic ray induced background can seriously limit the determination of reaction cross sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  14. Indirect techniques in nuclear astrophysics. Asymptotic normalization coefficient and trojan horse

    Energy Technology Data Exchange (ETDEWEB)

    Mukhamedzhanov, A.M.; Gagliardi, C.A.; Pirlepesov, F.; Trache, L.; Tribble, R.E. [Texas A and M University, Cyclotron Institute, College Station, TX (United States); Blokhintsev, L.D. [Moscow State University, Institute of Nuclear Physics, Moscow (Russian Federation); Brown, B.A.; Nunes, F.M. [Michigan State University, N.S.C.L. and Department of Physics and Astronomy, East Lansing, MI (United States); Burjan, V.; Kroha, V. [Nuclear Physics Institute of Czech Academy of Sciences, Prague-Rez (Czech Republic); Cherubini, S.; Pizzone, R.G.; Romano, S.; Spitaleri, C.; Tumino, A. [DMFCI, Universita di Catania, Catania, Italy and INFN, Laboratori Nazionali del Sud, Catania (Italy); Irgaziev, B.F. [National University, Physics Department, Tashkent (Uzbekistan); Tang, X.D. [Argonne National Laboratory, Physics Division, Argonne, IL (United States)

    2006-03-15

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reactions down to astrophysically relevant energies. We explain why there is no Coulomb barrier in the sub-process amplitudes extracted from the TH reaction. The expressions for the TH amplitude for direct and resonant cases are presented. (orig.)

  15. Tests of the market's reaction to federal funds rate target changes

    OpenAIRE

    Daniel L. Thornton

    1998-01-01

    In this article, Daniel L. Thornton tests several hypotheses about the market's reactions to changes in the Federal Reserve's federal funds rate target. Thornton finds that short-term rates and long-term rates responded differently to funds rate target changes when target changes were accompanied by a change in the discount rate. He presents evidence that the smaller response of long-term rates (in these instances) is due to the market revising its inflation outlook when the target is changed...

  16. Accessing reaction rate constants in on-column reaction chromatography: an extended unified equation for reaction educts and products with different response factors.

    Science.gov (United States)

    Trapp, Oliver; Bremer, Sabrina; Weber, Sven K

    2009-11-01

    An extension of the unified equation of chromatography to directly access reaction rate constants k(1) of first-order reaction in on-column chromatography is presented. This extended equation reflects different response factors in the detection of the reaction educt and product which arise from structural changes by elimination or addition, e.g., under pseudo-first-order reaction conditions. The reaction rate constants k(1) and Gibbs activation energies DeltaG(double dagger) of first-order reactions taking place in a chromatographic system can be directly calculated from the chromatographic parameters, i.e., retention times of the educt E and product P (t(R)(A) and t(R)(B)), peak widths at half height (w(A) and w(B)), the relative plateau height (h(p)) of the conversion profile, and the individual response factors f(A) and f(B). The evaluation of on-column reaction gas chromatographic experiments is exemplified by the evaluation of elution profiles obtained by ring-closing metathesis reaction of N,N-diallytrifluoroacetamide in presence of Grubbs second-generation catalyst, dissolved in polydimethylsiloxane (GE SE 30).

  17. Nuclear Astrophysics: CIPANP 2006

    OpenAIRE

    Haxton, W. C.

    2006-01-01

    I review progress that has been made in nuclear astrophysics over the past few years and summarize some of the questions that remain. Topics selected include solar neutrinos, supernovae (the explosion and associated nucleosynthesis), laboratory astrophysics, and neutron star structure.

  18. Reaction rates in blanket assemblies of a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    To validate neutronics calculation for the blanket design of fusion-fission hybrid reactor, experiments for measuring reaction rates inside two simulating assemblies are performed. Two benchmark assemblies were developed for the neutronics experiments. A D-T fusion neutron source is placed at the center of the setup. One of them consists of three layers of depleted uranium shells and two layers of polyethylene shells, and these shells are arranged alternatively. The 238U capture reaction rates are measured using depleted uranium foils and an HPGe gamma spectrometer. The fission reaction rates are measured using a fission chamber coated with depleted uranium. The other assembly consists of depleted uranium and LiH shells. The tritium production rates are measured using the lithium glass scintillation detector which is placed in the LiH region of the assembly. The measured reaction rates are compared with the calculated ones predicted using MCNP code, and C/E values are obtained. (authors)

  19. The Relation Between Damping and Reaction Rates of Fermions in Hot Gauge Theories

    CERN Document Server

    Ayala, A P; Weber, A; Ayala, Alejandro; Olivo, Juan Carlos D'; Weber, Axel

    1998-01-01

    We examine the relation between the damping rate of a chiral fermion mode propagating in a hot plasma and the rate at which the mode approaches equilibrium. We show that these two quantities, obtained from the imaginary part of the fermion self-energy, are equal provided the reaction rate is defined using the appropriate wave function of the mode in the medium.

  20. Dielectronic recombination data for astrophysical applications: Plasma rate-coefficients for Fe^q+ (q=7-10, 13-22) and Ni^25+ ions from storage-ring experiments

    OpenAIRE

    Schippers, S.; Lestinsky, M.; Müller, A.; Savin, D. W.; Schmidt, E.W.; Wolf, A.

    2010-01-01

    This review summarizes the present status of an ongoing experimental effort to provide reliable rate coefficients for dielectronic recombination of highly charged iron ions for the modeling of astrophysical and other plasmas. The experimental work has been carried out over more than a decade at the heavy-ion storage-ring TSR of the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany. The experimental and data reduction procedures are outlined. The role of previously disregarded pr...

  1. Anticipatory Heart Rate Deceleration and Reaction Time in Children with and without Referral for Learning Disability

    Science.gov (United States)

    Sroufe, L. Alan; And Others

    1973-01-01

    The finding of major significance in this study concerns the effect of stimulant drug medication on the relationship between heart rate deceleration and reaction time with the clinic children. (Authors)

  2. Compilation of neutron flux density spectra and reaction rates in different neutron fields. V.3

    International Nuclear Information System (INIS)

    Upon the recommendation of the International Working Group of Reactor Radiation Measurements (IWGRRM) a compilation of documents containing neutron flux density spectra and the reaction rates obtained by activiation and fission foils in different neutron fields is presented

  3. Experimental measurements of the O15(alpha,gamma)Ne19 reaction rate vs. observations of type I X-ray bursts

    CERN Document Server

    Fisker, J L; Görres, J; Wiescher, M; Cooper, R L; Fisker, Jacob Lund; Tan, Wanpeng; Goerres, Joachim; Wiescher, Michael; Cooper, Randall L.

    2007-01-01

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the continuously accreting fuel supply and depletion by nuclear burning via the hot CNO cycles. Therefore the ignition depends critically on the hot CNO breakout reaction O15(alpha,gamma)Ne19 that regulates the flow between the beta-limited hot CNO cycle and the rapid proton capture process. Until recently, the O15(alpha,gamma)Ne19 reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we report on the astrophysical consequences of the first measurement of this reaction rate on the thermonuclear instability that leads to type I X-ray bursts on accr...

  4. Measurement of 235U fission reaction-rates in combined device

    International Nuclear Information System (INIS)

    Fission reaction-rates of 235U (wrapped with Cd of 0.8 mm) in the combined setup were measured, using the enriched uranium fission chamber and capturing detector. The method of detecting the low-energy scattering, neutron background was studied. The experimental error is ±6.0%-±10.2%. The results was compared with the ones of 238U the fission reaction-rates. (authors)

  5. New Approach to the Stability of Chemical Reaction Networks: Piecewise Linear in Rates Lyapunov Functions

    OpenAIRE

    Al-Radhawi, M. Ali; Angeli, David

    2014-01-01

    Piecewise-Linear in Rates (PWLR) Lyapunov functions are introduced for a class of Chemical Reaction Networks (CRNs). In addition to their simple structure, these functions are robust with respect to arbitrary monotone reaction rates, of which mass-action is a special case. The existence of such functions ensures the convergence of trajectories towards equilibria, and guarantee their asymptotic stability with respect to the corresponding stoichiometric compatibility class. We give the definiti...

  6. Compilation and R-matrix analysis of Big Bang nuclear reaction rates

    OpenAIRE

    Descouvemont, Pierre; Adahchour, Abderrahim; Angulo, Carmen; Coc, Alain; Vangioni-Flam, Elisabeth

    2004-01-01

    We use the R-matrix theory to fit low-energy data on nuclear reactions involved in Big Bang nucleosynthesis. A special attention is paid to the rate uncertainties which are evaluated on statistical grounds. We provide S factors and reaction rates in tabular and graphical formats. Comment: 40 pages, accepted for publication at ADNDT, web site at http://pntpm3.ulb.ac.be/bigbang

  7. Shell and explosive hydrogen burning. Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

    Energy Technology Data Exchange (ETDEWEB)

    Boeltzig, A. [Gran Sasso Science Institute, L' Aquila (Italy); Bruno, C.G.; Davinson, T. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Cavanna, F.; Ferraro, F. [Dipartimento di Fisica, Universita di Genova (Italy); INFN, Genova (Italy); Cristallo, S. [Osservatorio Astronomico di Collurania, INAF, Teramo (Italy); INFN, Napoli (Italy); Depalo, R. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); INFN, Padova (Italy); DeBoer, R.J.; Wiescher, M. [University of Notre Dame, Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, Notre Dame, Indiana (United States); Di Leva, A.; Imbriani, G. [Dipartimento di Fisica, Universita di Napoli Federico II, Napoli (Italy); INFN, Napoli (Italy); Marigo, P. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Terrasi, F. [Dipartimento di Matematica e Fisica Seconda Universita di Napoli, Caserta (Italy); INFN, Napoli (Italy)

    2016-04-15

    The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions. (orig.)

  8. The Effect of the Triple-α Reaction Rate on Stellar Evolution at Low-Metallicity

    Science.gov (United States)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2010-06-01

    We investigate the effect of the triple-α reaction rates on the evolution of low-mass stars and massive stars. The former is compared with the observations of metal-poor stars known to date. For the latter, we discuss the impact of recent calculation of triple-α reaction rate by Ogata et al. (2009, PTP, 122, 1055) on the evolution until carbon burning.

  9. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W Brent

    2009-03-03

    The overall goal of the project was to bridge the gap between our knowledge of small-scale geochemical reaction rates and reaction rates meaningful for modeling transport at core scales. The working hypothesis was that reaction rates, determined from laboratory measurements based upon reactions typically conducted in well mixed batch reactors using pulverized reactive media may be significantly changed in in situ porous media flow due to rock microstructure heterogeneity. Specifically we hypothesized that, generally, reactive mineral surfaces are not uniformly accessible to reactive fluids due to the random deposition of mineral grains and to the variation in flow rates within a pore network. Expected bulk reaction rates would therefore have to be correctly up-scaled to reflect such heterogeneity. The specific objective was to develop a computational tool that integrates existing measurement capabilities with pore-scale network models of fluid flow and reactive transport. The existing measurement capabilities to be integrated consisted of (a) pore space morphology, (b) rock mineralogy, and (c) geochemical reaction rates. The objective was accomplished by: (1) characterizing sedimentary sandstone rock morphology using X-ray computed microtomography, (2) mapping rock mineralogy using back-scattered electron microscopy (BSE), X-ray dispersive spectroscopy (EDX) and CMT, (3) characterizing pore-accessible reactive mineral surface area, and (4) creating network models to model acidic CO{sub 2} saturated brine injection into the sandstone rock samples.

  10. Impact of a Revised 25Mg(p, γ)26Al Reaction Rate on the Operation of the Mg-Al Cycle

    Science.gov (United States)

    Straniero, O.; Imbriani, G.; Strieder, F.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Corvisiero, P.; Costantini, H.; Cristallo, S.; DiLeva, A.; Formicola, A.; Elekes, Z.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Junker, M.; Lemut, A.; Limata, B.; Marta, M.; Mazzocchi, C.; Menegazzo, R.; Piersanti, L.; Prati, P.; Roca, V.; Rolfs, C.; Rossi Alvarez, C.; Somorjai, E.; Terrasi, F.; Trautvetter, H.-P.

    2013-02-01

    Proton captures on Mg isotopes play an important role in the Mg-Al cycle active in stellar H-burning regions. In particular, low-energy nuclear resonances in the 25Mg(p, γ)26Al reaction affect the production of radioactive 26Algs as well as the resulting Mg/Al abundance ratio. Reliable estimations of these quantities require precise measurements of the strengths of low-energy resonances. Based on a new experimental study performed at the Laboratory for Underground Nuclear Astrophysics, we provide revised rates of the 25Mg(p, γ)26Algs and the 25Mg(p, γ)26Al m reactions with corresponding uncertainties. In the temperature range 50-150 MK, the new recommended rate of 26Al m production is up to five times higher than previously assumed. In addition, at T = 100 MK, the revised total reaction rate is a factor of two higher. Note that this is the range of temperature at which the Mg-Al cycle operates in a H-burning zone. The effects of this revision are discussed. Due to the significantly larger 25Mg(p, γ)26Al m rate, the estimated production of 26Algs in H-burning regions is less efficient than previously obtained. As a result, the new rates should imply a smaller contribution from Wolf-Rayet stars to the galactic 26Al budget. Similarly, we show that the asymptotic giant branch (AGB) extra-mixing scenario does not appear able to explain the most extreme values of 26Al/27Al, i.e., >10-2, found in some O-rich presolar grains. Finally, the substantial increase of the total reaction rate makes the hypothesis of self-pollution by massive AGBs a more robust explanation for the Mg-Al anticorrelation observed in globular-cluster stars.

  11. Charge state distribution of {sup 16}O from the {sup 4}He({sup 12}C,{sup 16}O)γ reaction of astrophysical interest studied both experimentally and theoretically

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengjin, E-mail: liusj@ihep.ac.cn [Institute of High Energy Physics, China Academy of Science, 19B YuquanLu, Shijingshan, Beijing 100049 (China); Department of Physics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Sakurai, Makoto [Department of Physics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Sagara, Kenshi; Teranishi, Takashi; Fujita, Kunihiro; Yamaguchi, Hiroyuki; Matsuda, Sayaka; Mitsuzumi, Tatsuki; Iwazaki, Makoto; Rosary, Mariya T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kato, Daiji [Fusion Systems Research Division, National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Tolstikhina, I.Yu. [P.N. Lebedev Physical Institute, Leninskii pr. 53, Moscow 119991 (Russian Federation)

    2014-06-01

    In astrophysics, {sup 4}He({sup 12}C,{sup 16}O)γ reaction places an important role. At Kyushu University Tandem accelerator Laboratory (KUTL), the measurement of {sup 4}He({sup 12}C,{sup 16}O)γ cross section is in progress in the energy range of astrophysical nuclear reaction. Since the charge state of product {sup 16}O ions after passing through the gas target is spread and only one charge state can be measured at terminal detector, it is necessary to know the charge state distribution of {sup 16}O ions passing through the He gas target precisely. Here, we report the charge state distribution of the {sup 16}O recoils both experimentally and theoretically. Experimentally, we measured the equilibrium charge state distribution of {sup 16}O ions in the windowless helium gas target with the beam energy of primary {sup 16}O ions at 7.2, 4.5, and 3.45 MeV at KUTL. The measured results showed a Gaussian distribution for the charge state fraction. Theoretically, we proposed a framework for the charge state distribution study. Charge state distribution was computed by solving a set of differential equations including a series of charge exchange cross sections. For the ionization cross section, plane-wave Born approximation was applied and modified by taking target atomic screening as a function of momentum transfer into account. For the capture cross section, continuum distorted wave approximation was applied and the influence of the gas target density was taken into account in the process of electron capture. Using above charge exchange cross sections, the charge state evolution was simulated. According to the equilibrium distribution, we compared the theoretical calculation to the experimental data. After taking into account the density effects in the charge exchange process, the theoretical charge state distributions shows a good agreement with the experimental data. Both experimental and theoretical results are useful to understand the charge fraction of recoil oxygen

  12. Re-evaluation of the 23Mg(p,γ) 24Al reaction rate

    Institute of Scientific and Technical Information of China (English)

    Liu Hong-Lin; Liu Men-Quan; Lai Xiang-Jun; Luo Zhi-Quan

    2007-01-01

    Based on a new screening Coulomb model, this paper discusses the effect of electron screening on proton capture reaction of 23Mg. The derived result shows that, in some considerable range of stellar temperatures, the effect of electron screening on resonant reaction is prominent; on the non-resonant reaction the effect is obvious only in the low stellar temperatures. The reaction rates of 23Mg(p,γ)24Al would increase 15%-25% due to the fact that the electron screening are considered in typical temperature range of massive mass white dwarfs, and the results undoubtedly affect the nucleosynthesis of some heavier nuclei in massive mass white dwarfs.

  13. Rate coefficients from quantum and quasi-classical cumulative reaction probabilities for the S(1D) + H2 reaction

    Science.gov (United States)

    Jambrina, P. G.; Lara, Manuel; Menéndez, M.; Launay, J.-M.; Aoiz, F. J.

    2012-10-01

    Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S(1D) + H2 → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002), 10.1063/1.1431280] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009), 10.1021/jp903790h]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S(1D).

  14. Trojan Horse Method: recent applications in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Mukhamedzhanov, A. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Pizzone, R.G.; Romano, S.; Sergi, M.L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Tumino, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy)

    2010-03-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  15. Sodium Enrichment in Yellow Supergiants: a Perspective from the Uncertainties of Reaction Rates

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sodium overabundance in yellow supergiants has stumped people for more than 20 years. The purpose of this paper is to explore this problem from the perspective of nuclear physics. We investigate carefully the CNO and NeNa cycles that are responsible for sodium production. We investigate some key reactions in the appropriate network. We show whether and how the sodium output can be affected by the rate uncertainties in these reactions. In this way, we evaluate if a reaction is important enough to deserve a better determination of its rate in terrestrial laboratories.

  16. Bubble Chambers for Experiments in Nuclear Astrophysics

    OpenAIRE

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Rehm, K. E.; Raut, R.; Robinson, A.; Sonnenschein, A.; Rusev, G.; A.P. Tonchev; Ugalde, C.

    2015-01-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning...

  17. Absolute reaction rate measurement with D-D neutron source in polyethylene spherical shell

    International Nuclear Information System (INIS)

    The absolute reaction rate distribution measurements in a polyethylene spherical shell with 38.6 cm outside diameter and 10 cm thickness were performed with D-D neutron source. By combining fission method and activation method, rich-uranium fission chamber, depleted-uranium fission chamber, 237Np fission chamber and 115In activation foils were placed at several positions on the equatorial line of the inner face of the shell, and the absolute reaction rates were obtained. The uncertainty of fission rates is 2.5%-4.3%, while the uncertainty of activation rates is about 6.3%. The reaction rates were calculated by MCNP and ENDF/B-VII. 0. The calculated results are lower than the measured results and 238U is typical. (authors)

  18. Excitation of compound states in the subsystems as indirect tool in nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Tribble R.E.

    2010-03-01

    Full Text Available Astrophysical reactions proceeding through compound states represent one of the crucial part of nuclear astrophysics. However, due to the presence of the Coulomb barrier, it is often very difficult or even impossible to obtain the astrophysical S (E factor from measurements in the laboratory at astrophysically relevant energies. The Trojan Horse method (THM provides a unique tool to obtain the information about resonant astrophysical reactions at astrophysically relevant energies. Here the theory and application of the THM for the resonant reactions is addressed.

  19. Estimation of the reaction rate constant of HOCl by SMILES observation

    Science.gov (United States)

    Kuribayashi, Kouta; Kasai, Yasuko; Sato, Tomohiro; Sagawa, Hideo

    2012-07-01

    Hypochlorous acid, HOCl plays an important role to link the odd ClOx and the odd HOx in the atmospheric chemistry with the reaction: {ClO} + {HO_{2}} \\longrightarrow {HOCl} + {O_{2}} Quantitative understanding of the rate constant of the reaction (1.1) is essential for understanding the ozone loss in the mid-latitude region because of a view point of its rate controlling role in the ozone depletion chemistry. Reassessment of the reaction rate constant was pointed out from MIPAS/Envisat observations (von Clarmann et al., 2011) and balloon-borne observations (Kovalenko et al., 2007). Several laboratory studies had been reported, although the reaction rate constants have large uncertainties, as k{_{HOCl}} = (1.75 ± 0.52) × 10^{-12} exp[(368 ± 78)/T] (Hickson et al., 2007), and large discrepancies (Hickson et al., 2007;Stimpfle et al., 1979). Moreover, theoretical ab initio studies pointed out the pressure dependence of the reaction (1.1) (Xu et al., 2003). A new high-sensitive remote sensing technology named Superconducting SubMillimeter-wave Limb-Emission Sounder (SMILES) on the International Space Station (ISS) had observed diurnal variations of HOCl in the upper stratosphere/lower mesosphere (US/LM) region for the first time. ClO and HO_{2} were slso observed simultaneously with HOCl. SMILES performed the observations between 12^{{th}} October 2009 and 21^{{th}} April 2010. The latitude coverage of SMILES observation is normally 38°S-65°N. The altitude region of HOCl observation is about 28-70 km. We estimated the time period in which the reaction (1.1) becomes dominant in the ClO_{y} diurnal chemistry in US/LM. The reaction rate constant was directly estimated by decay of [ClO] and [HO_{2}] amounts in that period. The derived reaction rate constant represented well the increase of [HOCl] amount.

  20. The astrophysically important 3{sup +} state in {sup 18}Ne and the {sup 17}F(p,{gamma}){sup 18}Ne stellar rate

    Energy Technology Data Exchange (ETDEWEB)

    Bardayan, D. W.; Blackmon, J. C.; Brune, C. R.; Champagne, A. E.; Chen, A. A.; Cox, J. M.; Davinson, T.; Hansper, V. Y.; Hofstee, M. A.; Johnson, B. A. (and others)

    2000-11-01

    Knowledge of the {sup 17}F(p,{gamma}){sup 18}Ne reaction rate is important for understanding stellar explosions, but it was uncertain because the properties of an expected but previously unobserved 3{sup +} state in {sup 18}Ne were not known. This state would provide a strong s-wave resonance for the {sup 17}F+p system and, depending on its excitation energy, could dominate the stellar reaction rate at temperatures above 0.2 GK. We have observed this missing 3{sup +} state by measuring the {sup 1}H({sup 17}F,p){sup 17}F excitation function with a radioactive {sup 17}F beam at the ORNL Holifield Radioactive Ion Beam Facility (HRIBF). We find that the state lies at a center-of-mass energy of E{sub r}=599.8{+-}1.5{sub stat}{+-}2.0{sub sys} keV (E{sub x}=4523.7{+-}2.9keV) and has a width of {Gamma}=18{+-}2{sub stat}{+-}1{sub sys}keV. The measured properties of the resonance are only consistent with a J{sup {pi}}=3{sup +} assignment.

  1. Neutron cross sections of importance to astrophysics

    International Nuclear Information System (INIS)

    Neutron reactions of importance to the various stellar burning cycles are discussed. The role of isomeric states in the branched s-process is considered for particular cases. Neutron cross section needs for the 187Re-187Os, 87Rb-87Sr clocks for nuclear cosmochronology are discussed. Other reactions of interest to astrophysical processes are presented. 35 references

  2. Recent Status of Astrophysical S17

    Science.gov (United States)

    Motobayashi, T.

    2002-12-01

    The present status of the astrophysical S factor for the 7Be(p, γ)8B reaction is reviewed. Because of its importance for the solar neutrino problem, the reaction has been extensively studied. Three independent methods, the direct capture, the Coulomb dissociation and the ANC method, give almost consistent results within 10-20% accuracy.

  3. Determination of the enzyme reaction rate in a differential fixed-bed reactor: a case study

    Directory of Open Access Journals (Sweden)

    Baruque Filho E.A.

    2001-01-01

    Full Text Available The reaction rate of starch hydrolysis catalyzed by a glucoamylase covalently bound to chitin particles was measured in a Differential Fixed-Bed Reactor (DFBR. Under selected test conditions the initial reaction rate may represent biocatalyst activity. Some aspects which influence measurement of the initial reaction rate of an immobilized enzyme were studied: the amount of desorbed enzyme and its hydrolytic activity, the extent of pore blockage of the biocatalyst caused by substrate solution impurities and the internal and external diffusional mass transfer effects. The results showed that the enzyme glucoamylase was firmly bound to the support, as indicated by the very low amount of desorbed protein found in the recirculating liquid. Although this protein was very active, its contribution to the overall reaction rate was negligible. It was observed that the biocatalyst pores were susceptible to being blocked by the impurities of the starch solution. This latter effect was accumulative, increasing with the number of sequential experiments carried out. When the substrate solution was filtered before use, very reliable determinations of immobilized enzyme reaction rates could be performed in the DFBR. External and internal diffusional resistences usually play a significant role in fixed-bed reactors. However, for the experimental system studied, internal mass transfer effects were not significant, and it was possible to select an operational condition (recirculation flow rate value that minimized the external diffusional limitations.

  4. Nuclear Astrophysics at DANCE

    International Nuclear Information System (INIS)

    One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements

  5. Measurement and calculation of 238U fission reaction rates induced by neutrons reflected by carbon material

    International Nuclear Information System (INIS)

    To check the data of carbon material reflecting neutrons, the distribution of 238U fission reaction rates induced by D-T fusion neutrons reflected by carbon material was measured by using the small depleted uranium fission chamber and the capturing detector. For comparison, 238U fission rates without carbon material was measured too. The combined standard uncertainty of 238U fission reaction rate is 5.1%-6.4%. The measured results are consistent with the calculated ones with MCNP/4A code and ENDF/B-IV library data in the range of the error

  6. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1997-01-01

    of the thermokinetic description of reaction rates to include the influence of effecters. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282......, 919-927] can be much more widely applied, although it was originally based on linearized kinetics. The methodology of determining elasticity coefficients directly from pool levels is illustrated with an analysis of the first two steps of the biosynthetic pathway of penicillin. The results compare well...

  7. Chemical Reaction Rates from Ring Polymer Molecular Dynamics: Theory and Practical Applications

    CERN Document Server

    Suleimanov, Yury V; Guo, Hua

    2016-01-01

    This Feature Article presents an overview of the current status of Ring Polymer Molecular Dynamics (RPMD) rate theory. We first analyze theory and its connection to quantum transition state theory. We then focus on its practical application to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rates in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques for calculating thermal chemical rates. We also hope it will motivate further applications of RPMD to various chemical reactions.

  8. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin. PMID:27451646

  9. A numerical evaluation of prediction accuracy of CO2 absorber model for various reaction rate coefficients

    Directory of Open Access Journals (Sweden)

    Shim S.M.

    2012-01-01

    Full Text Available The performance of the CO2 absorber column using mono-ethanolamine (MEA solution as chemical solvent are predicted by a One-Dimensional (1-D rate based model in the present study. 1-D Mass and heat balance equations of vapor and liquid phase are coupled with interfacial mass transfer model and vapor-liquid equilibrium model. The two-film theory is used to estimate the mass transfer between the vapor and liquid film. Chemical reactions in MEA-CO2-H2O system are considered to predict the equilibrium pressure of CO2 in the MEA solution. The mathematical and reaction kinetics models used in this work are calculated by using in-house code. The numerical results are validated in the comparison of simulation results with experimental and simulation data given in the literature. The performance of CO2 absorber column is evaluated by the 1-D rate based model using various reaction rate coefficients suggested by various researchers. When the rate of liquid to gas mass flow rate is about 8.3, 6.6, 4.5 and 3.1, the error of CO2 loading and the CO2 removal efficiency using the reaction rate coefficients of Aboudheir et al. is within about 4.9 % and 5.2 %, respectively. Therefore, the reaction rate coefficient suggested by Aboudheir et al. among the various reaction rate coefficients used in this study is appropriate to predict the performance of CO2 absorber column using MEA solution. [Acknowledgement. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF, funded by the Ministry of Education, Science and Technology (2011-0017220].

  10. The new JENSA gas-jet target for astrophysical radioactive beam experiments

    Science.gov (United States)

    Bardayan, D. W.; Chipps, K. A.; Ahn, S.; Blackmon, J. C.; Browne, J.; Greife, U.; Jones, K. L.; Kontos, A.; Kozub, R. L.; Linhardt, L.; Manning, B.; Matoš, M.; O'Malley, P. D.; Montes, F.; Ota, S.; Pain, S. D.; Peters, W. A.; Pittman, S. T.; Sachs, A.; Schatz, H.; Schmitt, K. T.; Smith, M. S.; Thompson, P.

    2016-06-01

    To take full advantage of advanced exotic beam facilities, target technology must also be advanced. Particularly important to the study of astrophysical reaction rates is the creation of localized and dense targets of hydrogen and helium. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas-jet target has been constructed for this purpose. JENSA was constructed at Oak Ridge National Laboratory (ORNL) where it was tested and characterized, and has now moved to the ReA3 reaccelerated beam hall at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University for use with radioactive beams.

  11. Astrophysical Hydrodynamics An Introduction

    CERN Document Server

    Shore, Steven N

    2007-01-01

    This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of ""Tapestry of Modern Astrophysics"" -- has been updated and revised to reflect the newest research results. Suitable for AS0000 and AS0200 courses, as well as advanced astrophysics and astronomy lectures, this is an indispensable theoretical backup for studies on celestial body formation and astrophysics. Includes exercises with solutions.

  12. Astrophysics and Space Science

    Science.gov (United States)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  13. Unbound states of 32Cl and the 31S(p,\\gamma)32Cl reaction rate

    CERN Document Server

    Matoš, M; Linhardt, L E; Bardayan, D W; Nesaraja, C D; Clark, J A; Deibel, C M; O'Malley, P D; Parker, P D

    2011-01-01

    The 31S(p,\\gamma)32Cl reaction is expected to provide the dominant break-out path from the SiP cycle in novae and is important for understanding enrichments of sulfur observed in some nova ejecta. We studied the 32S(3He,t)32Cl charge-exchange reaction to determine properties of proton-unbound levels in 32Cl that have previously contributed significant uncertainties to the 31S(p,\\gamma)32Cl reaction rate. Measured triton magnetic rigidities were used to determine excitation energies in 32Cl. Proton-branching ratios were obtained by detecting decay protons from unbound 32Cl states in coincidence with tritons. An improved 31S(p,\\gamma)32Cl reaction rate was calculated including robust statistical and systematic uncertainties.

  14. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO*) reaction rate constants.

    Science.gov (United States)

    Minakata, Daisuke; Li, Ke; Westerhoff, Paul; Crittenden, John

    2009-08-15

    The hydroxyl radical (HO*) is a strong oxidant that reacts with electron-rich sites of organic compounds and initiates complex chain mechanisms. In order to help understand the reaction mechanisms, a rule-based model was previously developed to predict the reaction pathways. For a kinetic model, there is a need to develop a rate constant estimator that predicts the rate constants for a variety of organic compounds. In this study, a group contribution method (GCM) is developed to predict the aqueous phase HO* rate constants for the following reaction mechanisms: (1) H-atom abstraction, (2) HO* addition to alkenes, (3) HO* addition to aromatic compounds, and (4) HO* interaction with sulfur (S)-, nitrogen (N)-, or phosphorus (P)-atom-containing compounds. The GCM hypothesizes that an observed experimental rate constant for a given organic compound is the combined rate of all elementary reactions involving HO*, which can be estimated using the Arrhenius activation energy, E(a), and temperature. Each E(a) for those elementary reactions can be comprised of two parts: (1) a base part that includes a reactive bond in each reaction mechanism and (2) contributions from its neighboring functional groups. The GCM includes 66 group rate constants and 80 group contribution factors, which characterize each HO* reaction mechanism with steric effects of the chemical structure groups and impacts of the neighboring functional groups, respectively. Literature-reported experimental HO* rate constants for 310 and 124 compounds were used for calibration and prediction, respectively. The genetic algorithms were used to determine the group rate constants and group contribution factors. The group contribution factors for H-atom abstraction and HO* addition to the aromatic compounds were found to linearly correlate with the Taft constants, sigma*, and electrophilic substituent parameters, sigma+, respectively. The best calibrations for 83% (257 rate constants) and predictions for 62% (77

  15. A review of the rates of reaction of unirradiated uranium in gaseous atmospheres

    International Nuclear Information System (INIS)

    The review collates available quantitative rate data for the reaction of unirradiated uranium in dry and moist air, steam and carbon dioxide based atmospheres at temperatures ranging from room temperature to above the melting point of uranium. Reactions in nitrogen and carbon monoxide are also considered. The aim of the review is to provide a compilation of base data for the hazard analysis of fault conditions relating to Magnox fuel. (author)

  16. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  17. Nuclear Reaction Rate Uncertainties and their effects on Nova Nucleosynthesis Modeling

    OpenAIRE

    Hix, W. Raphael; Smith, Michael S.; Mezzacappa, Anthony; Starrfield, Sumner; Smith, Donald L.

    2001-01-01

    The nucleosynthesis and other observable consequences of a nova outburst depend sensitively on the details of the thermonuclear runaway which initiates the outburst. One important source of uncertainty in our current models is the nuclear reaction data used as input for the evolutionary calculations. We present preliminary results of the first analyses of the impact on nova nucleosynthesis of all reaction rate uncertainties considered simultaneously.

  18. Unified equation for access to rate constants of first-order reactions in dynamic and on-column reaction chromatography.

    Science.gov (United States)

    Trapp, O

    2006-01-01

    A unified equation to evaluate elution profiles of reversible as well as irreversible (pseudo-) first-order reactions in dynamic chromatography and on-column reaction chromatography has been derived. Rate constants k1 and k(-1) and Gibbs activation energies are directly obtained from the chromatographic parameters (retention times tR(A) and tR(B) of the interconverting or reacting species A and B, the peak widths at half-height wA and wB, and the relative plateau height h(p)), the initial amounts A0 and B0 of the reacting species, and the equilibrium constant K(A/B). The calculation of rate constants requires only a few iterative steps without the need of performing a computationally extensive simulation of elution profiles. The unified equation was validated by comparison with a data set of 125,000 simulated elution profiles to confirm the quality of this equation by statistical means and to predict the minimal experimental requirements. Surprisingly, the recovery rate from a defined data set is on average 35% higher using the unified equation compared to the evaluation by iterative computer simulation.

  19. Rate constants for chemical reactions in high-temperature nonequilibrium air

    Science.gov (United States)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  20. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn;

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  1. Mineral/solution reaction rates in a mixed flow reactor: Wollastonite hydrolysis

    Science.gov (United States)

    Rimstidt, J. Donald; Dove, Patricia M.

    1986-11-01

    A newly developed mixed flow reactor was used to measure the rate of hydrolysis of wollastonite over the pH range of 3 to 8. This design avoids abrasion of the solid sample by confining it within a nylon mesh while the reacting solution is circulated over it by a stirrer. The rate of reaction was determined from the difference of the compositions of the input and output solutions following the methods used by chemical engineers for the analysis of mixed flow reactors, also called continuously stirred tank reactors (CSTR). This apparatus, constructed from easily obtainable parts, avoids many of the problems inherent in studying mineral/solution reaction kinetics in batch reactors. The hydrolysis of wollastonite CaSiO3 + 2 H+ + H2O = Ca2+ + H4SiO4 can be fit to a rate law of the form: dnH+/ dt = kadKH+mH+/(1.0 + KH+mH+) where kad = 9.80 × 10 -8molm-2sec-1 and KH+ = 2.08 × 10 5. Over the pH range of 4 to 7, the data also may fit a simple linear form: dnH+/ dt = - Ak+( aH+) 0.40 where k+ = 3.80 × 10 -6 sec -1 at 25°C. The presence of calcium ion in the solution at concentrations up to 1.0 mol kg -1 produces only a minor reduction of the reaction rate. The activation energy for this reaction is 79.2 kJ mol -1. Examination of the surfaces of the reacted grains showed no evidence of incongruent reaction leading to a product layer but did show the extensive development of etch pits leading to a rapid increase in the specific surface area. At large extents of reaction at low pH, diffusion of ions into or from these deep etch pits may limit the reaction rate.

  2. KeV astrophysics with GeV beams; Blazing a new trail on the summit of nuclear astrophysics

    International Nuclear Information System (INIS)

    GeV beams of light ions and electrons are used for creating a high flux of real and virtual photons, with which some problems in Nuclear Astrophysics are studied. GeV 8B beams are used to study the Coulomb dissociation of 8B and thus the 7Be(p,γ)8B reaction. This reaction is one of the major source of uncertainties in estimating the 8B solar neutrino flux and a critical input for calculating the 8B solar neutrino flux. The Coulomb dissociation of 8B appears to provide a viable method for measuring the 7Be(p,γ)8B reaction rate, with a weighted average of the RIKEN1, RIKEN2, GSI1 and MSU published results of S17(0) = 18.9 ± 1.0 eV-b. This result, however, does not include a theoretical error estimated to be ± 10%. GeV electron beams on the other hand, are used to create a high flux of real and virtual photons at TUNL-HIGS and MIT-Bates, respectively, and we discuss two new proposals to study the 12C(α,γ)16O reaction with real and virtual photons. The 12C(α,γ)16O reaction is essential for understanding Type II and Type Ia supernova. It is concluded that virtual and real photons produced by GeV light ions and electron beams are useful for studying some problems in Nuclear Astrophysics. (author)

  3. Sensitivity of Type I X-Ray Bursts to rp-Process Reaction Rates

    CERN Document Server

    Amthor, A M; Heger, A; Sakharuk, A; Schatz, H; Smith, K; Galaviz, Daniel; Heger, Alexander; Sakharuk, Alexander; Schatz, Hendrik; Smith, Karl

    2006-01-01

    First steps have been taken in a more comprehensive study of the dependence of observables in Type I X-ray bursts on uncertain (p,gamma) reaction rates along the rp-process path. We use the multizone hydrodynamics code KEPLER which implicitly couples a full nuclear reaction network of more than 1000 isotopes, as needed, to follow structure and evolution of the X-ray burst layer and its ashes. This allows us to incorporate the full rp-process network, including all relevant nuclear reactions, and individually study changes in the X-ray burst light curves when modifying selected key nuclear reaction rates. In this work we considered all possible proton captures to nuclei with 10 < Z < 28 and N <= Z. When varying individual reaction rates within a symmetric full width uncertainty of a factor of 10000, early results for some rates show changes in the burst light curve as large as 10 percent of peak luminosity. This is very large compared to the current sensitivity of X-ray observations. More precise reac...

  4. Ab-Initio Based Computation of Rate Constants for Spin Forbidden Metalloprotein-Substrate Reactions

    Science.gov (United States)

    Ozkanlar, Abdullah; Rodriguez, Jorge H.

    2007-03-01

    Some chemical and biochemical reactions are non-adiabatic processes whereby the total spin angular momentum, before and after the reaction, is not conserved. These are named spin- forbidden reactions. The application of ab-initio methods, such as spin density functional theory (SDFT), to the prediction of rate constants is a challenging task of fundamental and practical importance. We apply non-adiabatic transition state theory (NA-TST) in conjuntion with SDFT to predict the rate constant of the spin- forbidden recombination of carbon monoxide with iron tetracarbonyl. To model the surface hopping probability between singlet and triplet states, the Landau-Zener formalism is used. The lowest energy point for singlet-triplet crossing, known as minimum energy crossing point (MECP), was located and used to compute, in a semi-quantum approach, reaction rate constants at 300 K. The predicted rates are in very good agreement with experiment. In addition, we present results for the spin- forbidden ligand binding reactions of iron-containing heme proteins such as myoglobin.

  5. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  6. Subsurface mineralisation. Rate of CO2 mineralisation and geomechanical effects on host and seal formations. A review of relevant reactions and reaction rate data. First interim report

    International Nuclear Information System (INIS)

    There is general agreement that CO2 emissions need to be reduced in order to limit climate change and global warming effects. One way of disposing of carbon dioxide is by subsurface mineralisation, which entails the injection of CO2 into the subsurface where it will be converted into carbonates, and hence rendered immobile. Research on subsurface mineralisation is the main focus of Work Package 4.1 of the Dutch international research programme CATO (CO2 capture, transport and storage). CATO aims to build up a strong and coherent knowledge network, combined with adequate dissemination of knowledge, in the area of CO2 capture, transport and storage. This network will gather and validate knowledge, develop novel technologies for CO2 capture and storage, built up capacity to implement these technologies, and explore to which extent specific Clean Fossil Fuel options are acceptable to society. The principle behind CO2 sequestration by subsurface mineralisation is based on a number of sequential chemical reactions: (1) CO2 dissolves in the reservoir water to form carbonic acid, and subsequently bicarbonate; (2) the bicarbonate reacts with cations present in the reservoir water in order to form stable carbonates. If sufficient cations are present, these reactions can lead to the long term, safe, storage of carbon dioxide as stable carbonates. When CO2 is injected into an impure sandstone reservoir, feldspars and clays present in the rock will act as the cation source, and protons present in the reservoir water, as a result of carbon dioxide dissolution, will leach out the necessary cations from the silicate structure. In order to model the progress, efficiency and geochemical/geomechanical effects of any such mineralisation process, data are needed on the response of appropriate reservoir rocks to CO2 injections.The title PhD project forms part of CATO Workpackage WP 4.1. It aims to (1) determine the reaction rates of any relevant reactions taking place; (2) characterise

  7. Effect of macromolecular crowding on the rate of diffusion-limited enzymatic reaction

    Indian Academy of Sciences (India)

    Manish Agrawal; S B Santra; Rajat Anand; Rajaram Swaminathan

    2008-08-01

    The cytoplasm of a living cell is crowded with several macromolecules of different shapes and sizes. Molecular diffusion in such a medium becomes anomalous due to the presence of macromolecules and diffusivity is expected to decrease with increase in macromolecular crowding. Moreover, many cellular processes are dependent on molecular diffusion in the cell cytosol. The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model qualitatively explains some of the experimental observations.

  8. Calculation of the CB1 burnup credit benchmark reaction rates with MCNP4B

    International Nuclear Information System (INIS)

    The first calculational VVER-440 burnup credit benchmark CB1 in 1996. VTT Energy participated in the calculation of the CB1 benchmark with three different codes: CASMO-4, KENO-VI and MCNP4B. However, the reaction rates and the fission ν were calculated only with CASMO-4. Now, the neutron absorption and production reaction rates and the fission ν values have been calculated at VTT Energy with the MCNP4B Monte Carlo code using the ENDF60 neutron data library. (author)

  9. An implicit relation between temperature and reaction rate in the SLFM

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Arrhenius law implies that reaction rate is a continuous function of temperature. However,the steady laminar flamelet model(SLFM) does not explicitly give this functional relationship. The present study addresses this relation in the SLFM.It is found that reaction rate is not continuous in the mixture-fraction space.As a result,the SLFM is unable to predict local extinction and reignition.Furthermore,we use the unstable branch of the"S-curve"to fill the gap between steady burning branch and extinctio...

  10. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using NiFe oxide

    KAUST Repository

    Nurlaela, Ela

    2016-01-25

    The present work compares oxygen evolution reaction (OER) in electrocatalysis and photocatalysis in aqueous solutions using nanostructured NiFeOx as catalysts. The impacts of pH and reaction temperature on the electrocatalytic and photocatalytic OER kinetics were investigated. For electrocatalysis, a NiFeOx catalyst was hydrothermally decorated on Ni foam. In 1 M KOH solution, the NiFeOx electrocatalyst achieved 10 mA cm-2 at an overpotential of 260 mV. The same catalyst was decorated on the surface of Ta3N5 photocatalyst powder. The reaction was conducted in the presence of 0.1 M Na2S2O8 as a strong electron scavenger, thus likely leading to the OER being kinetically relevant. When compared with the bare Ta3N5, NiFeOx/Ta3N5 demonstrated a 5-fold improvement in photocatalytic activity in the OER under visible light irradiation, achieving a quantum efficiency of 24 % at 480 nm. Under the conditions investigated, a strong correlation between the electrocatalytic and photocatalytic performances was identified: an improvement in electrocatalysis corresponded with an improvement in photocatalysis without altering the identity of the materials. The rate change at different pH was likely associated with electrocatalytic kinetics that accordingly influenced the photocatalytic rates. The sensitivity of the reaction rates with respective to the reaction temperature resulted in an apparent activation energy of 25 kJ mol-1 in electrocatalysis, whereas that in photocatalysis was 16 kJ mol-1. The origin of the difference in these activation energy values is likely attributed to the possible effects of temperature on the individual thermodynamic and kinetic parameters of the reaction process. The work described herein demonstrates a method of “transferring the knowledge of electrocatalysis to photocatalysis” as a strong tool to rationally and quantitatively understand the complex reaction schemes involved in photocatalytic reactions.

  11. Photochemistry of solutes in/on ice: reaction rate dependence on sample orientation and photon flux

    Science.gov (United States)

    Hullar, T.; Anastasio, C.

    2015-12-01

    Particularly in polar regions, photochemical reactions in snowpacks can be an important mechanism for transforming organic and inorganic compounds. Chemicals within snow and ice are found in three different compartments: distributed in the bulk ice, concentrated in liquid-like regions (LLRs) within the ice matrix (such as at grain boundaries), or present in quasi-liquid layers (QLLs) at the air-ice interface. While some previous work suggested reaction rates may vary in these different compartments, our preliminary experiments found similar reaction rates in all three compartments, as well as in aqueous solution. Previous work also suggested reaction rate constants may be independent of photon flux under certain illumination conditions. Here, we extend our investigations to measure reaction rate constants in ice samples with different orientations to the illumination source, which our work thus far suggests may impact the measured rate constants. Polycyclic aromatic hydrocarbons (PAHs) are common pollutants in snow and ice. We first prepared aqueous solutions of a single PAH. We then froze these samples using various methods previously shown to segregate the solute into known locations in the ice matrix. With simulated polar sunlight, we illuminated these samples and measured photon flux (using 2-nitrobenzaldehyde as a chemical actinometer) and photodecay of the PAH. Using this information, we normalized the rate of PAH loss to the photon flux and calculated the rate constants for PAH photodegradation under various freezing conditions, photon fluxes, and sample orientations. We will report on the impact of these variables on PAH photodegradation as well as the effect of varying the photon flux.

  12. Astrophysical Quark Matter

    OpenAIRE

    Xu, R. X.

    2004-01-01

    The quark matter may have great implications in astrophysical studies, which could appear in the early Universe, in compact stars, and/or as cosmic rays. After a general review of astrophysical quark matter, the density-dominated quark matter is focused.

  13. Relativistic Astrophysics; Astrofisica Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Font, J. A.

    2015-07-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  14. Reaction rates of hydroxyl radical with nitric acid and with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, W.J.; Johnston, H.S.

    1982-08-01

    The rates of the reactions HO+HNO/sub 3/ ..-->.. H/sub 2/O+NO/sub 3/, (1), HO+H/sub 2/O/sub 2/ ..-->.. H/sub 2/O+HOO (2) have been studied by laser flash photolysis of reactants and resonance fluorescence of hydroxyl radicals. The recently reported high rate constants at room temperature for both reactions and the negative activation energy for Reaction (1) at low temperature have been confirmed. Results obtained here are: k/sub 1/ = 1.52 x 10/sup -14/ exp(644/T) cm/sup 3/ molecule/sup -1/ s/sup -1/ from 218--363 K and k/sub 2/ = 1.81 x 10/sup -12/ cm/sup 3/ molecule/sup -1/ s/sup -1/ at 298 K. These two reactions have been examined by transition-state theory; (1) is assigned a cyclic and (2) a chainlike transition state. Even with no potential energy barrier, the reaction coordinate of (1) involves a quantum-mechanical, temperature independent frequency; and with this model the low pre-exponential factor and negative activation energy of Reaction (1) can be explained.

  15. Learned Cardiac Control with Heart Rate Biofeedback Transfers to Emotional Reactions

    OpenAIRE

    Nathalie Peira; Gilles Pourtois; Mats Fredrikson

    2013-01-01

    Emotions involve subjective feelings, action tendencies and physiological reactions. Earlier findings suggest that biofeedback might provide a way to regulate the physiological components of emotions. The present study investigates if learned heart rate regulation with biofeedback transfers to emotional situations without biofeedback. First, participants learned to decrease heart rate using biofeedback. Then, inter-individual differences in the acquired skill predicted how well they could dec...

  16. Reaction Rates and Kinetic Isotope Effects of H$_2$ + OH $\\rightarrow$ H$_2$O + H

    CERN Document Server

    Meisner, Jan

    2016-01-01

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling (CVT/$\\mu$OMT) were applied using a fitted potential energy surface [J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval $ 4 \\cdot 10^{-20}$ to $4 \\cdot 10^{-17}$ cm$^3$ s$^{-1}$ , demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.

  17. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    International Nuclear Information System (INIS)

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 oC. FeCl3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  18. Calibration of reaction rates for the CREST reactive-burn model

    Science.gov (United States)

    Handley, Caroline

    2015-06-01

    In recent years, the hydrocode-based CREST reactive-burn model has had success in modelling a range of shock initiation and detonation propagation phenomena in polymer bonded explosives. CREST uses empirical reaction rates that depend on a function of the entropy of the non-reacted explosive, allowing the effects of initial temperature, porosity and double-shock desensitisation to be simulated without any modifications to the model. Until now, the sixteen reaction-rate coefficients have been manually calibrated by trial and error, using hydrocode simulations of a subset of sustained-shock initiation gas-gun experiments and the detonation size-effect curve for the explosive. This paper will describe the initial development of an automatic method for calibrating CREST reaction-rate coefficients, using the well-established Particle Swarm Optimisation (PSO) technique. The automatic method submits multiple hydrocode simulations for each ``particle'' and analyses the results to determine the ``misfit'' to gas-gun and size-effect data. Over ~40 ``generations,'' the PSO code finds a best set of reaction-rate coefficients that minimises the misfit. The method will be demonstrated by developing a new CREST model for EDC32, a conventional high explosive.

  19. Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?

    International Nuclear Information System (INIS)

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H2, D + MuH, and F + H2, and the prototypical polyatomic reaction H + CH4. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method

  20. Reaction Rates Uncertainties and the Production of F19 in AGB Stars

    CERN Document Server

    Lugaro, M; Karakas, A I; Görres, J; Wiescher, M; Lattanzio, J C; Cannon, R C; Lugaro, Maria; Ugalde, Claudio; Karakas, Amanda I.; Gorres, Joachim; Wiescher, Michael; Lattanzio, John C.; Cannon, Robert C.

    2004-01-01

    We present nucleosynthesis calculations and the resulting 19F stellar yields for a large set of models with different masses and metallicity. We find that the production of fluorine depends on the temperature of the convective pulses, the amount of primary 12C mixed into the envelope by third dredge up and the extent of the partial mixing zone. Then we perform a detailed analysis of the reaction rates involved in the production of 19F and the effects of their uncertainties. We find that the major uncertainties are associated with the 14C(alpha,gamma)18O and the 19F(alpha,p)22Ne reaction rates. For these two reactions we present new estimates of the rates and their uncertainties. The importance of the partial mixing zone is reduced when using our estimate for the 14C(alpha,gamma)18O rate. Taking into account both the uncertainties related to the partial mixing zone and those related to nuclear reactions, the highest values of 19F enhancements observed in AGB stars are not matched by the models. This is a probl...

  1. Should Thermostatted Ring Polymer Molecular Dynamics be used to calculate reaction rates?

    CERN Document Server

    Hele, Timothy J H

    2015-01-01

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently-proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time Transition-State Theory (TST) limit is identical to rigorous Quantum Transition-State Theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H+H$_2$, D+MuH and F+H$_2$, and the prototypical polyatomic reaction H+CH$_4$. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is less accurate than Ring Polymer Molecular Dynamics (RPMD) for symmetric reactions, and in certain asymmetric systems closer to the q...

  2. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    Science.gov (United States)

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  3. Quantum, Multi-Body Effects and Nuclear Reaction Rates in Plasmas

    OpenAIRE

    Savchenko, V. I.

    2000-01-01

    Detailed calculations of the contribution from off-shell effects to the quasiclassical tunneling of fusing particles are provided. It is shown that these effects change the Gamow rates of certain nuclear reactions in dense plasma by several orders of magnitude.

  4. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    Science.gov (United States)

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  5. Resonance strength measurement at astrophysical energies: The {sup 17}O(p,α){sup 14}N reaction studied via Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Sergi, M. L., E-mail: sergi@lns.infn.it; La Cognata, M.; Pizzone, R. G. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Spitaleri, C. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli studi di Catania, Catania (Italy); Lamia, L.; Rapisarda, G. G. [Dipartimento di Fisica e Astronomia, Università degli studi di Catania, Catania (Italy); Mukhamedzhanov, A. [Cyclotron Institute, Texas A& M University, College Station, Texas 77843 (United States); Irgaziev, B. [GIK Institute of Engineering Sciences and Technology, Topi, Districti Swabi, Khyber Pakhtunkhwa (Pakistan); Tang, X. D.; Wiescher, M. [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame 46556, Indiana (United States); Mrazek, J.; Kroha, V. [Nuclear Physics Institute of ASCR, Rez (Czech Republic)

    2015-10-15

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on {sup 17}O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  6. The impact of the revised $^{17}$O$(p,\\alpha)^{14}$N reaction rate on $^{17}$O stellar abundances and yields

    CERN Document Server

    Straniero, O; Aliotta, M; Best, A; Boeltzig, A; Bemmerer, D; Broggini, C; Caciolli, A; Cavanna, F; Ciani, G F; Corvisiero, P; Cristallo, S; Davinson, T; Depalo, R; Di Leva, A; Elekes, Z; Ferraro, F; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, G; Imbriani, G; Junker, M; Menegazzo, R; Mossa, V; Pantaleo, F R; Piatti, D; Piersanti, L; Prati, P; Samorjai, E; Strieder, F; Szucs, T; Takács, M P; Trezzi, D

    2016-01-01

    Context. Material processed by the CNO cycle in stellar interiors is enriched in 17O. When mixing processes from the stellar surface reach these layers, as occurs when stars become red giants and undergo the first dredge up, the abundance of 17O increases. Such an occurrence explains the drop of the 16O/17O observed in RGB stars with mass larger than 1.5 M_\\solar. As a consequence, the interstellar medium is continuously polluted by the wind of evolved stars enriched in 17O . Aims. Recently, the Laboratory for Underground Nuclear Astrophysics (LUNA) collaboration released an improved rate of the 17O(p,alpha)14N reaction. In this paper we discuss the impact that the revised rate has on the 16O/17O ratio at the stellar surface and on 17O stellar yields. Methods. We computed stellar models of initial mass between 1 and 20 M_\\solar and compared the results obtained by adopting the revised rate of the 17O(p,alpha)14N to those obtained using previous rates. Results. The post-first dredge up 16O/17O ratios are about...

  7. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    Science.gov (United States)

    Green, C.T.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field-scale (apparent) estimated reaction rates and isotopic fractionations and local-scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O 2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample-based estimates of "apparent" parameters with "true" (intrinsic) values. For this aquifer, non-Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2 threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport. ?? 2010 by the American Geophysical Union.

  8. A randomised controlled trial of two infusion rates to decrease reactions to antivenom.

    Directory of Open Access Journals (Sweden)

    Geoffrey K Isbister

    Full Text Available BACKGROUND: Snake envenoming is a major clinical problem in Sri Lanka, with an estimated 40,000 bites annually. Antivenom is only available from India and there is a high rate of systemic hypersensitivity reactions. This study aimed to investigate whether the rate of infusion of antivenom reduced the frequency of severe systemic hypersensitivity reactions. METHODS AND FINDINGS: This was a randomized comparison trial of two infusion rates of antivenom for treatment of non-pregnant adult patients (>14 y with snake envenoming in Sri Lanka. Snake identification was by patient or hospital examination of dead snakes when available and confirmed by enzyme-immunoassay for Russell's viper envenoming. Patients were blindly allocated in a 11 randomisation schedule to receive antivenom either as a 20 minute infusion (rapid or a two hour infusion (slow. The primary outcome was the proportion with severe systemic hypersensitivity reactions (grade 3 by Brown grading system within 4 hours of commencement of antivenom. Secondary outcomes included the proportion with mild/moderate hypersensitivity reactions and repeat antivenom doses. Of 1004 patients with suspected snakebites, 247 patients received antivenom. 49 patients were excluded or not recruited leaving 104 patients allocated to the rapid antivenom infusion and 94 to the slow antivenom infusion. The median actual duration of antivenom infusion in the rapid group was 20 min (Interquartile range[IQR]:20-25 min versus 120 min (IQR:75-120 min in the slow group. There was no difference in severe systemic hypersensitivity reactions between those given rapid and slow infusions (32% vs. 35%; difference 3%; 95%CI:-10% to +17%;p = 0.65. The frequency of mild/moderate reactions was also similar. Similar numbers of patients in each arm received further doses of antivenom (30/104 vs. 23/94. CONCLUSIONS: A slower infusion rate would not reduce the rate of severe systemic hypersensitivity reactions from current high

  9. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Georgia Institute of Technology; Lu, C [Georgia Institute of Technology; Luo, Jian [Georgia Institute of Technology; Wu, Wei-min [Stanford University; Cheng, H. [Stanford University; Criddle, Craig [Stanford University; Kitanidis, Peter K. [Stanford University; Gu, Baohua [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Brooks, Scott C [ORNL

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  10. Astrophysical S_{17}(0) factor from a measurement of d(7Be,8B)n reaction at E_{c.m.} = 4.5 MeV

    CERN Document Server

    Das, J J; Sugathan, P; Madhavan, N; Rao, P V M; Jhingan, A; Navin, A; Dhiman, S K; Barua, S; Nath, S; Varughese, T; Sinha, A K; Singh, R; Ray, A; Sastry, D L; Kulkarni, R G; Shyam, R

    2004-01-01

    Angular distribution measurements of d(7Be,7Be)d and d(7Be,8B)n reactions at E_{c.m.} = 4.5 MeV were performed to extract the astrophysical S_{17}(0) factor using the asymptotic normalization coefficient (ANC) method. For this purpose a pure, low emittance 7Be beam was separated from the primary 7Li beam by a recoil mass spectrometer operated in a novel mode. A beam stopper at zero degree allowed the use of a higher 7Be beam intensity. Measurement of the elastic scattering in the entrance channel using kinematic coincidence, facilitated the determination of the optical model parameters needed for the analysis of the transfer data. The present measurements significantly reduces errors in the extracted 7Be(p,gamma) cross section using the ANC method and resulted in S17(0) = 20.7(+-) 1.0 (sys) (+-) 1.4 (stat) eV b. This demonstrates the capability of the ANC method in determining the S-factor of reactions involving short lived nuclei with a precision similar to that of the direct (p,gamma) measurements.

  11. Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows

    International Nuclear Information System (INIS)

    In the present paper, reaction and energy relaxation rates as well as the normal stress are studied for viscous gas flows with vibrational and chemical non-equilibrium. Using the modified Chapman-Enskog method, multi-temperature models based on the Treanor and Boltzmann vibrational distributions are developed for the general case taking into account all kinds of vibrational energy transitions, exchange reactions, dissociation, and recombination. Integral equations specifying the first-order corrections to the normal mean stress and reaction rates are derived, as well as approximate systems of linear equations for their numerical computation. Generalized thermodynamic driving forces associated with all non-equilibrium processes are introduced. It is shown that normal stresses and rates of non-equilibrium processes can be expressed in terms of the same driving forces; the symmetry of kinetic coefficients in these expressions is proven. The developed general model is applied to a particular case of a pure N2 viscous flow with slow VT relaxation. Normal stress and rates of vibrational relaxation are studied for various ratios of vibrational and translational temperatures. The cross effects between different vibrational transitions in viscous flows are evaluated, along with the influence of anharmonicity and flow compressibility on the first-order corrections to the relaxation rate. Limits of validity for the widely used Landau–Teller model of vibrational relaxation are indicated

  12. Helium Ignition on Accreting Neutron Stars with a New Triple-α Reaction Rate

    Science.gov (United States)

    Peng, Fang; Ott, Christian D.

    2010-12-01

    We investigate the effect of a new triple-α reaction rate from Ogata et al. on helium ignition conditions on accreting neutron stars and on the properties of the subsequent type I X-ray burst. We find that the new rate leads to significantly lower ignition column density for accreting neutron stars at low accretion rates. We compare the results of our ignition models for a pure helium accretor to observations of bursts in ultracompact X-ray binaries (UCXBs), which are believed to have nearly pure helium donors. For \\dot{m}> 0.001 \\dot{m}_{{Edd}}, the new triple-α reaction rate from Ogata et al. predicts a maximum helium ignition column of ~3 × 109 g cm-2, corresponding to a burst energy of ~4 × 1040 erg. For \\dot{m}˜ 0.01 \\dot{m}_{{Edd}} at which intermediate long bursts occur, the predicted burst energies are at least a factor of 10 too low to explain the observed energies of such bursts in UCXBs. This finding adds to the doubts cast on the triple-α reaction rate of Ogata et al. by the low-mass stellar evolution results of Dotter & Paxton.

  13. Helium Ignition on Accreting Neutron Stars with a New Triple-alpha Reaction Rate

    CERN Document Server

    Peng, Fang

    2010-01-01

    We investigate the effect of a new triple-alpha reaction rate from Ogata et al. (2009) on helium ignition conditions on accreting neutron stars and on the properties of the subsequent type I X-ray burst. We find that the new rate leads to significantly lower ignition column density for accreting neutron stars at low accretion rates. We compare the results of our ignition models for a pure helium accretor to observations of bursts in ultra-compact X-ray binary (UCXBs), which are believed to have nearly pure helium donors. For mdot > 0.001 mdot_Edd, the new triple-alpha reaction rate from Ogata et al. (2009) predicts a maximum helium ignition column of ~ 3 x 10^9 g cm^{-2}, corresponding to a burst energy of ~ 4 x 10^{40} ergs. For mdot ~ 0.01 mdot_Edd at which intermediate long bursts occur, the predicted burst energies are at least a factor of 10 too low to explain the observed energies of such bursts in UCXBs. This finding adds to the doubts cast on the triple-alpha reaction rate of Ogata et al. (2009) by th...

  14. Quantum three-body calculation of the nonresonant triple-\\alpha reaction rate at low temperatures

    CERN Document Server

    Ogata, Kazuyuki; Kamimura, Masayasu

    2009-01-01

    The triple-\\alpha reaction rate is re-evaluated by directly solving the three-body Schroedinger equation. The resonant and nonresonant processes are treated on the same footing using the continuum-discretized coupled-channels method for three-body scattering. Accurate description of the \\alpha-\\alpha nonresonant states significantly quenches the Coulomb barrier between the two-\\alpha's and the third \\alpha particle. Consequently, the \\alpha-\\alpha nonresonant continuum states below the resonance at 92.04 keV, i.e., the ground state of 8Be, give markedly larger contribution at low temperatures than in foregoing studies. We find about 20 orders-of-magnitude enhancement of the triple-\\alpha reaction rate around 10^7 K compared to the rate of the NACRE compilation.

  15. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2007-01-01

    A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation. In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a N

  16. An invitation to astrophysics

    CERN Document Server

    Padmanabhan, Thanu

    2006-01-01

    This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help s

  17. Theoretical investigation on H abstraction reaction mechanisms and rate constants of Isoflurane with the OH radical

    Science.gov (United States)

    Ren, Hongjiang; Li, Xiaojun

    2015-12-01

    The mechanism of H abstraction reactions for Isoflurane with the OH radical was investigated using density functional theory and G3(MP2) duel theory methods. The geometrical structures of all the species were fully optimised at B3LYP/6-311++G** level of theory. Thermochemistry data were obtained by utilising the high accurate model chemistry method G3(MP2) combined with the standard statistical thermodynamic calculations. Gibbs free energies were used for the reaction channels analysis. All the reaction channels were confirmed throughout the intrinsic reaction coordinate analysis. The results show that two channels were obtained, which correspond to P(1) and P(2) with the respective activation barriers of 63.03 and 54.82 kJ/mol. The rate constants for the two channels over a wide temperature range of 298.15-2000 K were predicted and the calculated data are in agreement with the experimental one. The results show that P(2) is the dominant reaction channel under 800 K and above 800 K, it can be found that P(1) will be more preferable reaction channel.

  18. Reaction rates for the s-process neutron source 22Ne+{\\alpha}

    CERN Document Server

    Longland, Richard; Karakas, Amanda I

    2012-01-01

    The 22Ne({\\alpha},n)25Mg reaction is an important source of neutrons for the s-process. In massive stars responsible for the weak component of the s-process, 22Ne({\\alpha},n)25Mg is the dominant source of neutrons, both during core helium burning and in shell carbon burning. For the main s-process component produced in Asymptotic Giant Branch (AGB) stars, the 13C({\\alpha},n)16O reaction is the dominant source of neutrons operating during the interpulse period, with the 22Ne+{\\alpha} source affecting mainly the s-process branchings during a thermal pulse. Rate uncertainties in the competing 22Ne({\\alpha},n)25Mg and 22Ne({\\alpha},{\\gamma})26Mg reactions result in large variations of s-process nucleosynthesis. Here, we present up-to-date and statistically rigorous 22Ne+{\\alpha} reaction rates using recent experimental results and Monte Carlo sampling. Our new rates are used in post-processing nucleosynthesis calculations both for massive stars and AGB stars. We demonstrate that the nucleosynthesis uncertainties ...

  19. Monte Carlo simulation in the reaction rate's calculation with neutron-activation method

    International Nuclear Information System (INIS)

    With MCNP/4B code, the influence of cut-off energy, flux tallies, nuclear databases and perturbation on the reaction rate's calculation with neutron-activation method are analysed. When the effective reaction threshold is chosen as the cut-off energy, calculation time is considerably reduced and yet the results are not changed. Comparing calculations with cell tallies (F4) with those performed with detector tallies (F5), the counting efficiency of cell tallies is higher and the results are slightly higher, but still credible. With different nuclear databases, calculated results can be different. The perturbation among the detectors doesn't effect on the calculated results. (authors)

  20. Nuclear Reaction Rates in a Plasma The Effect of Highly Damped Modes

    CERN Document Server

    Opher, M; Opher, Merav; Opher, Reuven

    2000-01-01

    The fluctuation-dissipation theorem is used to evaluate the screening factor of nuclear reactions due to the electromagnetic fluctuations in a plasma. We show that the commonly used Saltpeter factor is obtained if only fluctuations near the plasma eigenfrequency are assumed to be important (\\omega \\sim \\omega_{pe}\\ll T (\\hbar=k_{B}=1)). By taking into account all the fluctuations, the highly damped ones, with \\omega >\\omega_{pe}, as well as those with \\omega\\leq\\omega_{pe}, we find that nuclear reaction rates are higher than those obtained using the Saltpeter factor, for many interesting plasmas.

  1. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Uwe, Greife [Colorado School of Mines, Golden, CO (United States)

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  2. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    Science.gov (United States)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  3. Indirect study of {sup 11}B(p,alpha{sub 0}){sup 8}Be and {sup 10}B(p,alpha){sup 7}Be reactions at astrophysical energies by means of the Trojan Horse Method: recent results

    Energy Technology Data Exchange (ETDEWEB)

    Lamia, L.; Puglia, S.M.R.; Spitaleri, C.; Romano, S. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Del Santo, M. Gimenez; Carlin, N.; Munhoz, M. Gameiro [Departamento de Fisica Nuclear, Universitade de Sao Paulo, Sao Paulo (Brazil); Cherubini, S. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Kiss, G.G. [Laboratori Nazionali del Sud, Catania (Italy); Atomki, Debrecen (Hungary); Kroha, V. [Institute for Nuclear Physics, Prague (Czech Republic); Kubono, S. [CNS, University of Tokyo, Tokyo (Japan); La Cognata, M. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Li Chengbo [China Institute of Atomic Energy, Department of Physics, Beijing (China); Pizzone, R.G. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Wen Qungang [China Institute of Atomic Energy, Department of Physics, Beijing (China); Sergi, M.L. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Szanto de Toledo, A. [Departamento de Fisica Nuclear, Universitade de Sao Paulo, Sao Paulo (Brazil); Wakabayashi, Y. [CNS, University of Tokyo, Tokyo (Japan); Advanced Science Research Center - JAEA - Ibaraki (Japan); Yamaguchi, H. [CNS, University of Tokyo, Tokyo (Japan); Zhou Shuhua [China Institute of Atomic Energy, Department of Physics, Beijing (China)

    2010-03-01

    Nuclear (p,alpha) reactions destroying the so-called 'light-elements' lithium, beryllium and boron have been largely studied in the past mainly because their role in understanding some astrophysical phenomena, i.e. mixing-phenomena occurring in young F-G stars [A.M. Boesgaard et al., Astr. Phys. J, 991, 2005, 621]. Such mechanisms transport the surface material down to the region close to the nuclear destruction zone, where typical temperatures of the order of approx10{sup 6} K are reached. The corresponding Gamow energy E{sub 0}=1.22(Z{sub x}{sup 2}Z{sub X}{sup 2}T{sub 6}{sup 2}){sup 1/3} keV [C. Rolfs and W. Rodney, 'Cauldrons in the Cosmos', The Univ. of Chicago press, 1988] is about approx10 keV if one considers the 'boron-case' and replaces in the previous formula Z{sub x}=1, Z{sub X}=5 and T{sub 6}=5. Direct measurements of the two {sup 11}B(p,alpha{sub 0}){sup 8}Be and {sup 10}B(p,alpha){sup 7}Be reactions in correspondence of this energy region are difficult to perform mainly because the combined effects of Coulomb barrier penetrability and electron screening [H.J. Assenbaum, K. Langanke and C. Rolfs, Z. Phys., 327, 1987, 461]. The indirect method of the Trojan Horse (THM) [G. Baur et al., Phys. Lett. B, 178, 1986, 135; G. Calvi et al., Nucl. Phys. A, 621, 1997, 139; C. Spitaleri et al., Phys. Rev. C, 493, 1999, 206] allows one to extract the two-body reaction cross section of interest for astrophysics without the extrapolation-procedures. Due to the THM formalism, the extracted indirect data have to be normalized to the available direct ones at higher energies thus implying that the method is a complementary tool in solving some still open questions for both nuclear and astrophysical issues [S. Cherubini et al., Astr. Phys. J, 457, 1996, 855; C. Spitaleri et al., Phys. Rev. C, 63, 2001, 005801; C. Spitaleri et al., Phys. Rev. C, 63, 2004, 055806; A. Tumino et al., Phys. Rev. Lett., 98, 2007, 252502; M. La Cognata et al., Phys

  4. Learned cardiac control with heart rate biofeedback transfers to emotional reactions.

    Directory of Open Access Journals (Sweden)

    Nathalie Peira

    Full Text Available Emotions involve subjective feelings, action tendencies and physiological reactions. Earlier findings suggest that biofeedback might provide a way to regulate the physiological components of emotions. The present study investigates if learned heart rate regulation with biofeedback transfers to emotional situations without biofeedback. First, participants learned to decrease heart rate using biofeedback. Then, inter-individual differences in the acquired skill predicted how well they could decrease heart rate reactivity when later exposed to negative arousing pictures without biofeedback. These findings suggest that (i short lasting biofeedback training improves heart rate regulation and (ii the learned ability transfers to emotion challenging situations without biofeedback. Thus, heart rate biofeedback training may enable regulation of bodily aspects of emotion also when feedback is not available.

  5. Neutrino physics and astrophysics

    International Nuclear Information System (INIS)

    The plenary reports of Neutrino '80 are presented by experts in neutrino physics and astrophysics. Their International Conference on Neutrino Physics and Astrophysics was held in Erice (Italy), June 23 through 28, 1980. The proceedings include reviews of part research, the history of neutrino research and coverage of recent results and theoretical speculations. Topics include high- and low-energy neutrino astrophysics, weak charged and neutral currents, low and intermediate weak interactions, neutrino oscillations, and parity violation in atoms and nuclei conservation laws. Weak interactions in lepton-lepton and lepton-nucleon collisions, beam dump experiments, new theoretical ideas, and future developments in accelerators and detectors are also included. The topics are introduced by a historical perspective section and then grouped under the headings of neutrino astrophysics, weak charged currents, weak neutral currents, low and intermediate energy interactions, conservation laws, weak interactions in electron and hadron experiments, and a final section on future accelerator, new neutrino detection technology and concluding remarks

  6. Topics in Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Some topics in nuclear astrophysics are discussed, e.g.: highly evolved stellar cores, stellar evolution (through the temperature analysis of stellar surface), nucleosynthesis and finally the solar neutrino problem. (L.C.)

  7. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  8. On the Temperature Dependence of the Rate Constant of the Bimolecular Reaction of two Hydrated Electrons

    Directory of Open Access Journals (Sweden)

    S.L. Butarbutar

    2013-08-01

    Full Text Available It has been a longstanding issue in the radiation chemistry of water that, even though H2 is a molecular product, its “escape” yield g(H2 increases with increasing temperature. A main source of H2 is the bimolecular reaction of two hydrated electrons (eaq. The temperature dependence of the rate constant of this reaction (k1, measured under alkaline conditions, reveals that the rate constant drops abruptly above ~150°C. Recently, it has been suggested that this temperature dependence should be regarded as being independent of pH and used in high-temperature modeling of near-neutral water radiolysis. However, when this drop in the eaq self-reaction rate constant is included in low (isolated spurs and high (cylindrical tracks linear energy transfer (LET modeling calculations, g(H2 shows a marked downward discontinuity at ~150°C which is not observed experimentally. The consequences of the presence of this discontinuity in g(H2 for both low and high LET radiation are briefly discussed in this communication. It is concluded that the applicability of the sudden drop in k1 observed at ~150°C in alkaline water to near-neutral water is questionable and that further measurements of the rate constant in pure water are highly desirable.

  9. Nuclear astrophysics experiments with radioactive beams

    International Nuclear Information System (INIS)

    In Nuclear Astrophysics, experiments with radioactive beams present particular problems (e.g. low beam intensity, large background) to which specific solutions (i.e. non-standard detection setup) can be brought. Selected reactions measured in Louvain-la-Neuve are treated as practical examples. (author)

  10. Mathematical Formalism of Nonequilibrium Thermodynamics for Nonlinear Chemical Reaction Systems with General Rate Law

    CERN Document Server

    Ge, Hao

    2016-01-01

    This paper studies a mathematical formalism of nonequilibrium thermodynamics for chemical reaction models with $N$ species, $M$ reactions, and general rate law. We establish a mathematical basis for J. W. Gibbs' macroscopic chemical thermodynamics under G. N. Lewis' kinetic law of entire equilibrium (detailed balance in nonlinear chemistry kinetics). In doing so, the equilibrium thermodynamics is then naturally generalized to nonequilibrium settings without detailed balance. The kinetic models are represented by a Markovian jumping process. A generalized macroscopic chemical free energy function and its associated balance equation with nonnegative source and sink are the major discoveries. The proof is based on the large deviation principle of this type of Markov processes. A general fluctuation dissipation theorem for stochastic reaction kinetics is also proved. The mathematical theory illustrates how a novel macroscopic dynamic law can emerges from the mesoscopic kinetics in a multi-scale system.

  11. An efficient Monte Carlo method for calculating ab initio transition state theory reaction rates in solution

    CERN Document Server

    Iftimie, R; Schofield, J P; Iftimie, Radu; Salahub, Dennis; Schofield, Jeremy

    2003-01-01

    In this article, we propose an efficient method for sampling the relevant state space in condensed phase reactions. In the present method, the reaction is described by solving the electronic Schr\\"{o}dinger equation for the solute atoms in the presence of explicit solvent molecules. The sampling algorithm uses a molecular mechanics guiding potential in combination with simulated tempering ideas and allows thorough exploration of the solvent state space in the context of an ab initio calculation even when the dielectric relaxation time of the solvent is long. The method is applied to the study of the double proton transfer reaction that takes place between a molecule of acetic acid and a molecule of methanol in tetrahydrofuran. It is demonstrated that calculations of rates of chemical transformations occurring in solvents of medium polarity can be performed with an increase in the cpu time of factors ranging from 4 to 15 with respect to gas-phase calculations.

  12. Accelerator Experiments for Astrophysics

    OpenAIRE

    Ng, Johnny S. T.

    2003-01-01

    Many recent discoveries in astrophysics involve phenomena that are highly complex. Carefully designed experiments, together with sophisticated computer simulations, are required to gain insights into the underlying physics. We show that particle accelerators are unique tools in this area of research, by providing precision calibration data and by creating extreme experimental conditions relevant for astrophysics. In this paper we discuss laboratory experiments that can be carried out at the S...

  13. Theoretical physics and astrophysics

    CERN Document Server

    Ginzburg, VL

    1979-01-01

    The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature

  14. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  15. Reaction rate model for Diethyl Ether from Etano l using heterogeneous catalysts

    International Nuclear Information System (INIS)

    Production of diethyl ether from ethanol was carried out by a heterogeneous catalytic reaction in the gas phase. Several types of catalysts were examined in a tubular reactor. Among different catalysts γ-aluminum oxide was selected as the most effective and suitable catalyst. Based on high conversion rate, the optimum temperature for the reaction was determined at 285 deg C. The experiments were carried out in a differential (plug) reactor to obtain rate equation. The parameters affecting the rate equation are listed as: flow rate of feed stream, composition of feed stream, concentration of ethanol and adsorption coefficients. An optimum flow rate of 1 ml/min of ethanol was defined as desired operating condition. Langmuir-Henshelwood model was chosen for the determination of adsorption coefficient. The Langmuir equation was transformed into linear equation and the relevant coefficients were calculated by least square method. A computer program was used to solve the system of simultaneous linear equations. The experimental results were then compared with the rate equation proposed by using Langmuir-Henshelwood adsorption model. The experimental data obtained in the dehydration of ethanol to diethyl ether, show good agreement with proposed model

  16. Rate coefficients of hydroxyl radical reactions with pesticide molecules and related compounds: A review

    Science.gov (United States)

    Wojnárovits, László; Takács, Erzsébet

    2014-03-01

    Rate coefficients published in the literature on hydroxyl radical reactions with pesticides and related compounds are discussed together with the experimental methods and the basic reaction mechanisms. Recommendations are made for the most probable values. Most of the molecules whose rate coefficients are discussed have aromatic ring: their rate coefficients are in the range of 2×109-1×1010 mol-1 dm3 s-1. The rate coefficients show some variation with the electron withdrawing-donating nature of the substituent on the ring. The rate coefficients for triazine pesticides (simazine, atrazine, prometon) are all around 2.5×109 mol-1 dm3 s-1. The values do not show variation with the substituent on the s-triazine ring. The rate coefficients for the non-aromatic molecules which have C=C double bonds or several C-H bonds may also be above 1×109 mol-1 dm3 s-1. However, the values for molecules without C=C double bonds or several C-H bonds are in the 1×107-1×109 mol-1 dm3 s-1 range.

  17. Measurement of high-threshold-energy activation reaction rates in combined materials with 14 MeV neutrons

    International Nuclear Information System (INIS)

    High-threshold-energy activation reaction rates were measured in cylindric combined materials bombarded by D-T neutrons with 6 threshold-energy detectors Fe, Al, Nb, F, Zr and Cu. The experimental results are discussed. MCNP/4B code was used to calculate the activation reaction rates on the experimental device. The calculated results are compared with the experimental ones. It shows that the discrepancies are 10%-30% except for the F activation reaction rate. (authors)

  18. Laboratory Astrophysics White Paper

    Science.gov (United States)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  19. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates

    Science.gov (United States)

    Atchley, Adam L.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.

    2014-09-01

    The role of coupled physical and geochemical heterogeneities in hydro-geochemical transport is investigated by simulating three-dimensional transport in a heterogeneous system with kinetic mineral reactions. Ensembles of 100 physically heterogeneous realizations were simulated for three geochemical conditions: 1) spatially homogeneous reactive mineral surface area, 2) reactive surface area positively correlated to hydraulic heterogeneity, and 3) reactive surface area negatively correlated to hydraulic heterogeneity. Groundwater chemistry and the corresponding effective reaction rates were calculated at three transverse planes to quantify differences in plume evolution due to heterogeneity in mineral reaction rates and solute residence time (τ). The model is based on a hypothetical CO2 intrusion into groundwater from a carbon capture utilization and storage (CCUS) operation where CO2 dissolution and formation of carbonic acid created geochemical dis-equilibrium between fluids and the mineral galena that resulted in increased aqueous lead (Pb2 +) concentrations. Calcite dissolution buffered the pH change and created conditions of galena oversaturation, which then reduced lead concentrations along the flow path. Near the leak kinetic geochemical reactions control the release of solutes into the fluid, but further along the flow path mineral solubility controls solute concentrations. Simulation results demonstrate the impact of heterogeneous distribution of geochemical reactive surface area in coordination with physical heterogeneity on the effective reaction rate (Krxn,eff) and Pb2 + concentrations within the plume. Dissimilarities between ensemble Pb2 + concentration and Krxn,eff are attributed to how geochemical heterogeneity affects the time (τeq) and therefore advection distance (Leq) required for the system to re-establish geochemical equilibrium. Only after geochemical equilibrium is re-established, Krxn,eff and Pb2 + concentrations are the same for all three

  20. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    Science.gov (United States)

    Greene, Samuel M.; Shan, Xiao; Clary, David C.

    2016-06-01

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  1. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    Science.gov (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods. PMID:27369506

  2. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  3. Probing the interplay between factors determining reaction rates on silica gel using termolecular systems.

    Science.gov (United States)

    Kirkpatrick, Iain; Worrall, David R; Williams, Siân L; Buck, Craig J T; Meseguer, Rafael G

    2012-10-01

    In this study we have compared energy and electron transfer reactions in termolecular systems using a nanosecond diffuse reflectance laser flash photolysis technique. We have previously investigated these processes on silica gel surfaces for bimolecular systems and electron transfer in termolecular systems. The latter systems involved electron transfer between three arene molecules with azulene acting as a molecular shuttle. In this study we present an alternative electron transfer system using trans β-carotene as an electron donor in order to effectively immobilise all species except the shuttle, providing the first unambiguous evidence for radical ion mobility. In the energy transfer system we use naphthalene, a structural isomer of azulene, as the shuttle, facilitating energy transfer from a selectively excited benzophenone sensitiser to 9-cyanoanthracene. Bimolecular rate constants for all of these processes have been measured and new insights into the factors determining the rates of these reactions on silica gel have been obtained.

  4. Effect of Reaction Rate and Calcination Time on CaNb2O6 Nanoparticles

    Directory of Open Access Journals (Sweden)

    C. M. Dudhe

    2014-01-01

    Full Text Available The properties of CaNb2O6 nanoparticles synthesized by coprecipitation method under controlled reaction rate and extended calcination time were studied. Analysis of the X-ray diffraction pattern shows single orthorhombic phase of the material with lattice parameters: a=15.0147 Å, b=5.74148 Å, and c=5.30296 Å. The morphology and size of particles was found to be improved due to the controlled reaction rate and extended calcination time. The average sizes of the particles were estimated as 40 nm and 90 nm for sintering temperatures 650°C and 800°C, respectively. The material was found to possess dielectric constant which is inversely proportional to the frequency. Surprisingly, the material shows ferroelectric behavior, the possible origin of which is discussed here.

  5. Reaction rate distribution measurement and the core performance evaluation in the prototype FBR Monju

    Energy Technology Data Exchange (ETDEWEB)

    Usami, S.; Suzuoki, Z.; Deshimaru, T. [Monju Construction Office, Japan Nuclear Cycle Development Institute, Fukui-ken (Japan); Nakashima, F. [Tsuruga head Office, Japan Nuclear Cycle Development Institute, Fukui-ken (Japan)

    2001-07-01

    Monju is a prototype fast breeder reactor designed to have an output of 280 MW (714 MWt), fueled with mixed oxides of plutonium and uranium and cooled by liquid sodium. The principal data on plant design and performance are shown in Table 1. Monju attained initial criticality in April 1994 and the reactor physics tests were carried out from May through November 1994. The reaction rate distribution measurement by the foil activation method was one of these tests and was carried out in order to verify the core performance and to contribute to the development of the core design methods. On the basis of the reaction rate measurement data, the Monju initial core breeding ratio and the power distribution were evaluated. (author)

  6. Rate constant and mechanism for the reaction of hydroxyl radical with formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, G.S.; McKenney, D.J.; Singleton, D.L.; Paraskevopoulos, G.; Bossard, A.R.

    1986-11-20

    The rate constants for the reaction of OH with the monomer and dimer of formic acid have been determined at 296 K by a laser photolysis-resonance absorption technique. The OH radicals were generated by photolysis of formic acid at 222 nm with a KrCl excimer laser and were monitored by time-resolved absorption at several resonance lines of the (0,0) band of the A/sup 2/..sigma../sup +/-X/sup 2/II transition. The rate constant for the monomer was found to be 2.95 x 10/sup 11/ cm/sup 3/ mol/sup -1/ s/sup -1/. The dimer is much less reactive. Experiments with small amounts of oxygen added indicate that H atoms are formed during the reaction. The results can be interpreted as indicating significantly more abstraction of hydrogen by OH from the -OH bond than from the -CH bond of formic acid.

  7. Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds

    DEFF Research Database (Denmark)

    Pattison, D I; Davies, Michael Jonathan

    2001-01-01

    , absolute second-order rate constants for the reactions of HOCl with protein side chains, model compounds, and backbone amide (peptide) bonds have been determined at physiological pH values. The reactivity of HOCl with potential reactive sites in proteins is summarized by the series: Met (3.8 x 10(7) M(-1......) x s(-1)) > backbone amides (10-10(-3) M(-1) x s(-1)) > Gln(0.03 M(-1) x s(-1)) approximately Asn (0.03 M(-1) x s(-1)). The rate constants for reaction of HOCl with backbone amides (peptide bonds) vary by 4 orders of magnitude with uncharged peptide bonds reacting more readily with HOCl than those...

  8. The 17O(p,α)14N reaction measurement via the Trojan horse method and its application to 17O nucleosynthesis

    Science.gov (United States)

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Burjan, S. V.; Cherubini, S.; Coc, A.; Gulino, M.; Hammache, F.; Hons, Z.; Irgaziev, B.; Kiss, G. G.; Kroha, V.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Séréville, N.; Somorjai, E.; Tumino, A.

    2014-05-01

    The role of oxygen in astrophysics is related to different problems as novae nucleosynthesis and gamma-ray astronomy. In particular, owing to the still present uncertainties on its rate, the 17O(p,α)14N is one of the most important reaction to be studied in order to get more information about the fate of oxygen in different astrophysical scenarios.

  9. Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions

    KAUST Repository

    Kim, Daesang

    2013-11-01

    We have extended reactive flow simulation in pore-network models to include geometric changes in the medium from dissolution effects. These effects include changes in pore volume and reactive surface area, as well as topological changes that open new connections. The computed changes were based upon a mineral map from an X-ray computed tomography image of a sandstone core. We studied the effect of these changes on upscaled (pore-scale to core-scale) reaction rates and compared against the predictions of a continuum model. Specifically, we modeled anorthite and kaolinite reactions under acidic flow conditions during which the anorthite reactions remain far from equilibrium (dissolution only), while the kaolinite reactions can be near-equilibrium. Under dissolution changes, core-scale reaction rates continuously and nonlinearly evolved in time. At higher injection rates, agreement with predictions of the continuum model degraded significantly. For the far-from-equilibrium reaction, our results indicate that the ability to correctly capture the heterogeneity in dissolution changes in the reactive mineral surface area is critical to accurately predict upscaled reaction rates. For the near-equilibrium reaction, the ability to correctly capture the heterogeneity in the saturation state remains critical. Inclusion of a Nernst-Planck term to ensure neutral ionic currents under differential diffusion resulted in at most a 9% correction in upscaled rates.

  10. Ab initio Quantum Chemical Studies of Reactions in Astrophysical Ices. Reactions Involving CH3OH, CO2, CO, HNCO in H2CO/NH3/H2O Ices

    Science.gov (United States)

    Woon, David E.

    2006-01-01

    While reactions between closed shell molecules generally involve prohibitive barriers in the gas phase, prior experimental and theoretical studies have demonstrated that some of these reactions are significantly enhanced when confined within an icy grain mantle and can occur efficiently at temperatures below 100 K with no additional energy processing. The archetypal case is the reaction of formaldehyde (H2CO) and ammonia (NH3) to yield hydroxymethylamine (NH2CH2OH). In the present work we have characterized reactions involving methanol (CH3OH), carbon dioxide (CO2), carbon monoxide (CO), and isocyanic acid (HNCO) in search of other favorable cases. Most of the emphasis is on CH3OH, which was investigated in the two-body reaction with one H2CO and the three-body reaction with two H2CO molecules. The addition of a second H2CO to the product of the reaction between CH3OH and H2CO was also considered as an alternative route to longer polyoxymethylene polymers of the -CH2O- form. The reaction between HNCO and NH3 was studied to determine if it can compete against the barrierless charge transfer process that yields OCN(-) and NH4(+). Finally, the H2CO + NH3 reaction was revisited with additional benchmark calculations that confirm that little or no barrier is present when it occurs in ice.

  11. Actinide complexation kinetics: rate and mechanism of dioxoneptunium (V) reaction with chlorophosphonazo III

    International Nuclear Information System (INIS)

    Rates of complex formation and dissociation in NpO2+- Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La3+, Eu3+, Dy3+, and Fe3+ with CLIII. Rate determining step in each system is an intramolecular process, the NpO2+-CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are ΔH=46.2±0.3 kJ/m and ΔS=7± J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are ΔH=38.8±0.6 kJ/m, ΔS=-96±18 J/mK, ΔH=70.0± kJ/m, and ΔS=17±1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO2+, UO22+, Th4+, and Zr4+. Rates of CLIII complex formation reactions for Fe3+, Zr4+, NpO2+, UO22+, Th4+, La3+, Eu3+, and Dy3+ correlate with cation radius rather than charge/radius ratio

  12. Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    OpenAIRE

    Cyburt, R. H.; Amthor, A. M.; Heger, A.; Johnson, E.; Keek, L.; Meisel, Z.; Schatz, H.; Smith, K

    2016-01-01

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,$\\gamma$), ($\\alpha$,$\\gamma$), and ($\\alpha$,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophy...

  13. Ground Reaction Forces and Loading Rates Associated with Parkour and Traditional Drop Landing Techniques

    OpenAIRE

    Damien L. Puddle; Maulder, Peter S.

    2013-01-01

    Due to the relative infancy of Parkour there is currently a lack of empirical evidence on which to base specific technique instruction upon. The purpose of this study was to compare the ground reaction forces and loading rates involved in two Parkour landing techniques encouraged by local Parkour instructors and a traditional landing technique recommended in the literature. Ten male participants performed three different drop landing techniques (Parkour precision, Parkour roll, and traditiona...

  14. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10(...

  15. A Simple Formula for Local Burnup and Isotope Distributions Based on Approximately Constant Relative Reaction Rate

    Directory of Open Access Journals (Sweden)

    Cenxi Yuan

    2016-01-01

    Full Text Available A simple and analytical formula is suggested to solve the problems of the local burnup and the isotope distributions. The present method considers two extreme conditions of neutrons penetrating the fuel rod. Based on these considerations, the formula is obtained to calculate the reaction rates of 235U, 238U, and 239Pu and straightforward the local burnup and the isotope distributions. Starting from an initial burnup level, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC calculation. Then the present formula independently gives very similar results to the MC calculation from the starting to high burnup level but takes just a few minutes. The relative reaction rates are found to be almost independent of the radius (except (n,γ of  238U and the burnup, providing a solid background for the present formula. A more realistic examination is also performed when the fuel rods locate in an assembly. A combination of the present formula and the MC calculation is expected to have a nice balance between the numerical accuracy and time consumption.

  16. A simple formula for local burnup based on constant relative reaction rate per nuclei

    CERN Document Server

    Yuan, Cenxi

    2015-01-01

    A simple and analytical formula is suggested to solve the problems on the local burnup and the isotope distributions. Present method considers that the slowing down neutrons going into the fuel rod is similar to the light going into the medium. Based on the assumption, the formula are obtained to calculate the reaction rates of $^{235}$U, $^{238}$U, and $^{239}$Pu and straightforward the local burnup and the isotope distributions. From a starting burnup point, the parameters of the formula are fitted to the reaction rates given by a Monte Carlo (MC) calculation. Then the present formula independently gives almost the same results as the MC calculation from the starting burnup point to high burnup, but takes just a few minutes. The relative reaction rate per nuclei are found to be almost independent on the radius (except $(n,\\gamma)$ of $^{238}$U) and burnup, providing a solid background for present formula. A combination of present formula and MC calculation is expected to have a nice balance on the accuracy ...

  17. Experimental results for studies of the 40Ca(α,γ)44Ti reaction rates

    Science.gov (United States)

    Robertson, Daniel; Becker, Hans-Werner; Bowers, Matt; Collon, Philippe; Goerres, Joachim; Lu, Wenting; Schmitt, Chris; Wiescher, Michael

    2011-10-01

    Observational studies of galactic γ emitters such as 44Ti have highlighted their use in nucleosynthesis studies of massive stars in their late stage stellar evolution and final explosive demise in core collapse supernova events. Models used in the simulation of such γ emitters rely heavily upon reliable reaction rates for both the creation and annihilation of these isotopes over large temperature ranges. The production of 44Ti mainly through the 40Ca(α,γ)44Ti reaction is thought to take place primarily in the α-rich freeze out phase of a core collapse supernova. However, current supernova models predict lower 44Ti to 56Ni ratios than observed, creating a need for more information about its production mechanism. A number of previous studies include prompt γ-ray measurements, recoil mass separator experiments and the use of AMS, all giving greatly different reaction rates. Aiding in the refinement of these needed rates, the results of experiments at the DTL, Bochum and NSL, Notre Dame will be presented against the backdrop of these previous measurements. Work supported by grant # 0758100 and # 0822648.

  18. Measurements of $^{152}$Gd(p,$\\gamma$)$^{153}$Tb and $^{152}$Gd(p,n)$^{152}$Tb reaction cross sections for the astrophysical $\\gamma$ process

    CERN Document Server

    Güray, R T; Yalçın, C; Rauscher, T; Gyürky, Gy; Farkas, J; Fülöp, Zs; Halász, Z; Somorjai, E

    2015-01-01

    The total cross sections for the $^{152}$Gd(p,$\\gamma$)$^{153}$Tb and $^{152}$Gd(p,n)$^{152}$Tb reactions have been measured by the activation method at effective center-of-mass energies \\mbox{$3.47 \\leq E_\\mathrm{c.m.}^\\mathrm{eff}\\leq 7.94$ MeV} and \\mbox{$4.96 \\leq E_\\mathrm{c.m.}^\\mathrm{eff} \\leq 7.94$ MeV}, respectively. The targets were prepared by evaporation of 30.6\\% isotopically enriched $^{152}$Gd oxide on aluminum backing foils, and bombarded with proton beams provided by a cyclotron accelerator. The cross sections were deduced from the observed $\\gamma$-ray activity, which was detected off-line by a HPGe detector in a low background environment. The results are presented and compared with predictions of statistical model calculations. This comparison supports a modified optical proton+$^{152}$Gd potential suggested earlier.

  19. Improvement of the high-accuracy 17O(p ,α )14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis

    Science.gov (United States)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; O'Brien, S.; Roberson, D.; Tan, W.; Wiescher, M.; Irgaziev, B.; Mukhamedzhanov, A.; Mrazek, J.; Kroha, V.

    2015-06-01

    The 17O(p ,α )14N and 17O(p ,γ )18F reactions are of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RGs), asymptotic giant branch (AGB) stars, massive stars, and classical novae. In particular, they govern the destruction of 17O and the formation of the short-lived radioisotope 18F, which is of special interest for γ -ray astronomy. At temperatures typical of the above-mentioned astrophysical scenario, T =0.01 -0.1 GK for RG, AGB, and massive stars and T =0.1 -0.4 GK for a classical nova explosion, the 17O(p ,α )14N reaction cross section is dominated by two resonances: one at about ERc m=65 keV above the 18F proton threshold energy, corresponding to the EX=5.673 MeV level in 18F, and another one at ERc m=183 keV (EX=5.786 MeV). We report on the indirect study of the 17O(p ,α )14N reaction via the Trojan Horse method by applying the approach recently developed for extracting the strength of narrow resonance at ultralow energies. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature. This value was used as input parameter for reaction-rate determination and its comparison with the result of the direct measurement is also discussed in the light of the electron screening effect.

  20. Upscaling of reaction rates in reactive transport using pore-scale reactive transport model

    Science.gov (United States)

    Yoon, H.; Dewers, T. A.; Arnold, B. W.; Major, J. R.; Eichhubl, P.; Srinivasan, S.

    2013-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at the (sub) pore-scale. In this research pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reaction at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This work is motivated by the observed CO2 seeps from a natural analog to geologic CO2 sequestration at Crystal Geyser, Utah. A key observation is the lateral migration of CO2 seep sites at a scale of ~ 100 meters over time. A pore-scale model provides fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging under different geochemical compositions and pore configurations. In addition, response function of reaction rates will be constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Damkohler and Peclet numbers. Newly developed response functions will be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps. Comparison of field observations and simulations results will provide mechanistic explanations of the lateral migration and enhance our understanding of subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

  1. Quantum chemical study of mechanisms of dissociation and isomerization reactions in some molecules and radicals of astrophysical significance: Cyanides and related molecules

    Indian Academy of Sciences (India)

    V P Gupta; Archina Sharma

    2006-09-01

    A theoretical study of the mechanism of photodecomposition in carbonyl cyanide, diethynyl ketone, acetyl cyanide and formyl cyanide has been conducted using density functional and MP2 theories. A complete analysis of the electronic spectra of these molecules in terms of nature, energy and intensity of electronic transitions has been provided by time-dependent density functional theory. Mixing coefficients and main configurations of the electronic states have been used to identify the states leading to the photodecomposition process. While the Rydberg state 1(n,3s) is involved in the dissociation of formyl cyanide and acetyl cyanide, the $^{*}_{CC} / ^{*}_{CN}$ states are involved in the case of carbonyl cyanide and diethynyl ketone. In all cases, however, stepwise decomposition process is preferred over the concerted reaction process. Based on potential energy curves for bond dissociation and the transition state and IRC studies, it is found that besides the direct dissociation of carbonyl cyanide, a photoisomerization process through a non-planar transition state may also occur resulting in the formation of a stable and planar isomer CNC(O)CN. A complete vibrational analysis of the higher energy isomer has been conducted and several new fundamental bands are predicted. Some of the earlier experimental results on the photodecomposition mechanism and energies of photofragments in carbonyl cyanide and acetyl cyanide have also been rationalized.

  2. Rate coefficients of hydroxyl radical reactions with pesticide molecules and related compounds: A review

    International Nuclear Information System (INIS)

    Rate coefficients published in the literature on hydroxyl radical reactions with pesticides and related compounds are discussed together with the experimental methods and the basic reaction mechanisms. Recommendations are made for the most probable values. Most of the molecules whose rate coefficients are discussed have aromatic ring: their rate coefficients are in the range of 2×109–1×1010 mol–1 dm3 s–1. The rate coefficients show some variation with the electron withdrawing–donating nature of the substituent on the ring. The rate coefficients for triazine pesticides (simazine, atrazine, prometon) are all around 2.5×109 mol–1 dm3 s–1. The values do not show variation with the substituent on the s-triazine ring. The rate coefficients for the non-aromatic molecules which have C=C double bonds or several C–H bonds may also be above 1×109 mol–1 dm3 s–1. However, the values for molecules without C=C double bonds or several C–H bonds are in the 1×107–1×109 mol–1 dm3 s–1 range. - Highlights: • The ∙OH rate coefficients with aromatic pesticides are (2–10)×109 mol−1 dm3 s−1. • For triazine type pesticides the values are around 2.5×109 mol−1 dm3 s−1. • For non-aromatics with double bond or several C–H they are ∼1×109 mol−1 dm3 s−1. • For aromatics kOH’s are determined by diffusion; for triazines by chemical activation. • They are activation controlled when molecule does not have double or C–H bonds

  3. Suppression of the stellar enhancement factor and the reaction 85Rb(p,n)85Sr

    CERN Document Server

    Rauscher, T; Gyürky, Gy; Simon, A; Fülöp, Z; Somorjai, E

    2009-01-01

    It is shown that a Coulomb suppression of the stellar enhancement factor occurs in many endothermic reactions at and far from stability. Contrary to common assumptions, reaction measurements for astrophysics with minimal impact of stellar enhancement should be preferably performed for those reactions instead of their reverses, despite of their negative reaction Q-value. As a demonstration, the cross section of the astrophysically relevant 85Rb(p,n)85Sr reaction has been measured by activation between 2.16<=E_{c.m.}<= 3.96 MeV and the astrophysical reaction rates at p-process temperatures for (p,n) as well as (n,p) are directly inferred from the data. Additionally, our results confirm a previously derived modification of a global optical proton potential. The presented arguments are also relevant for other alpha- and proton-induced reactions in the p-, rp-, and nu-p-processes.

  4. Reaction rate of a composite core-shell nanoreactor with multiple nanocatalysts.

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Angioletti-Uberti, Stefano; Ballauff, Matthias; Dzubiella, Joachim; Piazza, Francesco

    2016-07-27

    We present a detailed theory for the total reaction rate constant of a composite core-shell nanoreactor, consisting of a central solid core surrounded by a hydrogel layer of variable thickness, where a given number of small catalytic nanoparticles are embedded at prescribed positions and are endowed with a prescribed surface reaction rate constant. Besides the precise geometry of the assembly, our theory accounts explicitly for the diffusion coefficients of the reactants in the hydrogel and in the bulk as well as for their transfer free energy jump upon entering the hydrogel shell. Moreover, we work out an approximate analytical formula for the overall rate constant, which is valid in the physically relevant range of geometrical and chemical parameters. We discuss in depth how the diffusion-controlled part of the rate depends on the essential variables, including the size of the central core. In particular, we derive some simple rules for estimating the number of nanocatalysts per nanoreactor for an efficient catalytic performance in the case of small to intermediate core sizes. Our theoretical treatment promises to provide a very useful and flexible tool for the design of superior performing nanoreactor geometries with optimized nanoparticle load. PMID:27411947

  5. Rate Constants for Reaction Between Hydroxyl Radical and Dimethyl Sulfide Under Real Atmospheric Condition

    Institute of Scientific and Technical Information of China (English)

    Hai-tao Wang; Chang-jiang Hu; Yu-jing Mu; Yu-jie Zhang

    2008-01-01

    The rate constants of the reaction between hydroxyl radical (OH.) and dimethyl sulfide (DMS) were investigated by using the relative methods in air, N2, and O2. Strong influences of ground state oxygen O(3p) on DMS consumption were found by the photolysis of HONO and CH3ONO as OH- sources, and the rate constants obtained in these systems varied significantly. The rate constants of the reaction between DMS and OH- (generated by photolysis of H2O2) at room temperature were 8.56x 10-12, 11.31 x 10-12, and 4.50x10-12 cm3/(molecule·s), in air, O2, and N2, respectively. The temperature dependence of the rate constants for OH·with DMS over the temperature range of 287-338 K was also investigated in nitrogen and air, and the Arrhenius expression was obtained as follows: kair=(7.244-O.28)x10-13exp[(770.7±97.2)/T],kN2 =(3.40-4-0.15) X 10-11 exp[- (590.34-165.9)/T].

  6. Characterization of the reaction rate coefficient of DNA with the hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, J.R.; Ward, J.F.; Aguilera, J.A. [Univ. of California, La Jolla, CA (United States)] [and others

    1996-11-01

    Using agarose gel electrophoresis, we have measured the yield of single-strand breaks (SSBs) induced by {sup 137}Cs {gamma} irradiation in a variety of plasmid DNA substrates ranging in size from 2.7 kb to 38 kb irradiated in aerobic aqueous solution in the presence of the hydroxyl radical scavenger dimethyl sulfoxide (DMSO). Under these conditions DNA SSBs are caused mainly by the hydroxyl radical. Using the competition between DMSO and DNA for the hydroxyl radical, we have estimated the rate coefficient for the reaction of the hydroxyl radical with DNA. The results cannot be characterized by conventional steady-state competition kinetics. However, it is possible to describe the second-order rate constant for the reaction as a function of the scavenging capacity of the solution. The second-order rate constant increases with increasing scavenging capacity, rising from about 5x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1} at 10{sup 5} s{sup -1} to about 10{sup 10} dm{sup 3} mol{sup -1} s{sup -1} at 10{sup 10} s{sup -1}. This dependence of the second-order rate constant on the scavenging capacity appears to be more pronounced for larger plasmids. 17 refs., 4 figs.

  7. A study of the photocatalytic effects of aqueous suspensions of platinized semiconductor materials on the reaction rates of candidate redox reactions

    Science.gov (United States)

    Miles, A. M.

    1982-01-01

    The effectiveness of powdered semiconductor materials in photocatalyzing candidate redox reactions was investigated. The rate of the photocatalyzed oxidation of cyanide at platinized TiO2 was studied. The extent of the cyanide reaction was followed directly using an electroanalytical method (i.e. differential pulse polarography). Experiments were performed in natural or artificial light. A comparison was made of kinetic data obtained for photocatalysis at platinized powders with rate data for nonplatinized powders.

  8. Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons

    Science.gov (United States)

    DeMore, W.B.

    1996-01-01

    Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (3OB2), CHBr3 (2OB3), CF2BrCHFCl (123aBl(alpha)), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.

  9. Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.

    Science.gov (United States)

    Orkin, Vladimir; Kurylo, Michael

    2015-04-01

    Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.

  10. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    DESIG: E 263 09 ^TITLE: Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron ^SIGNUSE: Refer to Guide E 844 for guidance on the selection, irradiation, and quality control of neutron dosimeters. Refer to Practice E 261 for a general discussion of the determination of fast-neutron fluence rate with threshold detectors. Pure iron in the form of foil or wire is readily available and easily handled. Fig. 1 shows a plot of cross section as a function of neutron energy for the fast-neutron reaction 54Fe(n,p)54Mn (1). This figure is for illustrative purposes only to indicate the range of response of the 54Fe(n,p)54Mn reaction. Refer to Guide E 1018 for descriptions of recommended tabulated dosimetry cross sections. 54Mn has a half-life of 312.13 days (3) (2) and emits a gamma ray with an energy of 834.845 keV (5). (2) Interfering activities generated by neutron activation arising from thermal or fast neutron interactions are 2.57878 (46)-h 56Mn, 44.95-d (8) 59Fe, and 5.27...

  11. Effective reaction rate for porous surfaces under strong shear: Beyond Damkohler

    Science.gov (United States)

    Shaqfeh, Eric S. G.; Shah, Preyas

    2014-11-01

    Traditonally, surface reactive porous media are modeled via an effective reaction/mass transfer rate based on the original ansatz of Damkohler, i.e, reaction limited transport at the microscale in the absence of flow. We are interested in modeling the microscale mass transfer to porous surfaces occuring in leaky tumor vasculature, where the Damkohler number can be O(1) and the Peclet number may be large. We model it as a uniform bath of a species in unbound shear flow over a wall with first order reactive circular patches (pores). We analyze the flux through a single pore using both analytic and boundary element simulations and observe the formation of a 3-D depletion region (wake) downstream of the pore. Wake sharing between adjacent pores in a multibody setting such as 2 pores aligned in the shear direction leads to a smaller flux per pore. Obtaining this interaction length scale and using the renormalized periodic Green's function, we study the flux through a periodic and disordered distribution of pores. This flux appears as the reaction rate in an effective boundary condition, valid up to non-dilute pore area fractions, and applicable at a wall-normal effective slip distance. It replaces the details of the surface and can be used directly in large scale physics simulations.

  12. THE IMPACT OF HELIUM-BURNING REACTION RATES ON MASSIVE STAR EVOLUTION AND NUCLEOSYNTHESIS

    International Nuclear Information System (INIS)

    We study the sensitivity of presupernova evolution and supernova nucleosynthesis yields of massive stars to variations of the helium-burning reaction rates within the range of their uncertainties. The current solar abundances from Lodders are used for the initial stellar composition. We compute a grid of 12 initial stellar masses and 176 models per stellar mass to explore the effects of independently varying the 12C(α, γ)16O and 3α reaction rates, denoted Rα,12 and R3α, respectively. The production factors of both the intermediate-mass elements (A = 16-40) and the s-only isotopes along the weak s-process path (70Ge, 76Se, 80Kr, 82Kr, 86Sr, and 87Sr) were found to be in reasonable agreement with predictions for variations of R3α and Rα,12 of ±25%; the s-only isotopes, however, tend to favor higher values of R3α than the intermediate-mass isotopes. The experimental uncertainty (one standard deviation) in R3α(Rα,12) is approximately ±10%(±25%). The results show that a more accurate measurement of one of these rates would decrease the uncertainty in the other as inferred from the present calculations. We also observe sharp changes in production factors and standard deviations for small changes in the reaction rates, due to differences in the convection structure of the star. The compactness parameter was used to assess which models would likely explode as successful supernovae, and hence contribute explosive nucleosynthesis yields. We also provide the approximate remnant masses for each model and the carbon mass fractions at the end of core-helium burning as a key parameter for later evolution stages.

  13. Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall

    Science.gov (United States)

    LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre

    2014-01-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the

  14. Quantifying metabolic rates in submarine hydrothermal vent chimneys: A reaction transport model

    Science.gov (United States)

    LaRowe, D.; Dale, A.; Aguilera, D.; Amend, J. P.; Regnier, P.

    2012-12-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rate of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. Methanogenesis, hydrogen oxidation by oxygen and sulfate, sulfide oxidation by oxygen and methane oxidation by oxygen and sulfate are the metabolisms included in the reaction network. Model results indicate that microbial catalysis is fastest in the hottest habitable portion of the vent chimney except for methane oxidation by oxygen, which peaks near the seawater-side of the chimney at 20 nmol /cm^3 yr. The dominant metabolisms in the chimney are hydrogen oxidation by sulfate and oxygen and sulfide oxidation at peak rates 3200 , 300 and 900 nmol /cm^3 yr, respectively. The maximum rate of hydrogenotrophic methanogensis is just under 0.07 nmol /cm^3 yr, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). The model developed here provides a quantitative approach to understanding the rates of biogeochemical transformations in hydrothermal systems and can be used to better understand the role of microbial activity in the deep subsurface.

  15. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    Science.gov (United States)

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal. PMID:22163620

  16. A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Naoki Wakamiya

    2010-08-01

    Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  17. Rates of hydroxyl radical reactions with some HFCs. [HydroFluoroCarbons

    Science.gov (United States)

    Demore, William B.

    1993-01-01

    Relative rate constants for OH reactions with some HFCs have been determined at 298 K by a technique which measures the loss of HFC greater than OH. The following ratios were determine: k(152a)/k(CH4) = 5.2 +/- 0.5, k(CH4)/k(125) = 3.9 +/- 0.5, k(CH4)/k(134a) = 2.1 +/- 0.2, k(134a)/k(125) = 2.0 +/- 0.2, and k(C2H6)/k(152a) = 6.2 +/- 1.0. These results are in good agreement with literature values for the absolute rate constants except for HFC 134a, where a slower rate constant is indicated.

  18. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    Science.gov (United States)

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs. PMID:21410278

  19. Accurate quantum thermal rate constants for the three-dimensional H+H2 reaction

    Science.gov (United States)

    Park, Tae Jun; Light, J. C.

    1989-07-01

    The rate constants for the three-dimensional H+H2 reaction on the Liu-Siegbahn-Truhlar-Horowitz (LSTH) surface are calculated using Pack-Parker hyperspherical (APH) coordinates and a C2v symmetry adapted direct product discrete variable representation (DVR). The C2v symmetry decomposition and the parity decoupling on the basis are performed for the internal coordinate χ. The symmetry decomposition results in a block diagonal representation of the flux and Hamiltonian operators. The multisurface flux is introduced to represent the multichannel reactive flux. The eigenvalues and eigenvectors of the J=0 internal Hamiltonian are obtained by sequential diagonalization and truncation. The individual symmetry blocks of the flux operator are propagated by the corresponding blocks of the Hamiltonian, and the J=0 rate constant k0(T) is obtained as a sum of the rate constants calculated for each block. k0(T) is compared with the exact k0(T) obtained from thermal averaging of the J=0 reaction probabilities; the errors are within 5%-20% up to T=1500 K. The sequential diagonalization-truncation method reduces the size of the Hamiltonian greatly, but the resulting Hamiltonian matrix still describes the time evolution very accurately. For the J≠0 rate constant calculations, the truncated internal Hamiltonian eigenvector basis is used to construct reduced (JKJ) blocks of the Hamiltonian. The individual (JKJ) blocks are diagonalized neglecting Coriolis coupling and treating the off-diagonal KJ±2 couplings by second order perturbation theory. The full wave function is parity decoupled. The rate constant is obtained as a sum over J of (2J+1)kJ(T). The time evolution of the flux for J≠0 is again very accurately described to give a well converged rate constant.

  20. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  1. Rate of reaction of the hydrogen atom with nitrous oxide in ambient water

    Science.gov (United States)

    Kazmierczak, Lukasz; Swiatla-Wojcik, Dorota; Szala-Bilnik, Joanna; Wolszczak, Marian

    2016-08-01

    The reaction of the hydrogen atom with nitrous oxide has been investigated by pulse radiolysis of N2O-saturated 0.1 M HCl solution at room temperature (24±1 °C). The value of (9±2)×104 M-1 s-1 obtained for the reaction rate constant is between the early estimates 1×104 M-1 s-1 by Czapski and Jortner (1960) and 4.3×105 M-1 s-1 by Thomas (1969), and is much lower than 2×106 M-1 s-1 used recently (Janik et al., 2007; Ismail et al., 2013; Liu et al., 2015; Meesungnoen et al., 2015).

  2. Temperature dependence of the absolute rate constant for the reaction of ozone with dimethyl sulfide

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-tao; ZHANG Yu-jie; MU Yu-jing

    2007-01-01

    Absolute rate constants for the reaction of ozone with dimethyl sulfide (DMS) were measured in a 200-L Teflon chamber over the temperature range of 283-353 K. Measurements were carried out using DMS in large excess over ozone of 10 to 1 or greater. Over the indicated temperature range,the data could be fit to the simple Arrhenius expression as KDMS = (9.96±3.61)×10-11exp(-(7309.7±1098.2)/T)cm3/(molecule·s). A compared investigation of the reaction between ozone and ethene had a kc2H4 value of(1.35±0.11)×10-18 cm3/(molecule·s) at room temperature.

  3. Measurement of absolute reaction rates in Be,Pb and Fe spherical systems

    Institute of Scientific and Technical Information of China (English)

    LiuRong; ChenYuan; 等

    1998-01-01

    The absolute reaction rates in Be,Pb and Fe have been measured by using the activation foil technique with different reaction energy thresholds.Thicknesses of Be,Pb and Fe spheres were 5.3,19.1 and 31.9cm.respectively,Eight kinds of activation folis were used for Fe,and four kinds each for Be and Pb,The total experimental er5ror was about 5-7%.The measured results were compared to the values calculated with the 1-D ANISN code and the ENDF/B-VI library data.The average ratio of the experimental to the calculational is less than 7% for Be and Pb,about 5-30% for Fe.

  4. Sodium aerosol release rate and nonvolatile fission product retention factor during a sodium-concrete reaction

    International Nuclear Information System (INIS)

    This paper reports on a series of tests conducted to study the mechanical release behavior of sodium aerosols containing nonvolatile fission products during a sodium-concrete reaction in which release behavior due to hydrodynamic breakup of the hydrogen bubble is predominant at the sodium pool surface. In the tests, nonradioactive materials, namely, strontium oxide, europium oxide, and ruthenium particles, whose sizes range from a few microns to several tens of microns, are used as nonvolatile fission product stimulants. The following results are obtained: The sodium aerosol release rate during the sodium-concrete reaction is larger than that of natural evaporation. The difference, however, becomes smaller with increasing sodium temperature: nearly ten times smaller at 400 degrees C and three times at 700 degrees C. The retention factors for the nonvolatile materials in the sodium pool increase to the range of 0.5 to 104 with an increase in the sodium temperature from 400 to 700 degrees C

  5. Astrophysics Source Code Library

    CERN Document Server

    Allen, Alice; Berriman, Bruce; Hanisch, Robert J; Mink, Jessica; Teuben, Peter J

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, is a free on-line registry for source codes of interest to astronomers and astrophysicists. The library is housed on the discussion forum for Astronomy Picture of the Day (APOD) and can be accessed at http://ascl.net. The ASCL has a comprehensive listing that covers a significant number of the astrophysics source codes used to generate results published in or submitted to refereed journals and continues to grow. The ASCL currently has entries for over 500 codes; its records are citable and are indexed by ADS. The editors of the ASCL and members of its Advisory Committee were on hand at a demonstration table in the ADASS poster room to present the ASCL, accept code submissions, show how the ASCL is starting to be used by the astrophysics community, and take questions on and suggestions for improving the resource.

  6. Surprises in astrophysical gasdynamics

    CERN Document Server

    Balbus, Steven A

    2016-01-01

    Much of astrophysics consists of the study of ionised gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetised fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosynchratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out import...

  7. Augmented Reality in Astrophysics

    CERN Document Server

    Vogt, Frédéric P A

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss p...

  8. Challenges of Relativistic Astrophysics

    CERN Document Server

    Opher, Reuven

    2013-01-01

    I discuss some of the most outstanding challenges in relativistic astrophysics in the subjects of: compact objects (Black Holes and Neutron Stars); dark sector (Dark Matter and Dark Energy); plasma astrophysics (Origin of Jets, Cosmic Rays and Magnetic Fields) and the primordial universe (Physics at the beginning of the Universe). In these four subjects, I discuss twelve of the most important challenges. These challenges give us insight into new physics that can only be studied in the large scale Universe. The near future possibilities, in observations and theory, for addressing these challenges, are also discussed.

  9. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  10. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2016-01-01

    Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

  11. 31Cl beta decay and the 30P31S reaction rate in nova nucleosynthesis

    Science.gov (United States)

    Bennett, Michael; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; NSCL e12028 Collaboration

    2016-03-01

    The 30P31S reaction rate is critical for modeling the final isotopic abundances of ONe nova nucleosynthesis, identifying the origin of presolar nova grains, and calibrating proposed nova thermometers. Unfortunately, this rate is essentially experimentally unconstrained because the strengths of key 31S proton capture resonances are not known, due to uncertainties in their spins and parities. Using a 31Cl beam produced at the National Superconducting Cyclotron Laboratory, we have populated several 31S states for study via beta decay and devised a new decay scheme which includes updated beta feedings and gamma branchings as well as multiple states previously unobserved in 31Cl beta decay. Results of this study, including the unambiguous identification due to isospin mixing of a new l = 0 , Jπ = 3 /2+ 31S resonance directly in the middle of the Gamow Window, will be presented, and significance to the evaluation of the 30P31S reaction rate will be discussed. Work supported by U.S. Natl. Sci. Foundation (Grants No. PHY-1102511, PHY-1404442, PHY-1419765, and PHY-1431052); U.S. Dept. of Energy, Natl. Nucl. Security Administration (Award No. DE-NA0000979); Nat. Sci. and Eng. Research Council of Canada.

  12. Rate Equations and Kinetic Parameters of the Reactions Involved in Pyrite Oxidation by Thiobacillus ferrooxidans.

    Science.gov (United States)

    Lizama, H M; Suzuki, I

    1989-11-01

    Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 muM Fe per min per FeS(2) percent pulp density for the spontaneous pyrite dissolution, 10 muM Fe per min per mM Fe for the indirect leaching with Fe, 90 muM O(2) per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 muM O(2) per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The K(m) values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a K(i) value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe production from Fe plus pyrite. PMID:16348054

  13. The effect of a mechanical force on quantum reaction rate: quantum Bell formula.

    Science.gov (United States)

    Makarov, Dmitrii E

    2011-11-21

    The purpose of this note is to derive a quantum-mechanical analog of Bell's formula, which describes the sensitivity of a chemical reaction to a mechanical pulling force. According to this formula, the reaction rate depends exponentially on the force f, i.e., k(f) ~ exp(f/f(c)), where the force scale f(c) is estimated as the thermal energy k(B)T divided by a distance a between the reactant and transition states along the pulling coordinate. Here I use instanton theory to show that, at low temperatures where quantum tunneling is dominant, this force scale becomes f(c) ~ ℏω/a (in the limit where frictional damping is absent) or f(c) ~ ℏτ(-1)/a (in the strong damping limit). Here ω is a characteristic vibration frequency along the pulling coordinate and τ is a characteristic relaxation time in the reactant state. That is, unlike the classical case where f(c) is unaffected by dissipation, this force scale becomes friction dependent in the quantum limit. I further derive higher-order corrections in the force dependence of the rate, describe generalizations to many degrees of freedom, and discuss connection to other quantum rate theories. PMID:22112071

  14. Rate Constant and Branching Fraction for the NH2 + NO2 Reaction

    DEFF Research Database (Denmark)

    Klippenstein, Stephen J.; Harding, Lawrence B.; Glarborg, Peter;

    2013-01-01

    The NH2 + NO2 reaction has been studied experimentally and theoretically. On the basis of laser photolysis/LIF experiments, the total rate constant was determined over the temperature range 295–625 K as k1,exp(T) = 9.5 × 10–7(T/K)−2.05 exp(−404 K/T) cm3 molecule–1 s–1. This value is in the upper...... range of data reported for this temperature range. The reactions on the NH2 + NO2 potential energy surface were studied using high level ab initio transition state theory (TST) based master equation methods, yielding a rate constant of k1,theory(T) = 7.5 × 10–12(T/K)−0.172 exp(687 K/T) cm3 molecule–1 s...... may facilitate a small flux between the adducts. High- and low-pressure limit rate coefficients for the various product channels of NH2 + NO2 are determined from the ab initio TST-based master equation calculations for the temperature range 300–2000 K. The theoretical predictions are in good agreement...

  15. New reaction rates for improved primordial D /H calculation and the cosmic evolution of deuterium

    Science.gov (United States)

    Coc, Alain; Petitjean, Patrick; Uzan, Jean-Philippe; Vangioni, Elisabeth; Descouvemont, Pierre; Iliadis, Christian; Longland, Richard

    2015-12-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three historically strong evidences for the big bang model. Standard BBN is now a parameter-free theory, since the baryonic density of the Universe has been deduced with an unprecedented precision from observations of the anisotropies of the cosmic microwave background radiation. There is a good agreement between the primordial abundances of 4He, D, 3He, and 7Li deduced from observations and from primordial nucleosynthesis calculations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations and remains an open problem. In addition, recent deuterium observations have drastically reduced the uncertainty on D /H , to reach a value of 1.6%. It needs to be matched by BBN predictions whose precision is now limited by thermonuclear reaction rate uncertainties. This is especially important as many attempts to reconcile Li observations with models lead to an increased D prediction. Here, we reevaluate the d (p ,γ )3He, d (d ,n ) 3H3, and d (d ,p ) 3H reaction rates that govern deuterium destruction, incorporating new experimental data and carefully accounting for systematic uncertainties. Contrary to previous evaluations, we use theoretical ab initio models for the energy dependence of the S factors. As a result, these rates increase at BBN temperatures, leading to a reduced value of D /H =(2.45 ±0.10 )×10-5 (2 σ ), in agreement with observations.

  16. THE ASYMPTOTIC LIMIT FOR A COMBUSTION MODEL IN REGARD TO INFINITE REACTION RATE

    Institute of Scientific and Technical Information of China (English)

    Ying Longan

    2008-01-01

    The Zeldovich-von Neumann-Doring model and the Chapman-Jouguet model for a simplified combustion model-Majda's model is studied. The author proves a uniform maximum norm estimate, then proves that as the rate of chemical reaction tends to infinity the solutions to the Zeldovich-von Neumann-Doring model tend to that of the Chapman-Jouguet model. The type of combustion waves is studied. This result is compared with the result of the projection and finite difference method for the same model.

  17. The study of 12C(α,γ astrophysical reaction using 12C(6Li,d and 12C(7Li,t reaction at 20 MeV and in the framework of the potential model

    Directory of Open Access Journals (Sweden)

    Adhikari S.

    2015-01-01

    Full Text Available The triton angular distribution in the 12C(7Li,t16O reaction has been measured at 20 MeV incident energy. Comparison of the data with Finite Range DWBA and CDCC-CRC calculations show that breakup coupling effects are prominent in the transfer to the ground state. This observation is similar to that in the 12C(6Li,d reaction at the same incident energy. The alpha spectroscopic factor of the 16O ground state is determined (Sα=0.25 from a comparison of the measured angular distribution with respect to the CDCC-CRC calculations. The E2 S-factor of the 12C(α,γ reaction at 300 keV in the framework of a potential model is determined to be about 118 keV-barn.

  18. GROUND REACTION FORCES AND LOADING RATES ASSOCIATED WITH PARKOUR AND TRADITIONAL DROP LANDING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Damien L. Puddle

    2013-03-01

    Full Text Available Due to the relative infancy of Parkour there is currently a lack of empirical evidence on which to base specific technique instruction upon. The purpose of this study was to compare the ground reaction forces and loading rates involved in two Parkour landing techniques encouraged by local Parkour instructors and a traditional landing technique recommended in the literature. Ten male participants performed three different drop landing techniques (Parkour precision, Parkour roll, and traditional onto a force plate. Compared to the traditional technique the Parkour precision technique demonstrated significantly less maximal vertical landing force (38%, p < 0.01, ES = 1.76 and landing loading rate (54%, p < 0.01, ES = 1.22. Similarly, less maximal vertical landing force (43%, p < 0.01, ES = 2.04 and landing loading rate (63%, p < 0.01, ES = 1.54 were observed in the Parkour roll technique compared to the traditional technique. It is unclear whether or not the Parkour precision technique produced lower landing forces and loading rates than the Parkour roll technique as no significant differences were found. The landing techniques encouraged by local Parkour instructors such as the precision and roll appear to be more appropriate for Parkour practitioners to perform than a traditional landing technique due to the lower landing forces and loading rates experienced

  19. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A.B.

    1975-06-01

    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  20. Cross section measurements of the sup 1 sup 0 sup 2 Pd(p, gamma) sup 1 sup 0 sup 3 Ag, sup 1 sup 1 sup 6 Sn(p, gamma) sup 1 sup 1 sup 7 Sb, and sup 1 sup 1 sup 2 Sn(alpha, gamma) sup 1 sup 1 sup 6 Te reactions relevant to the astrophysical rp- and gamma-processes

    CERN Document Server

    Oezkan, N; Boyd, R N; Cole, A L; Famiano, M; Gueray, R T; Howard, M; Sahin, L; Zach, J J; Haan, R D; Görres, J; Wiescher, M C; Islam, M S; Rauscher, T

    2002-01-01

    Total cross section measurements for the sup 1 sup 0 sup 2 Pd(p, gamma) sup 1 sup 0 sup 3 Ag and sup 1 sup 1 sup 6 Sn(p, gamma) sup 1 sup 1 sup 7 Sb reactions have been performed in the proton energy range 2.6 to 4.25 MeV, and for the sup 1 sup 1 sup 2 Sn(alpha, gamma) sup 1 sup 1 sup 6 Te reaction over the alpha beam energy range 7.0 to 10.5 MeV. An activation technique was used in which gamma rays from decays of the reaction products were detected off-line by two hyper-pure germanium detectors in a low background environment. Where possible, reaction rates are derived and the results compared to those of calculations generated by the NON-SMOKER and the MOST statistical model codes so as to judge their applicability for describing the cross sections needed for network calculations of nucleosynthesis in explosive astrophysical environments via the gamma- and rp-processes.

  1. Noise-induced convergence of the low flow rate chaos in the Belousov-Zhabotinsky reaction

    Science.gov (United States)

    Yoshimoto, Minoru; Nakaiwa, Masaru; Akiya, Takaji; Ohmori, Takao; Yamaguchi, Tomohiko

    The effect of noise on the low flow-rate chaos in the Belousov-Zhabotinsky (BZ) reaction was studied. The chaos was simulated using the three-variable model of Györgyi and Field. Gaussian white noise was imposed on the flow-rate of the reactant solutions fed into CSTR to simulate the so-called type P noise. The range of average noise amplitudes was chosen between 0.01% and 1% related to the inverse residence time. The calculated time series were analyzed on the basis of their Fourier spectra, maximum Lyapunov exponent, Kolmogorov entropies, return maps and invariant density. We found that the noise induces partial order of the period-3-like oscillations in the low flowrate chaos.

  2. The quantum instanton (QI) model for chemical reaction rates: The 'Simplest' QI with one dividing surface

    International Nuclear Information System (INIS)

    A new version of the quantum instanton (QI) approach to thermal rate constants of chemical reactions is presented, namely, the simplest QI (SQI) approximation with one dividing surface (DS), referred to here as SQI1. (The SQI approximation presented originally was applicable only with two DSs.) As with all versions of the QI approach, the rate is expressed wholly in terms of the (quantum) Boltzmann operator (which, for complex systems, can be evaluated by Monte Carlo path integral methods). Test calculations on some simple model problems show the SQI1 model to be slightly less accurate than the original version of the QI approach, but it is the easiest version to implement; it requires only a constrained free-energy calculation, location of the (transition-state) DS so as to maximize this free energy, and the curvature (second derivative) of the free energy at this maximum

  3. Elementary reaction rate measurements at high temperatures by tunable-laser flash-absorption

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, J.P. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The major objective of this program is to measure thermal rate coefficients and branching ratios of elementary reactions. To perform these measurements, the authors constructed an ultrahigh-purity shock tube to generate temperatures between 1000 and 5500 K. The tunable-laser flash-absorption technique is used to measure the rate of change of the concentration of species which absorb below 50,000 cm{sup {minus}1} e.g.: OH, CH, and CH{sub 3}. This technique is being extended into the vacuum-ultraviolet spectral region where one can measure atomic species e.g.: H, D, C, O, and N; and diatomic species e.g.: O{sub 2}, CO, and OH.

  4. Development of neutron multiplication analysis method for a subcritical system by reaction rate distribution measurement

    International Nuclear Information System (INIS)

    Basic experiments for ADSR are performed in KUCA to study the nuclear characteristics for establishing a new neutron source for research. Usually, nuclear reactors are operated in a critical state. Even though they are operated in an subcritical state, they are a very close to the critical state, and there are no problems to use the effective multiplication factor keff to express the subcriticality, which is obtained by solving the homogeneous neutron balance equation without external source. However, ADSR are operated in a subcritical state, and experiments which are fairly far from critical state may be performed to investigate their nuclear properties. In subcritical systems, the neutron flux distribution produced by an external source depends on the energy and position of the external source, and then the multiplication rate fission neutrons and the effectiveness of the external source should depend on the position of the external source. However, the effective multiplication factor keff cannot take into account the influence of such an effect. For a subcritical system, the neutron multiplication which is defined as the ratio of the total neutrons produced in the system by either fission or external source to those produced by external source only, can be a good measure for the efficiency of the system to produce neutrons with a specific spectrum which is one of the final goals of the 'Neutron Factory' project. Unlike the theoretical neutron multiplication definition, based on one point reactor approximation which depends only on the subcriticality of the system, the method considered in this study takes into account the effect on the neutron source position and energy, which plays an important role in the level of neutron multiplication for a given subcritical system. In this study, the value of neutron multiplication will be evaluated by utilizing the reaction rate distribution of KUCA A-core experiment which is analyzed in a subcritical system combined with

  5. Surprises in astrophysical gasdynamics.

    Science.gov (United States)

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject. PMID:27116247

  6. Astrophysics: An Integrative Course

    Science.gov (United States)

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  7. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  8. Surprises in astrophysical gasdynamics

    Science.gov (United States)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  9. Scanning electrochemical microscopy of metallic biomaterials: reaction rate and ion release imaging modes.

    Science.gov (United States)

    Gilbert, J L; Smith, S M; Lautenschlager, E P

    1993-11-01

    The Scanning Electrochemical Microscope (SECM) is a nonoptical scanning microscopic instrument capable of imaging highly localized electrical currents associated with charge transfer reactions on metallic biomaterials surfaces. The SECM operates as an aqueous electrochemical cell under bipotentiostatic control with a microelectrode and sample independently biased as working electrodes. Microelectrode current and position is recorded as it is scanned very near a metallurgically polished planar sample surface. To date, the SECM has imaged metallic biomaterials surfaces in oxygen reaction rate imaging (ORRI) and ion release and deposition imaging (IRDI) modes. In ORRI, sample and microelectrode are biased at sufficiently negative potentials to reduce absorbed oxygen. As the microelectrode scans areas of active oxygen reduction, localized diffusion fields with decreased oxygen solution concentrations are encountered and resultant decrements in microelectrode current are observed. In IRDI mode the sample is positively biased and the microelectrode is negatively biased. The microelectrode detects anodic dissolution products with highest currents being observed over the most active areas. Performance of the SECM has been evaluated on Ni minigrids, gamma-1 Hg-Ag dental amalgam crystals, and sintered beads of Co-Cr-Mo alloy which represent significantly different geometries and corrosion processes to help demonstrate the potential of this instrument. The SECM is a valuable tool for imaging microelectrochemical processes on the surfaces of metallurgically polished metallic biomaterials samples and a wide variety of other surfaces of biological interest where charge transfer reactions occur. The SECM allows selective biasing of metallic biomaterials surfaces and Faradaic reactions can be selectively imaged while the surface is in the active, passive, or transpassive state. PMID:8262998

  10. Scanning electrochemical microscopy of metallic biomaterials: reaction rate and ion release imaging modes.

    Science.gov (United States)

    Gilbert, J L; Smith, S M; Lautenschlager, E P

    1993-11-01

    The Scanning Electrochemical Microscope (SECM) is a nonoptical scanning microscopic instrument capable of imaging highly localized electrical currents associated with charge transfer reactions on metallic biomaterials surfaces. The SECM operates as an aqueous electrochemical cell under bipotentiostatic control with a microelectrode and sample independently biased as working electrodes. Microelectrode current and position is recorded as it is scanned very near a metallurgically polished planar sample surface. To date, the SECM has imaged metallic biomaterials surfaces in oxygen reaction rate imaging (ORRI) and ion release and deposition imaging (IRDI) modes. In ORRI, sample and microelectrode are biased at sufficiently negative potentials to reduce absorbed oxygen. As the microelectrode scans areas of active oxygen reduction, localized diffusion fields with decreased oxygen solution concentrations are encountered and resultant decrements in microelectrode current are observed. In IRDI mode the sample is positively biased and the microelectrode is negatively biased. The microelectrode detects anodic dissolution products with highest currents being observed over the most active areas. Performance of the SECM has been evaluated on Ni minigrids, gamma-1 Hg-Ag dental amalgam crystals, and sintered beads of Co-Cr-Mo alloy which represent significantly different geometries and corrosion processes to help demonstrate the potential of this instrument. The SECM is a valuable tool for imaging microelectrochemical processes on the surfaces of metallurgically polished metallic biomaterials samples and a wide variety of other surfaces of biological interest where charge transfer reactions occur. The SECM allows selective biasing of metallic biomaterials surfaces and Faradaic reactions can be selectively imaged while the surface is in the active, passive, or transpassive state.

  11. The thermonuclear reaction rate of 58Ni(p,γ)59Cu

    International Nuclear Information System (INIS)

    The cross sections of 58Ni(p,γ)59Cu and 58Ni(p,p'γ)58Ni have been measured over the bombarding energy range 1.18 - 4.20 MeV. The measurements were based on observation of the yields of 59Cu and 58Ni de-excitation γ-rays and also on observation of the yield of γ-rays associated with the β+-decay of 59Cu. The agreement between the two methods used for 58Ni(p,γ)59Cu is very good. The cross sections have been compared with the predictions of global statistical-model calculations. The calculations overestimated the 58Ni(p,p'γ)59Cu cross section by a factor of about 2.5 and the 58Ni(p,p'γ)58Ni cross section by a factor of 1.5. The energies and (p,γ0) resonance strengths of sixty-five resonances which feature significant resonance to ground state transitions were measured. Thermonuclear reaction rates at temperatures representative of those encountered in freeze-out from nuclear statistical equilibrium in exploding stars have been calculated. The significance of the reaction rates for stellar nucleosynthesis calculations is discussed

  12. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    Science.gov (United States)

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-01-01

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR. PMID:26967906

  13. Reaction rate uncertainties and 26Al in AGB silicon carbide stardust

    CERN Document Server

    van Raai, M A; Karakas, A I; Iliadis, C

    2007-01-01

    Stardust is a class of presolar grains each of which presents an ideally uncontaminated stellar sample. Mainstream silicon carbide (SiC) stardust formed in the extended envelopes of carbon-rich asymptotic giant branch (AGB) stars and incorporated the radioactive nucleus 26Al as a trace element. The aim of this paper is to analyse in detail the effect of nuclear uncertainties, in particular the large uncertainties of up to four orders of magnitude related to the 26Al_g+(p,gamma)27Si reaction rate, on the production of 26Al in AGB stars and compare model predictions to data obtained from laboratory analysis of SiC stardust grains. Stellar uncertainties are also briefly discussed. We use a detailed nucleosynthesis postprocessing code to calculate the 26Al/27Al ratios at the surface of AGB stars of different masses (M = 1.75, 3, and 5 M_sun) and metallicities (Z = 0.02, 0.012, and 0.008). For the lower limit and recommended value of the 26Al_g(p,gamma)27Si reaction rate, the predicted 26Al/27Al ratios replicate t...

  14. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10....... The reaction scheme predicts the volume of O2 gas consumed to be larger than of CO2 produced. In addition the solubility of CO2 in water is about 30 times larger than of O2 causing a further decrease in total gas volume. The change in total gas volume therefore also depends on the gas/water volume ratio......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...

  15. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jianhua [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China); Zhao Fengqi, E-mail: yiren@nwu.edu.cn [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China); Wang Bozhou; Liu Qian; Zhou Cheng; Hu Rongzu [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China); Ren Yinghui [School of Chemical Engineering, Northwest University, Xi' an 710069 (China); Xu Siyu [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China); Xu, Kang-Zhen [School of Chemical Engineering, Northwest University, Xi' an 710069 (China); Ren Xiaoning [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China)

    2010-09-15

    The composite modified double base (CMDB) propellants (nos. RB0601 and RB0602) containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) without and with the ballistic modifier were prepared and their thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates were investigated. The results show that there are three mass-loss stages in TG curve and two exothermic peaks in DSC curve for the BTATz-CMDB propellant. The first two mass-loss stages occur in succession and the temperature ranges are near apart, and the decomposition peaks of the two stages overlap each other, inducing only one visible exothermic peak appear in DSC curve during 350-550 K. The reaction mechanisms of the main exothermal decomposition processes of RB0601 and RB0602 are all classified as chemical reaction, the mechanism functions are f({alpha}) = (1 - {alpha}){sup 2}, and the kinetic equations are d{alpha}/dt=10{sup 19.24}(1-{alpha}){sup 2}e{sup -2.32x10{sup 4/T}} and d{alpha}/dt=10{sup 20.32}(1-{alpha}){sup 2}e{sup -2.43x10{sup 4/T}}. The thermal safety evaluation on the BTATz-CMDB propellants was obtained. With the substitution of 26% RDX by BTATz and with the help of the ballistic modifier in the CMDB propellant formulation, the burning rate can be improved by 89.0% at 8 MPa and 47.1% at 22 MPa, the pressure exponent can be reduced to 0.353 at 14-20 MPa.

  16. Structure dependence of the rate coefficients of hydroxyl radical+aromatic molecule reaction

    Science.gov (United States)

    Wojnárovits, László; Takács, Erzsébet

    2013-06-01

    The rate coefficients of hydroxyl radical addition to the rings of simple aromatic molecules (kOH) were evaluated based on the literature data. By analyzing the methods of kOH determination and the data obtained the most probable values were selected for the kOH's of individual compounds and thereby the most reliable dataset was created for monosubstituted aromatics and p-substituted phenols. For these compounds the rate coefficients fall in a narrow range between 2×109 mol-1 dm3 s-1 and 1×1010 mol-1 dm3 s-1. Although the values show some regular trend with the electron donating/withdrawing nature of the substituent, the log kOH-σp Hammett substituent constant plots do not give straight lines because these high kOH's are controlled by both, the chemical reactivity and the diffusion. However, the logarithms of the rate coefficients of the chemical reactivity controlled reactions (kchem), are calculated by the equation 1/kOH=1/kchem+1/kdiff, and accepting for the diffusion controlled rate coefficient kdiff=1.1×1010 mol-1 dm3 s-1, show good linear correlation with σp.

  17. Measurement and analysis of neutron capture reaction rates of light neutron-rich nuclei

    OpenAIRE

    Mohr, P; Beer, H.; Herndl, H.; Oberhummer, H.

    1997-01-01

    Several neutron capture cross sections of light neutron-rich nuclei were measured in the astrophysically relevant energy region of 5 to 200 keV. The experimental data are compared to calculations using the direct capture model. The results are used for the calculation of neutron capture cross sections of unstable isotopes. Furthermore, neutron sources with energies below E_n \\approx 10 keV are discussed.

  18. Laboratory Astrophysics and the State of Astronomy and Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments i...

  19. Study of the N=28 shell closure by one neutron transfer reaction: astrophysical application and {beta}-{gamma} spectroscopy of neutron rich nuclei around N=32/34 and N=40; Etude de la fermeture de couche N=28 autour du noyau {sub 18}{sup 46}Ar{sub 28} par reaction de transfert d'un neutron: application a l'astrophysique et Spectroscopie {beta}-{gamma} de noyaux riches en neutrons de N=32/34 et N=40

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L

    2005-09-15

    The study of the N=28 shell closure has been presented as well as its astrophysical implications. Moreover the structure of neutron rich nuclei around N=32/34 and 40 was studied. The N=28 shell closure has been studied trough the one neutron transfer reaction on {sup 44,46}Ar nuclei. Excitation energies of states in {sup 45,47}Ar nuclei have been obtained, as well as their angular momenta and spectroscopic factors. These results were used to show that N=28 is still a good magic number in the argon isotopic chain. We interpreted the evolution of the spin-orbit partner gaps in terms of the tensor monopolar proton-neutron interaction. Thanks to this latter, we showed it is not necessary to summon up a reduction of the intensity of the spin-orbit force in order to explain this evolution in N=29 isotopes from calcium to argon chains. The neutron capture rates on {sup 44,46}Ar have been determined thanks to the results of the transfer reaction. Their influence on the nucleosynthesis of {sup 46,48}Ca was studied. We proposed stellar conditions to account for the abnormal isotopic ratio observed in the Allende meteorite concerning {sup 46,48}Ca isotopes. The beta decay and gamma spectroscopy of neutron rich nuclei in the scandium to cobalt region has been studied. We showed that beta decay process is dominated by the {nu}f{sub 5/2} {yields} {pi}f{sub 7/2} Gamow-Teller transition. Moreover, we demonstrated that the {nu}g{sub 9/2} hinders this process in the studied nuclei, and influences their structure, by implying the existence of isomers. Our results show that N=34 is not a magic number in the titanium chain and the superior ones. (author)

  20. Bubble Chambers for Experiments in Nuclear Astrophysics

    CERN Document Server

    DiGiovine, B; Holt, R J; Rehm, K E; Raut, R; Robinson, A; Sonnenschein, A; Rusev, G; Tonchev, A P; Ugalde, C

    2015-01-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas tar...

  1. Two Optimization Methods to Determine the Rate Constants of a Complex Chemical Reaction Using FORTRAN and MATLAB

    Directory of Open Access Journals (Sweden)

    Abdel-Latif A. Seoud

    2010-01-01

    Full Text Available Problem statement: For chemical reactions, the determination of the rate constants is both very difficult and a time consuming process. The aim of this research was to develop computer programs for determining the rate constants for the general form of any complex reaction at a certain temperature. The development of such program can be very helpful in the control of industrial processes as well as in the study of the reaction mechanisms. Determination of the accurate values of the rate constants would help in establishing the optimum conditions of reactor design including pressure, temperature and other parameters of the chemical reaction. Approach: From the experimental concentration-time data, initial values of rate constants were calculated. Experimental data encountered several types of errors, including temperature variation, impurities in the reactants and human errors. Simulations of a second order consecutive irreversible chemical reaction of the saponification of diethyl ester were presented as an example of the complex reactions. The rate equations (system of simultaneous differential equations of the reaction were solved to get the analytical concentration versus time profiles. The simulation results were compared with experimental results at each measured point. All deviations between experimental and calculated values were squared and summed up to form a new function. This function was fed into a minimizer routine that gave the optimal rate constants. Two optimization techniques were developed using FORTRAN and MATLAB for accurately determining the rate constants of the reaction at certain temperature from the experimental data. Results: Results showed that the two proposed programs were very efficient, fast and accurate tools to determine the true rate constants of the reaction with less 1% error. The use of the MATLAB embedded subroutines for simultaneously solving the differential equations and minimization of the error function

  2. The form of the rate constant for elementary reactions at equilibrium from MD: framework and proposals for thermokinetics

    CERN Document Server

    Jesudason, C G

    2006-01-01

    The rates or formation and concentration distributions of a dimer reaction showing hysteresis behavior are examined in an ab initio chemical reaction designed as elementary and where the hysteresis structure precludes the formation of transition states (TS) with pre-equilibrium and internal sub-reactions. It was discovered that the the reactivity coefficients, defined as a measure of departure from the zero density rate constant for the forward and backward steps had a ratio that was equal to the activity coefficient ratio for the product and reactant species. From the above observations, a theory is developed with the aid of some proven elementary theorems in thermodynamics, and expressions are derived whereby a feasible experimental and computational method for determining the activity coefficients from the rate constants may be obtained The theory developed is applied to ionic reactions where the standard Bronsted-Bjerrum rate equation and exceptions to this are rationalized, and by viewing ion association...

  3. Astrophysics a new approach

    CERN Document Server

    Kundt, Wolfgang

    2005-01-01

    For a quantitative understanding of the physics of the universe - from the solar system through the milky way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be wary of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. -- This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena in astrophysical research. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize. The...

  4. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  5. Considering of the Internal Heat Losses and Continues Reaction Rate Effect in Aluminum Dust

    Directory of Open Access Journals (Sweden)

    N. Moallemi

    2013-06-01

    Full Text Available In this study, a mathematical model for investigation the effects of internal heat losses on the flame speed and temperature profile in Aluminum Particle Clouds combustion with continues reaction rate have been studied. The present study extended previous results by bridging the theories of the non-adiabatic stationary dust flame and the propagation of premixed flames in one-dimensional channels accounting for heat-losses to particles and environment. The results showed that the effects of heat losses played an important role in flame regimes and flame transition. Furthermore, it was found that convective heat losses significantly decreased the velocity of flame propagation and temperature in post-flame zone. Comparisons between the analytical solutions and the experiment results showed a good agreement.

  6. Reactivity and reaction rate measurements in U--D/sub 2/O lattices with coaxial fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pellarin, D.J.; Morris, B.M.

    1976-12-01

    Integral reaction rate parameters, intracell thermal neutron flux profiles, and material bucklings were measured for D/sub 2/O-moderated uniform lattices in the exponential facility at the Savannah River Laboratory. Two different slightly enriched coaxial uranium fuel assemblies were examined over a wide range of triangular lattice pitches. Integral parameters are reported for inner and outer fuel separately providing data for a more detailed and rigorous comparison with computation than has been previously available. Results are compared with RAHAB calculations using ENDF/B-IV cross sections. Large discrepancies in agreement between calculation and experiment, outside of experimental errors and uncertainties in the input cross sections, probably result from the resonance capture models used by RAHAB.

  7. Numerical Relativity Beyond Astrophysics

    OpenAIRE

    Garfinkle, David

    2016-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black...

  8. Astrophysics in 2006

    CERN Document Server

    Trimble, Virginia; Hansen, Carl J

    2007-01-01

    The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries.

  9. Augmented Reality in Astrophysics

    OpenAIRE

    Vogt, Frédéric P. A.; Shingles, Luke J.

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented...

  10. Evaluation of the FBR MONJU core breeding ratio and the power distribution from the reaction rate distribution measurement

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Shin; Suzuki, Takayuki; Sasaki, Kenji; Deshimaru, Takehide [Power Reactor and Nuclear Fuel Development Corp., Tsuruga, Fukui (Japan). Monju Construction Office; Nakashima, Fumiaki

    1996-09-01

    In MONJU, reaction rate distribution measurements were made by foil activation methods from May through September 1994. On the basis of the reaction rate measurement data, the MONJU initial core breeding ratio and the power distribution, etc. were evaluated. As a result, the evaluated values and the calculated values showed good agreement, and we confirmed that the core performance of MONJU and the method of core calculations were satisfactory. (author)

  11. The Trojan Horse Method: an Indirect Technique in Nuclear Astrophysics

    CERN Document Server

    Mukhamedzhanov, A M; Tribble, R E

    2006-01-01

    The Trojan Horse (TH) method is a powerful indirect technique that provides information to determine astrophysical factors for rearrangement processes at astrophysically relevant energies. A short coming for understanding the reliability of the technique has been determining the importance of nuclear and Coulomb effects on the energy dependence of the yield. Using a simple model, we demonstrate that off-energy-shell and Coulomb effects in the entry channel and the final state nuclear interactions do not change the energy dependence of the astrophysical factor extracted from the TH reaction. Some examples are presented.

  12. Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time.

    Science.gov (United States)

    Nalivaiko, Eugene; Davis, Simon L; Blackmore, Karen L; Vakulin, Andrew; Nesbitt, Keith V

    2015-11-01

    Evidence from studies of provocative motion indicates that motion sickness is tightly linked to the disturbances of thermoregulation. The major aim of the current study was to determine whether provocative visual stimuli (immersion into the virtual reality simulating rides on a rollercoaster) affect skin temperature that reflects thermoregulatory cutaneous responses, and to test whether such stimuli alter cognitive functions. In 26 healthy young volunteers wearing head-mounted display (Oculus Rift), simulated rides consistently provoked vection and nausea, with a significant difference between the two versions of simulation software (Parrot Coaster and Helix). Basal finger temperature had bimodal distribution, with low-temperature group (n=8) having values of 23-29 °C, and high-temperature group (n=18) having values of 32-36 °C. Effects of cybersickness on finger temperature depended on the basal level of this variable: in subjects from former group it raised by 3-4 °C, while in most subjects from the latter group it either did not change or transiently reduced by 1.5-2 °C. There was no correlation between the magnitude of changes in the finger temperature and nausea score at the end of simulated ride. Provocative visual stimulation caused prolongation of simple reaction time by 20-50 ms; this increase closely correlated with the subjective rating of nausea. Lastly, in subjects who experienced pronounced nausea, heart rate was elevated. We conclude that cybersickness is associated with changes in cutaneous thermoregulatory vascular tone; this further supports the idea of a tight link between motion sickness and thermoregulation. Cybersickness-induced prolongation of reaction time raises obvious concerns regarding the safety of this technology. PMID:26340855

  13. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  14. Optics in Astrophysics

    CERN Document Server

    Foy, Renaud

    2005-01-01

    Astrophysics is facing challenging aims such as deep cosmology at redshift higher than 10 to constrain cosmology models, or the detection of exoplanets, and possibly terrestrial exoplanets, and several others. It requires unprecedented ambitious R&D programs, which have definitely to rely on a tight cooperation between astrophysics and optics communities. The book addresses most of the most critical interdisciplinary domains where they interact, or where they will do. A first need is to collect more light, i.e. telescopes still larger than the current 8-10 meter class ones. Decametric, and even hectometric, optical (from UV to IR wavelengths) telescopes are being studied. Whereas up to now the light collecting surface of new telescopes was approximately 4 times that of the previous generation, now this factor is growing to 10 to 100. This quantum leap urges to implement new methods or technologies developed in the optics community, both in academic labs and in the industry. Given the astrophysical goals a...

  15. Helium effects on microstructural change in RAFM steel under irradiation: Reaction rate theory modeling

    International Nuclear Information System (INIS)

    Reaction rate theory analysis has been conducted to investigate helium effects on the formation kinetics of interstitial type dislocation loops (I-loops) and helium bubbles in reduced-activation-ferritic/martensitic steel during irradiation, by focusing on the nucleation and growth processes of the defect clusters. The rate theory model employs the size and chemical composition dependence of thermal dissociation of point defects from defect clusters. In the calculations, the temperature and the production rate of Frenkel pairs are fixed to be T = 723 K and PV = 10−6 dpa/s, respectively. And then, only the production rate of helium atoms was changed into the following three cases: PHe = 0, 10−7 and 10−5 appm He/s. The calculation results show that helium effect on I-loop formation quite differs from that on bubble formation. As to I-loops, the loop formation hardly depends on the existence of helium, where the number density of I-loops is almost the same for the three cases of PHe. This is because helium atoms trapped in vacancies are easily emitted into the matrix due to the recombination between the vacancies and SIAs, which induces no pronounced increase or decrease of vacancies and SIAs in the matrix, leading to no remarkable impact on the I-loop nucleation. On the other hand, the bubble formation depends much on the existence of helium, in which the number density of bubbles for PHe = 10−7 and 10−5 appm He/s is much higher than that for PHe = 0. This is because helium atoms trapped in a bubble increase the vacancy binding energy, and suppress the vacancy dissociation from the bubble, resulting in a promotion of the bubble nucleation. And then, the helium effect on the promotion of bubble nucleation is very strong, even the number of helium atoms in a bubble is not so large

  16. The Effect of Screening Factors and Thermonuclear Reaction Rates in the Pre-main Sequence Evolution of Low Mass Stars

    Indian Academy of Sciences (India)

    İ. Küçük; Ş. Çalışkan

    2010-09-01

    In understanding the nucleosynthesis of the elements in stars, one of the most important quantities is the reaction rate and it must be evaluated in terms of the stellar temperature , and its determination involves the knowledge of the excitation function () of the specific nuclear reaction leading to the final nucleus. In this paper, the effect of thermonuclear reaction rates to the pre-main sequence evolution of low mass stars having masses 0.7, 0.8, 0.9 and 1 M⊙ are studied by using our modified Stellar Evolutionary Program.

  17. Rate Coefficient for the (4)Heμ + CH4 Reaction at 500 K: Comparison between Theory and Experiment.

    Science.gov (United States)

    Arseneau, Donald J; Fleming, Donald G; Li, Yongle; Li, Jun; Suleimanov, Yury V; Guo, Hua

    2016-03-01

    The rate constant for the H atom abstraction reaction from methane by the muonic helium atom, Heμ + CH4 → HeμH + CH3, is reported at 500 K and compared with theory, providing an important test of both the potential energy surface (PES) and reaction rate theory for the prototypical polyatomic CH5 reaction system. The theory used to characterize this reaction includes both variational transition-state (CVT/μOMT) theory (VTST) and ring polymer molecular dynamics (RPMD) calculations on a recently developed PES, which are compared as well with earlier calculations on different PESs for the H, D, and Mu + CH4 reactions, the latter, in particular, providing for a variation in atomic mass by a factor of 36. Though rigorous quantum calculations have been carried out for the H + CH4 reaction, these have not yet been extended to the isotopologues of this reaction (in contrast to H3), so it is important to provide tests of less rigorous theories in comparison with kinetic isotope effects measured by experiment. In this regard, the agreement between the VTST and RPMD calculations and experiment for the rate constant of the Heμ + CH4 reaction at 500 K is excellent, within 10% in both cases, which overlaps with experimental error. PMID:26484648

  18. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.;

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide/tri-iodide co......The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  19. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  20. Chemical mechanisms and reaction rates for the initiation of hot corrosion of IN-738

    Science.gov (United States)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1984-01-01

    Sodium-sulfate-induced hot corrosion of preoxidized IN-738 was studied at 975 C with special emphasis placed on the processes occurring during the long induction period. Thermogravimetric tests were run for predetermined periods of time, and then one set of specimens was washed with water. Chemical analysis of the wash solutions yielded information about water soluble metal salts and residual sulfate. A second set of samples was cross sectioned dry and polished in a nonaqueous medium. Element distributions within the oxide scale were obtained from electron microprobe X-ray micrographs. Evolution of SO was monitored throughout the thermogravimetric tests. Kinetic rate studies were performed for several pertinent processes; appropriate rate constants were obtained from the following chemical reactions: Cr2O3 + 2 Na2SO4(1) + 3/2 O2 yields 2 Na2CrO4(1) + 2 SO3(g)n TiO2 + Na2SO4(1) yields Na2O(TiO2)n + SO3(g)n TiO2 + Na2CrO4(1) yields Na2O(TiO2)n + CrO3(g).