WorldWideScience

Sample records for astrophysical applications ii

  1. Databases and tools for nuclear astrophysics applications. BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    Science.gov (United States)

    Xu, Y.; Goriely, S.; Jorissen, A.; Chen, G. L.; Arnould, M.

    2013-01-01

    An update of a previous description of the BRUSLIB + NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-Hartree-Fock-Bogoliubov model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8 ≤ Z ≤ 110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100 000 Hauser-Feshbach neutron-, proton-, α-, and γ-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer reactions and 19 charged-particle radiative captures on stable targets with mass numbers A < 16. NACRE II features the inclusion of experimental data made available after the publication of NACRE in 1999 and up to 2011. In addition, the extrapolation of the available data to the very low energies of astrophysical relevance is improved through the systematic use of phenomenological potential models. Uncertainties in the rates are also evaluated on this basis. Finally, the latest release v10.0 of the web-based tool NETGEN is presented. In addition to the data already used in the previous NETGEN package, it contains in a fully documented form the new BRUSLIB and NACRE II data, as well as new experiment-based radiative neutron capture cross sections. The full new versions of BRUSLIB, NACRE II, and NETGEN are available electronically from the nuclear database at http://www.astro.ulb.ac.be/NuclearData. The nuclear material is presented in

  2. The FERRUM Project: Experimental Transition Probabilities of [Fe II] and Astrophysical Applications

    Science.gov (United States)

    Hartman, H.; Derkatch, A.; Donnelly, M. P.; Gull, T.; Hibbert, A.; Johannsson, S.; Lundberg, H.; Mannervik, S.; Norlin, L. -O.; Rostohar, D.

    2002-01-01

    We report on experimental transition probabilities for thirteen forbidden [Fe II] lines originating from three different metastable Fe II levels. Radiative lifetimes have been measured of two metastable states by applying a laser probing technique on a stored ion beam. Branching ratios for the radiative decay channels, i.e. M1 and E2 transitions, are derived from observed intensity ratios of forbidden lines in astrophysical spectra and compared with theoretical data. The lifetimes and branching ratios are combined to derive absolute transition probabilities, A-values. We present the first experimental lifetime values for the two Fe II levels a(sup 4)G(sub 9/2) and b(sup 2)H(sub 11/2) and A-values for 13 forbidden transitions from a(sup 6)S(sub 5/2), a(sup 4)G(sub 9/2) and b(sup 4)D(sub 7/2) in the optical region. A discrepancy between the measured and calculated values of the lifetime for the b(sup 2)H(sub 11/2) level is discussed in terms of level mixing. We have used the code CIV3 to calculate transition probabilities of the a(sup 6)D-a(sup 6)S transitions. We have also studied observational branching ratios for lines from 5 other metastable Fe II levels and compared them to calculated values. A consistency in the deviation between calibrated observational intensity ratios and theoretical branching ratios for lines in a wider wavelength region supports the use of [Fe II] lines for determination of reddening.

  3. Databases and tools for nuclear astrophysics applications BRUSsels Nuclear LIBrary (BRUSLIB), Nuclear Astrophysics Compilation of REactions II (NACRE II) and Nuclear NETwork GENerator (NETGEN)

    CERN Document Server

    Xu, Yi; Jorissen, Alain; Chen, Guangling; Arnould, Marcel; 10.1051/0004-6361/201220537

    2012-01-01

    An update of a previous description of the BRUSLIB+NACRE package of nuclear data for astrophysics and of the web-based nuclear network generator NETGEN is presented. The new version of BRUSLIB contains the latest predictions of a wide variety of nuclear data based on the most recent version of the Brussels-Montreal Skyrme-HFB model. The nuclear masses, radii, spin/parities, deformations, single-particle schemes, matter densities, nuclear level densities, E1 strength functions, fission properties, and partition functions are provided for all nuclei lying between the proton and neutron drip lines over the 8<=Z<=110 range, whose evaluation is based on a unique microscopic model that ensures a good compromise between accuracy, reliability, and feasibility. In addition, these various ingredients are used to calculate about 100000 Hauser-Feshbach n-, p-, a-, and gamma-induced reaction rates based on the reaction code TALYS. NACRE is superseded by the NACRE II compilation for 15 charged-particle transfer react...

  4. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  5. General relativity with applications to astrophysics

    CERN Document Server

    Straumann, Norbert

    2004-01-01

    This text provides a comprehensive and timely introduction to general relativity The foundations of the theory in Part I are thoroughly developed together with the required mathematical background from differential geometry in Part III The six chapters in Part II are devoted to tests of general relativity and to many of its applications Binary pulsars are studied in considerable detail Much space is devoted to the study of compact objects, especially to black holes This includes a detailed derivation of the Kerr solution, Israel's proof of his uniqueness theorem, and derivations of the basic laws of black hole physics The final chapter of this part contains Witten's proof of the positive energy theorem The book addresses undergraduate and graduate students in physics, astrophysics and mathematics It is very well structured and should become a standard text for a modern treatment of gravitational physics The clear presentation of differential geometry makes it also useful for string theory and other fields of ...

  6. Astrophysical applications of gravitational microlensing

    Institute of Scientific and Technical Information of China (English)

    Shude Mao

    2012-01-01

    Since the first discovery of microlensing events nearly two decades ago,gravitational microlensing has accumulated tens of TBytes of data and developed into a powerful astrophysical technique with diverse applications.The review starts with a theoretical overview of the field and then proceeds to discuss the scientific highlights.(1) Microlensing observations toward the Magellanic Clouds rule out the Milky Way halo being dominated by MAssive Compact Halo Objects (MACHOs).This confirms most dark matter is non-baryonic,consistent with other observations.(2) Microlensing has discovered about 20 extrasolar planets (16 published),including the first two Jupiter-Saturn like systems and the only five "cold Neptunes" yet detected.They probe a different part of the parameter space and will likely provide the most stringent test of core accretion theory of planet formation.(3) Microlensing provides a unique way to measure the mass of isolated stars,including brown dwarfs and normal stars.Half a dozen or so stellar mass black hole candidates have also been proposed.(4) High-resolution,target-of-opportunity spectra of highly-magnified dwarf stars provide intriguing "age" determinations which may either hint at enhanced helium enrichment or unusual bulge formation theories.(5) Microlensing also measured limb-darkening profiles for close to ten giant stars,which challenges stellar atmosphere models.(6) Data from surveys also provide strong constraints on the geometry and kinematics of the Milky Way bar (through proper motions); the latter indicates predictions from current models appear to be too anisotropic compared with observations.The future of microlensing is bright given the new capabilities of current surveys and forthcoming new telescope networks from the ground and from space.Some open issues in the field are identified and briefly discussed.

  7. Astrophysical Applications of Fractional Calculus

    Science.gov (United States)

    Stanislavsky, Aleksander A.

    The paradigm of fractional calculus occupies an important place for the macroscopic description of subdiffusion. Its advance in theoretical astrophysics is expected to be very attractive too. In this report we discuss a recent development of the idea to some astrophysical problems. One of them is connected with a random migration of bright points associated with magnetic fields at the solar photosphere. The transport of the bright points has subdiffusive features that require the fractional generalization of the Leighton's model. Another problem is related to the angular distribution of radio beams, being propagated through a medium with random inhomogeneities. The peculiarity of this medium is that radio beams are trapped because of random wave localization. This idea can be useful for the diagnostics of interplanetary and interstellar turbulent media.

  8. Minicourses in Astrophysics, Modular Approach, Vol. II.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  9. Electrodynamics and spacetime geometry: Astrophysical applications

    CERN Document Server

    Cabral, Francisco

    2016-01-01

    After a brief review of the foundations of (pre-metric) electromagnetism in differential forms, we proceed with the tensor formulation and explore physical consequences of Maxwell's equations in curved spacetime. The generalized Gauss and Maxwell-Amp\\`ere laws, as well as the wave equations, reveal potentially interesting astrophysical applications. The physical implications of these equations are explored and some solutions are obtained. In all cases new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. In general, new electromagnetic effects induced by spacetime curvature include the following: Gravitational contributions for the decay of electric and magnetic fields in...

  10. Astrophysics

    International Nuclear Information System (INIS)

    Volume 5 of the proceedings contains 62 papers of which 61 have been incorporated in INIS. They are divided by subject into several groups: early-type stars, late-type stars, binaries and multiple systems, theoretical considerations, ultraviolet stellar spectra, high energy astrophysics and binary stars. Many papers dealt with variable stars, star development and star models. (M.D.). 200 figs., 38 tabs., 1189 refs

  11. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  12. Possible applications of synchrotron radiation to x-ray astrophysics

    International Nuclear Information System (INIS)

    As the instrumentation for observations in high energy astrophysics has grown increasingly sophisticated, so too has the need developed for improved calibration techniques and facilities. Contemporary satellite-borne observatories contain high resolution spectrometers, polarimeters and x-ray image-forming optics focussed on position sensitive detectors. The Advanced X-ray Astrophysics Facility, a planned free-flying, shuttle-launched x-ray telescope (1.2 m diameter, 10 m focal length), will provide 0.5 arcsecond imagery over a several arcminute field and spectrometry with E/ΔE > 1000 in the energy range 0.1 to 8 keV. Other telescopes in the planning stage include the possibility of approx. 0.5 arcminute imagery at energies in excess of 100 keV. A few examples from the long list of calibration needs of inidvidual detectors and subsystems are listed as applications of synchrotron radiation

  13. Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints

    Science.gov (United States)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.; Rapetti, D. A.; Applegate, D. E.; Kelly, P. L.; von der Linden, A.; Schmidt, R. W.

    2014-05-01

    This is the second in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. The data set employed here consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive for hot (kT ≳ 5 keV), massive, morphologically relaxed systems, as well as high-quality weak gravitational lensing data for a subset of these clusters. Here we present cosmological constraints from measurements of the gas mass fraction, fgas, for this cluster sample. By incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, we significantly reduce systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgas, 7.4 ± 2.3 per cent in a spherical shell at radii 0.8-1.2 r2500 (˜1/4 of the virial radius), consistent with the expected level of variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest redshift data in our sample, five clusters at z 1, we obtain consistent results for Ωm and interesting constraints on dark energy: Ω _{{Λ }}=0.65^{+0.17}_{-0.22}> for non-flat ΛCDM (cosmological constant) models, and w = -0.98 ± 0.26 for flat models with a constant dark energy equation of state. Our results are both competitive and consistent with those from recent cosmic microwave background, Type Ia supernova and baryon acoustic oscillation data. We present constraints on more complex models of evolving dark energy from the combination of fgas data with these external data sets, and comment on the possibilities for improved fgas constraints using current and next-generation X-ray observatories and lensing data.

  14. Dielectronic recombination for oxygenlike ions relevant to astrophysical applications

    Science.gov (United States)

    Chen, M. H.

    2002-11-01

    In the modeling of the astrophysical plasmas, the relative elemental abundance inferred from solar and stellar upper atmosphere can be affected by as much as a factor of 5 due to the uncertainties in the current dielectronic recombination (DR) rate coefficients used to analyze the spectra [Savin and Laming, Astrophys. J. 566, 1166 (2002)]. DR rate coefficients for oxygenlike ions have been identified as the most urgent needs for the astrophysical applications. In this work, we report on the calculations of DR rate coefficients for Mg V, Si VII, S IX, and Fe XIX ions which are important for the modeling of the astrophysical plasmas. The calculations are carried out in isolated resonance and distorted-wave approximations. The relevant atomic data are calculated using the multiconfigurational Dirac-Fock method. We include 2s-2p, 2p1/2-2p3/2, 2l-3l', and 1s-2p excitations and cover temperatures ranging from 0.001 eV to 10 000 eV. For low temperatures, it is essential to have accurate DR resonance energies and to include fine-structure excitations in order to obtain reliable DR rate coefficients. Good agreement with experiment has been found for Fe XIX. For Mg V, Si VII, and S IX, significant discrepancies are noted between this work and recommended rate coefficients.

  15. Dielectronic recombination for oxygenlike ions relevant to astrophysical applications

    International Nuclear Information System (INIS)

    In the modeling of the astrophysical plasmas, the relative elemental abundance inferred from solar and stellar upper atmosphere can be affected by as much as a factor of 5 due to the uncertainties in the current dielectronic recombination (DR) rate coefficients used to analyze the spectra [Savin and Laming, Astrophys. J. 566, 1166 (2002)]. DR rate coefficients for oxygenlike ions have been identified as the most urgent needs for the astrophysical applications. In this work, we report on the calculations of DR rate coefficients for Mg V, Si VII, S IX, and Fe XIX ions which are important for the modeling of the astrophysical plasmas. The calculations are carried out in isolated resonance and distorted-wave approximations. The relevant atomic data are calculated using the multiconfigurational Dirac-Fock method. We include 2s-2p, 2p1/2-2p3/2, 2l-3l', and 1s-2p excitations and cover temperatures ranging from 0.001 eV to 10 000 eV. For low temperatures, it is essential to have accurate DR resonance energies and to include fine-structure excitations in order to obtain reliable DR rate coefficients. Good agreement with experiment has been found for Fe XIX. For Mg V, Si VII, and S IX, significant discrepancies are noted between this work and recommended rate coefficients

  16. Hierarchical Gompertzian growth maps with application in astrophysics

    CERN Document Server

    De Martino, S

    2010-01-01

    The Gompertz model describes the growth in time of the size of significant quantities associated to a large number of systems, taking into account nonlinearity features by a linear equation satisfied by a nonlinear function of the size. Following this scheme, we introduce a class of hierarchical maps which describe discrete sequences of intermediate characteristic scales. We find the general solutions of the maps, which account for a rich set of possible phenomena. Eventually, we provide an important application, by showing that a map belonging to the class so introduced generates all the observed astrophysical length and mass scales.

  17. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  18. Introduction to optimization with applications in astronomy and astrophysics

    Science.gov (United States)

    Canu, S.; Flamary, R.; Mary, D.

    2016-09-01

    This chapter aims at providing an introduction to numerical optimization with some applications in astronomy and astrophysics. We provide important preliminary definitions that will guide the reader towards different optimization procedures. We discuss three families of optimization problems and describe numerical algorithms allowing, when this is possible, to solve these problems. For each family, we present in detail simple examples and more involved advanced examples. As a final illustration, we focus on two worked-out examples of optimization applied to astronomical data. The first application is a supervised classification of RR-Lyrae stars. The second one is the denoising of galactic spectra formulated by means of sparsity inducing models in a redundant dictionary.

  19. Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anzhong [Baylor Univ., Waco, TX (United States). Department of Physics

    2014-08-14

    This final report describes the activities of the Baylor University Gravity, Cosmology and Astroparticle Physics (GCAP) group on the project: Horava-Lifshitz Theory and Applications to Cosmology and Astrophysics, during the time, August 15, 2010 - August 14, 2014. We are grateful for the financial support provided by the U.S. Department of Energy for this research, which leads to our exceptional success. We are very proud to say that we have achieved all the goals set up in our project and made significant contributions to the understanding of the field. In particular, with this DOE support, we have published 38 articles in the prestigious national/international journals, which have already received about 1000 citations so far.

  20. X-ray monitoring for astrophysical applications on Cubesat

    Science.gov (United States)

    Pina, L.; Hudec, R.; Inneman, A.; Cerna, D.; Jakubek, J.; Sieger, L.; Dániel, V.; Cash, W.; Mikulickova, L.; Pavlica, R.; Belas, E.; Polak, J.

    2015-05-01

    The primary objective of the project VZLUSAT-1 is the development, manufacturing, qualification and experimental verification of products and technologies in Earth orbit (IOD - In-Orbit Demonstration). This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. On board the functions and features of Radiation Hardened Composite Housing (RHCH), Solar panels based on composite substrate and Hollow Retro Reflector Array based on composite (HRRA) will be verified. To verify the properties of the developed products the satellite is equipped by Health Monitoring system (HM). HM system includes temperature, volatiles, radiation and mechanical properties sensors. The custom ADCS algorithms are being developed within the project. Given the number of IOD experiments and the necessary power the 1U CubeSat is equipped with Composite Deployable Panels (CDP) where HM panels and additional Solar panels are located. Satellite platform is assembled from commercial parts. Mission VZLUSAT-1 is planned for 6 months with launch in 2016.

  1. Trojan Horse Method: recent applications in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Mukhamedzhanov, A. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Pizzone, R.G.; Romano, S.; Sergi, M.L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Tumino, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy)

    2010-03-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  2. Optical and IR applications in astronomy and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    McLean, Ian S. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States)], E-mail: mclean@astro.ucla.edu

    2009-06-01

    The set comprising silicon charge-coupled devices, low band-gap infrared arrays and bolometer arrays provide astronomers with position-sensitive photon detectors from the X-ray to the sub-mm. In recent years the most significant advances have occurred in the near-infrared part of the spectrum because not only have the detector formats caught up with those of charge-coupled device (CCDs) but also because the advent of adaptive optics (AO) has meant that the very largest telescopes can achieve their diffraction limit in the near-infrared. Thus infrared cameras, spectrometers and hybrid instruments that measure spatial and spectral information simultaneously are now commanding the greatest attention on telescopes from 6.5 to 10 m in effective aperture. Scientific applications of these new infrared instruments span everything from the search for nearby solar systems to the orbital motions of stars about the massive black hole at the center of the Milky Way, and studies of the first galaxies to form in the high redshift Universe. Background, principles and applications of infrared array detectors to astronomy and astrophysics will be discussed with particular emphasis on work at the W.M. Keck 10-m telescope on Mauna Kea, Hawaii.

  3. Applications of the Trojan Horse method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio, E-mail: spitaleri@lns.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud-INFN, Catania (Italy)

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  4. Applications of the Trojan Horse method in nuclear astrophysics

    Science.gov (United States)

    Spitaleri, Claudio

    2015-02-01

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  5. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    Science.gov (United States)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  6. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas; /Royal Inst. Tech., Stockholm

    2008-01-29

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e{sup {+-}}, {nu}{sub e}, {bar {nu}}{sub e}, {nu}{sub {mu}} and {bar {nu}}{sub {mu}}--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the {Delta}(1232) and the other multiple resonances with masses around 1600 MeV/c{sup 2}. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a pencil beam of

  7. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  8. Theory of magnetostatic equilibria and applications in astrophysics

    International Nuclear Information System (INIS)

    Magnetohydrostatic equations are used to study the properties of magnetic configurations of astrophysical interest, particularly in solar physics. Results on force-free solutions with singularities (with current sheets) and on solutions which take into account current sheets and gravitational fields are obtained. A general method to construct an infinite class of non-y-symmetric models of protuberances when the magnetic field of the support is assumed to be potential is outlined. The general integral properties of current sheets of arbitrary geometry plunged into a nonlinear force-free magnetic field are established. It is shown that for a given mass, the equilibrium height of the protuberance increases with the shear of the force-free field. The case where the current sheet is reduced to a filament is examined. It is also shown that there exists a critical pressure beyond which no equilibrium is possible

  9. Scale-covariant theory of gravitation and astrophysical applications

    Science.gov (United States)

    Canuto, V.; Adams, P. J.; Hsieh, S.-H.; Tsiang, E.

    1977-01-01

    A scale-covariant theory of gravitation is presented which is characterized by a set of equations that are complete only after a choice of the scale function is made. Special attention is given to gauge conditions and units which allow gravitational phenomena to be described in atomic units. The generalized gravitational-field equations are derived by performing a direct scale transformation, by extending Riemannian geometry to Weyl geometry through the introduction of the notion of cotensors, and from a variation principle. Modified conservation laws are provided, a set of dynamical equations is obtained, and astrophysical consequences are considered. The theory is applied to examine certain homogeneous cosmological solutions, perihelion shifts, light deflections, secular variations of planetary orbital elements, stellar structure equations for a star in quasi-static equilibrium, and the past thermal history of earth. The possible relation of the scale-covariant theory to gauge field theories and their predictions of cosmological constants is discussed.

  10. NACRE II: An Update of the NACRE Compilation of Atarget<16 Charged-Particle Thermonuclear Reaction Rates for Astrophysics

    Science.gov (United States)

    Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.

    2011-10-01

    We report on the status of a new evaluation of the rates in astrophysical conditions of 19 capture and 15 transfer reactions on stable targets with mass numbers A<16, referred as NACRE-II. This work is meant to supersede the NACRE compilation. Post-NACRE experimental data are taken into account. Extrapolations of the astrophysical S-factor to largely sub-Coulomb energies are based on the use of the potential model and of the distorted wave Born approximation for capture and transfer reactions, respectively. Adopted rates and their lower and upper limits are provided. Here, we illustrate the general procedure followed in the NACRE-II construction with two examples.

  11. Nacre II:. AN Update and Extension of the Nacre Compilation of Charged-Particle Thermonuclear Reaction Rates for Astrophysics

    Science.gov (United States)

    Xu, Y.; Takahashi, K.; Goriely, S.; Arnould, M.

    2013-03-01

    The status of a new evaluation of astrophysical nuclear reaction rates, referred as NACRE- II, is reported. It includes 19 radiative capture and 15 transfer reactions on targets with mass numbers A < 16. This work is meant to supersede the NACRE compilation. Post-NACRE experimental data are taken into account. Extrapolations of the astrophysical S-factor to largely sub-Coulomb energies are based on the use of the potential model and of the distorted wave Born approximation (DWBA) for capture and transfer reactions, respectively. Adopted rates and their lower and upper limits are provided. Here, we illustrate with some results the general procedure followed in the construction of NACRE-II.

  12. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Claudio Mendoza

    2014-05-01

    Full Text Available We present a cloud-computing environment, referred to as AtomPy, based on Google-Drive Sheets and Pandas (Python Data Analysis Library DataFrames to promote community-driven curation of atomic data for astrophysical applications, a stage beyond database development. The atomic model for each ionic species is contained in a multi-sheet workbook, tabulating representative sets of energy levels, A-values and electron impact effective collision strengths from different sources. The relevant issues that AtomPy intends to address are: (i data quality by allowing open access to both data producers and users; (ii comparisons of different datasets to facilitate accuracy assessments; (iii downloading to local data structures (i.e., Pandas DataFrames for further manipulation and analysis by prospective users; and (iv data preservation by avoiding the discard of outdated sets. Data processing workflows are implemented by means of IPython Notebooks, and collaborative software developments are encouraged and managed within the GitHub social network. The facilities of AtomPy are illustrated with the critical assessment of the transition probabilities for ions in the hydrogen and helium isoelectronic sequences with atomic number Z ≤ 10.

  13. Astrophysical applications of the post-Tolman-Oppenheimer-Volkoff formalism

    Science.gov (United States)

    Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele

    2016-08-01

    The bulk properties of spherically symmetric stars in general relativity can be obtained by integrating the Tolman-Oppenheimer-Volkoff (TOV) equations. In previous work [K. Glampedakis, G. Pappas, H. O. Silva, and E. Berti, Phys. Rev. D 92, 024056 (2015)], we developed a "post-TOV" formalism—inspired by parametrized post-Newtonian theory—which allows us to classify in a parametrized, phenomenological form all possible perturbative deviations from the structure of compact stars in general relativity that may be induced by modified gravity at second post-Newtonian order. In this paper we extend the formalism to deal with the stellar exterior, and we compute several potential astrophysical observables within the post-TOV formalism: the surface redshift zs, the apparent radius Rapp, the Eddington luminosity at infinity LE∞ and the orbital frequencies. We show that, at leading order, all of these quantities depend on just two post-TOV parameters μ1 and χ , and we discuss the possibility to measure (or set upper bounds on) these parameters.

  14. Astrophysical applications of the post-Tolman-Oppenheimer-Volkoff formalism

    CERN Document Server

    Glampedakis, Kostas; Silva, Hector O; Berti, Emanuele

    2016-01-01

    The bulk properties of spherically symmetric stars in general relativity can be obtained by integrating the Tolman-Oppenheimer-Volkoff (TOV) equations. In previous work we developed a "post-TOV" formalism - inspired by parametrized post-Newtonian theory - which allows us to classify in a parametrized, phenomenological form all possible perturbative deviations from the structure of compact stars in general relativity that may be induced by modified gravity at second post-Newtonian order. In this paper we extend the formalism to deal with the stellar exterior, and we compute several potential astrophysical observables within the post-TOV formalism: the surface redshift $z_s$, the apparent radius $R_{\\rm app}$, the Eddington luminosity at infinity $L_{\\rm E}^\\infty$ and the orbital frequencies. We show that, at leading order, all of these quantities depend on just two post-TOV parameters $\\mu_1$ and $\\chi$, and we discuss the possibility to measure (or set upper bounds on) these parameters.

  15. The Diamagnetic Phase Transition of Dense Electron Gas: Astrophysical Applications

    Science.gov (United States)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua; Wu, Baoshan

    2016-10-01

    Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen effect and diamagnetic phase transition which is associated with magnetic domain formation. The “magnetic interaction” between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in “low-field” magnetar, the depinning phase transition of domain wall (DW) motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magnetized electron gas are consistent with observations of magnetar emission, and especially the threshold critical dynamics of driven DW can partially overcome the difficulties of “low-field” magnetar bursts and the heating mechanism of transient, or “outbursting” magnetar.

  16. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    Science.gov (United States)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  17. A method for comparing non-nested models with application to astrophysical searches for new physics

    Science.gov (United States)

    Algeri, Sara; Conrad, Jan; van Dyk, David A.

    2016-05-01

    Searches for unknown physics and decisions between competing astrophysical models to explain data both rely on statistical hypothesis testing. The usual approach in searches for new physical phenomena is based on the statistical likelihood ratio test and its asymptotic properties. In the common situation, when neither of the two models under comparison is a special case of the other i.e. when the hypotheses are non-nested, this test is not applicable. In astrophysics, this problem occurs when two models that reside in different parameter spaces are to be compared. An important example is the recently reported excess emission in astrophysical γ-rays and the question whether its origin is known astrophysics or dark matter. We develop and study a new, simple, generally applicable, frequentist method and validate its statistical properties using a suite of simulations studies. We exemplify it on realistic simulated data of the Fermi-Large Area Telescope γ-ray satellite, where non-nested hypotheses testing appears in the search for particle dark matter.

  18. Applications of generalized special functions in stellar astrophysics

    OpenAIRE

    Hans J. Haubold; Mathai, Arak Mathai

    1993-01-01

    This article gives an brief outline of the applications of generalized special functions such as generalized hypergeometric functions, G-functions and H-functions into the general area of nuclear energy generation and reaction rate theory such as the energy generation in a simple stellar model and nuclear reaction rates in non-resonant and resonant as well as screened non-resonant

  19. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications

    OpenAIRE

    Goriely, S.; Hilaire, S; Koning, A.J.

    2008-01-01

    Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. The reaction code TALYS has been recently updated to estimate t...

  20. Electroweak interaction of particles with accelerated matter and astrophysical applications

    CERN Document Server

    Dvornikov, Maxim

    2015-01-01

    The description of physical processes in accelerated frames opens a window to numerous new phenomena. One can encounter these effects both in the subatomic world and on a macroscale. In the present work we review our recent results on the study of the electroweak interaction of particles with an accelerated background matter. In our analysis we choose the noninertial comoving frame, where matter is at rest. Our study is based on the solution of the Dirac equation, which exactly takes into account both the interaction with matter and the nonintertial effects. First, we study the interaction of ultrarelativistic neutrinos, electrons and quarks with the rotating matter. We consider the influence of the matter rotation on the resonance in neutrino oscillations and the generation of anomalous electric current of charged particles along the rotation axis. Then, we study the creation of neutrino-antineutrino pairs in a linearly accelerated matter. The applications of the obtained results for elementary particle phys...

  1. RAMSES-MHD: an AMR Godunov code for astrophysical applications

    Science.gov (United States)

    Fromang, S.; Hennebelle, P.; Teyssier, R.

    2005-12-01

    Godunov methods have proved in recent years to be very efficient numerical schemes to solve the hydrodynamic equations. Here, we present an extension of the 3D adaptative Mesh Refinament (AMR) code RAMSES (Teyssier 2002) to the equations of magnetohydrodynamics (MHD). The code uses the constrained transport scheme, which garantees that the divergence of the magnetic field is kept to zero to machine accuracy at all time. Different MHD Riemann solvers can be used, and the use of the MUSCL-Hancok approach combines a good accuracy with a fast exectution of the code. A variety of tests will illustrate the performances of the code and the possibilities offered by the AMR scheme. Future applications of the code are discussed.

  2. An Array Library for Microsoft SQL Server with Astrophysical Applications

    Science.gov (United States)

    Dobos, L.; Szalay, A. S.; Blakeley, J.; Falck, B.; Budavári, T.; Csabai, I.

    2012-09-01

    Today's scientific simulations produce output on the 10-100 TB scale. This unprecedented amount of data requires data handling techniques that are beyond what is used for ordinary files. Relational database systems have been successfully used to store and process scientific data, but the new requirements constantly generate new challenges. Moving terabytes of data among servers on a timely basis is a tough problem, even with the newest high-throughput networks. Thus, moving the computations as close to the data as possible and minimizing the client-server overhead are absolutely necessary. At least data subsetting and preprocessing have to be done inside the server process. Out of the box commercial database systems perform very well in scientific applications from the prospective of data storage optimization, data retrieval, and memory management but lack basic functionality like handling scientific data structures or enabling advanced math inside the database server. The most important gap in Microsoft SQL Server is the lack of a native array data type. Fortunately, the technology exists to extend the database server with custom-written code that enables us to address these problems. We present the prototype of a custom-built extension to Microsoft SQL Server that adds array handling functionality to the database system. With our Array Library, fix-sized arrays of all basic numeric data types can be created and manipulated efficiently. Also, the library is designed to be able to be seamlessly integrated with the most common math libraries, such as BLAS, LAPACK, FFTW, etc. With the help of these libraries, complex operations, such as matrix inversions or Fourier transformations, can be done on-the-fly, from SQL code, inside the database server process. We are currently testing the prototype with two different scientific data sets: The Indra cosmological simulation will use it to store particle and density data from N-body simulations, and the Milky Way Laboratory

  3. Final Report for "Verification and Validation of Radiation Hydrodynamics for Astrophysical Applications"

    Energy Technology Data Exchange (ETDEWEB)

    Zingale, M; Howell, L H

    2010-03-17

    The motivation for this work is to gain experience in the methodology of verification and validation (V&V) of astrophysical radiation hydrodynamics codes. In the first period of this work, we focused on building the infrastructure to test a single astrophysical application code, Castro, developed in collaboration between Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley Laboratory (LBL). We delivered several hydrodynamic test problems, in the form of coded initial conditions and documentation for verification, routines to perform data analysis, and a generalized regression test suite to allow for continued automated testing. Astrophysical simulation codes aim to model phenomena that elude direct experimentation. Our only direct information about these systems comes from what we observe, and may be transient. Simulation can help further our understanding by allowing virtual experimentation of these systems. However, to have confidence in our simulations requires us to have confidence in the tools we use. Verification and Validation is a process by which we work to build confidence that a simulation code is accurately representing reality. V&V is a multistep process, and is never really complete. Once a single test problem is working as desired (i.e. that problem is verified), one wants to ensure that subsequent code changes do not break that test. At the same time, one must also search for new verification problems that test the code in a new way. It can be rather tedious to manually retest each of the problems, so before going too far with V&V, it is desirable to have an automated test suite. Our project aims to provide these basic tools for astrophysical radiation hydrodynamics codes.

  4. Final Report for 'Verification and Validation of Radiation Hydrodynamics for Astrophysical Applications'

    International Nuclear Information System (INIS)

    The motivation for this work is to gain experience in the methodology of verification and validation (V and V) of astrophysical radiation hydrodynamics codes. In the first period of this work, we focused on building the infrastructure to test a single astrophysical application code, Castro, developed in collaboration between Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley Laboratory (LBL). We delivered several hydrodynamic test problems, in the form of coded initial conditions and documentation for verification, routines to perform data analysis, and a generalized regression test suite to allow for continued automated testing. Astrophysical simulation codes aim to model phenomena that elude direct experimentation. Our only direct information about these systems comes from what we observe, and may be transient. Simulation can help further our understanding by allowing virtual experimentation of these systems. However, to have confidence in our simulations requires us to have confidence in the tools we use. Verification and Validation is a process by which we work to build confidence that a simulation code is accurately representing reality. V and V is a multistep process, and is never really complete. Once a single test problem is working as desired (i.e. that problem is verified), one wants to ensure that subsequent code changes do not break that test. At the same time, one must also search for new verification problems that test the code in a new way. It can be rather tedious to manually retest each of the problems, so before going too far with V and V, it is desirable to have an automated test suite. Our project aims to provide these basic tools for astrophysical radiation hydrodynamics codes.

  5. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Moshe [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097, USA and Wright Lab, Dept. of Physics, Yale University, New Haven, CT 06520-8124 and the Charged Particle Working Group (CPWG) of the Technical Design Report (TDR) (United States)

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  6. GenASiS: General Astrophysical Simulation System. II. Nonrelativistic Hydrodynamics

    CERN Document Server

    Cardall, Christian Y; Endeve, Eirik; Mezzacappa, Anthony

    2012-01-01

    In this paper, the second in a series, we document the algorithms and solvers for compressible nonrelativistic hydrodynamics implemented in GenASiS (General Astrophysical Simulation System)---a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae. In the Mathematics division of GenASiS we introduce Solvers, which includes finite-volume updates for generic hyperbolic BalanceEquations and ordinary differential equation integration Steps. We also introduce the Physics division of GenASiS; this extends the Manifolds division of Mathematics into physical Spaces, defines StressEnergies, and combines these into Universes. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the manifest superiority of the HLLC over the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's abili...

  7. Annual Scientific Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    International Nuclear Information System (INIS)

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists

  8. Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. Paul Drake

    2007-04-05

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  9. Atomic Chemistry in Turbulent Astrophysical Media II: Effect of the Redshift Zero Metagalactic Background

    CERN Document Server

    Gray, William J

    2015-01-01

    We carry out direct numerical simulations of turbulent astrophysical media exposed to the redshift zero metagalactic background. The simulations assume solar composition and explicitly track ionizations, recombinations, and ion-by-ion radiative cooling for hydrogen, helium, carbon, nitrogen, oxygen, neon, sodium, magnesium, silicon, sulfur, calcium, and iron. Each run reaches a global steady state that not only depends on the ionization parameter, $U,$ and mass-weighted average temperature, $T_{\\rm MW},$ but also on the the one-dimensional turbulent velocity dispersion, \\soned. We carry out runs that span a grid of models with $U$ ranging from 0 to 10$^{-1}$ and \\soned\\ ranging from 3.5 to 58 km s$^{-1}$, and we vary the product of the mean density and the driving scale of the turbulence, $nL,$ which determines the average temperature of the medium, from $nL =10^{16}$ to $nL =10^{20}$ cm$^{-2}$. The turbulent Mach numbers of our simulations vary from $M \\approx 0.5$ for the lowest velocity dispersions cases t...

  10. Atomic Chemistry in Turbulent Astrophysical Media. II. Effect of the Redshift Zero Metagalactic Background

    Science.gov (United States)

    Gray, William J.; Scannapieco, Evan

    2016-02-01

    We carry out direct numerical simulations of turbulent astrophysical media exposed to the redshift zero metagalactic background. The simulations assume solar composition and explicitly track ionizations, recombinations, and ion-by-ion radiative cooling for hydrogen, helium, carbon, nitrogen, oxygen, neon, sodium, magnesium, silicon, sulfur, calcium, and iron. Each run reaches a global steady state that depends not only on the ionization parameter, U, and mass-weighted average temperature, {T}{{MW}}, but also on the one-dimensional turbulent velocity dispersion, {σ }{{1D}}. We carry out runs that span a grid of models with U ranging from 0 to 10-1 and {σ }{{1D}} ranging from 3.5 to 58 km s-1, and we vary the product of the mean density and the driving scale of the turbulence, {nL}, which determines the average temperature of the medium, from {nL}={10}16 to {nL}={10}20 cm-2. The turbulent Mach numbers of our simulations vary from M≈ 0.5 for the lowest velocity dispersion cases to M≈ 20 for the largest velocity dispersion cases. When M≲ 1, turbulent effects are minimal, and the species abundances are reasonably described as those of a uniform photoionized medium at a fixed temperature. On the other hand, when M≳ 1, dynamical simulations such as the ones carried out here are required to accurately predict the species abundances. We gather our results into a set of tables to allow future redshift zero studies of the intergalactic medium to account for turbulent effects.

  11. Numerical Relativity Beyond Astrophysics

    CERN Document Server

    Garfinkle, David

    2016-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  12. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  13. Astrophysical Lasers Operating in optical Fe II Lines Lines in Stellar Ejecta of Eta Carinae

    CERN Document Server

    Johansson, S

    2004-01-01

    After the discovery of space masers based on OH radicals (Weaver et al, 1965) and H2O (Cheung et al, 1969) such microwave lasers have been found to work in more than 100 molecular species (Elitzur, 1992; Townes, 1997), as well as in highly excited H atoms (Strelnitski et al,1996). In the IR region (10 microns), the effect of stimulated emission of radiation in the CO2 molecule has been discovered in the Martian and Venus' atmospheres (Betz et al, 1976; Mumma et al, 1981). We report here on the discovery of laser action in the range 0.9-2 micr. in several spectral lines of Fe II, which are associated with transitions from "pseudo-metastable" states populated by spontaneous transitions from Ly-alpha pumped Fe II levels. The intense Ly-alpha radiation is formed in the HII region of gas condensations close to the star Eta Carinae. The laser transitions form together with spontaneous transitions closed radiative cycles, one of which includes the extremely bright 2507/09 A lines. Closed radiative cycles, together w...

  14. Astrophysics and Space Science

    Science.gov (United States)

    Mould, Jeremy; Brinks, Elias; Khanna, Ramon

    2015-08-01

    Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science, and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis, and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will not longer be considered.The journal also publishes topical collections consisting of invited reviews and original research papers selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers.Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.Astrophysics and Space Science has an Impact Factor of 2.4 and features short editorial turnaround times as well as short publication times after acceptance, and colour printing free of charge. Published by Springer the journal has a very wide online dissemination and can be accessed by researchers at a very large number of institutes worldwide.

  15. Theoretical physics and astrophysics

    CERN Document Server

    Ginzburg, VL

    1979-01-01

    The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature

  16. Atomic data generation and collisional radiative modeling of argon II, argon III, and neon I for laboratory and astrophysical plasmas

    Science.gov (United States)

    Munoz Burgos, Jorge Manuel

    Accurate knowledge of atomic processes plays a key role in modeling the emission in laboratory as well as in astrophysical plasmas. These processes are included in a collisional-radiative model and the results are compared with experimental measurements for Ar and Ne ions from the ASTRAL (Auburn Steady sTate Research fAciLity) experiment. The accuracy of our model depends upon the quality of the atomic data we use. Atomic data for near neutral systems present a challenge due to the low accuracy of perturbative methods for these systems. In order to improve our model we rely on non-perturbative methods such as R - Matrix and RMPS ( R -Matrix with Pseudo-States) to include correlation in the collision cross-sections. In the case of Ar + we compared R -Matrix electron-impact excitation data against the results from a new RMPS calculation. The aim was to assess the effects of continuum-coupling effects on the atomic data and the resulting spectrum. We do our spectral modeling using the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi- static equilibrium with the ground and metastable populations. In our model we allow for N e and T e variation along the line of sight by fitting our densities and temperature profiles with those measured within the experiment. The best results so far have been obtained by the fitting of the experimental temperature and density profiles with Gaussian and polynomial distribution functions. The line of sight effects were found to have a significant effect on the emission modeling. The relative emission rates were measured in the ASTRAL helicon plasma source. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar and Ne plasmas with n e = 10 11 to 10 13 cm -3 and T e = 2 to 10 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to

  17. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  18. A pure hydrodynamic instability in shear flows and its application to astrophysical accretion disks

    CERN Document Server

    Nath, Sujit Kumar

    2016-01-01

    We provide the possible resolution for the century old problem of hydrodynamic shear flows, which are apparently stable in linear analysis but shown to be turbulent in astrophysically observed data and experiments. This mismatch is noticed in a variety of systems, from laboratory to astrophysical flows. There are so many uncountable attempts made so far to resolve this mismatch, beginning with the early work of Kelvin, Rayleigh, and Reynolds towards the end of the nineteenth century. Here we show that the presence of stochastic noise, whose inevitable presence should not be neglected in the stability analysis of shear flows, leads to pure hydrodynamic linear instability therein. This explains the origin of turbulence, which has been observed/interpreted in astrophysical accretion disks, laboratory experiments and direct numerical simulations. This is, to the best of our knowledge, the first solution to the long standing problem of hydrodynamic instability of Rayleigh stable flows.

  19. Neutrino Astrophysics

    CERN Document Server

    Volpe, Cristina

    2016-01-01

    We summarize the progress in neutrino astrophysics and emphasize open issues in our understanding of neutrino flavor conversion in media. We discuss solar neutrinos, core-collapse supernova neutrinos and conclude with ultra-high energy neutrinos.

  20. Nuclear astrophysics

    CERN Document Server

    Arnould, M

    1999-01-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding some of the many facets of the Universe through the knowledge of the microcosm of the atomic nucleus. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other sub-fields of physics and chemistry have also contributed to that advance. Many long-standing problems remain to be solved, however, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endanger old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experime...

  1. New Global Calculation of Nuclear Masses and Fission Barriers for Astrophysical Applications

    Science.gov (United States)

    Möller, P.; Sierk, A. J.; Bengtsson, R.; Ichikawa, T.; Iwamoto, A.

    2008-05-01

    The FRDM(1992) mass model [1] has an accuracy of 0.669 MeV in the region where its parameters were determined. For the 529 masses that have been measured since, its accuracy is 0.46 MeV, which is encouraging for applications far from stability in astrophysics. We are developing an improved mass model, the FRDM(2008). The improvements in the calculations with respect to the FRDM(1992) are in two main areas. (1) The macroscopic model parameters are better optimized. By simulation (adjusting to a limited set of now known nuclei) we can show that this actually makes the results more reliable in new regions of nuclei. (2) The ground-state deformation parameters are more accurately calculated. We minimize the energy in a four-dimensional deformation space (ɛ2, V3, V4, V6,) using a grid interval of 0.01 in all 4 deformation variables. The (non-finalized) FRDM (2008-a) has an accuracy of 0.596 MeV with respect to the 2003 Audi mass evaluation before triaxial shape degrees of freedom are included (in progress). When triaxiality effects are incorporated preliminary results indicate that the model accuracy will improve further, to about 0.586 MeV. We also discuss very large-scale fission-barrier calculations in the related FRLDM (2002) model, which has been shown to reproduce very satisfactorily known fission properties, for example barrier heights from 70Se to the heaviest elements, multiple fission modes in the Ra region, asymmetry of mass division in fission and the triple-humped structure found in light actinides. In the superheavy region we find barriers consistent with the observed half-lives. We have completed production calculations and obtain barrier heights for 5254 nuclei heavier than A = 170 for all nuclei between the proton and neutron drip lines. The energy is calculated for 5009325 different shapes for each nucleus and the optimum barrier between ground state and separated fragments is determined by use of an ``immersion'' technique.

  2. Nuclear astrophysics

    International Nuclear Information System (INIS)

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized

  3. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  4. Aerogels: II. Applications in catalysis

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2002-01-01

    Full Text Available Sol-gel synthesis, and the resulting materials (xerogels and aerogels are finding increasing application in the synthesis of catalysts, due to their unique characteristics. The most important features of the sol-gel process are: the ability to achieve homogeneity at the molecular level, the introduction of several species in only one step and the ability to stabilize metastable phases. The supercritical drying process produces aerogels with structural features quite different to conventional materials. Some of these characteristics of aerogels can make them very effective catalysts.

  5. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  6. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Bruxelles (Belgium); Takahashi, K. [Max-Planck-Institut fuer Astrophysik, Garching (Germany)

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  7. Nuclear astrophysics

    Science.gov (United States)

    Arnould, M.; Takahashi, K.

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  8. Neutrino astrophysics

    International Nuclear Information System (INIS)

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  9. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  10. Recent applications of the the Trojan Horse method to nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio [Dipartimento di Fisica e Astronomia, Catania University (Italy) and INFN-Laboratoti Nazionali del Sud, Catania (Italy)

    2012-11-20

    Light elements lithium, beryllium and boron (LiBeB) have been used in the last years as possible probes for stellar structure. They are mainly destroyed by (p,a) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent new results about the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be and {sup 7}Li(p,{alpha}){sup 4}He reactions are shown.

  11. Creating White Dwarf Photospheres in the Laboratory: Strategy for Astrophysics Applications

    CERN Document Server

    Falcon, Ross E; Bailey, J E; Ellis, J L; Carlson, A L; Gomez, T A; Montgomery, M H; Winget, D E; Chen, E Y; Gomez, M R; Nash, T J; Pille, T M

    2012-01-01

    Astrophysics experiments by Falcon et al. to create white dwarf photospheres in the laboratory are currently underway. The experimental platform measures Balmer line profiles of a radiation-driven, pure hydrogen plasma in emission and in absorption for conditions at T_e ~ 1 eV, n_e ~ 10^17 cm^-3. These will be used to compare and test line broadening theories used in white dwarf atmosphere models. The flexibility of the platform allows us to expand the direction of our experiments using other compositions. We discuss future prospects such as exploring helium plasmas and carbon/oxygen plasmas relevant to the photospheres of DBs and hot DQs, respectively.

  12. General relativity and relativistic astrophysics

    CERN Document Server

    Mukhopadhyay, Banibrata

    2016-01-01

    Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.

  13. Experimental radiative lifetimes for highly excited states and calculated oscillator strengths for lines of astrophysical interest in singly ionized cobalt (Co II)

    Science.gov (United States)

    Quinet, P.; Fivet, V.; Palmeri, P.; Engström, L.; Hartman, H.; Lundberg, H.; Nilsson, H.

    2016-11-01

    This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions of astrophysical interest in singly ionized cobalt. More precisely, 19 radiative lifetimes in Co+ have been measured with the time-resolved laser-induced fluorescence technique using one- and two-step excitations. Out of these, seven belonging to the high lying 3d7(4F)4d configuration in the energy range 90 697-93 738 cm-1 are new, and the other 12 from the 3d7(4F)4p configuration with energies between 45 972 and 49 328 cm-1 are compared with previous measurements. In addition, a relativistic Hartree-Fock model including core-polarization effects has been employed to compute transition rates. Supported by the good agreement between theory and experiment for the lifetimes, new reliable transition probabilities and oscillator strengths have been deduced for 5080 Co II transitions in the spectral range 114-8744 nm.

  14. A Macroscopic Description of a Generalized Self-organized Criticality System: Astrophysical Applications

    Science.gov (United States)

    Aschwanden, Markus J.

    2014-02-01

    We suggest a generalized definition of self-organized criticality (SOC) systems: SOC is a critical state of a nonlinear energy dissipation system that is slowly and continuously driven toward a critical value of a system-wide instability threshold, producing scale-free, fractal-diffusive, and intermittent avalanches with power law-like size distributions. We develop here a macroscopic description of SOC systems that provides an equivalent description of the complex microscopic fine structure, in terms of fractal-diffusive transport (FD-SOC). Quantitative values for the size distributions of SOC parameters (length scales L, time scales T, waiting times Δt, fluxes F, and fluences or energies E) are derived from first principles, using the scale-free probability conjecture, N(L)dLvpropL -d , for Euclidean space dimension d. We apply this model to astrophysical SOC systems, such as lunar craters, the asteroid belt, Saturn ring particles, magnetospheric substorms, radiation belt electrons, solar flares, stellar flares, pulsar glitches, soft gamma-ray repeaters, black-hole objects, blazars, and cosmic rays. The FD-SOC model predicts correctly the size distributions of 8 out of these 12 astrophysical phenomena, and indicates non-standard scaling laws and measurement biases for the others.

  15. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  16. Moessbauer-Spectrometer MIMOS II: Future applications

    Energy Technology Data Exchange (ETDEWEB)

    Klingelhoefer, Goestar; Blumers, Mathias; Schroeder, Christian; Fleischer, Iris; Lopez, Jordi G.; Sanchez, Jose F.; Hahn, Michaela; Upadhyay, Chandan [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Rodionov, Daniel [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Space Research Institute IKI, 117997 Moskau (Russian Federation)

    2007-07-01

    The Miniaturized Moessbauer Spectrometer MIMOS II operates on the surface of Mars for the last three years (part of NASA Mars Exploration Rovers scientific payload). Successful application of MIMOS II as a tool for detection/analysis of Fe-bearing minerals on the extraterrestrial surfaces has proven its use for other missions. Currently MIMOS II is a part of ExoMars and Phobos-Grunt missions. ExoMars is managed by the European Space Agency and planned to be launched in 2013. It involves the development of a sophisticated Mars rover with set of instruments to further characterize the biological environment on Mars in preparation for robotic missions and human exploration. Data from the mission should provide an input for broader studies of exobiology. Phobos-Grunt is developed by Russian Space Agency. Currently, launch is planned in 2009. The main goals of the mission are Phobos regolith sample return, Phobos in situ study and Mars/Phobos remote sensing.

  17. Numerical Relativity Beyond Astrophysics

    OpenAIRE

    Garfinkle, David

    2016-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black...

  18. A new blackhole theorem and its applications to cosmology and astrophysics

    Science.gov (United States)

    Wang, Shouhong; Ma, Tian

    2015-04-01

    We shall present a blackhole theorem and a theorem on the structure of our Universe, proved in a recently published paper, based on 1) the Einstein general theory of relativity, and 2) the cosmological principle that the universe is homogeneous and isotropic. These two theorems are rigorously proved using astrophysical dynamical models coupling fluid dynamics and general relativity based on a symmetry-breaking principle. With the new blackhole theorem, we further demonstrate that both supernovae explosion and AGN jets, as well as many astronomical phenomena including e.g. the recent reported are due to combined relativistic, magnetic and thermal effects. The radial temperature gradient causes vertical Benard type convection cells, and the relativistic viscous force (via electromagnetic, the weak and the strong interactions) gives rise to a huge explosive radial force near the Schwarzschild radius, leading e.g. to supernovae explosion and AGN jets.

  19. Exploring nonnormality in magnetohydrodynamic rotating shear flows: application to astrophysical accretion disks

    CERN Document Server

    Bhatia, Tanayveer Singh

    2016-01-01

    The emergence of turbulence in shear flows is a well-investigated field. Yet, one of major issues is the apparent contradiction between linear stability analysis quoting a flow to be stable and results from experiments and simulations proving it to be otherwise. There is some success, in particular in astrophysical systems, based on Magneto-Rotational Instability (MRI). However, MRI requires the system to be weakly magnetized, which is not a feature of general magnetohydrodynamic (MHD) flows. Nevertheless, linear perturbations of such flows are nonnormal in nature which argues for an origin of nonlinearity therein. The idea is, nonnormal perturbations could produce huge transient energy growth (TEG), which may lead to non-linearity and further turbulence. However, so far, nonnormal effects in shear flows have not been explored much in the presence of magnetic fields. Here, we consider the perturbed visco-resistive incompressible MHD shear flows with rotation in general. Basically we consider the magnetized ve...

  20. Relevance of β-delayed neutron data for reactor, nuclear physics and astrophysics applications

    International Nuclear Information System (INIS)

    Initially, yields (or abundances) and branching ratios of β-delayed neutrons (βdn) from fission products (Pn-values) have had their main importance in nuclear reactor control. At that time, the six-group mathematical approximation of the time-dependence of βdn-data in terms of the so-called 'Keepin groups' was generally accepted. Later, with the development of high-resolution neutron spectroscopy, βdn data have provided important information on nuclear-structure properties at intermediate excitation energy in nuclei far from stability, as well as in nuclear astrophysics. In this paper, I will present some examples of the βdn-studies performed by the Kernchemie Mainz group during the past three decades. This work has been recognized as an example of 'broad scientific diversity' which has led to my nomination for the 2014 Hans A. Bethe prize

  1. Laboratory oscillator strengths of Sc I in the near-infrared region for astrophysical applications

    CERN Document Server

    Pehlivan, A; Hartman, H

    2015-01-01

    Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims. This paper investigates the spectrum of neutral scandium, Sc i, from laboratory measurements and improves the atomic data of Sc i lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc i lines connecting the levels with 4p and 4s configurations. Methods. We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f - values). Intensity-calibrated spectra with high spectral resolution were recorded with Fouri...

  2. A Macroscopic Description of Self-Organized Criticality Systems and Astrophysical Applications

    CERN Document Server

    Aschwanden, Markus J

    2013-01-01

    We suggest a generalized definition of self-organized criticality (SOC) systems: SOC is a critical state of a nonlinear energy dissipation system that is slowly and continuously driven towards a critical value of a system-wide instability threshold, producing scale-free, fractal-diffusive, and intermittent avalanches with powerlaw-like size distributions. We develop here a macroscopic description of SOC systems that provides an equivalent description of the complex microscopic fine structure, in terms of fractal-diffusive transport (FD-SOC). Quantitative values for the size distributions of SOC parameters (length scales $L$, time scales $T$, fluxes $F$, and energies $E$) are derived from first principles, using the scale-free probability theorem, $N(L) dL \\propto L^{-d}$, for Euclidean space dimension $d$. We apply this model to astrophysical SOC systems, such as lunar craters, the asteroid belt, Saturn ring particles, magnetospheric substorms, radiation belt electrons, solar flares, stellar flares, pulsar gl...

  3. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  4. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  5. Neutrino Astrophysics

    OpenAIRE

    Haxton, W. C.

    2000-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric an...

  6. Modelization, fabrication and evaluation avalanche photodiodes polarized in Geiger mode for the single photon in astrophysics applications

    International Nuclear Information System (INIS)

    The genesis of the work presented in this this is in the field of very high energy astrophysics. One century ago, scientists identified a new type of messenger coming from space: cosmic rays. This radiation consists of particles (photons or other) of very high energy which bombard the Earth permanently. The passage of cosmic radiations in the Earth's atmosphere results in the creation of briefs luminous flashes (5 ns) of very low intensity (1 pW), a Cherenkov flash, and then becomes visible on the ground. In the current state of the art the best detector of light today is the Photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. But there are some drawbacks: low quantum efficiency, cost, weight etc. We present in this thesis a new alternative technology: silicon photon counters, made of photodiodes polarized in Geiger mode. This operating mode makes it possible to obtain an effect of multiplication comparable to that of the PMT. A physical and electrical model was developed to reproduce the behaviour of this detector. We then present in this thesis work an original technological process allowing the realization of these devices in the Center of Technology of LAAS-CNRS, with the simulation of each operation of the process. We developed a scheme for the electric characterization of the device, from the static mode to the dynamic mode, in order to check conformity with SILVACO simulations and to the initial model. Results are already excellent, given this is only a first prototype step, and comparable with the results published in the literature. These silicon devices can intervene in all the applications where there is a photomultiplier and replace it. The applications are thus very numerous and the growth of the market of these detectors is very fast. We present a first astrophysical experiment installed at the 'Pic du Midi' site which has detected Cherenkov flashes from cosmic rays with this new semiconductor technology. (author)

  7. Laboratory Astrophysics Studies with the COSmIC Facility: Interstellar and Planetary Applications.

    Science.gov (United States)

    Salama, Farid; Contreras, Cesar S.; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2015-08-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory astrophysics results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [3] and planetary atmospheres [4]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References:[1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Cesar Contreras and Farid Salama, The

  8. Large-scale Continuum Random Phase Approximation predictions of dipole strength for astrophysical applications

    CERN Document Server

    Daoutidis, I

    2012-01-01

    Large-scale calculations of the E1 strength are performed within the random phase approximation (RPA) based on the relativistic point-coupling mean field approach in order to derive the radiative neutron capture cross sections for all nuclei of astrophysical interest. While the coupling to the single-particle continuum is taken into account in an explicit and self-consistent way, additional corrections like the coupling to complex configurations and the temperature and deformation effects are included in a phenomenological way to account for a complete description of the nuclear dynamical problem. It is shown that the resulting E1-strength function based on the PCF1 force is in close agreement with photoabsorption data as well as the available experimental E1 strength data at low energies. For neutron-rich nuclei, as well as light neutron-deficient nuclei, a low-lying so-called pygmy resonance is found systematically in the 5-10 MeV region. The corresponding strength can reach 10% of the giant dipole strength...

  9. Application of Geodetic VLBI Data to Obtaining Long-Term Light Curves for Astrophysics

    Science.gov (United States)

    Kijima, Masachika

    2010-01-01

    The long-term light curve is important to research on binary black holes and disk instability in AGNs. The light curves have been drawn mainly using single dish data provided by the University of Michigan Radio Observatory and the Metsahovi Radio Observatory. Hence, thus far, we have to research on limited sources. I attempt to draw light curves using VLBI data for those sources that have not been monitored by any observatories with single dish. I developed software, analyzed all geodetic VLBI data available at the IVS Data Centers, and drew the light curves at 8 GHz. In this report, I show the tentative results for two AGNs. I compared two light curves of 4C39.25, which were drawn based on single dish data and on VLBI data. I confirmed that the two light curves were consistent. Furthermore, I succeeded in drawing the light curve of 0454-234 with VLBI data, which has not been monitored by any observatory with single dish. In this report, I suggest that the geodetic VLBI archive data is useful to obtain the long-term light curves at radio bands for astrophysics.

  10. Astrophysical cosmology

    Science.gov (United States)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  11. Exploring the gas-phase spectroscopy of interstellar PAH and dust analogs: Astrophysical applications

    Science.gov (United States)

    Biennier, Ludovic; Salama, Farid; Allamandola, Lou; Gupta, Manish; O'Keefe, Anthony; Scherer, James J.

    We present and discuss the gas-phase electronic absorption spectra of selected ionized polycyclic aromatic hydrocarbons (PAHs) measured in the UV-Visible-NIR range in an astrophysically relevant environment. This type of measurements provides data on PAHs and nanometer-sized particles that can now be directly compared to astronomical spectra of the UV interstellar (IS) extinction curve and of the diffuse interstellar bands (DIBs). The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. This source combines a pulsed slit supersonic free jet expansion of argon seeded with PAHs (Salama, F., Allamandola, L. J. & Scherer, J. J., `Pulsed discharge nozzle cavity ringdown spectroscopy of cold PAH ions', J. Chem Phys.;in press) that have been pre-selected from Matrix Isolation Spectroscopy (MIS) studies. The absorption spectrum of the Pyrene cation (C16H10+) has also been measured. These experiments provide unique information on the spectra of free, large carbon-containing molecules and ions in the gas phase. The electronic bands measured for this selection of PAH ions are all found to be intrinsically broad (>˜20 cm-1). The laboratory data are compared with recent astronomical spectra of large DIBs. Preliminary results also show that carbon nanoparticles (˜2 nm size) are formed during the short residence time of the precursors in the plasma. This finding holds great potential for the spectroscopy of nanoparticles isolated in the gas-phase in an interstellar-like environment and for understanding the formation process of interstellar grains.

  12. Recent results in nuclear astrophysics

    CERN Document Server

    Coc, Alain; Kiener, Juergen

    2016-01-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified e.g. 12C(alpha,gamma)16O for stellar evolution, or 13C(alpha,n)16O and 22Ne(alpha,n)25Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics,...

  13. Computational Astrophysics

    Science.gov (United States)

    Mickaelian, A. M.; Astsatryan, H. V.

    2015-07-01

    Present astronomical archives that contain billions of objects, both Galactic and extragalactic, and the vast amount of data on them allow new studies and discoveries. Astrophysical Virtual Observatories (VO) use available databases and current observing material as a collection of interoperating data archives and software tools to form a research environment in which complex research programs can be conducted. Most of the modern databases give at present VO access to the stored information, which makes possible also a fast analysis and managing of these data. Cross-correlations result in revealing new objects and new samples. Very often dozens of thousands of sources hide a few very interesting ones that are needed to be discovered by comparison of various physical characteristics. VO is a prototype of Grid technologies that allows distributed data computation, analysis and imaging. Particularly important are data reduction and analysis systems: spectral analysis, SED building and fitting, modelling, variability studies, cross correlations, etc. Computational astrophysics has become an indissoluble part of astronomy and most of modern research is being done by means of it.

  14. Experimental radiative lifetimes for highly excited states and calculated oscillator strengths for lines of astrophysical interest in singly ionized cobalt (Co II)

    CERN Document Server

    Quinet, P; Palmeri, P; Engstrom, L; Hartman, H; Lundberg, H; Nilsson, H

    2016-01-01

    This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions of astrophysical interest in singly ionized cobalt. More pre- cisely, nineteen radiative lifetimes in Co+ have been measured with the time-resolved laser-induced fluorescence technique using one- and two-step excitations. Out of these, seven belonging to the high lying 3d$^7$($^4$F)4d configuration in the energy range 90697 - 93738 cm$^{-1}$ are new, and the other twelve from th3d$^7$($^4$F)F)4p configuration with energies between 45972 and 49328 cm$^{-1}$1 are compared with previous measurements. In addition, a relativistic Hartree-Fock model including core-polarization e?ects has been employed to compute transition rates. Supported by the good agreement between theory and experiment for the lifetimes, new reliable transition probabilities and os- cillator strengths have been deduced for 5080 Co II transitions in the spectral range 114 - 8744 nm.

  15. Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

    CERN Document Server

    Achterberg, A; Adams, J; Ahrens, J; Andeen, K; Atlee, D W; Bahcall, J N; Bai, X; Baret, B; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Bolmont, J; Boser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Christy, B; Clem, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Demirors, L; Descamps, F; Desiati, P; De Young, T; Díaz-Veléz, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Ellsworth, R W; Evenson, P A; Fadiran, O; Fazely, A R; Feser, T; Filimonov, K; Fox, B D; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Grullon, S; Gross, A; Gunasingha, R M; Gurtner, M; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hommez, B; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Hulss, J P; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Jones, A; Joseph, J M; Kampert, K H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Kowalski, M; Köpke, L; Krasberg, M; Kühn, K; Landsman, H; Leich, H; Leier, D; Leuthold, M; Liubarsky, I; Lundberg, J; Lunemann, J; Madsen, J; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olivas, A; Patton, S; Peña-Garay, C; Pérez de los Heros, C; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, S; Roth, P; Rott, C; Rutledge, D; Ryckbosch, D; Sander, H G; Sarkar, S; Schlenstedt, S; Schmidt, T; Schneider, D; Seckel, D; Seo, S H; Seunarine, S; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Straszheim, T; Sulanke, K H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Tluczykont, M; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; De Dios-Zornoza-Gomez, Juan

    2006-01-01

    We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live-time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit \\Phi^{0}=(E/TeV)^\\gamma d\\Phi/dE to a point source flux of muon and tau neutrino (detected as muons arising from taus) is \\Phi_{\

  16. Nuclear Data for Astrophysical Modeling

    CERN Document Server

    Pritychenko, Boris

    2016-01-01

    Nuclear physics has been playing an important role in modern astrophysics and cosmology. Since the early 1950's it has been successfully applied for the interpretation and prediction of astrophysical phenomena. Nuclear physics models helped to explain the observed elemental and isotopic abundances and star evolution and provided valuable insights on the Big Bang theory. Today, the variety of elements observed in stellar surfaces, solar system and cosmic rays, and isotope abundances are calculated and compared with the observed values. Consequently, the overall success of the modeling critically depends on the quality of underlying nuclear data that helps to bring physics of macro and micro scales together. To broaden the scope of traditional nuclear astrophysics activities and produce additional complementary information, I will investigate applicability of the U.S. Nuclear Data Program (USNDP) databases for astrophysical applications. EXFOR (Experimental Nuclear Reaction Data) and ENDF (Evaluated Nuclear Dat...

  17. Quantum theory of the dielectric constant of a magnetized plasma and astrophysical applications. I.

    Science.gov (United States)

    Canuto, V.; Ventura, J.

    1972-01-01

    A quantum mechanical treatment of an electron plasma in a constant and homogeneous magnetic field is considered, with the aim of (1) defining the range of validity of the magnetoionic theory (2) studying the deviations from this theory, in applications involving high densities, and intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the photon field is used to derive general expressions for the dielectric tensor. Numerical estimates on the range of applicability of the magnetoionic theory are given for the case of the 'one-dimensional' electron gas, where only the lowest Landau level is occupied.

  18. Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

    Science.gov (United States)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Atlee, D. W.; Bahcall, J. N.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; de Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feser, T.; Filimonov, K.; Fox, B. D.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grullon, S.; Groß, A.; Gunasingha, R. M.; Gurtner, M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Harenberg, T.; Hart, J. E.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Hülß, J.-P.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karle, A.; Kawai, H.; Kelley, J. L.; Kestel, M.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Kowalski, M.; Köpke, L.; Krasberg, M.; Kuehn, K.; Landsman, H.; Leich, H.; Leier, D.; Leuthold, M.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Ögelman, H.; Olivas, A.; Patton, S.; Peña-Garay, C.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Roth, P.; Rott, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Seckel, D.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.

    2007-05-01

    We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Φ0=((E)/(1TeV))γ·(dΦ)/(dE) to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Φνμ+ν¯μ0+Φντ+ν¯τ0=11.1×10-11TeV-1cm-2s-1, in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Φνμ+ν¯μ0/Φντ+ν¯τ0=1 and assuming a spectral index γ=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Φνμ+ν¯μ0=5.5×10-11TeV-1cm-2s-1. A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties.

  19. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    OpenAIRE

    Reifarth René; Litvinov Yuri A.; Endres Anne; Göbel Kathrin; Heftrich Tanja; Glorius Jan; Koloczek Alexander; Sonnabend Kerstin; Travaglio Claudia; Weigand Mario

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will ...

  20. Multi-fluid problems in magnetohydrodynamics with applications to astrophysical processes

    Science.gov (United States)

    Greenfield, Eric John

    2016-01-01

    I begin this study by presenting an overview of the theory of magnetohydrodynamics and the necessary conditions to justify the fluid treatment of a plasma. Upon establishing the fluid description of a plasma we move on to a discussion of magnetohydrodynamics in both the ideal and Hall regimes. This framework is then extended to include multiple plasmas in order to consider two problems of interest in the field of theoretical space physics. The first is a study on the evolution of a partially ionized plasma, a topic with many applications in space physics. A multi-fluid approach is necessary in this case to account for the motions of an ion fluid, electron fluid and neutral atom fluid; all of which are coupled to one another by collisions and/or electromagnetic forces. The results of this study have direct application towards an open question concerning the cascade of Kolmogorov-like turbulence in the interstellar plasma which we will discuss below. The second application of multi-fluid magnetohydrodynamics that we consider in this thesis concerns the amplification of magnetic field upstream of a collisionless, parallel shock. The relevant fluids here are the ions and electrons comprising the interstellar plasma and the galactic cosmic ray ions. Previous works predict that the streaming of cosmic rays lead to an instability resulting in significant amplification of the interstellar magnetic field at supernova blastwaves. This prediction is routinely invoked to explain the acceleration of galactic cosmic rays up to energies of 1015 eV. I will examine this phenomenon in detail using the multi-fluid framework outlined below. The purpose of this work is to first confirm the existence of an instability using a purely fluid approach with no additional approximations. If confirmed, I will determine the necessary conditions for it to operate.

  1. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D. (Nuclear Engineering Division); (Univ. of Massachusetts); (Univ. of Surrey)

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  2. Trends in Nuclear Astrophysics

    CERN Document Server

    Schatz, Hendrik

    2016-01-01

    Nuclear Astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  3. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Reifarth René

    2015-01-01

    Full Text Available Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,γ, (n,p, (n,α, (n,2n, or (n,f, could be investigated.

  4. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    CERN Document Server

    Reifarth, René; Endres, Anne; Göbel, Kathrin; Heftrich, Tanja; Glorius, Jan; Koloczek, Alexander; Sonnabend, Kerstin; Travaglio, Claudia; Weigand, Mario

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,$\\gamma$), (n,p), (n,$\\alpha$), (n,2n), or (n,f), could be investigated.

  5. Learning Objects, Type II Applications, and Embedded Pedagogical Models

    Science.gov (United States)

    Gadanidis, George; Schindler, Karen

    2006-01-01

    In this paper we consider the extent to which learning objects that focus on higher level thinking might be seen as Type II applications, as defined by Maddux, Johnson, and Willis (2001). We conclude that learning objects are at best hybrid applications, with some Type I and some Type II characteristics. We also consider whether the educational…

  6. Chaos and complexity in astrophysics

    CERN Document Server

    Regev, Oded

    2007-01-01

    Methods and techniques of the theory of nonlinear dynamical systems and patterns can be useful in astrophysical applications. Some works on the subjects of dynamical astronomy, stellar pulsation and variability, as well as spatial complexity in extended systems, in which such approaches have already been utilized, are reviewed. Prospects for future directions in applications of this kind are outlined.

  7. Smoothed Particle Hydrodynamics in Astrophysics

    CERN Document Server

    Springel, Volker

    2011-01-01

    This review discusses Smoothed Particle Hydrodynamics (SPH) in the astrophysical context, with a focus on inviscid gas dynamics. The particle-based SPH technique allows an intuitive and simple formulation of hydrodynamics that has excellent conservation properties and can be coupled to self-gravity easily and highly accurately. The Lagrangian character of SPH allows it to automatically adjust its resolution to the clumping of matter, a property that makes the scheme ideal for many applications in astrophysics, where often a large dynamic range in density is encountered. We discuss the derivation of the basic SPH equations in their modern formulation, and give an overview about extensions of SPH developed to treat physics such as radiative transfer, thermal conduction, relativistic dynamics or magnetic fields. We also briefly describe some of the most important applications areas of SPH in astrophysical research. Finally, we provide a critical discussion of the accuracy of SPH for different hydrodynamical prob...

  8. Nuclear Astrophysics with the Trojan Horse Method

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Lamia, L.; Pizzone, R. G.; Cherubini, S.; Gulino, M.; La Cognata, M.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-01-01

    The Trojan Horse Method (THM) represents the indirect path to determine the bare nucleus astrophysical S(E) factor for reactions between charged particles at astrophysical energies. This is done by measuring the quasi free cross section of a suitable three body process. The basic features of the THM will be presented together with some applications to demonstrate its practical use.

  9. Nuclear Astrophysics: CIPANP 2006

    OpenAIRE

    Haxton, W. C.

    2006-01-01

    I review progress that has been made in nuclear astrophysics over the past few years and summarize some of the questions that remain. Topics selected include solar neutrinos, supernovae (the explosion and associated nucleosynthesis), laboratory astrophysics, and neutron star structure.

  10. XTROEM-FV: a new code for computational astrophysics based on very high order finite-volume methods - II. Relativistic hydro- and magnetohydrodynamics

    Science.gov (United States)

    Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter

    2016-07-01

    In this work, we discuss the extension of the XTROEM-FV code to relativistic hydrodynamics and magnetohydrodynamics. XTROEM-FV is a simulation package for computational astrophysics based on very high order finite-volume methods on Cartesian coordinates. Arbitrary spatial high order of accuracy is achieved with a weighted essentially non-oscillatory (WENO) reconstruction operator, and the time evolution is carried out with a strong stability preserving Runge-Kutta scheme. In XTROEM-FV has been implemented a cheap, robust, and accurate shock-capturing strategy for handling complex shock waves problems, typical in an astrophysical environment. The divergence constraint of the magnetic field is tackled with the generalized Lagrange multiplier divergence cleaning approach. Numerical computations of smooth flows for the relativistic hydrodynamics and magnetohydrodynamics equations are performed and confirm the high-order accuracy of the main reconstruction algorithm for such kind of flows. XTROEM-FV has been subject to a comprehensive numerical benchmark, especially for complex flows configurations within an astrophysical context. Computations of problems with shocks with very high order reconstruction operators up to seventh order are reported. For instance, one-dimensional shock tubes problems for relativistic hydrodynamics and magnetohydrodynamics, as well as two-dimensional flows like the relativistic double Mach reflection problem, the interaction of a shock wave with a bubble, the relativistic Orszag-Tang vortex, the cylindrical blast wave problem, the rotor problem, the Kelvin-Helmholtz instability, and an astrophysical slab jet. XTROEM-FV represents a new attempt to simulate astrophysical flow phenomena with very high order numerical methods.

  11. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1966-01-01

    Advances in Astronomy and Astrophysics, Volume 4 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with a description of objective prism and its application in space observations. The next chapter deals with the possibilities of deriving reliable models of the figure, density distribution, and gravity field of the Moon based on data obtained through Earth-bound telescopes. These topics are followed by a discussion on the ideal partially relativistic, partially degenerate gas in an exact manner. A ch

  12. Astrophysics a very short introduction

    CERN Document Server

    Binney, James

    2016-01-01

    Astrophysics is the physics of the stars, and more widely the physics of the Universe. It enables us to understand the structure and evolution of planetary systems, stars, galaxies, interstellar gas, and the cosmos as a whole. In this Very Short Introduction, the leading astrophysicist James Binney shows how the field of astrophysics has expanded rapidly in the past century, with vast quantities of data gathered by telescopes exploiting all parts of the electromagnetic spectrum, combined with the rapid advance of computing power, which has allowed increasingly effective mathematical modelling. He illustrates how the application of fundamental principles of physics - the consideration of energy and mass, and momentum - and the two pillars of relativity and quantum mechanics, has provided insights into phenomena ranging from rapidly spinning millisecond pulsars to the collision of giant spiral galaxies. This is a clear, rigorous introduction to astrophysics for those keen to cut their teeth on a conceptual trea...

  13. Application for TJ-II Signals Visualization: User's Guide

    International Nuclear Information System (INIS)

    In this documents are described the functionalities of the application developed by the Data Acquisition Group for TJ-II signal visualization. There are two versions of the application, the On-line version, used for signal visualization during TJ-II operation, and the Off-line version, used for signal visualization without TJ-II operation. Both versions of the application consist in a graphical user interface developed for X/Motif, in which most of the actions can be done using the mouse buttons. The functionalities of both versions of the application are described in this user's guide, beginning at the application start-up and explaining in detail all the options that it provides and the actions that can be done with each graphic control. (Author) 8 refs

  14. Application of Bayesian Neural Networks to Energy Reconstruction in EAS Experiments for ground-based TeV Astrophysics

    CERN Document Server

    Bai, Ying; Lan, JieQin; Gao, WeiWei

    2016-01-01

    A toy detector array has been designed to simulate the detection of cosmic rays in Extended Air Shower(EAS) Experiments for ground-based TeV Astrophysics. The primary energies of protons from the Monte-Carlo simulation have been reconstructed by the algorithm of Bayesian neural networks (BNNs) and a standard method like the LHAASO experiment\\cite{lhaaso-ma}, respectively. The result of the energy reconstruction using BNNs has been compared with the one using the standard method. Compared to the standard method, the energy resolutions are significantly improved using BNNs. And the improvement is more obvious for the high energy protons than the low energy ones.

  15. CYCLODEXTRINS - FIELFS OF APPLICATION. PART II

    OpenAIRE

    Gh. Duca; A. Ivancic; V. Boldescu

    2012-01-01

    This paper represents an analysis of potential and current applications of cyclodextrins as biologically active substances in medicine. The main applications described here include use of cyclodextrins as agents that form inclusion complexes with endogenous substances (membrane lipids, cellular cholesterol), agents that form inclusion complexes with exogenous substances with their man role as guest molecules (sugammadex, FBCx), agents that block endogenous and exogenous macromolec...

  16. Astrophysical aspects of Weyl gravity

    Science.gov (United States)

    Kazanas, Demosthenes

    1991-01-01

    This paper discusses the astrophysical implications and applications of Weyl gravity, which is the theory resulting from the unique action allowed under the principle of local scale invariance in Einstein gravity. These applications include galactic dynamics, the mass-radius relation, the cosmological constant, and the 'Modified Newtonian Dynamics' proposed by Milgrom (1983). The relation of Weyl gravity to other scale-invariant theories is addressed.

  17. Application of a Multidimensional Wavelet Denoising Algorithm for the Detection and Characterization of Astrophysical Sources of Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Digel, S.W.; /SLAC; Zhang, B.; Chiang, J.; /Maryland U.; Fadili, J.M.; /Caen U.; Starck, J.-L.; /Saclay /Stanford U., Statistics Dept.

    2005-12-02

    Zhang, Fadili, & Starck have recently developed a denoising procedure for Poisson data that offers advantages over other methods of intensity estimation in multiple dimensions. Their procedure, which is nonparametric, is based on thresholding wavelet coefficients. The restoration algorithm applied after thresholding provides good conservation of source flux. We present an investigation of the procedure of Zhang et al. for the detection and characterization of astrophysical sources of high-energy gamma rays, using realistic simulated observations with the Large Area Telescope (LAT). The LAT is to be launched in late 2007 on the Gamma-ray Large Area Space Telescope mission. Source detection in the LAT data is complicated by the low fluxes of point sources relative to the diffuse celestial background, the limited angular resolution, and the tremendous variation of that resolution with energy (from tens of degrees at {approx}30 MeV to 0.1{sup o} at 10 GeV). The algorithm is very fast relative to traditional likelihood model fitting, and permits immediate estimation of spectral properties. Astrophysical sources of gamma rays, especially active galaxies, are typically quite variable, and our current work may lead to a reliable method to quickly characterize the flaring properties of newly-detected sources.

  18. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    Directory of Open Access Journals (Sweden)

    Anna Maria Mancini

    2009-05-01

    Full Text Available Over the last decade, cadmium telluride (CdTe and cadmium zinc telluride (CdZnTe wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si and germanium (Ge, CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors.

  19. Large Eddy Simulations in Astrophysics

    CERN Document Server

    Schmidt, Wolfram

    2014-01-01

    In this review, the methodology of large eddy simulations (LES) is introduced and applications in astrophysics are discussed. As theoretical framework, the scale decomposition of the dynamical equations for neutral fluids by means of spatial filtering is explained. For cosmological applications, the filtered equations in comoving coordinates are also presented. To obtain a closed set of equations that can be evolved in LES, several subgrid scale models for the interactions between numerically resolved and unresolved scales are discussed, in particular the subgrid scale turbulence energy equation model. It is then shown how model coefficients can be calculated, either by dynamical procedures or, a priori, from high-resolution data. For astrophysical applications, adaptive mesh refinement is often indispensable. It is shown that the subgrid scale turbulence energy model allows for a particularly elegant and physically well motivated way of preserving momentum and energy conservation in AMR simulations. Moreover...

  20. Astrophysical Hydrodynamics An Introduction

    CERN Document Server

    Shore, Steven N

    2007-01-01

    This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of ""Tapestry of Modern Astrophysics"" -- has been updated and revised to reflect the newest research results. Suitable for AS0000 and AS0200 courses, as well as advanced astrophysics and astronomy lectures, this is an indispensable theoretical backup for studies on celestial body formation and astrophysics. Includes exercises with solutions.

  1. CYCLODEXTRINS - FIELFS OF APPLICATION. PART II

    Directory of Open Access Journals (Sweden)

    Gh. Duca

    2012-12-01

    Full Text Available This paper represents an analysis of potential and current applications of cyclodextrins as biologically active substances in medicine. The main applications described here include use of cyclodextrins as agents that form inclusion complexes with endogenous substances (membrane lipids, cellular cholesterol, agents that form inclusion complexes with exogenous substances with their man role as guest molecules (sugammadex, FBCx, agents that block endogenous and exogenous macromolecules (ion channels, anthrax toxin, α-hemolysin, and agents which activity is based on the chemical nature of them and of their derivatives (cyclodextrin polysulphate derivatives. The fi rst classifi cation for medically important biological activity of cyclodextrins has been proposed.

  2. The Local Instability of Steady Astrophysical Flows with non Circular Streamlines with Application to Differentially Rotating Disks with Free Eccentricity

    CERN Document Server

    Papaloizou, J C B

    2004-01-01

    We carry out a general study of the stability of astrophysical flows that appear steady in a uniformly rotating frame. Such a flow might correspond to a stellar pulsation mode or an accretion disk with a free global distortion giving it finite eccentricity. We consider perturbations arbitrarily localized in the neighbourhood of unperturbed fluid streamlines.When conditions do not vary around them, perturbations take the form of oscillatory inertial or gravity modes. However, when conditions do vary so that a circulating fluid element is subject to periodic variations, parametric instability may occur. For nearly circular streamlines, the dense spectra associated with inertial or gravity modes ensure that resonance conditions can always be satisfied when twice the period of circulation round a streamline falls within. We apply our formalism to a differentially rotating disk for which the streamlines are Keplerian ellipses, with free eccentricity up to 0.7, which do not precess in an inertial frame. We show tha...

  3. Regge calculus and observations. II. Further applications.

    Science.gov (United States)

    Williams, Ruth M.; Ellis, G. F. R.

    1984-11-01

    The method, developed in an earlier paper, for tracing geodesies of particles and light rays through Regge calculus space-times, is applied to a number of problems in the Schwarzschild geometry. It is possible to obtain accurate predictions of light bending by taking sufficiently small Regge blocks. Calculations of perihelion precession, Thomas precession, and the distortion of a ball of fluid moving on a geodesic can also show good agreement with the analytic solution. However difficulties arise in obtaining accurate predictions for general orbits in these space-times. Applications to other problems in general relativity are discussed briefly.

  4. Organic electronics II more materials and applications

    CERN Document Server

    Klauk, Hagen

    2012-01-01

    Like its predecessor this book is devoted to the materials, manufacturing and applications aspects of organic thin-film transistors. Onceagain authored by the most renowned experts from this fascinating and fast-moving area of research, it offers a joint perspective bothbroad and in-depth on the latest developments in the areas of materials chemistry, transport physics, materials characterization, manufacturing technology, and circuit integration of organic transistors. With its many figures and detailed index, this book once again also serves as a ready reference.

  5. Astrophysical Quark Matter

    OpenAIRE

    Xu, R. X.

    2004-01-01

    The quark matter may have great implications in astrophysical studies, which could appear in the early Universe, in compact stars, and/or as cosmic rays. After a general review of astrophysical quark matter, the density-dominated quark matter is focused.

  6. Relativistic Astrophysics; Astrofisica Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Font, J. A.

    2015-07-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  7. Nuclear interactions in high energy heavy ions and applications in astrophysics. Technical progress report, 1 April 1992--31 March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wefel, J.P.; Guzik, T.G.

    1993-01-11

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. {sup 4}He, {sup 16}O, {sup 20}Ne, {sup 28}Si, {sup 56}Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy {sup 16}O,{sup 28}Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs.

  8. Nuclear interactions in high energy heavy ions and applications in astrophysics. [Dept. of Physics and Astronomy, Louisiana State Univ. , Baton Rouge

    Energy Technology Data Exchange (ETDEWEB)

    Wefel, J.P.; Guzik, T.G.

    1993-01-11

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. [sup 4]He, [sup 16]O, [sup 20]Ne, [sup 28]Si, [sup 56]Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy [sup 16]O,[sup 28]Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs.

  9. Astrophysics on the lab bench

    Science.gov (United States)

    Hughes, Stephen W.

    2010-05-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a type II supernova explosion. In another experiment, students roll marbles up and down a double ramp in an attempt to get a marble to enter a tube halfway up the slope, which illustrates quantum tunnelling in stellar cores. The experiments are reasonably low cost to either purchase or manufacture.

  10. {alpha}-{alpha} interaction reexamined in the context of the Sao Paulo potential: possible applications in astrophysics?

    Energy Technology Data Exchange (ETDEWEB)

    Gasques, L.R.; Chamon, L.C.; Botero, D.F.M. [Universidade de Sao Paulo (DFN/USP), SP (Brazil). Dept. de Fisica Nuclear; Alves, L.F.M. [Instituto Federal de Educacao, Ciencia e Tecnologia (Brazil); Carlson, B.V. [Instituto Tecnologico de Aeronautica (CTA/ITA), Sao Jose dos Campos, SP (Brazil). Dept. de Fisica Nuclear; Rossi Junior, E.S. [Centro Universitario FIEO(UNIFIEO), SP (Brazil)

    2012-07-01

    Full text: We have analyzed a large set of {alpha}-{alpha} elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. The complete lack of open reaction channels at these somehow low energies results in a vanishing imaginary part for the optical interaction. This characteristic makes the {alpha}-{alpha} reaction particularly interesting as the corresponding elastic scattering cross sections and phase shifts become very sensitive to the real part of the interaction. The data were analyzed within the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have shown that, even in this low energy region, the velocity dependence of the Sao Paulo potential model is a necessary ingredient for describing the data. Despite the reasonable description obtained with the Sao Paulo potential, the analyses indicate the necessity of an additional weak dependence of the interaction on the angular momentum. These important characteristics open the possibility for studying reactions with astrophysical interested. In particular, predictions of the astrophysical S-factor for the {sup 12}C({alpha},{gamma}) reaction will be presented. The understanding of the reaction rate for the {alpha}-capture process by a {sup 12}C nucleus is a crucial ingredient for predicting the stellar helium burning and the subsequent fate of stars as this reaction determines the ratio of carbon to oxygen towards the end of the Red Giants phase. It is well known that low mass stars evolve to White Dwarfs and this ratio determines the final abundance composition in White Dwarf matter and sets the trigger conditions for type Ia supernova explosions. The carbon-oxygen ratio also dictates the subsequent sequence of burning processes during the final stages of stellar evolution for massive stars. Thus, it has a key role in the determination of the abundance composition in

  11. Experimental investigation of the formation and propagation of plasma jets created by a power laser: application to laboratory astrophysics

    International Nuclear Information System (INIS)

    Plasma jets are often observed in the polar regions of Young Stellar Objects (YSO). For a better understanding of the whole processes at the origin of their formation and evolution, this research thesis aims at demonstrating the feasibility of a plasma jet generation by a power laser, and at investigating its characteristics. After a detailed description of Young Stellar Objects jets and an overview of theoretical models, the author describes some experiments performed with gas guns, pulsed machines and power lasers. He describes means of generation of a jet by laser interaction via strong shock propagation. He reports experimental work, describing the target, laser operating conditions and the determination of jet parameters: speed, temperature, density. Then, he introduces results obtained for plasma jet propagation in vacuum, describes their evolution with respect to initial conditions (target type, laser operating conditions), and identifies optimal conditions for generating a jet similar to that in astrophysical conditions. He considers their propagation in ambient medium like for YSO jets in interstellar medium. Two distinct cases are investigated: collision of two successive shocks in a gaseous medium, and propagation of a plasma jet in a gas jet

  12. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2007-01-01

    A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation. In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a N

  13. An invitation to astrophysics

    CERN Document Server

    Padmanabhan, Thanu

    2006-01-01

    This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help s

  14. Reflectometer end station for synchrotron calibrations of Advanced X-ray Astrophysics Facility flight optics and for spectrometric research applications

    International Nuclear Information System (INIS)

    Preparations have been underway to construct and test a facility for grazing incidence reflectance calibrations of flat mirrors at the National Synchrotron Light Source. The purpose is to conduct calibrations on witness flats to the coating process of the flight mirrors for NASA's Advanced X-ray Astrophysics Facility (AXAF). The x-ray energy range required is 50 eV--12 keV. Three monochromatic beamlines (X8C, X8A, U3A) will provide energy tunability over this entire range. The goal is to calibrate the AXAF flight mirrors with uncertainties approaching 1%. A portable end station with a precision-positioning reflectometer has been developed for this work. We have resolved the vacuum cleanliness requirements to preserve the coating integrity of the flats with the strict grazing-angle certainty requirements placed on the rotational control system of the reflectometer. A precision positioning table permits alignment of the system to the synchrotron beam to within 10 arcsec; the reflectometer's rotational control system can then produce grazing angle accuracy to within less than 2 arcsec, provided that the electron orbit is stable. At 10--12 keV, this degree of angular accuracy is necessary to achieve the calibration accuracy required for AXAF. However the most important energy regions for the synchrotron calibration are in the 2000--3200 eV range, where the M-edge absorption features of the coating element, iridium, appear, and the 300--700 eV range of the Ir N edges. The detail versus energy exhibited in these features cannot be traced adequately without a tunable energy source, which necessitates a synchrotron for this work. We present the mechanical designs, motion control systems, detection and measurement capabilities, and selected procedures for our measurements, as well as reflectance data

  15. Neutrino physics and astrophysics

    International Nuclear Information System (INIS)

    The plenary reports of Neutrino '80 are presented by experts in neutrino physics and astrophysics. Their International Conference on Neutrino Physics and Astrophysics was held in Erice (Italy), June 23 through 28, 1980. The proceedings include reviews of part research, the history of neutrino research and coverage of recent results and theoretical speculations. Topics include high- and low-energy neutrino astrophysics, weak charged and neutral currents, low and intermediate weak interactions, neutrino oscillations, and parity violation in atoms and nuclei conservation laws. Weak interactions in lepton-lepton and lepton-nucleon collisions, beam dump experiments, new theoretical ideas, and future developments in accelerators and detectors are also included. The topics are introduced by a historical perspective section and then grouped under the headings of neutrino astrophysics, weak charged currents, weak neutral currents, low and intermediate energy interactions, conservation laws, weak interactions in electron and hadron experiments, and a final section on future accelerator, new neutrino detection technology and concluding remarks

  16. Topics in Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Some topics in nuclear astrophysics are discussed, e.g.: highly evolved stellar cores, stellar evolution (through the temperature analysis of stellar surface), nucleosynthesis and finally the solar neutrino problem. (L.C.)

  17. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  18. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    Science.gov (United States)

    Takabe, Hideaki

    2016-10-01

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  19. Accelerator Experiments for Astrophysics

    OpenAIRE

    Ng, Johnny S. T.

    2003-01-01

    Many recent discoveries in astrophysics involve phenomena that are highly complex. Carefully designed experiments, together with sophisticated computer simulations, are required to gain insights into the underlying physics. We show that particle accelerators are unique tools in this area of research, by providing precision calibration data and by creating extreme experimental conditions relevant for astrophysics. In this paper we discuss laboratory experiments that can be carried out at the S...

  20. Transient Astrophysics with the Square Kilometre Array

    CERN Document Server

    Fender, Rob; Macquart, Jean-Pierre; Donnarumma, Immacolata; Murphy, Tara; Deller, Adam; Paragi, Zsolt; Chatterjee, Shami

    2015-01-01

    This chapter provides an overview of the possibilities for transient and variable-source astrophysics with the Square Kilometre Array. While subsequent chapters focus on the astrophysics of individual events, we focus on the broader picture, and how to maximise the science coming from the telescope. The SKA as currently designed will be a fantastic and ground-breaking facility for radio transient studies, but the scientifc yield will be dramatically increased by the addition of (i) near-real-time commensal searches of data streams for events, and (ii) on occasion, rapid robotic response to Target-of-Opprtunity style triggers.

  1. Laboratory Astrophysics White Paper

    Science.gov (United States)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  2. Visual Odometry: Part II - Matching, Robustness, and Applications

    OpenAIRE

    Fraundorfer, Friedrich; Scaramuzza, Davide

    2012-01-01

    Part II of the tutorial has summarized the remaining building blocks of the VO pipeline: specifically, how to detect and match salient and repeatable features across frames and robust estimation in the presence of outliers and bundle adjustment. In addition, error propagation, applications, and links to publicly available code are included. VO is a well understood and established part of robotics. VO has reached a maturity that has allowed us to successfully use it for certain classes of appl...

  3. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    Science.gov (United States)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  4. Astrophysics Source Code Library

    CERN Document Server

    Allen, Alice; Berriman, Bruce; Hanisch, Robert J; Mink, Jessica; Teuben, Peter J

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, is a free on-line registry for source codes of interest to astronomers and astrophysicists. The library is housed on the discussion forum for Astronomy Picture of the Day (APOD) and can be accessed at http://ascl.net. The ASCL has a comprehensive listing that covers a significant number of the astrophysics source codes used to generate results published in or submitted to refereed journals and continues to grow. The ASCL currently has entries for over 500 codes; its records are citable and are indexed by ADS. The editors of the ASCL and members of its Advisory Committee were on hand at a demonstration table in the ADASS poster room to present the ASCL, accept code submissions, show how the ASCL is starting to be used by the astrophysics community, and take questions on and suggestions for improving the resource.

  5. Surprises in astrophysical gasdynamics

    CERN Document Server

    Balbus, Steven A

    2016-01-01

    Much of astrophysics consists of the study of ionised gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetised fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosynchratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out import...

  6. Augmented Reality in Astrophysics

    CERN Document Server

    Vogt, Frédéric P A

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented Articles. We demonstrate that the emerging technology of Augmented Reality can already be used and implemented without expert knowledge using currently available apps. Our experiments highlight the potential of Augmented Reality to improve the communication of scientific results in the field of astrophysics. We also present feedback gathered from the Australian astrophysics community that reveals evidence of some interest in this technology by astronomers who experimented with Augmented Posters. In addition, we discuss p...

  7. Nuclear reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Rayet, M. (Universite Libre de Bruxelles (BE))

    1990-06-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects.

  8. Challenges of Relativistic Astrophysics

    CERN Document Server

    Opher, Reuven

    2013-01-01

    I discuss some of the most outstanding challenges in relativistic astrophysics in the subjects of: compact objects (Black Holes and Neutron Stars); dark sector (Dark Matter and Dark Energy); plasma astrophysics (Origin of Jets, Cosmic Rays and Magnetic Fields) and the primordial universe (Physics at the beginning of the Universe). In these four subjects, I discuss twelve of the most important challenges. These challenges give us insight into new physics that can only be studied in the large scale Universe. The near future possibilities, in observations and theory, for addressing these challenges, are also discussed.

  9. Introduction to Nuclear Astrophysics

    International Nuclear Information System (INIS)

    In the first lecture of this volume, we will present the basic fundamental ideas regarding nuclear processes occurring in stars. We start from stellar observations, will then elaborate on some important quantum-mechanical phenomena governing nuclear reactions, continue with how nuclear reactions proceed in a hot stellar plasma and, finally, we will provide an overview of stellar burning stages. At the end, the current knowledge regarding the origin of the elements is briefly summarized. This lecture is directed towards the student of nuclear astrophysics. Our intention is to present seemingly unrelated phenomena of nuclear physics and astrophysics in a coherent framework.

  10. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  11. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2016-01-01

    Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

  12. Surprises in astrophysical gasdynamics.

    Science.gov (United States)

    Balbus, Steven A; Potter, William J

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one's a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject. PMID:27116247

  13. Astrophysics: An Integrative Course

    Science.gov (United States)

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  14. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  15. Surprises in astrophysical gasdynamics

    Science.gov (United States)

    Balbus, Steven A.; Potter, William J.

    2016-06-01

    Much of astrophysics consists of the study of ionized gas under the influence of gravitational and magnetic fields. Thus, it is not possible to understand the astrophysical universe without a detailed knowledge of the dynamics of magnetized fluids. Fluid dynamics is, however, a notoriously tricky subject, in which it is all too easy for one’s a priori intuition to go astray. In this review, we seek to guide the reader through a series of illuminating yet deceptive problems, all with an enlightening twist. We cover a broad range of topics including the instabilities acting in accretion discs, the hydrodynamics governing the convective zone of the Sun, the magnetic shielding of a cooling galaxy cluster, and the behaviour of thermal instabilities and evaporating clouds. The aim of this review is to surprise and intrigue even veteran astrophysical theorists with an idiosyncratic choice of problems and counterintuitive results. At the same time, we endeavour to bring forth the fundamental ideas, to set out important assumptions, and to describe carefully whatever novel techniques may be appropriate to the problem at hand. By beginning at the beginning, and analysing a wide variety of astrophysical settings, we seek not only to make this review suitable for fluid dynamic veterans, but to engage novice recruits as well with what we hope will be an unusual and instructive introduction to the subject.

  16. Commercial Applications at FRM II Based on Neutron Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, H.; Draack, A.; Kastenmuller, A. [Technische Universitaet Muenchen, Munchen (Germany)

    2013-07-01

    Due to its design as a heavy water moderated reactor with a very compact core FRM II, Germany's most modern and most powerful research reactor, offers excellent conditions for basic research using beam tubes. On the other hand it is equipped with various irradiation facilities to be used mainly for industrial purposes. From the very beginning of reactor operation a dedicated department had been implemented in order to provide a neutron irradiation service to interested parties on a commercial basis. As of today the most widely used application is Si doping. The semiautomatic doping facility accepts ingots with diameters between 125 mm and 200 mm and a maximum height of 500 mm. The irradiation channel is located deep in the heavy water tank and exhibits a ratio of thermal/fast neutron flux density of > 1000. This value allows the doping of Si to a target resistivity as high as 1100 Ωcm within the tight limits regarding accuracy and homogeneity specified by the customer. Typically the throughput of Si doped in FRM II sums up to about 15 t/year. Another topic of growing importance is the use of FRM II aiming the production of radioisotopes mainly for the radiopharmaceutical industry. The maybe most challenging example is the production of Lu-177 n. c. a. based on the irradiation of Yb{sub 2}O{sub 3} to a high fluence of thermal neutrons of typically 1.5E20 cm{sup -2}. The Lu-177 activity delivered to the customer is in the range of 750 GBq. With respect to further processing it turned out to be a highly advantageous to have the laboratories of ITG, the company extracting the Lu-177 from the freshly irradiated Yb{sub 2}O{sub 3} on site FRM II. Further irradiation facilities are available at FRM II in order to allow the activation of samples for analytical purposes or to irradiate samples for geochronological investigations using the fission track technique. Finally a project on the future installation of a facility dedicated to the irradiation of U-targets for

  17. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1995-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM. They provide essential reading and reference material for all students and researchers involved in this field. In this second edition the text has been updated and new methods are discussed.

  18. Scanning tunneling microscopy II further applications and related scanning techniques

    CERN Document Server

    Güntherodt, Hans-Joachim

    1992-01-01

    Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those described in Vol. I, these sudies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described inchapters on scanning force microscopy, magnetic force microscopy, scanning near-field optical microscopy, together with a survey of other related techniques. Also described here is the use of a scanning proximal probe for surface modification. Togehter, the two volumes give a comprehensive account of experimental aspcets of STM. They provide essentialreading and reference material for all students and researchers involvedin this field.

  19. Atomic Chemistry in Turbulent Astrophysical Media

    Science.gov (United States)

    Scannapieco, Evan; Gray, William; Kasen, Daniel

    2015-08-01

    I will describe direct numerical simulations of turbulent astrophysical media that explicitly track the non-equillibrium evolution of atomic hydrogen, helium, carbon, nitrogen, oxygen, neon, sodium, magnesium, silicon, and iron. The simulations include collisional ionization, recombination, charge-exchange reactions, photonionization, photoheating, and species-by-species radiative cooling. For a given background shape, the medium reaches a global steady state that is purely a function of three numbers: (i) the ionization parameter, (ii) the one-dimensional turbulent velocity dispersion (sigma1D) and (iii) the product of the mean density and the turbulent driving scale. Our simulations span a large range of conditions, and we describe their application to ongoing studies of the interstellar medium in starbursting galaxies and the circumgalactic medium as probed by quasar absorption line studies. Our results are available as a series of oneline tables, that allow for future studies to account for nonequilibrium effects in turbulent media with sigma1D = 5-60 km/s, regardless of physical scale.

  20. Selected problems in astrophysics of compact objects

    OpenAIRE

    Sedrakian, Armen

    2012-01-01

    I review three problems in astrophysics of compacts stars: (i) the phase diagram of warm pair-correlated nuclear matter a sub-saturation densities at finite isospin asymmtery; (ii) the Standard Model neutrino emission from superfluid phases in neutron stars within the Landau theory of Fermi (superfluid) liquids; (iii) the beyond Standard Model physics of axionic cooling of compact stars by the Cooper pair-breaking processes.

  1. Excitation of compound states in the subsystems as indirect tool in nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Tribble R.E.

    2010-03-01

    Full Text Available Astrophysical reactions proceeding through compound states represent one of the crucial part of nuclear astrophysics. However, due to the presence of the Coulomb barrier, it is often very difficult or even impossible to obtain the astrophysical S (E factor from measurements in the laboratory at astrophysically relevant energies. The Trojan Horse method (THM provides a unique tool to obtain the information about resonant astrophysical reactions at astrophysically relevant energies. Here the theory and application of the THM for the resonant reactions is addressed.

  2. The Trojan Horse Method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; Del Zoppo, A.; Di Pietrob, A.; Figuerab, P.; Gulino, M.; Lattuadab, M.; Miljanic, Dstroke; Musumarra, A.; Pellegriti, M.G.; Pizzone, R.G.; Rolfs, C.; Romano, S.; Tudisco, S.; Tumino, A

    2003-05-19

    The basic features of the Trojan Horse Method are discussed together with a review of recent applications, aimed to extract the bare astrophysical S(E)-factor for several two-body processes. In this framework information on electron screening potential U{sub e} was obtained from the comparison with direct experiments.

  3. Photon Orbital Angular Momentum in Astrophysics

    OpenAIRE

    Harwit, Martin

    2003-01-01

    Astronomical observations of the orbital angular momentum of photons, a property of electromagnetic radiation that has come to the fore in recent years, have apparently never been attempted. Here, I show that measurements of this property of photons have a number of astrophysical applications.

  4. Advances in astronomy and astrophysics 9

    CERN Document Server

    Kopal, Zdenek

    1972-01-01

    Advances in Astronomy and Astrophysics, Volume 9 covers reviews on the advances in astronomy and astrophysics. The book presents reviews on the Roche model and its applications to close binary systems. The text then describes the part played by lunar eclipses in the evolution of astronomy; the classical theory of lunar eclipses; deviations from geometrical theory; and the methods of photometric observations of eclipses. The problems of other phenomena related in one way or another to lunar eclipses are also considered. The book further tackles the infrared observation on the eclipsed moon, as

  5. Laboratory Astrophysics and the State of Astronomy and Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments i...

  6. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.;

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  7. LUNA: Nuclear astrophysics underground

    International Nuclear Information System (INIS)

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions

  8. Nuclear astrophysics at DRAGON

    Energy Technology Data Exchange (ETDEWEB)

    Hager, U. [Colorado School of Mines, Golden, Colorado (United States)

    2014-05-02

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented.

  9. Nuclear Astrophysics with LUNA

    Science.gov (United States)

    Broggini, Carlo

    2016-04-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions which power the stars and synthesize the chemical elements. Deep underground in the Gran Sasso Laboratory the cross section of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The main results obtained during the 'solar' phase of LUNA are reviewed and their influence on our understanding of the properties of the neutrino and of the Sun is discussed. We then describe the current LUNA program mainly devoted to the study of the nucleosynthesis of the light elements in AGB stars and Classical Novae. Finally, the future of LUNA towards the study of helium and carbon burning with a new 3.5 MV accelerator is outlined.

  10. Astrophysics a new approach

    CERN Document Server

    Kundt, Wolfgang

    2005-01-01

    For a quantitative understanding of the physics of the universe - from the solar system through the milky way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be wary of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. -- This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena in astrophysical research. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize. The...

  11. LUNA: Nuclear astrophysics underground

    Energy Technology Data Exchange (ETDEWEB)

    Best, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Gran Sasso, Assergi (Italy)

    2015-02-24

    Underground nuclear astrophysics with LUNA at the Laboratori Nazionali del Gran Sasso spans a history of 20 years. By using the rock overburden of the Gran Sasso mountain chain as a natural cosmic-ray shield very low signal rates compared to an experiment on the surface can be tolerated. The cross sectons of important astrophysical reactions directly in the stellar energy range have been successfully measured. In this proceeding we give an overview over the key accomplishments of the experiment and an outlook on its future with the expected addition of an additional accelerator to the underground facilities, enabling the coverage of a wider energy range and the measurement of previously inaccessible reactions.

  12. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  13. Astrophysics in 2006

    CERN Document Server

    Trimble, Virginia; Hansen, Carl J

    2007-01-01

    The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries.

  14. Augmented Reality in Astrophysics

    OpenAIRE

    Vogt, Frédéric P. A.; Shingles, Luke J.

    2013-01-01

    Augmented Reality consists of merging live images with virtual layers of information. The rapid growth in the popularity of smartphones and tablets over recent years has provided a large base of potential users of Augmented Reality technology, and virtual layers of information can now be attached to a wide variety of physical objects. In this article, we explore the potential of Augmented Reality for astrophysical research with two distinct experiments: (1) Augmented Posters and (2) Augmented...

  15. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  16. Optics in Astrophysics

    CERN Document Server

    Foy, Renaud

    2005-01-01

    Astrophysics is facing challenging aims such as deep cosmology at redshift higher than 10 to constrain cosmology models, or the detection of exoplanets, and possibly terrestrial exoplanets, and several others. It requires unprecedented ambitious R&D programs, which have definitely to rely on a tight cooperation between astrophysics and optics communities. The book addresses most of the most critical interdisciplinary domains where they interact, or where they will do. A first need is to collect more light, i.e. telescopes still larger than the current 8-10 meter class ones. Decametric, and even hectometric, optical (from UV to IR wavelengths) telescopes are being studied. Whereas up to now the light collecting surface of new telescopes was approximately 4 times that of the previous generation, now this factor is growing to 10 to 100. This quantum leap urges to implement new methods or technologies developed in the optics community, both in academic labs and in the industry. Given the astrophysical goals a...

  17. Integrating Out Astrophysical Uncertainties

    CERN Document Server

    Fox, Patrick J; Weiner, Neal

    2010-01-01

    Underground searches for dark matter involve a complicated interplay of particle physics, nuclear physics, atomic physics and astrophysics. We attempt to remove the uncertainties associated with astrophysics by developing the means to map the observed signal in one experiment directly into a predicted rate at another. We argue that it is possible to make experimental comparisons that are completely free of astrophysical uncertainties by focusing on {\\em integral} quantities, such as $g(v_{min})=\\int_{v_{min}} dv\\, f(v)/v $ and $\\int_{v_{thresh}} dv\\, v g(v)$. Direct comparisons are possible when the $v_{min}$ space probed by different experiments overlap. As examples, we consider the possible dark matter signals at CoGeNT, DAMA and CRESST-Oxygen. We find that expected rate from CoGeNT in the XENON10 experiment is higher than observed, unless scintillation light output is low. Moreover, we determine that S2-only analyses are constraining, unless the charge yield $Q_y< 2.4 {\\, \\rm electrons/keV}$. For DAMA t...

  18. Remarks about the thermodynamics of astrophysical systems in mutual interaction and related notions

    CERN Document Server

    Velazquez, L

    2016-01-01

    General aspects about the thermodynamics of astrophysical systems are discussed, overall, those concerning to astrophysical systems in mutual interaction (or the called \\emph{open astrophysical systems}). A special interest is devoted along the paper to clarify several misconceptions that are still common in the recent literature, such as the direct application to the astrophysical scenario of notions and theoretical frameworks that were originally conceived to deal with extensive systems of the everyday practice (large systems with short-range interactions).

  19. Laboratory Astrophysics and the State of Astronomy and Astrophysics

    OpenAIRE

    WGLA, AAS; :; Brickhouse, Nancy; Cowan, John; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith(School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, U.S.A.); Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters...

  20. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  1. Nuclear astrophysics with neutrons

    Science.gov (United States)

    Dillmann, I.; Reifarth, R.

    2012-04-01

    Neutrons play a crucial role in astrophysics during the heavy element nucleosynthesis. The largest fraction of isotopes heavier than iron is produced by neutron capture processes on short (r process) and long timescales (s process). During the ``slow neutron capture process'' (s process) heavier elements are produced by successive captures of in-situ produced neutrons from the reactions 13C(α,n)16O and 22Ne(α,n)25Mg (with densities of 106-1010 cm-3) in the interior of stars and following β-decays. With this scenario the reaction path runs along the valley of stability up to 209Bi and produces about 50% of the solar abundances of the heavy elements. Important nuclear physics parameters for s-process nucleosynthesis are neutron capture cross sections (for En = 0.3-300 keV, corresponding to stellar temperatures between kT= 8 and 90 keV) and β-decay half-lives. Neutron capture measurements can be performed via activation in a quasi-stellar neutron spectrum utilizing several (p,n) reactions, or by the time-of-flight technique. The ``rapid neutron capture process'' (r process) is responsible for the remaining 50% of the solar abundances. Here neutrons with densities of 1020-1030 cm-3 are captured on a very fast timescale (ms) during a Core Collapse Supernova in a region close to the forming neutron star. The r-process nuclei are thus very short-lived, neutron-rich isotopes up to the actinides, which can only be produced and investigated at large-scale radioactive-beam facilities. Here the most important nuclear physics parameters are masses, half-lives, and at later stages also β-delayed neutrons. This paper will summarize the role of neutrons in nuclear astrophysics and give a short overview about the related astrophysics programs at the GSI Helmholtz research center and the FRANZ facility in Germany.

  2. LUNA: Nuclear Astrophysics Deep Underground

    OpenAIRE

    Broggini, Carlo; Bemmerer, Daniel; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-01-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The mai...

  3. First application of the Trojan horse method with a radioactive ion beam: Study of the 18F (p,α ) 15O reaction at astrophysical energies

    Science.gov (United States)

    Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, T.; Teranishi, T.; Coc, A.; de Séréville, N.; Hammache, F.; Kiss, G.; Bishop, S.; Binh, D. N.

    2015-07-01

    Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan horse method is applied for the first time to a radioactive ion beam-induced reaction studying the 18F (p ,α )15O process at low energies relevant to astrophysics via the three-body reaction 2H (18F ,α15O ) n . The knowledge of the 18F (p,α ) 15O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in 19Ne and possibly interference effects among them. The results reported in literature are not satisfactory and new investigations of the 18F (p,α ) 15O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S factor has been extracted considering also interference effects.

  4. 78 FR 26407 - Goldman Sachs Trust II, et al.; Notice of Application

    Science.gov (United States)

    2013-05-06

    ... COMMISSION Goldman Sachs Trust II, et al.; Notice of Application April 29, 2013. AGENCY: Securities and... shareholder approval and would grant relief from certain disclosure requirements. APPLICANTS: Goldman Sachs Trust II (the ``Trust''), Goldman Sachs Asset Management L.P. (``GSAM'') and Goldman Sachs...

  5. Virtually Lossless Compression of Astrophysical Images

    Directory of Open Access Journals (Sweden)

    Stefano Baronti

    2005-09-01

    Full Text Available We describe an image compression strategy potentially capable of preserving the scientific quality of astrophysical data, simultaneously allowing a consistent bandwidth reduction to be achieved. Unlike strictly lossless techniques, by which moderate compression ratios are attainable, and conventional lossy techniques, in which the mean square error of the decoded data is globally controlled by users, near-lossless methods are capable of locally constraining the maximum absolute error, based on user's requirements. An advanced lossless/near-lossless differential pulse code modulation (DPCM scheme, recently introduced by the authors and relying on a causal spatial prediction, is adjusted to the specific characteristics of astrophysical image data (high radiometric resolution, generally low noise, etc.. The background noise is preliminarily estimated to drive the quantization stage for high quality, which is the primary concern in most of astrophysical applications. Extensive experimental results of lossless, near-lossless, and lossy compression of astrophysical images acquired by the Hubble space telescope show the advantages of the proposed method compared to standard techniques like JPEG-LS and JPEG2000. Eventually, the rationale of virtually lossless compression, that is, a noise-adjusted lossles/near-lossless compression, is highlighted and found to be in accordance with concepts well established for the astronomers' community.

  6. Generalized Interference Alignment—Part II: Application to Wireless Secrecy

    Science.gov (United States)

    Ruan, Liangzhong; Lau, Vincent K. N.; Win, Moe Z.

    2016-05-01

    In contrast to its wired counterpart, wireless communication is highly susceptible to eavesdropping due to the broadcast nature of the wireless propagation medium. Recent works have proposed the use of interference to reduce eavesdropping capabilities in wireless wiretap networks. However, the concurrent effect of interference on both eavesdropping receivers (ERs) and legitimate receivers (LRs) has not been thoroughly investigated, and carefully engineering the network interference is required to harness the full potential of interference for wireless secrecy. This two part paper addresses this issue by proposing a generalized interference alignment (GIA) technique, which jointly designs the transceivers at the legitimate partners to impede the ERs without interfering with LRs. In Part I, we have established a theoretical framework for the GIA technique. In Part II, we will first propose an efficient GIA algorithm that is applicable to large-scale networks and then evaluate the performance of this algorithm in stochastic wireless wiretap network via both analysis and simulation. These results reveal insights into when and how GIA contributes to wireless secrecy.

  7. Laboratory Mesurements in Nuclear Astrophysics

    OpenAIRE

    Gai, Moshe

    1994-01-01

    After reviewing some of the basic concepts, nomenclatures and parametrizations of Astronomy, Astrophysics and Cosmology, we introduce a few central problems in Nuclear Astrophysics, including the hot-CNO cycle, helium burning in massive stars, and solar neutrino's. We demonstarte that SECONDARY (RADIOACTIVE) NUCLEAR BEAMS allow for considerable progress on these problems.

  8. Statistical Learning in High Energy and Astrophysics

    OpenAIRE

    Zimmermann, J.

    2005-01-01

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ``learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning ...

  9. Synthesis and processing of intelligent cost-effective structures phase II (SPICES II): smart materials aircraft applications evaluation

    Science.gov (United States)

    Dunne, James P.; Jacobs, Steven W.; Baumann, Erwin W.

    1998-06-01

    The second phase of the synthesis and processing of intelligent cost effective structures (SPICES II) program sought to identify high payoff areas for both naval and aerospace military systems and to evaluate military systems and to evaluate the benefits of smart materials incorporation based on their ability to redefine the mission scenario of the candidate platforms in their respective theaters of operation. The SPICES II consortium, consisting of The Boeing Company, Electric Boat Corporation, United Technologies Research Center, and Pennsylvania State University, surveyed the state-of-the-art in smart structures and evaluated potential applications to military aircraft, marine and propulsion systems components and missions. Eleven baseline platforms comprising a wide variety of missions were chosen for evaluation. Each platform was examined in its field of operation for areas which can be improved using smart materials insertion. Over 250 smart materials applications were proposed to enhance the platforms. The applications were examined and, when possible, quantitatively analyzed for their effect on mission performance. The applications were then ranked for payoff, risk, and time frame for development and demonstration. Details of the efforts made in the SPICES II program pertaining to smart structure applications on military and transport aircraft will be presented. A brief discussion of the core technologies will be followed by presentation of the criteria used in ranking each application. Thereafter, a selection of the higher ranking proposed concepts are presented in detail.

  10. Relativistic Astrophysics Explorer

    CERN Document Server

    Kaaret, P E

    2003-01-01

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 6 m^2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  11. The Relativistic Astrophysics Explorer

    Science.gov (United States)

    Kaaret, P.

    The great success of the Rossi X-Ray Timing Explorer (RXTE) has shown that X-ray timing is an excellent tool for the study of strong gravitational fields and the measurement of fundamental physical properties of black holes and neutron stars. Here, we describe a next-generation X-ray timing mission, the Relativistic Astrophysics Explorer (RAE), designed to fit within the envelope of a medium-sized mission. The instruments will be a narrow-field X-ray detector array with an area of 60,000 cm2 equal to ten times that of RXTE and a wide-field X-ray monitor. We describe the science made possible with this mission, the design of the instruments, and results on prototype large-area X-ray detectors.

  12. Exotic nuclei and astrophysics

    Directory of Open Access Journals (Sweden)

    Penionzhkevich Yu.

    2012-12-01

    Full Text Available In recent years, nuclear physics investigations of the laws of the microscopic world contributed significantly to extension of our knowledge of phenomena occurring in the macroscopic world (Universe and made a formidable contribution to the development of astrophysical and cosmological theories. First of all, this concerns the expanding universe model, the evolution of stars, and the abundances of elements, as well as the properties of various stars and cosmic objects, including “cold” and neutron stars, black holes, and pulsars. Without claiming to give a full account of all cosmological problems, we will dwell upon those of them that, in my opinion, have much in common with nuclear-matter properties manifesting themselves in nuclear interactions.

  13. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  14. Instabilities in astrophysical jets

    International Nuclear Information System (INIS)

    Instabilities in astrophysical jets are studied in the nonlinear regime by performing 2D numerical classical gasdynamical calculations. The instabilities which arise from unsteadiness in output from the central engine feeding the jets, and those which arise from a beam in a turbulent surrounding are studied. An extra power output an order of magnitude higher than is normally delivered by the engine over a time equal to (nozzle length)/(sound velocity at centre) causes a nonlinear Kelvin-Helmholtz instability in the jet walls. Constrictions move outwards, but the jet structure is left untouched. A beam in turbulent surroundings produces internal shocks over distances of a few beam widths. If viscosity is present the throughput of material is hampered on time scales of a few beam radius sound travel times. The implications are discussed. (Auth.)

  15. NASA's Astrophysics Data Archives

    Science.gov (United States)

    Hasan, H.; Hanisch, R.; Bredekamp, J.

    2000-09-01

    The NASA Office of Space Science has established a series of archival centers where science data acquired through its space science missions is deposited. The availability of high quality data to the general public through these open archives enables the maximization of science return of the flight missions. The Astrophysics Data Centers Coordinating Council, an informal collaboration of archival centers, coordinates data from five archival centers distiguished primarily by the wavelength range of the data deposited there. Data are available in FITS format. An overview of NASA's data centers and services is presented in this paper. A standard front-end modifyer called `Astrowbrowse' is described. Other catalog browsers and tools include WISARD and AMASE supported by the National Space Scince Data Center, as well as ISAIA, a follow on to Astrobrowse.

  16. Beauty and Astrophysics

    Science.gov (United States)

    Bessell, Michael S.

    2000-08-01

    Spectacular colour images have been made by combining CCD images in three different passbands using Adobe Photoshop. These beautiful images highlight a variety of astrophysical phenomena and should be a valuable resource for science education and public awareness of science. The wide field images were obtained at the Siding Spring Observatory (SSO) by mounting a Hasselblad or Nikkor telephoto lens in front of a 2K × 2K CCD. Options of more than 30 degrees or 6 degrees square coverage are produced in a single exposure in this way. Narrow band or broad band filters were placed between lens and CCD enabling deep, linear images in a variety of passbands to be obtained. We have mapped the LMC and SMC and are mapping the Galactic Plane for comparison with the Molonglo Radio Survey. Higher resolution images have also been made with the 40 inch telescope of galaxies and star forming regions in the Milky Way.

  17. Essential Magnetohydrodynamics for Astrophysics

    CERN Document Server

    Spruit, H C

    2013-01-01

    This text is intended as an introduction to magnetohydrodynamics in astrophysics, emphasizing a fast path to the elements essential for physical understanding. It assumes experience with concepts from fluid mechanics: the fluid equation of motion and the Lagrangian and Eulerian descriptions of fluid flow. In addition, the basics of vector calculus and elementary special relativity are needed. Not much knowledge of electromagnetic theory is required. In fact, since MHD is much closer in spirit to fluid mechanics than to electromagnetism, an important part of the learning curve is to overcome intuitions based on the vacuum electrodynamics of one's high school days. The first chapter (only 36 pp) is meant as a practical introduction including exercises. This is the `essential' part. The exercises are important as illustrations of the points made in the text (especially the less intuitive ones). Almost all are mathematically unchallenging. The supplement in chapter 2 contains further explanations, more specialize...

  18. Photoneutron reactions in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Varlamov, V. V., E-mail: Varlamov@depni.sinp.msu.ru; Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  19. Theoretical Astrophysics at Fermilab

    Science.gov (United States)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  20. Astrophysical imaging with the Darwin IR interferometer

    CERN Document Server

    Röttgering, H J A; Eiroa, C; Labbé, I; Rudnick, G

    2003-01-01

    The proposed infrared space interferometry mission Darwin has two main aims: (i) to detect and characterize exo-planets similar to the Earth, and (ii) to carry out astrophysical imaging in the wavelength range 6 - 20 micron at a sensitivity similar to JWST, but at an angular resolution up to 100 times higher. In this contribution we will first briefly discuss the imaging performance of the Darwin mission. We will then discuss how Darwin will contribute in a very significant way to our understanding of the formation and evolution of planets, stars, galaxies, and super-massive black-holes located at the centers of galaxies.

  1. AWIPS II Application Development, a SPoRT Perspective

    Science.gov (United States)

    Burks, Jason E.; Smith, Matthew; McGrath, Kevin M.

    2014-01-01

    The National Weather Service (NWS) is deploying its next-generation decision support system, called AWIPS II (Advanced Weather Interactive Processing System II). NASA's Short-term Prediction Research and Transition (SPoRT) Center has developed several software 'plug-ins' to extend the capabilities of AWIPS II. SPoRT aims to continue its mission of improving short-term forecasts by providing NASA and NOAA products on the decision support system used at NWS weather forecast offices (WFOs). These products are not included in the standard Satellite Broadcast Network feed provided to WFOs. SPoRT has had success in providing support to WFOs as they have transitioned to AWIPS II. Specific examples of transitioning SPoRT plug-ins to WFOs with newly deployed AWIPS II systems will be presented. Proving Ground activities (GOES-R and JPSS) will dominate SPoRT's future AWIPS II activities, including tool development as well as enhancements to existing products. In early 2012 SPoRT initiated the Experimental Product Development Team, a group of AWIPS II developers from several institutions supporting NWS forecasters with innovative products. The results of the team's spring and fall 2013 meeting will be presented. Since AWIPS II developers now include employees at WFOs, as well as many other institutions related to weather forecasting, the NWS has dealt with a multitude of software governance issues related to the difficulties of multiple remotely collaborating software developers. This presentation will provide additional examples of Research-to-Operations plugins, as well as an update on how governance issues are being handled in the AWIPS II developer community.

  2. NSLS-II Digital RF Controller Logic and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Holub, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gao, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kulpin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marques, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Oliva, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rose, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Towne, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) accelerator consists of the Storage Ring, the Booster Ring and Linac along with their associated cavities. Given the number, types and variety of functions of these cavities, we sought to limit the logic development effort by reuse of parameterized code on one hardware platform. Currently there are six controllers installed in the NSLS-II system. There are two in the Storage ring, two in the Booster ring, one in the Linac and one in the Master Oscillator Distribution system.

  3. First application of the Trojan Horse Method with a Radioactive Ion Beam: study of the $^{18}$F($p,{\\alpha}$)$^{15}$O}} reaction at astrophysical energies

    CERN Document Server

    Cherubini, S; Spitaleri, C; Rapisarda, G G; La Cognata, M; Lamia, L; Pizzone, R G; Romano, S; Kubono, S; Yamaguchi, H; Hayakawa, S; Wakabayashi, Y; Iwasa, N; Kato, S; Komatsubara, T; Teranishi, T; Coc, A; de Séréville, N; Hammache, F; Kiss, G; Bishop, S; Binh, D N

    2015-01-01

    Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan Horse Method is applied for the first time to a radioactive ion beam induced reaction studying the $^{18}$F($p,{\\alpha}$)$^{15}$O process at low energies relevant to astrophysics via the three body reaction $^{2}$H($^{18}$F,${\\alpha}^{15}$O)n. The knowledge of the $^{18}$F($p, {\\alpha}$)$^{15}$O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in $^{19}$Ne and possibly interference effects among them. The results reported in Literature are not satisfactory and new investigations of the $^{18}$F($p,{\\alpha}$)$^{15}$O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astro...

  4. Critical ionisation velocity effects in astrophysical plasmas

    International Nuclear Information System (INIS)

    Critical ionisation velocity effects are relevant to astrophysical situations where neutral gas moves through a magnetised plasma. The experimental significance of the critical velocity is well established and the physical basis is now becoming clear. The underlying mechanism depends on the combined effects of electron impact ionisation and electron energisation by collective plasma interactions. For low density plasmas a theory based on a circular process involving electron heating through a modified two stream instability has been developed. Several applications of critical velocity effects to astrophysical plasmas have been discussed in the literature. The importance of the effect in any particular case may be determined from a detailed consideration of energy and momentum balance, using appropriate atomic rate coefficients and taking full account of collective plasma processes. (Auth.)

  5. Exploring Astrophysical Magnetohydrodynamics in the Laboratory

    Science.gov (United States)

    Manuel, Mario

    2014-10-01

    Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.

  6. Astrophysical data analysis with information field theory

    Energy Technology Data Exchange (ETDEWEB)

    Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)

    2014-12-05

    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.

  7. Clustering with phylogenetic tools in astrophysics

    CERN Document Server

    Fraix-Burnet, Didier

    2016-01-01

    Phylogenetic approaches are finding more and more applications outside the field of biology. Astrophysics is no exception since an overwhelming amount of multivariate data has appeared in the last twenty years or so. In particular, the diversification of galaxies throughout the evolution of the Universe quite naturally invokes phylogenetic approaches. We have demonstrated that Maximum Parsimony brings useful astrophysical results, and we now proceed toward the analyses of large datasets for galaxies. In this talk I present how we solve the major difficulties for this goal: the choice of the parameters, their discretization, and the analysis of a high number of objects with an unsupervised NP-hard classification technique like cladistics. 1. Introduction How do the galaxy form, and when? How did the galaxy evolve and transform themselves to create the diversity we observe? What are the progenitors to present-day galaxies? To answer these big questions, observations throughout the Universe and the physical mode...

  8. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  9. Astrophysical components from Planck maps

    CERN Document Server

    Burigana, Carlo; Paoletti, Daniela; Mandolesi, Nazzareno; Natoli, Paolo

    2016-01-01

    The Planck Collaboration has recently released maps of the microwave sky in both temperature and polarization. Diffuse astrophysical components (including Galactic emissions, cosmic far infrared (IR) background, y-maps of the thermal Sunyaev-Zeldovich (SZ) effect) and catalogs of many thousands of Galactic and extragalactic radio and far-IR sources, and galaxy clusters detected through the SZ effect are the main astrophysical products of the mission. A concise overview of these results and of astrophysical studies based on Planck data is presented.

  10. Pay for Performance Proposals in Race to the Top Round II Applications. Briefing Memo

    Science.gov (United States)

    Rose, Stephanie

    2010-01-01

    The Education Commission of the States reviewed all 36 Race to the Top (RttT) round II applications. Each of the 36 states that applied for round II funding referenced pay for performance under the heading of "Improving teacher and principal effectiveness based on performance." The majority of states outlined pay for performance…

  11. Astrophysical Smooth Particle Hydrodynamics

    CERN Document Server

    Rosswog, Stephan

    2009-01-01

    In this review the basic principles of smooth particle hydrodynamics (SPH) are outlined in a pedagogical fashion. To start, a basic set of SPH equations that is used in many codes throughout the astrophysics community is derived explicitly. Much of SPH's success relies on its excellent conservation properties and therefore the numerical conservation of physical invariants receives much attention throughout this review. The self-consistent derivation of the SPH equations from the Lagrangian of an ideal fluid is the common theme of the remainder of the text. Such a variational approach is applied to derive a modern SPH version of Newtonian hydrodynamics. It accounts for gradients in the local resolution lengths which result in corrective, so-called "grad-h-terms". This strategy naturally carries over to the special-relativistic case for which we derive the corresponding grad-h set of equations. This approach is further generalized to the case of a fluid that evolves on a curved, but fixed background space-time.

  12. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  13. Byurakan Astrophysical Observatory

    Science.gov (United States)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  14. The Wisconsin Plasma Astrophysics Laboratory

    CERN Document Server

    Forest, C B; Brookhart, M; Cooper, C M; Clark, M; Desangles, V; Egedal, J; Endrizzi, D; Miesch, M; Khalzov, I V; Li, H; Milhone, J; Nornberg, M; Olson, J; Peterson, E; Roesler, F; Schekochihin, A; Schmitz, O; Siller, R; Spitkovsky, A; Stemo, A; Wallace, J; Weisberg, D; Zweibel, E

    2015-01-01

    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries which mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m$^3$, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of $ T_{e}\\approx5-20$ eV and $n_{e}\\approx10^{11}-5\\times10^{12}$ cm$^{-3}$ provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.

  15. An introduction to observational astrophysics

    CERN Document Server

    Gallaway, Mark

    2016-01-01

    Observational Astrophysics follows the general outline of an astrophysics undergraduate curriculum targeting practical observing information to what will be covered at the university level. This includes the basics of optics and coordinate systems to the technical details of CCD imaging, photometry, spectography and radio astronomy.  General enough to be used by students at a variety of institutions and advanced enough to be far more useful than observing guides targeted at amateurs, the author provides a comprehensive and up-to-date treatment of observational astrophysics at undergraduate level to be used with a university’s teaching telescope.  The practical approach takes the reader from basic first year techniques to those required for a final year project. Using this textbook as a resource, students can easily become conversant in the practical aspects of astrophysics in the field as opposed to the classroom.

  16. LUNA: Nuclear Astrophysics Deep Underground

    CERN Document Server

    Broggini, Carlo; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-01-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing the chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso laboratory the cross sections of the key reactions of the proton-proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. The main results obtained by LUNA in the last twenty years are reviewed, and their influence on the comprehension of the properties of the neutrino, of the Sun and of the Universe itself are discussed. Future directions of underground nuclear astrophysics towards the study of helium and carbon burning and of stellar neutron sources in stars are pointed out.

  17. Three Puzzles from Nuclear Astrophysics

    OpenAIRE

    Haxton, W. C.

    2012-01-01

    I discuss three open problems in astrophysics where nuclear physics can make important contributions: the solar abundance problem, dark matter particle detection, and the origin of the r-process elements.

  18. The Fermilab Particle Astrophysics Center

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  19. SAGE version 7.0 algorithm: application to SAGE II

    Directory of Open Access Journals (Sweden)

    R. P. Damadeo

    2013-06-01

    Full Text Available This paper details the SAGE version 7.0 algorithm and how it is applied to SAGE II. Changes made between the previous (v6.2 and current (v7.0 versions are described and their impacts on the data products explained for both coincident event comparisons and time-series analysis. Users of the data will notice a general improvement in all of the SAGE II data products, which are now in better agreement with more modern data sets (e.g. SAGE III and more robust for use with trend studies.

  20. SAGE Version 7.0 Algorithm: Application to SAGE II

    Science.gov (United States)

    Damadeo, R. P; Zawodny, J. M.; Thomason, L. W.; Iyer, N.

    2013-01-01

    This paper details the Stratospheric Aerosol and Gas Experiments (SAGE) version 7.0 algorithm and how it is applied to SAGE II. Changes made between the previous (v6.2) and current (v7.0) versions are described and their impacts on the data products explained for both coincident event comparisons and time-series analysis. Users of the data will notice a general improvement in all of the SAGE II data products, which are now in better agreement with more modern data sets (e.g. SAGE III) and more robust for use with trend studies.

  1. Neutrinos in astrophysics and cosmology

    Science.gov (United States)

    Balantekin, A. B.

    2016-06-01

    Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.

  2. Some aspects of neutrino astrophysics

    CERN Document Server

    Athar, H

    2002-01-01

    Selected topics in neutrino astrophysics are reviewed. These include the production of low energy neutrino flux from cores of collapsing stars and the expected high energy neutrino flux from some other astrophysical sites such as the galactic plane as well as the center of some distant galaxies. The expected changes in these neutrino fluxes because of neutrino oscillations during their propagation to us are described. Observational signatures for these neutrino fluxes with and without neutrino oscillations are discussed.

  3. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  4. Nuclear astrophysics from direct reactions

    OpenAIRE

    2008-01-01

    Accurate nuclear reaction rates are needed for primordial nucleosynthesis and hydrostatic burning in stars. The relevant reactions are extremely difficult to measure directly in the laboratory at the small astrophysical energies. In recent years direct reactions have been developed and applied to extract low-energy astrophysical S-factors. These methods require a combination of new experimental techniques and theoretical efforts, which are the subject of this presentation.

  5. Neutrinos in Astrophysics and Cosmology

    CERN Document Server

    Balantekin, A B

    2016-01-01

    Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.

  6. Minicourses in Astrophysics, Modular Approach, Vol. I.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…

  7. High energy astrophysics. An introduction

    International Nuclear Information System (INIS)

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  8. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  9. Experimental design in analytical chemistry--part II: applications.

    Science.gov (United States)

    Ebrahimi-Najafabadi, Heshmatollah; Leardi, Riccardo; Jalali-Heravi, Mehdi

    2014-01-01

    This paper reviews the applications of experimental design to optimize some analytical chemistry techniques such as extraction, chromatography separation, capillary electrophoresis, spectroscopy, and electroanalytical methods.

  10. White Paper on Nuclear Astrophysics

    CERN Document Server

    Arcones, Almudena; Beers, Timothy; Berstein, Lee; Blackmon, Jeff; Bronson, Messer; Brown, Alex; Brown, Edward; Brune, Carl; Champagne, Art; Chieffi, Alessandro; Couture, Aaron; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta; Fields, Brian; Frohlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William; McLaughlin, Gail; Meyer, Bradley; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert; Schatz, Hendrik; Smith, Michael; Stairs, Ingrid; Steiner, Andrew; Strohmayer, Tod; Timmes, Frank; Townsley, Dean; Wiescher, Michael; Zegers, Remco; Zingale, Michael

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9- 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summ...

  11. Two members of the CERN HPD team present their babies. André Braem (left) holds in his hands a 5-inch glass HPD, while a ceramic HPD for medical applications is shown by Christian Joram. The large detector in the middle is a 10-inch HPD developed for an astrophysics experiment.

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Two members of the CERN HPD team present their babies. André Braem (left) holds in his hands a 5-inch glass HPD, while a ceramic HPD for medical applications is shown by Christian Joram. The large detector in the middle is a 10-inch HPD developed for an astrophysics experiment.

  12. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  13. Radiative Magnetic Reconnection in Astrophysics

    CERN Document Server

    Uzdensky, Dmitri A

    2015-01-01

    I review a new rapidly growing area of high-energy plasma astrophysics --- radiative magnetic reconnection, i.e., a reconnection regime where radiation reaction influences reconnection dynamics, energetics, and nonthermal particle acceleration. This influence be may be manifested via a number of astrophysically important radiative effects, such as radiation-reaction limits on particle acceleration, radiative cooling, radiative resistivity, braking of reconnection outflows by radiation drag, radiation pressure, viscosity, and even pair creation at highest energy densities. Self-consistent inclusion of these effects in magnetic reconnection theory and modeling calls for serious modifications to our overall theoretical approach to the problem. In addition, prompt reconnection-powered radiation often represents our only observational diagnostic tool for studying remote astrophysical systems; this underscores the importance of developing predictive modeling capabilities to connect the underlying physical condition...

  14. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  15. The Astrophysical Multipurpose Software Environment

    CERN Document Server

    Pelupessy, F I; de Vries, N; McMillan, S L W; Drost, N; Zwart, S F Portegies

    2013-01-01

    We present the open source Astrophysical Multi-purpose Software Environment (AMUSE, www.amusecode.org), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting exampl...

  16. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications.

    Science.gov (United States)

    Mensink, Maarten A; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J

    2015-12-10

    Inulin is a flexible oligosaccharide which has been used primarily in food for decades. Recently new applications in the pharmaceutical arena were described. In a previous review (Mensink et al. (2015). Carbohydrate Polymers, 130, 405) we described the physicochemical characteristics of inulin, characteristics which make inulin a highly versatile substance. Here, we review its pharmaceutical applications. Applications of inulin that are addressed are stabilization of proteins, modified drug delivery (dissolution rate enhancement and drug targeting), and lastly physiological and disease-modifying effects of inulin. Further uses of inulin include colon specific drug administration and stabilizing and adjuvating vaccine formulations. Overall, the uses of inulin in the pharmaceutical area are very diverse and research is still continuing, particularly with chemically modified inulins. It is therefore likely that even more applications will be found for this flexible oligosaccharide.

  17. DIY soundcard based temperature logging system. Part II: applications

    Science.gov (United States)

    Nunn, John

    2016-11-01

    This paper demonstrates some simple applications of how temperature logging systems may be used to monitor simple heat experiments, and how the data obtained can be analysed to get some additional insight into the physical processes.

  18. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1963-01-01

    Advances in Astronomy and Astrophysics, Volume 2 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of six chapters and begins with a summary of observational record on twilight extensions of the Venus cusps. The next chapter deals with the common and related properties of binary stars, with emphasis on the evaluation of their cataclysmic variables. Cataclysmic variables refer to an object in one of three classes: dwarf nova, nova, or supernova. These topics are followed by discussions on the eclipse phenomena and the eclipses i

  19. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1962-01-01

    Advances in Astronomy and Astrophysics, Volume 1 brings together numerous research works on different aspects of astronomy and astrophysics. This book is divided into five chapters and begins with an observational summary of the shock-wave theory of novae. The subsequent chapter provides the properties and problems of T tauri stars and related objects. These topics are followed by discussions on the structure and origin of meteorites and cosmic dust, as well as the models for evaluation of mass distribution in oblate stellar systems. The final chapter describes the methods of polarization mea

  20. Nuclear astrophysics lessons from INTEGRAL.

    Science.gov (United States)

    Diehl, Roland

    2013-02-01

    Measurements of high-energy photons from cosmic sources of nuclear radiation through ESA's INTEGRAL mission have advanced our knowledge: new data with high spectral resolution showed that characteristic gamma-ray lines from radioactive decays occur throughout the Galaxy in its interstellar medium. Although the number of detected sources and often the significance of the astrophysical results remain modest, conclusions derived from this unique astronomical window of radiation originating from nuclear processes are important, complementing the widely-employed atomic-line based spectroscopy. We review the results and insights obtained in the past decade from gamma-ray line measurements of cosmic sources in the context of their astrophysical questions.

  1. Recent advances in neutrino astrophysics

    CERN Document Server

    Volpe, Cristina

    2014-01-01

    Neutrinos are produced by a variety of sources that comprise our Sun, explosive environments such as core-collapse supernovae, the Earth and the Early Universe. The precise origin of the recently discovered ultra-high energy neutrinos is to be determined yet. These weakly interacting particles give us information on their sources, although the neutrino fluxes can be modified when neutrinos traverse an astrophysical environment. Here we highlight recent advances in neutrino astrophysics and emphasise the important progress in our understanding of neutrino flavour conversion in media.

  2. Nuclear astrophysics data at ORNL

    International Nuclear Information System (INIS)

    There is a new program of evaluation and dissemination of nuclear data of critical importance for nuclear astrophysics within the Physics Division of Oak Ridge National Laboratory. Recent activities include determining the rates of the important 14O(α,p)17 F and 17F(p,γ) 18Ne reactions, disseminating the Caughlan and Fowler reaction rate compilation on the World Wide Web, and evaluating the 17O(p,α)14N reaction rate. These projects, which are closely coupled to current ORNL nuclear astrophysics research, are briefly discussed along with future plans

  3. Electron-impact excitation of H-like Cr, Mn, Fe, Co, and Ni for applications in modeling X-ray astrophysical sources

    Science.gov (United States)

    Malespin, C.; Ballance, C. P.; Pindzola, M. S.; Witthoeft, M. C.; Kallman, T. R.; Loch, S. D.

    2011-02-01

    Context. Accurate atomic data for the less abundance Fe-peak elements are required for use in X-ray astrophysical studies. Aims: We calculate high quality electron-impact excitation collision strengths and effective collision strengths for hydrogenic Cr, Mn, Fe, Co, and Ni. Methods: We use the Dirac R-matrix method, the intermediate coupling frame transformation R-matrix method, the semi-relativistic distorted-wave method and the fully-relativistic distorted-wave method to calculate collision strengths for each of the ions. The ADAS collisional-radiative codes are used to produce photon emissivity coefficients for each ion. Results: Results are presented for atomic energy levels, spontaneous emission coefficients, electron-impact excitation collision strengths and associated effective collision strengths for each of the five species under consideration. We find relativistic effects can contribute an approximate 10% increase to the background cross section in relation to semi-relativistic collision calculations. We also confirm that radiation damping plays a prominent role for certain near threshold resonances. In order check the integration of our results within collisional-radiative modeling codes, we have used the ADAS package for some preliminary modeling of photon emissivities. The atomic data shall be made available online through the OPEN-ADAS site and the CFADC database Final datasets for each ion are only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A115

  4. Improved superconductor for transmission line application, phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Braginski, A I; Roland, G W; Daniel, M R; Santhanam, A T; Janocko, M A

    1976-06-01

    The objective of the second phase of this program was to achieve an improvement over the state-of-the-art of the low field critical current density, J/sub c/, and ac losses, p, of short sections of composite Nb/sub 3/Ge tape prepared by chemical vapor deposition (CVD). The following goals of Phase II were attained: (1) the enhancement of J/sub c/ by doping with Nb/sub 5/Ge/sub 3/, nitrogen or carbon, (2) the design, construction and test of a moving tape CVD reactor capable of producing lengths of tape conductor. The goal of fabricating composite Nb/sub 3/Ge tape sections having not only high J/sub c/ but also low ac losses was not attained since the CVD system found necessary for the fabrication of such tape became available only as a result of the work described.

  5. The Selection and Application of Magnetic Separation Equipment. Part II.

    OpenAIRE

    Morgan, D G; Bronkala, W. J.

    1993-01-01

    A survey of magnetic separators and of their selection in application for concentration and purification is given. Wet and dry low–intensity drum separators, magnetic pulleys, induced magnetic roll separator and cross–belt separator are described and selection procedures are outlined.

  6. Inulin, a flexible oligosaccharide. II : Review of its pharmaceutical applications

    NARCIS (Netherlands)

    Mensink, Maarten A; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J

    2015-01-01

    Inulin is a flexible oligosaccharide which has been used primarily in food for decades. Recently new applications in the pharmaceutical arena were described. In a previous review (Mensink et al. (2015). Carbohydrate Polymers, 130, 405) we described the physicochemical characteristics of inulin, char

  7. [Polyetheretherketone (PEEK). Part II: application in clinical practice].

    Science.gov (United States)

    Pokorný, D; Fulín, P; Slouf, M; Jahoda, D; Landor, I; Sosna, A

    2010-01-01

    Polyetheretherketone (PEEK) is one of the up-to-date organic polymer thermoplastics with applications in orthopaedics and trauma medicine. This study presents a detailed analysis of its tests and applications in clinical medicine. A wide range of PEEK modifications and composites are commercially available, e.g., PEEK-Classix, PEEK-Optima, Endolign and Motis. They differ in their physical properties, which makes them suitable for different applications. Other forms, so-called PEEK bioactive composites, contain beta-tricalcium phosphate and hydroxyapatite. Research in this field is also concerned with the surface finish of this polymer thermoplastic and involves macroporous titanium and hydroxyapatite layers, or treatment with laser for an exactly defined surface structure. The clinical applications of PEEK and its composites include, in addition to components for spinal surgery, osteosynthesis plates, screws, intramedullary nails or external fixators, which are implants still at the stage of prototypes. In this review, attention is paid to the use of PEEK thermoplastics for joint replacement. Mid-term studies involving hundreds of patients have shown that, for instance, the VerSys Epoch Fullcoat Hip System (Zimmer) has a markedly lower stress-shielding effect. Carbon fibre-reinforced (CFR-PEEK) composites are used to make articulating components for total hip replacement. Their convenient properties allow for production of much thinner liners and an enlargement of the femoral head diameter, thus reducing the wear of joint implants. CFR-PEEK composites are particularly effective for hip resurfacing in which the Mitch PCR (Stryker) acetabular component has been used with good results. The MOTIS polymer acetabular cup (Invibio Ltd.) is another example. Further PEEK applications include the construction of finger-joint prostheses (Mathys AG), suture anchors (Stryker) and various kinds of augmentations (Medin). Based on the information obtained, the authors suggest

  8. Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrug azodyes and their application for wastewater treatment

    Science.gov (United States)

    El-Baradie, K.; El-Sharkawy, R.; El-Ghamry, H.; Sakai, K.

    2014-03-01

    The azodye ligand (HL1) was synthesized from the coupling of sulfaguanidine diazonium salt with 2,4-dihydroxy-benzaldehyde while the two ligands, HL2 and HL3, were prepared by the coupling of sulfadiazine diazonium salt with salicylaldehyde (HL2) and 2,4-dihydroxy-benzaldehyde (HL3). The prepared ligands were characterized by elemental analysis, IR, 1H NMR and mass spectra. Cu(II), Co(II) and Ni(II) complexes of the prepared ligands have been synthesized and characterized by various spectroscopic techniques like IR, UV-Visible as well as magnetic and thermal (TG and DTA) measurements. It was found that all the ligands behave as a monobasic bidentate which coordinated to the metal center through the azo nitrogen and α-hydroxy oxygen atoms in the case of HL1 and HL3. HL2 coordinated to the metal center through sulfonamide oxygen and pyrimidine nitrogen. The applications of the prepared complexes in the oxidative degradation of indigo carmine dye exhibited good catalytic activity in the presence of H2O2 as an oxidant. The reactions followed first-order kinetics and the rate constants were determined. The degradation reaction involved the catalytic action of the azo-dye complexes toward H2O2 decomposition, which can lead to the generation of HOrad radicals as a highly efficient oxidant attacking the target dye. The detailed kinetic studies and the mechanism of these catalytic reactions are under consideration in our group.

  9. Astrophysics at very high energies

    International Nuclear Information System (INIS)

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  10. Indirect methods in nuclear astrophysics

    CERN Document Server

    Bertulani, C A; Mukhamedzhanov, A; Kadyrov, A S; Kruppa, A; Pang, D Y

    2015-01-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  11. Recent Progress in Nuclear Astrophysics

    OpenAIRE

    Langanke, K

    1999-01-01

    The manuscript reviews progress achieved in recent years in various aspects of nuclear astrophysics, including stellar nucleosynthesis, nuclear aspects of supernova collapse and explosion, neutrino-induced reactions and their possible role in the supernova mechanism and nucleosynthesis, explosive hydrogen burning in binary systems, and finally the observation of $\\gamma$-rays from supernova remnants.

  12. Neutrino in Astrophysics and Cosmology

    OpenAIRE

    Dai, Zuxiang

    2003-01-01

    At first we introduce the Neutrino in the standard Model, then the Dirac and Majorana Masses. After introducing the See-Saw Mechanism, we discuss the neutrino oscillations and the neutrino in astrophysics and cosmology. We finish this paper with a brief summary of the neutrino experiments.

  13. Astronomy & Astrophysics: an international journal

    Science.gov (United States)

    Bertout, C.

    2011-07-01

    After a brief historical introduction, we review the scope, editorial process, and production organization of A&A, one of the leading journals worldwide dedicated to publishing the results of astrophysical research. We then briefly discuss the economic model of the Journal and some current issues in scientific publishing.

  14. Astronomy and Astrophysics in India

    Science.gov (United States)

    Narlikar, J.; Murdin, P.

    2001-07-01

    The growth in astronomy and astrophysics (A&A) in India has been mostly since the country achieved independence in 1947. The present work is carried out in a few select research institutes and in some university departments. The Astronomical Society of India has around 300 working A&A scientists as members, with another 50-60 graduate students....

  15. Astrophysics on the Lab Bench

    Science.gov (United States)

    Hughes, Stephen W.

    2010-01-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a…

  16. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  17. An introduction to nuclear astrophysics

    International Nuclear Information System (INIS)

    The role of nuclear reactions in astrophysics is described. Stellar energy generation and heavy element nucleosynthesis is explained in terms of specific sequences of charged-particle and neutron induced reactions. The evolution and final states of stars are examined. 20 refs. 11 figs., 2 tabs

  18. Indirect methods in nuclear astrophysics

    Science.gov (United States)

    Bertulani, C. A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-04-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

  19. New Advances in the Trojan Horse Method as an Indirect Approach to Nuclear Astrophysics

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartà, R.

    2013-05-01

    With the introduction of the Trojan Horse Method, nuclear cross sections between charged particles at astrophysical energies can now be measured. Here the basic features of the method are recalled together with recent results relevant for Nuclear Astrophysics. New applications in connection with plasma physics and industrial energy production are discussed.

  20. Bedside ultrasonography-Applications in critical care: Part II

    Directory of Open Access Journals (Sweden)

    Jose Chacko

    2014-01-01

    Full Text Available Point of care ultrasonography, performed by acute care physicians, has developed into an invaluable bedside tool providing important clinical information with a major impact on patient care. In Part II of this narrative review, we describe ultrasound guided central venous cannulation, which has become standard of care with internal jugular vein cannulation. Besides improving success rates, real-time guidance also significantly reduces the incidence of complications. We also discuss compression ultrasonography - a quick and effective bedside screening tool for deep vein thrombosis of the lower extremity. Abdominal ultrasound offers vital clues in the emergency setting; in the unstable trauma victim, a focused examination may provide immediate answers and has largely superseded diagnostic peritoneal lavage in diagnosing intraperitoneal bleed. From estimation of intracranial pressure to transcranial Doppler studies, ultrasound is becoming increasingly relevant to neurocritical care. Ultrasound may also help with airway management in several situations, including percutaneous tracheostomy. Clearly, bedside ultrasonography has become an indispensable part of intensive care practice - in the rapid assessment of critically ill-patients as well as in enhancing the safety of invasive procedures.

  1. Introducing Astrophysics Research to High School Students.

    Science.gov (United States)

    Etkina, Eugenia; Lawrence, Michael; Charney, Jeff

    1999-01-01

    Presents an analysis of an astrophysics institute designed for high school students. Investigates how students respond cognitively in an active science-learning environment in which they serve as apprentices to university astrophysics professors. (Author/CCM)

  2. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  3. The Application of Estimator Module for Controlling of TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    The estimator module application for control TRIGA Mark II reactor have been done. This application have purpose to help operator quickly and exactly when they control reactor reactivity. Which this module, if in the reactor will do experiment ( neutron activation, radioisotope production ect.) so the operator not need to calculate probability of reactivity changes. The result of estimator is close to measurements result (< 7 sec.), it is cause estimator can be used as equipment that can be used to help operation of TRIGA Mark II. (author)

  4. Bee Colony Optimization - part II: The application survey

    Directory of Open Access Journals (Sweden)

    Teodorović Dušan

    2015-01-01

    Full Text Available Bee Colony Optimization (BCO is a meta-heuristic method based on foraging habits of honeybees. This technique was motivated by the analogy found between the natural behavior of bees searching for food and the behavior of optimization algorithms searching for an optimum in combinatorial optimization problems. BCO has been successfully applied to various hard combinatorial optimization problems, mostly in transportation, location and scheduling fields. There are some applications in the continuous optimization field that have appeared recently. The main purpose of this paper is to introduce the scientific community more closely with BCO by summarizing its existing successful applications. [Projekat Ministarstva nauke Republike Srbije, br. OI174010, OI174033, TR36002

  5. Ship Grounding on Rock - II. Validation and Application

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1997-01-01

    The primary purpose of this paper is to show examples of verification and application of thetheory presented. Analysis of four large scale tests performed by the Naval Surface WarfareCenter (NSWC), USA, shows that the theory can predict the energy absorption of the fourdifferent ship bottoms...... with errors less than 10%. The rock penetration to fracture is predictedwith errors of 10-15%. The sensitivity to uncertain input parameters is discussed. Analysis of an accidental grounding that was recorded in 1975, also shows that the theoretical model canreproduce the observed damage. Finally......, it is demonstrated that the proposed methodology issufficiently fast to be used in a probabilistic framework. Based on a set of stochastic inputparameters, the probability density functions for the damage extents of a single hull VLCC werederived from simulations. Possible future applications of the methodology...

  6. Intelligent numerical methods II applications to multivariate fractional calculus

    CERN Document Server

    Anastassiou, George A

    2016-01-01

    In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book’s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries.

  7. Applications of electrochemistry and nanotechnology in biology and medicine II

    CERN Document Server

    Eliaz, Noam

    2011-01-01

    The study of electrochemical nanotechnology has emerged as researchers apply electrochemistry to nanoscience and nanotechnology. These two related volumes in the Modern Aspects of Electrochemistry Series review recent developments and breakthroughs in the specific application of electrochemistry and nanotechnology to biology and medicine. Internationally renowned experts contribute chapters that address both fundamental and practical aspects of several key emerging technologies in biomedicine, such as the processing of new biomaterials, biofunctionalization of surfaces, characterization of bio

  8. Personal comments on the history of nuclear astrophysics

    International Nuclear Information System (INIS)

    The author reviews his personal career in nuclear astrophysics from just before World War II to 1966. It concentrates on the work carried out in conjunction with colleagues, especially those in Cambridge and at the California Institute of Technology in Pasadena, on the development of various models to explain nucleosynthesis and the evaluation of stars. The paper also covers a wide variety of other topics, touching on isotope abundances, the helium abundance in particular, and the relict radiation. (UK)

  9. Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation.

    Science.gov (United States)

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2016-10-01

    This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed. PMID:27351899

  10. Application of natural circulation systems: advantages and challenges - II

    International Nuclear Information System (INIS)

    Applications of natural circulation systems are provided for advanced light water reactor designs. Design features proposed for the passive advanced light water reactors include the use of passive, gravity-fed water supplies for emergency core cooling and natural circulation decay heat removal from the primary system and the containment, and natural circulation cooling within the core for all conditions. Examples are given from different types of advanced reactor designs for the use of passive safety systems under the operational, transient, and accident conditions. Challenges encountered in the design of passive safety systems for HPLWR are discussed in short, as an example case. (author)

  11. Modern EMC analysis techniques II models and applications

    CERN Document Server

    Kantartzis, Nikolaos V

    2008-01-01

    The objective of this two-volume book is the systematic and comprehensive description of the most competitive time-domain computational methods for the efficient modeling and accurate solution of modern real-world EMC problems. Intended to be self-contained, it performs a detailed presentation of all well-known algorithms, elucidating on their merits or weaknesses, and accompanies the theoretical content with a variety of applications. Outlining the present volume, numerical investigations delve into printed circuit boards, monolithic microwave integrated circuits, radio frequency microelectro

  12. Shape Memory Alloys (Part II: Classification, Production and Application

    Directory of Open Access Journals (Sweden)

    I. Ivanic

    2014-09-01

    Full Text Available Shape memory alloys (SMAs have been extensively investigated because of their unique shape memory behaviour, i.e. their ability to recover their original shape they had before deformation. Shape memory effect is related to the thermoelastic martensitic transformation. Austenite to martensite phase transformation can be obtained by mechanical (loading and thermal methods (heating and cooling. Depending on thermomechanical conditions, SMAs demonstrate several thermomechanical phenomena, such as pseudoelasticity, superelasticity, shape memory effect (one-way and two-way and rubber-like behaviour. Numerous alloys show shape memory effect (NiTi-based alloys, Cu-based alloys, Fe-based alloys etc.. Nitinol (NiTi is the most popular and the most commonly used SMA due to its superior thermomechanical and thermoelectrical properties. NiTi alloys have greater shape memory strain and excellent corrosion resistance compared to Cu – based alloys. However, they are very costly. On the other hand, copper-based alloys (CuZn and CuAl based alloys are much less expensive, easier to manufacture and have a wider range of potential transformation temperatures. The characteristic transformation temperatures of martensitic transformation of CuAlNi alloys can lie between −200 and 200 °C, and these temperatures depend on Al and Ni content. Among the Cu – based SMAs, the most frequently applied are CuZnAl and CuAlNi alloys. Although CuZnAl alloys with better mechanical properties are the most popular among the Cu-based SMAs, they lack sufficient thermal stability, while CuAlNi shape memory alloys, in spite of their better thermal stability, have found only limited applications due to insufficient formability owing to the brittle γ2 precipitates. The most important disadvantage of polycrystalline CuAlNi alloys is a small reversible deformation (one-way shape memory effect: up to 4 %; two-way shape memory effect: only approximately 1.5 % due to intergranular

  13. Precision laboratory measurements in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Gai, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Physics

    2000-07-01

    After reviewing some of the basic concepts, nomenclatures and parametrizations of astronomy, astrophysics, cosmology, and nuclear physics, we introduce a few central problems in nuclear astrophysics, including the hot-CNO cycle, helium burning and solar neutrinos. We demonstrate that in this new era of precision nuclear astrophysics secondary or radioactive nuclear beams allow for progress. (orig.)

  14. Grouting applications in civil engineering. Volume I and II

    International Nuclear Information System (INIS)

    A comprehensive description of grouting applications in civil engineering is presented that can serve as a basis for the selection of grouting methods in the borehole sealing problem. The breadth and depth of the study was assured by conducting the main part of the review, the collection and evaluation of information, without specifically considering the borehole sealing problem (but naturally incorporating any aspect of civil engineering applications that could be of potential use). Grouting is very much an art and not a science. In most cases, it is a trial and error procedure where an inexpensive method is initially tried and then a more expensive one is used until the desired results are obtained. Once a desired effect is obtained, it is difficult to credit any one procedure with the success because the results are due to the summation of all the methods used. In many cases, the method that proves successful reflects a small abnormality in the ground or structure rather than its overall characteristics. Hence, successful grouting relies heavily on good engineering judgement and experience, and not on a basic set of standard correlations or equations. 800 references

  15. A Photo Storm Report Mobile Application, Processing/Distribution System, and AWIPS-II Display Concept

    Science.gov (United States)

    Longmore, S. P.; Bikos, D.; Szoke, E.; Miller, S. D.; Brummer, R.; Lindsey, D. T.; Hillger, D.

    2014-12-01

    The increasing use of mobile phones equipped with digital cameras and the ability to post images and information to the Internet in real-time has significantly improved the ability to report events almost instantaneously. In the context of severe weather reports, a representative digital image conveys significantly more information than a simple text or phone relayed report to a weather forecaster issuing severe weather warnings. It also allows the forecaster to reasonably discern the validity and quality of a storm report. Posting geo-located, time stamped storm report photographs utilizing a mobile phone application to NWS social media weather forecast office pages has generated recent positive feedback from forecasters. Building upon this feedback, this discussion advances the concept, development, and implementation of a formalized Photo Storm Report (PSR) mobile application, processing and distribution system and Advanced Weather Interactive Processing System II (AWIPS-II) plug-in display software.The PSR system would be composed of three core components: i) a mobile phone application, ii) a processing and distribution software and hardware system, and iii) AWIPS-II data, exchange and visualization plug-in software. i) The mobile phone application would allow web-registered users to send geo-location, view direction, and time stamped PSRs along with severe weather type and comments to the processing and distribution servers. ii) The servers would receive PSRs, convert images and information to NWS network bandwidth manageable sizes in an AWIPS-II data format, distribute them on the NWS data communications network, and archive the original PSRs for possible future research datasets. iii) The AWIPS-II data and exchange plug-ins would archive PSRs, and the visualization plug-in would display PSR locations, times and directions by hour, similar to surface observations. Hovering on individual PSRs would reveal photo thumbnails and clicking on them would display the

  16. Space and Astrophysical Plasmas : Space and astrophysical plasmas: Pervasive problems

    Indian Academy of Sciences (India)

    Chanchal Uberoi

    2000-11-01

    The observations and measurements given by Earth orbiting satellites, deep space probes, sub-orbital systems and orbiting astronomical observatories point out that there are important physical processes which are responsible for a wide variety of phenomena in solar-terrestrial, solar-system and astrophysical plasmas. In this review these topics are exemplified both from an observational and a theoretical point of view.

  17. DOBD Algorithm for Training Neural Network:Part II. Application

    Institute of Scientific and Technical Information of China (English)

    吴建昱; 何小荣

    2002-01-01

    In the first part of the article, a new algorithm for pruning network?Dynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It is verified that the algorithm can obtain good generalization through deleting weight parameters with low sensitivities dynamically and get better result than the Marquardt algorithm or the cross-validation method. Although the initial construction of network may be different, the finial number of free weights pruned by the DOBD algorithm is similar and the number is just close to the optimal number of free weights. The algorithm is also helpful to design the optimal structure of network.

  18. Continuous and distributed systems II theory and applications

    CERN Document Server

    Zgurovsky, Mikhail

    2015-01-01

    As in the previous volume on the topic, the authors close the gap between abstract mathematical approaches, such as applied methods of modern algebra and analysis, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems, on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. Readers will also benefit from the presentation of modern mathematical modeling methods for the numerical solution of complicated engineering problems in biochemistry, geophysics, biology and climatology. This compilation will be of interest to mathematicians and engineers working at the interface of these fields. It presents selected works of the joint seminar series of Lomonosov Moscow State University and the Institute for Applied System Analysis at National Technical University of Ukraine “Kyiv Polytechnic Institute”. The authors come from Brazil, Germany, France, Mexico, Spain, Poland, Russia, Ukraine, and the USA. ...

  19. Operation of industrial electrical substations. Part II: practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Jimenez, Juan J; Zerquera Izquierdo, Mariano D; Beltran Leon, Jose S; Garcia Martinez, Juan M; Alvarez Urena, Maria V; Meza Diaz, Guillermo [Universidad de Guadalajara (Mexico)]. E-mails: cheosj@yahoo.com; mdzi@hotmail.com; beltran5601@yahoo.com.mx; jmargarmtz@yahoo.com; victory_alvarez@telmexmail.com; depmec@cucei.udg.mx

    2013-03-15

    The practical application of the methodology explained in Part 1 in a Cuban industry is the principal objective of this paper. The calculus of the economical operation of the principal transformers of the industrial plant is shown of the one very easy form, as well as the determination of the equations of the losses when the transformers operate under a given load diagram. It is calculated the state load which will be passed to the operation in parallel. [Spanish] El objetivo principal de este trabajo es la aplicacion practica de la metodologia, en una industria cubana, que se explico en la Parte 1. El calculo de la operacion economica de los principales transformadores de la planta industrial se muestra de una forma muy facil, asi como la determinacion de las ecuaciones de las perdidas cuando los transformadores operan bajo un diagrama de carga dado. Se calcula la carga de estado que se pasa a la operacion en paralelo.

  20. Astrophysical Weighted Particle Magnetohydrodynamics

    CERN Document Server

    Gaburov, Evghenii

    2010-01-01

    This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD schem...

  1. KROME - a package to embed chemistry in astrophysical simulations

    CERN Document Server

    Grassi, T; Schleicher, D R G; Prieto, J; Seifried, D; Simoncini, E; Gianturco, F A

    2013-01-01

    Chemistry plays a key role in many astrophysical situations, and therefore needs to be included in astrophysical simulations modelling such environments. In particular, the chemical evolution regulates the cooling, and the thermal properties of the gas, which are relevant during gravitational collapse, the evolution of disks and the fragmentation process. At the same time, the chemistry of the gas also determines the observational appearance, in particular with respect to the emission through atomic, ionic or molecular lines. In order to simplify the usage of chemical networks in large numerical simulations, we present the chemistry package KROME, consisting of a Python pre-processor which generates a subroutine for the solution of chemical networks which can be embedded in any numerical code. For the solution of the rate equations, we make use of the high-order solver DLSODES, which was shown to be both accurate and efficient for sparse networks, which are typical in astrophysical applications. KROME also pr...

  2. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  3. Few-body models for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    P. Descouvemont

    2014-02-01

    Full Text Available We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the 2H(d, γ4He, 2H(d, p3H and 2H(d, n3He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  4. Application for TJ-II Signals Visualization: User's Guide; Aplicacion para la Visualizacion de Senales de TJ-II: Guia del Usuario

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, E.; Portas, A. B.; Vega, J. [Ciemat, Madrid (Spain)

    2000-07-01

    In this documents are described the functionalities of the application developed by the Data Acquisition Group for TJ-II signal visualization. There are two versions of the application, the On-line version, used for signal visualization during TJ-II operation, and the Off-line version, used for signal visualization without TJ-II operation. Both versions of the application consist in a graphical user interface developed for X/Motif, in which most of the actions can be done using the mouse buttons. The functionalities of both versions of the application are described in this user's guide, beginning at the application start-up and explaining in detail all the options that it provides and the actions that can be done with each graphic control. (Author) 8 refs.

  5. Astrophysical Boundary Layers: A New Picture

    Science.gov (United States)

    Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James

    2016-04-01

    Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.

  6. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  7. Lecture notes: Astrophysical fluid dynamics

    CERN Document Server

    Ogilvie, Gordon I

    2016-01-01

    These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes, and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is 'frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, includin...

  8. Particle Acceleration in Astrophysical Sources

    CERN Document Server

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  9. Astrophysical Mechanisms for Pulsar Spindown

    OpenAIRE

    Addison, Eric

    2011-01-01

    Pulsars are astrophysical sources of pulsed electromagnetic radiation. The pulses have a variety of shapes in the time-domain, and the pulse energy generally peaks in the radio spectrum. The accepted models theorize that pulsars are rapidly rotating neutron stars with strong dipolar magnetic fields. Current models predict that rotational kinetic energy is extracted from the pulsar in the form of electromagnetic and gravitational radiation, causing it to slowly lose rotational speed, or “spin ...

  10. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  11. Astrophysics with Microarcsecond Accuracy Astrometry

    Science.gov (United States)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  12. Calculated Sunspot and Quiet-Sun Mg II Profiles Compared With IRIS DataEugene Avrett and Hui TianHarvard-Smithsonian Center for Astrophysics60 Garden Street, Cambridge, MA 02138

    Science.gov (United States)

    Avrett, Eugene H.

    2014-06-01

    A new sunpsot model has been derived, consistent with the SUMER atlas data of Curdt, et al. and Mg II profile data from IRIS. Comparisons are made with Quiet-Sun results from both sources. It is necessary to include molecules in the sunspot model not only account for the low brightness temperatures near 1850 /AA but also for the density variations higher in the atmosphere. The minimum temperature is roughly 2500 K in the sunspot model and 4500 K for the quiet Sun. The Mg II H line profile is centrally reversed in both cases, with the peak intensity originating where the temperature rises abruptly from the minimum value. The line center is formed at the top of the chromosphere where the temperature rises abruptly from 10,000 K into the chromosphere-corona transition region. The calculated Mg II line center intensity is much smaller than observed, for models constrained by the EUV continuum data.

  13. 25 CFR 547.7 - What are the minimum technical hardware standards applicable to Class II gaming systems?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What are the minimum technical hardware standards applicable to Class II gaming systems? 547.7 Section 547.7 Indians NATIONAL INDIAN GAMING COMMISSION... OF CLASS II GAMES § 547.7 What are the minimum technical hardware standards applicable to Class...

  14. Statistical learning in high energy and astrophysics

    International Nuclear Information System (INIS)

    This thesis studies the performance of statistical learning methods in high energy and astrophysics where they have become a standard tool in physics analysis. They are used to perform complex classification or regression by intelligent pattern recognition. This kind of artificial intelligence is achieved by the principle ''learning from examples'': The examples describe the relationship between detector events and their classification. The application of statistical learning methods is either motivated by the lack of knowledge about this relationship or by tight time restrictions. In the first case learning from examples is the only possibility since no theory is available which would allow to build an algorithm in the classical way. In the second case a classical algorithm exists but is too slow to cope with the time restrictions. It is therefore replaced by a pattern recognition machine which implements a fast statistical learning method. But even in applications where some kind of classical algorithm had done a good job, statistical learning methods convinced by their remarkable performance. This thesis gives an introduction to statistical learning methods and how they are applied correctly in physics analysis. Their flexibility and high performance will be discussed by showing intriguing results from high energy and astrophysics. These include the development of highly efficient triggers, powerful purification of event samples and exact reconstruction of hidden event parameters. The presented studies also show typical problems in the application of statistical learning methods. They should be only second choice in all cases where an algorithm based on prior knowledge exists. Some examples in physics analyses are found where these methods are not used in the right way leading either to wrong predictions or bad performance. Physicists also often hesitate to profit from these methods because they fear that statistical learning methods cannot be controlled in a

  15. Distance Measurement Solves Astrophysical Mysteries

    Science.gov (United States)

    2003-08-01

    Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of

  16. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  17. THE SZ EFFECT IN THE PLANCK ERA: ASTROPHYSICAL AND COSMOLOGICAL IMPACT

    Directory of Open Access Journals (Sweden)

    Sergio Colafrancesco

    2013-12-01

    Full Text Available The Sunyaev–Zel’dovich effect (SZE is a relevant probe for cosmology and particle astrophysics. The Planck Era marks a definite step forward in the use of this probe for astrophysics and cosmology. Astrophysical applications to galaxy clusters, galaxies, radiogalaxies and large-scale structures are discussed. Cosmological relevance for the Dark Energy equation of state, modified Gravity scenarios, Dark Matter search, cosmic magnetism and other cosmological applications is also reviewed. Future directions for the study of the SZE and its polarization are finally outlined.

  18. Interferometry in astrophysics as a roadmap for interferometry in multiparticle dynamics

    OpenAIRE

    Gurvits, L.I.

    2001-01-01

    Interferometry is one of the most powerful experimental tools of modern astrophysics. Some of its methods are considered in view of potential applicability to studies of correlations in multiparticle dynamics.

  19. Relativistic astrophysics and cosmology a primer

    CERN Document Server

    Hoyng, Peter

    2006-01-01

    This book offers a succinct and self-contained treatment of general relativity and its application to neutron stars, black holes, gravitational waves and cosmology, at an intermediate level. The required mathematical concepts are introduced informally, following geometrical intuition as much as possible. The approach is theoretical, but there is ample discussion of observational aspects and instrumental issues where appropriate. Topical issues such as the Gravity Probe B mission, and the physics of interferometer detectors of gravitational waves and the angular power spectrum of the Cosmic Microwave Background are included. The book is written for advanced undergraduates and beginning graduate students in (astro)physics. The reader is assumed to be familiar with linear algebra and analysis, ordinary differential equations, special relativity, and basic thermal physics, but prior knowledge of differential geometry and general relativity is not required. Containing 140 exercises with extensive hints for their s...

  20. MPI-AMRVAC for Solar and Astrophysics

    CERN Document Server

    Porth, O; Hendrix, T; Moschou, S P; Keppens, R

    2014-01-01

    In this paper we present an update on the open source MPI-AMRVAC simulation toolkit where we focus on solar- and non-relativistic astrophysical magneto-fluid dynamics. We highlight recent developments in terms of physics modules such as hydrodynamics with dust coupling and the conservative implementation of Hall magnetohydrodynamics. A simple conservative high-order finite difference scheme that works in combination with all available physics modules is introduced and demonstrated at the example of monotonicity preserving fifth order reconstruction. Strong stability preserving high order Runge-Kutta time steppers are used to obtain stable evolutions in multidimensional applications realizing up to fourth order accuracy in space and time. With the new distinction between active and passive grid cells, MPI-AMRVAC is ideally suited to simulate evolutions where parts of the solution are controlled analytically, or have a tendency to progress into or out of a stationary state. Typical test problems and representat...

  1. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Science.gov (United States)

    La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Tumino, A.

    2014-05-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  2. Einstein Toolkit for Relativistic Astrophysics

    Science.gov (United States)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  3. Astrophysics Source Code Library Enhancements

    CERN Document Server

    Hanisch, Robert J; Berriman, G Bruce; DuPrie, Kimberly; Mink, Jessica; Nemiroff, Robert J; Schmidt, Judy; Shamir, Lior; Shortridge, Keith; Taylor, Mark; Teuben, Peter J; Wallin, John

    2014-01-01

    The Astrophysics Source Code Library (ASCL; ascl.net) is a free online registry of codes used in astronomy research; it currently contains over 900 codes and is indexed by ADS. The ASCL has recently moved a new infrastructure into production. The new site provides a true database for the code entries and integrates the WordPress news and information pages and the discussion forum into one site. Previous capabilities are retained and permalinks to ascl.net continue to work. This improvement offers more functionality and flexibility than the previous site, is easier to maintain, and offers new possibilities for collaboration. This presentation covers these recent changes to the ASCL.

  4. Laboratory Studies of Astrophysical Jets

    CERN Document Server

    Ciardi, Andrea

    2009-01-01

    Jets and outflows produced during star-formation are observed on many scales: from the "micro-jets" extending a few hundred Astronomical Units to the "super-jets" propagating to parsecs distances. Recently, a new "class" of short-lived (hundreds of nano-seconds) centimetre-long jets has emerged in the laboratory as a complementary tool to study these complex astrophysical flows. Here I will discuss and review the recent work done on "simulating" protostellar jets in the laboratory using z-pinch machines.

  5. Astrophysics and Cosmology: International Partnerships

    Science.gov (United States)

    Blandford, Roger

    2016-03-01

    Most large projects in astrophysics and cosmology are international. This raises many challenges including: --Aligning the sequence of: proposal, planning, selection, funding, construction, deployment, operation, data mining in different countries --Managing to minimize cost growth through reconciling different practices --Communicating at all levels to ensure a successful outcome --Stabilizing long term career opportunities. There has been considerable progress in confronting these challenges. Lessons learned from past collaborations are influencing current facilities but much remains to be done if we are to optimize the scientific and public return on the expenditure of financial and human resources.

  6. Astrophysical constraints on dark energy

    Science.gov (United States)

    Ho, Chiu Man; Hsu, Stephen D. H.

    2016-02-01

    Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which grows linearly with distance and which can have astrophysical consequences. For example, the dark energy force overcomes the gravitational attraction from an isolated object (e.g., dwarf galaxy) of mass 107M⊙ at a distance of 23 kpc. Observable velocities of bound satellites (rotation curves) could be significantly affected, and therefore used to measure or constrain the dark energy density. Here, isolated means that the gravitational effect of large nearby galaxies (specifically, of their dark matter halos) is negligible; examples of isolated dwarf galaxies include Antlia or DDO 190.

  7. Solar astrophysics. 3. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Foukal, Peter V. [CRI, Nahant, MA (United States)

    2013-06-01

    This third, revised edition describes our current understanding of the sun - from its deepest interior, via the layers of the directly observable atmosphere to the solar wind, right up to its farthest extension into interstellar space. It includes a comprehensive account of the history of solar astrophysics, and the evolution of solar instruments. This account now includes the most up- to-date implementation of modern solar instruments in facilities on the ground and in space. The revised book now also provides an overview of recent results on ''space weather'' and on sun-climate relations, both of which are fields of increasing societal importance.

  8. Multimessenger Astronomy and Astrophysics Synergies

    CERN Document Server

    van Putten, Maurice H P M

    2012-01-01

    A budget neutral strategy is proposed for NSF to lead the implementation of multimessenger astronomy and astrophysics, as outlined in the Astro2010 Decadal Survey. The emerging capabilities for simultaneous measurements of physical and astronomical data through the different windows of electromagnetic, hadronic and gravitational radiation processes call for a vigorous pursuit of new synergies. The proposed approach is aimed at the formation of new collaborations and multimessenger data-analysis, to transcend the scientific inquiries made within a single window of observations. In view of budgetary constraints, we propose to include the multimessenger dimension in the ranking of proposals submitted under existing NSF programs.

  9. Astrophysical Observations: Lensing and Eclipsing Einstein's Theories

    OpenAIRE

    Bennett, Charles L.

    2005-01-01

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Ein...

  10. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  11. Progresses of Laboratory Astrophysics in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Gang; ZHANG Jie

    2011-01-01

    The exciting discoveries in astronomy such as the accelerating expansion of the universe, the atmospheric composition of exoplanets, and the abundance trends of various types of stars rely upon advances in laboratory astrophysics. These new discoveries have occurred along with dramatic improvements in measurements by ground- based and space-based instruments of astrophysical processes under extreme physical conditions. Laboratory astrophysics is an exciting and rapidly growing field emerging since the beginning of this century, which covers a wide range of scientific areas such as astrophysics,

  12. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  13. High-Energy Astrophysics: An Overview

    Science.gov (United States)

    Fishman, Gerald J.

    2007-01-01

    High-energy astrophysics is the study of objects and phenomena in space with energy densities much greater than that found in normal stars and galaxies. These include black holes, neutron stars, cosmic rays, hypernovae and gamma-ray bursts. A history and an overview of high-energy astrophysics will be presented, including a description of the objects that are observed. Observing techniques, space-borne missions in high-energy astrophysics and some recent discoveries will also be described. Several entirely new types of astronomy are being employed in high-energy astrophysics. These will be briefly described, along with some NASA missions currently under development.

  14. Analytic studies in nuclear astrophysics

    Science.gov (United States)

    Pizzochero, Pierre

    Five studies are presented in nuclear astrophysics, which deal with different stages of stellar evolution and which use analytic techniques as opposed to numerical ones. Two problems are described in neutrino astrophysics: the solar-neutrino puzzle is analyzed in the framework of the MSW mechanism for the enhancement of neutrino oscillations in matter; and the cooling of neutron stars is studied by calculating the neutrino emissivity from strangeness condensation. Radiative transfer is then examined as applied to SN1987A: its early spectrum and bolometric corrections are calculated by developing an analytic model which can describe both the extended nature of the envelope and the non-LTE state of the radiation field in the scattering-dominated early atmosphere; and a model-independent relation is derived between mass and kinetic energy for the hydrogen envelope of SN1987A, using only direct observations of its luminosity and photospheric velocity. Finally, an analytic approach is presented to relate the softness of the EOS of dense nuclear matter in the core of a supernova, the hydrostatic structure of such core and the initial strength of the shock wave.

  15. Trojan horse particle invariance: The impact on nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Pizzone, R. G.; La Cognata, M. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Spitaleri, C. [Universitá di Catania and Laboratori Nazionali del Sud - INFN (Italy); Bertulani, C. A. [Texas A and M University, Commerce (United States); Mukhamedzhanov, A. M. [Texas A and M University, College Station, Texas (United States); Blokhintsev, L. D. [Moscow State University, Moscow (Russian Federation); Lamia, L.; Spartá, R. [Universitá di Catania and Laboratori Nazionali del Sud - INFN, Catania (Italy); Tumino, A. [Universitá Kore, Enna (Italy)

    2014-05-02

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and {sup 6}Li(d,α){sup 4}He reactions, which were tested using different quasi-free break-up's, namely {sup 6}Li and {sup 3}He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions.

  16. Building a visionary astrophysics program from the ground up

    Science.gov (United States)

    Mathews, Geoffrey S.; Barnes, Joshua Edward; Coleman, Paul; Gal, Roy R.; Meech, Karen J.; Mendez, Roberto Hugo; Nassir, Michael A.; Sanders, David B.

    2015-08-01

    The University of Hawaii’s Institute for Astronomy is in the process of implementing a new Bachelor of Science in Astrophysics at UH Manoa. This requires a significant adjustment in the role of the IfA, which has long been at the forefront of modern astronomy in Hawaii and is now broadening its educational mission. The IfA’s history of excellence in research and access to observational resources are expected to draw students from around the nation and the world. These factors have inspired our programmatic focus culminating in a senior year research experience. We expect that the program will produce many undergraduate astrophysics majors, making it an ideal testbed to apply modern theories of learning to the teaching of astrophysics. We have explicitly designed the major around three pillars: physical theory, the application of physics to astrophysical phenomena, and the development of core observational astronomy skills. We describe our cooperative approach to developing a program-level curriculum map of key concepts and skills, as well as descriptors of student success throughout the program. These are central tools for course design, program assessment, and professional development.

  17. Trojan horse particle invariance: The impact on nuclear astrophysics

    Science.gov (United States)

    Pizzone, R. G.; Spitaleri, C.; Bertulani, C. A.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; La Cognata, M.; Lamia, L.; Spartá, R.; Tumino, A.

    2014-05-01

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and 6Li(d,α)4He reactions, which were tested using different quasi-free break-up's, namely 6Li and 3He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions.

  18. Double layers and circuits in astrophysics

    International Nuclear Information System (INIS)

    As the rate of energy release in a double layer with voltage DeltaV is P corresponding to IDeltaV, a double layer must be treated part of a circuit which delivers the current I. As neither double layer nor circuit can be derived from magnetofluid models of a plasma, such models are useless for treating energy transfer by menas of double layers. They must be replaced by particle models and circuit theory. A simple circuit is suggested which is applied to the energizing of auroroal particles, to solar flares, and to intergalactic double radio sources. Application to the heliospheric current systems leads to the prediction of two double layers on the sun's axis which may give radiations detectable from earth. Double layers in space should be classified as a new type of celestial object (one example is the double radio sources). It is tentatively suggested in X-ray and gamma-ray bursts may be due to exploding double layers (although annihilation is an alternative energy source). A study of how a number of the most used textbooks in astrophysics treat important concepts like double layers, critical velocity, pinch effects and circuits is made. It is found that students using these textbooks remain essentially ignorant of even the existence of these, in spite of the fact that some of them have been well known for half a centry (e.g., double layers, Langmuir, 1929: pinch effect, Bennet, 1934). The conclusion is that astrophysics is too important to be left in the hands of the astrophysicist. Earth bound and space telescope data must be treated by scientists who are familiar with laboratory and magnetospheric physics and circuit theory, and of course with modern plasma theory. At least by volume the universe consists to more than 99 percent of plasma, and electromagnetic forces are 10/sup39/ time stronger than gravitation

  19. 78 FR 3495 - Claritas Capital Specialty Debt II, L.P.; Application No. 99000779; Notice Seeking Exemption...

    Science.gov (United States)

    2013-01-16

    ... ADMINISTRATION Claritas Capital Specialty Debt II, L.P.; Application No. 99000779; Notice Seeking Exemption Under... Claritas Capital Specialty Debt II, L.P., 30 Burton Hills Blvd., Suite 100, Nashville, TN 37215, a Federal... with the financing of a small concern, has sought an exemption under Section 312 of the Act and...

  20. Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET

    CERN Document Server

    Bauer, Andreas; Springel, Volker; Chandrashekar, Praveen; Pakmor, Rüdiger; Klingenberg, Christian

    2016-01-01

    In astrophysics, the two main methods traditionally in use for solving the Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics and finite volume discretization on a stationary mesh. However, the goal to efficiently make use of future exascale machines with their ever higher degree of parallel concurrency motivates the search for more efficient and more accurate techniques for computing hydrodynamics. Discontinuous Galerkin (DG) methods represent a promising class of methods in this regard, as they can be straightforwardly extended to arbitrarily high order while requiring only small stencils. Especially for applications involving comparatively smooth problems, higher-order approaches promise significant gains in computational speed for reaching a desired target accuracy. Here, we introduce our new astrophysical DG code TENET designed for applications in cosmology, and discuss our first results for 3D simulations of subsonic turbulence. We show that our new DG implementation provides ac...

  1. Indirect Techniques in Nuclear Astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

    Energy Technology Data Exchange (ETDEWEB)

    Mukhamedzhanov, A.M. [Cyclotron Institute, Texas A and M University, College Station, TX, 77843 (United States); Blokhintsev, L.D. [Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Brown, S. [Florida State University, Tallahassee, FL (United States)] (and others)

    2007-05-01

    We address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique to determine the astrophysical factor for the {sup 13}C({alpha}, n){sup 16}O reaction which is one of the neutron generators for the s processes in AGB stars. The TH method is a unique indirect technique allowing one to measure astrophysical S factors for rearrangement reactions down to astrophysically relevant energies. We derive equations connecting the cross sections for the binary direct and resonant reactions determined from the indirect TH reactions to direct cross sections measurements.

  2. Nonperturbative Quantum Field Theory in Astrophysics

    OpenAIRE

    Mazur, Dan

    2012-01-01

    The extreme electromagnetic or gravitational fields associated with some astrophysical objects can give rise to macroscopic effects arising from the physics of the quantum vacuum. Therefore, these objects are incredible laboratories for exploring the physics of quantum field theories. In this dissertation, we explore this idea in three astrophysical scenarios.

  3. Proceedings of the NASA Laboratory Astrophysics Workshop

    Science.gov (United States)

    Weck, Phillippe F. (Editor); Kwong, Victor H. S. (Editor); Salama, Farid (Editor)

    2006-01-01

    This report is a collection of papers presented at the 2006 NASA Workshop on Laboratory Astrophysics held in the University of Nevada, Las Vegas (UNLV) from February 14 to 16, 2006. This workshop brings together producers and users of laboratory astrophysics data so that they can understand each other's needs and limitations in the context of the needs for NASA's missions. The last NASA-sponsored workshop was held in 2002 at Ames Research Center. Recent related meetings include the Topical Session at the AAS meeting and the European workshop at Pillnitz, Germany, both of which were held in June 2005. The former showcased the importance of laboratory astrophysics to the community at large, while the European workshop highlighted a multi-laboratory approach to providing the needed data. The 2006 NASA Workshop on Laboratory Astrophysics, sponsored by the NASA Astrophysics Division, focused on the current status of the field and its relevance to NASA. This workshop attracted 105 participants and 82 papers of which 19 were invited. A White Paper identifying the key issues in laboratory astrophysics during the break-out sessions was prepared by the Scientific Organizing Committee, and has been forwarded to the Universe Working Group (UWG) at NASA Headquarters. This White Paper, which represented the collective inputs and opinions from experts and stakeholders in the field of astrophysics, should serve as the working document for the future development of NASA's R&A program in laboratory astrophysics.

  4. Flexible, Mastery-Oriented Astrophysics Sequence.

    Science.gov (United States)

    Zeilik, Michael, II

    1981-01-01

    Describes the implementation and impact of a two-semester mastery-oriented astrophysics sequence for upper-level physics/astrophysics majors designed to handle flexibly a wide range of student backgrounds. A Personalized System of Instruction (PSI) format was used fostering frequent student-instructor interaction and role-modeling behavior in…

  5. Astrophysics at the Highest Energy Frontiers

    OpenAIRE

    Stecker, F. W.

    2002-01-01

    I discuss recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. I also discuss the connections between these topics.

  6. Astrophysics with small satellites in Scandinavia

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.......The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved....

  7. A multiphysics and multiscale software environment for modeling astrophysical systems

    OpenAIRE

    Zwart, Simon Portegies; McMillan, Steve; Harfst, Stefan; Groen, Derek; Fujii, Michiko

    2008-01-01

    We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve h...

  8. The Trojan-Horse method for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S. [Gesellschaft fuer Schwerionenforschung mbH (GSI), Darmstadt (Germany)

    2005-09-01

    The Trojan-Horse method is an indirect approach to determine the low-energy astrophysical S-factor of direct nuclear reactions by studying closely related transfer reactions with three particles in the final state under quasi-free scattering conditions. The theoretical foundation and basic features of this approach are presented. General considerations for the application of method and two examples are discussed. (orig.)

  9. HOPE: Just-in-time Python compiler for astrophysical computations

    Science.gov (United States)

    Akeret, Joel; Gamper, Lukas; Amara, Adam; Refregier, Alexandre

    2014-11-01

    HOPE is a specialized Python just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of the language and is able to translate Python code into C++ while performing numerical optimization on mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator to the function definition. By using HOPE, the user benefits from being able to write common numerical code in Python while getting the performance of compiled implementation.

  10. Relativistic Astrophysics and Cosmology: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, Marek A [Department of Astronomy and Astrophysics, Chalmers University of Technology, 41296 Goeteborg (Sweden)

    2007-10-21

    'Relativistic Astrophysics and Cosmology: A Primer' by Peter Hoyng, was published last year by Springer. The book is based on lectures given by the author at University of Utrecht to advanced undergraduates. This is a short and scholarly book. In about 300 pages, the author has covered the most interesting and important applications of Albert Einstein's general relativity in present-day astrophysics and cosmology: black holes, neutron stars, gravitational waves, and the cosmic microwave background. The book stresses theory, but also discusses several experimental and observational topics, such as the Gravity Probe B mission, interferometer detectors of gravitational waves and the power spectrum of the cosmic microwave background. The coverage is not uniform. Some topics are discussed in depth, others are only briefly mentioned. The book obviously reflects the author's own research interests and his preferences for specific mathematical methods, and the choice of the original artwork that illustrates the book (and appears on its cover) is a very personal one. I consider this personal touch an advantage, even if I do not always agree with the author's choices. For example, I employ Killing vectors as a very useful mathematical tool not only in my research on black holes, but also in my classes. I find that my students prefer it when discussions of particle, photon and fluid motion in the Schwarzschild and Kerr spacetimes are based explicitly and directly on the Killing vectors rather than on coordinate calculations. The latter approach is, of course, the traditional one, and is used in Peter Hoyng's book. Reading the book is a stimulating experience, because the reader can almost feel the author's presence. The author's opinions, his mathematical taste, his research pleasures, and his pedagogical passion are apparent everywhere. Lecturers contemplating a new course on relativistic astrophysics could adopt Hoyng's book as

  11. Focusing telescopes in nuclear astrophysics

    International Nuclear Information System (INIS)

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations

  12. Focusing telescopes in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Von Ballmoos, P.; Knodlseder, R.; Sazonov, S.; Griffiths, R.; Bastie, P.; Halloin, H.; Pareschi, G.; Ramsey, B.; Jensen, C.; Buis, E.J.; Ulmer, M.; Giommi, P.; Colafrancesco, S.; Comastri, A.; Barret, D.; Leising, M.; Hernanz, M.; Smith, D.; Abrosimov, N.; Smither, B.; Ubertini, P.; Olive, J.F.; Lund, N.; Pisa, A.; Courtois, P.; Roa, D.; Harrison, F.; Pareschi, G.; Frontera, F.; Von Ballmoos, P.; Barriere, N.; Rando, N.; Borde, J.; Hinglais, E.; Cledassou, R.; Duchon, P.; Sghedoni, M.; Huet, B.; Takahashi, T.; Caroli, E.; Quadrinin, L.; Buis, E.J.; Skinner, G.; Krizmanic, J.; Pareschi, G.; Loffredo, G.; Wunderer, C.; Weidenspointner, G.; Wunderer, C.; Koechlin, L.; Bignami, G.; Von Ballmoos, P.; Tueller, J.; Andritschke, T.; Laurens, A.; Evrard, J

    2005-07-01

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations.

  13. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  14. Astrophysical Conditions for Planetary Habitability

    CERN Document Server

    Guedel, M; Erkaev, N; Kasting, J; Khodachenko, M; Lammer, H; Pilat-Lohinger, E; Rauer, H; Ribas, I; Wood, B E

    2014-01-01

    With the discovery of hundreds of exoplanets and a potentially huge number of Earth-like planets waiting to be discovered, the conditions for their habitability have become a focal point in exoplanetary research. The classical picture of habitable zones primarily relies on the stellar flux allowing liquid water to exist on the surface of an Earth-like planet with a suitable atmosphere. However, numerous further stellar and planetary properties constrain habitability. Apart from "geophysical" processes depending on the internal structure and composition of a planet, a complex array of astrophysical factors additionally determine habitability. Among these, variable stellar UV, EUV, and X-ray radiation, stellar and interplanetary magnetic fields, ionized winds, and energetic particles control the constitution of upper planetary atmospheres and their physical and chemical evolution. Short- and long-term stellar variability necessitates full time-dependent studies to understand planetary habitability at any point ...

  15. Dust alignment in astrophysical environments

    Science.gov (United States)

    Lazarian, Alex; Thiem Hoang, Chi

    Dust is known to be aligned in interstellar medium and the arising polarization is extensively used to trace magnetic fields. What process aligns dust grains was one of the most long-standing problems of astrophysics in spite of the persistent efforts to solve it. For years the Davis-Greenstein paramagnetic alignment was the primary candidate for explaining grain alignment. However, the situation is different now and the most promising mechanism is associated with radiative torques (RATs) acting on irregular grains. I shall present the analytical theory of RAT alignment, discuss the observational tests that support this theory. I shall also discuss in what situations we expect to see the dominance of paramagnetic alignment.

  16. Transfer reactions in nuclear astrophysics

    Science.gov (United States)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  17. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  18. Graduate Program in Astrophysics in Split

    CERN Document Server

    Krajnovic, D

    2006-01-01

    Beginning in autumn 2008 the first generation of astronomy master students will start a 2 year course in Astrophysics offered by the Physics department of the University of Split, Croatia (http://fizika.pmfst.hr/astro/english/index.html). This unique master course in South-Eastern Europe, following the Bologna convention and given by astronomers from international institutions, offers a series of comprehensive lectures designed to greatly enhance students' knowledge and skills in astrophysics, and prepare them for a scientific career. An equally important aim of the course is to recognise the areas in which astronomy and astrophysics can serve as a national asset and to use them to prepare young people for real life challenges, enabling graduates to enter the modern society as a skilled and attractive work-force. In this contribution, I present an example of a successful organisation of international astrophysics studies in a developing country, which aims to become a leading graduate program in astrophysics ...

  19. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications

    International Nuclear Information System (INIS)

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au–Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. - Highlights: • Using MCNP5, radial beam port of ITU TRIGA Mark II research reactor is modified. • Polyethylene and Cerrobend collimators are used to modify the beam port. • Results of two-group neutron/photon flux are presented. • Monte Carlo results are compared with experimental results

  20. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  1. Suborbital Applications in Astronomy and Astrophysics

    Science.gov (United States)

    Unwin, Steve; Werner, Mike; Goldsmith, Paul

    2012-01-01

    Suborbital flights providing access to zero-g in a space environment - Demonstrating new technologies in a relevant environment. - Flight testing of individual elements of a constellation. - Raising the TRL of critical technologies for subsystems on future large missions High-altitude balloons (up to 10 kg payload) -Access to near-space for wavelengths not observable from the ground. -Raising the TRL of critical technologies for subsystems on future large missions. -UV Detector testing.

  2. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    International Nuclear Information System (INIS)

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η6-p-cymene)RuClTSCN–S]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh3)2TSCN–S] (2) have been synthesized from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] and [Ru(H)(Cl)(CO)(PPh3)3] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity

  3. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hatice [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Guler, Emine [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Yavuz, Murat, E-mail: myavuz@dicle.edu.tr [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir (Turkey); Ozturk, Nurdan; Kose Yaman, Pelin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Subasi, Elif; Sahin, Elif [Dokuz Eylul University, Faculty of Science, Department of Chemistry, 35160 Buca, Izmir (Turkey); Timur, Suna [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Ege University, Institute on Drug Abuse, Toxicology and Pharmaceutical Science (BATI), 35100 Bornova, Izmir (Turkey)

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η{sup 6}-p-cymene)RuClTSC{sup N–S}]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh{sub 3}){sub 2}TSC{sup N–S}] (2) have been synthesized from the reaction of [{(η"6-p-cymene)RuCl}{sub 2}(μ-Cl){sub 2}] and [Ru(H)(Cl)(CO)(PPh{sub 3}){sub 3}] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity.

  4. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    Science.gov (United States)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  5. The Trojan Horse method as an indirect approach for nuclear astrophysics studies

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A; Spitaleri, C; Cherubini, S; Cognata, M La; Lamia, L; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L, E-mail: tumino@lns.infn.i [Laboratori Nazionali del Sud - INFN, Catania (Italy)

    2010-01-01

    The Trojan Horse method (THM) is a powerful indirect technique that provides a successful alternative path to determine the bare nucleus astrophysical S(E) factor for rearrangement reactions down to astrophysical energies. This is done by measuring the cross section for a suitable three body process in the quasi-free kinematics regime. Prescriptions and basic features will be presented together with some applications to demonstrate how THM works.

  6. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    International Nuclear Information System (INIS)

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R2 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties ΔGo, ΔHo, ΔEo and ΔSo by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  7. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts.

    Science.gov (United States)

    Kwon, S I; Owens, G; Ok, Y S; Lee, D B; Jeon, W-T; Kim, J G; Kim, K-R

    2011-01-01

    The effluence of veterinary antibiotics (VAs) to aquatic and terrestrial environments is of concern due to the potential adverse effects on human health, such as the production of antibiotic resistant bacteria. One of the main pathways for antibiotics to enter the environment is via the application of manure and/or manure-based composts as an alternative organic fertilizer to agricultural lands. While a wide diversity of manure-based composts are produced in Korea, there is currently no regulatory guideline for VA residues. Hence, monitoring and limiting the concentration of VA residues in manure and/or manure-based composts prior to application to the lands is important to mitigate any environmental burden. The current study was conducted to examine the applicability of the Charm II antibiotic test system for monitoring tetracyclines, sulfonamides and macrolides in manure-based composts. The Charm II system was a highly reproducible method for determining whether VA residue concentrations in manure-based compost exceeded specific guideline values. A wide range of manure-based composts and liquid fertilizers commercially available in Korea were examined using the Charm II system to monitor the residues of the target VAs. For this, the guideline concentrations of VA residues (0.8 mg kg(-1) for tetracyclines, 0.2 mg kg(-1) for sulfonamides, and 0.1 mg kg(-1) for macrolides) stated in 'Official Standard of Feeds' under the 'Control of Livestock and Fish Feed Act' in Korea were adopted to establish control points. Of the 70 compost samples examined 12 exceeded 0.8 mg kg(-1) for tetracyclines and 21 exceeded 0.2 mg kg(-1) for sulfonamides. Of the 25 liquid fertilizer samples examined most samples exceeded these prospective guidelines.

  8. MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS

    International Nuclear Information System (INIS)

    In this paper, we present an update to the open source MPI-AMRVAC simulation toolkit where we focus on solar and non-relativistic astrophysical magnetofluid dynamics. We highlight recent developments in terms of physics modules, such as hydrodynamics with dust coupling and the conservative implementation of Hall magnetohydrodynamics. A simple conservative high-order finite difference scheme that works in combination with all available physics modules is introduced and demonstrated with the example of monotonicity-preserving fifth-order reconstruction. Strong stability-preserving high-order Runge-Kutta time steppers are used to obtain stable evolutions in multi-dimensional applications, realizing up to fourth-order accuracy in space and time. With the new distinction between active and passive grid cells, MPI-AMRVAC is ideally suited to simulate evolutions where parts of the solution are controlled analytically or have a tendency to progress into or out of a stationary state. Typical test problems and representative applications are discussed with an outlook toward follow-up research. Finally, we discuss the parallel scaling of the code and demonstrate excellent weak scaling up to 30, 000 processors, allowing us to exploit modern peta-scale infrastructure

  9. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    Science.gov (United States)

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. PMID:25746919

  10. Use of modulated excitation signals in ultrasound. Part II: Design and performance for medical imaging applications

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Jensen, Jørgen Arendt

    2005-01-01

    For pt.I, see ibid., vol.52, no.2, p.177-91 (2005). In the first paper, the superiority of linear FM signals was shown in terms of signal-to-noise ratio and robustness to tissue attenuation. This second paper in the series of three papers on the application of coded excitation signals in medical....... The method is evaluated first for resolution performance and axial sidelobes through simulations with the program Field II. A coded excitation ultrasound imaging system based on a commercial scanner and a 4 MHz probe driven by coded sequences is presented and used for the clinical evaluation of the coded...

  11. The Iron Project:. Radiative Atomic Processes in Astrophysics

    Science.gov (United States)

    Nahar, Sultana N.

    2011-06-01

    temperature of an ion. The recombination features are demonstrated. Calculations are carried out using the accurate and powerful R-matrix method in the close-coupling approximation. The relativistic fine structure effects are included in the Breit-Pauli approximation. The atomic data and opacities are available on-line from databases at CDS in France and at the Ohio Supercomputer Center in the USA. Some astrophysical applications of the results of the OP and IP from the Ohio State atomic-astrophysics group are also presented. These same studies, however with different elements, can be extended for bio-medical applications for treatments. This will also be explained with some preliminary findings.

  12. Ruthenium (II) complexes of thiosemicarbazone: synthesis, biosensor applications and evaluation as antimicrobial agents.

    Science.gov (United States)

    Yildirim, Hatice; Guler, Emine; Yavuz, Murat; Ozturk, Nurdan; Kose Yaman, Pelin; Subasi, Elif; Sahin, Elif; Timur, Suna

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η(6)-p-cymene)RuClTSC(N-S)]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh3)2TSC(N-S)] (2) have been synthesized from the reaction of [{(η(6)-p-cymene)RuCl}2(μ-Cl)2] and [Ru(H)(Cl)(CO)(PPh3)3] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at -0.9V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01-0.5mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. PMID:25280673

  13. [Metallothionein-I/II in brain injury repair mechanism and its application in forensic medicine].

    Science.gov (United States)

    Li, Dong; Li, Ru-bo; Lin, Ju-li

    2013-10-01

    Metallothionein (MT) is a kind of metal binding protein. As an important member in metallothionein family, MT-I/II regulates metabolism and detoxication of brain metal ion and scavenges free radicals. It is capable of anti-inflammatory response and anti-oxidative stress so as to protect the brain tissue. During the repair process of brain injury, the latest study showed that MT-I/II could stimulate brain anti-inflammatory factors, growth factors, neurotrophic factors and the expression of the receptor, and promote the extension of axon of neuron, which makes contribution to the regeneration of neuron and has important effect on the recovery of brain injury. Based on the findings, this article reviews the structure, expression, distribution, adjustion, function, mechanism in the repair of brain injury of MT-I/II and its application prospect in forensic medicine. It could provide a new approach for the design and manufacture of brain injury drugs as well as for age estimation of the brain injury.

  14. Synthesis and spectral characterization of Zn(II) microsphere series for antimicrobial application

    Science.gov (United States)

    Singh, Ajay K.; Pandey, Sarvesh K.; Pandey, O. P.; Sengupta, S. K.

    2014-09-01

    Microsphere series have been synthesized by reacting zinc(II) acetate dihydrate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole/oxadiazole/triazole with salicylaldehyde. Elemental analysis suggests that the complexes have 1:2 and 1:1 stoichiometry of the type [Zn(L)2(H2O)2] and [Zn(L‧)(H2O)2]; LH = Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thia/oxadiazole with salicylaldehyde; L‧H2 = Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1,2,4-triazole and salicylaldehyde and were characterized by elemental analyses, IR, 1H NMR and 13C NMR spectral data. Scanning electron microscopy (SEM) showed that synthesized materials have microsphere like structure and there EDX analysis comparably matches with elemental analysis. For the antimicrobial application Schiff bases and their zinc(II) complexes were screened for four bacteria e.g. Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Streptococcus pyogenes and four fungi e.g. Cyrtomium falcatum, Aspergillus niger, Fusarium oxysporium and Curvularia pallescence by the reported method. Schiff base and Zn(II) compounds showed significant antimicrobial activities. However, activities increase upon chelation. Thermal analysis (TGA) data of compound (10) showed its stability up to 300 °C.

  15. Central Weighted Non-Oscillatory (CWENO) and Operator Splitting Schemes in Computational Astrophysics

    Science.gov (United States)

    Ivanovski, Stavro

    2011-05-01

    High-resolution shock-capturing schemes (HRSC) are known to be the most adequate and advanced technique used for numerical approximation to the solution of hyperbolic systems of conservation laws. Since most of the astrophysical phenomena can be described by means of system of (M)HD conservation equations, finding most ac- curate, computationally not expensive and robust numerical approaches for their solution is a task of great importance for numerical astrophysics. Based on the Central Weighted Non-Oscillatory (CWENO) reconstruction approach, which relies on the adaptive choice of the smoothest stencil for resolving strong shocks and discontinuities in central framework on staggered grid, we present a new algorithm for systems of conservation laws using the key idea of evolving the intermediate stages in the Runge Kutta time discretization in primitive variables . In this thesis, we introduce a new so-called conservative-primitive variables strategy (CPVS) by integrating the latter into the earlier proposed Central Runge Kutta schemes (Pareschi et al., 2005). The advantages of the new shock-capturing algorithm with respect to the state-of-the-art HRSC schemes used in astrophysics like upwind Godunov-type schemes can be summarized as follows: (i) Riemann-solver-free central approach; (ii) favoring dissipation (especially needed for multidimensional applications in astrophysics) owing to the diffusivity coming from the design of the scheme; (iii) high accuracy and speed of the method. The latter stems from the fact that the advancing in time in the predictor step does not need inversion between the primitive and conservative variables and is essential in applications where the conservative variables are neither trivial to compute nor to invert in the set of primitive ones as it is in relativistic hydrodynamics. The main objective of the research adopted in the thesis is to outline the promising application of the CWENO (with CPVS) in the problems of the

  16. Trojan Horse Method: recent results in nuclear astrophysics

    Science.gov (United States)

    Spitaleri, C.; Lamia, L.; Gimenez Del Santo, M.; Burjan, V.; Carlin, N.; Li, Chengbo; Cherubini, S.; Crucilla, V.; Gulino, M.; Hons, Z.; Kroha, V.; Irgaziev, B.; La Cognata, M.; Mrazek, J.; Mukhamedzhanov, M.; Munhoz, M. G.; Palmerini, S.; Pizzone, R. G.; Puglia, M. R.; Rapisarda, G. G.; Romano, S.; Sergi, L.; Zhou, Shu-Hua; Somorjai, E.; Souza, F. A.; Tabacaru, G.; Szanto de Toledo, A.; Tumino, A.; Wen, Qungang; Wakabayashi, Y.; Yamaguchi, H.

    2015-07-01

    The accurate knowledge of thermonuclear reaction rates is important in understanding the energy generation, the neutrinos luminosity and the synthesis of elements in stars. The physical conditions under which the majority of astrophysical reactions proceed in stellar environments make it difficult or impossible to measure them under the same conditions in the laboratory. That is why different indirect techniques are being used along with direct measurements. The Trojan Horse Method (THM) is introduced as an independent technique to obtain the bare nucleus astrophysical S(E)-factor. As examples the results of recent the application of THM to the 2H(11B, σ08Be)n and 2H(10B, σ07Be)n reactions are presented.

  17. 5th International conference on High Energy Density Laboratory Astrophysics

    CERN Document Server

    Kyrala, G.A

    2005-01-01

    During the past several years, research teams around the world have developed astrophysics-relevant utilizing high energy-density facilities such as intense lasers and z-pinches. Research is underway in many areas, such as compressible hydrodynamic mixing, strong shock phenomena, radiation flow, radiative shocks and jets, complex opacities, equations o fstat, and relativistic plasmas. Beyond this current research and the papers it is producing, plans are being made for the application, to astrophysics-relevant research, of the 2 MJ National Ignition Facility (NIF) laser at Lawrence Livermore National Laboratory; the 600 kj Ligne d'Intergration Laser (LIL) and the 2 MJ Laser Megajoule (LMJ) in Bordeaux, France; petawatt-range lasers now under construction around the world; and current and future Z pinches. The goal of this conference and these proceedings is to continue focusing and attention on this emerging research area. The conference brought together different scientists interested in this emerging new fi...

  18. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics: A Text for the Science of Planetary Systems covers the field of solar system astrophysics beginning with basic tools of spherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. After a basic treatment of the two- and restricted three-body system motions in Background Science and the Inner Solar System, perturbations are discussed, followed by the Earth's gravitational potential field and its effect on satellite orbits. This is followed by analysis of the Earth-Moon system and the interior planets. In Planetary Atmospheres and the Outer Solar System, the atmospheres chapters include detailed discussions of circulation, applicable also to the subsequent discussion of the gas giants. The giant planets are discussed together, and the thermal excesses of three of them are highlighted. This is followed by chapters on moons and rings, mainly in the context of dynamical stability, comets and meteors, m...

  19. Modelling Relativistic Astrophysics at the Large and Small Scale

    CERN Document Server

    Haugbölle, T

    2005-01-01

    In this thesis different numerical methods, as well as applications of the methods to a number of current problems in relativistic astrophysics, are presented. In the first part the theoretical foundation and numerical implementation of a new general relativistic magnetohydrodynamics code is discussed. A new form of the equations of motion using global coordinates, but evolving the dynamical variables from the point of view of a local observer is presented. No assumptions are made about the background metric and the design is ready to be coupled with methods solving the full Einstein equations. In the second part of the thesis important results concerning the understanding of collisionless shocks, obtained from experiments with a relativistic charged particle code, are presented. Relativistic collisionless shocks are important in a range of astrophysical objects; in particular in gamma ray burst afterglows and other relativistic jets. It is shown that a strong small scale, fluctuating, and predominantly trans...

  20. Using Visual Analytics to Maintain Situation Awareness in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.; Poon, Sarah S.; Aldering, Gregory S.; Thomas, Rollin C.; Quimby, Robert

    2008-07-01

    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists needing to analyze heterogeneous, complex data under time pressure, and then make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes severalnovel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in use for over eighteen months by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture, and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley?s three levels of situation awareness.

  1. Plasma Astrophysics, Part I Fundamentals and Practice

    CERN Document Server

    Somov, Boris V

    2012-01-01

    This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This first part uniquely covers all the basic principles and practical tools required for understanding and work in plasma astrophysics. More than 25% of the text is updated from the first edition, including new figures, equations and entire sections on topics such as magnetic reconnection and the Grad-Shafranov equation. The book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.

  2. Transferring diffractive optics from research to commercial applications: Part II - size estimations for selected markets

    Science.gov (United States)

    Brunner, Robert

    2014-04-01

    In a series of two contributions, decisive business-related aspects of the current process status to transfer research results on diffractive optical elements (DOEs) into commercial solutions are discussed. In part I, the focus was on the patent landscape. Here, in part II, market estimations concerning DOEs for selected applications are presented, comprising classical spectroscopic gratings, security features on banknotes, DOEs for high-end applications, e.g., for the semiconductor manufacturing market and diffractive intra-ocular lenses. The derived market sizes are referred to the optical elements, itself, rather than to the enabled instruments. The estimated market volumes are mainly addressed to scientifically and technologically oriented optical engineers to serve as a rough classification of the commercial dimensions of DOEs in the different market segments and do not claim to be exhaustive.

  3. Two LANL laboratory astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  4. Dielectronic recombination data for astrophysical applications: Plasma rate-coefficients for Fe^q+ (q=7-10, 13-22) and Ni^25+ ions from storage-ring experiments

    OpenAIRE

    Schippers, S.; Lestinsky, M.; Müller, A.; Savin, D. W.; Schmidt, E.W.; Wolf, A.

    2010-01-01

    This review summarizes the present status of an ongoing experimental effort to provide reliable rate coefficients for dielectronic recombination of highly charged iron ions for the modeling of astrophysical and other plasmas. The experimental work has been carried out over more than a decade at the heavy-ion storage-ring TSR of the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany. The experimental and data reduction procedures are outlined. The role of previously disregarded pr...

  5. Indirect techniques in nuclear astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

    CERN Document Server

    Mukhamedzhanov, A M; Brown, B A; Burjan, V; Cherubini, S; Gagliardi, C A; Irgaziev, B F; Kroha, V; Nunes, F M; Pirlepesov, F; Pizzone, R G; Romano, S; Spitaleri, C; Tang, X D; Trache, L; Tribble, R E; Tumino, A

    2005-01-01

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reac...

  6. Problem-based learning in astrophysics

    International Nuclear Information System (INIS)

    Problem-based learning (PBL) can be integrated into the curriculum in many different ways. We compare three examples of PBL in undergraduate astrophysics programmes, and discuss the strengths and weaknesses of the various approaches

  7. The molecular astrophysics of stars and galaxies.

    Science.gov (United States)

    Hartquist, T. W.; Williams, D. A.

    This book provides a comprehensive survey of modern molecular astrophysics. It gives an introduction to molecular spectroscopy and then addresses the main areas of current molecular astrophysics, including galaxy formation, star forming regions, mass loss from young as well as highly evolved stars and supernovae, starburst galaxies plus the tori and discs near the central engines of active galactic nuclei. With chapters written by leading experts, the book is unique in giving a detailed view of this wide-ranging subject. It will provide the standard introduction for research students in molecular astrophysics; it will also enable chemists to learn the astrophysics most related to chemistry as well as instruct physicists about the molecular processes most important in astronomy. This volume is dedicated to Alexander Dalgarno.

  8. Cosmological and Astrophysical Neutrino Mass Measurements

    CERN Document Server

    Abazajian, K N; Cooray, A; De Bernardis, F; Dodelson, S; Friedland, A; Fuller, G M; Hannestad, S; Keating, B G; Linder, E V; Lunardini, C; Melchiorri, A; Miquel, R; Pierpaoli, E; Pritchard, J; Serra, P; Takada, M; Wong, Y Y Y

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.

  9. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  10. Underground nuclear astrophysics: Why and how

    Energy Technology Data Exchange (ETDEWEB)

    Best, A.; Laubenstein, M. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (AQ) (Italy); Caciolli, A. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN, Padova (Italy); Fueloep, Zs.; Gyuerky, Gy. [Institute for Nuclear Research (MTA Atomki), Debrecen (Hungary); Napolitani, E. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Rigato, V. [Laboratori Nazionali di Legnaro, INFN, Legnaro (Italy); Roca, V. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Napoli (Italy); INFN, Napoli (Italy); Szuecs, T. [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden (Germany)

    2016-04-15

    The goal of nuclear astrophysics is to measure cross-sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross-sections are very low due to the suppression of the Coulomb barrier. Cosmic-ray-induced background can seriously limit the determination of reaction cross-sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross-section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given. (orig.)

  11. Astrophysics: Unexpected X-ray flares

    Science.gov (United States)

    Campana, Sergio

    2016-10-01

    Two sources of highly energetic flares have been discovered in archival X-ray data of 70 nearby galaxies. These flares have an undetermined origin and might represent previously unknown astrophysical phenomena. See Letter p.356

  12. Underground nuclear astrophysics: why and how

    CERN Document Server

    Best, A; Fülöp, Zs; Gyürky, Gy; Laubenstein, M; Napolitani, E; Rigato, V; Roca, V; Szücs, T

    2016-01-01

    The goal of nuclear astrophysics is to measure cross sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross sections are very low due to the suppression of the Coulomb barrier. Cosmic ray induced background can seriously limit the determination of reaction cross sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  13. Link between laboratory and astrophysical radiative shocks

    CERN Document Server

    Michaut, Claire; Cavet, Cécile; Bouquet, Serge; Koenig, Michel; Vinci, Tommaso; Loupias, Bérénice

    2008-01-01

    This work provides analytical solutions describing the post-shock structure of radiative shocks growing in astrophysics and in laboratory. The equations including a cooling function $\\Lambda \\propto \\rho^{\\epsilon} P^{\\zeta} x^{\\theta}$ are solved for any values of the exponents $\\epsilon$, $\\zeta$ and $\\theta$. This modeling is appropriate to astrophysics as the observed radiative shocks arise in optically thin media. In contrast, in laboratory, radiative shocks performed using high-power lasers present a radiative precursor because the plasma is more or less optically thick. We study the post-shock region in the laboratory case and compare with astrophysical shock structure. In addition, we attempt to use the same equations to describe the radiative precursor, but the cooling function is slightly modified. In future experiments we will probe the PSR using X-ray diagnostics. These new experimental results will allow to validate our astrophysical numerical codes.

  14. Dictionary of geophysics, astrophysics, and astronomy

    CERN Document Server

    Matzner, Richard A

    2001-01-01

    The Dictionary of Geophysics, Astrophysics, and Astronomy provides a lexicon of terminology covering fields such as astronomy, astrophysics, cosmology, relativity, geophysics, meteorology, Newtonian physics, and oceanography. Authors and editors often assume - incorrectly - that readers are familiar with all the terms in professional literature. With over 4,000 definitions and 50 contributing authors, this unique comprehensive dictionary helps scientists to use terminology correctly and to understand papers, articles, and books in which physics-related terms appear.

  15. Graduate Program in Astrophysics in Split

    OpenAIRE

    Krajnovic, Davor

    2006-01-01

    Beginning in autumn 2008 the first generation of astronomy master students will start a 2 year course in Astrophysics offered by the Physics department of the University of Split, Croatia (http://fizika.pmfst.hr/astro/english/index.html). This unique master course in South-Eastern Europe, following the Bologna convention and given by astronomers from international institutions, offers a series of comprehensive lectures designed to greatly enhance students' knowledge and skills in astrophysics...

  16. The data sharing advantage in astrophysics

    CERN Document Server

    Dorch, S B F; Ellegaard, O

    2015-01-01

    We present here evidence for the existence of a citation advantage within astrophysics for papers that link to data. Using simple measures based on publication data from NASA Astrophysics Data System we find a citation advantage for papers with links to data receiving on the average significantly more citations per paper than papers without links to data. Furthermore, using INSPEC and Web of Science databases we investigate whether either papers of an experimental or theoretical nature display different citation behavior.

  17. Indirect techniques for astrophysical reaction rates determinations

    Science.gov (United States)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  18. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.;

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  19. Technology Development for a Neutrino Astrophysical Observatory

    International Nuclear Information System (INIS)

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory

  20. Nuclear Physics and Astrophysics of Neutrino Oscillations

    CERN Document Server

    Balantekin, A B

    2016-01-01

    For a long time very little experimental information was available about neutrino properties, even though a minute neutrino mass has intriguing cosmological and astrophysical implications. This situation has changed in recent decades: intense experimental activity to measure many neutrino properties took place. Some of these developments and their implications for astrophysics and cosmology are briefly reviewed with a particular emphasis on neutrino magnetic moments and collective neutrino oscillations

  1. Bubble Chambers for Experiments in Nuclear Astrophysics

    OpenAIRE

    DiGiovine, B.; Henderson, D.; Holt, R. J.; Rehm, K. E.; Raut, R.; Robinson, A.; Sonnenschein, A.; Rusev, G.; A.P. Tonchev; Ugalde, C.

    2015-01-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning...

  2. NSLS-II High Level Application Infrastructure And Client API Design

    International Nuclear Information System (INIS)

    The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. It is an open structure platform, and we try to provide a narrow API set for client application. With this narrow API, existing applications developed in different language under different architecture could be ported to our platform with small modification. This paper describes system infrastructure design, client API and system integration, and latest progress. As a new 3rd generation synchrotron light source with ultra low emittance, there are new requirements and challenges to control and manipulate the beam. A use case study and a theoretical analysis have been performed to clarify requirements and challenges to the high level applications (HLA) software environment. To satisfy those requirements and challenges, adequate system architecture of the software framework is critical for beam commissioning, study and operation. The existing traditional approaches are self-consistent, and monolithic. Some of them have adopted a concept of middle layer to separate low level hardware processing from numerical algorithm computing, physics modelling, data manipulating, plotting, and error handling. However, none of the existing approaches can satisfy the requirement. A new design has been proposed by introducing service oriented architecture technology. The HLA is combination of tools for accelerator physicists and operators, which is same as traditional approach. In NSLS-II, they include monitoring applications and control routines. Scripting environment is very important for the later part of HLA and both parts are designed based on a common set of APIs. Physicists and operators are users of these APIs, while control system engineers and a few accelerator physicists are the developers of these APIs. With our Client/Server mode based approach, we leave how to retrieve information to the

  3. Neutron radiography applications in I.T.U. TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Neutron radiography is an important radiographic technique which is supplied different and advanced information according to the X or gamma ray radiography. However, it has a trouble for supplying the convenient neutron sources. Tangential beam tube of Istanbul Technical University (ITU) TRIGA Mark-II Training and Research Reactor has been arranged for using neutron radiography. The neutron radiography set defined as detailed for the application of the technique. Two different techniques for neutron radiography are defined as namely, transfer method and direct method. For the transfer method dysprosium and indium screens are used in the study. But, dysprosium generally was preferred in many studies in the point of view nuclear safety. Gadolinium was used for direct method. Two techniques are compared and explained the preferring of the transfer technique. Firstly, reference composition is prepared for seeing the differences between neutron and X-ray or gamma radiography. In addition of it, some radiograph samples are given neutron and X-ray radiography which shows the different image characters. Lastly, some examples are given from archaeometric studies. One of them the brass plates of Great Mosque door in Cizre. After the neutron radiography application, organic dye traces are noticed. Other study is on a sword that belong to Urartu period at the first millennium B.C. It is seen that some wooden part on it. Some different artefacts are examined with neutron radiography from the Ikiztepe excavation site, then some animal post parts are recognized on them. One of them is sword and sheath which are corroded together. After the neutron radiography application, it can be noticed that there are a cloth between the sword and its sheath. By using neutron radiography, many interesting and detailed results are observed in ITU TRIGA Mark-II Training and Research Reactor. Some of them shouldn't be recognised by using any other technique

  4. Nuclear astrophysics: a new era

    Energy Technology Data Exchange (ETDEWEB)

    Wiescher, Michael; Aprahamian, Ani [Department of Physics, University of Notre Dame (United States); Regan, Paddy [Department of Physics, University of Surrey (United Kingdom)

    2002-02-01

    The latest generation of radioactive-ion-beam facilities promises to shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. The most fundamental question in nature is where do we come from, or, put another way, what are we made of? The late Carl Sagan poetically said that we are all made of stardust, but the origin of the elements has fascinated scientists for thousands of years. Many of the greatest medieval and renaissance scientists dabbled in alchemy, trying to create the elements that make up the cosmos, but we had to wait until the early 20th century to recognize that elements are really defined by the number of protons in the nucleus. According to our current understanding, after the big bang most of the normal or baryonic material in the universe consisted of the lightest two elements, hydrogen and helium, with only trace amounts of lithium and beryllium. All the heavier elements that occur naturally on Earth were created from this original material via a series of nuclear reactions in the cores of stars or in stellar explosions. Over the last decade, ground-based telescopes and satellite-based Observatories have opened new windows on the stars across the electromagnetic spectrum, from infrared to gamma radiation. New technology now makes it possible to observe and analyse short-lived stellar explosions. Indeed, the distribution of elements in 'planetary nebula' and in the ejecta of supernovae and novae give a direct glimpse of individual nucleosynthesis processes. In the February issue of Physics World, Michael Wiescher, Paddy Regan and Ani Aprahamian describe how sate-of-the-art facilities are set to plug many of the gaps in our understanding of nuclear astrophysics. (U.K.)

  5. Nuclear astrophysics: a new era

    International Nuclear Information System (INIS)

    The latest generation of radioactive-ion-beam facilities promises to shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. The most fundamental question in nature is where do we come from, or, put another way, what are we made of? The late Carl Sagan poetically said that we are all made of stardust, but the origin of the elements has fascinated scientists for thousands of years. Many of the greatest medieval and renaissance scientists dabbled in alchemy, trying to create the elements that make up the cosmos, but we had to wait until the early 20th century to recognize that elements are really defined by the number of protons in the nucleus. According to our current understanding, after the big bang most of the normal or baryonic material in the universe consisted of the lightest two elements, hydrogen and helium, with only trace amounts of lithium and beryllium. All the heavier elements that occur naturally on Earth were created from this original material via a series of nuclear reactions in the cores of stars or in stellar explosions. Over the last decade, ground-based telescopes and satellite-based Observatories have opened new windows on the stars across the electromagnetic spectrum, from infrared to gamma radiation. New technology now makes it possible to observe and analyse short-lived stellar explosions. Indeed, the distribution of elements in 'planetary nebula' and in the ejecta of supernovae and novae give a direct glimpse of individual nucleosynthesis processes. In the February issue of Physics World, Michael Wiescher, Paddy Regan and Ani Aprahamian describe how sate-of-the-art facilities are set to plug many of the gaps in our understanding of nuclear astrophysics. (U.K.)

  6. Preparation of dendritic bismuth film electrodes and their application for detection of trace Pb (II) and Cd (II)

    Institute of Scientific and Technical Information of China (English)

    Huizhu Zhou; Huanhuan Hou; Lei Dai; Yuehua Li; Jing Zhu; Ling Wang

    2016-01-01

    In this paper, dendritic Bi film electrodes with porous structure had successfully been prepared on glassy carbon electrode using a constant current electrolysis method based on hydrogen bubble dynamic templates. The elec-trode prepared using a large applied current density showed an increased internal electroactive area and a signif-icantly improved electrochemical performance. The analytical utility of the prepared dendritic Bi film electrodes for the determination of Pb (II) and Cd (II) in the range of 5–50μg·L−1 were presented in combination with square wave stripping voltammetry in model solution. Compared with non-porous Bi film electrode, the dendrit-ic Bi film electrode exhibited higher sensitivity and lower detection limit. The prepared Bi film electrode with dendritic structure was also successfully applied to real water sample analysis.

  7. Trojan Horse technique to measure nuclear astrophysics rearrangement reactions

    Science.gov (United States)

    Spitaleri, Claudio

    2013-03-01

    The knowledge of nucleosynthesis and of energy production in stars requires an increasingly precise measurement of nuclear fusion reactions at the Gamow energy. Because of the Coulomb barrier reaction cross sections in astrophysics cannot be accessed directly at ultra -low energies, unless very favorable conditions are met. Moreover, the energies characterizing nuclear processes in several astrophysical contexts are so low that the presence of atomic electrons must be taken into account. Theoretical extrapolations of available data are then needed to derive astrophysical S(E)-factors. To overcome these experimental difficulties the Trojan Horse Method (THM) has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available. While the theory has been discussed in detail in some theoretical works, present in the scientific literature, also in relation to different types of excitation functions (e.g. non-resonant and resonant), work on detailed methodology used to extract the events to be considered for the bare nucleus cross section measurements is still on going. In this work we will present some critical points in the application of THM that deserve to be discussed in more detail.

  8. Application of medical physical culture at extensive superficial burns of the I–II degree

    Directory of Open Access Journals (Sweden)

    Vjacheslav Meleshkov

    2015-10-01

    Full Text Available Purpose: to study and prove purpose of medical physical culture at extensive superficial burns of the I–II degree for normalization of exchange processes, the prevention of the developments of stagnation connected with the compelled decrease in physical activity. Materials and Methods: analysis and generalization of scientific and methodical literature. Results: the main means of physical rehabilitation – medical physical culture is considered; its application at treatment of patients with extensive superficial burns of the I–II degree is proved; techniques of medical physical culture in the period of little burn shock and in the period of a sharp toksemy are described in detail. Conclusions: it is established that occupation duration remedial gymnastics depends on a condition of the patient and objectives. In each occupation the all-strengthening, breathing and special exercises, as a rule, have to be applied. The most important feature of a technique of occupations at a burn disease is need of repeated performance during the day of the special exercises directed on prevention or elimination of malfunction of the musculoskeletal device

  9. The acoustic simulation and analysis of complicated reciprocating compressor piping systems, II: Program structure and applications

    Science.gov (United States)

    To, C. W. S.

    1984-09-01

    The main objectives of the investigation reported in this paper, Part II, and its companion paper, Part I, are (a) to provide a formulation, including the mean flow effects and suitable for digital computer automation, of the acoustics of complicated piping systems, and (b) to develop a comprehensive digital computer program for the simulation and analysis of complicated reciprocating compressor piping systems. In this paper, the digital computer program structure and applications of the program developed, written in Fortran IV, are described. It is concluded that the computer program is versatile and user-friendly. It is capable of providing a great deal of information from one set of input data, and is open-ended and modular for updating.

  10. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  11. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    International Nuclear Information System (INIS)

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  12. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains.

  13. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  14. Using the Astrophysics Source Code Library

    Science.gov (United States)

    Allen, Alice; Teuben, P. J.; Berriman, G. B.; DuPrie, K.; Hanisch, R. J.; Mink, J. D.; Nemiroff, R. J.; Shamir, L.; Wallin, J. F.

    2013-01-01

    The Astrophysics Source Code Library (ASCL) is a free on-line registry of source codes that are of interest to astrophysicists; with over 500 codes, it is the largest collection of scientist-written astrophysics programs in existence. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or from an identified source. An advisory committee formed in 2011 provides input and guides the development and expansion of the ASCL, and since January 2012, all accepted ASCL entries are indexed by ADS. Though software is increasingly important for the advancement of science in astrophysics, these methods are still often hidden from view or difficult to find. The ASCL (ascl.net/) seeks to improve the transparency and reproducibility of research by making these vital methods discoverable, and to provide recognition and incentive to those who write and release programs useful for astrophysics research. This poster provides a description of the ASCL, an update on recent additions, and the changes in the astrophysics community we are starting to see because of the ASCL.

  15. NASA Astrophysics EPO Community: Enhancing STEM Instruction

    Science.gov (United States)

    Bartolone, L.; Manning, J.; Lawton, B.; Meinke, B. K.; Smith, D. A.; Schultz, G.; NASA Astrophysics EPO community

    2015-11-01

    The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach (EPO) community and Forum work together to capitalize on the cutting-edge discoveries of NASA Astrophysics missions to enhance Science, Technology, Engineering, and Math (STEM) instruction. In 2010, the Astrophysics EPO community identified online professional development for classroom educators and multiwavelength resources as a common interest and priority for collaborative efforts. The result is NASA's Multiwavelength Universe, a 2-3 week online professional development experience for classroom educators. The course uses a mix of synchronous sessions (live WebEx teleconferences) and asynchronous activities (readings and activities that educators complete on their own on the Moodle, and moderated by course facilitators). The NASA SMD Astrophysics EPO community has proven expertise in providing both professional development and resources to K-12 Educators. These mission- and grant-based EPO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present examples of how the NASA Astrophysics EPO community and Forum engage the K-12 education community in these ways, including associated metrics and evaluation findings.

  16. High Quantum Efficiency Type II SLS FPAs for Space-Based Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposes to develop high quantum efficiency (QE) and low dark current infrared epitaxy materials based on Type II Strained Layer Superlattice...

  17. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  18. Astrophysical Fluid Dynamics via Direct Statistical Simulation

    CERN Document Server

    Tobias, S M; Marston, J B

    2010-01-01

    In this paper we introduce the concept of Direct Statistical Simulation (DSS) for astrophysical flows. This technique may be appropriate for problems in astrophysical fluids where the instantaneous dynamics of the flows are of secondary importance to their statistical properties. We give examples of such problems including mixing and transport in planets, stars and disks. The method is described for a general set of evolution equations, before we consider the specific case of a spectral method optimised for problems on a spherical surface. The method is illustrated for the simplest non-trivial example of hydrodynamics and MHD on a rotating spherical surface. We then discuss possible extensions of the method both in terms of computational methods and the range of astrophysical problems that are of interest.

  19. Astrophysics Source Code Library: Incite to Cite!

    CERN Document Server

    DuPrie, Kimberly; Berriman, Bruce; Hanisch, Robert J; Mink, Jessica; Nemiroff, Robert J; Shamir, Lior; Shortridge, Keith; Taylor, Mark B; Teuben, Peter; Wallin, John F

    2013-01-01

    The Astrophysics Source Code Library (ASCL, http://ascl.net/) is an online registry of over 700 source codes that are of interest to astrophysicists, with more being added regularly. The ASCL actively seeks out codes as well as accepting submissions from the code authors, and all entries are citable and indexed by ADS. All codes have been used to generate results published in or submitted to a refereed journal and are available either via a download site or froman identified source. In addition to being the largest directory of scientist-written astrophysics programs available, the ASCL is also an active participant in the reproducible research movement with presentations at various conferences, numerous blog posts and a journal article. This poster provides a description of the ASCL and the changes that we are starting to see in the astrophysics community as a result of the work we are doing.

  20. Strange quark matter in explosive astrophysical systems

    CERN Document Server

    Sagert, I; Hempel, M; Pagliara, G; Schaffner-Bielich, J; Thielemann, F -K; Liebendörfer, M

    2010-01-01

    Explosive astrophysical systems, such as supernovae or compact star binary mergers, provide conditions where strange quark matter can appear. The high degree of isospin asymmetry and temperatures of several MeV in such systems may cause a transition to the quark phase already around saturation density. Observable signals from the appearance of quark matter can be predicted and studied in astrophysical simulations. As input in such simulations, an equation of state with an integrated quark matter phase transition for a large temperature, density and proton fraction range is required. Additionally, restrictions from heavy ion data and pulsar observation must be considered. In this work we present such an approach. We implement a quark matter phase transition in a hadronic equation of state widely used for astrophysical simulations and discuss its compatibility with heavy ion collisions and pulsar data. Furthermore, we review the recently studied implications of the QCD phase transition during the early post-bou...

  1. Doppler tomography in fusion plasmas and astrophysics

    CERN Document Server

    Salewski, Mirko; Heidbrink, Bill; Jacobsen, Asger Schou; Korsholm, Soren Bang; Leipold, Frank; Madsen, Jens; Moseev, Dmitry; Nielsen, Stefan Kragh; Rasmussen, Jesper; Stagner, Luke; Steeghs, Danny; Stejner, Morten; Tardini, Giovani; Weiland, Markus

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what ...

  2. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  3. The Cosmic Battery in Astrophysical Accretion Disks

    CERN Document Server

    Contopoulos, Ioannis; Katsanikas, Matthaios

    2015-01-01

    The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows-ADAF. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysicall...

  4. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  5. 20 CFR 416.350 - Treating a title II application as an oral inquiry about SSI benefits.

    Science.gov (United States)

    2010-04-01

    ... inquiry about SSI benefits. 416.350 Section 416.350 Employees' Benefits SOCIAL SECURITY ADMINISTRATION... Written Statement Or Oral Inquiry § 416.350 Treating a title II application as an oral inquiry about SSI... benefits) we will explain the requirements for receiving SSI benefits and give the person a chance to...

  6. News and Views: Challenges of Relativistic Astrophysics

    Science.gov (United States)

    Opher, Reuven

    2013-12-01

    I discuss some of the most outstanding challenges in relativistic astrophysics in the subjects of compact objects (black holes and neutron stars), dark sector (dark matter and dark energy), plasma astrophysics (origin of jets, cosmic rays, and magnetic fields), and the primordial universe (physics at the beginning of the Universe). In these four subjects, I discuss 12 of the most important challenges. These challenges give us insight into new physics that can only be studied in the large scale universe. The near-future possibilities, in observations and theory, for addressing these challenges are also discussed.

  7. The astrophysical gravitational wave stochastic background

    Institute of Scientific and Technical Information of China (English)

    Tania Regimbau

    2011-01-01

    A stochastic background of gravitational waves with astrophysical origins may have resulted from the superposition of a large number of unresolved sources since the beginning of stellar activity.Its detection would put very strong constraints on the physical properties of compact objects, the initial mass function and star formarion history.On the other hand, it could be a ‘noise' that would mask the stochastic background of its cosmological origin.We review the main astrophysical processes which are able to produce a stochastic background and discuss how they may differ from the primordial contribution in terms of statistical properties.Current detection methods are also presented.

  8. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  9. Bibliometric indicators of young authors in astrophysics

    DEFF Research Database (Denmark)

    Havemann, Frank; Larsen, Birger

    2015-01-01

    We test 16 bibliometric indicators with respect to their validity at the level of the individual researcher by estimating their power to predict later successful researchers. We compare the indicators of a sample of astrophysics researchers who later co-authored highly cited papers before...... their first landmark paper with the distributions of these indicators over a random control group of young authors in astronomy and astrophysics. We find that field and citation-window normalisation substantially improves the predicting power of citation indicators. The sum of citation numbers normalised...

  10. Magnetic processes in astrophysics theory, simulations, experiments

    CERN Document Server

    Rüdiger, Günther; Hollerbach, Rainer

    2013-01-01

    In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore the motion of electrically conducting fluids, the so-called dynamo effect, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial to the formation of the stars, and discuss promising experiments currently being designed to investigate some of the relevant physics in the laboratory. This interdisciplinary approach will appeal to a wide audience in physics, astrophysics and geophysics. This second edition covers such add

  11. Advances in astronomy and astrophysics 7

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Advances in Astronomy and Astrophysics, Volume 7 covers reviews about the advances in astronomy and astrophysics. The book presents reviews on the scattering of electrons by diatomic molecules and on Babcock's theory of the 22-year solar cycle and the latitude drift of the sunspot zone. The text then describes reviews on the structures of the terrestrial planets (Earth, Venus, Mars, Mercury) and on type III solar radio bursts. The compact and dispersed cosmic matter is also considered with regard to the search for new cosmic objects and phenomena and on the nature of the ref shift from compact

  12. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  13. KeV astrophysics with GeV beams; Blazing a new trail on the summit of nuclear astrophysics

    International Nuclear Information System (INIS)

    GeV beams of light ions and electrons are used for creating a high flux of real and virtual photons, with which some problems in Nuclear Astrophysics are studied. GeV 8B beams are used to study the Coulomb dissociation of 8B and thus the 7Be(p,γ)8B reaction. This reaction is one of the major source of uncertainties in estimating the 8B solar neutrino flux and a critical input for calculating the 8B solar neutrino flux. The Coulomb dissociation of 8B appears to provide a viable method for measuring the 7Be(p,γ)8B reaction rate, with a weighted average of the RIKEN1, RIKEN2, GSI1 and MSU published results of S17(0) = 18.9 ± 1.0 eV-b. This result, however, does not include a theoretical error estimated to be ± 10%. GeV electron beams on the other hand, are used to create a high flux of real and virtual photons at TUNL-HIGS and MIT-Bates, respectively, and we discuss two new proposals to study the 12C(α,γ)16O reaction with real and virtual photons. The 12C(α,γ)16O reaction is essential for understanding Type II and Type Ia supernova. It is concluded that virtual and real photons produced by GeV light ions and electron beams are useful for studying some problems in Nuclear Astrophysics. (author)

  14. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman

    2005-04-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium

  15. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 2: Application to EBR-II Primary Sodium System and Related Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman; Collin J. Knight

    2006-03-01

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.

  16. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water.

    Science.gov (United States)

    Guo, Xiaoyao; Du, Bin; Wei, Qin; Yang, Jian; Hu, Lihua; Yan, Liangguo; Xu, Weiying

    2014-08-15

    In the present study, a kind of graphenes magnetic material (Fe3O4-GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effective for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pHZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe3O4-GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g(-1) for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature.

  17. Introduction of LL-IV Distributed Hydrological Model and Applications in DMIP-II

    Science.gov (United States)

    Li, L.; Zhang, H.; Yang, M.; Nicholson, A.

    2011-12-01

    Watershed hydrological models are an important tool for understanding hydrological processes on the earth, and they have been developed from empirical models to stochastic models, to lumped conceptual models, and finally to distributed conceptual models. Among them, the distributed hydrological model with physical bases is a great milestone in the development of hydrological models. The Hydrology Laboratory of the US National Weather Service paid high attention to the applications of distributed hydrological models. This department has proposed the Distributed Model Intercomparison Projects (DMIP-I and DMIP-II) since 2001, which made a major contribution to the development of distributed hydrological models. This paper introduces the development of the LL (Lan Li) distributed hydrological model, which produced satisfactory results in both DMIP-I and DIMP-II. LL-IV is the latest version of the LL distributed hydrological model and its basic equations and structures are detailed in this paper. LL-IV, for the first time, derives convection-diffusion equations for the interflow (in both saturated and unsaturated conditions) and underground flow. In addition, this model describes soil humidity, evaporation from soil, infiltration, overland flow, stream flow etc. by convection-diffusion equations. The advantages of using convection-diffusion equations in LL-IV to represent water cycle process for either the vertical change in a single grid or water interchange between grids are as follows: (1) Convection-diffusion equations require fewer variables compared with St. Venant equations. Whole and continuous data of the velocity and water stage, for example, are not usually available for most watersheds, which limits the application of distributed hydrological model. For LL-IV, however, these data are not always necessary when simulating. (2) LL-IV improves computational efficiency and requires less memory space by using convection-diffusion equations which focus mainly on

  18. Physics and astrophysics with dark matter particles

    International Nuclear Information System (INIS)

    The DAMA/Nal set-up has investigated the annual modulation signature over seven annual cycles achieving 6.3 σ C.L. model independent evidence for the presence of a Dark Matter particle component in the galactic halo. Some of the Physics and Astrophysics topics which can be addressed by DAMA/LIBRA are also introduced

  19. Astrophysics, cosmology and high energy physics

    International Nuclear Information System (INIS)

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  20. Nuclear astrophysics experiments with radioactive beams

    International Nuclear Information System (INIS)

    In Nuclear Astrophysics, experiments with radioactive beams present particular problems (e.g. low beam intensity, large background) to which specific solutions (i.e. non-standard detection setup) can be brought. Selected reactions measured in Louvain-la-Neuve are treated as practical examples. (author)

  1. Nuclear astrophysics and the Trojan Horse Method

    Science.gov (United States)

    Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A. M.; Pizzone, R. G.

    2016-04-01

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach.

  2. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been provided in this article.

  3. New Directions in Black Hole Astrophysics

    Science.gov (United States)

    Reynolds, C. S.

    2002-12-01

    The astrophysics of accreting black holes has been a scientific focus of most major future X-ray missions. In this presentation, I will describe how our science goals and expectations have been effected by new data from Chandra and XMM-Newton as well as new theoretical work. I will argue on the basis of XMM-Newton data that black hole spin does not manifest itself through subtle effects but may have dramatic astrophysical consequences. If this is correct, the exotic astrophysics of black hole spin, including astrophysical realizations of the Penrose and Blandford-Znajek processes, will be a principal focus of Constellation-X, XEUS and MAXIM. On the other hand, data from the late stages of the RXTE/ASCA missions as well as XMM-Newton suggest that the simple technique of relativistic X-ray iron line reverberation mapping, which was originally touted as a good method for studying the inner accretion disk, may be hard to realize. Finally, I will discuss recent theoretical/simulation work on the appearance of a MHD turbulent accretion disk around a black hole. Such simulations may be a good framework to understand future timing observations of Galactic Black Hole Candidates and their quasi-periodic oscillations. They also suggest a quantitative way of measuring the space-time geometry around supermassive black holes in AGN.

  4. Radioactive ion beams in nuclear astrophysics

    Science.gov (United States)

    Gialanella, L.

    2016-09-01

    Unstable nuclei play a crucial role in the Universe. In this lecture, after a short introduction to the field of Nuclear Astrophysics, few selected cases in stellar evolution and nucleosynthesis are discussed to illustrate the importance and peculiarities of processes involving unstable species. Finally, some experimental techniques useful for measurements using radioactive ion beams and the perspectives in this field are presented.

  5. Neutron cross sections of importance to astrophysics

    International Nuclear Information System (INIS)

    Neutron reactions of importance to the various stellar burning cycles are discussed. The role of isomeric states in the branched s-process is considered for particular cases. Neutron cross section needs for the 187Re-187Os, 87Rb-87Sr clocks for nuclear cosmochronology are discussed. Other reactions of interest to astrophysical processes are presented. 35 references

  6. Recent Status of Astrophysical S17

    Science.gov (United States)

    Motobayashi, T.

    2002-12-01

    The present status of the astrophysical S factor for the 7Be(p, γ)8B reaction is reviewed. Because of its importance for the solar neutrino problem, the reaction has been extensively studied. Three independent methods, the direct capture, the Coulomb dissociation and the ANC method, give almost consistent results within 10-20% accuracy.

  7. Neutron shielding for particle astrophysics experiments

    CERN Document Server

    McMillan, J E

    2005-01-01

    Particle astrophysics experiments often require large volume neutron shields which are formed from hydrogenous material. This note reviews some of the available materials in an attempt to find the most cost effective solution. Raw polymer pellets and Water Extended Polyester (WEP) ae discussed in detail. Suppliers for some materials are given.

  8. Nuclear astrophysics and the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Laboratori Nazionali del Sud - INFN, Catania (Italy); La Cognata, M.; Pizzone, R.G. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Lamia, L. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Mukhamedzhanov, A.M. [Texas A and M University, Cyclotron Institute, College Station, TX (United States)

    2016-04-15

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach. (orig.)

  9. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-01

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered. PMID:23799785

  10. Testing the applicability of the k0-NAA method at the MINT's TRIGA MARK II reactor

    Science.gov (United States)

    Siong, Wee Boon; Dung, Ho Manh; Wood, Ab. Khalik; Salim, Nazaratul Ashifa Abd.; Elias, Md. Suhaimi

    2006-08-01

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k0 method has become the preferred standardization method of NAA ( k0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters ( α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k0-NAA method at the MINT.

  11. Testing the applicability of the k 0-NAA method at the MINT's TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    The Analytical Chemistry Laboratory at MINT is using the NAA technique since 1980s and is the only laboratory in Malaysia equipped with a research reactor, namely the TRIGA MARK II. Throughout the years the development of NAA technique has been very encouraging and was made applicable to a wide range of samples. At present, the k 0 method has become the preferred standardization method of NAA (k 0-NAA) due to its multi-elemental analysis capability without using standards. Additionally, the k 0 method describes NAA in physically and mathematically understandable definitions and is very suitable for computer evaluation. Eventually, the k 0-NAA method has been adopted by MINT in 2003, in collaboration with the Nuclear Research Institute (NRI), Vietnam. The reactor neutron parameters (α and f) for the pneumatic transfer system and for the rotary rack at various locations, as well as the detector efficiencies were determined. After calibration of the reactor and the detectors, the implemented k 0 method was validated by analyzing some certified reference materials (including IAEA Soil 7, NIST 1633a, NIST 1632c, NIST 1646a and IAEA 140/TM). The analysis results of the CRMs showed an average u score well below the threshold value of 2 with a precision of better than ±10% for most of the elemental concentrations obtained, validating herewith the introduction of the k 0-NAA method at the MINT

  12. KROME - a package to embed chemistry in astrophysical simulations

    Science.gov (United States)

    Grassi, T.; Bovino, S.; Schleicher, D. R. G.; Prieto, J.; Seifried, D.; Simoncini, E.; Gianturco, F. A.

    2014-04-01

    Chemistry plays a key role in many astrophysical situations regulating the cooling and the thermal properties of the gas, which are relevant during gravitational collapse, the evolution of discs and the fragmentation process. In order to simplify the usage of chemical networks in large numerical simulations, we present the chemistry package KROME, consisting of a PYTHON pre-processor which generates a subroutine for the solution of chemical networks which can be embedded in any numerical code. For the solution of the rate equations, we make use of the high-order solver DLSODES, which was shown to be both accurate and efficient for sparse networks, which are typical in astrophysical applications. KROME also provides a large set of physical processes connected to chemistry, including photochemistry, cooling, heating, dust treatment and reverse kinetics. The package presented here already contains a network for primordial chemistry, a small metal network appropriate for the modelling of low metallicities environments, a detailed network for the modelling of molecular clouds, a network for planetary atmospheres, as well as a framework for the modelling of the dust grain population. In this paper, we present an extended test suite ranging from one-zone and 1D models to first applications including cosmological simulations with ENZO and RAMSES and 3D collapse simulations with the FLASH code. The package presented here is publicly available at http://kromepackage.org/ and https://bitbucket.org/krome/krome_stable.

  13. CASTRO: A New Compressible Astrophysical Solver. I. Hydrodynamics and Self-Gravity

    CERN Document Server

    Almgren, A S; Bell, J B; Day, M S; Howell, L H; Joggerst, C C; Lijewski, M J; Nonaka, A; Singer, M; Zingale, M

    2010-01-01

    We present a new code, CASTRO, that solves the multicomponent compressible hydrodynamic equations for astrophysical flows including self-gravity, nuclear reactions and radiation. CASTRO uses an Eulerian grid and incorporates adaptive mesh refinement (AMR). Our approach to AMR uses a nested hierarchy of logically-rectangular grids with simultaneous refinement in both space and time. The radiation component of CASTRO will be described in detail in the next paper, Part II, of this series.

  14. Server Development For NSLS-II Physics Applications And Performance Analysis

    International Nuclear Information System (INIS)

    The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. The server software under development is available via an open source sourceforge project named epics-pvdata, which consists of modules pvData, pvAccess, pvIOC, and pvService. Examples of two services that already exist in the pvService module are itemFinder, and gather. Each service uses pvData to store in-memory transient data, pvService to transfer data over the network, and pvIOC as the service engine. The performance benchmarking for pvAccess and both gather service and item finder service are presented in this paper. The performance comparison between pvAccess and Channel Access are presented also. For an ultra low emittance synchrotron radiation light source like NSLS II, the control system requirements, especially for beam control are tight. To control and manipulate the beam effectively, a use case study has been performed to satisfy the requirement and theoretical evaluation has been performed. The analysis shows that model based control is indispensable for beam commissioning and routine operation. However, there are many challenges such as how to re-use a design model for on-line model based control, and how to combine the numerical methods for modeling of a realistic lattice with the analytical techniques for analysis of its properties. To satisfy the requirements and challenges, adequate system architecture for the software framework for beam commissioning and operation is critical. The existing traditional approaches are self-consistent, and monolithic. Some of them have adopted a concept of middle layer to separate low level hardware processing from numerical algorithm computing, physics modelling, data manipulating and plotting, and error handling. However, none of the existing approaches can satisfy the requirement. A new design has been proposed by introducing service

  15. The trojan horse method as indirect technique in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A; Spitaleri, C; Cherubini, S; Crucilla, V; Fu, C; Gulino, M; La Cognata, M; Lamia, L; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L [Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria - Universita di Catania, Catania (Italy); Elekes, Z; Fueloep, Z; Gyuerky, G; Kiss, G; Mukhamedzhanov, A [ATOMKI - Debrecen (Hungary); Goldberg, V [Cyclotron Institute, Texas A and M University, College Station (United States); Rolfs, C [Ruhr-Universitaet, Bochum (Germany)], E-mail: tumino@lns.infn.it (and others)

    2008-05-15

    The Trojan Horse Method is a successful indirect technique for nuclear astrophysics. It allows one to measure astrophysical rearrangement reactions down to the relevant energies, providing a successful alternative path to measure the astrophysical S(E) factor. The basic features will be discussed and some recent results will be presented.

  16. 3rd Session of the Sant Cugat Forum on Astrophysics

    CERN Document Server

    Gravitational wave astrophysics

    2015-01-01

    This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics — Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field.

  17. Problems in astrophysical radiation hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J.I.

    1983-09-14

    The basic equations of radiation hydrodynamics are discussed in the regime that the radiation is dynamically as well as thermally important. Particular attention is paid to the question of what constitutes an acceptable approximate non-relativistic system of dynamical equations for matter and radiation in this regime. Further discussion is devoted to two classes of application of these ideas. The first class consists of problems dominated by line radiation, which is sensitive to the velocity field through the Doppler effect. The second class is of problems in which the advection of radiation by moving matter dominates radiation diffusion.

  18. Problems in astrophysical radiation hydrodynamics

    International Nuclear Information System (INIS)

    The basic equations of radiation hydrodynamics are discussed in the regime that the radiation is dynamically as well as thermally important. Particular attention is paid to the question of what constitutes an acceptable approximate non-relativistic system of dynamical equations for matter and radiation in this regime. Further discussion is devoted to two classes of application of these ideas. The first class consists of problems dominated by line radiation, which is sensitive to the velocity field through the Doppler effect. The second class is of problems in which the advection of radiation by moving matter dominates radiation diffusion

  19. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    Science.gov (United States)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to

  20. Building a Successful Teachers' Workshop in Astronomy & Astrophysics

    Science.gov (United States)

    Smecker-Hane, T. A.; Thornton, C. E.

    2005-12-01

    We discuss the Teachers' Workshop in Astronomy & Astrophysics, a 2-day long summer workshop we designed to aid K-12 grade teachers in incorporating astronomy and astrophysics into their curricula. These workshops are part of a faculty-led outreach program entitled Outreach in Astronomy & Astrophysics with the UCI Observatory, funded by an NSF FOCUS grant to the University of California, Irvine. Approximately 20 teachers from the Compton, Newport/Mesa and Santa Ana Unified School Districts attend each workshop. Our teachers realize that astronomy captures the imagination of their students, and thus lessons in astronomy can very effectively convey a number of challenging math and science concepts. Our workshop is designed to give teachers the content and instruction needed to achieve that goal. Because only a small fraction of teachers have taken a college astronomy course, an important component of the workshop is lectures on: (1) the motion of objects in the night sky, moon phases and the seasons, (2) the solar system, (3) the physics of light, and (4) interesting applications such as searching for planets around other stars and charting the expansion history of the Universe. The second important component of the workshop is the kit of material each teacher receives, which includes a introductory astronomy textbook, planetarium software, and the ASP's "Universe at Your Fingertips" and "More Universe at Your Fingertips", etc.. The latter two books give teachers many examples of creative hands-on activities and experiments they can do with their classes and instruction on how to build a coherent curriculum for their particular grade level. We also introduce teachers to Contemporary Laboratory Exercises in Astronomy (CLEA), a suite of computer lab exercises that can be used effectively in high school physics classes. For more information, see http://www.physics.uci.edu/%7Eobservat/#e&o. Funding provided by NSF grant EHR-0227202 (PI: Ronald Stern).

  1. A chemical reaction network solver for the astrophysics code NIRVANA

    Science.gov (United States)

    Ziegler, U.

    2016-02-01

    Context. Chemistry often plays an important role in astrophysical gases. It regulates thermal properties by changing species abundances and via ionization processes. This way, time-dependent cooling mechanisms and other chemistry-related energy sources can have a profound influence on the dynamical evolution of an astrophysical system. Modeling those effects with the underlying chemical kinetics in realistic magneto-gasdynamical simulations provide the basis for a better link to observations. Aims: The present work describes the implementation of a chemical reaction network solver into the magneto-gasdynamical code NIRVANA. For this purpose a multispecies structure is installed, and a new module for evolving the rate equations of chemical kinetics is developed and coupled to the dynamical part of the code. A small chemical network for a hydrogen-helium plasma was constructed including associated thermal processes which is used in test problems. Methods: Evolving a chemical network within time-dependent simulations requires the additional solution of a set of coupled advection-reaction equations for species and gas temperature. Second-order Strang-splitting is used to separate the advection part from the reaction part. The ordinary differential equation (ODE) system representing the reaction part is solved with a fourth-order generalized Runge-Kutta method applicable for stiff systems inherent to astrochemistry. Results: A series of tests was performed in order to check the correctness of numerical and technical implementation. Tests include well-known stiff ODE problems from the mathematical literature in order to confirm accuracy properties of the solver used as well as problems combining gasdynamics and chemistry. Overall, very satisfactory results are achieved. Conclusions: The NIRVANA code is now ready to handle astrochemical processes in time-dependent simulations. An easy-to-use interface allows implementation of complex networks including thermal processes

  2. 76 FR 66998 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Science.gov (United States)

    2011-10-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory... following topic: --Astrophysics Division Update --Results from Acting Astrophysics Division...

  3. 78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... following topics: --Astrophysics Division Update --Report from Astrophysics Roadmap Team --James Webb...

  4. Ultrasensitive detection of pepsinogen I and pepsinogen II by a time-resolved fluoroimmunoassay and its preliminary clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang Biao [Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063 (China) and Southern Yangzi University, Wuxi, Jiangsu Province 214036 (China)]. E-mail: huangbiao78@hotmail.com; Xiao Hualong [Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063 (China); Zhang Xiangrui [Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063 (China); Zhu, Lan [Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063 (China); Liu Haiyan [Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province 214063 (China); Jin Jian [Southern Yangzi University, Wuxi, Jiangsu Province 214036 (China)

    2006-06-30

    .8 {+-} 7.4 for the PG I/PG II ratio. The normal ranges of Serum PG I levels for healthy volunteers were 58.2-266.6 {mu}g L{sup -1}, and those of serum PG II levels were less than 25.3 {mu}g L{sup -1}. The availability of a highly sensitive, reliable, and convenient PG-TRFIA method for quantifying PG will allow investigations into the possible diagnostic value of this analysis in various clinical conditions, including gastric carcinoma, duodenal ulcer, gastric ulcer and gastritis. The sensitivity and reproducibility of the assay were satisfactory for clinical applications.

  5. Tuning laser produced electron-positron jets for lab-astrophysics experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fiuza, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hazi, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kemp, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pollock, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marley, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shepherd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Williams, G. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barnak, D. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Chang, P-Y. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Fiksel, G. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Glebov, V. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Meyerhofer, D. D. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Myatt, J. F. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Stoeckel, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics (LLE); Nakai, M. [Osaka Univ. (Japan). ILE; Arikawa, Y. [Osaka Univ. (Japan). ILE; Azechi, H. [Osaka Univ. (Japan). ILE; Fujioka, S. [Osaka Univ. (Japan). ILE; Hosoda, H. [Osaka Univ. (Japan). ILE; Kojima, S. [Osaka Univ. (Japan). ILE; Miyanga, N. [Osaka Univ. (Japan). ILE; Morita, T. [Osaka Univ. (Japan). ILE; Moritaka, T. [Osaka Univ. (Japan). ILE; Nagai, T. [Osaka Univ. (Japan). ILE; Namimoto, T. [Osaka Univ. (Japan). ILE; Nishimura, H. [Osaka Univ. (Japan). ILE; Ozaki, T. [Osaka Univ. (Japan). ILE; Sakawa, Y. [Osaka Univ. (Japan). ILE; Takabe, H. [Osaka Univ. (Japan). ILE; Zhang, Z. [Osaka Univ. (Japan). ILE

    2015-02-23

    This paper reviews the experiments on the laser produced electron-positron jets using large laser facilities worldwide. The goal of the experiments was to optimize the parameter of the pair jets for their potential applications in laboratory-astrophysical experiment. Results on tuning the pair jet’s energy, number, emittance and magnetic collimation will be presented.

  6. Astrophysics Conducted by the Lunar University Network for Astrophysics Research (LUNAR) and the Center for Lunar Origins (CLOE)

    OpenAIRE

    Burns, Jack O.; Lazio, T. Joseph W.; Bottke, William

    2012-01-01

    [Abridged] The Moon is a unique platform from and on which to conduct astrophysical measurements. The Lunar University Network for Astrophysics Research (LUNAR) and the Center for Lunar Origins and Evolution (CLOE) teams within the NASA Lunar Science Institute (NLSI) are illustrating how the Moon can be used as a platform to advance important goals in astrophysics. Of relevance to Astrophysics and aligned with NASA strategic goals, all three of the primary research themes articulated by New W...

  7. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoyao [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Du, Bin, E-mail: dubin61@gmail.com [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Wei, Qin, E-mail: sdjndxwq@163.com [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Yang, Jian [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Hu, Lihua [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Yan, Liangguo; Xu, Weiying [School of Resources and Environment, University of Jinan, Jinan 250022 (China)

    2014-08-15

    Highlights: • Graphenes magnetic composite nanoparticles (Fe{sub 3}O{sub 4}-GS) were used to adsorb metal ions. • The adsorption of metal ions onto Fe{sub 3}O{sub 4}-GS could be well interpreted by the Freundlich equation. • The adsorption of metal ions onto Fe{sub 3}O{sub 4}-GS fit pseudo-second order kinetic model. • Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. - Abstract: In the present study, a kind of graphenes magnetic material (Fe{sub 3}O{sub 4}-GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effictive for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pH{sub ZPC} value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe{sub 3}O{sub 4}-GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g{sup −1} for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature.

  8. Indirect techniques in nuclear astrophysics. Asymptotic normalization coefficient and trojan horse

    Energy Technology Data Exchange (ETDEWEB)

    Mukhamedzhanov, A.M.; Gagliardi, C.A.; Pirlepesov, F.; Trache, L.; Tribble, R.E. [Texas A and M University, Cyclotron Institute, College Station, TX (United States); Blokhintsev, L.D. [Moscow State University, Institute of Nuclear Physics, Moscow (Russian Federation); Brown, B.A.; Nunes, F.M. [Michigan State University, N.S.C.L. and Department of Physics and Astronomy, East Lansing, MI (United States); Burjan, V.; Kroha, V. [Nuclear Physics Institute of Czech Academy of Sciences, Prague-Rez (Czech Republic); Cherubini, S.; Pizzone, R.G.; Romano, S.; Spitaleri, C.; Tumino, A. [DMFCI, Universita di Catania, Catania, Italy and INFN, Laboratori Nazionali del Sud, Catania (Italy); Irgaziev, B.F. [National University, Physics Department, Tashkent (Uzbekistan); Tang, X.D. [Argonne National Laboratory, Physics Division, Argonne, IL (United States)

    2006-03-15

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reactions down to astrophysically relevant energies. We explain why there is no Coulomb barrier in the sub-process amplitudes extracted from the TH reaction. The expressions for the TH amplitude for direct and resonant cases are presented. (orig.)

  9. NASA Astrophysics Funds Strategic Technology Development

    Science.gov (United States)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  10. Astrophysical phenomena related to supermassive black holes

    Science.gov (United States)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  11. An Ion-Neutral Collision Database for Astrophysics

    Science.gov (United States)

    Stancil, Phillip

    Collisions between ions and neutral atoms and molecules play an important role in a variety of astrophysical, atmospheric, and stellar-spheric gaseous and plasma environments. For example, charge transfer data, at the total and internal-state-specific level, are crucial for determining elemental ionization balances, the temperature balance, and ion emission spectra. Likewise, scattering- angle-dependent elastic and related transport cross sections describe the interaction of ion and neutral fluids largely controlling the rates of energy and momentum transfer, such as in ambipolar diffusion. As a consequence, most plasma/spectral modeling codes (e.g., Xstar, Cloudy, Chianti) require the input of large datasets of collisional information. Unfortunately, the available data are of a diverse nature in quality, energy or temperature coverage, state-specificity, format, and source documentation, or are completely unavailable in the literature. Further, such a lack of ion-neutral collision data, or data of poor quality, can lead to errors in astrophysical models and synthetic spectra and their related deductions. We propose here to address many of these issues with a significant update and extension of the existing Charge Transfer Database for Astrophysics which was funded from 1999- 2002 by the NASA AISRP program. The update of the charge transfer database will include i) the addition of new theoretical data computed in the past decade by our group, ii) the addition of new experimental and theoretical data from the literature with an emphasis on the post-2002 period, iii) data evaluations to produce recommended cross sections and rate coefficients, iv) facilities to generate approximate collisional data from semi-empirical models when data are completely lacking, v) conversion of all data into a format suitable for a relational database, vi) converters to facilitate exchange/export of data to other databases/users (e.g, XSAMS, uaDB, VAMDC), and vii) the development of a

  12. Hair of astrophysical black holes

    CERN Document Server

    Lyutikov, Maxim

    2012-01-01

    The "no hair" theorem is not applicable to black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N_B = e \\Phi_\\infty /(\\pi c \\hbar), where \\Phi_\\infty is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. The black hole's magnetosphere subsequently relaxes to the split monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that...

  13. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    International Nuclear Information System (INIS)

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  14. Determination by transfer reaction of alpha widths in fluorine for astrophysical interest; Determination par reaction de transfert de largeurs alpha dans le fluor 19. Applications a l'astrophysique

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Santos, F. de

    1995-04-15

    The nucleosynthesis of fluorine is not known. Several astrophysical models predict the alpha radiative capture onto N{sup 15} as the main fluorine production reaction. In the expression of the reaction rate, one parameter is missing: the alpha width of the resonance on the E = 4.377 MeV level in fluorine. A direct measurement is excluded due to the very low cross-section expected. We have determined this alpha width using a transfer reaction followed by analyses with FR-DWBA (Finite Range Distorted Wave Born Approximation) in a simple cluster alpha model. This experiment was carried out with a Li{sup 7} beam with E = 28 MeV onto a N{sup 15} gas target. The 16 first levels were studied. Spectroscopic factors were extracted for most of them. Alpha widths for unbound levels were determined. Many alpha width were compared with known values from direct reaction and the differences lie within the uncertainty range (factor 2). The alpha width for the E = 4.377 MeV level was determined ({gamma}{sub {alpha}} = 1.5*10{sup -15} MeV), its value is about 60 times weaker than the used value. The influence of our new rate was studied in AGB (Asymptotic Giant Branch) stars during thermal pulses. In this model the alteration is sensitive. (author)

  15. The Astrophysics of Ultrahigh Energy Cosmic Rays

    CERN Document Server

    Kotera, Kumiko

    2011-01-01

    The origin of the highest energy cosmic rays is still unknown. The discovery of their sources will reveal the workings of the most energetic astrophysical accelerators in the universe. Current observations show a spectrum consistent with an origin in extragalactic astrophysical sources. Candidate sources range from the birth of compact objects to explosions related to gamma-ray bursts or to events in active galaxies. We discuss the main effects of propagation from cosmologically distant sources including interactions with cosmic background radiation and magnetic fields. We examine possible acceleration mechanisms leading to a survey of candidate sources and their signatures. New questions arise from an observed hint of sky anisotropies and an unexpected evolution of composition indicators. Future observations may reach the necessary sensitivity to achieve charged particle astronomy and to observe ultrahigh energy photons and neutrinos, which will further illuminate the workings of the universe at these extrem...

  16. Unique Astrophysics in the Lyman Ultraviolet

    CERN Document Server

    Tumlinson, Jason; Kriss, Gerard; France, Kevin; McCandliss, Stephan; Sembach, Ken; Fox, Andrew; Tripp, Todd; Jenkins, Edward; Beasley, Matthew; Danforth, Charles; Shull, Michael; Stocke, John; Lehner, Nicolas; Howk, Christopher; Froning, Cynthia; Green, James; Oliveira, Cristina; Fullerton, Alex; Blair, Bill; Kruk, Jeff; Sonneborn, George; Penton, Steven; Wakker, Bart; Prochaska, Xavier; Vallerga, John; Scowen, Paul

    2012-01-01

    There is unique and groundbreaking science to be done with a new generation of UV spectrographs that cover wavelengths in the "Lyman Ultraviolet" (LUV; 912 - 1216 Ang). There is no astrophysical basis for truncating spectroscopic wavelength coverage anywhere between the atmospheric cutoff (3100 Ang) and the Lyman limit (912 Ang); the usual reasons this happens are all technical. The unique science available in the LUV includes critical problems in astrophysics ranging from the habitability of exoplanets to the reionization of the IGM. Crucially, the local Universe (z <= 0.1) is entirely closed to many key physical diagnostics without access to the LUV. These compelling scientific problems require overcoming these technical barriers so that future UV spectrographs can extend coverage to the Lyman limit at 912 Ang.

  17. Problems and Progress in Astrophysical Dynamos

    CERN Document Server

    Vishniac, E T; Cho, J

    2002-01-01

    Astrophysical objects with negligible resistivity are often threaded by large scale magnetic fields. The generation of these fields is somewhat mysterious, since a magnetic field in a perfectly conducting fluid cannot change the flux threading a fluid element, or the field topology. Classical dynamo theory evades this limit by assuming that magnetic reconnection is fast, even for vanishing resistivity, and that the large scale field can be generated by the action of kinetic helicity. Both these claims have been severely criticized, and the latter appears to conflict with strong theoretical arguments based on magnetic helicity conservation and a series of numerical simulations. Here we discuss recent efforts to explain fast magnetic reconnection through the topological effects of a weak stochastic magnetic field component. We also show how mean-field dynamo theory can be recast in a form which respects magnetic helicity conservation, and how this changes our understanding of astrophysical dynamos. Finally, we ...

  18. Magnetic field amplification in turbulent astrophysical plasmas

    CERN Document Server

    Federrath, Christoph

    2016-01-01

    Magnetic fields play an important role in astrophysical accretion discs, and in the interstellar and intergalactic medium. They drive jets, suppress fragmentation in star-forming clouds and can have a significant impact on the accretion rate of stars. However, the exact amplification mechanisms of cosmic magnetic fields remain relatively poorly understood. Here I start by reviewing recent advances in the numerical and theoretical modelling of the 'turbulent dynamo', which may explain the origin of galactic and inter-galactic magnetic fields. While dynamo action was previously investigated in great detail for incompressible plasmas, I here place particular emphasis on highly compressible astrophysical plasmas, which are characterised by strong density fluctuations and shocks, such as the interstellar medium. I find that dynamo action works not only in subsonic plasmas, but also in highly supersonic, compressible plasmas, as well as for low and high magnetic Prandtl numbers. I further present new numerical simu...

  19. Neutrino particle astrophysics: status and outlook

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The discovery of astrophysical neutrinos at high energy by IceCube raises a host of questions: What are the sources? Is there a Galactic as well as an extragalactic component? How does the astrophysical spectrum continue to lower energy where the dominant signal is from atmospheric neutrinos? Is there a measureable flux of cosmogenic neutrinos at higher energy? What is the connection to cosmic rays? At what level and in what energy region should we expect to see evidence of the π0 decay photons that must accompany the neutrinos at production? Such questions are stimulating much theoretical activity and many multi-wavelength follow-up observations as well as driving plans for new detectors. My goal in this presentation will be to connect the neutrino data and their possible interpretations to ongoing multi-messenger observations and to the design of future detectors.

  20. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  1. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    Science.gov (United States)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  2. Status reports of supercomputing astrophysics in Japan

    International Nuclear Information System (INIS)

    The Workshop on Supercomputing Astrophysics was held at National Laboratory for High Energy Physics (KEK, Tsukuba) from August 31 to September 2, 1989. More than 40 participants of physicists, astronomers were attendant and discussed many topics in the informal atmosphere. The main purpose of this workshop was focused on the theoretical activities in computational astrophysics in Japan. It was also aimed to promote effective collaboration between the numerical experimentists working on supercomputing technique. The various subjects of the presented papers of hydrodynamics, plasma physics, gravitating systems, radiative transfer and general relativity are all stimulating. In fact, these numerical calculations become possible now in Japan owing to the power of Japanese supercomputer such as HITAC S820, Fujitsu VP400E and NEC SX-2. (J.P.N.)

  3. Numerical MHD Codes for Modeling Astrophysical Flows

    CERN Document Server

    Koldoba, A V; Lii, P S; Comins, M L; Dyda, S; Romanova, M M; Lovelace, R V E

    2015-01-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  4. The Future of Gamma Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  5. Vision Forward for NASA's Astrophysics Education Program

    Science.gov (United States)

    Hasan, Hashima; Sheth, Kartik J.

    2016-01-01

    NASA has recently re-structured its Science Education program with the competitive selection of twenty-seven programs. Of these, ~60% are relevant to Astrophysics, and three have primarily Astrophysics content. A brief overview of the rationale for re-structuring will be presented. We have taken a strategic approach, building on our science-discipline based legacy and looking at new approaches given Stakeholder priorities. We plan to achieve our education goals with the selection of organizations that utilize NASA data, products, or processes to meet NASA's education objectives; and by enabling our scientists and engineers with education professionals, tools, and processes to better meet user needs. Highlights of the selected programs will be presented, and how they enable the vision going forward of achieving the goal of enabling NASA scientists and engineers to engage more effectively with learners of all ages.

  6. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  7. TeV Gamma-Ray Astrophysics

    CERN Document Server

    Ribó, M

    2008-01-01

    The window of TeV Gamma-Ray Astrophysics was opened less than two decades ago, when the Crab Nebula was detected for the first time. After several years of development, the technique used by imaging atmospheric Cherenkov telescopes like HESS, MAGIC or VERITAS, is now allowing to conduct sensitive observations in the TeV regime. Water Cherenkov instruments like Milagro are also providing the first results after years of integration time. Different types of extragalactic and galactic sources have been detected, showing a variety of interesting phenomena that are boosting theory in very high energy gamma-ray astrophysics. Here I review some of the most interesting results obtained up to now, making special emphasis in the field of X-ray/gamma-ray binaries.

  8. Bubble Chambers for Experiments in Nuclear Astrophysics

    CERN Document Server

    DiGiovine, B; Holt, R J; Rehm, K E; Raut, R; Robinson, A; Sonnenschein, A; Rusev, G; Tonchev, A P; Ugalde, C

    2015-01-01

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas tar...

  9. Breakthrough Capability for the NASA Astrophysics Explorer Program: Reaching the Darkest Sky

    Science.gov (United States)

    Greenhouse, Matthew A.; Benson, Scott W.; Falck, Robert D.; Fixsen, Dale J.; Gardner, Joseph P.; Garvin, James B.; Kruk, Jeffrey W.; Oleson, Stephen R.; Thronson, Harley A.

    2012-01-01

    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to 13X increased photometric sensitivity and 160X increased observing speed relative to a Sun- Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.

  10. Astrophysical Effects of Scalar Dark Matter Miniclusters

    OpenAIRE

    Zurek, Kathryn M.; Hogan, Craig J.; Quinn, Thomas R.

    2006-01-01

    We model the formation, evolution and astrophysical effects of dark compact Scalar Miniclusters (``ScaMs''). These objects arise when a scalar field, with an axion-like or Higgs-like potential, undergoes a second order phase transition below the QCD scale. Such a scalar field may couple too weakly to the standard model to be detectable directly through particle interactions, but may still be detectable by gravitational effects, such as lensing and baryon accretion by large, gravitationally bo...

  11. Neutrino masses in astrophysics and cosmology

    International Nuclear Information System (INIS)

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs

  12. Astrophysical Constraints on Singlet Scalars at LHC

    OpenAIRE

    Hertzberg, Mark P.(Center for Theoretical Physics and Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA); Masoumi, Ali

    2016-01-01

    We consider the viability of new heavy gauge singlet scalar particles at the LHC. Our motivation for this study comes from the possibility of a new particle with mass ~ 750 GeV decaying significantly into two photons at LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such a particle and its associated collider signal. The simplest and most obvious UV complete model th...

  13. Colour-Charged Quark Matter in Astrophysics?

    Institute of Scientific and Technical Information of China (English)

    QIU Cong-Xin; XU Ren-Xin

    2006-01-01

    Colour confinement is only a supposition, which has not yet been proven in QCD. Here we propose that macroscopic quark-gluon plasma in astrophysics could hardly maintain colourless because of causality. It is expected that the existence of chromatic strange quark stars as well as chromatic strangelets preserved from the QCD phase transition in the early Universe could be unavoidable if their colourless correspondents do exist.

  14. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  15. The Planck Surveyor mission: astrophysical prospects

    OpenAIRE

    De Zotti, G.; Toffolatti, L.; Argüeso, F.; Davies, R. D.; Mazzotta, P.; Partridge, R. B.; Smoot, G. F.; Vittorio, N.

    1999-01-01

    Although the Planck Surveyor mission is optimized to map the cosmic microwave background anisotropies, it will also provide extremely valuable information on astrophysical phenomena. We review our present understanding of Galactic and extragalactic foregrounds relevant to the mission and discuss on one side, Planck's impact on the study of their properties and, on the other side, to what extent foreground contamination may affect Planck's ability to accurately determine cosmological parameter...

  16. Historical perspective on astrophysical MHD simulations

    CERN Document Server

    Norman, Michael L

    2010-01-01

    This contribution contains the introductory remarks that I presented at IAU Symposium 270 on ``Computational Star Formation" held in Barcelona, Spain, May 31 -- June 4, 2010. I discuss the historical development of numerical MHD methods in astrophysics from a personal perspective. The recent advent of robust, higher order-accurate MHD algorithms and adaptive mesh refinement numerical simulations promises to greatly improve our understanding of the role of magnetic fields in star formation.

  17. Astrophysical and terrestrial neutrinos in Supernova detectors

    International Nuclear Information System (INIS)

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  18. Large Format Detector Arrays for Astrophysics

    Science.gov (United States)

    Moseley, Harvey

    2006-01-01

    Improvements in detector design and advances in fabrication techniques has resulted in devices which can reach fundamental sensitivity limits in many cases. Many pressing astrophysical questions require large arrays of such sensitive detectors. I will describe the state of far infrared through millimeter detector development at NASA/GSFC, the design and production of large format arrays, and the initial deployment of these powerful new tools.

  19. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G.G. [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  20. CPT violations in Astrophysics and Cosmology

    CERN Document Server

    Auriemma, G

    2007-01-01

    In this paper it is given a brief review of the current limits on the magnitude of CPT and Lorentz Invariance violations, currently predicted in connection with quantum gravity and string/M-theory, that can be derived from astrophysical and cosmological data. Even if not completely unambiguous, these observational tests of fundamental physics are complementary to the ones obtained by accelerator experiments and by ground or space based direct experiments, because potentially can access very high energies and large distances.

  1. Impact of THM reaction rates for astrophysics

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Moroni, P. G. Prada; Puglia, S. M. R.; Romano, S.; Sergi, M. L.

    2015-10-01

    Burning reaction S(E)-factor determinations are among the key ingredients for stellar models when one has to deal with energy generation evaluation and the genesis of the elements at stellar conditions. To by pass the still present uncertainties in extrapolating low-energies values, S(E)-factor measurements for charged-particle induced reactions involving light elements have been made available by devote Trojan Horse Method (THM) experiments. The recent results are here discussed together with their impact in astrophysics.

  2. Acceleration of Astrophysical Simulations with Special Hardware

    OpenAIRE

    Marcus Martinez, Guillermo Anibal

    2011-01-01

    This work presents the raceSPH and raceGRAV accelerator libraries, designed to interface astrophysical simulations with special-purpose hardware. The raceSPH focuses on the acceleration of Smoothed Particle Hydrodynamics (SPH), a method for approximating force interactions in fluid dynamics. Accelerators used range from vectorizing units on the microprocessors to Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs), and speed-ups range from 1.2x to 28x when measured in ...

  3. The Astrophysics Source Code Library: An Update

    Science.gov (United States)

    Allen, Alice; Nemiroff, R. J.; Shamir, L.; Teuben, P. J.

    2012-01-01

    The Astrophysics Source Code Library (ASCL), founded in 1999, takes an active approach to sharing astrophysical source code. ASCL's editor seeks out both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and adds entries for the found codes to the library. This approach ensures that source codes are added without requiring authors to actively submit them, resulting in a comprehensive listing that covers a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL moved to a new location in 2010, and has over 300 codes in it and continues to grow. In 2011, the ASCL (http://asterisk.apod.com/viewforum.php?f=35) has on average added 19 new codes per month; we encourage scientists to submit their codes for inclusion. An advisory committee has been established to provide input and guide the development and expansion of its new site, and a marketing plan has been developed and is being executed. All ASCL source codes have been used to generate results published in or submitted to a refereed journal and are freely available either via a download site or from an identified source. This presentation covers the history of the ASCL and examines the current state and benefits of the ASCL, the means of and requirements for including codes, and outlines its future plans.

  4. Cosmology and particle astrophysics. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, L.; Goobar, A. [Stockholm Univ. (Sweden). Dept. of Physics

    2006-07-01

    Beginning with some basic facts about the observable universe the authors consider in successive chapters the complete range of topics that make up a degree course in cosmology and particle astrophysics. The outstanding feature of this book is that it is self-contained, in that no specialised knowledge is required on the part of the reader, apart from basic undergraduate mathematics and physics. This paperback edition will again target students of physics, astrophysics and cosmology at the advanced undergraduate level or early graduate level. One of the book's biggest strong points is that the authors rapidly involve students in the most exciting of today's developments in the field in a simple and self-contained manner, relegating the more technical aspects to appendices. The worked examples throughout the book, and summaries at the end of each chapter, which were expanded in the second edition, have been very well received by students. This book offers advanced undergraduate level and beginning graduate level students a highly readable, yet comprehensive review of particle astrophysics. Competing books cover this topic at too advanced a level for this readership. (orig.)

  5. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  6. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  7. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  8. High Quantum Efficiency Type II SLS FPAs for Space-Based Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposes to develop high quantum efficiency (QE) and low dark current infrared epitaxy materials based on Type II Strained Layer Superlattice...

  9. High-Detectivity Type-II Superlattice Detectors for 6-14 um Infrared Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SVT Associates proposes an novel type II superlattice structure to extend the cutoff wavelength and CBIRD SL photo diode structure with unipolar barriers to...

  10. Large Format LW Type-II SLS FPAs for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposes to develop high performance (low dark current, high quantum efficiency, and low NEdT) infrared epitaxy materials based on Type II...

  11. Goddard's Astrophysics Science Divsion Annual Report 2014

    Science.gov (United States)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  12. Application of Response Surface Methodology (RSM for Optimizing Production Condition for Removal of Pb (II and Cu (II Onto Kenaf Production Condition for Removal of Pb (II and Cu (II Onto Kenaf

    Directory of Open Access Journals (Sweden)

    Z.Z. Chowdhury

    2012-03-01

    Full Text Available This research aims to find out the feasibility of preparing kenaf fiber based carbon for removal of divalent cations of Pb (II and Cu (II from waste water. Activated carbon was prepared by using physiochemical activation method which involves two step of potassium hydroxide impregnation (KOH with carbon dioxide activation of the semi carbonized char. The effects of three preparation variables; temperature (500-700ºC, time (1-3 h and Impregnation Ratio (IR by using KOH (1-3 on the removal percentage of Pb (II and Cu (II ions were investigated by using Design of Experiment (DOE. Quadratic models were developed to correlate activated carbon preparation variables from kenaf fibers with the two responses by applying Central Composite Design (CCD. Experimental data were analysed by using analysis of variance (ANOVA and the most influential factor on each experimental design response was identified. Process optimization was done by validating both the model to obtain maximum removal efficiency with possible maximum yield of activated carbon.

  13. An exploratory study of proficient undergraduate Chemistry II students' application of Lewis's model

    Science.gov (United States)

    Lewis, Sumudu R.

    This exploratory study was based on the assumption that proficiency in chemistry must not be determined exclusively on students' declarative and procedural knowledge, but it should be also described as the ability to use variety of reasoning strategies that enrich and diversify procedural methods. The study furthermore assumed that the ability to describe the structure of a molecule using Lewis's model and use it to predict its geometry as well as some of its properties is indicative of proficiency in the essential concepts of covalent bonding and molecule structure. The study therefore inquired into the reasoning methods and procedural techniques of proficient undergraduate Chemistry II students when solving problems, which require them to use Lewis's model. The research design included an original survey, designed by the researcher for this study, and two types of interviews, with students and course instructors. The purpose of the survey was two-fold. First and foremost, the survey provided a base for the student interview selection, and second it served as the foundation for the inquiry into the strategies the student use when solving survey problems. Twenty two students were interviewed over the course of the study. The interview with six instructors allowed to identify expected prior knowledge and skills, which the students should have acquired upon completion of the Chemistry I course. The data, including videos, audios, and photographs of the artifacts produced by students during the interviews, were organized and analyzed manually and using QSR NVivo 10. The research found and described the differences between proficient and non-proficient students' reasoning and procedural strategies when using Lewis's model to describe the structure of a molecule. One of the findings clearly showed that the proficient students used a variety of cues to reason, whereas other students used one memorized cue, or an algorithm, which often led to incorrect representations in

  14. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    The fifth edition of the bi-annual 'Nuclear Physics in Astrophysics (NPA)' conference series was held in Eilat, Israel on April 3-8, 2011. This Conference is also designated as the 24th Nuclear Physics Divisional Conference of the EPS. The main purpose of this conference, as that of the four previous ones in this series, is to deal with those aspects of nuclear physics that are directly related to astrophysics. The concept of such a meeting was conceived by the Nuclear Physics Board of the European Physical Society in 1998. At that time, the idea of such a conference was quite new and it was decided that this meeting would be sponsored by the EPS. The first meeting, in January 2001, was planned and organized in Eilat, Israel. Due to international circumstances the conference was moved to Debrecen, Hungary. Subsequent conferences were held in Debrecen again, in Dresden, Germany, and in Frascati, Italy (moved from Gran Sasso due to the tragic earthquake that hit the L'Aquila region). After 10 years the conference finally returned to Eilat, the originally envisioned site. Eilat is a resort town located on the shore of the Gulf of Eilat, which connects Israel to the Red Sea and further south to the Indian Ocean. It commands spectacular views of the desert and mountains, offering unique touristic attractions. The local scientific backdrop of the conference is the fact that the Israeli scientific scene exhibits a wide variety of research activities in many areas of nuclear physics and astrophysics. A new accelerator, SARAF at Soreq Nuclear Research Center is presently undergoing final acceptance tests. SARAF will serve as a platform for production of radioactive ion beams and nuclear-astrophysics research in Israel. The meeting in Eilat was organized by four Israeli scientific institutions, Hebrew University, Soreq Nuclear Research Center, Tel Aviv University and the Weizmann Institute of Science. The welcome reception and lectures were held at the King Solomon hotel and

  15. Glutaraldehyde Cross-Linked Chitosan Nanofibers: Preparation, Characterization and Application in Adsorption of Cu (II).

    Science.gov (United States)

    Cao, Jianhua; Li, Dongzho; Liang, Weihua; Wang, Yakun; Wul, Dayong

    2016-03-01

    Chitosan nanofibers were prepared via electrospinning and cross-linked by a treatment with glutaraldehyde (GA) in order to obtain insoluble adsorbents in aqueous acidic and basic solutions. Then, the prepared nanofiber was investigated for its adsorption of Cu (II) in aqueous solution. The effects of the viscosity, conductivity of chitosan-TFA spinning solution and the properties of the nanofibers related to the molecular weight of chitosan were studied. The scanning electron microscope (SEM) images demonstrated a smooth and inter-connected morphology comprising fibers with diameters between 70 nm and 350 nm. An amount of 72 mg/g of Cu (II) adsorption was achieved and its mechanism was elucidated. After removing the adsorbed Cu (II), the cross-linked chitosan nanofibers were regenerated and could be reused. PMID:27455735

  16. Grackle: a Chemistry and Cooling Library for Astrophysics

    CERN Document Server

    Smith, Britton D; Glover, Simon C O; Goldbaum, Nathan J; Turk, Matthew J; Regan, John; Wise, John H; Schive, Hsi-Yu; Abel, Tom; Emerick, Andrew; O'Shea, Brian W; Anninos, Peter; Hummels, Cameron B; Khochfar, Sadegh

    2016-01-01

    We present the Grackle chemistry and cooling library for astrophysical simulations and models. Grackle provides a treatment of non-equilibrium primordial chemistry and cooling for H, D, and He species, including H2 formation on dust grains; tabulated primordial and metal cooling; multiple UV background models; and support for radiation transfer and arbitrary heat sources. The library has an easily implementable interface for simulation codes written in C, C++, and Fortran as well as a Python interface with added convenience functions for semi-analytical models. As an open-source project, Grackle provides a community resource for accessing and disseminating astrochemical data and numerical methods. We present the full details of the core functionality, the simulation and Python interfaces, testing infrastructure, performance, and range of applicability.

  17. 25 Years of Self-Organized Criticality: Solar and Astrophysics

    CERN Document Server

    Aschwanden, Markus J; Dimitropoulou, Michaila; Georgoulis, Manolis; Hergarten, Stefan; MdAteer, James; Milovanov, Alexander V; Mineshige, Shin; Morales, Laura; Nishizuka, Naoto; Pruessner, Gunnar; Sanchez, Raul; Sharma, Surja; Strugarek, Antoine; Uritsky, Vadim

    2014-01-01

    Shortly after the seminal paper {\\sl "Self-Organized Criticality: An explanation of 1/f noise"} by Bak, Tang, and Wiesenfeld (1987), the idea has been applied to solar physics, in {\\sl "Avalanches and the Distribution of Solar Flares"} by Lu and Hamilton (1991). In the following years, an inspiring cross-fertilization from complexity theory to solar and astrophysics took place, where the SOC concept was initially applied to solar flares, stellar flares, and magnetospheric substorms, and later extended to the radiation belt, the heliosphere, lunar craters, the asteroid belt, the Saturn ring, pulsar glitches, soft X-ray repeaters, blazars, black-hole objects, cosmic rays, and boson clouds. The application of SOC concepts has been performed by numerical cellular automaton simulations, by analytical calculations of statistical (powerlaw-like) distributions based on physical scaling laws, and by observational tests of theoretically predicted size distributions and waiting time distributions. Attempts have been und...

  18. Nuclear structure studies for the astrophysical r-process

    CERN Document Server

    Pfeiffer, B; Thielemann, F K; Walters, W B

    2001-01-01

    The production of the heaviest elements in nature occurs via the r-process, i.e. a combination of rapid neutron captures, the inverse photodisintegrations, and slower beta sup - -decays, beta-delayed processes as well as fission and possibly interactions with intense neutrino fluxes. A correct understanding and modeling requires the knowledge of nuclear properties far from stability and a detailed prescription of the astrophysical environment. Experiments at radioactive ion beam facilities have played a pioneering role in exploring the characteristics of nuclear structure in terms of masses and beta-decay properties. Initial examinations paid attention to highly unstable nuclei with magic neutron numbers and their beta-decay properties, related to the location and height of r-process peaks, while recent activities focus on the evolution of shell effects at large distances from the valley of stability. We show in site-independent applications the effect of both types of nuclear properties on r-process abundanc...

  19. Study of shock waves and related phenomena motivated by astrophysics

    Science.gov (United States)

    Drake, R. P.; Keiter, P. A.; Kuranz, C. C.; Malamud, G.; Manuel, M.; Di Stefano, C. A.; Gamboa, E. J.; Krauland, C. M.; MacDonald, M. J.; Wan, W. C.; Young, R. P.; Montgomery, D. S.; Stoeckl, C.; Froula, D. H.

    2016-03-01

    This paper discusses the recent research in High-Energy-Density Physics at our Center. Our work in complex hydrodynamics is now focused on mode coupling in the Richtmyer- Meshkov process and on the supersonic Kelvin-Helmholtz instability. These processes are believed to occur in a wide range of astrophysical circumstances. In radiation hydrodynamics, we are studying radiative reverse shocks relevant to cataclysmic variable stars. Our work on magnetized flows seeks to produce magnetized jets and study their interactions. We build the targets for all these experiments, and simulate them using our CRASH code. We also conduct diagnostic research, focused primarily on imaging x-ray spectroscopy and its applications to scattering and fluorescence.

  20. A multiphysics and multiscale software environment for modeling astrophysical systems

    CERN Document Server

    Zwart, Simon Portegies; Harfst, Stefan; Groen, Derek; Fujii, Michiko

    2008-01-01

    We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a ``Noah's Ark'' milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multi-scale and multi-physics systems in which the time- and size-scales are well separated, like simulating the evolution of plan...