WorldWideScience

Sample records for astronomy including observations

  1. Extragalactic observational astronomy

    International Nuclear Information System (INIS)

    The lectures on extragalactic observational astronomy includes the redshift controversy, normal galaxies, determination of the Hubble constant using diameters of HII regions, determination of the deceleration parameter, the luminosity--volume test as evidence for the cosmological interpretation of quasars, problems involving clusters and groups of galaxies. (U.S.)

  2. Observing Projects in Introductory Astronomy

    Science.gov (United States)

    Taylor, M. Suzanne

    2016-01-01

    Introductory astronomy classes without laboratory components face a unique challenge of how to expose students to the process of science in the framework of a lecture course. As a solution to this problem small group observing projects are incorporated into a 40 student introductory astronomy class composed primarily of non-science majors. Students may choose from 8 observing projects such as graphing the motion of the moon or a planet, measuring daily and seasonal motions of stars, and determining the rotation rate of the Sun from sunspots. Each group completes two projects, requiring the students to spend several hours outside of class making astronomical observations. Clear instructions and a check-list style observing log help students with minimal observing experience to take accurate data without direct instructor assistance. Students report their findings in a lab report-style paper, as well as in a formal oral or poster presentation. The projects serve a double purpose of allowing students to directly experience concepts covered in class as well as providing students with experience collecting, analyzing, and presenting astronomical data.

  3. A Partnership in Observational and Computational Astronomy (POCA)

    Science.gov (United States)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2009-01-01

    A partnership has been established between South Carolina State University (SCSU, a Historically Black College/University), the National Optical Astronomy Observatory (NOAO) and Clemson University (CU) under an award from NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. The mission of POCA is to develop an effective, long-term partnership that combines the strengths of the three institutions to increase the scientific and educational output of all the partners with special emphasis on enhancing diversity in the field of astronomy. Components of the program include enhancing faculty and student research in astronomy at SCSU, recruiting and retaining underrepresented minority students into the field, outreach through planetarium programs and museum exhibits and developing web based resources in astronomy education. Activities in the first year of the program are discussed. We have begun developing and testing several new astronomy laboratory exercises. Our first summer internship program has concluded successfully. With PAARE scholarship money, we are now supporting four physics majors at SCSU who have chosen the astronomy option (concentration) for their degree. SCSU undergraduates have acquired observing experience on the KPNO Mayall 4-meter telescope under the guidance of faculty and graduate students from CU. NOAO astronomers have collaborated with SCSU faculty to begin a research program that studies RV Tauri stars. Funds from PAARE are supporting follow-up research to a just-completed doctoral dissertation by E. A. Mayo described elsewhere in these proceedings. Future plans for graduate fellowships and related activities are discussed in addition to summer internships for POCA undergraduates at CU and NOAO. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  4. Astronomy

    CERN Document Server

    Seymour, Percy

    2014-01-01

    With a blend of exciting discoveries and important scientific theory,this innovative and readable introduction to astronomy is ideal for anyone who wants to understand what we know about the universe,and how we know it. Each chapter starts with details of a method of jow astronomers over time have observed the world,and then uses this as a springboard to discuss what they discovered,and why this was important for understanding the cosmos. The last chapter,on dark matter,also focuses on the many things we don''t yet know - reminding us that astronomy,like this book,is a fast-paced and fascinati

  5. First Light Observations from the International Study of Astronomy Reasoning (ISTAR) Database

    Science.gov (United States)

    Tatge, Coty B.; Slater, Stephanie; Slater, Timothy F.; Bretones, Paulo S.; McKinnon, David; Schleigh, Sharon

    2016-01-01

    During the period between Fall 2014 and Summer 2015, the International Astronomical Union reorganized its structure to include the IAU Working Group on Theory and Methods in Astronomy Education. The initial goals of that working group are 1) promoting Astronomy Education Research (AER) by adopting the international collaboration model used by astronomy researchers, 2) fostering international astronomy education and AER capacity through the development of networks, training and shared resources, and 3) improving astronomy education by describing research based approaches to the teaching and learning of astronomy. In support of those efforts, the working group began a collaboration with the Center for Astronomy & Physics Education Research to develop the International Study of Astronomy Reasoning (ISTAR) Database, an online, searchable research tool, intended to catalog, characterize, and provide access to all known astronomy education research production, world-wide. Beginning in the Summer of 2015, a test of ISTAR's functionality began with a survey of a previously uncatalogued set of test objects: U.S.-based doctoral dissertations and masters. This target population was selected for its familiarity to the ISTAR developers, and for its small expected sample size (50-75 objects). First light observations indicated that the sample exceeded 300 dissertation objects. These objects were characterized across multiple variables, including: year of production, document source, type of resource, empirical methodology, context, informal setting type, research construct, type of research subject, scientific content, language, and nation of production. These initial observations provide motivation to extend this project to observe masters levels thesis, which are anticipated to be ten times more numerous as doctoral dissertations, other peer-reviewed contributions, contributions from the larger international community.

  6. A Proposed Astronomy Learning Progression for Remote Telescope Observation

    Science.gov (United States)

    Slater, Timothy F.; Burrows, Andrea C.; French, Debbie A.; Sanchez, Richard A.; Tatge, Coty B.

    2014-01-01

    Providing meaningful telescope observing experiences for students who are deeply urban or distantly rural place-bound--or even daylight time-bound--has consistently presented a formidable challenge for astronomy educators. For nearly 2 decades, the Internet has promised unfettered access for large numbers of students to conduct remote telescope…

  7. Observing photons in space a guide to experimental space astronomy

    CERN Document Server

    Pauluhn, Anuschka; Culhane, J; Timothy, J; Wilhelm, Klaus; Zehnder, Alex

    2013-01-01

    An ideal resource for lecturers, this book provides a comprehensive review of experimental space astronomy. The number of astronomers whose knowledge and interest is concentrated on interpreting observations has grown substantially in the past decades; yet, the number of scientists who are familiar with and capable of dealing with instrumentation has dwindled.  All of the authors of this work are leading and experienced experts and practitioners who have designed, built, tested, calibrated, launched and operated advanced observing equipment for space astronomy. This book also contains concise information on the history of the field, supported by appropriate references. Moreover, scientists working in other fields will be able to get a quick overview of the salient issues of observing photons in any one of the various energy, wavelength and frequency ranges accessible in space. This book was written with the intention to make it accessible to advanced undergraduate and graduate students.

  8. Astronomy with a Budget Telescope An Introduction to Practical Observing

    CERN Document Server

    Moore, Patrick

    2012-01-01

    If you had purchased an inexpensive astronomical telescope a few years ago, disappointment would have been almost guaranteed. In current Internet age, times have changed and most (but not quite all) telescopes have been used to favorable results. Sir Patrick Moore, working with John Watson, has surveyed and tested the best and the worst of today's budget-priced astronomical telescopes. This new edition of Astronomy with a Budget Telescope is the result of their efforts. This book will show you how to recognize the good from the bad in observational ware with essential hints and tips on what to look for when buying both new and used telescopes. Updated and expanded, this latest edition includes budgeting tips for the new generation of digital cameras and 'go-to' telescopes. It provides a step-by-step guide to setting up your telescope, and how to observe the Moon, Sun, planets, stars, nebulae, and galaxies. Inside you'll find full-page finder charts and full-color images showing you what each object should loo...

  9. Observational techniques of gamma rays astronomy in low energy

    International Nuclear Information System (INIS)

    Due to the absorption of great part of the gamma-ray spectrum of cosmic origin, by the earth's atmosphere at heights above 20Km, gamma-ray astronomy achieved its full development only after the advent of the space age. Ballons and satellites are the space vehicles which have been used to transport gamma-ray telescopes to observational heights in the atmosphere, or out of it. The results of these experiments can determine the sources, the energy spectra and the intensities of the cosmic gamma-rays, and provide other important information of astrophysical interest. The detection of gamma-rays of cosmic origin is very difficult. The observational techniques used in gamma-ray astronomy are dependent on the energy range of the gamma-rays which one desires to detect. The most common telescopes of low energy gamma-ray astronomy (50KeV - 20MeV) use NaI(Tl) scintillators, or germanium diodes, as principal detectors, surrounded by an active shield (anticoincidence) of organic or inorganic scintillators. (Author)

  10. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise.

    Science.gov (United States)

    Herman, J. R.; Caruso, J. A.; Stone, R. G.

    1973-01-01

    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  11. Astronomy Exercises for the Artist: van Gogh the Observer

    Science.gov (United States)

    Lawlor, Timothy M.

    2013-01-01

    We present a set of exercises designed to be used in a survey astronomy course, an introductory astronomy laboratory course, or in secondary education. The exercises use the great works of Vincent van Gogh but could

  12. Rotational spectroscopy and observational astronomy of prebiotic molecules

    Science.gov (United States)

    Widicus Weaver, Susanna Leigh

    It is now widely believed that prebiotic molecules were delivered to the early Earth by planetesimals and their associated interplanetary dust particles. Yet the formation pathways for these molecules are not clear. Amino acids and sugars have been found in carbonaceous chondrites, but only much simpler species have been detected in the interstellar medium (ISM). Prebiotic organics could have formed in the ISM and been directly incorporated into planetesimals, or simpler species could have: formed in the ISM and then been incorporated into planetesimals, undergone further processing, and been delivered to Earth. Limits on interstellar chemistry must therefore be established through observational astronomy before potential prebiotic formation pathways can be assessed. These observations require laboratory spectroscopic investigation of the species of interest. This thesis is an interdisciplinary study involving laboratory rotational spectroscopy and astronomical observations of several key prebiotic molecules. The laboratory work has focused on obtaining the rotational spectra of the simplest three-carbon ketose sugar, 1,3-dihydroxyacetone, and its structural isomers methyl glycolate and dimethyl carbonate, as well as aminoethanol, the predicted interstellar precursor to alanine. The pure rotational spectral analysis of the low-lying torsional states of the simplest a-hydroxy aldehyde, glycolaldehyde, has also been completed. The original Balle-Flygare Fourier transform microwave spectrometer was used to obtain the microwave spectra, while both the Jet Propulsion Laboratory and Caltech direct absorption flow cell spectrometers were used for additional direct absorption millimeter and submillimeter studies. The results of these laboratory experiments were used to guide observational searches with the Caltech Submillimeter Observatory, the Owens Valley Millimeter Array; and the Green Bank Telascope toward the hot core sources Sgr B2(N-LMH), Orion Hot Core

  13. Political astronomy: Comet and meteor observations by Muslim historians

    Science.gov (United States)

    Chander Kapoor, Ramesh

    2015-08-01

    Eclipses and unexpected phenomena like comets, meteors, novae and earthquakes were viewed among various cultures as violating the established order of the heavens. They were considered to be ill omens for kings and emperors and were routinely monitored. The present work looks into the texts of history and literature by Muslim historians and chroniclers in West Asia and India that carry stray references to such phenomena. The accounts often relate the apparitions to specific disastrous events or prognosticate revolts, deaths, epidemics, earthquakes all that that took place in later times. Obviously, the occurrences interested the astrologers more. Comet appearances would last for days and weeks but nearly all the writings lack sequential observations. Meteor showers are annual features but the Islamic calendar being lunar would not easily lead one to notice periodic nature of the incidents, let alone sensing a periodicity in comet appearances. These are non-astronomy texts with little scientific content but being from different ages permit us to see how the astronomical perceptions changed over the times. The recorded details and firm chronology, tested against modern back calculations, can provide valuable information on them, keeping in mind the text and the context in which the original reference was made. We also notice a qualitative change in the Indian writings of the 18th century and later where the authors begin to show up with influence of exposure to the European scientific progress.

  14. The Universe Observation Center: an educational center devoted to Astronomy in Catalonia

    Science.gov (United States)

    Fernández, D.

    The Universe Observation Center (in Catalan language, Centre d'Observació de l'Univers, COU) is located in close proximity to the Montsec Astronomical Observatory (Observatori Astronòmic del Montsec, OAM), in eastern Catalonia (Spain). Both centers comprise the Montsec Astronomical Park (Parc Astronòmic Montsec, PAM), managed by the Consorci del Montsec. Montsec Mountain remains the finest location for astronomical observation in Catalonia, as demonstrated by a site-testing campaign conducted by the Astronomy and Meteorology Department of the University of Barcelona. The COU consists of a Central Building (including a permanent exhibition and three classrooms possessing broadband Internet access), the Telescope Park (two astronomical domes equipped with medium-size telescopes, a coelostat for solar observation, and a portable telescope park), the Eye of Montsec (a digital planetarium and, at the same time, an extremely innovative platform for sky observation) and the Garden of the Universe (a tour of the land surrounding the COU, visiting several areas within it). The COU will offer to the Spanish academic community a host of fascinating and unique activities in the fields of astronomy and geology. The Center is open not only to students (from primary school through university), but also to amateur astronomers, people interested in science and the general public.

  15. Gravitational-wave astronomy: Observational results and their impact

    OpenAIRE

    Shawhan, Peter S.

    2010-01-01

    The successful construction and operation of highly sensitive gravitational-wave detectors is an achievement to be proud of, but the detection of actual signals is still around the corner. Even so, null results from recent searches have told us some interesting things about the objects that live in our universe, so it can be argued that the era of gravitational-wave astronomy has already begun. In this article I review several of these results and discuss what we have learned from them. I the...

  16. US and Turkish preschoolers' observational knowledge of astronomy

    Science.gov (United States)

    Saçkes, Mesut; McCormick Smith, Mandy; Cabe Trundle, Kathy

    2016-01-01

    The purpose of this cross-cultural study was to describe and compare US and Turkish children's observational knowledge of the day and night cycle and to identify similarities predicted by framework theory. Fifty-six (27 US and 29 Turkish) young children (ages 48-60 months) participated in the study. Semi-structured interviews were individually conducted, digitally recorded, transcribed, and analyzed using the constant comparative method. The results demonstrate that preschoolers from the two cultures are able to make comparable informal observations of the sky, and their observational knowledge includes many similarities, with one exception, as predicted by framework theory. US children were more likely to perform better than the Turkish children on the question about the time of observation for the moon. Although science concepts and skills are better represented in US early childhood education programs than the Turkish program, the results suggest that this advantage did not translate into performance differences between US and Turkish children.

  17. The Universe on a Desktop: Observational Astronomy Simulations in the Instructional Laboratory

    Science.gov (United States)

    Marschall, Laurence A.

    2000-08-01

    Though the value of hands-on learning has long been recognised by educators, it is difficult to design laboratories in astronomy classes that present realistic astrophysical techniques to undergraduate students. Unlike most other sciences, astronomy is largely observational, not experimental, and making useful observations involves expensive equipment over time scales inconvenient for pedagogy. In recent years, however, astronomy has gone almost completely digital, and the advent of large on-line databases and fast personal computers has made it possible to realistically simulate the experience of research astrophysics in the laboratory. Since 1992, Project CLEA (Contemporary Laboratory Experiences in Astronomy) has been developing computer-based exercises aimed primarily at the introductory astronomy laboratory. These exercises simulate important techniques of astronomical research using digital data and Windows-based software. Each of the nine exercises developed to date consists of software, technical guides for teachers, and student manuals for the exercises. CLEA software is used at many institutions in all the United States and over 60 countries worldwide, in a variety of settings from middle school to upper-class astronomy classes. The current design philosophy and goals of Project CLEA are discussed along with plans for future development.

  18. Gravitational-wave astronomy: Observational results and their impact

    CERN Document Server

    Shawhan, Peter S

    2010-01-01

    The successful construction and operation of highly sensitive gravitational-wave detectors is an achievement to be proud of, but the detection of actual signals is still around the corner. Even so, null results from recent searches have told us some interesting things about the objects that live in our universe, so it can be argued that the era of gravitational-wave astronomy has already begun. In this article I review several of these results and discuss what we have learned from them. I then look into the not-so-distant future and predict some ways in which the detection of gravitational-wave signals will shape our knowledge of astrophysics and transform the field.

  19. Gravitational-wave astronomy: observational results and their impact

    International Nuclear Information System (INIS)

    The successful construction and operation of highly sensitive gravitational-wave detectors is an achievement to be proud of, but the detection of actual signals is still around the corner. Even so, null results from recent searches have told us some interesting things about the objects that live in our universe, so it can be argued that the era of gravitational-wave astronomy has already begun. In this paper I review several of these results and discuss what we have learned from them. I then look into the not-so-distant future and predict some ways in which the detection of gravitational-wave signals will shape our knowledge of astrophysics and transform the field.

  20. Astronomy at the frontiers of science

    CERN Document Server

    2011-01-01

    Astronomy is by nature an interdisciplinary activity: it involves mathematics, physics, chemistry and biology. Astronomers use (and often develop) the latest technology, the fastest computers and the most refined software.  In this book twenty-two leading scientists from nine countries talk about how astronomy interacts with these other sciences. They describe modern instruments used in astronomy and the relations between astronomy and technology, industry, politics and philosophy. They also discuss what it means to be an astronomer, the history of astronomy, and the place of astronomy in society today.   The book contains twenty chapters grouped in four parts: ASTRONOMY AND PHYSICS discusses the place of astronomy among various branches of (mostly high-energy) physics. ASTRONOMY IN SOCIETY describes not only the historical context of astronomy, but issues facing astronomers today, including funding, planning, worldwide collaboration and links with industry. THE TOOLS OF OBSERVATION AND THE PROFESSION OF AS...

  1. Infrared astronomy

    International Nuclear Information System (INIS)

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  2. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    Science.gov (United States)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  3. The Effect of 3D Computer Modeling and Observation-Based Instruction on the Conceptual Change regarding Basic Concepts of Astronomy in Elementary School Students

    Science.gov (United States)

    Kucukozer, Huseyin; Korkusuz, M. Emin; Kucukozer, H. Asuman; Yurumezoglu, Kemal

    2009-01-01

    This study has examined the impact of teaching certain basic concepts of astronomy through a predict-observe-explain strategy, which includes three-dimensional (3D) computer modeling and observations on conceptual changes seen in sixth-grade elementary school children (aged 11-13; number of students: 131). A pre- and postastronomy instruction…

  4. Stars over St Andrews : 75 years of observational astronomy at the University Observatory, St Andrews, Scotland

    OpenAIRE

    Hilditch, R. W.

    2015-01-01

    This document (© Ron Hilditch, University Observatory, St Andrews, Scotland) gives an account of the observational astronomy conducted at the University Observatory, St Andrews, from its inauguration in 1940 through to the present day, some 75 years later. It is concerned with describing the telescopes constructed and used at the Observatory, the instruments that were made and mounted on those telescopes, and the observational programmes that were conducted for the purposes of ...

  5. Astronomical Observations Astronomy and the Study of Deep Space

    CERN Document Server

    2010-01-01

    Our Search for knowledge about the universe has been remarkable, heartbreaking, fantastical, and inspiring, and this search is just beginning. Astronomical Observations is part of a 7 book series that takes readers through a virtual time warp of our discovery. From the nascent space programs of the 1960's to today's space tourism and the promise of distant planet colonization, readers will be transfixed. Throughout this journey of the mind, Earth-bound explorers gain keen insight into the celestial phenomena that have fascinated humans for centuries. Thrilling narratives about indefatigable sc

  6. The Universe Observing Center a modern center to teach and communicate astronomy

    Science.gov (United States)

    Ribas, Salvador J.

    2011-06-01

    The Universe Observing Center is one of the parts of the Parc Astronòmic Montsec (PAM). PAM is an initiative of the Catalan government, through the Consorci del Montsec (Montsec Consortium), to take advantage of the capabilities and potential of the Montsec region to develop scientific research, training and outreach activities, particularly in the field of Astronomy. The choice of the Montsec mountains to install the PAM was motivated by the magnificent conditions for observing the sky at night; the sky above Montsec is the best (natural sky free of light pollution) in Catalonia for astronomical observations. The PAM has two main parts: the Observatori Astronòmic del Montsec (OAdM) and the Universe Observing Center (COU). The OAdM is a professional observatory with an 80-cm catadioptric telescope (Joan Oró Telescope). This telescope is a robotic telescope that can be controlled from anywhere in the world via the Internet. The COU is a large multipurpose center which is intended to become an educational benchmark for teaching and communicate astronomy and other sciences in Catalonia. The management of the COU has three main goals: 1) Teach primary and secondary school students in our Educational Training Camp. 2) Teach university students housing the practical astronomy lectures of the universities. 3) Communicate astronomy to the general public. The COU comprises special areas for these purposes: the Telescopes Park with more than 20 telescopes, a coelostat for solar observations and two dome containing full-automated telescopes. The most special equipment is ``The Eye of Montsec'', with its 12m dome containing a multimedia digital planetarium and a platform for direct observation of the sky and the environment. During 2009 we expect around 10000 visitors in Montsec area to enjoy science with Montsec dark skies and an special natural environment.

  7. Astronomy 101 Students Learning How Science Works by Writing Credible Observing Proposals

    Science.gov (United States)

    Shipman, H. L.

    2003-12-01

    Teachers of general-audience science courses, astronomy department chairs, and K-12 standards-writing committees all agree that student understanding of the scientific habits of mind is one important goal of any science course. This paper reports the successful use of a problem-based learning approach where students asked to choose the next step in an observational astronomy research program. The course, "Black Holes and Cosmic Evolution," is a rather unusual version of Astronomy 101 which spends the first three weeks on the ways that astronomers search for black holes. The 136 students were given a list of black hole candidates (from Bailyn et al., ApJ 499, 368) and asked to work in groups of 4-5 to choose and justify one for further observations. They learned and used error analysis. They determined the X-ray properties of these objects with an on-line x-ray survey (http://skyview.gsfc.nasa.gov/). The group product was a paper that was, essentially, a standard NOAO observing proposal. The University of Delaware's access to telescopes through its newly-acquired membership in the SMARTS consortium (http://phoenix.astro.yale.edu/smarts/) provided some motivation. In short, these students, none of whom are science majors, were challenged to act like real observational astronomers. Some guidance was provided by the instructor and two undergraduate TA's. Did they rise to the challenge or did they flounder? They succeeded. All 30 groups presented credible papers. Several A-plus papers were so good that they could make up most of an actual observing proposal. A follow-up exam tested students' understanding of underlying concepts (e.g., using Kepler's Laws to analyze binary stars). The average score on these test questions was 89.2 (n=133). We plan to use some SMARTS time to observe student-selected targets. This research has been supported by the Distinguished Teaching Scholars program of the National Science Foundation (DUE-0308557).

  8. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    Science.gov (United States)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  9. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    Science.gov (United States)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  10. Stamping through astronomy

    CERN Document Server

    Dicati, Renato

    2013-01-01

    Stamps and other postal documents are an attractive vehicle for presenting astronomy and its development. Written with expertise and great enthusiasm, this unique book offers a historical and philatelic survey of astronomy and some related topics on space exploration. It contains more than 1300 color reproductions of stamps relating to the history of astronomy, ranging from the earliest observations of the sky to modern research conducted with satellites and space probes. Featured are the astronomers and astrophysicists who contributed to this marvelous story – not only Ptolemy, Copernicus, Kepler, Newton, Herschel, and Einstein but also hundreds of other minor protagonists who played an important role in the development of this, the most ancient yet the most modern of all the sciences. The book also examines in depth the diverse areas which have contributed to the history of astronomy, including the instrumentation, the theories, and the observations. Many stamps illustrate the beauty and the mystery of ce...

  11. Sustainable Astronomy

    Science.gov (United States)

    Blaha, C.; Goetz, J.; Johnson, T.

    2011-09-01

    Through our International Year of Astronomy outreach effort, we established a sustainable astronomy program and curriculum in the Northfield, Minnesota community. Carleton College offers monthly open houses at Goodsell Observatory and donated its recently "retire" observing equipment to local schools. While public evenings continue to be popular, the donated equipment was underutilized due to a lack of trained student observing assistants. With sponsorship from NASA's IYA Student Ambassador program, the sustainable astronomy project began in 2009 to generate greater interest in astronomy and train middle school and high school students as observing assistants. Carleton physics majors developed curricular materials and instituted regular outreach programs for grades 6-12. The Northfield High School Astronomy Club was created, and Carleton undergraduates taught high school students how to use telescopes and do CCD imaging. During the summer of 2009, Carleton students began the Young Astronomers Summer Experience (YASE) program for middle school students and offered a two-week, astronomy-rich observing and imaging experience at Goodsell Observatory. In concert with NASA's Summer of Innovation initiative, the YASE program was offered again in 2010 and engaged a new group of local middle school students in hands-on scientific experiments and observing opportunities. Members of the high school astronomy club now volunteer as observing assistants in the community and graduates of the YASE programs are eager to continue observing as members of a public service astronomy club when they enter the Northfield High School. These projects are training future scientists and will sustain the public's interest in astronomy long after the end of IYA 2009.

  12. Observations of an indigenous Hawaiian planetarium operator: Astronomy content knowledge of Hawaiian school children

    Science.gov (United States)

    Dye, Ahia G.; Ha`o, Celeste; Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    Not so long ago, astronomers visiting schools in Hawaii tried to build awareness among school children and teachers about how stars move across the sky, the nature of planets orbiting our sun, and the physical processes governing stars and galaxies. While these efforts were undertaken with all good intentions, they were often based on our collective understanding of how Mainland children come to know astronomy topics, and with a Western worldview. Research observations of Hawaiian elementary school children indicate that Hawaiian children understand far more about the skies than could have been predicted from the behavior of Mainland children, or from the body of literature on children’s understanding of astronomy. Analysis of elementary students’ responses to a kumu’s, or teacher’s questions relating to the celestial sphere indicate that these students posses a deep knowledge of the night sky and celestial motions. This knowledge base is fluent across two cultural systems of constellations, and is predictive. In an era of curriculum development based upon learning progressions, it appears that Native Hawaiian students possess unexpected knowledge that is well poised to interfere with conventional educational and public outreach approaches if not taken into account. Further, these findings suggest that further inquiry must be made into the astronomical thinking of minority populations prior to the unilateral implementation of national science education standards.

  13. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    Science.gov (United States)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  14. Music and Astronomy Under the Stars 2009

    Science.gov (United States)

    Lubowich, D.

    2010-08-01

    Bring telescopes to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded astronomy outreach program at community parks during and after music concerts and outdoor family events—such as a Halloween Stars-Spooky Garden Walk. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience: music lovers who are attending summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500-16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience (Nassau and Suffolk Counties, New York) is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where over 5000 people participated in astronomy activities. The Amateur Observers' Society of New York assisted with the NY concerts and the Springfield STARS astronomy club assisted at Tanglewood. In 2009 over 15,000 people participated in astronomy

  15. TeachAstronomy.com - Digitizing Astronomy Resources

    Science.gov (United States)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  16. Innovation in Astronomy Education

    Science.gov (United States)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  17. Early Astronomy

    Science.gov (United States)

    Thurston, Hugh

    The earliest investigations that we can relate to what is now science are observations of the sky: Astronomy. The earliest written records of every civilization we know of - from China, Egypt, the Tigris-Euphrates and Indus valleys, Central America, the Andes, and so forth - all contain at least some astronomical texts. There are in addition monuments and artifacts that show a clear interest in astronomy, such as Stonehenge and rock paintings, from cultures that left no written records. The interest in celestial phenomena contributed to the development of Babylonian arithmetic and Greek geometry.

  18. Neutrino astronomy

    International Nuclear Information System (INIS)

    In recent years, there has been considerable discussion on the field called neutrino astronomy which represents exciting prospect in that it deals with the radiations which are distinct from electromagnetic spectra. Because of the unique, enormously long interaction mean free path of neutrinos, this field can in principle give extremely valuable complementary information about the universe, in particular about the conditions in the core of the sun and the energy balance and extent of the galaxy. Remarkable difference is observed when outlining of the development of neutrino astronomy is attempted in a manner similar to that for radio astronomy. The development on solar neutrinos, calculation of solar neutrino flux, solar neutrino search experiments, efforts to resolve the discrepancy between theory and experiment concerning the neutrinos from the sun, chemistry consideration, nuclear physics problems, astrophysical calculation, neutrino physics and other physical accomplishments are reviewed in the report. (Iwase, T.)

  19. Astronomy essentials

    CERN Document Server

    Brass, Charles O

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Astronomy includes the historical perspective of astronomy, sky basics and the celestial coordinate systems, a model and the origin of the solar system, the sun, the planets, Kepler'

  20. African Cultural Astronomy

    CERN Document Server

    Holbrook, Jarita C; Medupe, R. Thebe; Current Archaeoastronomy and Ethnoastronomy research in Africa

    2008-01-01

    Astronomy is the science of studying the sky using telescopes and light collectors such as photographic plates or CCD detectors. However, people have always studied the sky and continue to study the sky without the aid of instruments this is the realm of cultural astronomy. This is the first scholarly collection of articles focused on the cultural astronomy of Africans. It weaves together astronomy, anthropology, and Africa. The volume includes African myths and legends about the sky, alignments to celestial bodies found at archaeological sites and at places of worship, rock art with celestial imagery, and scientific thinking revealed in local astronomy traditions including ethnomathematics and the creation of calendars. Authors include astronomers Kim Malville, Johnson Urama, and Thebe Medupe; archaeologist Felix Chami, and geographer Michael Bonine, and many new authors. As an emerging subfield of cultural astronomy, African cultural astronomy researchers are focused on training students specifically for do...

  1. ASTRO-F/FIS observing simulation including detector effects

    Science.gov (United States)

    Jeong, W.; Pak, S.; Lee, H.; Nakagawa, T.; Kim, M.; Oh, S.; Kaneda, H.; Matsuura, S.; Patrashin, M.; Shibai, H.

    Based on the present hardware specifications and configurations of the ASTRO-F/FIS (Far-Infrared Surveyor), we are developing a software that simulates the observations with this instrument. Various kinds of detector effects affect the quality of the signal obtained from the detector. In order to correct the signal exactly, we need to analyze the characteristics of the detector and simulate various detector effects. In this presentation, we will show the simulated data sets based on the experimental data measured in the laboratory. Using the simulator, we will discuss the effects of cosmic-ray hitting, transient, crosstalk and non-uniformity of detectors, and propose an appropriate methods for the data reduction.

  2. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  3. Recent results and observational status of TeV gamma-ray astronomy

    CERN Document Server

    Kohnle, A

    2001-01-01

    TeV gamma-ray astronomy has come of age in the last ten years: there are several well-established and well-studied sources in the TeV sky; presently there are nine imaging atmospheric Cherenkov telescope (IACT) facilities and several next-generation instruments coming online 2001 to 2004 with an order of magnitude improved sensitivity and lower energy threshold. Solar farm experiments have already demonstrated energy thresholds of 50 GeV, and large field-of-view and high duty cycle detectors exist to monitor bright transients and search for gamma-ray burst emission.

  4. Music and Astronomy Under the Stars

    Science.gov (United States)

    Lubowich, D.

    2008-11-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a public astronomy outreach program at community parks during and after free summer music concerts and outdoor movie nights. This project also includes daytime activities because there are some afternoon concerts and daylight children's concerts, and observations using remotely operated telescopes in cloudy weather. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience---music lovers who are attending free summer concerts held in community parks. The music lovers who may never have visited a science museum, planetarium, or star party will be exposed to telescope observations and astronomy information with no additional travel costs. This program will permit the entire community to participate in telescope observations and view astronomical video information to enhance the public appreciation of astronomy. This program will also reach underrepresented and underserved groups (women, minorities, older adults). The population base for the initial target audience (Nassau and Suffolk Counties, New York) is 2,500,000. My partners are the Amateur Observers' Society of New York (AOS) and the Towns of Oyster Bay, Hempstead, North Hempstead, and Huntington. Music and Astronomy Under the Stars is program that should continue beyond the International Year of Astronomy 2009 (IYA2009) and can be expanded into a national program.

  5. Light Pollution in Lowndes County, Georgia: An Observational Project for Introductory Astronomy Students

    Science.gov (United States)

    Rumstay, K. S.; VSU Astronomy Students Team

    2000-12-01

    A long-term study of light pollution in Lowndes County, Georgia has been initiated as a collaborative project among students enrolled in introductory astronomy courses at Valdosta State University. A single honors student began the project in Spring 2000; during the Fall 2000 semester all students enrolled in ASTR 1020K (Stellar and Galactic Astronomy) were invited to participate on a voluntary basis. Students were provided with charts showing the appearance of the constellations Cygnus, Pegasus, Cassiopeia, and Orion (as appropriate) at limiting magnitudes ranging from 2.5 to 6.0 in 0.5-magnitude steps. On clear, moonless nights students compared the visual appearance of these constellations to the charts, allowing them to determine a limiting magnitude for their location. Preliminary results suggest that, even on the clearest nights, stars fainter than magnitude 5.0 are not visible from any location within Lowndes County. This limitation results largely from ambient light from Valdosta, the only urban area within the county, and also from atmospheric extinction in a region of high humidity. By participating in this exercise, students in a class traditionally populated by non-science majors gain an appreciation for the collaborative nature of modern science. They also become familiar more familiar with the night sky than they might were their exposure limited to the traditional two-hour weekly laboratory session. Most importantly, as young adults they experience first-hand the deleterious effects of light intrusion upon their enjoyment of the night sky!

  6. Transmission of Babylonian Astronomy to Other Cultures

    Science.gov (United States)

    Jones, Alexander

    Babylonian astronomy and astrology were extensively transmitted to other civilizations in the second and first millennia BC. Greek astronomy in particular was largely shaped by knowledge of Babylonian observations and mathematical astronomy.

  7. Towards Observational Astronomy of Jets in Active Galaxies from General Relativistic Magnetohydrodynamic Simulations

    Science.gov (United States)

    Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy

    2016-01-01

    We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between

  8. Infrared Astronomy

    Science.gov (United States)

    Mampaso, A.; Prieto, M.; Sánchez, F.

    2004-01-01

    What do we understand of the birth and death of stars? What is the nature of the tiny dust grains that permeate our Galaxy and other galaxies? And how likely is the existence of brown dwarfs, extrasolar planets or other sub-stellar mass objects? These are just a few of the questions that can now be addressed in a new era of infrared observations. IR astronomy has been revolutionised over the past few years by the widespread availability of large, very sensitive IR arrays and the success of IR satellites (IRAS in particular). Several IR space missions due for launch over the next few years promise an exciting future too. For these reasons, the IV Canary Islands Winter School of Astrophysics was dedicated to this burgeoning field. Its primary goal was to introduce graduate students and researchers from other areas to the important new observations and physical ideas that are emerging in this wide-ranging field of research. Lectures from nine leading researchers, renowned for their teaching abilities, are gathered in this volume. These nine chapters provide an excellent introduction as well as a thorough and up-to-date review of developments - essential reading for graduate students entering IR astronomy, and professionals from other areas who realise the importance that IR astronomy may have on their research.

  9. Statistics in astronomy

    OpenAIRE

    Feigelson, Eric D.

    2009-01-01

    Perhaps more than other physical sciences, astronomy is frequently statistical in nature. The objects under study are inaccessible to direct manipulation in the laboratory, so the astronomer is restricted to observing a few external characteristics and inferring underlying properties and physics. Astronomy played a profound role in the historical development of statistics from the ancient Greeks through the 19th century. But the fields drifted apart in the 20th century as astronomy turned tow...

  10. Astronomy in Argentina

    OpenAIRE

    Muriel, Hernán

    2012-01-01

    This article analyses the current state of Astronomy in Argentina and describes its origins. We briefly describe the institutions where astronomical research takes place, the observational facilities available, the training of staff and professionals, and the role of the institutions in scientific promotion. We also discuss the outreach of Astronomy towards the general public, as well as amateur activities. The article ends with an analysis of the future prospects of astronomy in Argentina.

  11. Astronomy in Argentina

    CERN Document Server

    Muriel, Hernán

    2013-01-01

    This article analyses the current state of Astronomy in Argentina and describes its origins. We briefly describe the institutions where astronomical research takes place, the observational facilities available, the training of staff and professionals, and the role of the institutions in scientific promotion. We also discuss the outreach of Astronomy towards the general public, as well as amateur activities. The article ends with an analysis of the future prospects of astronomy in Argentina.

  12. Syllabus Computer in Astronomy

    Science.gov (United States)

    Hojaev, Alisher S.

    2015-08-01

    One of the most important and actual subjects and training courses in the curricula for undergraduate level students at the National university of Uzbekistan is ‘Computer Methods in Astronomy’. It covers two semesters and includes both lecture and practice classes. Based on the long term experience we prepared the tutorial for students which contain the description of modern computer applications in astronomy.The main directions of computer application in field of astronomy briefly as follows:1) Automating the process of observation, data acquisition and processing2) Create and store databases (the results of observations, experiments and theoretical calculations) their generalization, classification and cataloging, working with large databases3) The decisions of the theoretical problems (physical modeling, mathematical modeling of astronomical objects and phenomena, derivation of model parameters to obtain a solution of the corresponding equations, numerical simulations), appropriate software creation4) The utilization in the educational process (e-text books, presentations, virtual labs, remote education, testing), amateur astronomy and popularization of the science5) The use as a means of communication and data transfer, research result presenting and dissemination (web-journals), the creation of a virtual information system (local and global computer networks).During the classes the special attention is drawn on the practical training and individual work of students including the independent one.

  13. X-ray astronomy

    International Nuclear Information System (INIS)

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  14. Communications techniques in radio physics and astronomy

    International Nuclear Information System (INIS)

    Techniques used at the Arecibo Observatory's giant radio telescope in the areas of planetary radar astronomy, passive radio astronomy, and radar studies of the ionosphere and neutral atmosphere are described. Pulse compression, range-Doppler processing, and digital decoding in planetary studies are examined. Spectral line observations and the use of computerized Fourier analysis in passive radio astronomy are reviewed. The investigation of scatter in ionospheric studies, including the determination of the frequency spectrum of the scattered signal, is described, as is the use of the code pulse technique for measuring electron density profiles

  15. Humanising Astronomy

    Science.gov (United States)

    Levin, S.

    2008-06-01

    Universe Awareness (UNAWE) is an international programme that aims to expose underprivileged children (in the age group 4-10) to the inspirational aspects of astronomy. We are currently at the stage of developing materials that will be utilised in a diverse range of environments. This paper explores UNAWE's particular approach to developing tools which includes not only indigenous and folkloric astronomical knowledge, but also the culture of transmission of such knowledge. A specific understanding and explanation of the Universe, the Sun, Moon and stars is present in every culture and can be found contained in its history, legends and belief systems. By consciously embracing different ways of knowing the Universe and not uniquely the rational model, UNAWE places the humanising potential of astronomy at the centre of its purpose. Whilst inspiring curiosity, pride and a sense of ownership in one's own cultural identity, such an approach also exposes children to the diversity of other peoples and their cultures as well as the unifying aspects of our common scientific heritage. The means of creating and delivering the astronomy programme are as relevant to the desired educational outcomes as the content. The challenge in the design of materials is to communicate this stimulating message to the very young. Respect for alternative values systems, the need for dialogue and community participation, and where possible the production of materials using local resources is emphasised. This paper touches recent experiences liaising with communities in India, South Africa, Tunisia, Venezuela and Colombia.

  16. Astronomy, Space Science and Geopolitics

    CERN Document Server

    Courvoisier, Thierry J -L

    2010-01-01

    Astronomy has played a major part in the development of civilisations, not only through conceptual developments, but most importantly through the very practical gains obtained through the observation of Sun, Moon planets and stars. Space sciences, including astronomy, have also played a major role in the development of modern societies, as engine for most subsequent space technology developments. Present trends tend to decrease the role of science in space development. This trend should be reversed to give modern "societies" their independence in space related matters that permeate the lives of all inhabitants of the Earth.

  17. Astronomy, space science and geopolitics

    Science.gov (United States)

    Courvoisier, Thierry J.-L.

    2011-06-01

    Astronomy has played a major part in the development of civilisations, not only through conceptual developments, but most importantly through the very practical gains obtained through the observation of Sun, Moon planets and stars. Space sciences, including astronomy, have also played a major rôle in the development of modern societies, as an engine for most subsequent space technology developments. Present trends tend to decrease the rôle of science in space development. This trend should be reversed to give modern ``societies'' their independence in space-related matters that permeate the lives of all inhabitants of the Earth.

  18. Armenian Cultural Astronomy

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2015-07-01

    Cultural Astronomy is the reflection of sky events in various fields of nations' culture. In foreign literature this field is also called "Astronomy in Culture" or "Astronomy and Culture". Cultural astronomy is the set of interdisciplinary fields studying the astronomical systems of current or ancient societies and cultures. It is manifested in Religion, Mythology, Folklore, Poetry, Art, Linguistics and other fields. In recent years, considerable attention has been paid to this sphere, particularly international organizations were established, conferences are held and journals are published. Armenia is also rich in cultural astronomy. The present paper focuses on Armenian archaeoastronomy and cultural astronomy, including many creations related to astronomical knowledge; calendars, rock art, mythology, etc. On the other hand, this subject is rather poorly developed in Armenia; there are only individual studies on various related issues (especially many studies related to Anania Shirakatsi) but not coordinated actions to manage this important field of investigation.

  19. Learning Astronomy by Doing Astronomy

    Science.gov (United States)

    Percy, J. R.

    2006-08-01

    In the modern science curriculum, students should learn science knowledge or "facts"; they should develop science skills, strategies, and habits of mind; they should understand the applications of science to technology, society, and the environment; and they should cultivate appropriate attitudes toward science. While science knowledge may be taught through traditional lecture-and-textbook methods, theories of learning (and extensive experience) show that other aspects of the curriculum are best taught by doing science -- not just hands-on activities, but "minds-on" engagement. That means more than the usual "cookbook" activities in which students use a predetermined procedure to achieve a predetermined result. The activities should be "authentic"; they should mirror the actual scientific process. In this presentation, I will describe several ways to include science processes within astronomy courses at the middle school, high school, and introductory university level. Among other things, I will discuss: topics that reflect cultural diversity and "the nature of science"; strategies for developing science process skills through projects and other practical work; activities based on those developed and carried out by amateur astronomers; topics and activities suitable for technical-level courses (we refer to them as "applied" in my province); projects for astronomy clubs and science fairs; and topics that expose students to astronomy research within lecture courses.

  20. Measuring the Relationship between Stellar Scintillation and Altitude: A Simple Discovery-Based Observational Exercise Used in College Level Non-Major Astronomy Classes

    Science.gov (United States)

    Sampson, Russell D.

    2013-01-01

    A simple naked eye observational exercise is outlined that teaches non-major astronomy students basic observational and critical thinking skills but does not require complex equipment or extensive knowledge of the night sky. Students measure the relationship between stellar scintillation and the altitude of a set of stars. Successful observations…

  1. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  2. Chinese astronomy

    OpenAIRE

    Macfarlane, Alan; Cullen, Christopher

    2004-01-01

    Standing in the observatory in Beijing, Christopher Cullen discusses the nature and sophistication of Chinese astronomy in the medieval period. The political as well as the intellectual interest in astronomy is outlined.

  3. Building Astronomy Curriculum to Include the Sight Impaired: Week long summer camp activities for Middle School Students adherent to Washington State Curriculum Standards (EALR's)

    Science.gov (United States)

    Ramien, Natalie; Loebman, S. R.; Player, V.; Larson, A.; Torcolini, N. B.; Traverse, A.

    2011-01-01

    Currently astronomy learning is heavily geared towards visual aids; however, roughly 10 million people in North America are sight impaired. Every student should have access to meaningful astronomy curriculum; an understanding of astronomy is an expectation of national and state science learning requirements. Over the last ten years, Noreen Grice has developed Braille and large print astronomy text books aimed at sight impaired learners. We build upon Grice's written work and present here a five day lesson plan that integrates 2D reading with 3D activities. Through this curriculum, students develop an intuitive understanding of astronomical distance, size, composition and lifetimes. We present five distinct lesson modules that can be taught individually or in a sequential form: the planets, our sun, stars, stellar evolution and galaxies. We have tested these modules on sight impaired students and report the results here. Overall, we find the work presented here lends itself equally well to a week long science camp geared toward middle school sight impaired taught by astronomers or as supplemental material integrated into a regular classroom science curriculum. This work was made possible by a 2007 Simple Effective Education and Dissemination (SEED) Grant For Astronomy Researchers, Astronomical Society of the Pacific through funds provided by the Planck Mission, Jet Propulsion Laboratory, California Institute of Technology.

  4. Observations of Cygnus X-1 during the two spectral states with the Indian X-ray Astronomy Experiment (IXAE)

    CERN Document Server

    Rao, A R; Paul, B

    1997-01-01

    We present the time variability characteristics of Cygnus X-1 in its two spectral states. The observations were carried out using the Pointed Proportional Counters (PPC) on-board the Indian X-ray Astronomy Experiment (IXAE). The details of the instrument characteristics, the observation strategy, and the background modeling methods are described. In the soft state of Cyg X-1, we confirm the general trend of the Power Density Spectrum (PDS) obtained using the Proportional Counter Array (PCA) on-board the RXTE satellite. The hard state of the source just prior to the spectral transition was not observed by the PCA and we present the PDS obtained in this state. We find that the low frequency end of the PDS is flatter than that observed during the spectral transition. Additionally, we find that there is one more component in the low frequency end of the PDS, which is independent of the spectral state of the source. The time variability is also examined by taking the statistics of the occurrence of shots and it is...

  5. Astronomy in Brazil

    Science.gov (United States)

    Barbuy, Beatriz; Maciel, Walter J.

    2013-01-01

    A historical background combined with political decisions along time explain the increasing importance of Brazil in the world's astronomical scenario. Professional astronomy was triggered in the late sixties and early seventies by the two main historical institutions then existing (ON and IAG/USP), together with the creation of agencies for research and combined with individual actions. There are presently 670 astronomers working in the country, including permanent jobs and graduate students. A brief description of observational facilities and plans to increase access to other facilities is presented.

  6. Implementation of a Direct Coupling Coherent Quantum Observer including Observer Measurements

    OpenAIRE

    Petersen, Ian R.; Huntington, Elanor H.

    2016-01-01

    This paper considers the problem of constructing a direct coupling quantum observer for a quantum harmonic oscillator system. The proposed observer is shown to be able to estimate one but not both of the plant variables and produces a measureable output using homodyne detection.

  7. Peer Instruction for Astronomy

    Science.gov (United States)

    Green, Paul

    Peer Instruction for Astronomy is an instructor's guide to an exciting and easily-implemented enhancement for lecture classes in introductory astronomy. Application of this powerful and efficient teaching technique requires that the instructor have on hand a large number of thought-provoking, conceptual short answer questions aimed at a variety of levels. While significant numbers of such questions have been published for use in Physics, Peer Instruction for Astronomy provides the first such compilation for Astronomy, and includes hints on use of the technique and applications of the method. KEY TOPICS: Covers peer instruction, incentives, a large database of conceptual questions for use in class, and a list of readings and resources. MARKET: Ideal for introductory astronomy instructors at the undergraduate or advanced high school level.

  8. Visual astronomy under dark skies a new approach to observing deep space

    CERN Document Server

    Cooke, Antony

    2006-01-01

    Modern astronomical telescopes, along with other advances in technology, have brought the deep sky within reach of astronomers. This book helps you if you are observing the sky from a light-polluted environment. It provides information needed to know about what to observe, and how to get views of faint and distant astronomical objects.

  9. Elementary astronomy

    Science.gov (United States)

    Fierro, J.

    2006-08-01

    In developing nations such as Mexico, basic science education has scarcely improved. There are multiple reasons for this problem; they include poor teacher training and curricula that are not challenging for students. I shall suggest ways in which astronomy can be used to improve basic education, it is so attractive that it can be employed to teach how to read and write, learn a second language, mathematics, physics, as well as geography. If third world nations do not teach science in an adequate way, they will be in serious problems when they will try to achieve a better standard of living for their population. I shall also address informal education, it is by this means that most adults learn and keep up to date with subjects that are not their specialty. If we provide good outreach programs in developing nations we can aid adult training; astronomy is ideal since it is particularly multidisciplinary. In particular radio and television programs are useful for popularization since they reach such wide audiences.

  10. Binocular astronomy

    CERN Document Server

    Tonkin, Stephen

    2014-01-01

    Binoculars have, for many, long been regarded as an “entry level” observational tool, and relatively few have used them as a serious observing instrument. This is changing! Many people appreciate the relative comfort of two-eyed observing, but those who use binoculars come to realize that they offer more than comfort. The view of the stars is more aesthetically pleasing and therefore binocular observers tend to observe more frequently and for longer periods. Binocular Astronomy, 2nd Edition, extends its coverage of small and medium binoculars to large and giant (i.e., up to 300mm aperture) binoculars and also binoviewers, which brings the work into the realm of serious observing instruments. Additionally, it goes far deeper into the varying optical characteristics of binoculars, giving newcomers and advanced astronomers the information needed to make informed choices on purchasing a pair. It also covers relevant aspects of the physiology of binocular (as in “both eyes”) observation. The first edition ...

  11. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    Science.gov (United States)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  12. Miklós Konkoly Thege (1842-1916). 100 Years of Observational Astronomy and Astrophysics - A collection of papers on the history of Observational Astrophysics.

    Science.gov (United States)

    Sterken, C.; Hearnshaw, J. B.

    2001-10-01

    This book results from presentations and discussions by a group of astronomers and historians during a three-day workshop held at Tihany (Hungary), on 13-15 August 1999. This meeting - the second forum dedicated to the rise of observational astrophysics in the nineteenth and early twentieth century - coincided with the centenary of Hungary's national observatory. The basic principle of this series of meetings is to reflect on the work and personality of a single individual or of a group of persons, at the same time avoiding the really dominant figures that typify the age. The series focuses on key people who epitomize a way of thinking and working, that has in turn formed many of the ideas by which we do astrophysical research today. Hence the evocation of the scientific spirit of the era under consideration is attempted. Such a leading key person undoubtedly was Miklós Konkoly Thege. A superb instrumentalist and observer, Konkoly became the founding father of Hungarian astronomy through the establishment of his private observatory that later became the Royal Hungarian Ógyalla Observatory, the precursor of the modern Konkoly Observatory. The workshop was organized at the occasion of the centennial anniversary of Konkoly Observatory. The book outlines five major themes. The first part describes the birth of observational astrophysics in Hungary and focuses on historical aspects of 19th century Hungarian astronomy from three different viewpoints: the historical narrative based on historical facts, the perspective as seen by an expert in historical instrumentation, and a discussion of the socio-political consequences of nineteenth-century developments for our present times. The second part analyses the birth of observational astrophysics in countries with which Konkoly and his collaborators had close contacts: Japan, South Africa and France. The third part of the book discusses the establishment of the discipline of photometry worldwide. An important aspect of 19th

  13. Europe's Astronomy Teachers Meet at ESO

    Science.gov (United States)

    1994-12-01

    European Association for Astronomy Education Formed A joint EU/ESO Workshop (1) on the Teaching of Astronomy in Europe was held at the ESO Headquarters from November 25-30, 1994, under the auspices of the 1994 European Week for Scientific Culture. More than 100 teachers from secondary schools in 17 European countries participated together with representatives of national ministries and local authorities, as well as professional astronomers. This meeting was the first of its kind ever held and was very successful. As a most visible and immediate outcome, the participants agreed to form the "European Association for Astronomy Education (EAAE)", uniting astronomy educators all over Europe into one network. A provisional Executive Committee of the EAAE was elected which will work towards the organisation of a constitutional conference within the next year. The participants unanimously adopted a "Declaration on the Teaching of Astronomy in Europe", specifying the overall aims and initial actions needed to achieve them. Astronomy: Science, Technology and Culture At the beginning of the Workshop the participants listened to lectures by several specialists about some of the most active fields of astronomy. The scientific sessions included topics as diverse as minor bodies in the solar system, nucleosynthesis, interstellar chemistry and cosmology. Then followed overviews of various recent advances in astronomical technology, some of which are already having direct impact on highly specialized sectors of European industry. They included the advanced use of computers in astronomy, for instance within image processing and data archiving, as well as a demonstration of remote observing. Discussing the cultural aspects, Nigel Calder (UK) and Hubert Reeves (France) emphasized the important role of astronomy in modern society, in particular its continuing influence on our perceptions of mankind's unique location in time and space. Teaching of Astronomy in European Countries

  14. Observation of the Crab Nebula with cosmic rays in the UV, or 'gamma astronomy at the moonlight'

    International Nuclear Information System (INIS)

    The aim of ARTEMIS (Antimatter Research Through the Earth Moon Ion Spectrometer) is to detect extragalactic antimatter at Very High (TeV) Energies in cosmic rays. The Earth's magnetic field is used as deflector of these ions, the moon serves as an absorber, and the atmosphere as a giant calorimeter. The cosmic rays are detected by Cerenkov imaging in the atmosphere. This Cerenkov flash must be detected in the UV because of the presence of moonlight, necessitating the construction of a novel UV camera. This is the first time Cerenkov imaging has been performed in the UV. The Crab Nebula, which has become a reference source for Very High Energy Gamma-ray Astronomy, enabled evaluation of the UV method in low moonlight. Our detection of a signal from the Crab validates, on the one hand, the Cerenkov imaging technique in the UV and, on the other hand, offers the possibility of uninterrupted nightly observations of a source, regardless of the moon's phase. (author)

  15. Pro-Am Collaborative Astronomy Observational Support for NASA CIOC/SidingSpring and ESA/Rosetta/67P/Churyumov-Gerasimenko(CG)

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed.

  16. Weird Astronomy Tales of Unusual, Bizarre, and Other Hard to Explain Observations

    CERN Document Server

    Seargent, David A.J

    2011-01-01

    You go out for a night’s observing and look up at the sky. There are all the usual suspects—a splattering of stars, the Moon, Venus, maybe Mercury and Mars. Perhaps you can identify some of the constellations. If you are using binoculars or a small telescope, you can see many wonders not revealed to the naked eye but still well known to telescope users for centuries. But what if you look up and see something completely new, something unexplainable. Do your eyes deceive you? Are you really seeing what you think you are seeing? What should you do? In this fascinating account of the many oddball things people – from novice astronomers to certified experts – have observed over the years, you will be introduced to a number of unusual – and sometimes still unexplainable – phenomena occurring in our usually familiar and reassuring skies. What exactly did they see? What discoveries followed these unusual sightings? What remains unexplained? In addition to the accounts, you will find scattered throughout t...

  17. Astronomy in Ukraine

    Science.gov (United States)

    Pavlenko, Ya. V.; Vavilova, I. B.; Kostiuk, T.

    2006-12-01

    The current and prospective status of astronomical research in Ukraine is discussed. A brief history of astronomical research in Ukraine is presented and the system organizing scientific activity is described, including astronomy education, institutions and staff, awarding higher degrees/titles, government involvement, budgetary investments and international cooperation. Individuals contributing significantly to the field of astronomy and their accomplishments are mentioned. Major astronomical facilities, their capabilities, and their instrumentation are described. In terms of the number of institutions and personnel engaged in astronomy, and of past accomplishments, Ukraine ranks among major nations of Europe. Current difficulties associated with political, economic and technological changes are addressed and goals for future research activities presented.

  18. Mathematical Astronomy in India

    Science.gov (United States)

    Plofker, Kim

    Astronomy in South Asia's Sanskrit tradition, apparently originating in simple calendric computations regulating the timing of ancient ritual practices, expanded over the course of two or three millennia to include detailed spherical models, an endless variety of astrological systems, and academic mathematics in general. Assimilating various technical models, methods, and genres from the astronomy of neighboring cultures, Indian astronomers created new forms that were in turn borrowed by their foreign counterparts. Always recognizably related to the main themes of Eurasian geocentric mathematical astronomy, Indian astral science nonetheless maintained its culturally distinct character until Keplerian heliocentrism and Newtonian mechanics replaced it in colonial South Asia's academic mainstream.

  19. Astronomy in Ukraine

    CERN Document Server

    Pavlenko, Ya V; Vavilova, I B; Pavlenko, Ya.V.

    2005-01-01

    The current and prospective status of astronomical research in Ukraine is discussed. A brief history of astronomical research in Ukraine is presented and the system organizing scientific activity is described, including astronomy education, institutions and staff, awarding higher degrees/titles, government involvement, budgetary investments and international cooperation. Individuals contributing significantly to the field of astronomy and their accomplishments are mentioned. Major astronomical facilities, their capabilities, and their instrumentation are described. In terms of the number of institutions and personnel engaged in astronomy, and of past accomplishments, Ukraine ranks among major nations of Europe. Current difficulties associated with political, economic and technological changes are addressed and goals for future research activities presented.

  20. Discovering Astronomy Through Poetry

    Science.gov (United States)

    Mannone, John C.

    2011-05-01

    The literature is replete with astronomical references. And much of that literature is poetry. Using this fact, not only can the teacher infuse a new appreciation of astronomy, but also, the student has the opportunity to rediscover history through astronomy. Poetry can be an effective icebreaker in the introduction of new topics in physics and astronomy, as well as a point of conclusion to a lecture. This presentation will give examples of these things from the ancient literature (sacred Hebraic texts), classical literature (Homer's Iliad and Odyssey), traditional poetry (Longfellow, Tennyson and Poe) and modern literature (Frost, Kooser, and others, including the contemporary work of this author).

  1. The University of Arizona Astronomy Club Observations of Transiting Extrasolar Planets TrES-3b and TrES-4b

    Science.gov (United States)

    Turner, Jake; Hardegree-Ullman, K.; Smart, B.; Walker-LaFollette, A.; Cunningham, K.; Hardegree-Ullman, E. E.; Crawford, B.; Mueting, J.; Carleton, T.; Schwarz, K.; Robertson, A.; Guvenen, B.; Towner, A.; Austin, C.; Henz, T.; Keys, D.; Johnson, K.

    2011-05-01

    Using the Steward Observatory 61" Kuiper Telescope, The University of Arizona Astronomy Club observed extrasolar planets TrES-3b and TrES-4b. We observed the planets with the Harris-B, V, and R filters as they transited their parent stars during the months of May-July 2009. The main goal of this project was to get undergraduates involved with a research astronomy project and allow them to gain experience beyond what they would receive in the classroom. Many of the team members were introduced to astronomical observing techniques and data reduction using IRAF. Part of the project involved determining the optimum number of flat-field and bias frames required for image calibrations. With our results, we have been able to confirm and refine previously published values for the planets' orbital inclination, mass, radius, and density.

  2. The Astronomy Workshop

    Science.gov (United States)

    Hamilton, D. P.; Asbury, M. L.; Proctor, A.

    2001-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed, and maintained at the University of Maryland, for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 91 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of the explosion, crater size, magnitude of the planetquake generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Planetary and Satellite Data Calculators: These tools allow the user to easily calculate physical data for all of the planets or satellites simultaneously, making comparison very easy. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by the National Science Foundation.

  3. Submillimeter Astronomy

    OpenAIRE

    Radford, S. J. E.

    2009-01-01

    For submillimeter astronomy, particularly at 200m, the ARENA working group has proposed a 25 m telescope at the For submillimeter astronomy, particularly at 200µm, the ARENA working group has proposed a 25 m telescope at the Concordia station on Dome C. Issues related to this suggestion are reviewed.

  4. A Pilot Astronomy Outreach Project in Bangladesh

    Science.gov (United States)

    Bhattacharya, Dipen; Mridha, Shahjahan; Afroz, Maqsuda

    2015-08-01

    In its strategic planning for the "Astronomy for Development Project," the International Astronomical Union (IAU) has ecognized, among other important missions, the role of astronomy in understanding the far-reaching possibilities for promoting global tolerance and citizenship. Furthermore, astronomy is deemed inspirational for careers in science and technology. The "Pilot Astronomy Outreach Project in Bangladesh"--the first of its kind in the country--aspires to fulfill these missions. As Bangladesh lacks resources to promote astronomy education in universities and schools, the role of disseminating astronomy education to the greater community falls on citizen science organizations. One such group, Anushandhitshu Chokro (AChokro) Science Organization, has been carrying out a successful public outreach program since 1975. Among its documented public events, AChokro organized a total solar eclipse campaign in Bangladesh in 2009, at which 15,000 people were assembled in a single open venue for the eclipse observation. The organization has actively pursued astronomy outreach to dispel public misconceptions about astronomical phenomena and to promote science. AChokro is currently working to build an observatory and Science Outreach Center around a recently-acquired 14-inch Scmidt-Cassegrain telescope and a soon-to-be-acquired new 16-inch reflector, all funded by private donations. The telescopes will be fitted with photometers, spectrometers, and digital and CCD cameras to pursue observations that would include sun spot and solar magnetic fields, planetary surfaces, asteroid search, variable stars and supernovae. The Center will be integrated with schools, colleges, and community groups for regular observation and small-scale research. Special educational and observing sessions for adults will also be organized. Updates on the development of the Center, which is expected to be functioning by the end of 2015, will be shared and feedback invited on the fostering of

  5. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  6. Greek astronomy

    CERN Document Server

    Heath, Sir Thomas L

    2011-01-01

    Astronomy as a science began with the Ionian philosophers, with whom Greek philosophy and mathematics also began. While the Egyptians and Babylonians had accomplished much of astronomical worth, it remained for the unrivalled speculative genius of the Greeks, in particular, their mathematical genius, to lay the foundations of the true science of astronomy. In this classic study, a noted scholar discusses in lucid detail the specific advances made by the Greeks, many of whose ideas anticipated the discoveries of modern astronomy.Pythagoras, born at Samos about 572 B.C., was probably the first

  7. Astronomy in Antarctica

    CERN Document Server

    Burton, Michael G

    2010-01-01

    Antarctica provides a unique environment for astronomy. The cold, dry and stable air found above the high plateau, as well as the pure ice below, offers new opportunities across the photon & particle spectrum. The summits of the plateau provide the best seeing conditions, the darkest skies and the most transparent atmosphere of any earth-based observing site. Astronomical activities are now underway at four plateau sites: the Amundsen-Scott South Pole Station, Concordia Station at Dome C, Kunlun Station at Dome A and Fuji Station at Dome F, in addition to long duration ballooning from the coastal station of McMurdo. Astronomy conducted includes optical, IR, THz & sub-mm, measurements of the CMBR, solar, as well as high energy astrophysics involving measurement of cosmic rays, gamma rays and neutrinos. Antarctica is also the richest source of meteorites on our planet. An extensive range of site testing measurements have been made over the high plateau. We summarise the facets of Antarctica that are dri...

  8. Astronomy Communication

    Science.gov (United States)

    Heck, A.; Madsen, C.

    2003-07-01

    Astronomers communicate all the time, with colleagues of course, but also with managers and administrators, with decision makers and takers, with social representatives, with the news media, and with the society at large. Education is naturally part of the process. Astronomy communication must take into account several specificities: the astronomy community is rather compact and well organized world-wide; astronomy has penetrated the general public remarkably well with an extensive network of associations and organizations of aficionados all over the world. Also, as a result of the huge amount of data accumulated and by necessity for their extensive international collaborations, astronomers have pioneered the development of distributed resources, electronic communications and networks coupled to advanced methodologies and technologies, often much before they become of common world-wide usage. This book is filling up a gap in the astronomy-related literature by providing a set of chapters not only of direct interest to astronomy communication, but also well beyond it. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in communication techniques while providing specific detailed information, as well as plenty of pointers and bibliographic elements. This book will be very useful for researchers, teachers, editors, publishers, librarians, computer scientists, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as for students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/prod/b/1-4020-1345-0

  9. A Survey of Learning Goals for Introductory Astronomy Courses

    Science.gov (United States)

    Brissenden, G.; Duncan, D. K.; Greenfield, J. L.; Slater, T. F.

    1999-05-01

    Introductory astronomy for non-science majors is delivered to more than 200,000 students each year in small colleges and large research universities alike. Not always taught by PhDs formally trained in astronomy, previous surveys reveal that introductory astronomy for undergraduate non-science majors is often taught by individuals trained in physics, mathematics, geology, among many other fields. Such a diversity in instructor backgrounds suggests that there might exist a wide diversity in course goals, learning objectives, and topics covered in such a course. In an attempt to explore this diversity, two projects were conducted simultaneously. First, astronomy instructors pre-registered to attend the ASTR 101 teaching workshop at the 1998 ASP Albuquerque meeting were asked to electronically submit their three main course goals for introductory astronomy. Fifty-four responses showed a convergence of several ideas across the majority of instructors: an understanding of the nature of science and astronomy, an appreciation for the size, scale, and structure of the cosmos, and an increased interest in studying current events in astronomy as a life-long learning activity. Second, an analysis of 50 introductory astronomy syllabi found on the World-Wide-Web was conducted to determine the frequency that 75 possible topics in introductory astronomy were evidently included in the course. The most common topics covered appear to be the nature of light and the electromagnetic spectrum, stellar evolution and the Sun, techniques and tools of astronomy, motions and objects in the solar system, and the stellar magnitude scale. Topics that appear to receive little emphasis include the reason for seasons, planetary atmospheres, plate tectonics, space exploration, and formation of the elements. Additionally, 78 indicate that night observations are required and 38 require the use of the computer or the Internet.

  10. Bad Astronomy Goes Hollywood

    Science.gov (United States)

    Plait, P.

    2003-05-01

    It can be argued that astronomy is the oldest of all the sciences, so you'd think that after all this time people would have a pretty good understanding of it. In reality, however, misconceptions about astronomy abound, and even basic concepts are misunderstood. There are many sources of these cosmic misconceptions, including incorrect textbooks, parents and/or teachers who don't understand astronomy and therefore spread misinformation, urban legends, and so on. Perhaps the most pervasive source of bad astronomy is Hollywood. Science fiction movies are enormously popular, but are commonly written and directed by people who don't have even a passing familiarity with astronomy. The smash hit "Armageddon" (the number one box office movie of 1998), for example, used vast quantities of incorrect astronomy in the plot. It reinforced such popular misconceptions as huge asteroids impacting the Earth with little warning, small meteorites being hot when they impact, air existing in space, and that a simple bomb can blow up an asteroid the size of a small moon (even when the bomb is buried only 800 feet deep!). However, movie scenes can be used as a hook that engages the student, helping them learn and remember the correct science. In this talk, I will light-heartedly discuss specific examples of common misinformation, using movie clips, diagrams, and a splash of common sense to show just where Hollywood gets it wrong, and what you can do to help students and the public get it right.

  11. Conceptual frameworks in astronomy

    Science.gov (United States)

    Pundak, David

    2016-06-01

    How to evaluate students' astronomy understanding is still an open question. Even though some methods and tools to help students have already been developed, the sources of students' difficulties and misunderstanding in astronomy is still unclear. This paper presents an investigation of the development of conceptual systems in astronomy by 50 engineering students, as a result of learning a general course on astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA) that was initially used in 1989, was adapted to gather data for the present research. In its new version, the tool included 23 questions, and five to six optional answers were given for each question. Each of the answers was characterized by one of the four conceptual astronomical frameworks: pre-scientific, geocentric, heliocentric and sidereal or scientific. The paper describes the development of the tool and discusses its validity and reliability. Using the CFA we were able to identify the conceptual frameworks of the students at the beginning of the course and at its end. CFA enabled us to evaluate the paradigmatic change of students following the course and also the extent of the general improvement in astronomical knowledge. It was found that the measure of the students’ improvement (gain index) was g = 0.37. Approximately 45% of the students in the course improved their understanding of conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks.

  12. Scientific Data Mining in Astronomy

    CERN Document Server

    Borne, Kirk

    2009-01-01

    We describe the application of data mining algorithms to research problems in astronomy. We posit that data mining has always been fundamental to astronomical research, since data mining is the basis of evidence-based discovery, including classification, clustering, and novelty discovery. These algorithms represent a major set of computational tools for discovery in large databases, which will be increasingly essential in the era of data-intensive astronomy. Historical examples of data mining in astronomy are reviewed, followed by a discussion of one of the largest data-producing projects anticipated for the coming decade: the Large Synoptic Survey Telescope (LSST). To facilitate data-driven discoveries in astronomy, we envision a new data-oriented research paradigm for astronomy and astrophysics -- astroinformatics. Astroinformatics is described as both a research approach and an educational imperative for modern data-intensive astronomy. An important application area for large time-domain sky surveys (such ...

  13. A dictionary of Astronomy for the French Sign Language (LSF)

    Science.gov (United States)

    Proust, Dominique; Abbou, Daniel; Chab, Nasro

    2011-06-01

    Since a few years, the french deaf communauty have access to astronomy at Paris-Meudon observatory through a specific teaching adapted from the French Sign Language (Langue des Signes Françcaise, LSF) including direct observations with the observatory telescopes. From this experience, an encyclopedic dictionary of astronomy The Hands in the Stars is now available, containing more than 200 astronomical concepts. Many of them did not existed in Sign Language and can be now fully expressed and explained.

  14. Training in Astronomy for Physics Students

    Indian Academy of Sciences (India)

    J. H. Fan

    2014-09-01

    In this paper, we describe what we have done with regard to astronomy training for physics students. More and more students are interested in astronomy, they spend their summer holidays and spare time in observations and studying the observation data. Some students are familiar with using the telescope for observations, dealing with absorption line features achieved from the observations. Astronomy was selected as the key subject in Guangzhou city and Guangdong province, the laboratory for astronomy science and technology was selected as the key laboratory of Guangzhou city and that for the education department of Guangdong Province. We also provide a master degree programme for astronomy.

  15. Ideas for Citizen Science in Astronomy

    Science.gov (United States)

    Marshall, Philip J.; Lintott, Chris J.; Fletcher, Leigh N.

    2015-08-01

    We review the expanding, internet-enabled, and rapidly evolving field of citizen astronomy, focusing on research projects in stellar, extragalactic, and planetary science that have benefited from the participation of members of the public. These volunteers contribute in various ways: making and analyzing new observations, visually classifying features in images and light curves, exploring models constrained by astronomical data sets, and initiating new scientific enquiries. The most productive citizen astronomy projects involve close collaboration between the professionals and amateurs involved and occupy scientific niches not easily filled by great observatories or machine learning methods: Citizen astronomers are motivated by being of service to science, as well as by their interest in the subject. We expect participation and productivity in citizen astronomy to increase, as data sets get larger and citizen science platforms become more efficient. Opportunities include engaging citizens in ever-more advanced analyses and facilitating citizen-led enquiry through professional tools designed with citizens in mind.

  16. Science and Mathematics in Astronomy

    Science.gov (United States)

    Woolack, Edward

    2009-01-01

    A brief historical introduction to the development of observational astronomy will be presented. The close historical relationship between the successful application of mathematical concepts and advances in astronomy will be presented. A variety of simple physical demonstrations, hands-on group activities, and puzzles will be used to understand how the properties of light can be used to understand the contents of our universe.

  17. Music and Astronomy Under the Stars - 2009 Update

    Science.gov (United States)

    Lubowich, Donald A.

    2010-01-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded outreach program at parks during and after concerts and family events - a Halloween Spooky Garden Walk. While there have been many outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience - music lovers who attend summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500 - 16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where 5000 people participated in astronomy activities. The Amateur Observers' Society of NY assisted with the NY concerts and the Springfield STARS club assisted at Tanglewood. 1500 people looked through telescopes at the Halloween program (6000 saw the posters). In 2009 over 15,000 people participated in these astronomy activities which were attended by

  18. Astronomy Allies

    Science.gov (United States)

    Flewelling, Heather; Alatalo, Katherine A.

    2016-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  19. Rescuing Middle School Astronomy

    Science.gov (United States)

    Mayo, L. A.; Janney, D.

    2010-12-01

    There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.

  20. Radio astronomy

    International Nuclear Information System (INIS)

    This report highlights radio astronomy research of the 40th IAU commission in the years 1982-1984. Radio imaging of different objects are treated in separate sections: solar system, galaxy, supernovae, extragalactic objects. The paper begins with a section on radio instrumentation

  1. Recent KBO (Pluto/Charon and beyond, including Quaoar) Occultation Observations by the Williams College Team as part of the Williams-MIT Collaboration

    Science.gov (United States)

    Pasachoff, Jay M.; Babcock, B. A.; Davis, A. B.; Pandey, S.; Lu, M.; Rogosinski, Z.; Person, M. J.; Bosh, A. S.; Zangari, A. M.; Zuluaga, C. A.; Gulbis, A. S.; Naranjo, O.; Navas, G.; Zerpa, L.; Villarreal, J.; Rojo, P.; Förster, F.; Servajean, E.

    2013-10-01

    The Williams College-MIT collaboration has observed numerous occultations of stars by Pluto/Charon and other Kuiper-belt objects (www.stellaroccultations.info), since its establishment three decades ago with an attempted discovery of Neptune's rings in 1983. In this paper, we describe several recent occultation observations, both successful and (for reasons of path uncertainties and/or weather) unsuccessful. Light curves made or arranged by Williams College faculty and students were used together with light curves by MIT colleagues and others to study Pluto's atmosphere and Charon's size, to discover one of the highest-known solar-system albedos (KBO 55636), and to attempt to study 1000-km-diameter Quaoar. Observations discussed include light curves for KBO 55636 on 9 October 2009 from Hawaii; Pluto on 3/4 July 2010 from Chile, 22 May 2011 from Williamstown, Massachusetts, 23 June 2011 from Hawaii (in support of SOFIA observations of Pluto's atmosphere, discussed in an article in press in AJ and of the pair of Pluto/Charon occultations of the same star), and 4 May 2013 (Bosh et al., this conference) and 15 July 2013 from Williamstown; Charon on 15 June 2013 from Williamstown; Quaoar from a picket fence ranging from Chile through Venezuela (with a detection there) to Massachusetts on July 8/9 and in South Africa on 12 July 2013. This work was supported in part by NASA Planetary Astronomy grants NNX08AO50G and NNH11ZDA001N to Williams College, NNX10AB27G to MIT, and USRA grant #8500-98-003 to Lowell Observatory. We thank Steven P. Souza at Williams; Steven Levine at Lowell Obs.; Jennifer G. Winters (GSU) in Chile; Richard Rojas/Jorge Moreno in Venezuela; Scott Sheppard; Federica Bianco; David Osip; and others. ZR (Vassar '14) was a Keck Northeast Astronomy Consortium Summer Fellow at Williams College, supported by an NSF/REU grant to the Keck Northeast Astronomy Consortium. ES: partial support from Programa Nacional de Becas de Postgrado (CONICYT Grant 21110496). FF

  2. Python in Astronomy 2016

    Science.gov (United States)

    Jenness, Tim; Robitaille, Thomas; Tollerud, Erik; Mumford, Stuart; Cruz, Kelle

    2016-04-01

    The second Python in Astronomy conference will be held from 21-25 March 2016 at the University of Washington eScience Institute in Seattle, WA, USA. Similarly to the 2015 meeting (which was held at the Lorentz Center), we are aiming to bring together researchers, Python developers, users, and educators. The conference will include presentations, tutorials, unconference sessions, and coding sprints. In addition to sharing information about state-of-the art Python Astronomy packages, the workshop will focus on improving interoperability between astronomical Python packages, providing training for new open-source contributors, and developing educational materials for Python in Astronomy. The meeting is therefore not only aimed at current developers, but also users and educators who are interested in being involved in these efforts.

  3. Multimessenger Astronomy and Astrophysics Synergies

    CERN Document Server

    van Putten, Maurice H P M

    2012-01-01

    A budget neutral strategy is proposed for NSF to lead the implementation of multimessenger astronomy and astrophysics, as outlined in the Astro2010 Decadal Survey. The emerging capabilities for simultaneous measurements of physical and astronomical data through the different windows of electromagnetic, hadronic and gravitational radiation processes call for a vigorous pursuit of new synergies. The proposed approach is aimed at the formation of new collaborations and multimessenger data-analysis, to transcend the scientific inquiries made within a single window of observations. In view of budgetary constraints, we propose to include the multimessenger dimension in the ranking of proposals submitted under existing NSF programs.

  4. Astronomy across cultures the history of non-Western astronomy

    CERN Document Server

    Xiaochun, Sun

    2000-01-01

    Astronomy Across Cultures: A History of Non-Western Astronomy consists of essays dealing with the astronomical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Polynesian, Egyptian and Tibetan astronomy, among others, the book includes essays on Sky Tales and Why We Tell Them and Astronomy and Prehistory, and Astronomy and Astrology. The essays address the connections between science and culture and relate astronomical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.

  5. The New Astronomy

    Science.gov (United States)

    Henbest, Nigel; Marten, Michael

    1996-08-01

    There's more to the Universe than meets the eye. In a marvelous review of multi-wavelength astronomy, The New Astronomy compares traditional optical images to infrared, ultraviolet, radio, and X-ray astronomical observations of a staggering variety of cosmic objects. With over 300 photographs and images obtained by telescopes and detectors operating at different wavelengths, the authors present startlingly different views of the solar system, stars, galaxies and, in this new edition, Halley's Comet and Supernova 1987A. Specially processed by astronomers worldwide, these images reveal in spectacular detail otherwise invisible events such as starbirth, stardeath, and distant quasar eruptions. Emphasizing the physical processes that produce astronomical radiation, they explain how the observations have expanded our existing knowledge and provided new discoveries. They also describe the new techniques in nontechnical language. By giving equal weight to observations at all wavelengths, this book corrects the bias toward optical astronomy and objectively presents all views of the Universe. It will appeal to everyone interested in the mysteries of astronomy. Nigel Henbest and Michael Marten previously collaborated (along with Heather Couper) on The Guide to the Galaxy (CUP, 1994).

  6. Gravity-wave astronomy

    International Nuclear Information System (INIS)

    The theoretical basis for gravity-wave astronomy is described, along with the energy and momentum of gravitational fields. Other topics discussed include:- burst and periodic sources of gravitational waves, the cosmological stochastic background, and the detection of gravitational waves. (U.K.)

  7. First exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy: Confirmation of Rayleigh scattering in HD 189733 b with HIPO

    CERN Document Server

    Angerhausen, Daniel; Mandell, Avi; Dunham, Edward W; Becklin, Eric E; Collins, Peter L; Hamilton, Ryan T; Logsdon, Sarah E; McElwain, Michael W; McLean, Ian S; Pfueller, Enrico; Savage, Maureen L; Shenoy, Sachindev S; Vacca, William; VanCleve, Jeffry; Wolf, Juergen

    2015-01-01

    Here we report on the first successful exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA). We observed a single transit of the hot Jupiter HD 189733 b, obtaining two simultaneous primary transit lightcurves in the B and z' bands as a demonstration of SOFIA's capability to perform absolute transit photometry. We present a detailed description of our data reduction, in particular the correlation of photometric systematics with various in-flight parameters unique to the airborne observing environment. The derived transit depths at B and z' wavelengths confirm a previously reported slope in the optical transmission spectrum of HD 189733 b. Our results give new insights to the current discussion about the source of this Rayleigh scattering in the upper atmosphere and the question of fixed limb darkening coefficients in fitting routines.

  8. The Evolution of Neutrino Astronomy

    OpenAIRE

    Bahcall, John; Davis, Jr., Michael R.

    1999-01-01

    How did neutrino astronomy evolve? Are there any useful lessons for astronomers and physicists embarking on new observational ventures today? We answer the first question; the reader can can decide if there are any useful parallels for other fields.

  9. Extragalactic astronomy

    International Nuclear Information System (INIS)

    This book condenses the author's yearly semester lectures on 'Extra galactic Astronomy' held almost without interruption over two decades at Cordoba University for students of Astronomy. After a first chapter on Morphology and Classification of galaxies, the second gives most of the basic information about normal galaxies as individuals. Active galaxies are described in chapter III whilst chapter IV deals with the mutual relationship between galaxies and their environment. The Scale of distance is considered in chapter V. Distance indicators are introduced and several conflicting viewpoints of different schools are presented. Chapter VI deals with Cosmology, just to give the necessary elements for chapter VII where the relation between gravitational instability and galaxy formation is discussed. Chapter VIII is an appendix containing additional notes. (Auth.)

  10. Grassroots Astronomy

    Science.gov (United States)

    Marvel, Kevin B.

    Congress has a large impact on the amount and quality of astronomical research that takes place in the United States. By funding NASA and NSF, as well as other agencies such as the Department of Education and the Department of Defense, the Federal Government enables U.S. astronomers to perform cutting edge research. However, Congress makes decisions based on input from citizens. It the citizens are silent on an issue, Congress does not know it exists. Last summer the U.S.amatuer community rallied in support of professional research, resulting in a healthy budget for both NASA and NSF astronomy research. I will present a summary of how the funding process works and how and why amateurs can and should help ensure continued research funding for U.S. astronomy.

  11. Colonial American Astronomy

    Science.gov (United States)

    Yeomans, Donald K.

    2007-12-01

    While a foundation of German scientific methods enabled the rapid growth of North American Astronomy in the nineteenth century, during the seventeenth and most of the eighteenth centuries, the colonial men of science looked only to the English mother country for scientific patronage and guidance. An essay on fundamental astronomy appeared in one of the annual colonial almanacs as early as 1656, telescopic observations were made about 1660 and the first original colonial astronomical work was published by Thomas Danforth on the comet of 1664. By 1671 the Copernican ideas were so espoused at Harvard College that a physics class refused to read a Ptolemaic textbook when it was assigned to them by a senior instructor. At least in the Cambridge-Boston area, contemporary colonialist had access to the most recent scientific publications from the mother country. Observations of the great comet of 1680 by the Almanac maker, John Foster, reached Isaac Newton and were used and gratefully acknowledged in his Principia. During the seventeenth century the colonial interest in astronomy was more intense than it was for other sciences but colonists still occupied a position in the scientific backwater when compared with contemporary European scientists. Nevertheless, the science of astronomy was successfully transplanted from England to North America in the seventeenth century.

  12. Chaco astronomies

    Science.gov (United States)

    Martín López, Alejandro

    2015-08-01

    This presentation discusses the result of 18 years of ethnographic and ethnohistorical studies on Chaco astronomies. The main features of the systems of astronomical knowledge of the Chaco Aboriginal groups will be discussed. In particular we will discuss the relevance of the Milky Way, the role of the visibility of the Pleiades, the ways in which the celestial space is represented, the constitution of astronomical orientations in geographic space, etc. We also address a key feature of their vision of the cosmos: the universe is seen by these groups as a socio-cosmos, where humans and non-humans are related. These are therefore actually socio-cosmologies. We will link this to the theories of Chaco Aboriginal groups about power and political relations.We will discuss how the study of Aboriginal astronomies must be performed along with the studies about astronomies of Creole people and European migrants, as well as anthropological studies about the science teaching in the formal education system and by the mass media. In this form we will discuss the relevance of a very complex system of interethnic relations for the conformation of these astronomical representations and practices.We will also discuss the general methodological implications of this case for the ethnoastronomy studies. In particular we will talk about the advantages of a study of regional scope and about the key importance of put in contact the ethnoastronomy with contemporary issues in social sciences.We also analyze the importance of ethnoastronomy studies in relation to studies of sociology of science, especially astronomy. We also study the potential impact on improving formal and informal science curricula and in shaping effective policies to protect the tangible and intangible astronomical heritage in a context of respect for the rights of Aboriginal groups.

  13. Grote Reber, Radio Astronomy Pioneer, Dies

    Science.gov (United States)

    2002-12-01

    something of a minor tourist attraction, he later recalled. Using electronics he designed and built that pushed the technical capabilities of the era, Reber succeeded in detecting "cosmic static" in 1939. In 1941, Reber produced the first radio map of the sky, based on a series of systematic observations. His radio-astronomy work continued over the next several years. Though not a professional scientist, his research results were published in a number of prestigious technical journals, including Nature, the Astrophysical Journal, the Proceedings of the Institute of Radio Engineers and the Journal of Geophysical Research. Reber also received a number of honors normally reserved for scientists professionally trained in astronomy, including the American Astronomical Society's Henry Norris Russell Lectureship and the Astronomical Society of the Pacific's Bruce Medal in 1962, the National Radio Astronomy Observatory's Jansky Lectureship in 1975, and the Royal Astronomical Society's Jackson-Gwilt Medal in 1983. Reber's original dish antenna now is on display at the National Radio Astronomy Observatory's site in Green Bank, West Virginia, where Reber worked in the late 1950s. All of his scientific papers and records as well as his personal and scientific correspondence are held by the NRAO, and will be exhibited in the observatory's planned new library in Charlottesville, Virginia. Reber's amateur-radio callsign, W9GFZ, is held by the NRAO Amateur Radio Club. This callsign was used on the air for the first time since the 1930s on August 25, 2000, to mark the dedication of the Robert C. Byrd Green Bank Telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  14. Astronomy in Iraq

    Science.gov (United States)

    Alsabti, A. W.

    2006-08-01

    The history of modern Iraqi astronomy is reviewed. During the early 1970's Iraqi astronomy witnessed significant growth through the introduction of the subject at university level and extensively within the school curriculum. In addition, astronomy was popularised in the media, a large planetarium was built in Baghdad, plus a smaller one in Basra. Late 1970 witnessed the construction of the Iraqi National Observatory at Mount Korek in Iraqi Kurdistan. The core facilities of the Observatory included 3.5-meter and 1.25-meter optical telescopes, and a 30-meter radio telescope for millimetre wavelength astronomy. The Iraqi Astronomical Society was founded and Iraq joined the IAU in 1976. During the regime of Saddam Hussain in the 1980's, the Observatory was attacked by Iranian artillery during the Iraq-Iran war, and then again during the second Gulf war by the US air force. Years of sanctions during the 1990's left Iraq cut off from the rest of the international scientific community. Subscriptions to astronomical journals were halted and travel to conferences abroad was virtually non-existent. Most senior astronomers left the country for one reason or another. Support from expatriate Iraqi astronomers existed (and still exists) however, this is not sufficient. Recent changes in Iraq, and the fall of Saddam's regime, has meant that scientific communication with the outside world has resumed to a limited degree. The Ministry of Higher Education in Baghdad, Baghdad University and the Iraqi National Academy of Science, have all played active roles in re-establishing Iraqi astronomy and re-building the damaged Observatory at Mount Korek. More importantly the University of Sallahudin in Erbil, capital of Iraqi Kurdistan, has taken particular interest in astronomy and the Observatory. Organized visits to the universities, and also to the Observatory, have given us a first-hand assessment of the scale of the damage to the Observatory, as well as the needs of astronomy teaching

  15. Astronomy Education Programs at the Smithsonian National Air and Space Museum

    Science.gov (United States)

    Nagy, Katie; de Messieres, G.; Edson, S.

    2014-01-01

    Astronomy educators present the range of astronomy education programming available at the National Air and Space Museum, including the following. In the Phoebe Waterman Haas Public Observatory, visitors use telescopes and other scientific equipment to observe and discuss the Sun, Venus, and other celestial sights in an unstructured, inquiry-based environment. At Discovery Stations throughout the Museum, staff and volunteers engage visitors in hands-on exploration of a wide range of artifacts and teaching materials. Astronomy-related Discovery Stations include Cosmic Survey, an exploration of gravitational lensing using a rubber sheet, spectroscopy using discharge tubes, and several others. Astronomy lectures in the planetarium or IMAX theater, featuring researchers as the speakers, include a full evening of activities: a custom pre-lecture Discovery Station, a handout to help visitors explore the topic in more depth, and evening stargazing at the Public Observatory. Astronomy educators present planetarium shows, including star tours and explorations of recent science news. During Astronomy Chat, an astronomy researcher engages visitors in an informal conversation about science. The goal is to make the public feel welcome in the environment of professional research and to give busy scientists a convenient outreach opportunity. Astronomy educators also recruit, train, and coordinate a corps of volunteers who contribute their efforts to the programming above. The volunteer program has grown significantly since the Public Observatory was built in 2009.

  16. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  17. Next-generation Astronomy

    OpenAIRE

    Norris, Ray P

    2010-01-01

    Fundamental changes are taking place in the way we do astronomy. In twenty years time, it is likely that most astronomers will never go near a cutting-edge telescope, which will be much more efficiently operated in service mode. They will rarely analyse data, since all the leading-edge telescopes will have pipeline processors. And rather than competing to observe a particularly interesting object, astronomers will more commonly group together in large consortia to observe massive chunks of th...

  18. Distributed visual information management in astronomy

    OpenAIRE

    Murtagh, Fionn; Starck, J. L.; Louys, M

    2002-01-01

    Among the many interesting computational problems that observational astronomy poses, broad aspects of visual information management are crucial. In this regard, observational astronomy "collaboratories" provide important testbeds for other fields serving less well?defined communities-telemedicine, Earth observation, and graphic art and design come to mind. The authors review issues related to large-image visualization in astronomy and a recently developed toolset for this purpose. Resolution...

  19. Some Ideas on Teaching Astronomy.

    Science.gov (United States)

    Allan, Phil

    1980-01-01

    Described are several homework activities for use in teaching Astronomy. Topics include optical telescopes, the sun, and facts about the solar system. The format is a series of true-false questions related to diagrams which students must complete. (DS)

  20. Astronomy Olympiads in Russia and Their Position in Astronomy Education

    Science.gov (United States)

    Eskin, B.; Tarakanov, P.; Kostina, M.

    2012-12-01

    Astronomy olympiads started to be organised in Russia more than 60 years ago (then it was still USSR). In 1994, on the basis of several regional astronomy olympiads, appeared the All-Russian Astronomy Olympiad (Vserossijskaya astronomicheskaya olimpiada) or ARAO. It has been organised under the auspices of the Ministry of Education and pupils attending higher forms have taken part in it. The main objective of ARAO is to find and support talented pupils. Leading universities of the country (Russia) have also organised their own astronomy olympiads. In this way there are Astronomy Olympiads of Saint Petersburg, Moscow and Kazan. Among them the largest is that of Saint Petersburg. The main characteristic of these olympiads is that they have also included pupils of younger forms and have prepared their own tasks. The main objective of these olympiads is to find and support future students of astronomy classes at those universities. All astronomy Olympiads have played an important role in preparing future astronomers. This work is supported by Leading Scientific Schools Grant No. NSH-3290.2010.2.

  1. Neutrino Astronomy (Rapporteur Talk)

    CERN Document Server

    Ishihara, Aya

    2015-01-01

    This report is the write-up of a rapporteur talk on neutrino astronomy given at the 34th International Cosmic Ray Conference in The Hague, Netherlands, in 2015. Here, selected contributions on the neutrino astronomy from the total of 40 talks and 90 posters presented in NU sessions at the 34th ICRC are summarized in the attempt of providing a status report on this rapidly glowing new field. The field of neutrino astronomy has recently experienced a "phase transition" since the first observation of high energy cosmic neutrinos. Extensive efforts have been made to identify the origin of the neutrino flux observed in the 100 TeV to PeV region, from both theoretical and experimental perspectives. In addition, the search for neutrino fluxes beyond the observed level has become increasingly important for further understanding the origin of the observed cosmic-ray up to $10^{20}$ eV. Although the IceCube Neutrino Observatory is the only experiment currently measuring this neutrino flux, its initial measurements have...

  2. Active seat suspension for a small vehicle: considerations for control system including observer

    Science.gov (United States)

    Katsumata, Hiroyuki; Shiino, Hiroshi; Oshinoya, Yasuo; Ishibashi, Kazuhisa; Ozaki, Koichi; Ogino, Hirohiko

    2007-12-01

    We have examined the improvement of ride quality and the reduction of riding fatigue brought about by the active control of the seat suspension of small vehicles such as one-seater electric automobiles. A small active seat suspension, which is easy to install, was designed and manufactured for one-seater electric automobiles. For the actuator, a maintenance-free voice coil motor used as a direct drive was adopted. For fundamental considerations, we designed a one-degree-of-freedom model for the active seat suspension system. Then, we designed a disturbance cancellation control system that includes the observer for a two-degree-of-freedom model. In an actual driving test, a test road, in which the concavity and convexity of an actual road surface were simulated using hard rubber, was prepared and the control performance of vertical vibrations of the seat surface during driving was examined. As a result, in comparison with the one-degree-of-freedom control system, it was confirmed that the control performance was improved by the two-degree-of-freedom control system that includes the observer.

  3. An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations

    International Nuclear Information System (INIS)

    This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables

  4. Software systems for astronomy

    CERN Document Server

    Conrad, Albert R

    2014-01-01

    This book covers the use and development of software for astronomy. It describes the control systems used to point the telescope and operate its cameras and spectrographs, as well as the web-based tools used to plan those observations. In addition, the book also covers the analysis and archiving of astronomical data once it has been acquired. Readers will learn about existing software tools and packages, develop their own software tools, and analyze real data sets.

  5. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  6. Microstructural observations of HFIR-irratiated austenitic stainless steels including welds from JP9-16

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, T.; Shiba, K.; Hishinuma, A.

    1996-04-01

    Austenitic stainless steels, including specimens taken from various electron beam (EB) welds, have been irradiated in HFIR Phase II capsules, JP9-16. Fifteen specimens irradiated at 300, 400, and 500{degrees}C up to 17 dpa are so far examined by a transmission electron microscope (TEM). In 300{degrees}C irradiation, cavities were smaller than 2nm and different specimens showed little difference in cavity microstructure. At 400{degrees}C, cavity size was larger, but still very small (<8 nm). At 500{degrees}C, cavity size reached 30 nm in weld metal specimens of JPCA, while cold worked JPCA contained a small (<5 nm) cavities. Inhomogeneous microstructural evolution was clearly observed in weld-metal specimens irradiated at 500{degrees}C.

  7. "Women in Astronomy: an Essay Review"

    Science.gov (United States)

    Cox, M.

    2006-12-01

    Interest in the history of women in astronomy has increased dramatically in the last 30 years. This interest has come from the growing number of professional scientists, historians and feminists researching the lives and work of earlier generations, as well as from amateur astronomers. It is reflected in the vast amount of literature on the subject, both in books and journals, and on the internet. This Essay Review will focus on monographs published in the last 10 years (1996-2006), and will be restricted mainly to pre-20th century women. The scope includes researchers, translators, computers and astronomical assistants as well as observers. Where appropriate, it includes books that discuss the role of women scientists, as well as pure astronomy books. Part 2, to be published later, will consider encyclopaedias and large works of reference .

  8. Everyday astronomy @ Sydney Observatory

    Science.gov (United States)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  9. Critical Issues in the Philosophy of Astronomy and Cosmology

    Science.gov (United States)

    Dick, Steven J.

    2016-01-01

    Although the philosophy of science and of specific sciences such as physics, chemistry, and biology are well-developed fields with their own books and journals, the philosophy of astronomy and cosmology have received little systematic attention. At least six categories of problems may be identified in the astronomical context: 1) the nature of reasoning, including the roles of observation, theory, simulation, and analogy, as well as the limits of reasoning, starkly evident in the anthropic principle, fine-tuning, and multiverse controversies; 2) the often problematic nature of evidence and inference, especially since the objects of astronomical interest are for the most part beyond experiment and experience;3) the influence of metaphysical preconceptions and non-scientific worldviews on astronomy, evidenced, for example in the work of Arthur S. Eddington and many other astronomers; 4) the epistemological status of astronomy and its central concepts, including the process of discovery, the problems of classification, and the pitfalls of definition (as in planets); 5) the role of technology in shaping the discipline of astronomy and our view of the universe; and 6) the mutual interactions of astronomy and cosmology with society over time. Discussion of these issues should draw heavily on the history of astronomy as well as current research, and may reveal an evolution in approaches, techniques, and goals, perhaps with policy relevance. This endeavor should also utilize and synergize approaches and results from philosophy of science and of related sciences such as physics (e.g. discussions on the nature of space and time). Philosophers, historians and scientists should join this new endeavor. A Journal of the Philosophy of Astronomy and Cosmology (JPAC) could help focus attention on their studies.

  10. Astronomy Outreach for Large, Unique, and Unusual Audiences

    Science.gov (United States)

    Lubowich, Donald

    2015-08-01

    My successful outreach program venues include: outdoor concerts and festivals; the US National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald Houses of Long Island and Chicago; the Winthrop U. Hospital Children’s Medical Center the Fresh Air Fund summer camps (low-income and special needs); a Halloween star party (costumed kids look through telescopes); a Super Bowl Star Party (targeting women); Science Festivals (World, NYC; Princeton U.; the USA Science and Engineering Festival); and the NYC Columbus Day Parade. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage lifelong learning. In 2010 I created Astronomy Festival on the National Mall (co-sponsored by the White House Office of Science and Technology Policy) with the participation of astronomy clubs, scientific institutions and with Tyco Brahe, Johannes Kepler, and Caroline Herschel making guest appearances. My programs include solar, optical, and radio telescope observations, hands-on activities, a live image projection system; large outdoor posters and banners; videos; hands-on activities, and edible astronomy demonstrations.My NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013) reached 50,000 music lovers at local parks and the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience - often the first time they looked through a telescope. While education

  11. Teach Astronomy: An Online Textbook for Introductory Astronomy Courses and Resources for Informal Learners

    Science.gov (United States)

    Hardegree-Ullman, Kevin; Impey, C. D.; Patikkal, A.

    2012-05-01

    This year we implemented Teach Astronomy (www.teachastronomy.com) as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive content includes: an introductory astronomy text book by Chris Impey, astronomy articles on Wikipedia, images from the Astronomy Picture of the Day, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy, and astronomy news from Science Daily. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. Steep increases in textbook prices and the unique capabilities of emerging web technology motivated the development of this free online resource. Recent additions to Teach Astronomy include: images and diagrams for the textbook articles, mobile device implementation, and suggested homework assignments for instructors that utilize recent discoveries in astronomy. We present an overview of how Teach Astronomy has been implemented for use in the classroom and informal settings, and suggestions for utilizing the rich content and features of the web site.

  12. Astronomy on a Landfill

    Science.gov (United States)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  13. Contextualization of Physics and Astronomy Through Nature

    Science.gov (United States)

    Dogan, Yasemin; Gurel, Z.

    2010-01-01

    This thesis focuses on the need for enriched learning environments in science education through the integrated setting of a physics course that is included in the training program for physics teachers. The participants are researchers, prospective physics teachers, civil defence volunteers and astronomers as collaborators. In this course an approach is adopted to incorporate indoor and outdoor settings in the same process to support one another with the purpose of contextualizing physics through nature. In the heart of the course is experience and observation, particularly in nature, in the form of a residential camp. Nature is a setting where students are faced with the sky and a telescope and do sky observations throughout the night. The part of the course involving astronomy is based on this engagement with the problems that arise from the topic of sky and telescope and are brought into the class in ill-structured form as a result of experience and observation. Within this thesis, the data gathered in two consecutive years, 2008 and 2009, are evaluated qualitatively. The problems were formed around a core experience but with the same core experience, problems varied from year to year depending on the human factor within the experience, namely the different characteristics of different people in different conditions, and environmental factors; geography and weather conditions, and the increasing experience of the researchers. Furthermore IYA2009 was also effective on the program of the course in 2009. Through this thesis prospective physics teachers’ participation in astronomy was broadened and it resulted in the formation of new knowledge, better understanding and led to the advancement of the use of astronomy in physics education. It is consistent with the inclusion of astronomy in new secondary and high school physics curriculum in our country as well.

  14. Extending Value of Information Methods to Include the Co-Net Benefits of Earth Observations

    Science.gov (United States)

    Macauley, M.

    2015-12-01

    The widening relevance of Earth observations information across the spectrum of natural and environmental resources markedly enhances the value of these observations. An example is observations of forest extent, species composition, health, and change; this information can help in assessing carbon sequestration, biodiversity and habitat, watershed management, fuelwood potential, and other ecosystem services as well as inform the opportunity cost of forest removal for alternative land use such as agriculture, pasture, or development. These "stacked" indicators or co- net benefits add significant value to Earth observations. In part because of reliance on case studies, much previous research about the value of information from Earth observations has assessed individual applications rather than aggregate across applications, thus tending to undervalue the observations. Aggregating across applications is difficult, however, because it requires common units of measurement: controlling for spatial, spectral, and temporal attributes of the observations; and consistent application of value of information techniques. This paper will discuss general principles of co-net benefit aggregation and illustrate its application to attributing value to Earth observations.

  15. Enhancing Undergraduate Research Experience with Observational Astronomy: One Aspect of the NSF CSULA/JPL CURE REU Program

    Science.gov (United States)

    Yanamandra-Fisher, Padma A.; Gillam, S.; Lotozinski, J.; Holt, D.; Genov, I.

    2009-05-01

    Aligned with NASA's educational goals to engage and identify future scientists and engineers, the California State University Los Angeles (CSULA)/JPL Consortium for Undergraduate Research Experience (CURE) program provides opportunities for minority and women undergraduates to actively participate in research at the jet Propulsion Laboratory (JPL). CURE is a Research Experience for Undergraduates (REU) Site funded for the last ten years by the National Science Foundation. The interaction between mentors and students allows the students to appreciate and translate classroom lessons to hands-on experience. In many cases, it provides the undergraduate with their first realization that they can be part of the scientific and technical workforce. A typical research experience available to CURE interns is our remote ground-based observations of Jovian planets project. Those selected for this program are immediately immersed in all aspects of data acquisition and analysis. The students are engaged in discussions related to the observations and involved in all aspects of research from data acquisition to presentations at scientific meetings such as Division of Planetary Sciences, JWSM, American Astronomical Society and Southern California Conference on Undergraduate Research (SCCUR). Recent observations were focused on the global upheaval on Jupiter and Saturn's closing rings as it approaches equinox. Projects of recent CURE interns involved with these observations are presented. The projects completed by the students are used as training materials for subsequent interns. The CURE REU site is unique among internship programs nationally in fostering long-term (up to three years) working relationships between students and JPL mentors. This allows JPLers to complete a wider range of research projects and help to nurture the next generation of scientists and engineers. As mentors, we are engaged in identifying different approaches to develop the potential of future astronomers

  16. Astronomy on the High Seas

    Science.gov (United States)

    Hughes, S.; Rihani, N.

    2010-06-01

    This article describes the development and launching of a stargazing activity on two cruise ships, Pacific Dawn and Pacific Sun, which sail from Australian ports. The session included a presentation entitled "Voyage to the Stars" that gave passengers an overview of the life cycle of stars from star-birth nebulae to white dwarfs and black holes. In the presentation it was noted that ancient mariners used the celestial sphere to navigate. The presentation was followed by on-deck observing sessions in which objects shown in the presentation were viewed with the naked eye, binoculars and a small telescope. The activity seemed to be well received and resulted in numerous questions to the presenter of the activity. Many people said that the activity had kindled or rekindled their interest in astronomy.

  17. A multimethod investigation including direct observation of 3751 patient visits to 120 dental offices

    Directory of Open Access Journals (Sweden)

    Stephen Wotman

    2010-05-01

    Full Text Available Stephen Wotman1, Catherine A Demko1, Kristin Victoroff1, Joseph J Sudano2, James A Lalumandier11Department of Community Dentistry, Case Western Reserve University, School of Dental Medicine, Cleveland, OH, USA; 2Center of Health Care Research and Policy, Case Western Reserve University, School of Medicine, Cleveland, OH, USAAbstract: This report defines verbal interactions between practitioners and patients as core activities of dental practice. Trained teams spent four days in 120 Ohio dental practices observing 3751 patient encounters with dentists and hygienists. Direct observation of practice characteristics, procedures performed, and how procedure and nonprocedure time was utilized during patient visits was recorded using a modified Davis Observation Code that classified patient contact time into 24 behavioral categories. Dentist, hygienist, and patient characteristics were gathered by questionnaire. The most common nonprocedure behaviors observed for dentists were chatting, evaluation feedback, history taking, and answering patient questions. Hygienists added preventive counseling. We distinguish between preventive procedures and counseling in actual dental offices that are members of a practice-based research network. Almost a third of the dentist’s and half of the hygienist’s patient contact time is utilized for nonprocedure behaviors during patient encounters. These interactions may be linked to patient and practitioner satisfaction and effectiveness of self-care instruction.Keywords: dental practice, dental practice core activities, direct observation of dental practice, Dental Davis Observation Code, dentist, hygienist patient behaviors

  18. The first radio astronomy from space - RAE

    Science.gov (United States)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  19. Freshman Seminars: Interdisciplinary Engagements in Astronomy

    Science.gov (United States)

    Hemenway, M. K.

    2006-08-01

    The Freshman Seminar program at the University of Texas is designed to allow groups of fifteen students an engaging introduction to the University. The seminars introduce students to the resources of the university and allow them to identify interesting subjects for further research or future careers. An emphasis on oral and written communication by the students provides these first-year students a transition to college-level writing and thinking. Seminar activities include field trips to an art museum, a research library, and the Humanities Research Center rare book collection. This paper will report on two seminars, each fifteen weeks in length. In "The Galileo Scandal" students examine Galileo's struggle with the church (including a mock trial). They perform activities that connect his use of the telescope and observations to astronomical concepts. In "Astronomy and the Humanities" students analyze various forms of human expression that have astronomical connections (art, drama, literature, music, poetry, and science fiction); they perform hands-on activities to reinforce the related astronomy concepts. Evaluation of the seminars indicates student engagement and improvement in communication skills. Many of the activities could be used independently to engage students enrolled in standard introductory astronomy classes.

  20. Physics and astronomy of the Moon

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Physics and Astronomy of the Moon focuses on the application of principles of physics in the study of the moon, including perturbations, equations, light scattering, and photometry. The selection first offers information on the motion of the moon in space and libration of the moon. Topics include Hill's equations of motion, non-solar perturbations, improved lunar ephemeris, optical and physical libration of the moon, and adjustment of heliometric observations of the moon's libration. The text then elaborates on the dynamics of the earth-moon system, photometry of the moon, and polarization of

  1. Teach Astronomy: An Online Resource for Introductory Astronomy Courses and Informal Learners

    Science.gov (United States)

    Austin, Carmen; Impey, C. D.; Hardegree-Ullman, K.; Patikkal, A.; Ganesan, N.

    2013-01-01

    Teach Astronomy (www.teachastronomy.com) is a new, free online resource—a teaching tool for non-science major astronomy courses and a reference guide for lifelong learners interested in the subject. Digital content available includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Motivation behind the development of Teach Astronomy includes steep increases in textbook prices, the rapid adoption by students and the public of digital resources, and the modern capabilities of digital technology. Recent additions to Teach Astronomy include: AstroPix images—from some of the most advanced observatories and complete with metadata, mobile device functionality, links to WikiSky where users can see the location of astronomical objects in the sky, and end of chapter textbook review questions. Next in line for development are assignments for classroom use. We present suggestions for utilizing the rich content and features of the web site.

  2. Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations

    International Nuclear Information System (INIS)

    The nature of dark energy affects the Hubble expansion rate (namely, the expansion history) H(z) by an integral over w(z). However, the usual observables are the luminosity distances or the angular diameter distances, which measure the distance.redshift relation. Actually, the property of dark energy affects the distances (and the growth factor) by a further integration over functions of H(z). Thus, the direct measurements of the Hubble parameter H(z) at different redshifts are of great importance for constraining the properties of dark energy. In this paper, we show how the typical dark energy models, for example, the ΛCDM, wCDM, CPL, and holographic dark energy models, can be constrained by the current direct measurements of H(z) (31 data used in total in this paper, covering the redshift range of z @ element of [0.07, 2.34]). In fact, the future redshift-drift observations (also referred to as the Sandage-Loeb test) can also directly measure H(z) at higher redshifts, covering the range of z @ element of [2, 5]. We thus discuss what role the redshift-drift observations can play in constraining dark energy with the Hubble parameter measurements. We show that the constraints on dark energy can be improved greatly with the H(z) data from only a 10-year observation of redshift drift. (orig.)

  3. Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui-Yun [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2016-03-15

    The nature of dark energy affects the Hubble expansion rate (namely, the expansion history) H(z) by an integral over w(z). However, the usual observables are the luminosity distances or the angular diameter distances, which measure the distance.redshift relation. Actually, the property of dark energy affects the distances (and the growth factor) by a further integration over functions of H(z). Thus, the direct measurements of the Hubble parameter H(z) at different redshifts are of great importance for constraining the properties of dark energy. In this paper, we show how the typical dark energy models, for example, the ΛCDM, wCDM, CPL, and holographic dark energy models, can be constrained by the current direct measurements of H(z) (31 data used in total in this paper, covering the redshift range of z @ element of [0.07, 2.34]). In fact, the future redshift-drift observations (also referred to as the Sandage-Loeb test) can also directly measure H(z) at higher redshifts, covering the range of z @ element of [2, 5]. We thus discuss what role the redshift-drift observations can play in constraining dark energy with the Hubble parameter measurements. We show that the constraints on dark energy can be improved greatly with the H(z) data from only a 10-year observation of redshift drift. (orig.)

  4. Billroth's early observations (1895) on pacing frequencies may have included cases of dysrhythmia

    OpenAIRE

    VAN ZWIETEN, Koos Jaap

    2015-01-01

    Starting with the close reading of Theodor Billroth’s original descriptions (1895), consisting of six clusters of observations of gait frequencies in otherwise healthy young men, we made a critical comparison with a representative selection of current 21st century literature about individuals diagnosed with congenital “beat deafness” or “dysrhythmia”. Dysrhythmia describes the abnormal timing and coupling of movements.

  5. Gravitational-Wave Astronomy

    Science.gov (United States)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  6. Gamma-ray astronomy

    OpenAIRE

    Pohl, Martin

    2001-01-01

    This paper summarizes recents results in gamma-ray astronomy, most of which were derived with data from ground-based gamma-ray detectors. Many of the contributions presented at this conference involve multiwavelength studies which combine ground-based gamma-ray measurements with optical data or space-based X-ray and gamma-ray measurements. Besides measurements of the diffuse emission from the Galaxy, observations of blazars, gamma-ray bursts, and supernova remnants this paper also covers theo...

  7. Islamic Mathematical Astronomy

    Science.gov (United States)

    Montelle, Clemency

    A short survey on Islamic mathematical astronomy practiced during the period running from the eight century until the fifteenth is presented. Various pertinent themes, such as the translation of foreign scientific works and their impact on the tradition; the introduction, assimilation, and critique of the Ptolemaic model; and the role of observations, will be covered. In addition, the zīj, the dominant format for astronomical works, will be briefly explained as well as the legacy of the Islamic tradition of astral sciences to other cultures.

  8. The Teenager in an Online Game: Included Observation and Experience in Social Work

    Directory of Open Access Journals (Sweden)

    Hlomov K.D.,

    2015-02-01

    Full Text Available The article refers to the need to change the existing view of the development in adolescence. We provide the data of observations of the behavior of teenagers in the online game "DragonNest" conducted in 2013 by experts of the Center of social and psychological adaptation and development of adolescents "Crossroads" of MSUPE, which led to the assumption about the problems arising in adolescence. As a theoretical basis for the construction of this work was selected restorative approach, which is a practical application of the cultural-historical theory and of activity theory to social and psychological assistance to adolescents. The analysis of the activity of the teenager in the game, the structure of communication, observation on the adolescents in online gaming space allowed us to make assumptions about the role of communication with peers in a modern society in terms of identity formation and development of adolescents.

  9. Parasitological observations on three Bolivian localities including rural communities, cities and institutions.

    Science.gov (United States)

    Cancrini, G; Bartoloni, A; Paradisi, F; Nunez, L E

    1989-12-01

    Three hundred of 381 subjects examined from the Camiri, Boyuibe and Gutierrez areas (Santa Cruz Department) harboured one to six species of intestinal helminths and/or protozoa. High infection rates were found in Camiri in the orphanage (43 of 44 persons) and in the Military Hospital (10 of 10 persons), as well as in Itanambicua (97.4%), a rural community close to the city (38 of 39 persons). No significant differences were noted between the overall parasitic prevalences observed in rural and urban environments, but the frequency of species was different. Indiscriminate defaecation, the habit of living in close association with animals, overcrowding, and especially lack of health education, are some of the factors responsible for the parasitic situation observed. PMID:2619373

  10. The Teenager in an Online Game: Included Observation and Experience in Social Work

    OpenAIRE

    Hlomov K.D.,; Kondrashkin A.V.,; Kuzin P.A.,; Kalyakina S.M.,; Tyulkanova K.I.,; Medvedev D.P.,

    2015-01-01

    The article refers to the need to change the existing view of the development in adolescence. We provide the data of observations of the behavior of teenagers in the online game "DragonNest" conducted in 2013 by experts of the Center of social and psychological adaptation and development of adolescents "Crossroads" of MSUPE, which led to the assumption about the problems arising in adolescence. As a theoretical basis for the construction of this work was selected restorative approach, which i...

  11. Solution model of nonlinear integral adjustment including different kinds of observing data with different precisions

    Institute of Scientific and Technical Information of China (English)

    郭金运; 陶华学

    2003-01-01

    In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives. The partial derivative of each component in the target function is not computed while iteratively solving the problem. Especially when the nonlinear target function is more complex and very difficult to solve the problem, the method can greatly reduce the computing load.

  12. The Venus Transit, the Mayan Calendar and Astronomy Education in Guanajuato, Mexico

    Science.gov (United States)

    Bravo-Alfaro, H.; Caretta, C. A.; Brito, E. M. S.; Campos, P.; Macias, F.

    2015-03-01

    In this work we present two aspects of the Astronomy education activities carried out in 2012 by a multidisciplinary group at Universidad de Guanajuato, including specialists in Astronomy, Social Sciences and Environmental Engineering. The first program linked the Venus Transit, occurred in June 2012, with a national campaign of vulgarization of both modern and ancient (Mayan) Astronomy. Professional astronomers all around the country took advantage of the recent myth linked to the end of a large Mayan calendar cycle (13 baktuns, or some 5125 years) happening, after certain authors, in December 2012. In Guanajuato, the Astronomy Department organized live observations of the Venus Transit at two different locations, and complemented with conferences about astronomical events and the fake predictions of disasters linked to the ``end`` of the Mayan calendar. This program was very successful not only in Guanajuato but throughout the country, with several thousands of people attending live observations, conferences, expositions, etc.

  13. Astronomy Education Under Dark Skies

    Science.gov (United States)

    Cecylia Molenda-Zakowicz, Joanna

    2015-08-01

    We have been providing professional support for the high school students and the astronomy teachers since 2007. Our efforts include organizing astronomy events that take from several hours, like, e.g., watching the transit of Venus, to several days, like the workshops organized in the framework of the projects 'School Workshops on Astronomy' (SWA) and 'Wygasz'.The SWA and Wygasz workshops include presentations by experts in astronomy and space science research, presentations prepared by students being supervised by those experts, hands-on interactive experience in the amateur astrophotography, various pencil-and-paper exercises, and other practical activities. We pay particular attention to familiarize the teachers and students with the idea and the necessity of protecting the dark sky. The format of these events allows also for some time for teachers to share ideas and best practices in teaching astronomy.All those activities are organized either in the Izera Dark-Sky Park in Poland or in other carefuly selected locations in which the beauty of the dark night sky can be appreciated.

  14. The cost of publishing in Danish astronomy

    DEFF Research Database (Denmark)

    Dorch, Bertil F.

    I investigate the cost of publishing in Danish astronomy on a fine scale, including all direct publication costs: The figures show how the annual number of publications with authors from Denmark in astronomy journals increased by a factor approximately four during 15 years (Elsevier’s Scopus...... database), and the increase of the corresponding potential (maximum) cost of publishing....

  15. NASE Training Courses in Astronomy for Teachers throughout the World

    Science.gov (United States)

    Ros, Rosa M.

    2012-01-01

    Network for Astronomy School Education, NASE, is a project that is organizing courses for teachers throughout the entire world. The main objective of the project is to prepare secondary and primary school teachers in astronomy. Students love to know more about astronomy and teachers have the opportunity to observe the sky that every school has…

  16. Next-generation Astronomy

    CERN Document Server

    Norris, Ray P

    2010-01-01

    Fundamental changes are taking place in the way we do astronomy. In twenty years time, it is likely that most astronomers will never go near a cutting-edge telescope, which will be much more efficiently operated in service mode. They will rarely analyse data, since all the leading-edge telescopes will have pipeline processors. And rather than competing to observe a particularly interesting object, astronomers will more commonly group together in large consortia to observe massive chunks of the sky in carefully designed surveys, generating petabytes of data daily. We can imagine that astronomical productivity will be higher than at any previous time. PhD students will mine enormous survey databases using sophisticated tools, cross-correlating different wavelength data over vast areas, and producing front-line astronomy results within months of starting their PhD. The expertise that now goes into planning an observation will instead be devoted to planning a foray into the databases. In effect, people will plan ...

  17. Behavioral factors to include in guidelines for lifelong oral healthiness: an observational study in Japanese adults

    Directory of Open Access Journals (Sweden)

    Shimozato Miho

    2006-12-01

    Full Text Available Abstract Background The aim of this study was to determine which behavioral factors to include in guidelines for the Japanese public to achieve an acceptable level of oral healthiness. The objective was to determine the relationship between oral health related behaviors and symptoms related to oral disease and tooth loss in a Japanese adult community. Methods Oral health status and lifestyle were investigated in 777 people aged 20 years and older (390 men and 387 women. Subjects were asked to complete a postal questionnaire concerning past diet and lifestyle. The completed questionnaires were collected when they had health examinations. The 15 questions included their preference for sweets, how many between-meal snacks they usually had per day, smoking and drinking habits, presence of oral symptoms, and attitudes towards dental visits. Participants were asked about their behaviors at different stages of their life. The oral health examinations included examination of the oral cavity and teeth performed by dentists using WHO criteria. Odds ratios were calculated for all subjects, all 10 year age groups, and for subjects 30 years or older, 40 years or older, 50 years or older, and 60 years or older. Results Frequency of tooth brushing (OR = 3.98, having your own toothbrush (OR = 2.11, smoking (OR = 2.71 and bleeding gums (OR = 2.03 were significantly associated with number of retained teeth in males. Frequency of between-meal snacks was strongly associated with number of retained teeth in females (OR = 4.67. Having some hobbies (OR = 2.97, having a family dentist (OR = 2.34 and consulting a dentist as soon as symptoms occurred (OR = 1.74 were significantly associated with number of retained teeth in females. Factors that were significantly associated with tooth loss in both males and females included alcohol consumption (OR = 11.96, males, OR = 3.83, females, swollen gums (OR = 1.93, males, OR = 3.04, females and toothache (OR = 3.39, males, OR

  18. Constraining dark energy with Hubble parameter measurements: An analysis including future redshift-drift observations

    CERN Document Server

    Guo, Rui-Yun

    2015-01-01

    Dark energy affects the Hubble expansion rate (namely, the expansion history) $H(z)$ by an integral over $w(z)$. However, the usual observables are the luminosity distances or the angular diameter distances, which measure the distance-redshift relation. Actually, dark energy affects the distances (and the growth factor) by a further integration over functions of $H(z)$. Thus, the direct measurements of the Hubble parameter $H(z)$ at different redshifts are of great importance for constraining the properties of dark energy. In this paper, we show how the typical dark energy models, for example, the $\\Lambda$CDM, $w$CDM, CPL, and holographic dark energy (HDE) models, can be constrained by the current direct measurements of $H(z)$ (30 data in total, covering the redshift range of $z\\in [0.07,2.30]$). In fact, the future redshift-drift observations (also referred to as the Sandage-Loeb test) can also directly measure $H(z)$ at higher redshifts, covering the range of $z\\in [2,5]$. We thus discuss what role the red...

  19. Astronomy in the City for Astronomy Education

    Science.gov (United States)

    Ros, Rosa Maria; García, Beatriz

    2015-08-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. “Astronomy in the city” is an important part of NASE (Network for Astronomy School Education). In each NASE course we introduce a “working group session” chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair.After more than 5 years using this method we visited and discovered several examples of astronomy in the city:• Astronomy in ancient typical cloths• Archeological temples oriented according the Sun rise or set.• Petroglyphs with astronomical meaning.• Astronomy in monuments.• Sundials.• Oriented Colonial churches• Astronomy in SouvenirsIn any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus "what is the best part in order to be seat in the shadow during the journey?" The result is motivation to go with “open eyes” when they are in the street and they try to get more and more information about their surroundings.The most significant characteristic of NASE is that the ”Local NASE Working Group” (LWG) in each country continues with astronomy activities using our materials and new materials created by them. These LWG are integrated by 6 to 8 teachers and professors that participated actively in NASE courses. They maintains alive the program and increases the number of students which can learn through our didactical proposal. There are more than 25 LWG that teach and organize activities on astronomy (education and/or communication) in about 20 countries.In summary, one of the main activities is to introduce local

  20. New Constraints On Cosmic Polarization Rotation Including SPTpol B-mode Polarization Observations

    CERN Document Server

    Pan, W -P; Ni, W -T; Xu, L

    2016-01-01

    We present an update of the cosmic polarization rotation (CPR) constraint from the recent SPTpol measurements of sub-degree B-mode polarization in the cosmic microwave background (CMB) of 100 square degrees of sky. Our previous CPR fluctuation constraint from the joint ACTpol-BICEP2-POLARBEAR polarization data is 23.7 mrad (1.36{\\deg}). With new SPTpol data included, the CPR fluctuation constraint is updated to 17 mrad (1{\\deg}) with the scalar to tensor ratio r = - 0.05 +- 0.1

  1. Constraints on dark energy from new observations including Pan-STARRS

    International Nuclear Information System (INIS)

    In this paper, we set the new limits on the equation of state parameter (EoS) of dark energy with the observations of cosmic microwave background radiation (CMB) from Planck satellite, the type Ia supernovae from Pan-STARRS and the baryon acoustic oscillation (BAO). We consider two parametrization forms of EoS: a constant w and time evolving w(a)=w0+wa(1-a). The results show that with a constant EoS, w=-1.141±0.075 68% C.L.), which is consistent with ΛCDM at about 2σ confidence level. For a time evolving w(a) model, we get w0=-1.09+0.16-0.18 1σ C.L.), wa=-0.34+0.87-0.51 1σ C.L.), and in this case ΛCDM can be comparable with our observational data at 1σ confidence level. In order to do the parametrization independent analysis, additionally we adopt the so called principal component analysis (PCA) method, in which we divide redshift range into several bins and assume w as a constant in each redshift bin (bin-w). In such bin-w scenario, we find that for most of the bins cosmological constant can be comparable with the data, however, there exists few bins which give w deviating from ΛCDM at more than 2σ confidence level, which shows a weak hint for the time evolving behavior of dark energy. To further confirm this hint, we need more data with higher precision

  2. Distance Education with a Computerized Astronomy Laboratory

    Science.gov (United States)

    Connors, Martin

    1992-12-01

    Distance Education is the presentation of an educational curriculum through self-study materials supplemented by regular contact with an instructor. As such it is suitable for offering educational opportunities to students in widely dispersed locations typical of Canada. Since 1989 Athabasca University has offered Science 280, Introduction to Astronomy and Astrophysics, as a broad introduction to Astronomy at a pre-calculus level. The course includes a computer-based laboratory (observing simulation) set done in students' homes. The laboratory allows simulation of naked eye astronomical observations, starting with the motions of the sun and moon. The logical jump to motions not apparently centered on Earth (planetary retrograde motion and periods) seems to present difficulty to students. Stellar proper motions are made observable by the use of long observing intervals of up to 30000 years. The distribution of nearby stars in space is studied through use of stellar color and the assumption that all stars are on the Main Sequence. The erroneous results which this engenders are not recognized as such by most students, who happily submit reports with red stars at .02 parsec distance. Star counts enable rough determination of Galactic structure. Widespread availability of PC-compatible computers has enabled distance education to bring astronomical education, including an 'observational' component, to Canadians who otherwise would not have access to it.

  3. The clinical spectrum of laryngeal dystonia includes dystonic cough: observations of a large series.

    Science.gov (United States)

    Payne, Susannah; Tisch, Stephen; Cole, Ian; Brake, Helen; Rough, Judy; Darveniza, Paul

    2014-05-01

    Laryngeal dystonia is a movement disorder of the muscles within the larynx, which most commonly manifests as spasmodic dysphonia (SD). Rarer reported manifestations include dystonic respiratory stridor and dyscoordinate breathing. Laryngeal dystonia has been treated successfully with botulinum neurotoxin (BTX) injections since 1984. We reviewed prospectively collected data in a consecutive series of 193 patients with laryngeal dystonia who were seen at St. Vincent's Hospital between 1991 and 2011. Patient data were analyzed in Excel, R, and Prism. Laryngeal dystonia manifested as SD (92.7%), stridor (11.9%), dystonic cough (6.2%), dyscoordinate breathing (4.1%), paroxysmal hiccups (1.6%), and paroxysmal sneezing (1.6%). There were more women (68.4%) than men (31.6%), and the average age at onset was 47 years. A positive family history of dystonia was present in 16.1% of patients. A higher incidence of extra-laryngeal dystonia (ie, torticollis and blepharospasm) and concurrent manifestations of laryngeal dystonia were present in patients with dystonic cough, dyscoordinate breathing, paroxysmal sneezing, and hiccups than in other patients (P = 0.003 and P Technical failures were rare (1.1%). Dysphonia secondary to vocal cord paresis followed 38.7% of treatments. Laryngeal dystonia manifests predominantly as SD, but other manifestations include stridor, dyscoordinate breathing, paroxysmal cough, hiccups, and sneezing. BTX injections are very effective across all subgroups. Severe adverse events are rare. PMID:24753288

  4. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1963-01-01

    Advances in Astronomy and Astrophysics, Volume 2 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of six chapters and begins with a summary of observational record on twilight extensions of the Venus cusps. The next chapter deals with the common and related properties of binary stars, with emphasis on the evaluation of their cataclysmic variables. Cataclysmic variables refer to an object in one of three classes: dwarf nova, nova, or supernova. These topics are followed by discussions on the eclipse phenomena and the eclipses i

  5. Statistical Challenges in Modern Astronomy

    CERN Document Server

    Feigelson, E D

    2003-01-01

    Despite centuries of close association, statistics and astronomy are surprisingly distant today. Most observational astronomical research relies on an inadequate toolbox of methodological tools. Yet the needs are substantial: astronomy encounters sophisticated problems involving sampling theory, survival analysis, multivariate classification and analysis, time series analysis, wavelet analysis, spatial point processes, nonlinear regression, bootstrap resampling and model selection. We review the recent resurgence of astrostatistical research, and outline new challenges raised by the emerging Virtual Observatory. Our essay ends with a list of research challenges and infrastructure for astrostatistics in the coming decade.

  6. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1966-01-01

    Advances in Astronomy and Astrophysics, Volume 4 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with a description of objective prism and its application in space observations. The next chapter deals with the possibilities of deriving reliable models of the figure, density distribution, and gravity field of the Moon based on data obtained through Earth-bound telescopes. These topics are followed by a discussion on the ideal partially relativistic, partially degenerate gas in an exact manner. A ch

  7. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1962-01-01

    Advances in Astronomy and Astrophysics, Volume 1 brings together numerous research works on different aspects of astronomy and astrophysics. This book is divided into five chapters and begins with an observational summary of the shock-wave theory of novae. The subsequent chapter provides the properties and problems of T tauri stars and related objects. These topics are followed by discussions on the structure and origin of meteorites and cosmic dust, as well as the models for evaluation of mass distribution in oblate stellar systems. The final chapter describes the methods of polarization mea

  8. Viscoplastic behaviour including damage for deep argillaceous rocks: from in situ observations to constitutives equations

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In order to demonstrate the feasibility of a radioactive waste repository in clay-stone formation, French national radioactive waste management agency (ANDRA) started in 2000 to build an underground research laboratory CMHM) at Bure located at nearly 300 km East of Paris. The host formation consists of a clay-stone (Callovo-Oxfordian argillites) and lies between 430 m and 550 m deep. On the basis of numerous campaigns of laboratory tests (uniaxial/triaxial, mono/multi stage creep and relaxation) undertaken for characterizing mechanical and hydro-mechanical short-term or long-term behaviour of these argillites, several constitutive models were developed in the framework of MODEXREP European project and scientific cooperation between ANDRA and national institutions. Moreover, more than 400 m horizontal galleries at the main level of -490 m at CMHM laboratory have been instrumented since April 2005 with the aim to understand the rock behaviour (especially the long term behaviour) needed for the repository design. The continuous measurements of convergencies of the galleries are available contributing to better understand the time-dependent response of the argillites at natural scale. Analysis of convergence data over a period of 2 years leads to the following conclusions: (a) viscoplastic strains are anisotropic and depend on the gallery orientation with regard to the initial stress anisotropy in the investigated formation; (b) the viscoplastic strain rates observed in the undamaged area far from the galleries walls are in the same order of magnitude as those obtained on samples, whereas those recorded in the damaged or fractured zone near to the walls are one to two orders of magnitude higher; indicating the damage and created macroscopic fractures influences on the viscoplastic strains. This influence has not been taken into account in the previous constitutive models. From these observations, a macroscopic

  9. News Note: Administration of astronomy in South Africa

    Science.gov (United States)

    2015-12-01

    The National Research Foundation announced on 31 July that Prof Nithaya Chetty has been appointed as Deputy Chief Executive of the National Research Foundation for Astronomy with effect from 1 October 2014. As such, he will be responsible for coordinating the national strategy for astronomy. This will include supervision of the astronomy national facilities and the SKA-SA Project, developing synergies between the various astronomy departments, the astronomical facilities and the community at large, promoting public awareness and liaising with international partners,

  10. OBSERVING CONDITIONS FOR SUBMILLIMETER ASTRONOMY

    Directory of Open Access Journals (Sweden)

    S. J. E. Radford

    2011-01-01

    Full Text Available Condiciones de observación consistentemente excelentes son cruciales para lograr los objetivos científicos de un telescopio. La astronomía submilimétrica es posible solamente en algunos sitios excepcionalmente secos, notablemente Mauna Kea, el plateau de Antártida, y la región de Chajnantor en los Andes al este de San Pedro de Atacama en el norte de Chile. Las mediciones de larga duración de la transparencia atmosférica a 225 GHz y 350 micro m demuestran que las tres localidades cuentan con suficientes períodos de excelentes condiciones de observación. Las condiciones en el Llano de Chajnantor y en el Polo Sur son mejores con más frecuencia que en Mauna Kea. Las condiciones son mejores durante el invierno y por la noche. Cerca de la cima del Cerro Chajnantor, las condiciones son mejores que en el Llano de Chajnantor.

  11. Astronomy and Politics

    Science.gov (United States)

    Steele, John M.

    The relationship between astronomy and politics is a complex but important part of understanding the practice of astronomy throughout history. This chapter explores some of the ways that astronomy, astrology, and politics have interacted, placing particular focus on the way that astronomy and astrology have been used for political purposes by both people in power and people who wish to influence a ruler's policy. Also discussed are the effects that politics has had on the development of astronomy and, in particular, upon the recording and preservation of astronomical knowledge.

  12. I.S. Shklovsky and modern radio astronomy

    Science.gov (United States)

    Rudnitskij, G. M.

    2006-10-01

    Iosif Samuilovich Shklovsky is one of the founders of radio astronomy as a leading branch in the modern science. Under his leadership in 1953 the Radio Astronomy Department was formed at the Sternberg Astronomical Institute of Moscow State University. Shklovsky's research covered a large variety of topics in radio astronomy, space research, solar physics, X-ray astronomy, etc. In this contribution, Shklovsky's life story is reviewed, including the famous expedition to Brazil for radio observations of the solar eclipse. His main works are presented, such as the prediction of the possibility of observing the 21 cm radio line of neutral hydrogen in the interstellar medium together with some molecular radio lines, the explanation of the spectrum of the Crab Nebula in the optical and radio ranges by a unified synchrotron mechanism, and his studies on the radio emission of the solar corona, including the explanation of drifting solar radio bursts by a plasma mechanism. Other research achievements are reviewed, among which are his idea on the artificial comet implemented during the first lunar launches, and his work on the problem of the search for extraterrestrial intelligence.

  13. Gravitational Waves and Multi-Messenger Astronomy

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  14. Astronomy education and scientific schools in Ukraine

    Science.gov (United States)

    Yatskiv, Yaroslav S.; Vavilova, Iryna B.

    2011-06-01

    We describe briefly the current state of astronomical education in Ukraine, namely the secondary, higher, and post-graduating education systems. A special attention is paid to so called ``scientific schools'', non-formal groups of scientists formed by recognised astronomers, which have played and continue to play an important rôle in development of the astronomy education system. Among the founders of scientific schools were the well-known professors Alexander Ya. Orlov (Odessa University), Nikolai P. Barabashov (Kharkiv University), Sergei K. Vsekhsvyatsky (Kyiv University), Semen Ya. Braude (Kharkiv Polytechnical Institute), and Vladimir P. Tsesevich (Odessa University). We also give a general review on the history of astronomy education during the 16th-18th centuries. In 2000 astronomy was reinstated into the current 12-year secondary education curriculum of Ukraine. At present, some elements of astronomical knowledge are included in the lessons of ``Natural Sciences'' for pupils in the 5th - 10th grades. Astronomy is included as a basic course both in general (non-specialised) schools (17 academic hours in the last 11th or 12th grade) and in lyceums of the natural sciences (34 academic hours in the 12th grade). It is included also as an optional course in the educational program of gymnasiums in humanities. Every year about 75 young persons enter the Ukrainian universities to become astronomers. Results of our monitoring of the efficiency of astronomical higher educational system indicate that about 80% of the entered university students finish their education in 5 years; 50% of those who finished the cursus were working in astronomy. Since 1992 more then 100 astronomers defend Theses of Cand. Sci. (similar to Ph.D) and about 40 astronomers defend Theses of Dr. Sci. (topmost scientific degree, similar to Dr. Hab.). One of our present-day problems is a brain drain of young scientists. About 50% of those who obtained Cand. Sci. degree work outside Ukraine. At

  15. Service Learning in Introductory Astronomy

    Science.gov (United States)

    Orleski, Michael

    2013-01-01

    Service learning is a method of instruction where the students in a course use the course's content in a service project. The service is included as a portion of the students' course grades. During the fall semester 2010, service learning was incorporated into the Introduction to Astronomy course at Misericordia University. The class had…

  16. Exploring the history of New Zealand astronomy trials, tribulations, telescopes and transits

    CERN Document Server

    Orchiston, Wayne

    2016-01-01

    Professor Orchiston is a foremost authority on the subject of New Zealand astronomy, and here are the collected papers of his fruitful studies in this area, including both those published many years ago and new material.  The papers herein review traditional Maori astronomy, examine the appearance of nautical astronomy practiced by Cook and his astronomers on their various stopovers in New Zealand during their three voyagers to the South Seas, and also explore notable nineteenth century New Zealand observatories historically, from significant telescopes now located in New Zealand to local and international observations made during the 1874 and 1882 transits of Venus and the nineteenth and twentieth century preoccupation of New Zealand amateur astronomers with comets and meteors. New Zealand astronomy has a truly rich history, extending from the Maori civilization in pre-European times through to the years when explorers and navigators discovered the region, up to pioneering research on the newly emerging fie...

  17. Advances in astronomy and astrophysics 9

    CERN Document Server

    Kopal, Zdenek

    1972-01-01

    Advances in Astronomy and Astrophysics, Volume 9 covers reviews on the advances in astronomy and astrophysics. The book presents reviews on the Roche model and its applications to close binary systems. The text then describes the part played by lunar eclipses in the evolution of astronomy; the classical theory of lunar eclipses; deviations from geometrical theory; and the methods of photometric observations of eclipses. The problems of other phenomena related in one way or another to lunar eclipses are also considered. The book further tackles the infrared observation on the eclipsed moon, as

  18. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  19. Panoramic Radio Astronomy

    CERN Document Server

    Heald, G

    2009-01-01

    In this contribution we give a brief overview of the Panoramic Radio Astronomy (PRA) conference held on 2-5 June 2009 in Groningen, the Netherlands. The conference was motivated by the on-going development of a large number of new radio telescopes and instruments which, within a few years, will bring a major improvement over current facilities. Interferometers such as the EVLA, ASKAP, ATA, MeerKAT, and APERTIF will provide a combination of larger field of view and increased simultaneous bandwidth, while maintaining good collecting area and angular resolution. They will achieve a survey speed 10-50 times larger at 1-2 GHz than the current possibilities, allowing for the first time optical-like all-sky extra-galactic surveys at these frequencies. Significant progress will be made in many fields of radio astronomy. In this conference we focused on research into the evolution of galaxies over the past few Gyr. In particular, wide-field observations at 1-2 GHz will provide an unprecedented panoramic view of the ga...

  20. Challenges in Astronomy Education

    Science.gov (United States)

    De Greve, Jean-Pierre

    2010-11-01

    Astronomy is an attractive subject for education. It deals with fascination of the unknown and the unreachable, yet is uses tools, concepts and insights from various fundamental sciences such as mathematics, physics, chemistry, biology. Because of this it can be well used for introducing sciences to young people and to raise their interest in further studies in that direction. It is also an interesting subject for teaching as its different aspects (observation techniques, theory, data sampling and analysis, modelling,?) offer various didactical approaches towards different levels of pupils, students and different backgrounds. And it gives great opportunities to teach and demonstrate the essence of scientific research, through tutorials and projects. In this paper we discuss some of the challenges education in general, and astronomy in particular, faces in the coming decades, given the major geophysical and technological changes that can be deducted from our present knowledge. This defines a general, but very important background in terms of educational needs at various levels, and in geographical distribution of future efforts of the astronomical community. Special emphasis will be given to creative approaches to teaching, to strategies that are successful (such as the use of tutorials with element from computer games), and to initiatives complementary to the regular educational system. The programs developed by the IAU will be briefly highlighted.

  1. Astronomers Without Borders: A Global Astronomy Community

    Science.gov (United States)

    Simmons, M.

    2011-10-01

    Astronomers Without Borders (AWB) brings together astronomy enthusiasts of all types - amateur astronomers, educators, professionals and "armchair" astronomers for a variety of online and physicalworld programs. The AWB web site provides social networking and a base for online programs that engage people worldwide in astronomy activities that transcend geopolitical and cultural borders. There is universal interest in astronomy, which has been present in all cultures throughout recorded history. Astronomy is also among the most accessible of sciences with the natural laboratory of the sky being available to people worldwide. There are few other interests for which people widely separated geographically can engage in activities involving the same objects. AWB builds on those advantages to bring people together. AWB also provides a platform where projects can reach a global audience. AWB also provides unique opportunities for multidisciplinary collaboration in EPO programs. Several programs including The World at Night, Global Astronomy Month and others will be described along with lessons learned.

  2. Astronomy a visual guide

    CERN Document Server

    Garlick, Mark A

    2004-01-01

    Space has fascinated man and challenged scientists for centuries and astronomy is the oldest and one of the most dynamic of the sciences. Here is a book that will stimulate your curiosity and feed your imagination. Detailed and fascinating text is clearly and richly illustrated with fabulous, vibrant photographs and diagrams. This is a comprehensive guide to understanding and observing the night sky, from distant stars and galaxies to our neighbouring planets; from comets to shooting stars; from eclipses to black holes. With details of the latest space probes, a series of monthly sky maps to provide guidance for the amateur observer and the latest photos from space, this book brings the beauty and wonder of our universe into your living room and will have you reaching for the telescope!

  3. Astronomy all the time for everybody

    Science.gov (United States)

    Grigore, Valentin

    2015-08-01

    General contextCommunicating astronomy with the public must be done all year and with all community members using all the available methods to promote the all aspects of astronomy: education, science, research, new technologies, dark-sky protection, astrophotography, mythology, astropoetry, astro arts and music.An annual calendarTwo aspect must be taken in consideration when create a calendar of activity:- astronomical events (eclipses, meteor showers, comets, etc.)- international and local astronomical events: Global Astronomy Months, Astronomy Day, Globe at Night, ISAN, public activitiesCommunicating astronomy with the whole communityA description of the experience of the author organizing over 500 events in 30 years of activity including all the community members: general public, students, teachers, artists, authorities, people with disabilities, minor and adult prisoners, etc.An experience of seven years as TV producer of the astronomy TV show “Ùs and the Sky” is presented.Promotion of the activityThe relation with the mass-media is an important aspect communicating astronomy with the public.Mass-media between rating and correct information of the public.The role of the cooperation with the community in astronomy projectsA successful model: EURONEAR project

  4. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  5. The Ninth-Century Renaissance in Astronomy.

    Science.gov (United States)

    Farrell, Charlotte

    1996-01-01

    Discusses the events in the ninth century that moved astronomy away from the pursuit of mystical hermetic sciences and astrology back toward observation and measurement. Describes the achievements of astronomers and the instruments and calculations used during that period. (JRH)

  6. The Astronomy Genealogy Project

    Science.gov (United States)

    Tenn, Joseph S.

    2014-01-01

    The Astronomy Genealogy Project, to be known as AstroGen, will list as many as possible of the world's astronomers with their academic parents (aka thesis advisors) and enable the reader to trace both academic ancestors and descendants. It will be very similar to the highly successful Mathematics Genealogy Project (MGP), available at http://genealogy.math.ndsu.nodak.edu. The MGP, which has been in operation since 1996, now contains the names of about 170,000 "mathematicians." These include many physicists and astronomers, as well as practitioners of related sciences. Mitchel Keller, the director of the MGP, has generously shared the software used in that project, and the American Astronomical Society (AAS) will host AstroGen, a project of the Historical Astronomy Division, on its website. We expect to start seeking entries soon, depending on the availability of computational assistance from the AAS IT department. We are seeking volunteers to help run the project. If you are interested, please contact me at joe.tenn@sonoma.edu.

  7. Astronomy. Internet site

    Science.gov (United States)

    Maksimenko, Anatoly Vasilievich

    The Internet site covers a wide area of actual astronomical topics, including 1) Astronomical News 2) Didactics of Astronomy 3) Space Research (Cosmonautics) 4) That's interesting 5) A Handbook of an astronomer 6) The Solar system 7) A Photogalery 8) Works of Schoolars 9) History of Astronomy The most important of them is the section concerning Space Research (Cosmonautics). This section covers a wide range of topics, beginning with very complete Illustrated History of Soviet Space research , the building of Soviet Rockets, a complete list of Cosmonauts with biographies, a list of all the flies. The author of the site concerns much ineterest to recent and extraordinary astronomiucal phenomena, such as Hazardous asteroids, Comets, Solar and Moon Eclipses, Meteorites, as well as to correct from the scientifical point of view interpretation of the extraordinary astronomical phenomena. The section concerning the Solar system is richly illustrated and give detailed explanations to Solar System evolution and actual state, explains many phenomena in the Solar system. THe Internet site is designed for schoolars as well as to amateur and professional astronomers.

  8. Planetary astronomy

    Science.gov (United States)

    1976-01-01

    Color and spectral data from spectrometer observations and computerized analyses of asteroid spectra are discussed. Potential occultations of bright asteroids by the moon are summarized. Analysis of anisotropic scattering within Saturn's rings indicates that mineral contamination of the 120 particles cannot exceed 5 percent by weight, and that the rings formed from particle breakup rather than from particle condensation. Raman probe applications to Jupiter and Uranus atmospheres indicate the presence of aerosol particles. A review of Mariner 9 Mars cloud topography data establishes that most blue clouds are orographic uplift clouds composed of condensates, and that sporadic red clouds are associated with blue clouds or volcanoes and thus probably do not represent dust storm phenomena.

  9. The purpose of astronomy

    OpenAIRE

    Davoust, Emmanuel

    1995-01-01

    This is a presentation of the purpose of astronomy in the context of modern society. After exposing two misconceptions about astronomy, I detail its role in five domains, certified knowledge, incorporated abilities, innovations, collective goods, and popular science; with each domain is associated an institution, an incentive, and a method of evaluation. Finally, I point out the role of astronomy as a source of inspiration in other fields than science.

  10. SOFIA - Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  11. SOFIA: Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Becker, Eric; Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  12. Outreach for Families and Girls- Astronomy at Outdoor Concerts and at Super Bowl or Halloween Star Parties

    Science.gov (United States)

    Lubowich, Donald A.

    2011-05-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars (MAUS) is a NASA-funded as astronomy outreach program at community parks and music festivals (1000 - 25,000 people/event). While there have been many astronomy outreach activities and telescope observations at sidewalks and parks, this program targets a different audience - music lovers who are attending concerts in community parks or festivals. These music lovers who may not have visited science museums, planetariums, or star parties are exposed to telescope observations and astronomy information with no additional travel costs. MAUS includes solar observing, telescope observations including a live imaging system, an astronomical video, astronomy banners/posters, and hands-on activities. MAUS increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. Since 2009 over 50,000 people have participated in these outreach activities including a significant number of families and young girls. In addition to concerts in local Long Island parks, there were MUAS events at Tanglewood (summer home of the Boston Symphony Orchestra), Jazz in Central Park, and Astronomy Night on the National Mall (co-sponsored by the White House Office of Science and Technology Policy). In 2011 MUAS will be expanded to include Ravinia (summer home of the Chicago Symphony Orchestra), the Newport Folk Festival, and the Bethel Woods Center for the Arts (site of the 1969 Woodstock festival). According to our survey results, music lovers became more informed about astronomy. Expanding Hofstra University's successful outreach programs, I propose the creation of a National Halloween Stars event targeting children and a National Super Bowl Star Party targeting girls, women, and the 2/3 of Americans who do not watch the Super Bowl. This can be combined with astronomers or amateur astronomers bringing telescopes to Super Bowl parties for football fans to stargaze during

  13. Indigenous Astronomies and Progress in Modern Astronomy

    CERN Document Server

    Ruggles, Clive

    2010-01-01

    From an anthropological point of view, the whole concept of a "path of progress" in astronomical discovery is anathema, since it implicitly downgrades other cultural perspectives, such as the many "indigenous cosmologies" that still exist in the modern world. By doing so, one risks provoking those who hold them and-as is most obvious in places such as Hawaii where the two "world-views" come into direct contact-reating avoidable resistance to that very progress. The problem is complicated by the existence of "fringe" and "new-age" views that are increasingly confused with, and even passed off as, indigenous perceptions. In a modern world where widespread public perceptions include many that are unscientific in the broadest sense of the term, I shall argue that there are actually a range of positive benefits for progress in scientific astronomy to be derived from the mutual awareness and comprehension of "genuine" cultural world-views whose goals-in common with those of modern science-are to make sense of the c...

  14. Space and astronomy

    CERN Document Server

    Kirkland, Kyle

    2010-01-01

    Some daring explorers like to study distant frontiers by venturing out into them, but others prefer to study them by bringing them, or representative samples, a little closer to the lab. Both options are pursued in the fields of space and astronomy. Space exploration and astronomy are intricately linked and are examined in-depth in this guide. Dedicated to the scientists who explore the frontiers of space and astronomy-and the results of their unfamiliar findings-each chapter in Space and Astronomy explores one of the frontiers of this science. The development of technology, such as rocket pro

  15. Exchange of astronomy teaching experiences

    Science.gov (United States)

    Ros, Rosa M.

    The Working Group of the European Association for Astronomy Education responsible for Teacher Training organises an annual Summer School for teachers under expert guidance. For a week the teachers participating can exchange experiences, increase their knowledge and discuss different ideas and perspectives. In general, the instructors are professional astronomers, professors and teachers from different countries. The papers presented offer very practical activities, paying special attention to didactic aspects, and take the form of general lectures to all 40 participants and workshops to reduced groups of 20 participants. There are also day and night observations, without expensive equipment or complicated procedures, that are easy to set up and based on topics that it is possible to use in the classroom. The Summer Schools promote a scientific astronomical education at all levels of astronomy teaching, reinforce the link between professional astronomers and teachers with experience of teaching astronomy, allow debates among the participants on their pedagogical activities already carried out in their own classroom and help them to organise activities outside it. Astronomy teachers need special training, access to specific research, to new educational materials and methods and the opportunity to exchange experiences. All these things are provided by the Summer School.

  16. Astronomy in the Service of Islam

    Science.gov (United States)

    King, David A.

    In their assessment of Islamic astronomy, historians have usually been concerned only with that part of the Muslim scientific heritage that was transmitted to the West in the Middle Ages. Yet most Islamic works on astronomy were not transmitted to the West, and they are known today mainly due to the work of orientalists in the nineteenth and twentieth centuries. This is the case of Muslim writings on three aspects of mathematical science that were closely linked with religious observance. This is an overview of those "Islamic aspects of Islamic astronomy".

  17. The Astronomy Workshop

    Science.gov (United States)

    Hamilton, Douglas P.

    2013-05-01

    Abstract (2,250 Maximum Characters): The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.

  18. Basic notions of dense matter physics: applications to astronomy

    OpenAIRE

    Celebonovic, V.

    2006-01-01

    The aim of this paper is to present basic notions of dense matter physics and some of its applications to geophysics and astronomy.Topics covered in the paper include:basic observational data,fun- damental ideas of static high pressure experiments, notions of theoretical dense matter physics, and finally some details about theoretical work on dense matter physics and its astronomical applications in Serbia.

  19. Successful Innovative Methods in Introducing Astronomy Courses

    Science.gov (United States)

    Chattejee, T. K. C.

    2006-08-01

    Innovating new informative methods to induce interest in students has permitted us to introduce astronomy in several universities and institutes in Mexico. As a prelude, we gave a popular course in the history of astronomy. This was very easy as astronomy seems to be the most ancient of sciences and relating the achievements of the ancient philosophers/scientists was very enlightening. Then we put up an amateur show of the sky every week (subject to climatic conditions for observability). We showed how to take photographs and make telescopic observations. We enlightened the students of the special missions of NASA and took them to museums for space exploration. We gave a popular seminar on "Astrodynamics," highlighting its importance. We gave a series of introductory talks in radio and T.V. Finally we exposed them to electronic circulars, like "Universe Today" and "World Science." The last mentioned strategy had the most electrifying effect. We may not have been successful without it, as the students began to take the matter seriously only after reading numerous electronic circulars. In this respect, these circulars are not only informative about the latest news in astronomy, but highlight the role of astronomy in the modern world. Without it, students seem to relate astronomy to astrology; it is due to this misconception that they are not attracted to astronomy. Students were hardly convinced of the need for an astronomy course, as they did not know about the scope and development of the subject. This awakened the interests of students and they themselves proposed the initiation of an elementary course in astronomy to have a feel of the subject. Later on they proposed a course on "Rocket Dynamics." We will discuss our methods and their impact in detail.

  20. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    Science.gov (United States)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  1. How Does Astronomy Constitute A Learning Community?

    Science.gov (United States)

    Dogan, Yasemin; Sengul, R.; Unat, O.; Aknil, A.; Gurel, Z.

    2010-01-01

    This study was conducted in Turkey within an interdisciplinary project called "From a windowless home to a skyscraper: Let's build a home". It was realized through collaboration between a public university and a private high school. Researchers from Physics Education Department and volunteer teachers from high school, each studying on a different discipline, and volunteer high school students, all from an urban area of the country, conducted the project in a rural small town with resident secondary school students. It was implemented on the basis of history, through the use of different fields such as science, mathematics, geography, art, handcraft, architecture, engineering and astronomy in August 2008. The purpose of this study was to present the effect of the astronomical activities involved in the project. These implementations constructed a scientific and social base for the framework of astronomical activities of IYA2009, including building an amateur observatory. Since today's people are not so much acquainted with the issues of space and astronomy as much as the people of Antiquity, we attached special importance to the efforts in this field. The project, proceeded by a preparatory and informative period, involved night sky observation, initially with naked eye, followed by observation through telescope. Not only the students but also countless people, old or young, participated in our work in the field of astronomy. It provided a chance for all the people participating in or connected to the project to discover the sky. Astronomical activities aroused curiosity among students and the community and made a difference by inducing an awareness of the sky. The participants of the study had completely different social and cultural backgrounds, and this study removed all these differences bringing them together under the overarching astronomical and historical aspect. Moreover the community revealed all the characteristics that constitute a learning community.

  2. The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE): an Educational Experience for Undergraduates at the University of Arizona Alumni Association's Astronomy Camp.

    Science.gov (United States)

    Lemon, Courtney; McCarthy, D.; Rudolph, A.

    2011-01-01

    The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) is an NSF-funded partnership between the Astronomy Program at Cal Poly Pomona (CPP) and the University of Arizona Steward Observatory designed to promote participation of underrepresented minorities (including women) in astronomy research and education. As part of the education component of the program, CPP undergraduate physics majors and minors are eligible to work as a counselor at the University of Arizona's Astronomy Camp, one of the premier astronomy outreach opportunities in the world. CAMPARE students have the opportunity to work in this learn-by-doing environment with a wide range of students to gain first hand experience of teaching astronomy to students of a wide variety of ages in highly structured educational setting. Cal Poly Pomona students who are interested in education, both formal and informal, work in a variety of camps, from Girl Scout camps to camps for advanced high school students, to further their understanding of what it means to be a professional in the field of education. The CAMPARE student who participated in this program during summer 2010 had the opportunity to work under Dr. Don McCarthy, camp director of University of Arizona's Astronomy Camps for 20 years, and observe the interpersonal relations between campers and staff that is so vital to the learning the students receive. Through these observations, the CAMPARE student was able to learn to gauge students' interest in the material, and experience real life teaching and learning scenarios in the informal education realm.

  3. New Maser Emission from Nonmetastable Ammonia in NGC 7538. II. Green Bank Telescope Observations Including Water Masers

    CERN Document Server

    Hoffman, Ian M

    2011-01-01

    We present new maser emission from ^{14}NH_3 (9,6) in NGC 7538. Our observations include the known spectral features near v_LSR = -60 km/s and -57 km/s and several more features extending to -46 km/s. In three epochs of observation spanning two months we do not detect any variability in the ammonia masers, in contrast to the >10-fold variability observed in other ^{14}NH_3 (9,6) masers in the Galaxy over comparable timescales. We also present observations of water masers in all three epochs for which emission is observed over the velocity range -105 km/s < v_LSR < -4 km/s, including the highest velocity water emission yet observed from NGC 7538. Of the remarkable number of maser species in IRS 1, H_2O and, now, ^{14}NH_3 are the only masers known to exhibit emission outside of the velocity range -62 km/s < v_LSR < -51 km/s. However, we find no significant intensity or velocity correlations between the water emission and ammonia emission. We also present a non-detection in the most sensitive search...

  4. Strategic Plan for Astronomy in the Netherlands 2011-2020

    CERN Document Server

    Groot, P J; Stark, R

    2012-01-01

    Strategic Plan for Astronomy in the Netherlands 2011 - 2020, written by the Netherlands Committee for Astronomy (NCA), on behalf of the excellence research school in astronomy NOVA, (combining the university astronomy institutes of the universities of Amsterdam, Groningen, Leiden and Nijmegen), the NWO division of Physical Sciences, the Netherlands Institute for Radio Astronomy ASTRON and the Netherlands Institute for Space Research SRON. The Strategic plan outlines the scientific priorities for Dutch astronomy in the next decade; the instrumentation effort required to address these priorities, and the connection between astronomical instrumentation and technology development and fundamental technological R&D; the financial contours needed to realise the priorities; and the role of Dutch astronomy in education and outreach. The Strategic Plan also includes a retrospective on the achievements since the last Strategic Plan (2000) and a forward look beyond 2020.

  5. Towards "Astronomy for Development"

    Science.gov (United States)

    Govender, Kevindran

    2015-08-01

    The ambition of the IAU's decadal strategic plan is to use astronomy to stimulate development globally. The Office of Astronomy for Development was established in 2011 to implement this visionary plan. This talk will reflect on the past, present and future activities of the office, and describe the status of implementation of the plan at this halfway point in the 2010-2020 decade.

  6. Astronomy and Culture

    Science.gov (United States)

    Stavinschi, M.

    2006-08-01

    Astronomy is, by definition, the sum of the material and spiritual values created by mankind and of the institutions necessary to communicate these values. Consequently, astronomy belongs to the culture of each society and its scientific progress does nothing but underline its role in culture. It is interesting that there is even a European society which bears this name "Astronomy for Culture" (SEAC). Its main goal is "the study of calendric and astronomical aspects of culture". Owning ancient evidence of astronomical knowledge, dating from the dawn of the first millennium, Romania is interested in this topic. But Astronomy has a much deeper role in culture and civilization. There are many aspects that deserve to be discussed. Examples? The progress of astronomy in a certain society, in connection with its evolution; the place held by the astronomy in literature and, generally, in art; the role of the SF in the epoch of super-mediatization; astronomy and belief; astronomy and astrology in the modern society, and so forth. These are problems that can be of interest for IAU, but the most important one could be her educational role, in the formation of the culture of the new generation, in the education of the population for the protection of our planet, in the ensuring of a high level of spiritual development of the society in the present epoch.

  7. Indian Astronomy: History of

    Science.gov (United States)

    Mercier, R.; Murdin, P.

    2002-01-01

    From the time of A macronryabhat under dota (ca AD 500) there appeared in India a series of Sanskrit treatises on astronomy. Written always in verse, and normally accompanied by prose commentaries, these served to create an Indian tradition of mathematical astronomy which continued into the 18th century. There are as well texts from earlier centuries, grouped under the name Jyotishaveda macronn d...

  8. TeV Astronomy

    OpenAIRE

    Rieger, F.; Ona-Wilhelmi, E.; Aharonian, F.

    2013-01-01

    With the successful realization of the current-generation of ground-based detectors, TeV Astronomy has entered into a new era. We review recent advances in VHE astronomy, focusing on the potential of Imaging Atmospheric Cherenkov Telescopes (IACTs), and highlight astrophysical implications of the results obtained within recent years.

  9. Division I: Fundamental astronomy

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; McCarthy, D.D.; Fukushima, T.; Brzezinski, A.; Burns, J.A.; Defraigne, P.; Evans, D.W.; Kaplan, G.H.; Klioner, S.; Kneževic, Z.; Kumkova, I.I.; Ma, Ch.; Manchester, R.N.; Petite, G.

    Cambridge : Cambridge University Press, 2009 - (van der Hucht, K.), s. 1-4 ISBN 978-0-521-85605-8. - (Proceedings of the IAU. IAU Transactions. 27A) Institutional research plan: CEZ:AV0Z10030501 Keywords : fundamental astronomy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  10. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  11. Interactive Materials In The Teaching Of Astronomy

    Science.gov (United States)

    Macêdo, J. A.; Voelzke, M. R.

    2014-10-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Science. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, research locus of its Campus Januária; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test was conducted with the qualitative and quantitative methodology, combined with a content analysis. The results indicated that in the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; the rates of students prior knowledge in relation to astronomy was low; an evidence of meaningful learning of the concepts related to astronomy, and of viability of resource use involving digital technologies in the Teaching of astronomy, which may contribute to the broadening of methodological options of future teachers and meet their training needs.

  12. Exploring Assessment Tools for Research and Evaluation in Astronomy Education and Outreach

    Science.gov (United States)

    Buxner, S. R.; Wenger, M. C.; Dokter, E. F. C.

    2011-09-01

    The ability to effectively measure knowledge, attitudes, and skills in formal and informal educational settings is an important aspect of astronomy education research and evaluation. Assessments may take the form of interviews, observations, surveys, exams, or other probes to help unpack people's understandings or beliefs. In this workshop, we discussed characteristics of a variety of tools that exist to assess understandings of different concepts in astronomy as well as attitudes towards science and science teaching; these include concept inventories, surveys, interview protocols, observation protocols, card sorting, reflection videos, and other methods currently being used in astronomy education research and EPO program evaluations. In addition, we discussed common questions in the selection of assessment tools including issues of reliability and validity, time to administer, format of implementation, analysis, and human subject concerns.

  13. Doing Astronomy with Small Telescopes

    OpenAIRE

    Kangujam Yugindro Singh; Irom Ablu Meitei; Salam Ajitkumar Singh

    2014-01-01

    We are playing a lead role for growth of astronomy and its quality teaching and research in Manipur, a State located at northeast India (longitude = 93°58'E; latitude = 24°44'N; altitude = 782 m). We have innovatively designed and constructed three cost effective observatories, each costing a few hundred USD. These observatories are completely different in design and are perfectly usable for doing serious work on astronomical observation and measurements, using small ground-...

  14. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  15. Astronomy Outreach In Parana state/Brazil

    Science.gov (United States)

    Emilio, Marcelo

    2015-08-01

    Paraná is a state at South of Brazil with a population of 11 million people. There are two planetarium and two fixed observatories devoted to Astronomy outreach. The great majority of population have no access to information and knowledge of astronomy discoveries. Another problem is the teaching formation of astronomy studies. In this work we relate an initiative that started at the International Year of Astronomy in 2009 that involved Universities and amateur groups that is still in place. After several grants from the Brazilian National Council for Scientific and Technological Development and Araucária Foundation we were able to reach more than 100.000 people with a mobile planetarium and night astronomic observations. We also providde one-week classes to more than 1.000 teachers in several cities of the state.

  16. Organizations and Strategies in Astronomy Volume 6

    CERN Document Server

    Heck, André

    2006-01-01

    This book is the sixth volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series is intended to cover a large range of fields and themes. In practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, legal issues, operational techniques, observing practicalities, educational policies, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detai...

  17. ORGANIZATIONS AND STRATEGIES IN ASTRONOMY VOLUME 7

    CERN Document Server

    HECK, ANDRÉ

    2006-01-01

    This book is the seventh volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series covers a large range of fields and themes: in practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, operational techniques, observing practicalities, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, series of conferences, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information and somet...

  18. Extragalactic Astronomy and Cosmology An Introduction

    CERN Document Server

    Schneider, Peter

    2006-01-01

    Starting with the description of our home galaxy the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution. Then, from the extensive and thorough introduction to modern observational and theoretical cosmology, the text turns to the formation of structures and astronomical objects in the early universe. In particular, Peter Schneider’s Extragalactic Astronomy and Cosmology has the goal of imparting the fundamental knowledge of this fascinating subfield of astronomy, while leading readers to the forefront of astronomical research. But it seeks to accomplish this not only with extensive textual information and insights. In addition, the author’s evident admiration for the workings of the universe that shines through the lines and the many supporting color illustrations will deeply inspire the reader. While this book has grown out of introductory university courses on astronomy and astrophys...

  19. Ideas for Citizen Science in Astronomy

    CERN Document Server

    Marshall, Philip J; Fletcher, Leigh N

    2014-01-01

    We review the relatively new, internet-enabled, and rapidly-evolving field of citizen science, focusing on research projects in stellar, extragalactic and solar system astronomy that have benefited from the participation of members of the public, often in large numbers. We find these volunteers making contributions to astronomy in a variety of ways: making and analyzing new observations, visually classifying features in images and light curves, exploring models constrained by astronomical datasets, and initiating new scientific enquiries. The most productive citizen astronomy projects involve close collaboration between the professionals and amateurs involved, and occupy scientific niches not easily filled by great observatories or machine learning methods: citizen astronomers are most strongly motivated by being of service to science. In the coming years we expect participation and productivity in citizen astronomy to increase, as survey datasets get larger and citizen science platforms become more efficient...

  20. Extragalactic astronomy and cosmology an introduction

    CERN Document Server

    Schneider, Peter

    2015-01-01

    Accounting for the astonishing developments in the field of Extragalactic Astronomy and Cosmology, this second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. The new edition incorporates some of the most spectacular results from new observatories like the Galaxy Evolution Explorer, Herschel, ALMA, WMAP and Planck, as well as new instruments and multi-wavelength campaigns which have expanded our understanding of the Universe and the objects populating it....

  1. LGBT Workplace Climate in Astronomy

    Science.gov (United States)

    Gaudi, B. S.; Danner, R.; Dixon, W. V.; Henderson, C. B.; Kay, L. E.

    2013-01-01

    The AAS Working Group on LGBTIQ Equality (WGLE) held a town hall meeting at the 220th AAS meeting in Anchorage to explore the workplace climate for LGBTIQ individuals working in Astronomy and related fields. Topics of discussion included anti-discrimination practices, general workplace climate, and pay and benefit policies. Four employment sectors were represented: industry, the federal government, private colleges, and public universities. We will summarize and expand on the town hall discussions and findings of the panel members.

  2. Grab 'n' go astronomy

    CERN Document Server

    English, Neil

    2014-01-01

      Like everyone else, most amateur astronomers live busy lives. After a long day, the last thing you want as an observer is to have to lug out a large telescope and spend an hour getting it ready before it can be used. Maybe you are going somewhere sure to have dark skies, but you don’t necessarily want astronomy to dominate the trip. Or you are not quite committed to owning a large telescope, but curious enough to see what a smaller, portable setup can accomplish. These are times when a small “grab ’n’ go” telescope, or even a pair of binoculars, is the ideal in­strument. And this book can guide you in choosing and best utilizing that equipment.   What makes a telescope fall into the “grab ’n’ go” category? That’s easy – speed of setting up, ease of use, and above all, portability. This ambitious text is dedicated to those who love to or – because of their limited time – must observe the sky at a moment’s notice. Whether observing from the comfort of a backyard or while on busi...

  3. Learner Centered Introductory Astronomy Community College Course

    Science.gov (United States)

    Sprague, C. J.; Grill, M. R.; Genet, C. L.; Genet, R. M.

    2002-05-01

    In the fall of 2001, learner centered education principles were applied to an introductory astronomy course at the Superstition Mountain Campus of Central Arizona College (CAC). The course was cooperatively designed and managed by the students themselves (especially Sprague and Grill), an assistant course facilitator (C. Genet), and the course instructor and developer (R. Genet). Although some time was devoted to lectures accompanied by photographic slides and open to the public, the bulk of the time was devoted to student projects. Students built telescopes, including solar, zenith, and Galileo, took measurements, made calculations, mapped stars, and determined the circumference of the earth via zenith observations at Apache Junction and at Mt. Hopkins, 120 miles away. A three-day field trip to Lowell Observatory included a tour, observations through the famous 24-inch Clark refractor, and a conference on `Undergraduate Astronomical Research' which included talks on stellar photometry by G. W. Lockwood and R. M. Genet. A second three-day field trip included a tour and observations at Kitt Peak National Observatory (0.4 m telescope), a tour of the observatories on Mt. Hopkins, and a conference on `Learner-Centered Astronomy Education.' The community college students were joined by doctoral students and alumni from the Union Institute and University, as well as by Campua Dean James Stuckey from CAC and his wife Beverly Santos of Northern Arizona University. By allowing students the freedom to explore and expand their knowledge at a rate appropriate to each individual, the students attained levels of confidence not found in traditional teaching styles. We are pleased to acknowledge Dean Stuckey who made this class possible. We also wish to thank Wesley Lockwood and Robert Bargoon at Lowell Observatory, Robert Wilson at Kitt Peak National Observatory, and Daniel Brocious at the Smithsonian's Whipple Observatory for their invaluable assistance during our field trips.

  4. Revealing the Universe to Our Community: NMSU's Society of Astronomy Students' Dedication to Public Outreach

    Science.gov (United States)

    Maldonado, Mercedes; Rees, S.; Medina, A.; Beasley, D.; Campos, A.; Chanover, N. J.; Uckert, K.; McKeever, J.

    2014-01-01

    The New Mexico State University (NMSU) Society of Astronomy Students (SAS) is an undergraduate organization centered on students’ passions for learning and sharing knowledge about the field of astronomy. The SAS strives to become one of the most active clubs on the NMSU campus by their involvement in both astronomy and non-astronomy related public outreach and community service events. NMSU is located in Las Cruces, NM, where Clyde Tombaugh made great contributions both to the field of astronomy and to our local community. He was able to spark the community's interest in astronomy and science in general; this is an aspect of his career that the SAS strives to emulate. To do this, the SAS participates in community outreach events with the goal of stimulating curiosity and providing opportunities for the public to observe and understand exciting phenomenon occurring in our universe. With help from the NMSU Astronomy Department, the SAS is able to volunteer alongside the Astronomy Graduate Student Organization (AGSO) at events for people of all ages. Working jointly with the AGSO allows us to be mentored by the very students who were in our shoes not long ago; they educate us about the wonders of the universe, just as we wish to educate the community. This provides an enlightening and enriching environment for both club and community members. The NMSU Astronomy Department hosts events for the entire community, such as observing nights held at Tombaugh Observatory — which SAS members attend and help advertise — where community members learn about and view objects in the night sky through telescopes. SAS members assist with field trips where local middle and elementary school students attend presentations and participate in astronomy-related activities on the NMSU campus. These hands-on activities are presented in an understandable way, and are meant to increase appreciation for all of the exciting subjects our universe has to offer. Other outreach events include

  5. Teaching Astronomy with Technology

    Science.gov (United States)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Students today are expected to have access to computers and the Internet. Students young and old, in school and out of school, are interested in learning about astronomy, and have computers to use for this. Teach Astronomy is a website with a comprehensive digital astronomy textbook freely available to students and educators. In addition to the textbook, there are astronomy Wikipedia articles, image archives from Astronomy Picture of the Day and AstroPix, and video lectures covering all topics of astronomy. Teach Astronomy has a unique search tool called the wikimap that can be used to search through all of the resources on the site. Astronomy: State of the Art (ASOTA) is a massive, open, online course (MOOC). Over 18,000 students have enrolled over the past year and half. This MOOC has been presented in various forms. First, only to students on the web, with content released weekly on host site Udemy. Then to university students who met formally in the classroom for educational activities, but were also expected to watch lectures online on their own time. Presently, it is available online for students to go at their own pace. In the future it will be available in an extended format on a new host site, Coursera. ASOTA instructors use social media to interact with students. Students ask questions via the course host site, Udemy. Live question and answer sessions are conducted using Google Hangouts on Air, and interesting and relevant astronomy news, or supplementary educational content is shared via the ASOTA Facebook page. Teaching on the Internet may seem impersonal and impractical, but by learning to use all of these tools, instructors have the ability to interact with students, and keep them engaged.

  6. First radio astronomy from space - RAE

    International Nuclear Information System (INIS)

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed. 11 references

  7. Astronomy and culture

    CERN Document Server

    Hetherington, Edith

    2009-01-01

    While astronomy is a burgeoning science, with tremendous increases in knowledge every year, it also has a tremendous past, one that has altered humanity's understanding of our place in the universe. The impact of astronomy on culture - whether through myths and stories, or through challenges to the intellectual status quo - is incalculable. This volume in the Greenwood Guides to the Universe series examines how human cultures, in all regions and time periods, have tried to make sense of the wonders of the universe. Astronomy and Culture shows students how people throughout time have struggled

  8. Lectures on High-Energy Neutrino Astronomy

    International Nuclear Information System (INIS)

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 and 1013 eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of these lectures is as follows: Introduction Cosmic Neutrinos Associated with the Highest Energy Cosmic Rays Why Kilometer-Scale Detectors? Blueprints of Cosmic Accelerators: Gamma Ray Bursts and Active Galaxies High Energy Neutrino Telescopes: Methodologies of Neutrino Detection High Energy Neutrino Telescopes: Status

  9. Astronomy, Astrology, and Medicine

    Science.gov (United States)

    Greenbaum, Dorian Gieseler

    Astronomy and astrology were combined with medicine for thousands of years. Beginning in Mesopotamia in the second millennium BCE and continuing into the eighteenth century, medical practitioners used astronomy/astrology as an important part of diagnosis and prescription. Throughout this time frame, scientists cited the similarities between medicine and astrology, in addition to combining the two in practice. Hippocrates and Galen based medical theories on the relationship between heavenly bodies and human bodies. In an enduring cultural phenomenon, parts of the body as well as diseases were linked to zodiac signs and planets. In Renaissance universities, astronomy and astrology were studied by students of medicine. History records a long tradition of astrologer-physicians. This chapter covers the topic of astronomy, astrology, and medicine from the Old Babylonian period to the Enlightenment.

  10. Islands of Astronomy

    Directory of Open Access Journals (Sweden)

    Godfrey Baldacchino

    2009-05-01

    Full Text Available A global review of islands and their connections with astronomy throughout history up to the contemporary times suggests eight compelling, distinct yet interlocking reasons why islands have been and remain so important to astronomy and astronomers. Islands constitute favourable locations for various types of astronomy-related activities: from tracking satellites and monitoring significant celestial events, to providing exceptional locations to jurisdictions with mandated dark and unpolluted skies. They appeal for their favourable longitude and (especially southern latitude, as well as for their disposition towards the conditions that the scientific community may expect in an ideal world: relatively clear viewing conditions from a secure, self-contained platform that is, however, endowed with connectivity. This article is written as a contribution to the International Year of Astronomy (2009.

  11. Astronomy in Second Life

    Directory of Open Access Journals (Sweden)

    Gauthier, A.

    2007-10-01

    Full Text Available Second Life (SL is a multi-user virtual environment that is not limited to adult social entertainment. SL is also a 3D playground for innovative instructors and education/outreach professionals in the sciences. Astronomy and space science have a presence in SL, but it could be so much more. This paper describes some of the current astronomy themed spaces in SL and briefly discusses future innovations.

  12. Community Based Astronomy: Bringing families and communities together

    Science.gov (United States)

    Mayo, L. A.

    2001-12-01

    Astronomy in K-12 formal education is still largely underrepresented as a science. Yet, it is arguably one of the most engaging and entertaining of the physical sciences. Many school systems have been slow to adopt curriculum frameworks that include astronomy. Even when astronomy is required either as a distinct subject or hidden within the catagory of "Earth science", many teachers spend little time on it in their classrooms since they have no formal training in this subject. A community based, informal astronomy education model that encorporates resources from government agencies, industry, local colleges, science centers and planetariums, families, civic groups, schools, and amateur astronomy clubs can provide a solution and be highly effective in creating sustained learning environments in this discipline as well as fostering an atmosphere of general acceptance and promotion of astronomy by whole communities. In addition, the opportunity exists to reinforce the teaching of astronomy in schools through the involvement of these groups in an informal education setting. This paper will discuss a Community Based Astronomy program that has been implemented in Montgomery County, Maryland. The tie-in to formal education through both schools and systemic reform initiatives will be presented. In addition, detailed guidelines for running astronomy clubs in conjunction with family astronomy nights will be provided.

  13. Radio Astronomy in LSST Era

    CERN Document Server

    Lazio, T Joseph W; Barger, A J; Brandt, W N; Chatterjee, S; Clarke, T E; Condon, J J; Dickman, Robert L; Hunyh, M T; Jarvis, Matt J; Juric, Mario; Kassim, N E; Myers, S T; Nissanke, Samaya; Osten, Rachel; Zauderer, B A

    2014-01-01

    A community meeting on the topic of "Radio Astronomy in the LSST Era" was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the time domain, the extent to which radio and visible wavelength observations are required to understand several classes of transients was stressed, but there are also classes of radio transients for which no visible wavelength counterpart is yet known, providing an opportunity for discovery. From the LSST perspective, the LSST is expected to generate as many as 1 million alerts nightly, which will require even more selective specification and identification of the classes and characteristics of transients that can warrant follow up, at radio or any wavelength. The LSST will also conduct a deep survey of the sky, producing a catalog expected to contain over 38 billion objects in it. Deep radio wavelength sky surveys will also be conducted on a comparable time scale,...

  14. Astronomy and Mathematics Education

    Science.gov (United States)

    Ros, Rosa M.

    There are many European countries where Astronomy does not appear as a specific course on the secondary school. In these cases Astronomy content can be introduced by means of other subjects. There are some astronomical topics within the subject of Physics but this talk concerns introducing Astronomy in Mathematics classes. Teaching Astronomy through Mathematics would result in more exposure than through Physics as Mathematics is more prevalent in the curriculum. Generally it is not easy to motivate students in Mathematics but they are motivated to find out more about the universe and Astronomy current events than appears in the media. This situation can be an excellent introduction to several mathematics topics. The teachers in secondary and high school can use this idea in order to present more attractive mathematics courses. In particular some different examples will be offered regarding * Angles and spherical coordinates considering star traces * Logarithms and visual magnitudes * Plane trigonometry related orbital movements * Spherical trigonometry in connection with ecliptic obliquity * Conic curves related to sundial at several latitudes Some students do not enjoy studying Mathematics but they can be attracted by practical situations using Applied Mathematics: Astronomy is always very attractive to teenagers.

  15. Astronomy Outreach for Large and Unique Audiences

    Science.gov (United States)

    Lubowich, D.; Sparks, R. T.; Pompea, S. M.; Kendall, J. S.; Dugan, C.

    2013-04-01

    In this session, we discuss different approaches to reaching large audiences. In addition to star parties and astronomy events, the audiences for some of the events include music concerts or festivals, sick children and their families, minority communities, American Indian reservations, and tourist sites such as the National Mall. The goal is to bring science directly to the public—to people who attend astronomy events and to people who do not come to star parties, science museums, or science festivals. These programs allow the entire community to participate in astronomy activities to enhance the public appreciation of science. These programs attract large enthusiastic crowds often with young children participating in these family learning experiences. The public will become more informed, educated, and inspired about astronomy and will also be provided with information that will allow them to continue to learn after this outreach activity. Large and unique audiences often have common problems, and their solutions and the lessons learned will be presented. Interaction with the participants in this session will provide important community feedback used to improve astronomy outreach for large and unique audiences. New ways to expand astronomy outreach to new large audiences will be discussed.

  16. Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Hamidouche, M; Marcum, P; Krabbe, A

    2010-01-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  17. Astronomy at the Market

    Science.gov (United States)

    Roten, Robert; Constantin, A.; Christensen, E.; Dick, E.; Lapolla, J.; Nutter, A.; Corcoran, J.; DiDomenico, N.; Eskridge, B.; Saikin, A.

    2014-01-01

    We present here an energetic grass-roots outreach program run entirely by undergraduate physics and astronomy majors at James Madison University. Our "Team Awestronomy" takes Astronomy out to the Market, literally. Once a month, for eight months during the academic year, the group sets up a “scientific corner” at the Harrisonburg Farmers Market, offering people the chance to meet with astrophysicists (in the making) and discuss science. Our group members wear t-shirts with simple messages like “Ask me about the Sun,” “...about Black Holes and Mega-Masers” or “...about Big Bang” that initiate the dialog. We help our audience with observations of solar activity through our department’s Coronado telescope equipped with a safe H-alpha filter, sunspotters, and the incredibly simple yet durable and accurate handheld (Project Star) spectrometers, and invite them to the free Saturday Planetarium shows and the star parties hosted by our department on the JMU campus. The team is also prepared with a suite of fun activities aimed particularly at K-5 kids, e.g., building (and eating, after investigating out-gassing properties of) ”dirty comets,” making craters (in pans with flour or sand) and testing how different types of impactors (pebbles, ping-pong balls or even crumpled aluminum foil) affect crater formation, and demonstrations of shock wave created in supernova explosions. The main goals of this outreach program are: 1) to illustrate to people of all ages that science is a fun, creative, and exciting process; 2) to empower people to be curious and to ask questions; 3) to demonstrate that science is a viable career path chosen by many diverse individuals; and 4) to nurture a sense of wonder and awe for the Universe. While this outreach program is aimed at a very general audience, of an extremely wide range, we expect to produce a significant impact on K-12 students in general and in particular on the home-schooled kids. There is a relatively high

  18. Astronomy Research Seminar

    Science.gov (United States)

    Johson, Jolyon; Genet, Russell; Armstrong, James; Boyce, Grady; Boyce, Pat; Brewer, Mark; Buchheim, Robert; Carro, Joseph; Estrada, Reed; Estrada, Chris; Freed, Rachel; Gillette, Sean; Harshaw, Richard; Hollis, Thomas; Kenney, John; McGaughey, Seven; McNab, Christine; Mohanan, Kakkala; Sepulveda, Babs; Wallace, Dan; Wallen, Vera

    2015-05-01

    Traditional science lectures and labs are often enhanced through project- and team-based learning. Some students go beyond these classroom studies by conducting research, often under the guidance of university professors. A one-semester astronomy research seminar was initiated in 2006 in collaboration with the community of professional and amateur double star astronomers. The result was dozens of jointly-authored papers published in the Journal of Double Star Observations and the Annual Proceedings of the Society of Astronomical Sciences. This seminar, and its affiliated community, launched a series of conferences and books, providing students with additional forums to share their double star research. The original seminar, and its derivatives, enhanced educational careers through college admissions and scholarships. To expand the seminar's reach, it was restructured from a few teams at one school, to many teams, each from a different school. A volunteer from each school became an assistant instructor. Most of them were seminar veterans, experienced astronomers, or science teachers. The assistant instructors, in turn, recruited enthusiastic students for their teams. To avoid student and instructor overload, the seminar focused on its three deliverables: a formal proposal, published paper, and public PowerPoint presentation. Future seminars may offer other astronomical research options such as exoplanet transit or eclipsing binary photometry.

  19. Application of Observed Precipitation in NCEP Global and Regional Data Assimilation Systems, Including Reanalysis and Land Data Assimilation

    Science.gov (United States)

    Mitchell, K. E.

    2006-12-01

    The Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) applies several different analyses of observed precipitation in both the data assimilation and validation components of NCEP's global and regional numerical weather and climate prediction/analysis systems (including in NCEP global and regional reanalysis). This invited talk will survey these data assimilation and validation applications and methodologies, as well as the temporal frequency, spatial domains, spatial resolution, data sources, data density and data quality control in the precipitation analyses that are applied. Some of the precipitation analyses applied by EMC are produced by NCEP's Climate Prediction Center (CPC), while others are produced by the River Forecast Centers (RFCs) of the National Weather Service (NWS), or by automated algorithms of the NWS WSR-88D Radar Product Generator (RPG). Depending on the specific type of application in data assimilation or model forecast validation, the temporal resolution of the precipitation analyses may be hourly, daily, or pentad (5-day) and the domain may be global, continental U.S. (CONUS), or Mexico. The data sources for precipitation include ground-based gauge observations, radar-based estimates, and satellite-based estimates. The precipitation analyses over the CONUS are analyses of either hourly, daily or monthly totals of precipitation, and they are of two distinct types: gauge-only or primarily radar-estimated. The gauge-only CONUS analysis of daily precipitation utilizes an orographic-adjustment technique (based on the well-known PRISM precipitation climatology of Oregon State University) developed by the NWS Office of Hydrologic Development (OHD). The primary NCEP global precipitation analysis is the pentad CPC Merged Analysis of Precipitation (CMAP), which blends both gauge observations and satellite estimates. The presentation will include a brief comparison between the CMAP analysis and other global

  20. Speciality optical fibres for astronomy

    Science.gov (United States)

    Ellis, S. C.; Bland-Hawthorn, J.

    2015-05-01

    Astrophotonics is a rapidly developing area of research which applies photonic technology to astronomical instrumentation. Such technology has the capability of significantly improving the sensitivity, calibration and stability of astronomical instruments, or indeed providing novel capabilities which are not possible using classical optics. We review the development and application of speciality fibres for astronomy, including multi-mode to single-mode converters, notch filters and frequency combs.In particular we focus on our development of instruments designed to filter atmospheric emission lines to enable much deeper spectroscopic observations in the near-infrared. These instruments employ two novel photonic technologies. First, we have developed complex aperiodic fibre Bragg gratings which filter over 100 irregularly spaced wavelengths in a single device, covering a bandwidth of over 200 nm. However, astronomical instruments require highly multi-mode fibres to enable sufficient coupling into the fibre, since atmospheric turbulence heavily distorts the wavefront. But photonic technologies such as fibre Bragg gratings, require single mode fibres. This problem is solved by the photonic lantern, which enables efficient coupling from a multi-mode fibre to an array of single-mode fibres and vice versa. We present the results of laboratory tests of these technologies and of on-sky experiments made using the first instruments to deploy these technologies on a telescope. These tests show that the fibre Bragg gratings suppress the night sky background by a factor of 9. Current instruments are limited by thermal and detector emission. Planned instruments should improve the background suppression even further, by optimising the design of the spectrograph for the properties of the photonic components. Finally we review ongoing research in astrophotonics, including multi-moded multicore fibre Bragg gratings, which enable multiple gratings to be written into the same device

  1. Astronomy from the chair - the application of the Internet in promoting of Astronomy

    Science.gov (United States)

    Tomic, Zoran

    2014-05-01

    Internet and modern communication technologies are an indispensable part of modern life. The use of the Internet makes it possible to enhance the education and expand opportunities for acquiring new knowledge. One example is Astronomy, where today thanks to the Internet, we can control telescopes that are distant from us and listen to lectures from Universities in other countries. "Astronomy from the chair" is the name for a concept where amateur astronomers can deal with astronomy from their homes using the Internet. The concept can be divided into four sections depending on the content being offered: Robotic Observatory, Virtual Observatory, Online astronomy broadcasting and Online courses. Robotic observatory is defined as an astronomical instrument and detection system that enables efficient observation without the need of a person's physical intervention. Virtual Observatory is defined as a collection of databases and software tools that use the Internet as a platform for scientific research. Online astronomy broadcasting is part of concept "Astronomy from the chair" which gives users the opportunity to get directly involved in astronomical observation organized by an amateur astronomer from somewhere in the world. Online courses are groups of sites and organizations that provide the opportunity to amateur astronomers to attend lectures, save and watch video materials from lectures, do homework, communicate with other seminar participants and in that way become familiar with the various areas of Astronomy. This paper discusses a new concept that describes how the Internet can be applied in modern education. In this paper will be described projects that allows a large number of astronomy lovers to do their own research without the need to own a large and expensive set of astronomical equipment (Virtual Telescope from Italy, Observatory "Night Hawk" from Serbia and project "Astronomy from an armchair" at Faculty of Sciences and Mathematics in Nis), to help

  2. Edible Astronomy Demonstrations

    Science.gov (United States)

    Lubowich, Donald A.

    2007-12-01

    Astronomy demonstrations with edible ingredients are an effective way to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students - and the students remember these demonstrations after they are presented. In this poster I describe edible demonstrations I have created to simulate the expansion of the universe (using big-bang chocolate chip cookies); differentiation during the formation of the Earth and planets (using chocolate or chocolate milk with marshmallows, cereal, candy pieces or nuts); and radioactivity/radioactive dating (using popcorn). Other possible demonstrations include: plate tectonics (crackers with peanut butter and jelly); convection (miso soup or hot chocolate); mud flows on Mars (melted chocolate poured over angel food cake); formation of the Galactic disk (pizza); formation of spiral arms (coffee with cream); the curvature of Space (Pringles); constellations patterns with chocolate chips and chocolate chip cookies; planet shaped cookies; star shaped cookies with different colored frostings; coffee or chocolate milk measurement of solar radiation; Oreo cookie lunar phases. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and can be adapted for cultural, culinary, and ethnic differences among the students.

  3. Optical observations of 23 distant Jupiter Family Comets, including 36P/Whipple at multiple phase angles

    CERN Document Server

    Snodgrass, Colin; Fitzsimmons, Alan

    2007-01-01

    We present photometry on 23 Jupiter Family Comets (JFCs) observed at large heliocentric distance, primarily using the 2.5m Isaac Newton Telescope (INT). Snap-shot images were taken of 17 comets, of which 5 were not detected, 3 were active and 9 were unresolved and apparently inactive. These include 103P/Hartley 2, the target of the NASA Deep Impact extended mission, EPOXI. For 6 comets we obtained time-series photometry and use this to constrain the shape and rotation period of these nuclei. The data are not of sufficient quantity or quality to measure precise rotation periods, but the time-series do allow us to measure accurate effective radii and surface colours. Of the comets observed over an extended period, 40P/Vaisala 1, 47P/Ashbrook-Jackson and P/2004 H2 (Larsen) showed faint activity which limited the study of the nucleus. Light-curves for 94P/Russell 4 and 121P/Shoemaker-Holt 2 reveal rotation periods of around 33 and 10 hours respectively, although in both cases these are not unique solutions. 94P w...

  4. Getting organized: A history of amateur astronomy in the United States

    Science.gov (United States)

    Williams, Thomas R.

    2000-10-01

    During the twentieth century, American amateur astronomers attempted to form national organizations with structures and intents similar to the British Astronomical Association (BAA), an amateur organization dedicated to the advancement of astronomy and widely admired by American amateurs and professionals alike. The Society for Practical Astronomy (1910), the American Amateur Astronomers Association (1935), and the National Astronomical Association (1945) were each intended to facilitate amateur scientific contributions in BAA-like topical sections, but each of these societies failed. Founded in 1911, the American Association of Variable Star Observers (AAVSO) and the American Meteor Society (AMS) provided an alternative for amateur astronomers who were interested in those specific topics. However, it was not until 1947, when the Association of Lunar and Planetary Observers (ALPO) formed, that another large segment of amateur astronomers found a home for their interests. A second mode of national organization succeeded at mid- century and grew to include most avocational astronomers. Founded in 1947, the Astronomical League consists of regional associations of local societies, and is oriented largely towards recreational astronomy. The League sponsors annual national and regional conventions, but contributes little to scientific programs. This study concludes that avocational astronomy cannot simply be compared with professional astronomy, and instead must be viewed on its own terms as a complex and variegated field. Although the failure of American amateurs to form a BAA-like organization was at first disappointing, the specialized associations of observers, together with a separate and larger organization devoted to recreational astronomy, have served the American astronomical community well. Professional support for both types of activity was facilitated in this mode of organization. The style in which professional support is rendered appears to be important

  5. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Architecture

    Science.gov (United States)

    Xiao, J.; Yu, C.; Cui, C.; He, B.; Li, C.; Fan, D.; Hong, Z.; Yin, S.; Wang, C.; Cao, Z.; Fan, Y.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Zhang, H.

    2015-09-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). The ultimate goal of this project is to provide a comprehensive end-to-end astronomy research environment where several independent systems seamlessly collaborate to support the full lifecycle of the modern observational astronomy based on big data, from proposal submission, to data archiving, data release, and to in-situ data analysis and processing. In this paper, the architecture and key designs of the AstroCloud platform are introduced, including data access middleware, access control and security framework, extendible proposal workflow, and system integration mechanism.

  6. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Architecture

    CERN Document Server

    Xiao, Jian; Cui, Chenzhou; He, Boliang; Li, Changhua; Fan, Dongwei; Hong, Zhi; Yin, Shucheng; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Li, Shanshan; Mi, Linying; Wan, Wanghui; Wang, Jianguo; Zhang, Hailong

    2014-01-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). The ultimate goal of this project is to provide a comprehensive end-to-end astronomy research environment where several independent systems seamlessly collaborate to support the full lifecycle of the modern observational astronomy based on big data, from proposal submission, to data archiving, data release, and to in-situ data analysis and processing. In this paper, the architecture and key designs of the AstroCloud platform are introduced, including data access middleware, access control and security framework, extendible proposal workflow, and system integration mechanism.

  7. Neutrino Astronomy: A New Window to the Universe

    OpenAIRE

    Grupen, Claus

    1996-01-01

    Neutrino astronomy offers the prospect to be able to look into the interior of compact astrophysical objects which may be the sources of cosmic radiation. This paper describes the results on neutrino observations from the sun and the supernova SN1987A along with an outlook on neutrino astronomy beyond the TeV scale.

  8. Archaeo- and Cultural Astronomy in Armenia

    Science.gov (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2015-08-01

    We present a general overview on Armenian Archaeoastronomy and Astronomy in Culture to mention and summarize some activities and related organizations involved. Armenia is rather rich in archaeoastronomy and culture, including calendars, rock art, mythology, etc. Archaeoastronomical issues in Armenia include: Zodiac Constellations (believed to be introduced for the first time in the Armenian Highland); Ancient Observatories; Armenian Rock Art; Ancient Armenian Calendar and other (medieval) calendars; Astronomical Terms and Names; Records of Astronomical Events by ancient Armenians; Anania Shirakatsi’s (612-685) Astronomical Heritage; Medieval Sky Maps and Astronomical Devices. During the recent years, we have organized a number of meetings, where archaeoastronomy was involved: Joint European and National Astronomy Meeting (JENAM-2007), Special Session #6: “Archaeoastronomy” (2007), ArAS VIII Annual Meeting “Astronomy and Society”, Session “Archaeoastronomy” (2009), Archaeoastronomical meeting “Astronomical Heritage in the National Culture” dedicated to Anania Shirakatsi’s 1400th anniversary (2012), Meeting “Relation of Astronomy to other Sciences, Culture and Society” (RASCS), Sessions“Archaeoastronomy” and “Astronomy in Culture” (2014). Along with Byurakan Astrophysical Observatory (BAO), there are several other institutions related to Archaeoastronomy and Astronomy in Culture: Institute of History, Institute of Archaeology and Ethnography, Institute of Literature, Institute of Language, Matenadaran (Institute of Ancient Manuscripts). We have introduced a section “Archaeoastronomy and Astronomy in Culture” in the newsletter of Armenian Astronomical Society (ArAS). This is to strengthen ArAS activities and to widen our knowledge in this area, to encourage and establish collaborations with other scientists related to these subjects; historians, archaeologists, ethnographers, philologists, linguists, artists and other

  9. Astronomy in Culture

    Science.gov (United States)

    Stavinschi, M.

    2010-07-01

    Which is more appropriate? “Astronomy in culture,” or “Astronomy and culture,” or “Culture without astronomy?” These are only few variants, each with its own sense. I guess the last question is the most pertinent. Does culture really exist without astronomy? The existence and evolution of the human civilization answer NO! But what “culture” means? When we are thinking of a culture (the Hellenistic one, for instance), we mean a set of customs, artistic, religious, intellectual manifestations that differentiate one group or society from another. On the other hand, we often use the notion of culture in a different sense: shared beliefs, ways of regarding and doing, which orient more or less consciously the behavior of an individual or a group. An example would be the laic culture. Moreover, the set of knowledge acquired in one or several domains also constitutes a culture, for instance the scientific culture of an individual or a group. Finally, the set of cultures is nothing else but the civilization. Now, if we come back in time into the history of civilization, we find a permanent component, which was never missing and often played a decisive part in its evolution: the Astronomy.

  10. Integration of the digital technologies in the teaching of astronomy

    Science.gov (United States)

    de Macedo, J. A.; Voelzke, M. R.

    2014-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potential uses of interactive materials in the teaching of astronomy. Despite being part of official documents, proposals included in the curriculum of several states, and having contributed to human and technological development, astronomy is rarely taught adequately in the Brazilian basic education. When it is taught, it is with unsatisfactory results as presented by students and teachers as shown by several studies, such as those carried out by (Voelzke and Gonzaga, 2013). Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to help them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, with its Campus Januária as research locus; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. Among other results, it was verified that: (i) In the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; (ii) the analysis of the initial questionnaire showed even that group

  11. The Canadian Astronomy Data Centre

    Science.gov (United States)

    Ball, Nicholas M.; Schade, D.; Astronomy Data Centre, Canadian

    2011-01-01

    The Canadian Astronomy Data Centre (CADC) is the world's largest astronomical data center, holding over 0.5 Petabytes of information, and serving nearly 3000 astronomers worldwide. Its current data collections include BLAST, CFHT, CGPS, FUSE, Gemini, HST, JCMT, MACHO, MOST, and numerous other archives and services. It provides extensive data archiving, curation, and processing expertise, via projects such as MegaPipe, and enables substantial day-to-day collaboration between resident astronomers and computer specialists. It is a stable, powerful, persistent, and properly supported environment for the storage and processing of large volumes of data, a condition that is now absolutely vital for their science potential to be exploited by the community. Through initiatives such as the Common Archive Observation Model (CAOM), the Canadian Virtual Observatory (CVO), and the Canadian Advanced Network for Astronomical Research (CANFAR), the CADC is at the global forefront of advancing astronomical research through improved data services. The CAOM aims to provide homogeneous data access, and hence viable interoperability between a potentially unlimited number of different data collections, at many wavelengths. It is active in the definition of numerous emerging standards within the International Virtual Observatory, and several datasets are already available. The CANFAR project is an initiative to make cloud computing for storage and data-intensive processing available to the community. It does this via a Virtual Machine environment that is equivalent to managing a local desktop. Several groups are already processing science data. CADC is also at the forefront of advanced astronomical data analysis, driven by the science requirements of astronomers both locally and further afield. The emergence of 'Astroinformatics' promises to provide not only utility items like object classifications, but to directly enable new science by accessing previously undiscovered or intractable

  12. Astronomy Librarians - Quo Vadis?

    CERN Document Server

    Lagerstrom, Jill

    2011-01-01

    "You don't look like a librarian" is a phrase we often hear in the astronomy department or observatory library. Astronomy librarians are a breed apart, and are taking on new and non-traditional roles as information technology evolves. This talk will explore the future of librarians and librarianship through the lens of the recent talks given at the sixth "Libraries and Information Services in Astronomy" conference held in Pune, India in February 2010. We will explore the librarian's universe, illustrating how librarians use new technologies to perform such tasks as bibliometrics, how we are re-fashioning our library spaces in an increasingly digital world and how we are confronting the brave new world of open access, to name but a few topics.

  13. Astronomy Librarian - Quo Vadis?

    Science.gov (United States)

    Lagerstrom, Jill; Grothkopf, Uta

    "You don't look like a librarian" is a phrase we often hear in the astronomy department or observatory library. Astronomy librarians are a breed apart, and are taking on new and non-traditional roles as information technology evolves. This talk will explore the future of librarians and librarianship through the lens of some of the recent talks given at the sixth "Libraries and Information Services in Astronomy" conference held in Pune, India in February 2010. We will explore the librarian's universe, illustrating how librarians use new technologies to perform such tasks as bibliometrics, how we are re-fashioning our library spaces in an increasingly digital world and how we are confronting the brave new world of Open Access, to name but a few topics.

  14. Modeled hydraulic redistribution by Helianthus annuus L. matches observed data only after model modification to include nighttime transpiration

    Science.gov (United States)

    Neumann, R. B.; Cardon, Z. G.; Rockwell, F. E.; Teshera-Levye, J.; Zwieniecki, M.; Holbrook, N. M.

    2013-12-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of Helianthus annuus L. in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) could match experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.

  15. Gravitation, Book 3. The University of Illinois Astronomy Program.

    Science.gov (United States)

    Atkin, J. Myron; Wyatt, Stanley P., Jr.

    Presented is book three in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. The causes of celestial motion are investigated and the laws that apply to all moving things in the universe are examined in detail. Topics discussed include: the basic…

  16. Marriage of x-ray and optical astronomy

    International Nuclear Information System (INIS)

    An historical discussion of the relation of x-ray and optical astronomy is given including distances within our galaxy, the optical identification of x-ray sources, the binary x-ray stars, neutron stars and black holes, a program in x-ray astronomy, and future missions

  17. Improving Science Communication and Engaging the Public in Astronomy and Nature

    Science.gov (United States)

    Arion, Douglas N.

    2016-01-01

    A partnershipship between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods. This work was supported in part by NSF Grant 1432662.

  18. Gamma-ray Astronomy

    CERN Document Server

    Hinton, Jim

    2007-01-01

    The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

  19. Lessons from Mayan Astronomy

    CERN Document Server

    Loeb, Abraham

    2016-01-01

    The Mayan culture collected exquisite astronomical data for over a millennium. However, it failed to come up with the breakthrough ideas of modern astronomy because the data was analyzed within a mythological culture of astrology that rested upon false but mathematically sophisticated theories about the Universe. Have we learned the necessary lessons to prevent our current scientific culture from resembling Mayan Astronomy? Clearly, data collection by itself is not a guarantee for good science as commonly assumed by funding agencies. A vibrant scientific culture should cultivate multiple approaches to analyzing existing data and to collecting new data.

  20. Studies in the History of Astronomy. Issue 32 %t Istoriko-Astronomicheskie Issledovaniya. Vypusk XXXII

    Science.gov (United States)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy. Its basic headlines are: Cosmology and cosmogony of the 20th century; History of observations and astronomical organizations; Scientists and their works; Astronomy and society; Publications and memoirs; Astronomy and astrology; Memory of scientists

  1. High energy cosmic ray astronomy

    International Nuclear Information System (INIS)

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.104-1020) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  2. The handy astronomy answer book

    CERN Document Server

    Liu, PhD, Charles

    2013-01-01

    From planetary movements and the exploration of our solar system to black holes and dark matter, this comprehensive reference simplifies all aspects of astronomy with an approachable question-and-answer format. With chapters broken into various astronomical studies—including the universe, galaxies, planets, and space exploration—this fully updated resource is an ideal companion for students, teachers, and amateur astronomers, answering more than 1,00 questions, such as Is the universe infinite? What would happen to you if you fell onto a black hole? What are the basic concepts of Einstein''s s

  3. ESASky: a new Astronomy Multi-Mission Interface

    Science.gov (United States)

    Baines, D.; Merin, B.; Salgado, J.; Giordano, F.; Sarmiento, M.; Lopez Marti, B.; Racero, E.; Gutierrez, R.; De Teodoro, P.; Nieto, S.

    2016-06-01

    ESA is working on a science-driven discovery portal for all its astronomy missions at ESAC called ESASky. The first public release of this service will be shown, featuring interfaces for sky exploration and for single and multiple targets. It requires no operational knowledge of any of the missions involved. A first public beta release took place in October 2015 and gives users world-wide simplified access to high-level science-ready data products from ESA Astronomy missions plus a number of ESA-produced source catalogues. XMM-Newton data, metadata and products were some of the first to be accessible through ESASky. In the next decade, ESASky aims to include not only ESA missions but also access to data from other space and ground-based astronomy missions and observatories. From a technical point of view, ESASky is a web application that offers all-sky projections of full mission datasets using a new-generation HEALPix projection called HiPS; detailed geometrical footprints to connect all-sky mosaics to individual observations; direct access to the underlying mission-specific science archives and catalogues. The poster will be accompanied by a demo booth at the conference.

  4. International Lunar Observatory Association Advancing 21st Century Astronomy from the Moon

    Science.gov (United States)

    Durst, Steve

    2015-08-01

    Long considered a prime location to conduct astronomical observations, the Moon is beginning to prove its value in 21st Century astronomy through the Lunar Ultraviolet Telescope aboard China’s Chang’e-3 Moon lander and through the developing missions of the International Lunar Observatory Association (ILOA). With 24 hours / Earth day of potential operability facilitating long-duration observations, the stable platform of the lunar surface and extremely thin exosphere guaranteeing superior observation conditions, zones of radio-quiet for radio astronomy, and the resources and thermal stability at the lunar South Pole, the Moon provides several pioneering advantages for astronomy. ILOA, through MOUs with NAOC and CNSA, has been collaborating with China to make historic Galaxy observations with the Chang’e-3 LUT, including imaging Galaxy M101 in December 2014. LUT has an aperture of 150mm, covers a wavelength range of 245 to 340 nanometers and is capable of detecting objects at a brightness down to 14 mag. The success of China’s mission has provided support and momentum for ILOA’s mission to place a 2-meter dish, multifunctional observatory at the South Pole of the Moon NET 2017. ILOA also has plans to send a precursor observatory instrument (ILO-X) on the inaugural mission of GLXP contestant Moon Express. Advancing astronomy and astrophysics from the Moon through public-private and International partnerships will provide many valuable research opportunities while also helping to secure humanity’s position as multi world species.

  5. Quickly Creating Interactive Astronomy Illustrations

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  6. School-Based Extracurricular Astronomy

    Science.gov (United States)

    Stanger, Jeffrey J.

    2010-01-01

    The International Year of Astronomy in 2009 focused considerable public attention on Astronomy and generated valuable resources for educators. These activities are an effective vehicle for promoting Science to students and to the wider school community. The most engaging practical astronomy activities are best delivered with sustained support from…

  7. Teaching Astronomy in UK Schools

    Science.gov (United States)

    Roche, Paul; Roberts, Sarah; Newsam, Andy; Barclay, Charles

    2012-01-01

    This article attempts to summarise the good, bad and (occasionally) ugly aspects of teaching astronomy in UK schools. It covers the most common problems reported by teachers when asked about covering the astronomy/space topics in school. Particular focus is given to the GCSE Astronomy qualification offered by Edexcel (which is currently the…

  8. Highlights of Astronomy, Vol. 15

    Science.gov (United States)

    Corbett, Ian

    2010-11-01

    Preface; Part I. Gruber Cosmology Prize Lecture; Part II. Invited Discourses; Part III. Joint Discussions: 1. Dark matter in early-type galaxies Léon V. E. Koopmans and Tommaso Treu; 2. Diffuse light in galaxy clusters Magda Arnaboldi and Ortwin Gerhard; 3. Neutron stars - timing in extreme environments Tomaso Belloni, Mariano Méndez and Chengmin Zhang; 4. Progress in understanding the physics of Ap and related stars Margarida Cunha; 5. Modelling the Milky Way in the age of Gaia Annie C. Robin; 6. Time and astronomy Pascale Defraigne; 7. Astrophysical outflows and associated accretion phenomena Elisabete M. de Gouveia Dal Pino and Alex C. Raga; 8. Hot interstellar matter in elliptical galaxies Dong-Woo Kim and Silvia Pellegrini; 9. Are the fundamental constants varying with time? Paolo Molaro and Elisabeth Vangioni; 10. 3D views on cool stellar atmospheres - theory meets observation K. N. Nagendra, P. Bonifacio and H. G. Ludwig; 11. New advances in helio- and astero-seismology; 12. The first galaxies - theoretical predictions and observational clues; 13. Eta Carinae in the context of the most massive stars Theodore R. Gull and Augusto Damineli; 14. The ISM of galaxies in the far-infrared and sub-millimetre; 15. Magnetic fields in diffuse media Elisabete M. de Gouveia Dal Pino and Alex Lazarian; 16. IHY global campaign - whole heliosphere interval; Part IV. Special Sessions: SpS 1. IR and sub-mm spectroscopy - a new tool for studying stellar evolution Glenn Wahlgren, Hans Käufl and Florian Kerber; SpS 2. The international year of astronomy Pedro Russo, Catherine Cesarsky and Lars Lindberg Christensen; SpS 3. Astronomy in Antarctica in 2009 Michael G. Burton; SpS 4. Astronomy education between past and future J. P. De Greve; SpS 5. Accelerating the rate of astronomical discovery Ray P. Norris; SpS 6. Planetary systems as potential sites for life Régis Courtin, Alan Boss and Michel Mayor; SpS 7. Young stars, brown dwarfs, and protoplanetary disks Jane Gregorio

  9. Identification and Support of Outstanding Astronomy Students

    Science.gov (United States)

    Stoev, A. D.; Bozhurova, E. S.

    2006-08-01

    The aims, organizational plan and syllabus of a specialized Astronomy School with a subject of training students for participation in the International Astronomy Olympiad, are presented. Thematic frame includes basic educational activities during the preparation and self-preparation of the students and their participation in astronomical Olympiads. A model of identification and selection of outstanding students for astronomical Olympiads has been developed. Examples of didactic systems of problems for development of mathematical, physical and astronomical skills are shown. The programme ends with individual training for solving problems on astronomy and astrophysics. Possibilities, which the characteristic, non-standard astronomical problems give for stimulating the creative and original thinking, are specified. Basic psychological condition for development of the students' creative potential - transformation of the cognitive content in emotional one - is demonstrated. The programme of identification and support of outstanding students on astronomy is realized in collaboration with The Ministry of Education and Science, Public Astronomical Observatories and Planetaria, Institute of Astronomy - Bulgarian Academy of Sciences, and The Union of Astronomers in Bulgaria.

  10. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  11. Teaching Astronomy in Schools

    Science.gov (United States)

    Agar Beet, Ernest

    2016-02-01

    Preface; Preface to the second edition; Introduction. Teaching astronomy in the past: the case against teaching it; Addenda; 1. Why, when, and how?; 2. In the classroom; 3. In the open air; 4. The school telescope; 5. Teaching aids; Bibliography; Index.

  12. CCIR and radio astronomy

    International Nuclear Information System (INIS)

    The role of the CCIR with regard to the implementation of the radio spectrum for astronomy is discussed. Attention is given to the weakness of signals in the radio spectrum and the avoidance of interference. Sharing of spectrum space and interference caused by transmitters operating in adjacent bands are also considered

  13. Outlook for ultraviolet astronomy

    Science.gov (United States)

    Boehm-Vitense, E.

    1981-01-01

    A brief overview of galactic and extragalactic research is given with emphasis on the problems of temperature determination, chemical abundance determination, and the question about the energy sources for the high temperature regions. Stellar astronomy, stellar winds, and the interstellar medium are among the topics covered.

  14. Teaching Astronomy Using Tracker

    Science.gov (United States)

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-01-01

    A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…

  15. Astronomy on the Walls

    Science.gov (United States)

    Santascoy, J.

    2016-01-01

    Many of us are interested in increasing youth and minority involvement in the sciences. Using art that integrates images of space exploration with ethnic astronomical mythology may increase participation in astronomy in general, while also forming a bridge to underrepresented communities. This paper describes a freely available presentation of Carlos Callejo's Discover the Secrets of the Universe Through the Library for outreach.

  16. Skyscape of an Amazonian Diaspora: Arawak Astronomy in Historical Comparative Perspective

    Science.gov (United States)

    Jara, Fabiola

    The title of this article "Arawak Astronomy" suggests that the research matter concerns the astronomy of an already well-defined ethnographic entity. This however does not do justice to the complexities of Arawak (pre)history. This contribution aims to discuss and connect the available historical and ethnographic data on Arawak astronomies as gathered by the author (Jara 2000), with the most recent research on the archeology and comparative linguistics of the Arawak diaspora. The article argues that Arawak astronomy has to be related to the cultural and sociopolitical continuities and discontinuities of the Arawak diaspora throughout the lowlands of tropical South America. This article recognizes the need to consider Arawak astronomy has an object to be discovered and explained within its local and regional contexts. Notwithstanding these remarks, based on a sustained examination of ethnohistorical and ethnographic sources, this article proposes that Arawak astronomy can be characterized by at least four elements: firstly, a horizon system of observation which combines the observation of the solar solstices and equinoxes with the near heliacal and near cosmic rising or setting of at least seven star groups - the Pleiades, the Hyades, the upper stars of the constellation of Scorpius (including α Sco), Corvus, the Belt of Orion, several stars near Sirius, and the Milky Way. Secondly, the association of the rising and setting of these star groups with the seasonal cycle, mainly with the start and/or of the end of rainy and dry seasons. Thirdly, the widespread association of the stars of the year (most commonly the Pleiades but sometimes Orion or the head of Scorpius) with the beginning of the agricultural cycle and consequently with the end of the heavy rains announcing the time to plant the new fields. The last and fourth commonality are the inscriptions or markings of the origin of the stars in the local landscape, lakes, mountains, and other salient landscape

  17. Summary: Special Session SpS15: Data Intensive Astronomy

    Science.gov (United States)

    Montmerle, Thierry

    2015-03-01

    A new paradigm in astronomical research has been emerging - ``Data Intensive Astronomy'' that utilizes large amounts of data combined with statistical data analyses. The first research method in astronomy was observations by our eyes. It is well known that the invention of telescope impacted the human view on our Universe (although it was almost limited to the solar system), and lead to Keplerfs law that was later used by Newton to derive his mechanics. Newtonian mechanics then enabled astronomers to provide the theoretical explanation to the motion of the planets. Thus astronomers obtained the second paradigm, theoretical astronomy. Astronomers succeeded to apply various laws of physics to reconcile phenomena in the Universe; e.g., nuclear fusion was found to be the energy source of a star. Theoretical astronomy has been paired with observational astronomy to better understand the background physics in observed phenomena in the Universe. Although theoretical astronomy succeeded to provide good physical explanations qualitatively, it was not easy to have quantitative agreements with observations in the Universe. Since the invention of high-performance computers, however, astronomers succeeded to have the third research method, simulations, to get better agreements with observations. Simulation astronomy developed so rapidly along with the development of computer hardware (CPUs, GPUs, memories, storage systems, networks, and others) and simulation codes.

  18. Strategies for Teaching Astronomy

    Science.gov (United States)

    Bennett, J.

    2000-12-01

    No matter whether you are teaching school children, undergraduates, or colleagues, a few key strategies are always useful. I will present and give examples for the following five key strategies for teaching astronomy. 1. Provide a Contextual Framework: It is much easier to learn new facts or concepts if they can be ``binned" into some kind of pre-existing mental framework. Unless your listeners are already familiar with the basic ideas of modern astronomy (such as the hierarchy of structure in the universe, the scale of the universe, and the origin of the universe), you must provide this before going into the details of how we've developed this modern picture through history. 2. Create Conditions for Conceptual Change: Many people hold misconceptions about astronomical ideas. Therefore we cannot teach them the correct ideas unless we first help them unlearn their prior misconceptions. 3. Make the Material Relevant: It's human nature to be more interested in subjects that seem relevant to our lives. Therefore we must always show students the many connections between astronomy and their personal concerns, such as emphasizing how we are ``star stuff" (in the words of Carl Sagan), how studying other planets helps us understand our own, and so on. 4. Limit Use of Jargon: The number of new terms in many introductory astronomy books is larger than the number of words taught in many first courses in foreign language. This means the books are essentially teaching astronomy in a foreign language, which is a clear recipe for failure. We must find ways to replace jargon with plain language. 5. Challenge Your Students: Don't dumb your teaching down; by and large, students will rise to meet your expectations, as long as you follow the other strategies and practice good teaching.

  19. Engaging Parents and Pupils in Astronomy

    Science.gov (United States)

    Stevenson, Rod

    2016-04-01

    "The British National Space Centre partnership has recognised for some time that Space and Astronomy are particularly attractive subjects for school students and that including these in the science curriculum can have a positive effect on student interest in science. Drivers are that the number of young people studying science and engineering subjects at A-level and beyond is declining; young people should have an understanding of the importance of science and technology to the world around them; and that UK space industry (including technology, engineering, space science, Earth observation science) must renew itself." BRINGING SPACE INTO SCHOOL Professor Martin Barstow, University of Leicester Published by PPARC on behalf of the British National Space Centre Partnership October 2005 "It has become more and more difficult to persuade young people to follow a career in STEM (Science, Technology, Engineering & Mathematics) subjects. Across the EU, the number of graduates in STEM subjects has dropped from 24.3% in 2002 to 22.6% in 2011" (Source EUSTAT) It was Martin Barstow's report in 2005 that started my attempt to interest people in Science and Technology, At Ormiston Victory Academy (OVA) for the past two years, we have embarked on a program to enthuse pupils to study science related subject through the medium of Astronomy. We teach Edexcel GCSE Astronomy to a joint parent and pupil group. They study together and at the end of the course, both take the GCSE examination. The idea is that the pupils see that science is important to their parents and that a very practical facet of science is also fun. Astronomy is a multidisciplinary course bringing together elements of Science, Maths, Technology, Geography and History. It is hoped that the enthusiasm shown by the pupils will spill over into the mainstream subjects including maths. The parents get an idea of the work and level of knowledge required by their children to complete a GCSE level subject. They also report

  20. World's Biggest Astronomy Event on the World-Wide

    Science.gov (United States)

    1996-06-01

    time. Phase 2 will take place on Monday, November 18 and Tuesday, November 19, 1996. On these and the three following days ( Phase 3 : November 20--22), the `active period' will be in the six-hour interval from 15h to 21h UT [2]. Various events are planned to happen at certain times and in certain places on the WWW, keeping the programme lively and enhancing the interaction by ensuring continued attention and expectation by the participants. During Phases 2 and 3, nine or more `shops' will be available in the Astronomy On-Line WWW `marketplaces' for consultation by the participants. They will display a variety of `goods' (activities) at different levels of complexity in order to attract participants of different age groups, among others: General information; Collaborative projects which require observations by many groups all over the continent; Real astronomical observations to be submitted and executed with telescopes at participating, professional observatories; Prepared exercises which may include guided searches on the WWW; Opportunities to talk to professional astronomers, etc. More details are available at the above mentioned WWW sites. Ideas for further activities are now being actively solicited by the Steering Committees. At the end, the various results will be presented on the WWW in the form of short reports which may be commented upon, as far as possible in real time. A `final event' which will `unite' participants from all over Europe will be planned on the last day. Notes: [1] The EAAE was founded in November 1994 (cf. ESO Press Release 17/94 of 2 December 1994) and now has several hundred members located in virtually all European countries; most are secondary school physics teachers with a particular interest in astronomy. [2] This period of the day has been chosen to allow students to participate outside the the normal school hours, and by taking into account the time zones across Europe (from UT in the West to UT+2h in East). How to obtain ESO Press

  1. Virtual Learning Environment for Astronomy Education

    Science.gov (United States)

    Hoban, S.; Kumar, S.

    2004-12-01

    We have developed a virtual learning environment for astronomy education, which we call VTIE (for Virtual Telescopes in Education). While astronomy often inspires "oohs" and "ahhs" with glorious imagery, the VTIE architecture emphasizes the scientific process, eliciting questions about the nature of celestial objects and the physical processes which give rise to the pretty pictures. VTIE aims to bring observational astronomy directly to learners in both formal and informal settings by providing tools for both educators and students. For educators, VTIE provides the capability to design astronomy experiments, an online review tool to comment upon students proposals and papers, and classroom management tools (e.g. messaging service and ability to create a reading list). For students, VTIE provides an interface for developing an observing proposal (details of which are designed by the educators), access to online data services, an online observing log, and a Paper Writing Tool to complete the process by reporting their results. Details of the system and practical examples will be provided.

  2. Students Across Texas Celebrate Astronomy Day

    Science.gov (United States)

    Preston, S.; Wetzel, M.; Hemenway, M. K.

    2010-08-01

    Over the past three years, McDonald Observatory has offered special Astronomy Day videoconference programs to students across Texas—the second largest state in the U.S. (Only Alaska is larger). Videoconferencing allows many students and teachers access to our Observatory, which is remotely located 180 miles (290 kilometers) from any major city. McDonald Observatory partners with Connect2Texas to advertise the Astronomy Day event. Connect2Texas provides the electronic bridge between schools and the Observatory. They also provide an online evaluation for teachers to complete. In 2009 the Astronomy Day videoconference celebrated the International Year of Astronomy and the historic observations made by Galileo Galilei. During the videoconference, the classes explore the Moon or Venus by making real-time telescopic observations. Students also receive an introduction to the Observatory, an opportunity to perform an activity relating to Galileo's observations, and an interview with an astronomer. A website provides teachers pre-and post-video conference materials, instructions, and a certificate of completion that can be customized for each student. The website also lists content alignment with state science education standards.

  3. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  4. What's New in Astronomy for 2012?

    Science.gov (United States)

    Wilkinson, John

    2012-01-01

    There's always something new happening in the field of Astronomy. This includes the immediate environment surrounding Earth, the Solar system and the universe. This article looks at some of the recent research astronomers have been undertaking this year. Each article has reference to a web site so teachers can find out more information or ask…

  5. What types of astronomy images are most popular?

    Science.gov (United States)

    Allen, Alice; Bonnell, Jerry T.; Connelly, Paul; Haring, Ralf; Lowe, Stuart R.; Nemiroff, Robert J.

    2015-01-01

    Stunning imagery helps make astronomy one of the most popular sciences -- but what types of astronomy images are most popular? To help answer this question, public response to images posted to various public venues of the Astronomy Picture of the Day (APOD) are investigated. APOD portals queried included the main NASA website and the social media mirrors on Facebook, Google Plus, and Twitter. Popularity measures include polls, downloads, page views, likes, shares, and retweets; these measures are used to assess how image popularity varies in relation to various image attributes including topic and topicality.

  6. Implementing Authentic Astronomy Research in the Classroom: The TLRBSE Experience

    Science.gov (United States)

    Pompea, S. M.; Croft, S. K.; Walker, C. E.; Lockwood, J.; McCarthy, D.; Rector, T.; Howell, S.

    2003-12-01

    The Teacher Leaders in Research Based Science Education (TLRBSE) is an NSF-funded program which has as one of its primary goals the implementation of authentic research in the classroom. To achieve this goal, TLRBSE provides an in-depth professional development experience for teachers which includes a semester-long on-line course on research pedagogy, research tools (such as image processing), and astronomy content knowledge. Participants come to the National Optical Astronomy Observatory (NOAO) in Tucson in the summer for two weeks in order to hone their skills and interact with scientists. They also pursue research projects led by a TLRBSE leader in one of several astronomy areas including novae, active galactic nuclei, solar magnetic fields, and spectroscopy of variable stars using research telescopes at Kitt Peak National Observatory. The teachers have access to the data they have taken at the telescope as well as to extensive archival data sets taken by previous TLRBSE teachers. These ongoing research projects are then brought back to the classroom where teachers and students can continue their research in these areas. The student research results are then submitted for review and publication in NOAO's Research Based Science Education Journal. The TLRBSE model is being extended by providing a variety of additional research experiences for teachers and students during the school year, using the same telescopes at Kitt Peak National Observatory used in the summer program. Teachers and students from the program apply for additional research time during the school year and can come to the observatory to make observations for new or continuing projects. As remote telescopes become more widely available, the teachers and students will be able to observe from their home locations and access their observations directly over the internet. Some of the key issues in our program are teacher selection, organization and logistics of the distance learning course, workshop

  7. Astronomy and Shakespeare's Hamlet.

    Science.gov (United States)

    Usher, P. D.

    1996-05-01

    Payne-Gaposchkin and others have suggested that Hamlet shows evidence of the Bard's awareness of the astronomical revolutions of the sixteenth century. I summarize major arguments and note that the play's themes recur in modern astronomy teaching and research: (1) The play amounts to a redefinition of universal order and humankind's position in it. (2) There is interplay between appearance and reality. Such a contrast is commonplace wherever superficial celestial appearances obscure underlying physical realities, the nature of which emerge as the tale unfolds. (3) The outermost sphere of the Ptolemaic and Copernican models seems to encase humanity, who are liberated by the reality of Digges' model and the implications advanced by Bruno. Similarly the oppressiveness of the castle interior is relieved by the observing platform which enables the heavens to be viewed in their true light. (4) Hamlet could be bounded in a nut-shell and count himself a king of infinite space, were it not that he has bad dreams. These concern the subversiveness of the new doctrine, for Hamlet refers to the infinite universe only hypothetically and in the presence of Rosencrantz and Guildenstern, who are named for relatives of the Danish astronomer Brahe. (5) Hamlet, and Brahe and Bruno, have connections to the university at Wittenberg, as does the Copernican champion Rheticus. (6) Ways are needed to reveal both the truths of nature, and the true nature of Danish royalty. Those unaccustomed to science think that there is madness in Hamlet's method. In particular, `doubt' is advanced as a methodological principle of inquiry. (7) The impression of normalcy and propriety in the upper reaches of society is like the false impression of an encapsulating universe. In Hamlet this duality is dramatized tragically, whereas in King John (cf. BAAS 27, 1325, 1995) it is not; for by 1601 when the writing of Hamlet was probably completed, Shakespeare would have known of the martyrdom of Bruno the previous

  8. Developing Astronomy Research and Education in the Philippines

    Science.gov (United States)

    Sese, R. M. D.; Kouwenhoven, M. B. N. Thijs

    2015-03-01

    In the past few years, the Philippines has been gradually developing its research and educational capabilities in astronomy and astrophysics. In terms of astronomy development, it is still lagging behind several neighboring Southeast Asian countries such as Indonesia, Thailand and Malaysia, while it is advanced with respect to several others. One of the main issues hampering progress is the scarcity of trained professional Filipino astronomers, as well as long-term visions for astronomy development. Here, we will be presenting an overview of astronomy education and research in the country. We will discuss the history and current status of astronomy in the Philippines, including all levels of education, outreach and awareness activities, as well as potential areas for research and collaborations. We also discuss issues that need to be addressed to ensure sustainable astronomy development in the Philippines. Finally, we discuss several ongoing and future programs aimed at promoting astronomy research and education. In essence, the work is a precursor of a possible white paper which we envision to submit to the Department of Science and Technology (DOST) in the near future, with which we aim to further convince the authorities of the importance of astrophysics. With the support of the International Astronomical Union (IAU), this may eventually lead to the creation of a separate astronomy agency in the Philippines.

  9. Astronomy and astrology

    Science.gov (United States)

    Zarka, Philippe

    2011-06-01

    Astrology meets a large success in our societies, from the private to the political sphere as well as in the media, in spite of the demonstrated inaccuracy of its psychological as well as operational predictions. We analyse here the relations between astrology and astronomy, as well as the criticisms opposed by the latter to the former. We show that most of these criticisms are weak. Much stronger ones emerge from the analysis of the astrological practice compared to the scientific method, leading us to conclude to the non-scientificity of astrology. Then we return to the success of astrology, and from its analysis we propose a renewed (and prophylactic) rôle for astronomy in society.

  10. Music Inspired by Astronomy: A Selected Listing for the International Year of Astronomy

    Science.gov (United States)

    Fraknoi, A.

    2008-11-01

    Part of the aim of the International Year of Astronomy is to show the connections between astronomy and other areas of human culture. Such connections are easily found in music, where astronomical ideas have found a wide range of expression. This is not a comprehensive listing, but a sampling of some of the pieces that are available on CD's, and that may be of particular interest to educators and astronomy enthusiasts. To qualify for the list, a piece (or the composer's vision for it) has to include some real science and not just an astronomical term in the title or in a few lyrics. For example, we do not list The Planets, by Gustav Holst, since it treats the astrological view of the planets. And we regret that Philip Glass' opera Galileo is not available on CD and therefore cannot be listed. Nor do we include the thousands of popular songs that use the moon or the stars for an easy rhyme or a quick romantic image. And, while many jazz pieces have astronomy in the title, it is often hard to know just how the piece and the astronomy go together; so we've sadly omitted jazz too. For those with old-fashioned ears, like the author, we note that no warranty is made that all these pieces are easy to listen to, but each takes some key idea from astronomy and makes music out of it. A more comprehensive discussion can be found in my article in Astronomy Education Review: http://aer.noao.edu/cgi-bin/article.pl?id=193

  11. Future of Space Astronomy: A Global Road Map for the Next Decades

    Science.gov (United States)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; Pavlinsky, Mikhail

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  12. Enhancing gravitational wave astronomy with galaxy catalogues

    CERN Document Server

    Fan, Xilong; Heng, Ik Siong

    2014-01-01

    Joint gravitational wave (GW) and electromagnetic (EM) observations, as a key research direction in multi-messenger astronomy, will provide deep insight into the astrophysics of a vast range of astronomical phenomena. Uncertainties in the source sky location estimate from gravitational wave observations mean follow-up observatories must scan large portions of the sky for a potential companion signal. A general frame of joint GW-EM observations is presented by a multi-messenger observational triangle. Using a Bayesian approach to multi-messenger astronomy, we investigate the use of galaxy catalogue and host galaxy information to reduce the sky region over which follow-up observatories must scan, as well as study its use for improving the inclination angle estimates for coalescing binary compact objects. We demonstrate our method using a simulated neutron stars inspiral signal injected into simulated Advanced detectors noise and estimate the injected signal sky location and inclination angle using the Gravitati...

  13. Some innovative programmes in Astronomy education

    Science.gov (United States)

    Babu, G. S. D.; Sujatha, S.

    includes the visiting Scientists and Professors from various Research Organizations located in and around Bangalore as well as the in-house Scientific staff. It is gratifying to note that several students, after going through one or more of these courses, have indeed made commitments to pursue Astronomy as their career, some of them even obtaining admissions in to the institutes and universities in India and abroad for further studies in this field.

  14. RFI Mitigation in Radio Astronomy: an Overview

    OpenAIRE

    Weber, Rodolphe; Hellbourg, Gregory; Dumez-Viou, C.; Boonstra, A. J.; Torchinsky, S.; Capdessus, C.; Abed-Meraim, Karim

    2013-01-01

    Radio astronomy is a passive service and is equipped to observe extremely weak signals from outer space. The sensitivity of current state-of-the-art telescopes is over ten orders of magnitude higher than in most communications systems. Although radio telescopes are best located in relatively remote areas, astronomical observations may be still hampered by man-made radio frequency interference (RFI). In this paper we will consider different interference mitigation options. After a quick overvi...

  15. Exploring Metacogntive Visual Literacy Tasks for Teaching Astronomy

    Science.gov (United States)

    Slater, Timothy F.; Slater, S.; Dwyer, W.

    2010-01-01

    Undoubtedly, astronomy is a scientific enterprise which often results in colorful and inspirational images of the cosmos that naturally capture our attention. Students encountering astronomy in the college classroom are often bombarded with images, movies, simulations, conceptual cartoons, graphs, and charts intended to convey the substance and technological advancement inherent in astronomy. For students who self-identify themselves as visual learners, this aspect can make the science of astronomy come alive. For students who naturally attend to visual aesthetics, this aspect can make astronomy seem relevant. In other words, the visual nature that accompanies much of the scientific realm of astronomy has the ability to connect a wide range of students to science, not just those few who have great abilities and inclinations toward the mathematical analysis world. Indeed, this is fortunate for teachers of astronomy, who actively try to find ways to connect and build astronomical understanding with a broad range of student interests, motivations, and abilities. In the context of learning science, metacognition describes students’ self-monitoring, -regulation, and -awareness when thinking about learning. As such, metacognition is one of the foundational pillars supporting what we know about how people learn. Yet, the astronomy teaching and learning community knows very little about how to operationalize and support students’ metacognition in the classroom. In response, the Conceptual Astronomy, Physics and Earth sciences Research (CAPER) Team is developing and pilot-testing metacogntive tasks in the context of astronomy that focus on visual literacy of astronomical phenomena. In the initial versions, students are presented with a scientifically inaccurate narrative supposedly describing visual information, including images and graphical information, and asked to assess and correct the narrative, in the form of peer evaluation. To guide student thinking, students

  16. The Astronomy Genealogy Project: A Progress Report

    Science.gov (United States)

    Tenn, Joseph S.

    2016-01-01

    Although it is not yet visible, much progress has been made on the Astronomy Genealogy Project (AstroGen) since it was accepted as a project of the Historical Astronomy Division (HAD) three years ago. AstroGen will list the world's astronomers with information about their highest degrees and advisors. (In academic genealogy, your thesis advisor is your parent.) A small group (the AstroGen Team) has compiled a database of approximately 12,000 individuals who have earned doctorates with theses (dissertations) on topics in astronomy, astrophysics, cosmology, or planetary science. These include nearly all those submitted in Australia, Canada, the Netherlands, and New Zealand, and most of those in the United States (all through 2014 for most universities and all through 1990 for all). We are compiling more information than is maintained by the Mathematics Genealogy Project (MGP). In addition to name, degree, university, year of degree, and thesis advisor(s), all provided by MGP as well, we are including years of birth and death when available, mentors in addition to advisors, and links to the thesis when it is online and to the person's web page or obituary, when we can find it. We are still struggling with some questions, such as the boundaries of inclusion and whether or not to include subfields of astronomy. We believe that AstroGen will be a valuable resource for historians of science as well as a source of entertainment for those who like to look up their academic family trees. A dedicated researcher following links from AstroGen will be able to learn quite a lot about the careers of astronomy graduates of a particular university, country, or era. We are still seeking volunteers to enter the graduates of one or more universities.

  17. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing

    Directory of Open Access Journals (Sweden)

    Qifeng Lu

    2015-07-01

    Full Text Available A powerful characterization technique, pulse capacitance-voltage (CV technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111 substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD. The results indicated that: (1 more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2 the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.

  18. Handling Qualities Flight Testing of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    Science.gov (United States)

    Glaser, Scott T.; Strovers, Brian K.

    2011-01-01

    Airborne infrared astronomy has a long successful history, albeit relatively unknown outside of the astronomy community. A major problem with ground based infrared astronomy is the absorption and scatter of infrared energy by water in the atmosphere. Observing the universe from above 40,000 ft puts the observation platform above 99% of the water vapor in the atmosphere, thereby addressing this problem at a fraction of the cost of space based systems. The Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft is the most ambitious foray into the field of airborne infrared astronomy in history. Using a 747SP (The Boeing Company, Chicago, Illinois) aircraft modified with a 2.5m telescope located in the aft section of the fuselage, the SOFIA endeavors to provide views of the universe never before possible and at a fraction of the cost of space based systems. The modification to the airplane includes moveable doors and aperture that expose the telescope assembly. The telescope assembly is aimed and stabilized using a multitude of on board systems. This modification has the potential to cause aerodynamic anomalies that could induce undesired forces either at the cavity itself or indirectly due to interference with the empennage, both of which could cause handling qualities issues. As a result, an extensive analysis and flight test program was conducted from December 2009 through March 2011. Several methods, including a Lower Order Equivalent Systems analysis and pilot assessment, were used to ascertain the effects of the modification. The SOFIA modification was found to cause no adverse handling qualities effects and the aircraft was cleared for operational use. This paper discusses the history and modification to the aircraft, development of test procedures and analysis, results of testing and analysis, lessons learned for future projects and justification for operational certification.

  19. Education in astronomy and solar-terrestrial relations in science research environment

    Science.gov (United States)

    Stoeva, Penka; Stoev, Alexey

    In recent years, more and more attention is paid to educational programmes, which are closely connected with the process of scientific research. Such programmes are developed in collab-oration and included in the schools, universities and scientific institutes in Bulgaria. They are also used in the organization of public events aimed to demonstrate beauty, relevance and significance of Space and Earth science to the whole world. During the last four years, So-lar-Terrestrial Influences Institute of the Bulgarian Academy of Sciences, and the Yuri Gagarin Public Astronomical Observatory and Planetarium, Stara Zagora succeeded to build an ex-cellent partnership, working on the International Heliophysical year and International Year of Astronomy -global efforts initiated by the UNESCO and the International Astronomical Union (IAU) to help the citizens of the world rediscover their place in the Universe. They organized and tutored all the Astronomical Observatories and Planetaria, and teachers from all around Bulgaria to participate in the world initiatives Solar Week, Sun-Earth Day,Yuri's Night, World Astronomy day and World Space week, and use them in the process of education and public outreach. After the official closing of the International Heliophysical year, the IHY follow-on activities in Bulgaria continued and were devoted to the International Year of Astronomy 2009. A lot of lectures, public talks and exhibitions have been organized. Stara Zagora became a host of IHY Space Weather Monitor -SID (Sudden Ionospheric Disturbances), numerous of educational materials have been adapted and translated in Bulgarian. Cycle of lectures "Epock of Great astronomical discoveries", devoted to the International Year of Astronomy was given in April 2009 in the Stara Zagora Art Gallery. Participation in the cornerstone projects of the International Year of Astronomy 2009 was organized: "100 hours of Astronomy" -ob-servations with small telescopes in the period of 5 -9 April

  20. Bringing Astronomy Directly to People Who Do Not Come to Star Parties, Science Museums, or Science Festivals

    Science.gov (United States)

    Lubowich, Donald A.

    2013-01-01

    My successful programs have included telescope observations, hands-on activities, and edible astronomy demonstrations for: outdoor concerts or music festivals; the National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald House of Long Island (New Hyde Park, NY), the Winthrop University Hospital Children’s Medical Center (Mineola, NY); the Fresh Air Fund summer camps; a Halloween star party with costumed kids looking through telescopes; a Super Bowl Star Party; the World Science Festival (NYC); the Princeton University Science and Engineering Expo; the USA Science and Engineering Festival; and the NYC Columbus Day Parade. These outreach activities have reached thousands of people including many young girls. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage learning after these events. In 2010 I created Astronomy Night on the National Mall (co-sponsored the White House Office of Science and Technology Policy) with the participation of astronomy clubs, Chandra X-Ray Center, STScI, NASA, NOAO, NSF and the National Air and Space Museum. Since 2009 my NASA-funded Music and Astronomy Under the Stars (MAUS) program has brought astronomy to 50,000 music lovers who attended the Central Park Jazz, Newport Folk, Tanglewood, or Ravinia music festivals or classical, folk, rock, pop, opera, or county-western concerts in local parks assisted by astronomy clubs. MAUS is an evening, nighttime, and cloudy weather traveling astronomy program combining solar, optical, and radio telescope observations; a live image projection system; large outdoor posters and banners; videos; and hands-on activities before and after the concerts or at intermission. Yo-Yo-Ma and the Chicago Symphony or Boston Symphony Orchestras, the McCoy Tyner Quartet with Ravi Coltrane, Esperanza Spalding, the Stanley Clarke Band, Phish, Blood Sweat and Tears, Deep Purple, Patti Smith

  1. Astronomy Education for Physics Students

    Indian Academy of Sciences (India)

    J. H. Fan; J. S. Zhang; J. Y. Zhang; Y. Liu; H. G. Wang

    2011-03-01

    Astronomy is a very interesting subject for undergraduate students studying physics. In this paper, we report astronomy education for undergraduate students in the Physics Department of Guangzhou University, and how we are teaching astronomy to the students. Astrophysics has been rapidly developing since 1994, when the center for astrophysics was founded. Now, astrophysics has become a key subject in Guangdong Province, and the Astronomy Science and Technology Research Laboratory one of the key laboratories of the Department of Education of the Guangdong Province. Many undergraduate students, working under the tutorship of faculty members completed their thesis at the Center for Astrophysics in Guangzhou.

  2. Photonic Astronomy and Quantum Optics

    CERN Document Server

    Dravins, Dainis

    2015-01-01

    Quantum optics potentially offers an information channel from the Universe beyond the established ones of imaging and spectroscopy. All existing cameras and all spectrometers measure aspects of the first-order spatial and/or temporal coherence of light. However, light has additional degrees of freedom, manifest in the statistics of photon arrival times, or in the amount of photon orbital angular momentum. Such quantum-optical measures may carry information on how the light was created at the source, and whether it reached the observer directly or via some intermediate process. Astronomical quantum optics may help to clarify emission processes in natural laser sources and in the environments of compact objects, while high-speed photon-counting with digital signal handling enables multi-element and long-baseline versions of the intensity interferometer. Time resolutions of nanoseconds are required, as are large photon fluxes, making photonic astronomy very timely in an era of large telescopes.

  3. The ultraviolet astronomy mission: Columbus

    Science.gov (United States)

    Wilson, R.

    1984-01-01

    An ultraviolet astronomy mission (Columbus) is described. It exploits the spectral region between 900 and 1200A, which is extremely rich in containing the Lyman lines of hydrogen and deuterium and the Lyman band of their molecules, together with the resonance lines of many important ions. High resolving power and high sensitivity provide a unique capability for studying the brightest members of neighboring galaxies, the HeI and HeII absorption systems in quasars out to a red shift of 2, and the halos of intervening galaxies. Complementary focal plane instruments are planned in order to allow observations to longer (2000A) and shorter (100A) wavelengths. This wide coverage embraces the resonance lines of all the cosmically abundant elements and a wide range of temperature zones up to 100 million K.

  4. VLA observations of NGC 247: identification of compact radio sources including three candidate UD H II regions

    International Nuclear Information System (INIS)

    A high resolution, Very Large Array continuum survey of NGC 247 was undertaken in order to identify compact thermal and nonthermal radio sources, such as supernova remnants (SNRs) and H II regions. NGC 247 was observed at two frequencies, 20 cm and 6 cm, in order to calculate the spectral index, and the survey resulted in the identification of 19 compact radio sources. Using the spectral index to discriminate between source types, we identify two candidate SNRs and one H II region. Three of the radio sources have inverted spectra, indicative of ultradense H II (UD H II) regions, the short-lived, dense cores where massive stars form. Four of the sources are thermal in origin, but were not detected at 20 cm, so they could be H II regions or UD H II regions. The rest of the sources are nonthermal or undetermined. We compare the radio images with Hα, V band, and infrared archive images to look for correspondences that confirm that the sources reside in NGC 247 and are not background sources. We find that over two-thirds of the radio sources have counterparts in the Hα or V band images and are associated with NGC 247. The most luminous radio source in NGC 247 is a candidate SNR, and if confirmed as an SNR, it would be a very luminous extragalactic SNR. The H II regions and UD H II regions are calculated to have ionizing luminosities of between 4-10 × 1050 s–1; each individual source would require between 41-100 O7.5V stars to produce the corresponding ionizing luminosity. The ionizing luminosity of the UD H II regions indicates that these UD H II regions represent the lower luminosity population of the known UD H II regions and thus, they may represent a more typical population of UD H II regions that can be found and studied in the nearby galaxies as opposed to more extreme examples that have been found previously.

  5. A Global Prospective of the Indian Optical and Near-Infrared Observational Facilities in the Field of Astronomy and Astrophysics: a review

    CERN Document Server

    Sagar, Ram

    2016-01-01

    A review of modernization and growth of ground based optical and near-infrared astrophysical observational facilities in the globe attributed to the recent technological developments in optomechanical, electronics and computer science areas is presented. Hubble Space Telescope (HST) and speckle and adaptive ground based imaging have obtained images better than 0.1 arc sec angular resolution bringing the celestial objects closer to us at least by a factor of 10 during the last two decades. From the light gathering point of view, building of large size (more than 5 meter aperture) ground based optical and nearinfrared telescopes based on latest technology have become economical in recent years. Consequently, in the world, a few 8-10 meter size ground-based optical and near-infrared telescopes are being used for observations of the celestial objects, three 25-40 meter size are under design stage and making of a ~ 100 meter size telescope is under planning stage. In India, the largest sized optical and near-infra...

  6. Astronomie spatiale infrarouge, aujourd’hui et demain = Infrared space astronomy, today and tomorrow

    CERN Document Server

    Lequeux, J; David, F

    2000-01-01

    This book brings together the lectures given at the Les Houches summer school "Infrared space astronomy, today and tomorrow". It gives a wide overview of infrared astronomy, a wavelength domain crucial for studies of the solar system, stars at the beginning and end of their lives, interstellar matter and galaxies at all distances. Recent developments in observational techniques have been tremendous. The first contributions give an introduction to the basic physical processes and methods of detection and data processing. They are followed by a series of lectures dealing with the wide variety of astronomical objects that can be seen in the infrared.

  7. Submm/FIR astronomy in Antarctica: Potential for a large telescope facility

    OpenAIRE

    Minier, Vincent; Minier, V.; Olmi, L.; Lagage, P. -O.; Spinoglio, L; Durand, G.A.; Daddi, E.; Galilei, D.; Gallee, H; Kramer, C.; Marrone, D.; Pantin, E.; Sabbatini, L.; Schneider, N; Tothill, N.

    2006-01-01

    Preliminary site testing datasets suggest that Dome C in Antarctica is one of the best sites on Earth for astronomical observations in the 200 to 500 micron regime, i.e. for far-infrared (FIR) and submillimetre (submm) astronomy. We present an overview of potential science cases that could be addressed with a large telescope facility at Dome C. This paper also includes a presentation of the current knowledge about the site characterics in terms of atmospheric transmission, stability, sky nois...

  8. Evaluation of a 256 x 256 Si:As IBC detector array for astronomy

    Science.gov (United States)

    Mckelvey, M. E.; Mcmurray, Robert E., Jr.; Mccreight, C. R.; Forrest, W. J.; Garnett, J. D.; Lum, N.; Asbrock, J.; White, R.; Kelchner, R.; Lum, L.

    1994-01-01

    256 x 256-element IBC Si:As arrays have been evaluated for applications in IR astronomy from space-borne platforms. Basic figures of merit were measured at IR flux levels simulating those expected in space-based astronomical observations. Results include dark current less than 20 e(-)/s, G-eta as high as 3.8, eta/beta of 20%, and read noise below 100 rms(e(-)).

  9. Astronomy 101 in Washington State High Schools

    Science.gov (United States)

    Lutz, Julie H.; Garner, S.; Stetter, T.; McKeever, J.; Santo Pietro, V.

    2011-01-01

    The University of Washington in the High School (UWHS) program enables high schools to offer the 5 quarter credits Astronomy 101 (Astr 101) course for college credits. The credits are transferable to most colleges and universities. The course provides an alternative to advance placement courses and programs such as Washington's Running Start whereby high school students take courses at community colleges. Astr 101 focuses on stars, galaxies and the universe, as well as background topics such as gravitation, electromagnetic radiation and telescopes. The course satisfies the UW "natural world” and "quantitative/symbolic reasoning” distribution requirements. Students must pay a fee to enroll, but the credits cost less than half what they would cost for the course if taken on one of the UW campuses. The course can be offered as either one semester or full-year at the high school. Teachers who offer Astr 101 must be approved in advance by the UW Astronomy Department, and their syllabi and course materials approved also. Teachers receive orientation, professional development opportunities, classroom visits and support (special web site, answering questions, making arrangements for campus visits, planetarium visits) from astronomy department course coordinator. The UWHS Astr 101 program has produced positive outcomes for the astronomy department, the participating teachers and the students who complete the course. In this poster we will discuss our 5 years of experience with offering Astr 101, including benefits to the students, teachers, high schools, university and department, student outcomes, course assessments and resources for offering the course.

  10. Astronomy and Art Merged: Targeting Other Audiences

    Science.gov (United States)

    Friedman, A. F.

    1999-05-01

    One of the fundamental concerns of museum exhibition is to reach as broad an audience as possible. One way to open up the history of astronomy to a wider audience is to create an exhibit with an interdisciplinary theme and to select a venue outside of a science institution. Here I discuss ``Awestruck by the Majesty of the Heavens: Artistic Perspectives from the Adler Planetarium & Astronomy Museum History of Astronomy Collection," which took place at the Chicago Cultural Center from January to March of 1997. ``Awestruck" featured a selection of celestial charts, portrait prints of famous astronomers, plates from books on astronomical topics, and other works on paper. It focused on the connections between art and science during the period 1500-1800. Scientific content and place within the history of astronomy were discussed in addition to the artistic merit of the objects. The Chicago Cultural Center is an institution that is home to a wide variety of cultural programming including art, music, film, theater, and dance. In addition to providing a different audience for this material than that which typically visits the Adler, ``Awestruck" also represented an expansion of material for the Cultural Center's audience to view, as their exhibition spaces primarily show only 20th-century art. Programming such as gallery talks and the production of an art-museum-type exhibition catalog will also be discussed.

  11. Astrophysical Model Selection in Gravitational Wave Astronomy

    Science.gov (United States)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  12. Teaching Astronomy from Elementary School to University

    Science.gov (United States)

    Amorim, V.; Pereira, M. G.; Liberato, M. L. R.; Caramelo, L.; Amraoui, M.; Alencoão, A. M.; Reis, A.

    2009-04-01

    Earth sciences are included in both elementary and secondary education school curricula in Portugal because it increases students' skills concerning living in planet Earth. Astronomy concepts and laws are learned to provide a global understanding of the constitution and characterization of the universe, the solar system and the position of Earth in these systems. The Earth in Space theme comprises: the universe (scale measurements and characterization); the solar system (origin, constitution, orientation, dimension and characterization); the Earth in the solar system (movements and forces); and the Earth (shape and constitution). Interaction processes between the Sun, the Earth and the Moon, (e.g. earth position, explanation of day and night, reason for the seasons, phases of the moon) are also studied. It is aimed that the students learn to monitor and to register the observations. In this sense, besides the use of planetarium and field observations using telescopes we also propose the use of internet and simulation software. Our experience reveals that software dynamics studies and online exploitation techniques improve student outcomes since they provide the opportunity for students to develop their own mental models. All these resources collectively seem to provide an appropriate creative environment for students. For these reasons, we are working with elementary and secondary school teachers. We firmly believe that it is more likely to result in a gradual progress in their practices, in the curricula and in long-term improvements in students' outcomes.

  13. Multiwavelength Astronomy Modules for High School Students

    Science.gov (United States)

    Thomas, Christie; Brazas, J.; Lane, S.; York, D. G.

    2014-01-01

    The University of Chicago Multiwavelength Astronomy modules are web-based lessons covering the history, science, tools, and impact of astronomy across the wavebands, from gamma ray to infrared. Each waveband includes four lessons addressing one aspect of its development. The lessons are narrated by a historical docent or practicing scientist who contributed to a scientific discovery or instrument design significant to astronomical progress. The process of building each lesson began with an interview conducted with the scientist, or the consultation of a memoir or oral history transcript for historical docents. The source was then excerpted to develop a lesson and supplemented by archival material from the University of Chicago Library and other archives; NASA media; and participant contributed photographs, light curves, and spectra. Practicing educators also participated in the lesson development and evaluation. In July 2013, the University of Chicago sponsored 9 teachers and 15 students to participate in a STEM education program designed to engage participants as co-learners as they used the Multiwavelength Astronomy lessons in conjunction with talks given by the participating scientists. Teachers also practiced implementation of the resources with students and designed authentic research activities that make use of NASA mission data, which were undertaken as mini-research projects by student teams during the course of the program. This poster will introduce the Multiwavelength Astronomy web modules; highlight educator experiences in their use with high school audiences; and analyze the module development process, framing the benefits to and contributions of each of the stakeholders including practicing astronomers in research and space centers, high school science educators, high school students, University libraries and archives, and the NASA Science Mission Directorate. The development of these resources, and the summer professional development workshops were

  14. Dyslexia and Astronomy

    Science.gov (United States)

    Schneps, Matthew H.; Greenhill, L. J.; Rose, L. T.

    2007-12-01

    Dyslexia is a hereditary neurological disability that impairs reading. It is believed that anywhere from 5% to 20% of all people in the US may have dyslexia to a greater or lesser degree. Though dyslexia is common, it is a "silent disability" in the sense that it is not easy to tell which individuals suffer from dyslexia and which do not. There is a substantial body of evidence to suggest that people with dyslexia tend to do well in science. For example, Baruj Benacerraf, a Nobel laureate in medicine, is among those whose impairments have been documented and studied. Given that dyslexia was not diagnosed in schools prior to the late 1970's, many established science researchers may have dyslexia and be unaware of their impairment. Therefore, it would not be surprising to find that substantial numbers of scientists working in the fields of astronomy and astrophysics have dyslexia, and yet be unaware of the effects this disability has had on their research. A recently proposed theory by the authors suggests that there may be specific neurological reasons why those with dyslexia may be predisposed to science, and predicts that dyslexia may be associated with enhanced abilities for certain types of visual processing, with special implications for image processing. Our study, funded by the NSF, investigates this hypothesis in the context of astronomy and astrophysics. We expect this work will uncover and document challenges faced by scientists with dyslexia, but perhaps more importantly, lead to an understanding of the strengths these scientists bring to research. The program will serve as a clearing-house of information for scientists and students with dyslexia, and begin to provide mentoring for young people with dyslexia interested in astronomy. Scientists who have reason to believe they may have dyslexia are encouraged to contact the authors.

  15. Academic Training: Astronomy from Space

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 14, 15, 16, 18 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Astronomy from Space by T. Courvoisier / Observatoire de Genève In the very wide field of High Energy astrophysics we will select a number of topics that range from the source of radiative energy in the deep potential well around Schwarzschild and Kerr black holes and the basics of accretion disks around compact objects to the description and (where possible) the understanding of binary systems including a compact object (neutron star or black hole), of Active Galactic Nuclei and of gamma ray bursts. The approach that is chosen aims at giving an understanding of the most important phenomenologies encountered in high energy astrophysics rather than a detailed knowledge of one specific topic. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  16. Future Directions in Astronomy Visualisation

    CERN Document Server

    Fluke, C J; O'Donovan, D

    2006-01-01

    Despite the large budgets spent annually on astronomical research equipment such as telescopes, instruments and supercomputers, the general trend is to analyse and view the resulting datasets using small, two-dimensional displays. We report here on alternative advanced image displays, with an emphasis on displays that we have constructed, including stereoscopic projection, multiple projector tiled displays and a digital dome. These displays can provide astronomers with new ways of exploring the terabyte and petabyte datasets that are now regularly being produced from all-sky surveys, high-resolution computer simulations, and Virtual Observatory projects. We also present a summary of the Advanced Image Displays for Astronomy (AIDA) survey which we conducted from March-May 2005, in order to raise some issues pertitent to the current and future level of use of advanced image displays.

  17. Astrology as Cultural Astronomy

    Science.gov (United States)

    Campion, Nicholas

    The practice of astrology can be traced in most if not all human societies, in most time periods. Astrology has prehistoric origins and flourishes in the modern world, where it may be understood as a form of ethnoastronomy - astronomy practiced by the people. The Western tradition, which originated in Mesopotamia and was developed in the Greek world, has been most studied by academics. However, India is also home to a tradition which has survived in a continuous lineage for 2,000 years. Complex systems of astrology also developed in China and Mesoamerica, while all other human societies appear to seek social and religious meaning in the stars.

  18. Panoramic Radio Astronomy

    OpenAIRE

    Heald, G.; P. Serra

    2009-01-01

    In this contribution we give a brief overview of the Panoramic Radio Astronomy (PRA) conference held on 2-5 June 2009 in Groningen, the Netherlands. The conference was motivated by the on-going development of a large number of new radio telescopes and instruments which, within a few years, will bring a major improvement over current facilities. Interferometers such as the EVLA, ASKAP, ATA, MeerKAT, and APERTIF will provide a combination of larger field of view and increased simultaneous bandw...

  19. Calibration of the cameras of the H.E.S.S. γ-ray astronomy experiment and observations of the Galactic Centre above 100 GeV

    International Nuclear Information System (INIS)

    The H.E.S.S. experiment (High Energy Stereoscopic System) consists of four imaging atmospheric Cherenkov telescopes to study the southern astrophysical sources above 100 GeV. This thesis presents the detector as well as the analysis chain. The calibration methods are described in details and the systematic errors on the image amplitude are derived. Then, an analysis based on a semi-analytical model of the electromagnetic shower development in the atmosphere is presented. Tools to reconstruct the energy spectrum and the morphology of the very high energy γ-ray sources are presented and applied to the Crab Nebula. Systematic errors associated to the spectrum analysis are estimated. All these techniques were applied to study the Galactic Centre emission above 100 GeV. The nature of the source detected in 2003 and 2004 observations is still unknown and its spectrum, variability and morphology are studied. Various candidates are proposed, among them the supermassive black hole Sgr A* located at the dynamical centre of the Milky Way, the supernova remnant Sgr A Est or interactions of accelerated particles with the dense medium of this region. In this thesis, the signal was interpreted in terms of dark matter annihilation (neutralinos or Kaluza-Klein bosons) in a dense halo located at the Galactic Centre. This analysis showed that, in the framework of these models, dark matter annihilation alone can not explain the H.E.S.S. signal. The main component would thus come from astrophysical sources. (author)

  20. 100 Hours of Astronomy Cornerstone Project of IYA2009

    Science.gov (United States)

    Simmons, M.

    2008-11-01

    The 100 Hours of Astronomy cornerstone project (100HA) is a round-the-clock, worldwide event with 100 continuous hours of a wide range of public outreach activities taking place from 2--5 April. A high-profile opening event will include presentation of Galileo's original telescope. Webcasts of international science center discussions and 24 hours of webcasts from professional research observatories will follow. A 24-hour global star party will occur on the last day. The Moon's phase will range from first quarter to gibbous, good phases for early evening observing, and Saturn will also be well placed for early evening observing events. Amateur astronomers will be encouraged to present educational events in schools as well as non-traditional venues. Online resources will include advertising, educational and how-to materials.

  1. AstroSat - a multi-wavelength astronomy satellite

    CERN Document Server

    Rao, A R; Bhattacharya, D

    2016-01-01

    AstroSat is a multi-wavelength astronomy satellite, launched on 2015 September 28. It carries a suite of scientific instruments for multi-wavelength observations of astronomical sources. It is a major Indian effort in space astronomy and the context of AstroSat is examined in a historical perspective. The Performance Verification phase of AstroSat has been completed and all instruments are working flawlessly and as planned. Some brief highlights of the scientific results are also given here.

  2. OLFAR - Orbiting low frequency antennas for radio astronomy

    OpenAIRE

    Bentum, M.J.

    2013-01-01

    One of the last unexplored frequency ranges in radio astronomy is the frequency band below 30 MHz. New interesting astronomical science drivers for low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. However, astronomical observations with Earth-bound radio telescopes at very low frequencies are hampered by the ionospheric plasma, which scatters impinging celestial radio waves.

  3. Strategies for Creating Cornerstone Education Projects for the International Year of Astronomy 2009

    Science.gov (United States)

    Pompea, S. M.; Isbell, D.

    2008-12-01

    The General Assembly of the United Nations has designated 2009 as the International Year of Astronomy (IYA2009), a year-long global education program to commemorates the 400th anniversary of Galileo's first astronomical observations through a telescope. IYA2009 has an importance well beyond what can be accomplished in just one year. The main goal is to use this year to build sustainable, long-term education programs for measurable changes in science literacy in school children and in the public at large. The National Optical Astronomy Observatory (NOAO) with headquarters in Tucson and the American Astronomical Society (AAS) with headquarters in Washington D.C. are leading the coordination of IYA2009 activities in the United States under a grant from the National Science Foundation. NASA is also playing a large role. NOAO and AAS are working closely with United Nations Educational, Scientific and Cultural Organization (UNESCO), the International Astronomical Union (IAU), Astronomical Society of the Pacific (ASP), American Association of Variable Star Observers (AAVSO), The International Dark-Sky Association (IDA), and other trusted astronomy partners worldwide. Through collaboration and coordination, the participating partners will convey the excitement of personal discovery, the merits of the scientific process, and the pleasure of sharing new and fundamental knowledge about the Universe. This talk will describe the goals of the major cornerstone projects led by the United States including the Galileoscope education kit, dark skies education, image exhibition, and Galileo teacher training project. This work was supported by a grant from the National Science Foundation Astronomy Division. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  4. Development of Student Exercises with Instructor Support at the Astronomy Workshop Solar System Collisions Web Tool

    Science.gov (United States)

    Deming, G. L.; Hamilton, D. P.

    2005-12-01

    During the spring 2005 semester, seven students taking ASTR101 General Astronomy for non-science majors at the University of Maryland were interviewed while completing an assignment using the Astronomy Workshop Solar System Collisions web tool (http://janus.umd.edu/astro/impact/). The Astronomy Workshop Solar System Collisions web tool can be used to investigate how different variables affect collisions in a fun, but informative manner. Based on the 2005 spring interviews, three web-based activities were developed as appropriate for homework or as enrichment to coursework. The first activity explores how the impactor's mass affects energy released, crater diameter, frequency of similar impacts, and magnitude of the earthquake generated by the impact. The second activity investigates the energy released and damage done when the impactor's density is changed. Collisions by icy bodies are compared to those of rocky and metallic materials. The third activity compares collisions on different planets. In addition to masses and densities, velocities vary in these collisions. The activities are written so that introductory astronomy students will interpret the differences observed in terms of kinetic energy. During the fall 2005 semester, ASTR101 students at the University of Maryland were interviewed and observed as they completed the three activities described above using the Solar System Collisions website. The twelve students in this study were selected based on pretest scores on the Astronomy Diagnostic Test. An effort was made to include students of diverse backgrounds and mathematical experiences. Based on these interviews, final revisions have been made. Student exercises on the website and the directions on how instructors can use these materials in their courses are ready for field-testing at other institutions. Faculty interested in participating in the field-test for this project during spring 2006 are encouraged to contact the authors. This research is funded

  5. Making Astronomy Accessible

    Science.gov (United States)

    Grice, Noreen A.

    2011-05-01

    A new semester begins, and your students enter the classroom for the first time. You notice a student sitting in a wheelchair or walking with assistance from a cane. Maybe you see a student with a guide dog or carrying a Braille computer. Another student gestures "hello” but then continues hand motions, and you realize the person is actually signing. You wonder why another student is using an electronic device to speak. Think this can't happen in your class? According to the U.S. Census, one out of every five Americans has a disability. And some disabilities, such as autism, dyslexia and arthritis, are considered "invisible” disabilities. This means you have a high probability that one of your students will have a disability. As an astronomy instructor, you have the opportunity to reach a wide variety of learners by using creative teaching strategies. I will share some suggestions on how to make astronomy and your part of the universe more accessible for everyone.

  6. Active Astronomy Roadshow Haiti

    Science.gov (United States)

    Laycock, Silas; Oram, Kathleen; Alabre, Dayana; Douyon, Ralph; UMass Lowell Haiti Development Studies Center

    2016-01-01

    College-age Haitian students working with advisors and volunteers from UMass Lowell in 2015 developed and tested an activity-based K-8 curriculum in astronomy, space, and earth science. Our partner school is located in Les Cayes, Haiti a city where only 65% of children attend school, and only half of those will complete 6th grade. Astronomy provides an accessible and non-intimidating entry into science, and activity-based learning contrasts with the predominant traditional teaching techniques in use in Haiti, to reach and inspire a different cohort of learners. Teachers are predominantly women in Haiti, so part of the effort involves connecting them with scientists, engineers and teacher peers in the US. As a developing nation, it is vital for Haitian (as for all) children to grow up viewing women as leaders in science. Meanwhile in the US, few are aware of the reality of getting an education in a 3rd world nation (i.e. most of the world), so we also joined with teachers in Massachusetts to give US school children a peek at what daily life is like for their peers living in our vibrant but impoverished neighbor. Our Haitian partners are committed to helping their sister-schools with curriculum and educator workshops, so that the overall quality of education can rise, and not be limited to the very few schools with access to resources. We will describe the activites, motivation, and and the lessons learned from our first year of the project.

  7. The Astronomy Workshop

    Science.gov (United States)

    Hamilton, Douglas P.

    2012-05-01

    {\\bf The Astronomy Workshop} (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe a few of the available tools. {\\bf Solar Systems Visualizer}: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. {\\bf Solar System Calculators}: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed. {\\bf Stellar Evolution}: The "Life of the Sun" tool animates the history of the Sun as a movie, showing students how the size and color of our star has evolved and will evolve over billions of years. In "Star Race," the user selects two stars of different masses and watches their evolution in a split-screeen format that emphasizes the great differences in stellar lifetimes and fates.

  8. Women in Italian astronomy

    CERN Document Server

    Matteucci, Francesca

    2014-01-01

    This document gives some quantitative facts about the role of women in Italian astronomy. More than 26% of Italian IAU members are women: this is the largest fraction among the world leading countries in astronomy. Most of this high fraction is due to their presence in INAF, where women make up 32% of the research staff (289 out of 908) and 40% of the technical/administrative staff (173 out of 433); the percentage is slightly lower among permanent research staff (180 out of 599, about 30%). The presence of women is lower in the Universities (27 out of 161, about 17%, among staff). In spite of these (mildly) positive facts, we notice that similarly to other countries (e.g. USA and Germany) career prospects for Italian astronomers are clearly worse for women than for men. Within INAF, the fraction of women is about 35-40% among non-permanent position, 36% for Investigators, 17% for Associato/Primo Ricercatore, and only 13% among Ordinario/Dirigente di Ricerca. The situation is even worse at University (only 6% ...

  9. Astronomy Courses which Emphasize Communication Skills

    Science.gov (United States)

    Dinerstein, H. L.

    1998-12-01

    The ability to communicate effectively, both in oral and written form, is crucial for success in almost any career path. Furthermore, being able to effectively communicate information requires a high level of conceptual mastery of the material. For these reasons, I have incorporated practice in communication into courses at a variety of levels, ranging from non-science-major undergraduate courses to graduate courses. I briefly describe the content of these courses, particularly the communication-related component. The first, Ast 309N, ``Astronomy Bizarre: Stars and Stellar Evolution," is an elective which follows one semester of general introductory astronomy for non-majors. Instead of homework problems, the students complete a sequence of writing assignments of graduated complexity, beginning with simple tasks such as writing abstracts and critiques of assigned readings, and moving on to writing term papers which require literature research and a short science fiction story incorporating accurate depictions of relativistic effects. In Ast 175/275, a ``Journal Club" course for upper-division astronomy majors, students read articles in the professional literature and give short oral presentations to the rest of the class. To build up their understanding of a topic, we work through the ``paper trail" of key papers on topics with exciting recent developments, such as extrasolar planets, gravitational lenses, or gamma-ray bursts. Finally, in a seminar course for first-semester astronomy graduate students (Ast 185C) that broadly addresses professional development issues, I include a practice AAS oral session, with the students giving 5-minute presentations on a journal paper of their choice. This seminar course also examines career paths and employment trends, the peer review process for papers and proposals, professional norms and ethics, and other topics. Syllabi for these and other courses I teach regularly can be found from my home page (http://www.as.utexas.edu/astronomy/people/dinerstein).

  10. Gamma-ray Astronomy: Implications for Fundamental Physics

    CERN Document Server

    Rico, Javier

    2011-01-01

    Gamma-ray Astronomy studies cosmic accelerators through their electromagnetic radiation in the energy range between ~100 MeV and ~100 TeV. The present most sensitive observations in this energy band are performed, from space, by the Large Area Telescope onboard the Fermi satellite and, from Earth, by the Imaging Air Cherenkov Telescopes MAGIC, H.E.S.S. and VERITAS. These instruments have revolutionized the field of Gamma-ray Astronomy, discovering different populations of gamma-ray emitters and studying in detail the non-thermal astrophysical processes producing this high-energy radiation. The scientific objectives of these observatories include also questions of fundamental physics. With gamma-ray instruments we study the origin of Galactic cosmic rays, testing the hypothesis or whether they are mainly produced in supernova explosions. Also, we obtain the most sensitive measurement of the cosmic electron-positron spectrum between 20 GeV and 5 TeV. By observing the gamma-ray emission from sources at cosmologi...

  11. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Anton, G; Arguelles, C; Arlen, T C; Auffenberg, J; Axani, S; Bai, X; Bartos, I; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; andaz-Vélez, J C Dí; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eisch, J; Euler, S; Evans, J J; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Haugen, J; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jones, B J P; Jurkovic, M; Kalekin, O; Kappes, A; Karg, T; Karle, A; Katori, T; Katz, U F; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krauss, C B; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; LoSecco, J; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Marka, S; Marka, Z; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Moore, R W; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Pinfold, J L; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Sandstrom, P; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shaevitz, M H; Shanidze, R; Smith, M W E; Soldin, D; Söldner-Rembold, S; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; andl, A Stöß; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Taketa, A; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Teš, G; andić,; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Wren, S; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2014-01-01

    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2, including the aim of instrumenting a $10\\,\\mathrm{km}^3$ volume of clear glacial ice at the South Pole to deliver substantial increases in the astrophysical neutrino sample for all flavors. A detector of this size would have a rich physics program with the goal to resolve the sources of these astrophysical neutrinos, discover GZK neutrinos, and be a leading observatory in future multi-messenger astronomy programs.

  12. DUMAND Summer Workshop, University of California, La Jolla, Calif., July 24-September 2, 1978, Proceedings. Volume 2 - UHE interactions, neutrino astronomy

    Science.gov (United States)

    Roberts, A.

    1979-01-01

    The volume covers categories on inelastic neutrino scattering and the W-boson, and other ultra-high-energy processes, on pulsars, quasars and galactic nuclei, as well as other point sources and constants from gamma ray astronomy. Individual subjects include weak intermediate vector bosons and DUMAND, the Monte Carlo simulation of inelastic neutrino scattering in DUMAND, and Higgs boson production by very high-energy neutrinos. The observability of the neutrino flux from the inner region of the galactic disk, the diffuse fluxes of high-energy neutrinos, as well as the significance of gamma ray observations for neutrino astronomy are also among the topics covered.

  13. iSTAR: The International STudy on Astronomy Reasoning

    Science.gov (United States)

    Tatge, Coty B.; Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    This paper reports the first steps taken in the International STudy on Astronomy Reasoning (iSTAR). The iSTAR Project is an attempt to look beyond traditional wisdom and practices in astronomy education, to discover the ways in which cognitive abilities and human culture interact to impact individuals’ understanding of and relationship to astronomy content knowledge. In contrast to many international studies that seek to rank nations by student performance on standardized tests, the iSTAR Project seeks to find ways that culture may unexpectedly enhance performance in astronomy. Using the Test of Astronomy Standards (TOAST) as a reasonable, initial proxy for the content knowledge a well educated person might know in astronomy, the iSTAR team then defined culture as a construct with five components: practices, traditional knowledge, historical and genealogical relationships, place-based knowledge, and language. Given the complexity of this construct, Stage 1 of the project focuses on the cultural component of language, and assumed that prior to the collection of data from students, the process of translating the TOAST could provide valuable expert-based information on the impact of language on astronomy knowledge. As such, the work began with a study of the translation process. For each of the languages used in the testing phase of the iSTAR protocol, a succession of translators and analysts were engaged, including two educated, non-astronomer native speakers, a native speaking astronomer, and a native speaking linguistics expert. Multiple translations were analyzed in order to make relevant meaning of differences in the translations, and provide commentary on the ways in which metaphor, idiom, cultural history are embedded in the language, providing potential advantages in the learning of astronomy. The first test languages were German, Hawaiian, and American Sign Language, and initial findings suggest that each of these languages provide specific advantages

  14. 2011 Astronomy Day at McDonald Observatory

    Science.gov (United States)

    Preston, Sandra; Hemeway, M.; Wetzel, M.

    2012-01-01

    Our philosophy is that everyday is Astronomy Day because the McDonald Observatory's Frank N. Bash Visitors Center is open 362 days a year. So, how did we create a special celebration for the "Astronomy Day” declared by the Astronomical League? During September 26-29 we conducted 20 videoconferences and served 12,559 students with "Astronomy Day” programming. Connect2Texas provides bridging for a network of Texas-based museums and cultural, historical, and scientific organizations that offer educational content to schools throughout the state via videoconferencing. Connect2Texas connected McDonald Observatory to 334 schools; most of these schools were in Texas, but schools in a dozen other states also participated. While most schools had a "view-only" connection, at least 20 of the schools had interactive connections, whereby the students could ask questions of the presenter. Connect2Texas also collects evaluation information from the participating schools that we will use to produce a report for our funders and make modifications to future programs as need be. The videoconferences were offered free of charge. The theme for the 2011 Astronomy Day program was the Year of the Solar System, which aligns with NASA's theme for 2011 and 2012. By aligning with this NASA theme, we could leverage NASA artwork and materials to both advertise and enrich the learning experience. Videoconference materials also included pre- and post-videoconference assessment sheets, an inquiry based activity, and pre- and post-videoconference activities, all of which were made available online. One of the lessons learned from past Astronomy Day videoconferences is that the days the Astronomical League declares as "Astronomy Day” are not always good days for Texas schools to participate. So, we choose an Astronomy Day that meets the needs of Texas schools and our schedule - so any day can be Astronomy Day. 2011 Astronomy Day was made possible by The Meyer-Levy Charitable Trust.

  15. IceCube: An Instrument for Neutrino Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  16. Virtual Astronomy, Information Technology, and the New Scientific Methodology

    OpenAIRE

    Djorgovski, S. G.

    2005-01-01

    All sciences, including astronomy, are now entering the era of information abundance. The exponentially increasing volume and complexity of modern data sets promises to transform the scientific practice, but also poses a number of common technological challenges. The Virtual Observatory concept is the astronomical community's response to these challenges: it aims to harness the progress in information technology in the service of astronomy, and at the same time provide a valuable testbed for ...

  17. Indian Astronomy: the missing link in Eurocentric history of Astronomy

    Science.gov (United States)

    Haque, Shirin; Sharma, Deva

    2016-06-01

    A comprehensive history of Astronomy should show in reasonable chronological order, the contributions from wherever they arise in the world, once they are reliably documented. However, the authors note that consistently, the extremely rich contributions from Ancient Indian scholars like Aryabatha and Bhramagupta are omitted in Eurocentric education and syllabi. It is speculated whether religious underpinnings could have been responsible for its suppression in the past. An appeal is made to represent the history of Astronomy in Eurocentric versions, to be inclusive of Indian Astronomy as accurately and completely as possible in science education.

  18. Teaching Advanced Data Analysis Tools to High School Astronomy Students

    Science.gov (United States)

    Black, David V.; Herring, Julie; Hintz, Eric G.

    2015-01-01

    A major barrier to becoming an astronomer is learning how to analyze astronomical data, such as using photometry to compare the brightness of stars. Most fledgling astronomers learn observation, data reduction, and analysis skills through an upper division college class. If the same skills could be taught in an introductory high school astronomy class, then more students would have an opportunity to do authentic science earlier, with implications for how many choose to become astronomers. Several software tools have been developed that can analyze astronomical data ranging from fairly straightforward (AstroImageJ and DS9) to very complex (IRAF and DAOphot). During the summer of 2014, a study was undertaken at Brigham Young University through a Research Experience for Teachers (RET) program to evaluate the effectiveness and ease-of-use of these four software packages. Standard tasks tested included creating a false-color IR image using WISE data in DS9, Adobe Photoshop, and The Gimp; a multi-aperture analyses of variable stars over time using AstroImageJ; creating Spectral Energy Distributions (SEDs) of stars using photometry at multiple wavelengths in AstroImageJ and DS9; and color-magnitude and hydrogen alpha index diagrams for open star clusters using IRAF and DAOphot. Tutorials were then written and combined with screen captures to teach high school astronomy students at Walden School of Liberal Arts in Provo, UT how to perform these same tasks. They analyzed image data using the four software packages, imported it into Microsoft Excel, and created charts using images from BYU's 36-inch telescope at their West Mountain Observatory. The students' attempts to complete these tasks were observed, mentoring was provided, and the students then reported on their experience through a self-reflection essay and concept test. Results indicate that high school astronomy students can successfully complete professional-level astronomy data analyses when given detailed

  19. Solar Eclipses and the International Year of Astronomy

    Science.gov (United States)

    Pasachoff, Jay M.

    2009-05-01

    Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.

  20. IYA2009 and Beyond - Update On "Music and Astronomy Under the Stars” To Bring Telescopes To Where the People Are!

    Science.gov (United States)

    Lubowich, Donald A.

    2009-05-01

    This NASA-funded Music and Astronomy Under the Stars outreach program brings telescopes and astronomy information (via a video display and outdoor exhibit) to community parks during and after music concerts and outdoor family films attended by 500 to 50,000 people. This program will permit the entire community to participate with telescope observations and will enhance the public appreciation of astronomy. The telescopes will be accessible to those with physical disabilities. This program combines music, telescope observations, and astronomy information and targets people who may not attend star parties, planetariums, or science museums. I update this program and discus the lessons learned such as the importance of coordination with local governments, community park districts, and amateur astronomer clubs. This program can be expanded and modified for the local communities. I have expanded this program to large and small venues from New York Philharmonic concert at Heckscher State Park, the boardwalk and a "tail-gate” star party by at pop-music concerts at Jones Beach State Park, and at the Tanglewood Music Festival in Lenox, MA, summer home of the Boston Symphony Orchestra (http://www.bso.org/bso/mods/perf_detail.jsp?pid=prod2880024). This program is expandable to include outdoor dance or theatre programs, festivals in parks or beaches or amusement parks. Music and Astronomy Under the Stars is program that should continue beyond IYA-2009 beaches. Special events such as a Super Bowl Star Party and Halloween Stars will be presented as will the results form NASA-funded hands-on astronomy activities to children and their families receiving medical treatment at the Children's Medical Center at Winthrop University Hospital (Mineola, NY) and the Ronald McDonald House of Long Island (New Hyde Park, NY).

  1. Emergence and Growth of Solar Astronomy in Korea

    Science.gov (United States)

    Yun, Hong Sik

    2003-06-01

    In this article I review the past and current status of solar astronomy in Korea and present some future prospects. Along with a brief historical account on the introduction of modern astronomy to Korea, I describe in detail how solar astronomy in Korea has developed since its birth about 20 years ago. With education of solar astronomers at domestic universities and collaboration with foreign scientists in China, Japan and the U. S., there has been a rapid growth of solar physics in Korea in the past decade. For further advance of solar astronomy in Korea, Korean solar astronomers have to build their own observing facilities and develop instrumentation programs. Also it is very important to bring up manpower competent for these projects.

  2. The Stratospheric Observatory for Infrared Astronomy (sofia)

    Science.gov (United States)

    Gehrz, R. D.; Becklin, E. E.

    2011-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP that began science flights in 2010. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters with an average transmission of greater than 80 percent. SOFIA is staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes high speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. About 100 eight to ten hour flights per year are expected by 2014, and the observatory will operate until the mid 2030's. We will review the status of the SOFIA facility, its initial complement of science instruments, and the opportunities for advanced instrumentation.

  3. Pioneers in Astronomy and Space Exploration

    CERN Document Server

    2013-01-01

    The pioneers of astronomy and space exploration have advanced humankind's understanding of the universe. These individuals include earthbound theorists such as Aristotle, Ptolemy, and Galileo, as well as those who put their lives on the line travelling into the great unknown. Readers chronicle the lives of individuals positioned at the vanguard of astronomical discovery, laying the groundwork for space exploration past, present, and yet to come.

  4. Building an Astronomy Community to Sustain Research in the Classroom

    Science.gov (United States)

    Croft, S. K.; Pompea, S. M.; Walker, C. E.; NOAO Education Outreach Team

    2004-12-01

    Teacher Leaders in Research Based Science Education (TLRBSE) is a teacher professional development program that has been created at the National Optical Astronomy Observatory (NOAO) in Tucson, AZ, for middle and high school science teachers. It integrates several prominent trends in American science education, including the use of technology in the classroom, the development of inquiry-based science curricula closely modeling professional science practice, teacher retention and renewal, and the creation of communities of science learners consisting of both teachers and students. TLRBSE is designed to give middle and high school science teachers experience in working on real astronomy research projects with each other and with professional scientists. The teachers are also trained in research-based pedagogy so that they can effectively take these research projects into their classrooms to share with their students and colleagues. Program elements include: a 14-week graduate-level distance-learning course, a two-week on-site training workshop in Tucson that includes a week's observing at Kitt Peak using world-class telescopes, use of research-based science education in the classroom, and two years mentoring of three inexperienced science teachers. Our current research projects are Nova Search, Active Galactic Nuclei, Variable Stars, and Zeeman Splitting in Sunspots. Students and teachers in the program are also able to publish their research projects in the RBSE Journal. New program elements designed to provide ongoing activity in the learning community and increase teacher and student astronomical research skills include the Remote Telescope Observing Program in which students run telescopes in real time from their classroom, and the Teacher Observing Program in which individual teachers return to Kitt Peak with a small team of students to carry out their own research projects. This project is supported by NSF.

  5. Satellite observations

    Science.gov (United States)

    1984-05-01

    In 1982 and 1983, six scientific satellites were operated successfully. Two of them, JIKIKEN and ISS-b, performed observations of the Earth's plasma environment. HINOTORI, the solar maximum satellite, observed a number of solar flares. HAKUCHO and newly launched TENMA conducted various observations of cosmic X-ray sources. HIMAWARI-2 is a meteorological satellite but its payload includes a solar particle monitor. EXOS-C was successfully launched in February, 1983, and participants in the MAP (Middle Atmosphere Program). Following these missions, the PLANET-A project comprising two missions, MS-T5 and PLANET-A, is under preparation for the participation in the international cooperative exploration of Comet P/Halley. The third X-ray astronomy satellite ASTRO-C is currently scheduled for 1987 launch.

  6. Techniques of Radio Astronomy

    CERN Document Server

    Wilson, T L

    2011-01-01

    This chapter provides an overview of the techniques of radio astronomy. This study began in 1931 with Jansky's discovery of emission from the cosmos, but the period of rapid progress began fifteen years later. From then to the present, the wavelength range expanded from a few meters to the sub-millimeters, the angular resolution increased from degrees to finer than milli arc seconds and the receiver sensitivities have improved by large factors. Today, the technique of aperture synthesis produces images comparable to or exceeding those obtained with the best optical facilities. In addition to technical advances, the scientific discoveries made in the radio range have contributed much to opening new visions of our universe. There are numerous national radio facilities spread over the world. In the near future, a new era of truly global radio observatories will begin. This chapter contains a short history of the development of the field, details of calibration procedures, coherent/heterodyne and incoherent/bolom...

  7. Astronomy for beginners

    CERN Document Server

    Becan, Jeff

    2008-01-01

    Astronomy For Beginners is a friendly and accessible guide to our universe, our galaxy, our solar system and the planet we call home. Each year as we cruise through space on this tiny blue-green wonder, a number of amazing and remarkable events occur. For example, like clockwork, we'll run head-on into asteroid and cometary debris that spreads shooting stars across our skies. On occasion, we'll get to watch the disk of the Moon passing the Sun, casting its shadow on the face of the Earth, and sometimes we'll get to watch our own shadow as it glides across the face of the Moon. The Sun's path w

  8. Astronomy and political theory

    Science.gov (United States)

    Campion, Nicholas

    2011-06-01

    This paper will argue that astronomical models have long been applied to political theory, from the use of the Sun as a symbol of the emperor in Rome to the application of Copernican theory to the needs of absolute monarchy. We will begin with consideration of astral divination (the use of astronomy to ascertain divine intentions) in the ancient Near East. Particular attention will be paid to the use of Newton's discovery that the universe operates according to a single set of laws in order to support concepts of political quality and eighteenth century Natural Rights theory. We will conclude with consideration of arguments that the discovery of the expanding, multi-galaxy universe, stimulated political uncertainty in the 1930s, and that photographs of the Earth from Apollo spacecraft encouraged concepts of the `global village'.

  9. Compressed Sensing in Astronomy

    CERN Document Server

    Bobin, J; Ottensamer, R

    2008-01-01

    Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper we investigate how compressed sensing (CS) can provide new insights into astronomical data compression and more generally how it paves the way for new conceptions in astronomical remote sensing. We first give a brief overview of the compressed sensing theory which provides very simple coding process with low computational cost, thus favoring its use for real-time applications often found on board space mission. We introduce a practical and effective recovery algorithm for decoding compressed data. In astronomy, physical prior information is often crucial for devising effective signal processing methods. We particularly point out that a CS-based compression scheme is flexible enough to account ...

  10. Interdisciplinary Astronomy Activities

    Science.gov (United States)

    Nerantzis, Nikolaos; Mitrouda, Aikaterini; Reizopoulou, Ioanna; Sidiropoulou, Eirini; Hatzidimitriou, Antonios

    2016-04-01

    On November 9th, 2015, three didactical hours were dedicated to Interdisciplinary Astronomy Activities (http://wp.me/p6Hte2-1I). Our students and their teachers formed three groups and in rotation, were engaged with the following activities: (a) viewing unique images of the Cosmos in the mobile planetarium STARLAB (http://www.planitario.gr/tholos-starlab-classic-standard.html), (b) watching the following videos: Journey to the end of the universe (https://youtu.be/Ufl_Nwbl8xs), Rosetta update (https://youtu.be/nQ9ivd7wv30), The Solar System (https://youtu.be/d66dsagrTa0), Ambition the film (https://youtu.be/H08tGjXNHO4) in the school's library. Students and teachers were informed about our solar system, the Rosetta mission, the universe, etc. and (c) tactile activities such as Meet our home and Meet our neighbors (http://astroedu.iau.org, http://nuclio.org/astroneighbours/resources) and the creation of planets' 3D models (Geology-Geography A' Class Student's book, pg.15). With the activities above we had the pleasure to join the Cosmic Light Edu Kit / International Year of Light 2015 program. After our Interdisciplinary Astronomy Activities, we did a "small" research: our students had to fill an evaluation about their educational gains and the results can be found here http://wp.me/p6Hte2-2q. Moreover, we discussed about Big Ideas of Science (http://wp.me/p3oRiZ-dm) and through the "big" impact of the Rosetta mission & the infinity of our universe, we print posters with relevant topics and place them to the classrooms. We thank Rosa Doran (Nuclio - President of the Executive Council) for her continuous assistance and support on innovative science teaching proposals. She is an inspiration.

  11. Alaska Athabascan stellar astronomy

    Science.gov (United States)

    Cannon, Christopher M.

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  12. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  13. A Sidewalk Astronomy Experience in Second Life (R) for IYA2009

    Science.gov (United States)

    Gauthier, Adrienne J.; Huber, D.; I. New Media Task Group

    2009-01-01

    The NMTG has created an IYA 2009 presence in the 3-dimensional multi-user virtual world called Second Life (R), where residents (or avatars) interact with content built by others in dynamic, innovative, and social ways. The IYA2009 virtual real estate (called an island) will open in early January 2009 with an initial set of exhibits and interactives. Through 2009, additional exhibits, live talks, and webstreamed content will be added.Our Sidewalk Astronomy experience will be premiered for the island opening. We have designed the interactive to replicate a real-life small telescope experience. Visitors to our Second Life telescopes will first see an image of the object "as the eye sees" and will hear/read a narrative about the object, as one would experience in real life. The narratives have been carefully crafted to take the observer on a journey and not just hear straight facts about the object. Diving further into astronomical imagery, avatars will explore visible, infrared, X-ray, and radio views of the object (if available), all wrapped in contextual information that ties the multiwavelength views together. The content of the telescopes will update every month to be equivalent to mid-latitude 9pm sky views for the Northern Hemisphere, Southern Hemisphere pending. Supplemental materials will include World Wide Telescope tours and Google Sky layers. We are hoping to add live star party events throughout the year, using real life video feeds from amateur telescopes. Additionally, we will have links to the Sidewalk Astronomy IYA webpage so virtual residents can find real life star parties to attend. The Sidewalk Astronomy Second Life experience will also have a traveling version that can be placed in multiple locations (stores, events, parks) in order to bring astronomy to the virtual masses in a true Sidewalk Astronomy way.

  14. Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE

    Science.gov (United States)

    Slater, Timothy F.

    2015-08-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the

  15. Worldwide site comparison for submillimetre astronomy

    CERN Document Server

    Tremblin, P; Minier, V; Durand, G Al; Urban, J

    2012-01-01

    The most important limitation for ground-based submillimetre (submm) astronomy is the broad-band absorption of the total water vapour in the atmosphere above an observation site, often expressed as the Precipitable Water Vapour (PWV). A long-term statistic on the PWV is thus mandatory to characterize the quality of an existing or potential site for observational submm-astronomy. In this study we present a three-year statistic (2008-2010) of the PWV for ground-based telescope sites all around the world and for stratospheric altitudes relevant for SOFIA (Stratospheric Observatory for Far-infrared astronomy). The submm-transmission is calculated for typical PWVs using an atmospheric model. We present the absolute PWV values for each site sorted by year and time percentage. The PWV corresponding to the first decile (10%) and the quartiles (25%, 50%, 75%) are calculated and transmission curves between 150 {\\mu}m and 3 mm for these values are shown. The Antarctic and South-American sites present very good condition...

  16. A New Resource for College Distance Education Astronomy Laboratory Exercises

    CERN Document Server

    Vogt, Nicole P; Muise, Amy Smith

    2015-01-01

    This article introduces a set of distance education astronomy laboratory exercises for use by college students and instructors and discuss first usage results. This General Astronomy Education Source (GEAS) exercise set contains eight two-week projects designed to guide students through both core content and mathematical applications of general astronomy material. Projects are divided between hands-on activities and computer-aided analyses of modern astronomical data. The suite of online resources includes student and instructor guides, laboratory report templates, learning objectives, video tutorials, plotting tools, and web-based applications that allow students to analyze both images and spectra of astronomical objects. A pilot usage study indicates that distance learners using these materials perform as well or better than a comparison cohort of on-campus students. We are actively seeking collaborators to use these resources in astronomy courses and other educational venues.

  17. The Importance of Site Selection for Radio Astronomy

    Science.gov (United States)

    Umar, Roslan; Zainal Abidin, Zamri; Abidin Ibrahim, Zainol

    2014-10-01

    Radio sources are very weak since this object travel very far from outer space. Radio astronomy studies are limited due to radio frequency interference (RFI) that is made by man. If the harassment is not stopped, it will provide critical problems in their radio astronomy scientists research. The purpose of this study is to provide RFI map Peninsular Malaysia with a minimum mapping techniques RFI interference. RFI mapping technique using GIS is proposed as a tool in mapping techniques. Decision-making process for the selection requires gathering information from a variety of parameters. These factors affecting the selection process are also taken account. In this study, various factors or parameters involved such as availability of telecommunications transmission (including radio and television), rainfall, water line and human activity. This study will benefit radio astronomy research especially in the RFI profile in Malaysia. Keywords: Radio Astronomy, Radio Frequency Interference (RFI), RFI mapping technique : GIS.

  18. The Importance of Site Selection for Radio Astronomy

    International Nuclear Information System (INIS)

    Radio sources are very weak since this object travel very far from outer space. Radio astronomy studies are limited due to radio frequency interference (RFI) that is made by man. If the harassment is not stopped, it will provide critical problems in their radio astronomy scientists research. The purpose of this study is to provide RFI map Peninsular Malaysia with a minimum mapping techniques RFI interference. RFI mapping technique using GIS is proposed as a tool in mapping techniques. Decision-making process for the selection requires gathering information from a variety of parameters. These factors affecting the selection process are also taken account. In this study, various factors or parameters involved such as availability of telecommunications transmission (including radio and television), rainfall, water line and human activity. This study will benefit radio astronomy research especially in the RFI profile in Malaysia. Keywords: Radio Astronomy, Radio Frequency Interference (RFI), RFI mapping technique : GIS

  19. SABER: The Searchable Annotated Bibliography of Education Research in Astronomy

    Science.gov (United States)

    Bruning, David H.; Bailey, J. M.; Brissenden, G.

    2006-12-01

    Starting a new research project in astronomy education is hard because the literature is scattered throughout many journals. Relevant astronomy education research may be in psychology journals, science education journals, physics education journals, or even in science journals themselves. Tracking the vast realm of literature is difficult, especially since libraries do not carry many of these journals and related abstracting services. SABER is an online resource (http://astronomy.uwp.edu/saber/) that was started in 2001 specifically to reduce this “scatter” by compiling into one place an annotated bibliography of relevant education research articles. The database now includes more than 150 articles specifically addressing astronomy education research. Visit SABER and see what it can do for you.

  20. Conceptual Astronomy Knowledge among Amateur Astronomers

    Science.gov (United States)

    Berendsen, Margaret L.

    2005-01-01

    Amateur astronomers regularly serve as informal astronomy educators for their communities. This research inquires into the level of knowledge of basic astronomy concepts among amateur astronomers and examines factors related to amateur astronomy that affect that knowledge. Using the concept questions from the Astronomy Diagnostic Test Version 2,…

  1. Space astronomy and astrophysics program by CSA

    Science.gov (United States)

    Laurin, Denis; Ouellet, Alain; Dupuis, Jean; Chicoine, Ruth-Ann

    2014-07-01

    Canada became actively engaged in space astronomy in the 1990s by contributing two fine guidance sensors to the FUSE Far-UV mission (NASA 1999-2008). In the same period, Canada contributed to ODIN's infrared instrument (ESA 2001-2006) and correlators for VSOP (JAXA 1997-2005). In early 2000, Canada developed its own space telescope, Micro-variability and Observations of STars (MOST), a 15-cm telescope on a microsatellite, operating since 2003, and more recently contributed to the realization of the BRITE nanosatellites constellation. Canada also provided hardware to the European Space Agency's Herschel HIFI instrument and simulators to the SPIRE instrument and data analysis tools for Planck. More recently the Canadian Space Agency (CSA) delivered detector units for the UVIT instrument on board the Indian Space Research Organisation's (ISRO) ASTROSAT. The CSA's most important contribution to a space astronomy mission to date is the Fine Guidance Senor (FGS) and Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument to NASA's James Webb Space Telescope. The CSA is currently building the laser metrology system for JAXA's ASTRO-H hard X-ray telescope. Canadian astronomers contributed to several high profile stratospheric balloon projects investigating the CMB and the CSA recently established a balloon launch facility. As expressed in Canada's new Space Policy Framework announced in February 2014, Canada remains committed to future space exploration endeavors. The policy aims at ensure that Canada is a sought-after partner in the international space exploration missions that serve Canada's national interests; and continuing to invest in the development of Canadian contributions in the form of advanced systems and optical instruments. In the longer term, through consultations and in keeping the Canadian astronomical community's proposed Long Range Plan, the CSA is exploring possibilities to contributions to important missions such as WFIRST, SPICA and Athena

  2. Astronomy Enrollments and Degrees: Results from the 2012 Survey of Astronomy Enrollments and Degrees. Focus On

    Science.gov (United States)

    Mulvey, Patrick; Nicholson, Starr

    2014-01-01

    Interest in astronomy degrees in the U.S. remains strong, with astronomy enrollments at or near all-time highs for the 2012-13 academic year. The total number of students taking an introductory astronomy course at a degree-granting physics or astronomy department is approaching 200,000. Enrollments in introductory astronomy courses have been…

  3. NRAO Response to NSF Senior Review of Astronomy Facilities

    Science.gov (United States)

    2006-11-01

    The National Science Foundation's (NSF) Astronomy Senior Review Committee report (pdf file), released today, made major recommendations for restructuring the NSF's ground-based astronomy efforts, including significant changes for the National Radio Astronomy Observatory (NRAO). The committee's report urged that leadership in radio astronomy, including millimeter- and submillimeter-wave observatories, "remain centered at NRAO as it is, by far, the largest radio astronomy organization in the world." The report praised the record of management of NRAO and the scientific capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA), the Expanded Very Large Array (EVLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA). However, the report also recommended that some reductions and changes occur at the NRAO by 2011. Specifically, the report recommended that: (a) VLBA operations make a transition to a significant reliance on international funding or risk closure; (b) GBT operations costs be reduced; and (c) NRAO scientific staff costs be reduced. "The Senior Review Committee had the very difficult task of reconciling the needs of current facilities and funding new facilities for the future of astronomy. We appreciate their efforts and look forward to working with the NSF to ensure that the valuable and unique research capabilities of our NRAO telescopes continue to serve the astronomical community," said Dr. Fred K.Y. Lo, NRAO Director. The VLBA provides the greatest angular resolution, or ability to see fine detail, of any telescope in the world, greatly exceeding the capabilities of the Hubble Space Telescope and the future Square Kilometre Array. The committee recognized that, "if the VLBA is closed, a unique capability would likely be lost for decades." "The VLBA is used by scientists from around the world because of its unique capabilities. It has produced landmark research milestones and the committee recognized in its

  4. Capturing Public Interest in Astronomy through Art and Music

    Science.gov (United States)

    Sharma, M.; Sabraw, J.; Salgado, J. F.; Statler, T.; Summers, F.

    2008-11-01

    This is a summary of our 90-minute International Year of Astronomy (IYA) symposium workshop about engaging greater public interest in astronomy during the International Year of Astronomy 2009 through art and music. The session focused on: (i) plans for visually interesting and challenging astronomy presentations to connect with an audience at venues such as museums, concert halls, etc that might be apprehensive about science but open to creative experiences; (ii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations; (iii) balancing scientific accuracy with artistic license; and (iv) how scientists, Education and Public Outreach (EPO) professionals, artists, musicians et al. can bridge the ``two cultures''---starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters shared with the EPO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of astronomical images that can accompany live performances of Holst's The Planets and Mussorgsky's Pictures at an Exhibition; and SCALE, a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.

  5. Daris, a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Bentum, M.J.; Klooster, van 't K.; Falcke, H.

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy in Space) is a radio astronomy space mission concept aimed at observing the low-frequency radio sky in the range 1-10 MHz. Because of the Earth's ionospheric disturbances and opaqueness, this frequency range can only be observed from space. The a

  6. Data Mining and Machine Learning in Astronomy

    CERN Document Server

    Ball, Nicholas M

    2009-01-01

    We review the current state of data mining and machine learning in Astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. On the one hand, it is a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, which promises almost limitless scientific advances. On the other, it can be the application of black-box computing algorithms that at best give little physical insight, and at worst provide questionable results. Here, we give an overview of the entire data mining process, from data collection through the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines; applications from a broad range of Astronomy, with an emphasis on those where data mining resulted in improved physical insights, and important current and future directions, including the construction of full probability density functions, parallel algorithm...

  7. Revolutions in astronomy, physics and cosmology

    International Nuclear Information System (INIS)

    As consecutive turning-points in the development of natural science four global natural science revolutions (Aristotelian, Newton, Einstein and post-Einstein) are marked out and briefly outlined. Each of them simultaneously occurred in astronomy, physics and cosmology and was accompanied by radical changes of cosmological representations. These changes had quite a regular consecutive character and represented necessary steps in turn along the natural way of further elimination of ego centrism from cosmology. The first (Aristotelian) revolution turnes out a peculiar prototype of all three subsequent revolutions in astronomy, physics and cosmology. The special more detailed analysis of this revolution in this monograph allows one to tie together antique and modern phases of the science development including corresponding representations on fundamental structural elements of the matter. Besides the review of literature data the monograph comprises a series of author's scientific results

  8. Astropy: A Community Python Package for Astronomy

    CERN Document Server

    Robitaille, Thomas P; Greenfield, Perry; Droettboom, Michael; Bray, Erik; Aldcroft, Tom; Davis, Matt; Ginsburg, Adam; Price-Whelan, Adrian M; Kerzendorf, Wolfgang E; Conley, Alexander; Crighton, Neil; Barbary, Kyle; Muna, Demitri; Ferguson, Henry; Grollier, Frédéric; Parikh, Madhura M; Nair, Prasanth H; Günther, Hans M; Deil, Christoph; Woillez, Julien; Conseil, Simon; Kramer, Roban; Turner, James E H; Singer, Leo; Fox, Ryan; Weaver, Benjamin A; Zabalza, Victor; Edwards, Zachary I; Bostroem, K Azalee; Burke, D J; Casey, Andrew R; Crawford, Steven M; Dencheva, Nadia; Ely, Justin; Jenness, Tim; Labrie, Kathleen; Lim, Pey Lian; Pierfederici, Francesco; Pontzen, Andrew; Ptak, Andy; Refsdal, Brian; Servillat, Mathieu; Streicher, Ole

    2013-01-01

    We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future A...

  9. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Science.gov (United States)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  10. COMETWATCHERS: Bringing Research into the Undergraduate Astronomy Curriculum

    Science.gov (United States)

    Womack, M.

    2000-05-01

    Integrating research with education has been an evolving process for me and the "Cometwatchers", the students with whom I work. What started as a totally extracurricular activity, has become well-integrated into St. Cloud State Univerity's upper-division courses on Solar System Astronomy and Observational Astronomy. Maintaining a collaboration with six to eight students is a challenge that is made easier and more efficient when we modularize the projects, utilize each person's expertise, hold weekly meetings, require students to write guides and manuals to instruct others, and require students to write up and present their work at meetings. This also helps students to identify and evaluate their contributions to the research. Here I profile the research component in two courses at SCSU that use a student-run optical observatory equipped with a 0.4-m telescope, CCD, UBVRI photometry filters and a fiber-optic spectrograph. Results from some focused research projects are also discussed, including an optical imaging archive of Comet Hale-Bopp, derivation of dust expansion velocities from comet images, analysis of the visible light-curve of comet Hale-Bopp, spectral analysis of millimeter-wavelength ``datacubes" of HCO+ and of other carbon-bearing molecular spectra in comet Hale-Bopp.

  11. Episodes from the Early History of Astronomy

    Science.gov (United States)

    Aaboe, Asger

    uniformly around the empty focus of its orbit. Thus an eccentric circular orbit with the empty "focus" as the equant point gives a good approximation to Kepler motions. The result of combining two such motions is then shown to be close to Ptolemy's planetary model. This book provides a fascinating look at the night sky and the techniques that early civilizations, particularly Babylonian and Greek, used to model planetary motions¿Aaboe does a masterful job of covering a wide array of intriguing topics in a relatively short book, and any effort expended on reading it will be well rewarded¿ talented students at the high school age and college students who are interested in these topics would likely find this book very enjoyable and enriching¿Overall, the book is fascinating to read for several reasons, including its observational astronomical viewpoint, its rich historical and cultural content, and, of course, its exposition and explanation of ancient techniques of celestial predictions and modeling. ?MAA ONLINE

  12. Using sounds and sonifications for astronomy outreach

    OpenAIRE

    Ballesteros, Juan Carlos; Luque Serrano, Bartolome

    2008-01-01

    Good astronomy pictures, like those of the HST, play an important and wellknown role in astronomy outreach, triggering curiosity and interest. This same aim can also be achieved by means of sounds. Here we present the use of astronomy-related sounds and data sonifications to be used in astronomy outreach. These sounds, which people are unlikely to hear in the normal course of things, are a good tool for stimulating interest when teaching astronomy. In our case, sounds are successfully used in...

  13. A Brief History of Radio Astronomy in the USSR A Collection of Scientific Essays

    CERN Document Server

    Salomonovich, A; Samanian, V; Shklovskii, I; Sorochenko, R; Troitskii, V; Kellermann, K; Dubinskii, B; Kaidanovskii, N; Kardashev, N; Kobrin, M; Kuzmin, A; Molchanov, A; Pariiskii, Yu; Rzhiga, O

    2012-01-01

    This translation from Russian makes the history of radio astronomy in the USSR available in the English language for the first time. The book includes descriptions of the antennas and instrumentation used in the USSR, the astronomical discoveries, as well as interesting personal backgrounds of many of the early key players in Soviet radio astronomy. A Brief History of Radio Astronomy in the USSR is a collection of memoirs recounting an interesting but largely still dark era of Soviet astronomy. The arrangement of the essays is determined primarily by the time when radio astronomy studies began at the institutions involved. These include the Lebedev Physical Institute (FIAN), Gorkii State University and the affiliated Physical-Technical Institute (GIFTI), Moscow State University Sternberg Astronomical institute (GAISH) and Space Research Institute (IKI), the Department of Radio Astronomy of the Main Astronomical Observatory in Pulkovo (GAO), Special Astrophysical Observatory (SAO), Byurakan Astrophysical Obse...

  14. Essays on medieval computational astronomy

    CERN Document Server

    Bergón, José Chabás

    2014-01-01

    In Essays on Medieval Computational Astronomy the authors provide examples of original and intelligent approaches and solutions given by medieval astronomers to the problems of their discipline, mostly presented in the form of astronomical tables.

  15. Women in Astronomy Workshop Report

    CERN Document Server

    Brough, Sarah; Brooks, Kate; Hopkins, Andrew; Maddison, Sarah

    2011-01-01

    Here we report on the Women in Astronomy Workshop (http://asawomeninastronomy.org/meetings/wia2011/), which was held on 13 May 2011 in Sydney, Australia. The workshop was organised by the Astronomical Society of Australia's Chapter on Women in Astronomy, to discuss some of the issues that face women in astronomy and make recommendations to help support the success of women in Australian astronomy but came to broader conclusions that have value for the whole astronomical community. The workshop consisted of four sessions, with presentations by invited speakers on demographics, leadership, varied career paths, and how institutions & individuals can help. The workshop ended with a discussion panel that summarised the day's debate and presented a list of recommendations for the Australian astronomical community (both individuals and institutions) that are provided in this report.

  16. Astronomy for a Better World”: IAU/OAD Task Force One Activities to Develop Astronomy Education and Research at Universities in the Developing World

    Science.gov (United States)

    Guinan, Edward Francis; Kolenberg, Katrien

    2015-08-01

    The Task Force (1) on Astronomy for Universities & Research (TF-1) was established in 2012 as part of the IAU Office of Astronomy for Development (OAD). This Task Force drives activities related to astronomy education and research at universities mainly in the developing world. Astronomy is used to stimulate research and education in STEM fields and to develop and promote astronomy in regions of the world where there is little or no astronomy. There is also potential for developing research in the historical and cultural aspects of astronomy which may prove important for stimulating an interest in the subject in communities where there is yet no established interest in the science.Since the establishment of the OAD, over 25 TF-1 programs have been funded (or partially funded) to support a wide variety of interesting and innovative astronomy programs in Africa, Asia, South-East Asia, Middle-East, and in South & Central America. Nearly every aspect of development has been supported. These programs include supporting: regional astronomy training schools, specialized workshops, research visits, university twinning programs, distance learning projects, university astronomy curriculum development, as well as small telescope and equipment grants. In addition, a large new program - Astrolab - was introduced (by J-P De Greve and Michele Gerbaldi) to bring starlight” into the class room. In the Astrolab program students carry out and reduce CCD photometry secured by them using remotely controlled telescopes. Results from pilot programs will be discussed.OAD TF-1 programs will be discussed along with future plans for improving and expanding these programs to bring astronomy education and research to a greater number of people and indeed to use Astronomy for a Better World. Information and advice will also be provided about applying for support in the future.

  17. Europe Unveils 20-Year Plan for Brilliant Future in Astronomy

    Science.gov (United States)

    2008-11-01

    for Earth Sciences and Astronomy (INSU) of the CNRS. To build consensus on priorities in a very diverse community, the Science Vision and Roadmap were developed in an open process involving intensive interaction with the community through large open meetings and feedback via e-mail and the web. The result is a plan now backed by astronomers in 28 Member and Associated States of the EU, with over 500 million inhabitants. Over 60 selected experts from across Europe contributed to the construction of the ASTRONET Roadmap, ensuring that European astronomy has the tools to compete successfully in answering the challenges of the Science Vision. They identified and prioritised a set of new facilities to observe the Universe from radio waves to gamma rays, to open up new ways of probing the cosmos, such as gravitational waves, and to advance in the exploration of our Solar System. In the process, they considered all the elements needed by a successful scientific enterprise, from global-scale cooperation on the largest mega-project to the need for training and recruiting skilled young scientists and engineers. One of two top-priority large ground-based projects is ESO's European Extremely Large Telescope. Its 42-metre diameter mirror will make the E-ELT the largest optical/near-infrared telescope in the world -- "the biggest eye on the sky". The science to be done with the E-ELT is extremely exciting and includes studies of exoplanets and discs, galaxy formation and dark energy. ESO Director General Tim de Zeeuw says: "The top ranking of the E-ELT in the Roadmap is a strong endorsement from the European astronomical community. This flagship project will indisputably raise the European scientific, technological and industrial profile". Among other recommendations, the Roadmap considers how to maximise the future scientific impact of existing facilities in a cost-effective manner. It also identifies a need for better access to state-of-the art computing and laboratory facilities

  18. Bibliometric Evaluation of Finnish Astronomy

    Science.gov (United States)

    Isaksson, E.

    2007-10-01

    Finnish astronomy publishing provides us with an interesting data sample. It is small but not too small: approximately one thousand articles have been published in a decade. There are only four astronomy institutes to be compared. An interesting paradox also emerges in the field: while Finnish science assessments usually value highly the impact of scientific publishing, no serious evaluations using real bibliometric data have been made. To remedy this, a comprehensive ten-year database of refereed papers was collected and analyzed.

  19. The Music and the Astronomy

    CERN Document Server

    Caballero, J A; Caballero, I

    2008-01-01

    What do Brian May (the Queen's lead guitarist), William Herschel and the Jupiter Symphony have in common? And a white dwarf, a piano and Lagartija Nick? At first glance, there is no connection between them, nor between the Music and the Astronomy. However, there are many revealing examples of musical Astronomy and astronomical Music. This four-page proceeding describes the sonorous poster that we showed during the VIII Scientific Meeting of the Spanish Astronomical Society.

  20. Worldwide site comparison for submillimetre astronomy

    Science.gov (United States)

    Tremblin, P.; Schneider, N.; Minier, V.; Durand, G. Al.; Urban, J.

    2012-12-01

    Aims: The most important limitation for ground-based submillimetre (submm) astronomy is the broad-band absorption of the total water vapour in the atmosphere above an observation site, often expressed as the precipitable water vapour (PWV). A long-term statistic on the PWV is thus mandatory to characterize the quality of an existing or potential site for observational submm-astronomy. In this study we present a three-year statistic (2008-2010) of the PWV for ground-based telescope sites all around the world and for stratospheric altitudes relevant for SOFIA (Stratospheric Observatory for Far-Infrared Astronomy). The submm-transmission is calculated for typical PWVs using an atmospheric model. Methods: We used data from IASI (Infrared Atmospheric Sounding Interferometer) on the Metop-A satellite to retrieve water vapour profiles for each site (11 in total, comprising Antarctica, Chile, Mauna Kea, Greenland, Tibet). The use of a single instrument to make the comparison provides unbiased data with a common calibration method. The profiles are integrated above the mountain/stratospheric altitude to get an estimation of the PWV. We then applied the atmospheric model MOLIERE (Microwave Observation and LIne Estimation and REtrieval) to compute the corresponding atmospheric absorption for wavelengths between 150 μm and 3 mm. Results: We present the absolute PWV values for each site sorted by year and time percentage. The PWV corresponding to the first decile (10%) and the quartiles (25%, 50%, 75%) are calculated and transmission curves between 150 μm and 3 mm for these values are shown. The Antarctic and South-American sites present very good conditions for submillimetre astronomy. The 350 μm and 450 μm atmospheric windows are open all year long, whereas the 200 μm atmospheric window opens reasonably for 25% of the time in Antarctica and the extremely high-altitude sites in Chile. Potential interesting new facilities are Macon in Argentina and Summit in Greenland

  1. SkyServer Voyages Website - Using Big Data to Explore Astronomy Concepts in Formal Education Settings

    Science.gov (United States)

    Meredith, Kate K.; Masters, Karen; Raddick, Jordan; Lundgren, Britt

    2015-08-01

    The Sloan Digital Sky Survey (SDSS) web interface “SkyServer” has long included online educational materials designed to help students and the public discover the fundamentals of modern astronomy using real observations from the SDSS database. The newly launched SDSS Voyages website updates and expands these activities to reflect new data from subsequent generations of the survey, advances in web technology, and evolving practices in science education. Voyages provides access to quality astronomy, astrophysics, and engineering materials to educators seeking an inquiry approach to fundamental concepts. During this session we will provide an overview of the design and development of Skyserver Voyages and discuss ways to apply this resource at K-12 and university levels.

  2. The European Association for Astronomy Education

    Science.gov (United States)

    Reichen, M.

    2006-06-01

    The still very young EAAE (officially founded in November 1995) is an association grouping astronomy minded "educators" (teachers, professional and amateur astronomers, etc.) whose main goal is the development of the place and role of astronomy teaching at various educational levels. An executive council of nine persons is in charge of the large-scale cohesion of the association, while two standing committees (financial support, communication network) and seven working groups (astronomical concepts, didactic materials, training of teachers, student projects, planetarium links, research on teaching materials, and public education) form the structure through which each member can contribute to the association's actions. Each one of these groups is "multi-national" (members come from over twenty countries in Europe and elsewhere), and thus the adopted structure favors the emergence of an international network of teachers, one of the EAAE's primary concerns. Different projects have been achieved or are on the way of achievement (such as the AOL "astronomy on line," the set up of a summer school for teachers, simultaneous observations of solar and lunar eclipses by students all over Europe, development and testing of didactic material, etc.) partially showing the great educational potential of the EAAE.

  3. Lenses for Seeing Astronomy in Hawaii

    Science.gov (United States)

    Veincent, Lehua M.

    2012-01-01

    It is well know that there has been a history of societal and cultural conflict surrounding the development of Western astronomy science in Hawai'i. To the outside observer, it may seem that the conflict is a residual effect from the manner in which the observatories were built, or that Native Hawaiians simply do not want outsiders encroaching on sacred mountains. While there may be some in the Islands who strongly argue against the observatories for these reasons, there are also individuals that support the idea of such needed research in this progressive time of technology. More importantly, these explanations are overly simplistic. What cultural experts, practitioners and liaisons now recognize is that much of the unexpected difficulties encountered in developing the Hawaiian workforce, science, technologies and sympathies to support the observatories, lie in a failure to understand the Native Hawaiian ontology related to themselves and their place in the world. One very simple way to characterize a Native Hawaiian worldview is that astronomy is not an isolated subject of study; rather, astronomy serves as a deeply interconnected human interface between the ocean, the land, language, genealogy, and a sense of place. In this paper Ke Kumu Lehua Veincent will describe the Hawaiian worldview, and shed light on the problem areas where this worldview, and the strictly academic view of astronomy come into conflict. Cultural intelligence and ancestral knowledge is also brought forth that suggests a much needed pathway in which these two viewpoints can engage and coexist with pono,or with balance without compromising what was, what is, and what is yet to come striving for continuous improvement, in science and for the people of Hawai'i.

  4. Building a Successful Teachers' Workshop in Astronomy & Astrophysics

    Science.gov (United States)

    Smecker-Hane, T. A.; Thornton, C. E.

    2005-12-01

    We discuss the Teachers' Workshop in Astronomy & Astrophysics, a 2-day long summer workshop we designed to aid K-12 grade teachers in incorporating astronomy and astrophysics into their curricula. These workshops are part of a faculty-led outreach program entitled Outreach in Astronomy & Astrophysics with the UCI Observatory, funded by an NSF FOCUS grant to the University of California, Irvine. Approximately 20 teachers from the Compton, Newport/Mesa and Santa Ana Unified School Districts attend each workshop. Our teachers realize that astronomy captures the imagination of their students, and thus lessons in astronomy can very effectively convey a number of challenging math and science concepts. Our workshop is designed to give teachers the content and instruction needed to achieve that goal. Because only a small fraction of teachers have taken a college astronomy course, an important component of the workshop is lectures on: (1) the motion of objects in the night sky, moon phases and the seasons, (2) the solar system, (3) the physics of light, and (4) interesting applications such as searching for planets around other stars and charting the expansion history of the Universe. The second important component of the workshop is the kit of material each teacher receives, which includes a introductory astronomy textbook, planetarium software, and the ASP's "Universe at Your Fingertips" and "More Universe at Your Fingertips", etc.. The latter two books give teachers many examples of creative hands-on activities and experiments they can do with their classes and instruction on how to build a coherent curriculum for their particular grade level. We also introduce teachers to Contemporary Laboratory Exercises in Astronomy (CLEA), a suite of computer lab exercises that can be used effectively in high school physics classes. For more information, see http://www.physics.uci.edu/%7Eobservat/#e&o. Funding provided by NSF grant EHR-0227202 (PI: Ronald Stern).

  5. Astronomy in Primary and Secondary Education in Slovenia

    Science.gov (United States)

    Gomboc, Andreja

    2015-08-01

    I will present the status of astronomy in educational system in Slovenia. In primary schools astronomy is offered as an optional course in the last 3 grades (12-15 yrs old), while in secondary schools a few astronomical topics are present only as part of other subjects (e.g. physics, geography). I will describe a pilot project of an astronomy course in secondary schools, which was carried out in the school year 2013/14. The main focus of my presentation will be the experience gained with organisation of the Slovenian National Astronomy Competition. It is organised by the Slovenian Society of Mathematicians, Physicists and Astronomers since 2009, building on an extensive network of over 200 primary and secondary school teachers who participated in IYA2009 activities, and who now represent majority of mentors for the competition. In 2013, only 5 years after the start of competition, our pupils attended the International Olympiad on Astronomy and Astrophysics for the first time and with great success. Supporting activities include the Slovenian version of the Portal to the Universe (www.portalvvesolje.si) and translation of Space Scoop astronomy news for children.

  6. Astronomy in India a historical perspective

    CERN Document Server

    2014-01-01

    India has a strong and ancient tradition of astronomy, which seamlessly merges with the current activities in Astronomy and Astrophysics in the country. While the younger generation of astronomers and students are reasonably familiar with the current facilities and the astronomical research, they might not have an equally good knowledge of the rich history of Indian astronomy. This particular volume, brought out as a part of the Platinum Jubilee Celebrations of Indian National Science Academy, concentrates on selected aspects of historical development of Indian astronomy in the form of six invited chapters. Two of the chapters – by Balachandra Rao and M.S. Sriram – cover ancient astronomy and the development of calculus in the ancient Kerela text Yuktibhasa. The other four chapters by B.V. Sreekantan, Siraj Hasan, Govind Swarup and Jayant Narlikar deal with the contemporary history of Indian astronomy covering space astronomy, optical astronomy, radio astronomy and developments in relativistic astrophysic...

  7. Southern Africa Regional Office of Astronomy for Development: A New Hub for Astronomy for Development

    Science.gov (United States)

    Siseho Mutondo, Moola

    2015-08-01

    A new Astronomy for Development hub needs innovative tools and programs. SAROAD is developing exciting tools integrating Raspberry Pi® technology to bring cost-effective astronomy content to learning centres. SAROAD would also like to report achievements in realising the IAU's strategic plan. In order to manage, evaluate and coordinate regional IAU capacity building programmes, including the recruitment and mobilisation of volunteers, SAROAD has built an intranet that is accessible to regional members upon request. Using this resource, regional members can see and participate in regional activities. This resource also forms the foundation for closer collaboration between SAROAD member countries. SAROAD has commenced with projects in the three Task Force areas of Universities and Research, Children and Schools and Public Outreach. Under the three Task Force areas, a total of seven projects have commenced in Zambia. A further two projects involve the collaboration of Zambia and other regional member countries in order to foster engagement with important regional astronomy facilities (e.g. SKA). SAROAD has identified the IAU’s International Year of Light and a starting point for offering regional support for IAU-endorsed global activities. SAROAD has set up a hub dedicated to regional events and activities about the International Year of Light. SAROAD has a database of regional authorities to enable contact with the region's decision makers and experts. SAROAD will hold an annual event which brings forum for astronomy for development. The creation of the database and the SAROAD Road show is a first step towards this goal. The SAROAD website has helped to advertise upcoming events for astronomy development and education; it is used to provide advice, guidance and information for astronomers in all countries in the Southern Africa. Fundraising is the primary goal for SAROAD in 2015 towards financial self-sufficiency by 2020. We report on the methods that work best

  8. Early Science with SOFIA, the Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Young, E T; Marcum, P M; Roellig, T L; De Buizer, J M; Herter, T L; Güsten, R; Dunham, E W; Temi, P; Andersson, B -G; Backman, D; Burgdorf, M; Caroff, L J; Casey, S C; Davidson, J A; Erickson, E F; Gehrz, R D; Harper, D A; Harvey, P M; Helton, L A; Horner, S D; Howard, C D; Klein, R; Krabbe, A; McLean, I S; Meyer, A W; Miles, J W; Morris, M R; Reach, W T; Rho, J; Richter, M J; Roeser, H -P; Sandell, G; Sankrit, R; Savage, M L; Smith, E C; Shuping, R Y; Vacca, W D; Vaillancourt, J E; Wolf, J; Zinnecker, H; 10.1088/2041-8205/749/2/L17

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7-m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 micron to 1.6 mm, SOFIA operates above 99.8 % of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center DLR, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This article provides an overview of the observatory and its early performance.

  9. Astronomy Teaching in Europe's Secondary Schools

    Science.gov (United States)

    1994-11-01

    EU/ESO Workshop for European Physics Teachers A joint Workshop of the European Union (EU) and the European Southern Observatory (ESO) will take place on November 25 - 30, 1994 under the auspices of the European Week for Scientific Culture. The Workshop is entitled "Astronomy: Science, Culture and Technology". It will bring together at the ESO Headquarters in Garching (Germany) more than 100 secondary school teachers and ministerial representatives from 17 European countries to discuss all aspects of this broad subject. It is the first and very visible part of a new, sustained effort to stimulate and modernize the teaching of the subjects of Astronomy and Astrophysics in European secondary schools. During the Workshop, the participants will experience the present state of this multi-disciplinary science in its most general context, that is as a human, long-term scientific and technological endeavour with great cultural implications. They will exchange views on how the various elements of Astronomy can best be utilized within the educational schemes of the individual countries, both as subjects in their own rights, and especially in support of many other items on the present teaching agenda. Why This Workshop ? Astronomy is probably the oldest science. Since innumerable millenia, it has continued to have a great influence on mankind's perception of itself and its surroundings. In our days, Astronomy and Astrophysics have become a central area of the natural sciences with many direct links to other sciences (e.g., many aspects of physics, mathematics, chemistry, the geo-sciences, etc.); it has an important cultural content (including our distant origins, the recognition of the location and restricted extent of our niche in space and time, cosmological considerations as well as philosophy in general); its recent successes are to a large amount dependent on advanced technologies and methodologies (e.g., optics, electronics, detector techniques at all wavelengths

  10. Norway: Financial System Stability Assessment, including Reports on the Observance of Standards and Codes on the following topics: Banking Supervision, Insurance Regulation, and Payment Systems

    OpenAIRE

    International Monetary Fund

    2005-01-01

    This paper presents key findings of Norway’s Financial System Stability Assessment, including Reports on the Observance of Standards and Codes on Banking Supervision, Insurance Regulation, and Payment Systems. Norway’s financial system appears sound and well managed. Short-term vulnerabilities appear low overall, given improved macroeconomic conditions and historically low interest rates, coupled with generally prudent and transparent policies. Beyond the short term, however, rising house...

  11. Kantian epistemology as an alternative to heroic astronomy

    Science.gov (United States)

    Mclaughlin, W. I.

    1985-01-01

    Theoretical and observational methods in astronomy have advanced to a point where certain of their outcomes are difficult to comprehend with the traditional categories of human knowledge. The philosophical discipline of epistemology, the theory of knowledge, is used here to address four current problems in observational astronomy, exobiology, cosmology, and quantum mechanics. The problems are united by an epistemological content which, when unrecognized, has resulted in some heroic solutions of an ad hoc nature. Kant's critical philosophy is employed because his work is consistent with basic attitudes in present-day physics and biology.

  12. NASA's Great Observatories Celebrate the International Year of Astronomy

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version In 1609, Galileo improved the newly invented telescope, turned it toward the heavens, and revolutionized our view of the universe. In celebration of the 400th anniversary of this milestone, 2009 has been designated as the International Year of Astronomy. Today, NASA's Great Observatories are continuing Galileo's legacy with stunning images and breakthrough science from the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory. While Galileo observed the sky using visible light seen by the human eye, technology now allows us to observe in many wavelengths, including Spitzer's infrared view and Chandra's view in X-rays. Each wavelength region shows different aspects of celestial objects and often reveals new objects that could not otherwise be studied. This image of the spiral galaxy Messier 101 is a composite of views from Spitzer, Hubble, and Chandra. The red color shows Spitzer's view in infrared light. It highlights the heat emitted by dust lanes in the galaxy where stars can form. The yellow color is Hubble's view in visible light. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes. The blue color shows Chandra's view in X-ray light. Sources of X-rays include million-degree gas, exploded stars, and material colliding around black holes. Such composite images allow astronomers to see how features seen in one wavelength match up with those seen in another wavelength. It's like seeing with a camera, night vision goggles, and X-ray vision all at once. In the four centuries since Galileo, astronomy has changed dramatically. Yet our curiosity and quest for knowledge remain the same. So, too, does our wonder at the splendor of the universe. The International Year of Astronomy Great Observatories Image Unveiling is supported by the NASA Science Mission Directorate Astrophysics Division. The project is a

  13. Spatial Thinking as the Dimension of Progress in an Astronomy Learning Progression

    Science.gov (United States)

    Plummer, Julia D.

    2014-01-01

    The big idea of "celestial motion", observational astronomy phenomena explained by the relative position and motion of objects in the solar system and beyond, is central to astronomy in primary and secondary education. In this paper, I argue that students' progress in developing productive, scientific explanations for this class of…

  14. Consecutive Course Modules Developed with Simple Materials to Facilitate the Learning of Basic Concepts in Astronomy

    Science.gov (United States)

    Okulu, Hasan Zuhtu; Oguz-Unver, Ayse

    2015-01-01

    From the perspective of teaching, the huge natural laboratory that astronomy provides constitutes the most prominent connection between astronomy and other branches of science. The purpose of this research was to provide educators with activities of observation using simple materials that were developed to facilitate the teaching of basic concepts…

  15. Introducing Slide Sets for the Introductory Astronomy Instructor

    Science.gov (United States)

    Meinke, Bonnie K.; Schneider, Nicholas; Brain, David; Schultz, Gregory; Buxner, Sanlyn; Smith, Denise

    2014-11-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms.In an effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed “DPS Discoveries”, which are short, topical presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides that cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide that includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the Discovery slides and connect them to NASA mission science. http://dps.aas.org/education/dpsdisc Similarly, the NASA SMD Astrophysics Forum is coordinating the development of a series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The “Astro 101 slide sets” are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (not yet in their textbooks) into the

  16. Introducing Astronomy into Mozambican Society

    CERN Document Server

    Ribeiro, V A R M; Besteiro, A M A R; Geraldes, H; Maphossa, A M; Nhanonbe, F A; Uaissine, A J R

    2009-01-01

    Mozambique has been proposed as a host for one of the future Square Kilometre Array stations in Southern Africa. However, Mozambique does not possess a university astronomy department and only recently has there been interest in developing one. South Africa has been funding students at the MSc and PhD level, as well as researchers. Additionally, Mozambicans with Physics degrees have been funded at the MSc level. With the advent of the International Year of Astronomy, there has been a very strong drive, from these students, to establish a successful astronomy department in Mozambique. The launch of the commemorations during the 2008 World Space Week was very successful and Mozambique is to be used to motivate similar African countries who lack funds but are still trying to take part in the International Year of Astronomy. There hare been limited resources and funding, however there is a strong will to carry this momentum into 2009 and, with this, influence the Government to introduce Astronomy into its nationa...

  17. Status of High-Energy Neutrino Astronomy

    CERN Document Server

    Kowalski, Marek

    2014-01-01

    With the recent discovery of high-energy neutrinos of extra-terrestrial origin by the IceCube neutrino observatory, neutrino-astronomy is entering a new era. This review will cover currently operating open water/ice neutrino telescopes, the latest evidence for a flux of extra-terrestrial neutrinos and current efforts in the search for steady and transient neutrino point sources. Generalised constraints on potential astrophysical sources are presented, allowing to focus the hunt for the sources of the observed high-energy neutrinos.

  18. Astronomy in the Service of Christianity

    Science.gov (United States)

    McCluskey, Stephen C.

    Medieval European scholars drew on ancient traditions of astronomical knowledge to develop astronomical practices that served the needs of religious institutions by defining the sacred time and sacred space of religious ritual. Techniques employing the luni-solar calendar to determine the date of Easter, observations of the stars and Sun to determine the time of prayer, and orienting churches astronomically to face the symbolically important direction, east, were widely practiced. These varieties of religious astronomy were employed by persons of varying levels of education, working within a variety of contexts.

  19. Calibration of the cameras of the H.E.S.S. {gamma}-ray astronomy experiment and observations of the Galactic Centre above 100 GeV; Etalonnage des cameras de l'experience d'astronomie {gamma} H.E.S.S. et observations du centre galactique au-dela de 100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, L

    2005-05-15

    The H.E.S.S. experiment (High Energy Stereoscopic System) consists of four imaging atmospheric Cherenkov telescopes to study the southern astrophysical sources above 100 GeV. This thesis presents the detector as well as the analysis chain. The calibration methods are described in details and the systematic errors on the image amplitude are derived. Then, an analysis based on a semi-analytical model of the electromagnetic shower development in the atmosphere is presented. Tools to reconstruct the energy spectrum and the morphology of the very high energy {gamma}-ray sources are presented and applied to the Crab Nebula. Systematic errors associated to the spectrum analysis are estimated. All these techniques were applied to study the Galactic Centre emission above 100 GeV. The nature of the source detected in 2003 and 2004 observations is still unknown and its spectrum, variability and morphology are studied. Various candidates are proposed, among them the supermassive black hole Sgr A* located at the dynamical centre of the Milky Way, the supernova remnant Sgr A Est or interactions of accelerated particles with the dense medium of this region. In this thesis, the signal was interpreted in terms of dark matter annihilation (neutralinos or Kaluza-Klein bosons) in a dense halo located at the Galactic Centre. This analysis showed that, in the framework of these models, dark matter annihilation alone can not explain the H.E.S.S. signal. The main component would thus come from astrophysical sources. (author)

  20. Outreach Testing of Ancient Astronomy

    Science.gov (United States)

    Sanmartin, J. R. S.; Blanco, M. B. M.

    2015-10-01

    This work is an outreach approach to an ubiquitous recent problem in secondary-school education: how to face back the decreasing interest in natural sciences shown by students under 'pressure' of convenient resources in digital devices/applications. The approach rests on two features. First, empowering of teen-age students to understand regular natural events around, as very few educated people they meet could do. Secondly, an understanding that rests on personal capability to test and verify experimental results from the oldest science, astronomy, with simple instruments as used from antiquity down to the Renaissance (a capability restricted to just solar and lunar motions). Because lengths in astronomy and daily life are so disparate, astronomy basically involved observing and registering values of angles (along with times), measurements being of two types, of angles on the ground and of angles in space, from the ground. First, the gnomon, a simple vertical stick introduced in Babylonia and Egypt, and then in Greece, is used to understand solar motion. The gnomon shadow turns around during any given day, varying in length and thus angle between solar ray and vertical as it turns, going through a minimum (noon time, at a meridian direction) while sweeping some angular range from sunrise to sunset. Further, the shadow minimum length varies through the year, with times when shortest and sun closest to vertical, at summer solstice, and times when longest, at winter solstice six months later. The extreme directions at sunset and sunrise correspond to the solstices, swept angular range greatest at summer, over 180 degrees, and the opposite at winter, with less daytime hours; in between, spring and fall equinoxes occur, marked by collinear shadow directions at sunrise and sunset. The gnomon allows students to determine, in addition to latitude (about 40.4° North at Madrid, say), the inclination of earth equator to plane of its orbit around the sun (ecliptic), this

  1. Astronomy Teaching Problems in Armenia

    Science.gov (United States)

    Gyulzadyan, M. V.

    2015-07-01

    Astronomy, like any science, constantly develops unlimitedly approaching absolute objective truth; every moment of its accomplishments are due to the level of public welfare demands and culture. Armenia for centuries had a major contributor to the ancient as well as to the modern astronomy development. But it has been already a couple of years that the "Astronomy" course is not present at the schools of Armenia. Despite that fact, several schools put an effort to stress the importance of that subject by extracurricular groups trying to fill that gap. How this work is carried out and what results do we have? What can be done to increase the level of astronomical education as well as for its expansion?

  2. Astronomy education through interactive materials

    Science.gov (United States)

    Voelzke, Marcos Rincon; Antunes de Macêdo, Josué

    2015-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.

  3. Scientific literacy: astronomy at school

    Science.gov (United States)

    Gangui, A.; Iglesias, M.; Quinteros, C.

    Models constructed by scientists to explain the world often incorporate their actual individual conceptions about different physical phenomena. Likewise, prospective teachers reach general science courses with preconstructed and consistent models of the universe surrounding them. In this project we present a series of basic questionings that make us reflect on the present situation of the teaching-learning relationship in astronomy within the framework of formal education for elementary school teachers. Our project main aims are: 1) to contribute to finding out the real learning situation of preservice elementary teachers, and 2) from these studies, to try and develop didactic tools that can contribute to improve their formal education in topics of astronomy. In spite of being of chief importance within the science teaching topics, mainly due to its interdisciplinarity and cultural relevance, researches in didactics of astronomy are not well represented in our research institutes. FULL TEXT IN SPANISH

  4. Get the Picture: The Virtual Astronomy Multimedia Project

    Science.gov (United States)

    Hurt, Robert L.; Christensen, L. L.; Gauthier, A.; Wyatt, R.; Berriman, B.

    2007-05-01

    High quality astronomical images, accompanied by rich caption and background information, abound on the web and yet are notoriously difficult to locate efficiently using common search engines. "Flat" searches can return dozens of hits for a single popular image but miss equally important related images from other observatories. The Virtual Astronomy Multimedia Project (VAMP) is developing the architecture for an online index of astronomical imagery and video that will simplify access and provide a service around which innovative applications can be developed (e.g. digital planetariums). Current progress includes design prototyping around existing Astronomy Visualization Metadata (AVM) standards. Growing VAMP partnerships include a cross section of observatories, data centers, and planetariums.

  5. 'Land-marks of the universe': John Herschel against the background of positional astronomy.

    Science.gov (United States)

    Case, Stephen

    2015-01-01

    John Herschel (1792-1871) was the leading British natural philosopher of the nineteenth century, widely known and regarded for his work in philosophy, optics and chemistry as well as his important research and popular publications on astronomy. To date, however, there exists no extended treatment of his astronomical career. This paper, part of a larger study exploring Herschel's contributions to astronomy, examines his work in the context of positional astronomy, the dominant form of astronomical practice throughout his lifetime. Herschel, who did not himself practice positional astronomy and who was known for his non-meridional observations of specific stellar objects, was nonetheless a strong advocate for positional astronomy-but for very different reasons than the terrestrial applications to which it was most often put. For Herschel, the star catalogues of positional astronomy were the necessary observational foundation upon which information about the stars as physical objects could be constructed. Positional astronomy practiced in the great national observatories was not about navigation or timekeeping; it was a way to standardize stellar observations and make them useful data for constructing theories of the stars themselves. For Herschel, the seeds of the new astronomy emerged from the practices of the old. PMID:26221834

  6. ASTRONOMY IN THE SYSTEM OF UNIVERSITY EDUCATION

    OpenAIRE

    Александров, Ю В; Харківський національний університет ім. В.Н.Каразіна; Захожай, В А; Харківський національний університет ім. В.Н.Каразіна

    2014-01-01

    Three aspects ofastronomical university education are considered: such as preparation of astronomists-professionals, teaching astronomy asa part of scientific and professional specialists preparation, teaching astronomy as an element of cultural universityeducation.

  7. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  8. Outreach Testing of Ancient Astronomy

    Science.gov (United States)

    Sanmartin, J. R. S.; Blanco, M. B. M.

    2015-10-01

    This work is an outreach approach to an ubiquitous recent problem in secondary-school education: how to face back the decreasing interest in natural sciences shown by students under 'pressure' of convenient resources in digital devices/applications. The approach rests on two features. First, empowering of teen-age students to understand regular natural events around, as very few educated people they meet could do. Secondly, an understanding that rests on personal capability to test and verify experimental results from the oldest science, astronomy, with simple instruments as used from antiquity down to the Renaissance (a capability restricted to just solar and lunar motions). Because lengths in astronomy and daily life are so disparate, astronomy basically involved observing and registering values of angles (along with times), measurements being of two types, of angles on the ground and of angles in space, from the ground. First, the gnomon, a simple vertical stick introduced in Babylonia and Egypt, and then in Greece, is used to understand solar motion. The gnomon shadow turns around during any given day, varying in length and thus angle between solar ray and vertical as it turns, going through a minimum (noon time, at a meridian direction) while sweeping some angular range from sunrise to sunset. Further, the shadow minimum length varies through the year, with times when shortest and sun closest to vertical, at summer solstice, and times when longest, at winter solstice six months later. The extreme directions at sunset and sunrise correspond to the solstices, swept angular range greatest at summer, over 180 degrees, and the opposite at winter, with less daytime hours; in between, spring and fall equinoxes occur, marked by collinear shadow directions at sunrise and sunset. The gnomon allows students to determine, in addition to latitude (about 40.4° North at Madrid, say), the inclination of earth equator to plane of its orbit around the sun (ecliptic), this

  9. The new Andean Regional Office of Astronomy for Development (ROAD)

    Science.gov (United States)

    Char, Farid; Forero-Romero, Jaime

    2015-08-01

    The Andean Regional Office of Astronomy for Development (ROAD) is a new effort in South America to serve several goals in astronomical development. Six countries (Bolivia, Colombia, Chile, Ecuador, Perú and Venezuela) will work together, representing a common language block in the Andean region and focusing on develop strategies to strengthen the professional research, education and popularization of astronomy. Our current Working Structure comprises a ROAD Coordinator and Coordinators per Task Force, as well as Organizing Committees, Collaborators and Volunteers.The participating institutions of this new ROAD have been involved in many projects involving each of the current OAD’s Task Forces: research, schools and children and public, exploring educational activities/material to be shared among the Andean countries, standardizing the knowledge and creating inspirational experiences. We expect to generate many efforts in order to bring a more homogeneous activity in each Andean country, taking into account the special role of Chile in global astronomy, due to its great conditions for astronomy and the involvement of many professional observatories, universities and astronomy institutions.Our current (and upcoming) most relevant activities includes: Andean Schools on Astronomy, Andean Graduate Program and Massive Open Online Courses (TF1); Virtual Training Sessions and Teaching material for the visually impaired students; Annual TF2 meeting to gather all the collaborators (TF2); Development for planetariums and Communicating Astronomy with the Public (TF3). The Andean region, in the other hand, will also be involved in at least two important events: the CAP Meeting in May 2016 and the XV LARIM in October 2016 (both in Colombia); and Chile will bid to host the XXXI IAU GA in 2021, with the aim of show the great advances in astronomical development from the Andean region and South America.

  10. Urban Middle-School Teachers' Beliefs about Astronomy Learner Characteristics: Implications for Curriculum

    Science.gov (United States)

    Miranda, Rommel J.

    2010-01-01

    This study addresses the link between urban teachers' beliefs about their students' ability to succeed in astronomy and their instructional decisions and practices in response to those beliefs. The findings suggest that teachers believe that the student characteristics that are necessary for high achievement in astronomy include specific cognitive…

  11. Introductory Astronomy Course at the University of Cape Town: Probing Student Perspectives

    Science.gov (United States)

    Rajpaul, Vinesh; Allie, Saalih; Blyth, Sarah-Louise

    2014-01-01

    We report on research carried out to improve teaching and student engagement in the introductory astronomy course at the University of Cape Town. This course is taken by a diverse range of students, including many from educationally disadvantaged backgrounds. We describe the development of an instrument, the Introductory Astronomy Questionnaire…

  12. Practical astronomy with your calculator

    CERN Document Server

    Duffett-Smith, Peter

    1989-01-01

    Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr

  13. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1968-01-01

    Advances in Astronomy and Astrophysics, Volume 6 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with the description of improved methods for analyzing and classifying families of periodic orbits in a conservative dynamical system with two degrees of freedom. The next chapter describes the variation of fractional luminosity of distorted components of close binary systems in the course of their revolution, or the accompanying changes in radial velocity. This topic is followed by discussions on vari

  14. How Create an Astronomy Outreach Program to Bring Astronomy to Thousands of People at Outdoor Concerts Astronomy Festivals, or Tourist Sites

    Science.gov (United States)

    Lubowich, Donald

    2015-08-01

    I describe how to create an astronomy program for thousands of people at outdoor concerts based on my $308,000 NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013), and the Astronomy Festival on the National Mall (AFNM, 10,000 people/yr).MAUS reached 50,000 music lovers at local parks and at the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. AFNM was started in 2010 with co-sponsorship by the White House Office of Science and Technology Policy. MAUS and AFMN combine solar, optical, and radio telescope observations; large posters/banners; hands-on activities, imaging with a cell phone mount; citizen science activities; hand-outs; and teacher info packet. Representatives from scientific institutions participated. Tyco Brahe, Johannes Kepler, and Caroline Herschel made guest appearances.MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience-often the first time they looked through a telescope. While social media/www sites to promote the events; use many telescopes for multiple targets; project a live image or video; select equipment that is easy to use, store, set-up, and take down; use hands-on astronomy activities; position the displays for maximum visibility (they are teachable moments); have educator hand-outs, show citizen science projects, promote astronomy clubs and science museums.

  15. Astronomy and astronomers in Jules Verne's novels

    OpenAIRE

    Crovisier, Jacques

    2009-01-01

    Almost all the "Voyages Extraordinaires" written by Jules Verne refer to astronomy. In some of them, astronomy is even the leading theme. However, Jules Verne was basically not learned in science. His knowledge of astronomy came from contemporaneous popular publications and discussions with specialists among his friends or his family. In this article, I examine, from the text and illustrations of his novels, how astronomy was perceived and conveyed by Jules Verne, with errors and limitations ...

  16. Australian Aboriginal Astronomy in the International Year of Astronomy 2009

    Science.gov (United States)

    Norris, R. P.

    2010-10-01

    Each of the 400 different Aboriginal cultures in Australia has a distinct mythology, and its own ceremonies and art forms, some of which have a strong astronomical component. Sadly, the Australian media tend to focus on negative aspects of contemporary Aboriginal culture, and very few non-Aboriginal people in the wider Australian community are aware of the intellectual depth of traditional Aboriginal cultures. The International Year of Astronomy 2009 seemed an excellent opportunity to tell the wider public about Aboriginal astronomy, so that they might understand something of the depth and complexity of traditional Aboriginal cultures. This article describes some of the challenges and successes of this programme, and the impact that this work has had on Australian perceptions of Aboriginal culture, helping to build a bridge across the cultures. It also describes the achievement of an unexpected and unplanned goal: the inclusion of Aboriginal astronomy opened up astronomy to a section of the population who had never before intentionally attended a talk on science.

  17. Indian Astronomy: The Missing Link in Eurocentric History of Astronomy

    Science.gov (United States)

    Haque, Shirin; Sharma, Deva

    2016-01-01

    A comprehensive history of Astronomy should show in reasonable chronological order, the contributions from wherever they arise in the world, once they are reliably documented. However, the authors note that consistently, the extremely rich contributions from Ancient Indian scholars like Aryabatha and Bhramagupta are omitted in Eurocentric…

  18. Next-Generation X-Ray Astronomy

    Science.gov (United States)

    White, Nicholas E.

    2011-01-01

    The future timing capabilities in X-ray astronomy will be reviewed. This will include reviewing the missions in implementation: Astro-H, GEMS, SRG, and ASTROSAT; those under study: currently ATHENA and LOFT; and new technologies that may enable future missions e.g. Lobster eye optics. These missions and technologies will bring exciting new capabilities across the entire time spectrum from micro-seconds to years that e.g. will allow us to probe close to the event horizon of black holes and constrain the equation of state of neutron stars.

  19. Candidates of World Heritage Sites of Astronomy in Japan

    Science.gov (United States)

    Watanabe, Jun-ichi; Nakagiri, Masao

    2015-08-01

    Unfortunately there is no heritage site of astronomy until now in Japan. Here we report several candidates based on the importance from the historical point of view.One is the “Nisshinkan” Astronomical Observatory site of the Edo era. Many observatories were established in the Edo era, including "Asakusa observatory" of a Shogunate Government. However, most of them have been disappeared by the urban development. The only one remained until now is the “Nissshinkan” Astronomical Observatory site of which the basement made of stones is preserved. This was made in 1803 mainly for educational purpose at the “Nisshinkan” which was a local school for the Samurai’s children in Aizu area. Although a wooden building of the school was lost by a war, but this observatory mark exists because large basement of a few meters high remained. This site is now designated as a cultural asset by the local government, and can be recognized even at the present time.Another is the Repsold Meridian Transit which was designated as the Important Cultural Property of Japan in 2011. A Repsold meridian transit instrument is a telescope with a diameter of 13.5 cm and a focal length of 212 cm for meridian transit observations. It was manufactured by A. Repsold & Soehne Co. Ltd. in Hamburg, Germany in 1880, and purchased by the Naval Observatory and imported to Japan in 1881, becoming one of the most important telescopes in the dawning era of modern astronomy in Japan. The telescope escaped being damaged in the Great Kanto Earthquake, and continued to be used as a main telescope for time determination, longitude observation, and astrometry of heavenly bodies till the end of the 1950s. We confirmed that this telescope has retained its original form in 2008, and after restoration and repair, the telescope was widely opened for exhibition to the public. In June, 2011 it was designated as one of the important cultural properties of Japan. The related old instruments which brought modern

  20. Astronomy education through hands-on photography workshops

    Science.gov (United States)

    Schofield, I.; Connors, M. G.; Holmberg, R.

    2013-12-01

    Athabasca University (AU), Athabasca University Geophysical and Geo-Space Observatories (AUGO / AUGSO), the Rotary Club of Athabasca and Science Outreach Athabasca has designed a three day science workshop entitled Photography and the Night Sky. This pilot workshop, aimed primarily at high-school aged students, serves as an introduction to observational astronomy as seen in the western Canadian night sky using digital astrophotography without the use of a telescope or tracking mount. Participants learn the layout of the night sky by proficiently photographing it using digital single lens reflex camera (DSLR) kits including telephoto and wide-angle lenses, tripod and cable release. The kits are assembled with entry-level consumer-grade camera gear as to be affordable by the participants, if they so desire to purchase their own equipment after the workshop. Basic digital photo editing is covered using free photo editing software (IrfanView). Students are given an overview of observational astronomy using interactive planetarium software (Stellarium) before heading outdoors to shoot the night sky. Photography is conducted at AU's auroral observatories, both of which possess dark open sky that is ideal for night sky viewing. If space weather conditions are favorable, there are opportunities to photograph the aurora borealis, then compare results with imagery generated by the all-sky auroral imagers located at the Geo-Space observatory. The aim of this program is to develop awareness to the science and beauty of the night sky, while promoting photography as a rewarding, lifelong hobby. Moreover, emphasis is placed on western Canada's unique subauroral location that makes aurora watching highly accessible and rewarding in 2013, the maximum of the current solar cycle.

  1. Astronomy Education Project for Guangdong High Schools

    Indian Academy of Sciences (India)

    F. P. Pi; K. Y. Guan; J. Wang; H. G. Wang; Y. Liu; J. H. Fan

    2014-09-01

    Guangdong province is an active area in China for astronomy education and popularization. The current status and problems of astronomy education in high schools are reviewed. To tackle these problems, an astronomy education project for high school teachers and students was initiated by Guangzhou University in 2013. The purpose and key points of the projects are introduced in this paper.

  2. Blazing the Trail for Astronomy Education Research

    Science.gov (United States)

    Bailey, Janelle M.; Lombardi, Doug

    2015-01-01

    Education research has long considered student learning of topics in astronomy and the space sciences, but astronomy education research as a sub-field of discipline-based education research is relatively new. Driven by a growing interest among higher education astronomy educators in improving the general education, introductory science survey…

  3. X-ray instrumentation in astronomy II; Proceedings of the Meeting, San Diego, CA, Aug. 15-17, 1988

    International Nuclear Information System (INIS)

    Various papers on X-ray instrumentation in astronomy are presented. Individual topics addressed include: concentrating hard X-ray collector, advanced X-ray Astrophysics Facility high resolution camera, Fano-noise-limited CCDs, linear CCD with enhanced X-ray quantum efficiency, advances in microchannel plate detectors, X-ray imaging spectroscopy with EEV CCDs, large aperture imaging gas scintillation proportional counter, all-sky monitor for the X-ray Timing Explorer, and miniature satellite technology capabilities for space astronomy. Also discussed are: high-resolution X-ray spectroscopy using microcalorimeters, high-throughput X-ray astrophysics cornerstone, gas mixtures for X-ray proportional counters, transmission grating spectrometer for SPEKTROSAT, efficiency of X-ray reflection gratings, soft X-ray spectrographs for solar observations, observability of coronal variations, Berkeley extreme-UV calibration facility, SURF-II radiometric instrumentation calibration facility, and evaluation of toroidal gratings in the EUV

  4. The Development of Astronomy Concept Test for Determining Preservice Science Teachers’ Misconceptions About Astronomy

    OpenAIRE

    Bektaşlı, Behzat; Hacettepe University, Faculty of Education, Department of Science Education

    2013-01-01

    Astronomy is fairly a new course for preservice science teachers in Turkey. Regardless of many science courses taken, preservice science teachers hold several misconceptions about astronomy. It is essential to find out those misconceptions to facilitate astronomy teaching. The aim of this study is to develop a new astronomy instrument specifically related to the topics of grade 4 through grade 8. The main reason for that is to find out preservice science teachers’ astronomy misconceptions spe...

  5. ``Curious About Astronomy?": Cornell University's Ask an Astronomer Website

    Science.gov (United States)

    Carruba, V.; Carter, L. M.; Cuk, M.; Jackson, M. A.; Jordan, C. E.; Krco, M.; Masters, K. L.; Pandian, J. D.; Rothstein, D. M.; Saintonge, A.; Scharringhausen, B. R.; Spekkens, K.; Springob, C. M.; Kornreich, D. A.; Curious Team

    2002-12-01

    ``Curious About Astronomy? Ask an Astronomer" is a website (http://curious.astro.cornell.edu) run by graduate and undergraduate student volunteers at Cornell University. Questions from the general public, submitted either by email or using a convenient web form, are answered by members of the Curious Team, and particularly interesting questions are posted on the website for visitors to browse. We receive and answer a few hundred questions each month from people of diverse backgrounds, including K-12 and post-secondary students and instructors, amateur astronomers, parents, scientists in various fields and others around the world with an interest in astronomy. We have recently upgraded the website, creating 22 different sections about specific topics in astronomy, a searchable index of hundreds of cross-listed questions and a page of suggestions and guidelines for teachers. The Curious Page has already become a source of useful information for the public. Questions and answers about the so-called ``Moon Hoax" and a recent news article about the Sun going supernova have received thousands of hits. By offering individual responses about any aspect of astronomy to anyone who has Internet access and by continually updating our archive of answered questions, we hope to provide a unique, growing astronomy resource for students, educators and the general public---as well as a valuable opportunity for the Curious Team to participate in educational outreach and improve its communication skills in a setting that requires no formal budget or faculty supervision.

  6. Energy, The Environment And Astronomy: Education And Action

    Science.gov (United States)

    Rodgers, Bernadette; Doppmann, G.; Kalas, P.; Lacy, J.; Beck, T.; Marshall, P. J.

    2010-01-01

    The specter of global climate change is arguably the most pressing scientific, social and ethical issue of our time. Although the relatively small field of astronomy represents only a fraction of the total human carbon emissions, astronomers have a great potential, and therefore perhaps a great responsibility, to educate themselves and the public on this issue. In addition, the average per capita carbon emissions of professional astronomers are not small, and our profession can do much to reduce its energy consumption and maximize the cost-benefit ratio of our work. At the January AAS meeting, we are organizing a half-day splinter meeting titled "Energy, the Environment and Astronomy: Education and Action". The focus will be on energy conservation and education as it relates to professional astronomy. Education focuses on informing ourselves, our students and the general public with which we interact, about the real issues, the necessary actions, and the likely consequences of various energy consumption and carbon emission scenarios. Action focuses on effective energy conservation and renewable energy initiatives within professional astronomy. Air travel, solar energy at ground-based observatories, and Gemini's "Green Initiative” are among the topics that will be discussed. The splinter meeting will be open to all and will include expert speakers from outside astronomy, contributed talks by astronomers, and a discussion session.

  7. Astronomy Education Challenges in Egypt

    Science.gov (United States)

    El Fady Beshara Morcos, Abd

    2015-08-01

    One of the major challenges in Egypt is the quality of education. Egypt has made significant progress towards achieving the Education for All and the Millennium Development Goals (MDGs). Many associations and committees as education reform program and education support programs did high efforts in supporting scientific thinking through the scientific clubs. The current state of astronomical education in Egypt has been developed. Astronomy became a part in both science and geography courses of primary, preparatory and secondary stages. Nowadays the Egyptian National Committee for Astronomy, put on its shoulders the responsibility of revising of astronomy parts in the education courses, beside preparation of some training programs for teachers of different stages of educations, in collaboration with ministry of education. General lectures program has been prepared and started in public places , schools and universities. Many TV and Radio programs aiming to spread astronomical culture were presented. In the university stage new astronomy departments are established and astrophysics courses are imbedded in physics courses even in some private universities.

  8. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  9. Neutrino astronomy: Present and future

    Indian Academy of Sciences (India)

    Thomas McCauley

    2006-10-01

    I briefly review the present and future status of the burgeoning field of neutrino astronomy. I outline the astrophysics and particle physics goals, design, and performance of the various current and proposed neutrino telescopes. Also described are present results and future expectations.

  10. Astronomy and Astrophysics in India

    Science.gov (United States)

    Narlikar, J.; Murdin, P.

    2001-07-01

    The growth in astronomy and astrophysics (A&A) in India has been mostly since the country achieved independence in 1947. The present work is carried out in a few select research institutes and in some university departments. The Astronomical Society of India has around 300 working A&A scientists as members, with another 50-60 graduate students....

  11. Music to teach astronomy by

    Science.gov (United States)

    Möbius, Eberhard

    1999-03-01

    Author shares his technique of aligning music selections with his introductory astronomy syllabus. He begins class with a music selection as an introduction to the concepts covered in class. List of 40 music titles and composers used can be downloaded from http://www-ssg.sr.unh.edu/406/music.html.

  12. The impact of authentic science inquiry experiences studying variable stars on high school students' knowledge and attitudes about science and astronomy and beliefs regarding the nature of science

    Science.gov (United States)

    Richwine, Pebble Lea

    The purpose of this concurrent mixed methods study was to investigate the impact on high school students' knowledge and attitudes regarding astronomy and beliefs about the nature of science after participating in an extended authentic, inquiry-oriented, research experience studying variable stars using a specifically designed curriculum guide "In the Hunt for Variable Stars." The study gathered quantitative data using a pretest posttest strategy on a modified form of an existing questionnaire called Students Attitudes Toward Astronomy and four student-supplied response content surveys. Qualitative methods included analysis of researcher's field notes, naturalistic observations, formal interviews, and students' artifacts. The methods and results of this study provided important baseline information to measure cognitive and affective changes resulting from an authentic scientific research experience for high school students. Ninety students participated in a targeted instructional sequence and their attitudes and knowledge were compared to 50 students in a comparable science course who were not provided an authentic research experience. The results obtained in this study strongly suggest that participation in research is successful at significantly increasing content knowledge. All four content surveys showed statistically significant increases for students in the intervention group as compared to the students in the non-intervention group. Qualitative results demonstrated that both groups of students initially held naive ideas about science and astronomy. After participation in the intervention, the most dramatic changes were observed in students' understanding of astronomy content. No substantial change was seen in students' attitudes toward Astronomy and science but there is evidence of some limited impacts on beliefs regarding the nature of science. In combination, the data resulting from this mixed-method study lend considerable weight to claim in contemporary

  13. Europe Unveils 20-Year Plan for Brilliant Future in Astronomy

    Science.gov (United States)

    2008-11-01

    for Earth Sciences and Astronomy (INSU) of the CNRS. To build consensus on priorities in a very diverse community, the Science Vision and Roadmap were developed in an open process involving intensive interaction with the community through large open meetings and feedback via e-mail and the web. The result is a plan now backed by astronomers in 28 Member and Associated States of the EU, with over 500 million inhabitants. Over 60 selected experts from across Europe contributed to the construction of the ASTRONET Roadmap, ensuring that European astronomy has the tools to compete successfully in answering the challenges of the Science Vision. They identified and prioritised a set of new facilities to observe the Universe from radio waves to gamma rays, to open up new ways of probing the cosmos, such as gravitational waves, and to advance in the exploration of our Solar System. In the process, they considered all the elements needed by a successful scientific enterprise, from global-scale cooperation on the largest mega-project to the need for training and recruiting skilled young scientists and engineers. One of two top-priority large ground-based projects is ESO's European Extremely Large Telescope. Its 42-metre diameter mirror will make the E-ELT the largest optical/near-infrared telescope in the world -- "the biggest eye on the sky". The science to be done with the E-ELT is extremely exciting and includes studies of exoplanets and discs, galaxy formation and dark energy. ESO Director General Tim de Zeeuw says: "The top ranking of the E-ELT in the Roadmap is a strong endorsement from the European astronomical community. This flagship project will indisputably raise the European scientific, technological and industrial profile". Among other recommendations, the Roadmap considers how to maximise the future scientific impact of existing facilities in a cost-effective manner. It also identifies a need for better access to state-of-the art computing and laboratory facilities

  14. Greek Astronomy PhDs: The last 200 years

    CERN Document Server

    Charmandaris, V

    2015-01-01

    We have recently compiled a database with all doctoral dissertations (PhDs) completed in modern Greece (1837-2014), in the general area of astronomy and astrophysics, as well as in space and ionospheric physics. A preliminary statistical analysis of the data is presented, along with a discussion of the general trends observed.

  15. Simulations to Usher in the Era of Gravitational Wave Astronomy

    Science.gov (United States)

    Lehner, Luis; Liebling, Steven L.

    2013-03-01

    A new era of astronomy is near, in which interferometers on Earth and pulsar timing observations will provide an entirely new view of the universe using gravitational waves. These waves will complement the very different images from electromagnetic waves (such as conventional telescopes) and will illuminate systems from which we detect no electromagnetic emission.

  16. The Nineteenth-Century Revolution in Astronomy

    Science.gov (United States)

    Batten, Alan Henry

    2015-08-01

    The term "revolution" in scientific contexts usually refers either to the beginnings of modern western science in the sixteenth and seventeenth centuries, or to the two great revolutions of early twentieth century physics. Comparison of what was known at the beginning of the nineteenth century with what was known at the end, however, shows that century to have been one of transformation in astronomy, and in the other sciences, that amounts to "revolution". Astronomers in 1800 knew neither the nature of the Sun nor the distances of the stars. Developments in instrumentation enabled the first determinations of stellar parallax in the 1830s, and later enabled the solar prominences to be studied outside the brief momemnts of total eclipses. The development of photography and of spectroscopy led to the birth of observational astrophysics, while the greater understanding of the nature of heat and the rise of thermodynamics made possible the first attempts to investigate the theory of stellar structure. Nothing was known in 1800 of extra-galactic objects apart from some tentative identifcations by William Herschel but, by the end of the century, the discovery of the spiral structure of some nebulae had led some to believe that these were the "island universes" about which Kant had speculated. Of course, astrophysics and cosmology would be much further developed in the twentieth century and those of us whose careers spanned the second half of that century look back on it as a "golden age" for astronomy; but the nineteenth century was undoubtedly a time of rapid transformation and can be reasonably described as as one of the periods of revolution in astronomy.

  17. Teaching radio astronomy with Affordable Small Radio Telescope (ASRT)

    Science.gov (United States)

    Joshi, Bhal Chandra

    A simple, easy to build and portable radio telescope, called Affordable Small Radio Telescope (ASRT), has been developed by the Radio Physics Laboratory (RPL), a radio astronomy teaching unit associated with the National Centre for Radio Astrophysics (TIFR) and Inter-University Centre for Astronomy and Astrophysics (IUCAA), which are two premier astronomy institutes in India. ASRT consists of off-the-shelf available Direct to Home television dishes and is easy to assemble. Our design is scalable from simple very low cost telescope to more complex yet moderately costing instrument. ASRT provides a platform for demonstrating radio physics concepts through simple hands-on experiment as well as for carrying out solar monitoring by college/University students. The presentation will highlight the concept of ASRT and the different experiments that can be carried out using it. The solar monitoring observations will be discussed along-with details of methods for calibrating these measurements. The pedagogical usefulness of ASRT in introducing undergraduatephysics students to astrophysics, measurements and analysis methods used in radio astronomy will also be discussed. Use of ASRT in the last three years in the programs of RPL, namely the annual Radio Astronomy Winter School for College students (RAWSC) and Pulsar Observing for Students (POS) is also presented. This year a new program was initiated to form a virtual group of an ASRT community, which will not only share their measurements, but also think of improving the pedagogical usefulness of ASRT by innovative experiments. This initiative is presented with the best practices drawn from our experience in using ASRT as a tool for student training in space sciences. The talk will also point out future ideas in involving a larger body of students in simple radio astronomy experiments with the ASRT, which RPL is likely to nucleate as part of its mandate.

  18. Solar Astronomy as a Means to Promote Authentic Science Research in a Teacher Professional Development Program

    Science.gov (United States)

    Walker, C. E.; Croft, S.; Pompea, S. M.; Plymate, C.; McCarthy, D.

    2003-12-01

    Teacher Leaders in Research Based Science Education (TLRBSE) is an NSF-funded Teacher Enhancement Program hosted by the National Optical Astronomy Observatory (NOAO) in Tucson, AZ. Consistent with national priorities in education, TLRBSE seeks to retain and renew middle and high school science teachers. Within the exciting context of astronomy, TLRBSE integrates the best pedagogical practices of Research Based Science Education with the process of mentoring. One means by which participants are provided training in astronomy content, pedagogy, image processing, research and leadership skills is through a 15-week distance-learning course and an in-residence, two-week institute at Kitt Peak National Observatory and the National Solar Observatory (NSO). Throughout the program, teachers work with professional astronomers and education specialists. At the in-situ, two-week institute, teachers are the researchers on one of four research projects, including solar astronomy. Preparation for the solar project dictates much of the design of the program (e.g., development and feasibility testing of the observing program, the reduction and analysis software, the preparatory documents for the teachers). The program design of the solar project is centered on teachers experiencing the scientific process. Initially through a staff-facilitated guided inquiry and then on their own as a team, the teachers propose a research question and discuss alternative hypotheses. They operate the solar telescope and take, calibrate, reduce and analyze the data. Teachers interpret and report results to their peers and pundits. Ultimately the observing experience and knowledge gained by the teachers is transferred to the classroom, where students learn science by doing science. Staff astronomers and education specialists provide continuing support with the goal of sustaining a professional learning community that outlives the research experience. Further observing experience is available during the

  19. Highlights of Astronomy, Vol. 16

    Science.gov (United States)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  20. Schiaparelli and the dawn of astronomy

    Science.gov (United States)

    Antonello, E.

    Schiaparelli is remembered by astronomers and scholars interested in ancient astronomy in particular for his fundamental contributions to the understanding of ancient Greek astronomy and for his pioneer work on babylonian astronomy. In the present paper we will highlight some of his studies and ideas about: a) the origins and the primitive astronomy in the context of the european archaeology and anthropology researches, b) the problems in the analysis of a cuneiform tablet, and c) the interpretation of the astronomical content of a verse in the Old Testament, with an interesting implication for the present day researches in cultural astronomy and archaeoastronomy.

  1. World Wide Web Astronomy 2.0

    Science.gov (United States)

    Koppelman, M.; Gay, P. L.

    2008-11-01

    The Internet has changed astronomy. It's changed research, outreach and education and it's changed how people consume astronomy as enthusiasts. People have new ways to talk to each other and new ways to participate. Coined ``Web 2.0,'' technologies such as blogs, social networks, wikis, photo and video sharing sites, podcasts and micro-blogging have been adopted by the astronomy community and exciting things are happening as a result. The International Year of Astronomy's New Media Task Force has been working to harness the excitement of ``Web 2.0'' to make the International Year of Astronomy (IYA2009) highly visible on the Internet around the world.

  2. Astronomy for Everyone: Harvard's Move Toward an All-Inclusive Astronomy Lab and Telescope

    Science.gov (United States)

    Bieryla, Allyson

    2016-01-01

    Harvard University has a growing astronomy program that offers various courses to the undergraduate concentrators, secondaries and non-majors. Many of the courses involve labs that use the 16-inch DFM Clay Telescope for night-time observations and the heliostat for observing the Sun. The goal is to proactively adapt the lab and telescope facilities to accommodate all students with disabilities. The current focus is converting the labs to accommodate visually impaired students. Using tactile images and sound, the intention is to create an experience equivalent to that of a student with full sight.

  3. Astronomy at school: present situation and future perspectives

    CERN Document Server

    Iglesias, Maria; Gangui, Alejandro

    2008-01-01

    Both the basic educational contents for students and study programs for science teachers include several topics in physics and astronomy, from the simplest ones to others as advanced as nuclear fusion to explain stellar evolution and space-time geometry for an approach to modern cosmology. In all these subjects, and most often in the simplest ones, alternative conceptions emerge, as both groups reach science course with preconstructed and consistent models of the universe surrounding them. In this work we present a series of basic questionings that make us reflect on the present situation of the teaching-learning relationship in astronomy within the framework of formal education. We then briefly explain our project aiming at finding the real learning situation of both students and prospective primary-school teachers in astronomical topics and, from the expected results of it, we point towards the need to develop didactic tools that could contribute to improve formal education in astronomy issues.

  4. Radio quiet, please! - protecting radio astronomy from interference

    CERN Document Server

    Van Driel, W

    2009-01-01

    The radio spectrum is a finite and increasingly precious resource for astronomical research, as well as for other spectrum users. Keeping the frequency bands used for radio astronomy as free as possible of unwanted Radio Frequency Interference (RFI) is crucial. The aim of spectrum management, one of the tools used towards achieving this goal, includes setting regulatory limits on RFI levels emitted by other spectrum users into the radio astronomy frequency bands. This involves discussions with regulatory bodies and other spectrum users at several levels - national, regional and worldwide. The global framework for spectrum management is set by the Radio Regulations of the International Telecommunication Union, which has defined that interference is detrimental to radio astronomy if it increases the uncertainty of a measurement by 10%. The Radio Regulations are revised every three to four years, a process in which four organisations representing the interests of the radio astronomical community in matters of sp...

  5. The Astronomy Diagnostic Test National Project: Watch Out FCI!

    Science.gov (United States)

    Zeilik, Michael; Deming, Grace L.; Hufnagel, Beth

    2002-04-01

    With funding from the NSF, a multidisciplinary team at the University of New Mexico transformed “Astro 101” from a mostly descriptive to a highly-focused conceptual course based on cognitive models of adult learning. By 1996, we had developed a mature implementation, which required alternative assessment tools. One of these, an Astronomy Diagnostic Test version 1 (ADT), was based on misconceptions research in astronomy, and demonstrated large and robust gains with hundreds of participants at UNM. To improve the ADT and expand its use, we formed the Consortium for Astronomy Education Research (CAER) to develop ADT version 2, which was released in June 1999. With additional NSF funding, we kicked off the ADT National Project, which has so far included over 5000 students in the pretest and almost 4000 in the posttest. I will present selected results from ADT 1 and 2, which now has a database almost as extensive as that of the Force Concept Inventory (FCI).

  6. Italian Astronomy at the Beginning of the 21st Century

    Science.gov (United States)

    Sciortino, Salvatore

    2013-01-01

    The end of the 20th century has seen a major reorganization of Italian astronomy. In about a decade, from 1999 to 2011, three successive laws have moved Italian astronomy from a system based on three major pillars (the twelve independent national astronomical observatories coordinated by the Public Education, University and Research Ministry through a consultative committee; the three CNR institutes devoted to astrophysics; and several university departments, either of astronomy or physics), to a single National Institute for Astrophysics (INAF). It includes all astronomical abservatories and the three CNR institutes, and collaborates with university groups operating within multi-thematic physics departments. This paper briefly describes the status, achievements and projects of Italian astrophysics, as well as some of the likely further changes coming up.

  7. Space Mysteries: Making Science and Astronomy Learning Fun

    Science.gov (United States)

    Plait, P.; Tim, G.; Cominsky, L.

    2001-12-01

    How do you get and keep a student's attention during class? Make learning fun! Using a game to teach students ensures that they have fun, enjoy the lesson and remember it. We have developed a series of interactive web and CD based games called "Space Mysteries" to teach students math, physics and astronomy. Using real NASA data, the students must find out Who (or What) dunit in an engaging astronomy mystery. The games include video interviews with famous scientists, actors playing roles who give clues to the solution, and even a few blind alleys and red herrings. The first three games are currently online in beta release at http://mystery.sonoma.edu.

  8. Submm/FIR astronomy in Antarctica: Potential for a large telescope facility

    CERN Document Server

    Minier, Vincent; Olmi, L; Lagage, P -O; Spinoglio, L; Durand, G A; Daddi, E; Galilei, D; Gallee, H; Kramer, C; Marrone, D; Pantin, E; Sabbatini, L; Schneider, N; Tothill, N; Valenziano, L; Veyssière, C

    2008-01-01

    Preliminary site testing datasets suggest that Dome C in Antarctica is one of the best sites on Earth for astronomical observations in the 200 to 500 micron regime, i.e. for far-infrared (FIR) and submillimetre (submm) astronomy. We present an overview of potential science cases that could be addressed with a large telescope facility at Dome C. This paper also includes a presentation of the current knowledge about the site characterics in terms of atmospheric transmission, stability, sky noise and polar constraints on telescopes. Current and future site testing campaigns are finally described.

  9. High-Energy Spectroscopic Astrophysics Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Kahn, Steven M; von Ballmoos, Peter

    2005-01-01

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  10. 13C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    International Nuclear Information System (INIS)

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH3, and its isotopologues H13COOCH3 and HCOO13CH3. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the 13C-methyl formate isotopologue HCOO13CH3 toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the 13C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the 12C/13C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the 13C-methyl formate isotopologues, commensurate with the average 12C/13C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the 12C/13C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H13COOCH3 and HCOO13CH3 species. New spectroscopic data for both isotopomers H13COOCH3 and HCOO13CH3, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time

  11. Transiting Exoplanet Survey Satellite (TESS) Community Observer Program including the Science Enhancement Option Box (SEO Box) - 12 TB On-board Flash Memory for Serendipitous Science

    Science.gov (United States)

    Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.

    2010-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.

  12. Astronomy, Visual Literacy, and Liberal Arts Education

    Science.gov (United States)

    Crider, Anthony

    2016-01-01

    With the exponentially growing amount of visual content that twenty-first century students will face throughout their lives, teaching them to respond to it with visual and information literacy skills should be a clear priority for liberal arts education. While visual literacy is more commonly covered within humanities curricula, I will argue that because astronomy is inherently a visual science, it is a fertile academic discipline for the teaching and learning of visual literacy. Astronomers, like many scientists, rely on three basic types of visuals to convey information: images, qualitative diagrams, and quantitative plots. In this talk, I will highlight classroom methods that can be used to teach students to "read" and "write" these three separate visuals. Examples of "reading" exercises include questioning the authorship and veracity of images, confronting the distorted scales of many diagrams published in astronomy textbooks, and extracting quantitative information from published plots. Examples of "writing" exercises include capturing astronomical images with smartphones, re-sketching textbook diagrams on whiteboards, and plotting data with Google Motion Charts or iPython notebooks. Students can be further pushed to synthesize these skills with end-of-semester slide presentations that incorporate relevant images, diagrams, and plots rather than relying solely on bulleted lists.

  13. Gamma-ray astronomy

    Science.gov (United States)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  14. Online Information in Astronomy - From networking to a virtual observatory

    OpenAIRE

    Genova, Francoise

    2002-01-01

    Astronomy relies on long-term observations of variable phenomena, and conserving and reusing data is the key for major scientific objectives, such as the definition of objects and of their properties, or the study of variability and evolution, all this requiring statistical studies on large number of objects. Observations at different wavelengths, with different techniques, allow one to understand the physical phenomena at work in objects. In addition, astronomical observations rely more and ...

  15. A Great Moment for Astronomy

    Science.gov (United States)

    1998-05-01

    VLT First Light Successfully Achieved The European Southern Observatory announces that First Light has been achieved with the first VLT 8.2-m Unit Telescope at the Paranal Observatory. Scientifically useful images have been obtained as scheduled, on May 25 - 26, 1998. A first analysis of these images convincingly demonstrates the exceptional potential of the ESO Very Large Telescope. Just one month after the installation and provisional adjustment of the optics, the performance of this giant telescope meets or surpasses the design goals, in particular as concerns the achievable image quality. Exposures lasting up to 10 minutes confirm that the tracking, crucial for following the diurnal rotation of the sky, is very accurate and stable. It appears that the concept developed by ESO for the construction of the VLT, namely an actively controlled, single thin mirror, yields a very superior performance. In fact, the angular resolution achieved even at this early stage is unequalled by any large ground-based telescope . The combination of large area and fine angular resolution will ultimately result in a sensitivity for point sources (e.g. stars), which is superior to any yet achieved by existing telescopes on Earth. The present series of images demonstrate these qualities and include some impressive first views with Europe's new giant telescope. After further optimization of the optical, mechanical and electronic systems, and with increasing operational streamlining, this telescope will be able to deliver unique astronomical data of the highest quality. The commissioning and science verification phases of the complex facility including instruments will last until April 1, 1999, at which time the first visiting astronomers will be received. The full significance of this achievement for astronomy will take time to assess. For Europe, this is a triumph of the collaboration between nations, institutions and industries. For the first time in almost a century, European

  16. Astrology and Astronomy.

    Science.gov (United States)

    Astronomical Society of the Pacific, San Francisco, CA.

    One of a series of information packets, the document provides clear, specific information about the controversial subject of astrology. The packet includes six articles explaining the dozens of careful scientific tests which have concluded that there is no scientific evidence supporting astrology. The packet includes an interview with astronomer…

  17. The Effect of Planetariums on Teaching Specific Astronomy Concepts

    Science.gov (United States)

    Türk, Cumhur; Kalkan, Hüseyin

    2015-01-01

    This study aimed to determine students' knowledge levels related to specific astronomy concepts and the effect of a planetarium environment on teaching. The study sample included seventh-grade (12-13 years old) students. For this purpose, 240 students of various socioeconomic and cultural levels from six schools (two in the city center, two…

  18. SOFIA Project: SOFIA-Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Tseng, Ting

    2007-01-01

    A viewgraph presentation on the SOFIA project is shown. The topics include: 1) Aircraft Information; 2) Major Components of SOFIA; 3) Aircraft External View; 4) Airborne Observatory Layout; 5) Telescope Assembly; 6) Uncoated Primary Mirror; 7) Airborne Astronomy; 8) Requirements & Specifications; 9) Technical Challenges; 10) Observatory Operation; and 11) SOFIA Flight Test.

  19. Our Place in the Universe. Session 1; History of Astronomy

    Science.gov (United States)

    Adams, Mitzi

    2016-01-01

    This session includes a very broad overview of a couple of the major ideas of astronomy, along with demonstrations of Earth's motions that, give rise to the seasons, show us the "faces" of Venus (and the Moon), and result in retrograde motion of the outer planets.

  20. Music Inspired by Astronomy: A Resource Guide Organized by Topic

    Science.gov (United States)

    Fraknoi, Andrew

    2012-01-01

    This annotated resource guide presents 133 pieces of music inspired by astronomical ideas, discoveries, or history, organized in 22 subject categories. Both classical and popular music are included, but only when a clear connection to astronomy could be established. Depending on your musical tastes, you are likely to find some pieces resonating…

  1. Student Understanding of Gravity in Introductory College Astronomy

    Science.gov (United States)

    Williamson, Kathryn E.; Willoughby, Shannon

    2012-01-01

    Twenty-four free-response questions were developed to explore introductory college astronomy students' understanding of gravity in a variety of contexts, including in and around Earth, throughout the solar system, and in hypothetical situations. Questions were separated into three questionnaires, each of which was given to a section of…

  2. A Course Connecting Astronomy to Art, History, and Literature

    Science.gov (United States)

    Olson, Don

    2015-01-01

    For the past 20 years the author has taught an Honors College course combining astronomy and the humanities. The purpose of this note is to give examples of methods that can be adapted to classroom use for topics including night sky paintings by Vincent van Gogh, Edvard Munch, and Claude Monet, historical events influenced by astronomical factors,…

  3. Armenia as a Regional Centre for Astronomy for Development activities

    Science.gov (United States)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  4. NASA International Year of Astronomy 2009 Programs: Impacts and Future Plans (Invited)

    Science.gov (United States)

    Hasan, H.; Smith, D.; Stockman, S. A.

    2009-12-01

    The opportunity offered by the International Year of Astronomy (IYA) 2009 to increase the exposure of the public and students to NASA discoveries in astronomy resulted in several innovative programs which have reached audiences far and wide. Some examples of the impact of these programs and building on the success of these programs beyond 2009 will be discussed in this talk. The spectacular success of the traveling exhibit of NASA images to public libraries around the country prompted NASA to extend it to include more libraries. As a part of the IYA Cornerstone project From Earth To The Universe, NASA images were displayed at non-traditional sites such as airports, parks, and music festivals, exposing them to an audience which would otherwise have been unaware of them. The NASA IYA Student Ambassadors engaged undergraduate and graduate students throughout the U.S. in outreach programs they created to spread NASA astronomy to their local communities. NASA’s Afterschool Universe provided IYA training to community-based organizations, while pre-launch teacher workshops associated with the Kepler and WISE missions were designed to engage educators in the science of these missions. IYA activities have been associated with several missions launched this year. These include the Hubble Servicing Mission 4, Kepler, Herschel/Planck, LCROSS. NASA’sIYA website and Go Observe! feature remain popular. The associated IYA Discovery Guides and Observing with NASA MicroObservatory activities have guided the public and students to perform their own observations of the night sky and to interpret them. NASA intends to work with its Science Education and Public Outreach Forums (SEPOF) to develop a strategy to take forward the best of its IYA2009 plans forward so as to build on the momentum generated by IYA2009 and continue to keep the public and students engaged in the scientific exploration of the universe.

  5. The stars, the moon, and the shadowed earth: Viennese astronomy in the fifteenth century

    Science.gov (United States)

    Byrne, James Steven

    This dissertation is a study of astronomy at the University of Vienna from the beginning of the fifteenth century through the career of Johannes Regiomontanus (d. 1476), the university's most celebrated astronomer. Regiomontanus and his mentor Georg Peurbach (d. 1461) established a framework for the practice of astronomy, including the linkage of cosmology to astronomy, attempts to correct the errors and ambiguities of the medieval astronomical tradition, a renewed interest in Ptolemy's Almagest , and a program of observations intended as a basis for the reform of planetary tables and models, that remained in place for the more celebrated astronomical achievements of the following century. This study traces the roots of this framework to astronomical teaching at the University of Vienna in the first half of the fifteenth century, as well as its expansion by Regiomontanus as he moved from Vienna to Italy, Hungary, and Germany. Chapter One provides background for the reader unfamiliar with medieval, Ptolemaic astronomy, and also argues that the shift described in the next chapter was, in part, motivated by astrological concerns. Chapter Two demonstrates that, by the middle of the fifteenth century, Viennese astronomy had come to incorporate a significant element of Aristotelian cosmology. Chapter Three examines fourteenth- and fifteenth-century responses to the Theorica planetarum , the most common astronomical teaching text at medieval universities, arguing that university astronomers were capable of identifying and addressing problems with the Theorica in a sophisticated manner. Chapter Four argues that the seemingly contradictory aspects of Regiomontanus's astronomical career can be understood as all contributing to a program of reform that encompassed both the correction of astronomical tables on the basis of new and comprehensive observations as well as the construction of homocentric planetary models to replace the venerable Ptolemaic system. Chapter Five shows

  6. Inca Astronomy and Calendrics

    Science.gov (United States)

    Dearborn, David S. P.; Bauer, Brian S.

    Half a millennium ago in the central Andes of Peru, the movements of the sun, moon, and stars were watched and interpreted by the Inca. The astronomical observations made in and near the former capital, Cuzco, formed the nuclei of the most important public rituals of the empire. As the regulator of time, the ruling Inca scheduled the rituals that bound this society together. In this article, we review the major astronomical observations that were made by the Inca and discuss their importance in defining the ritual calendar.

  7. The preliminary conceptions, the traditional resources and digital technologies in teaching of astronomy

    Science.gov (United States)

    de Macedo, J. A.; Voelzke, M. R.

    2014-07-01

    Despite being part of the official documents astronomy is rarely taught adequately in basic education. Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to make them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the Federal Institution of the North of Minas Gerais (IFNMG); ii) analysis of students' preconceptions about astronomy and digital technologies; iii) preparation of the course; iv) application of the education proposal. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. The results indicated that in the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; the rates of students' prior knowledge in relation to astronomy was low; an evidence of meaningfull earning of the concepts related to astronomy, and of viability of resource use involving digital technologies in the Teaching of astronomy.

  8. ASTRONET: Strategic Planning for European Astronomy 2005-2025

    Science.gov (United States)

    Andersen, Johannes; Mourard, Denis

    2015-08-01

    European astronomy, with ESO and ESA, is supported by a wide variety of independent national agencies or similar bodies, which jointly provide ~98% of the total funding (with ~2% EU grants). In 2005 these agencies concluded that common strategic planning would be a more cost-effective approach, so they founded a consortium, ASTRONET (http://www.astronet-eu.org/), to prototype such an effort for all of Europe, with EU support. A bottom-up process resulted in a Science Vision (2007) and Infrastructure Roadmap (2008) for European astronomy, with recent updates (2014).These ASTRONET reports cover all branches of astronomy; infrastructures at all electromagnetic wavelengths as well as particles etc., on the ground and in space; laboratory work, software and archiving; and training, recruitment and public outreach. In short, they are agreed blueprints for what Europe plans to accomplish in the next 1-2 decades.Subsequently, a systematic and sustained pragmatic effort has been made to implement the strategy laid out in the Roadmap, including a common European participation in projects and facilities of global dimensions. Decisions on the organisation and construction of several major research facilities have been taken as foreseen (E-ELT, SKA, CTA,…), and they are on track for completion around 2025. The task for global astronomy is now to optimise the overall scientific returns and cost-effectiveness of these investments across wavelength domains, scientific disciplines, and political and financial borders. Accordingly, ASTRONET is currently transforming itself into a permanent, self-sustaining activity reaching out to the world.The ideal of a fully integrated global astronomy may not be reached until ~2050, but no science is better suited than astronomy to set such an example: One Universe surrounds us all, and one Earth is our platform. The IAU General Assembly is a springboard towards this goal.

  9. A Radio Astronomy Curriculum for the Middle School Classroom

    Science.gov (United States)

    Davis, J.; Finley, D. G.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching program at New Mexico Institute of Mining and Technology, spent eight weeks as interns at the Array Operations Center for the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, under the auspices of the National Science Foundation's (NSF) Research Experience for Teachers (RET) program. The resulting projects will directly benefit students in the indvidual classrooms, as well as provide an easy-to-access resource for other educators. One of the products is a Radio Astronomy Curriculum for upper middle school classes. Radio astronomy images, based on scientific research results using NRAO's Very Large Array, are featured on trading cards which include an explanation, a ``web challenge'', and in some cases, a comparison of radio and optical images. Each trading card has corresponding lesson plans with background information about the images and astronomy concepts needed to do the lessons. Comparison of optical and radio astronomy is used as much as possible to explain the information from research using visible and radio wavelengths. New Mexico's Content Standards and Benchmarks (developed using national standards) for science education was used as a guide for the activities. The three strands of science listed in the standards, Unifying Concepts and Processes, Science as Inquiry, and Science Content are addressed in the lessons. Higher level thinking and problem solving skills are featured throughout the curriculum. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  10. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Favre, Cécile; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Carvajal, Miguel [Dpto. Física Aplicada, Unidad Asociada CSIC, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva (Spain); Field, David [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Jørgensen, Jes K.; Bisschop, Suzanne E. [Centre for Star and Planet Formation, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Brouillet, Nathalie; Despois, Didier; Baudry, Alain [Univ. Bordeaux, LAB, UMR 5804, F-33270, Floirac (France); Kleiner, Isabelle [Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS, UMR 7583, Université de Paris-Est et Paris Diderot, 61, Av. du Général de Gaulle, F-94010 Créteil Cedex (France); Margulès, Laurent; Huet, Thérèse R.; Demaison, Jean, E-mail: cfavre@umich.edu, E-mail: miguel.carvajal@dfa.uhu.es [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille I, F-59655 Villeneuve d' Ascq Cedex (France)

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 ± 10.1 and 71.4 ± 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.

  11. years of astronomy in Odessa

    Science.gov (United States)

    Karetnikov, V. G.

    Astronomy in the city of Odessa, a sea-port, existed from the time immemorial. First it was used nautical practice and in train navigators for applied purposes. The part it played was highly appreciated in Odessa. An Astronomical Observatory already existed in Richelieu Lyceum founded in 1817. One of the rooms of the Lyceums department of physics and mathematics accomodated the Observatory equipped with 24 astronomical and topographic instruments. The observatory was used for educational urposes only and had no applied or scientific significance then. Subsequently, these instruments constituted the base for astronomical study at the astronomy and geodesy Chair of the Novorossiysk University inaugurated in 1865 on the basis of Richelieu Lyceum.

  12. Rationale and design of three observational, prospective cohort studies including biobanking to evaluate and improve diagnostics, management strategies and risk stratification in venous thromboembolism: the VTEval Project

    Science.gov (United States)

    Frank, Bernd; Ariza, Liana; Lamparter, Heidrun; Grossmann, Vera; Prochaska, Jürgen H; Ullmann, Alexander; Kindler, Florentina; Weisser, Gerhard; Walter, Ulrich; Lackner, Karl J; Espinola-Klein, Christine; Münzel, Thomas; Konstantinides, Stavros V; Wild, Philipp S

    2015-01-01

    Introduction Venous thromboembolism (VTE) with its two manifestations deep vein thrombosis (DVT) and pulmonary embolism (PE) is a major public health problem. The VTEval Project aims to investigate numerous research questions on diagnosis, clinical management, treatment and prognosis of VTE, which have remained uncertain to date. Methods and analysis The VTEval Project consists of three observational, prospective cohort studies on VTE comprising cohorts of individuals with a clinical suspicion of acute PE (with or without DVT), with a clinical suspicion of acute DVT (without symptomatic PE) and with an incidental diagnosis of VTE (PE or DVT). The VTEval Project expects to enrol a total of approximately 2000 individuals with subsequent active and passive follow-up investigations over a time period of 5 years per participant. Time points for active follow-up investigations are at months 3, 6, 12, 24 and 36 after diagnosis (depending on the disease cohort); passive follow-up investigations via registry offices and the cancer registry are performed 48 and 60 months after diagnosis for all participants. Primary short-term outcome is defined by overall mortality (PE-related death and all other causes of death), primary long-term outcome by symptomatic VTE (PE-related death, recurrence of non-fatal PE or DVT). The VTEval Project includes three ‘all-comer’ studies and involves the standardised acquisition of high-quality data, covering the systematic assessment of VTE including symptoms, risk profile, psychosocial, environmental and lifestyle factors as well as clinical and subclinical disease, and it builds up a large state-of-the-art biorepository containing various materials from serial blood samplings. Ethics and dissemination The VTEval Project has been approved by the local data safety commissioner and the responsible ethics committee (reference no. 837.320.12 (8421-F)). Trial results will be published in peer-reviewed journals and presented at national and

  13. Pre-Inca Astronomy in Peru

    Science.gov (United States)

    McKim Malville, J.

    Huacas (shrines) and ushnus (ceremonial platforms) are ever-present elements of millennia-old Andean cosmology extending backward to 3100 BCE. Major themes of Pan-Andean cosmology include sacred mountains, the power of water, the solstice sun, as well as shamanic-like movement across the three worlds of the cosmos. Common features of many pre-Inca sites are monumental platforms and sunken circular plazas, and stairways with axes established by bi-lateral symmetries oriented along solstice lines. This style of ritual architecture first appeared in Chupacigarro/Caral, other sites in the Norte Chico area, and Sechin Bajo in the Casma Valley. Ceremonial plazas provided opportunities for public viewing of ritual ceremonies on the tops of platforms, which may have been understood as sacred mountains. Mounds and temples of the Casma Valley, such as Sechin Alto, Sechin Bajo, and Chankillo, developed an explicit astronomy associated with June and December solstices. The ritualistic use of water, which is typically associated with visual astronomy at Inca sites, appeared at Chavin de Huantar and later in Tiwanaku.

  14. Evaluating Astronomy Literacy of the General Public

    CERN Document Server

    Love, C; Bonora, S

    2013-01-01

    A scientifically literate society is important for many different reasons, some of which include democratic and scientific topics. This study was performed in order to identify topics in astronomy and science in general that may not be well understood by the general public. Approximately 1,000 adults at a popular science museum in Philadelphia, PA completed True-False survey questions about basic astronomy concepts. The participants were also asked to provide their age, gender, and highest degree obtained. Although 93 +/- 0.8% of the participants correctly answered that scientists can calculate the age of the Earth, only 58 +/- 2% provided the correct response that scientists can calculate the age of the Universe. Some participants (30 +/- 1%) responded that scientists have found life on Mars. Females scored an average total score of 78 +/- 2%, whereas males scored an average 85 +/- 1%. Participants with an age of 56 and over had an average score of 78 +/- 4% compared to participants under the age of 56 that ...

  15. Radio Astronomy Software Defined Receiver Project

    Energy Technology Data Exchange (ETDEWEB)

    Vacaliuc, Bogdan [ORNL; Leech, Marcus [Shirleys Bay Radio Astronomy Consortium; Oxley, Paul [Retired; Flagg, Richard [Retired; Fields, David [ORNL

    2011-01-01

    The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a user s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.

  16. Astronomy in Brazilian music and poetry

    Science.gov (United States)

    de Freitas Mourão, Ronaldo Rogério

    2011-06-01

    The rôle of astronomy in the Brazilian cultural diversity -though little known world- has been enormous. Thus, the different forms of popular music and erudite, find musical compositions and lyrics inspired by the stars, the eclipses in rare phenomena such as the transit of Venus in front of the sun in 1882, the appearance of Halley's Comet in 1910, in the Big Bang theory. Even in the carnival parades of the blocks at the beginning of the century astronomy was present. More recently, the parade of 1997, the samba school Unidos do Viradouro, under the direction of Joãozinho Trinta, offered a new picture of the first moments of the creation of the universe to join in the white and dark in the components of their school, the idea of matter and anti-matter that reigned in the early moments of the creation of the universe in an explosion of joy. Examples in classical music include Dawn of Carlos Gomes and Carta Celeste by Almeida Prado. Unlike The Planets by Gustav Holst -who between 1914 and 1916 composed a symphonical tribute to the solar system based on astrology- Almeida Prado composed a symphony that is not limited to the world of planets, penetrating the deep cosmos of galaxies. Using various resources of the technique for the piano on the clusters and static movements, violent conflicts between the records of super acute and serious instrument, harpejos cross, etc . . .

  17. Scientific divulgation through the teaching of Astronomy and Mathematics

    Science.gov (United States)

    Silva, Alysson Wanderley Teixeira; de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2015-09-01

    This article presents an experience report of a workshop held at the State School Professor Plínio Ribeiro, who aimed to spread the use of interactive materials for teaching Astronomy and its relationship with Mathematics during the Forum Biotemas. Despite being part of the official documents, be present in the curricular proposals from several Brazilian states, and has contributed to the human and technological development, Astronomy is rarely taught adequately in basic education, with unsatisfactory results presented by students and teachers. In this sense was held a workshop planned for elementary education students called 'Astronomy and Mathematics: Learn to Observe the Sky With Other Eyes' involving several resources. The methodology consisted of awareness of those involved, presentation videos, using Stellarium software, application of Mathematics in Astronomy and discussions. Among the main results, can highlight students' interest in scientific matters, because when the study of the sciences takes place without interaction with natural and technological phenomena, a huge gap in the education of students occurs. In this sense, the use of different resources, as templates, observations, real and virtual experiments, animations, simulations, video lessons, can arouse the interest of students by conceptual content, differently from what happens when the study takes place using only conventional resources, with books and handouts.

  18. Do-it-yourself astronomy

    Science.gov (United States)

    Fulco, M. T.

    2008-06-01

    Do-it-yourself astronomy is an educational project conceived and developed by the INAF-Capodimonte Astronomical Observatory at Naples, Italy. Based on the manufacturing of a small astronomical mirror by high school students, it is aimed at stirring up the interest of youngsters for modern science by applying the logic of "doing" as opposed to that of just "listening" and/or "watching".

  19. Random time series in Astronomy

    OpenAIRE

    Vaughan, Simon

    2013-01-01

    Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle, and over time (usually called light curves by astronomers). In the time domain we see transient events such as supernovae, gamma-ray bursts, and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars, and pulsations...

  20. Australian Aboriginal Astronomy: Overview

    CERN Document Server

    Norris, Ray P

    2013-01-01

    The traditional cultures of Aboriginal Australians include a significant astronomical component, perpetuated through oral tradition, ceremony, and art. This astronomical component includes a deep understanding of the motion of objects in the sky, and this knowledge was used for practical purposes, such as constructing calendars. There is also evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, paid careful attention to unexpected phenomena such as eclipses and meteorite impacts, and could determine the cardinal points to an accuracy of a few degrees.

  1. Education and Popularization of Astronomy at Gunma Astronomical Observatory

    Science.gov (United States)

    Obayashi, H.

    Gunma Astronomical Observatory is designed for both astronomical research and public use, and was established in April 1999 by Gunma Prefecture, located in Takayama village, about 100 km north-west of Tokyo. It is equipped with all devices and facilities needed to conduct full-scale observational research, including a telescope of 150 cm diameter. Based upon fundamental philosophy of providing every visitor with a real experience, we are also engaged in educational activities that are linked to school or life-long education to spread astronomical observation, as well as observational research activities at our observatory. We are hoping that all of those who visit our observatory come in contact with wonders of their cosmos or the latest information about astronomy; thereby being able to have an opportunity to think about nature, the environment and the future of the human race in general. There are about 30 staff members; 9 of them have the degree of doctor, 12 of them belong to the section of research and education. We had 38 317 visitors in the last year (April 2001 to March 2002).

  2. r-mode astronomy

    International Nuclear Information System (INIS)

    Next-generation gravitational wave detectors will start taking data in the near future. Here we discuss the chances to detect the continuous emission from r-mode oscillations in compact stars and study which properties of compact stars we can infer from such novel data. In particular we show that the combination of the gravitational wave data with electromagnetic multi-messenger observations could give us detailed insight into compact star properties, ranging from precise mass-radius measurements to the determination of the equation of state and the phase structure of dense matter. (orig.)

  3. r-mode astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Kokkotas, Kostas D.; Schwenzer, Kai [Eberhard Karls University of Tuebingen, Theoretical Astrophysics (IAAT), Tuebingen (Germany)

    2016-02-15

    Next-generation gravitational wave detectors will start taking data in the near future. Here we discuss the chances to detect the continuous emission from r-mode oscillations in compact stars and study which properties of compact stars we can infer from such novel data. In particular we show that the combination of the gravitational wave data with electromagnetic multi-messenger observations could give us detailed insight into compact star properties, ranging from precise mass-radius measurements to the determination of the equation of state and the phase structure of dense matter. (orig.)

  4. Babylonian observations

    Science.gov (United States)

    Brown, D.

    Very few cuneiform records survive from Mesopotamia of datable astronomical observations made prior to the mid-eighth century BC. Those that do record occasional eclipses, and in one isolated case the dates of the heliacal rising and setting of Venus over a few years sometime in the first half of the second millennium BC. After the mid-eighth century BC the situation changes dramatically. Incomplete records of daily observations of astronomical and meteorological events are preserved from c. 747 BC until the Christian Period. These records are without accompanying ominous interpretation, although it is highly probable that they were compiled by diviners for astrological purposes. They include numerous observations of use to historical astronomers, such as the times of eclipses and occultations, and the dates of comet appearances and meteor showers. The question arises as to why such records do not survive from earlier times; celestial divination was employed as far back as the third millenium BC. It is surely not without importance that the earliest known accurate astronomical predictions accompany the later records, and that the mid-eighth century BC ushered in a period of centralised Assyrian control of Mesopotamia and the concomitant employment by the Assyrian ruler of large numbers of professional celestial diviners. The programme of daily observations evidently began when a high premium was first set on the accurate astronomical prediction of ominous events. It is in this light that we must approach this valuable source material for historical astronomy.

  5. First Results from the iSTAR International STudy on Astronomy Reasoning

    Science.gov (United States)

    Tatge, Coty B.; Slater, Stephanie J.; Slater, Timothy F.

    2015-01-01

    Our best efforts in the United States to dramatically improve teaching and learning in astronomy courses has been less than satisfactory despite Herculean efforts. A possible solution is to expand our view beyond our own culture's borders and presumptions in order to bring our shortcomings in discipline-based astronomy education research to light. Before we can begin the process of international comparisons of student conceptual understanding, we need to better understand how different citizens of different countries position astronomy culturally. Under the banner of the International STudy on Astronomy Reasoning Project, iSTAR, we are now carefully observing how foreign experts in teaching astronomy and the science of astronomy translate the Test Of Astronomy STandards - TOAST multiple-choice assessment instrument to look for subtle clues revealed during the translation process. The TOAST is the widely used standard to evaluate students' gains in the United States' Astronomy classrooms. We hope that the process of translation itself will help us comprehend how other cultures think differently about astronomical concepts and eventually we are looking to obtain useful data of how other cultures develop their society's understanding of particular astronomy aspects where we may fall short. Several of the iSTAR Project's bilingual speakers are documenting their thoughts and insights as they translate the TOAST. The end-goal is to collect a comprehensible, well-defined, and logical translation in various languages that are culturally sensitive and linguistically accurate. This project is sponsored and managed by the CAPER Center for Astronomy & Physics Education Research at CAPERTeam.com in collaboration with members of the International Astronomical Union-Commission 46.

  6. Multi-Level High School Classes: Astronomy Diagnostic Test Results

    Science.gov (United States)

    Hubbard, R.; Hufnagel, B.

    2001-12-01

    A content survey, the Astronomy Diagnostic Test (ADT) designed for undergraduate non-science astronomy courses, was administered as a post-course survey to five senior high classes in a Maryland high school. In 2001, the five classes chosen included all three levels of physics and an astronomy class. Each class had an even distribution of male and female students, with a total of 115 girls and 104 boys as subjects. Results of the survey include: (1) The Advanced Placement (AP) physics class scored highest and general physics lowest. (2) The AP class, most of whom will major in engineering or computer sciences, had a mean ADT score similar to post-course undergraduate non-science astronomy classes. (3) For all five classes, the girls had lower mean scores than the boys. (4) In two classes the girls' self-reported mean confidence was 40% lower than the boys' confidence; in the other three classes the confidence levels were the same. Additional detailed research was done on the three cosmology and ten physics questions in the ADT; girls outperformed the boys in only two of these thirteen questions.

  7. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation

  8. Innovative Technology for Teaching Introductory Astronomy

    Science.gov (United States)

    Guidry, Mike

    The application of state-of-the-art technology (primarily Java and Flash MX Actionscript on the client side and Java PHP PERL XML and SQL databasing on the server side) to the teaching of introductory astronomy will be discussed. A completely online syllabus in introductory astronomy built around more than 350 interactive animations called ""Online Journey through Astronomy"" and a new set of 20 online virtual laboratories in astronomy that we are currently developing will be used as illustration. In addition to demonstration of the technology our experience using these technologies to teach introductory astronomy to thousands of students in settings ranging from traditional classrooms to full distance learning will be summarized. Recent experiments using Java and vector graphics programming of handheld devices (Personal Digital Assistants and cell phones) with wireless wide-area connectivity for applications in astronomy education will also be described.

  9. Optical interferometry in astronomy

    International Nuclear Information System (INIS)

    Here I review the current state of the field of optical stellar interferometry, concentrating on ground-based work although a brief report of space interferometry missions is included. We pause both to reflect on decades of immense progress in the field as well as to prepare for a new generation of large interferometers just now being commissioned (most notably, the CHARA, Keck and VLT Interferometers). First, this review summarizes the basic principles behind stellar interferometry needed by the lay-physicist and general astronomer to understand the scientific potential as well as technical challenges of interferometry. Next, the basic design principles of practical interferometers are discussed, using the experience of past and existing facilities to illustrate important points. Here there is significant discussion of current trends in the field, including the new facilities under construction and advanced technologies being debuted. This decade has seen the influence of stellar interferometry extend beyond classical regimes of stellar diameters and binary orbits to new areas such as mapping the accretion discs around young stars, novel calibration of the cepheid period-luminosity relation, and imaging of stellar surfaces. The third section is devoted to the major scientific results from interferometry, grouped into natural categories reflecting these current developments. Lastly, I consider the future of interferometry, highlighting the kinds of new science promised by the interferometers coming on-line in the next few years. I also discuss the longer-term future of optical interferometry, including the prospects for space interferometry and the possibilities of large-scale ground-based projects. Critical technological developments are still needed to make these projects attractive and affordable

  10. A dictionary of astronomy

    CERN Document Server

    2003-01-01

    This revised edition contains 4,000 up-to-date entries written by an expert team of contributors, under the editorship of Ian Ridpath, renowned author and broadcaster. Covering the most recent space exploration missions and latest technological development, this authoritative dictionary covers everything from astrophysics to galaxies and time. World-wide coverage of observatories and telescopes, and major entries on supernova, Big Bang theory, and stellar evolution, make this an invaluable reference source for students, professionals, and amateur astronomers. Appendices include tables of Apollo lunar landing missions and the constellations. The entries are supported by numerous tables and diagrams, and the dictionary also features biographical entries on eminent astronomers.

  11. Gravitational Lensing in Astronomy

    CERN Document Server

    Wambsganss, J

    1998-01-01

    Deflection of light by gravity was predicted by General Relativity and observationaly confirmed in 1919. In the following decades various aspects of the gravitational lens effect were explored theoretically, among them the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility to determine Hubble's constant with lensing. Only relatively recently gravitational lensing became an observational science after the discovery of the first doubly imaged quasar in 1979. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered since, e.g. giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, or weak gravitational lensing. By now literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very use...

  12. Birth and Early Development of Indian Astronomy

    OpenAIRE

    Kak, Subhash

    2001-01-01

    This paper provides an overview of the birth and early development of Indian astronomy. Taking account of significant new findings from archaeology and literary analysis, it is shown that early mathematical astronomy arose in India in the second millennium BC. The paper reviews the astronomy of the period of the Vedas, the Brahmanas, and the Vedanga Jyotisha. The origins of Puranic cosmology are also explained.

  13. Julia and Python in Astronomy: Better Together

    Science.gov (United States)

    Barbary, Kyle

    2016-03-01

    Astronomers love Python because it is open source, easy to learn, and has a tremendous ecosystem for scientific computing. The Julia programming language has many of those same characteristics. In this talk, I'll discuss the use of Julia in astronomy and the growing ecosystem of astronomy packages, particularly those managed by the JuliaAstro organization (http://JuliaAstro.github.io). Most importantly, I will highlight some areas ripe for collaboration between Python and Julia developers in astronomy.

  14. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    Science.gov (United States)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have

  15. A Roadmap for Canadian Submillimetre Astronomy

    CERN Document Server

    Webb, Tracy; Di Francesco, James; Matthews, Brenda; Murray, Norm; Scott, Douglas; Wilson, Christine

    2013-01-01

    We survey the present landscape in submillimetre astronomy for Canada and describe a plan for continued engagement in observational facilities to ~2020. Building on Canada's decadal Long Range Plan process, we emphasize that continued involvement in a large, single-dish facility is crucial given Canada's substantial investment in ALMA and numerous PI-led submillimetre experiments. In particular, we recommend: i) an extension of Canadian participation in the JCMT until at least the unique JCMT Legacy Survey program is able to realize the full scientific potential provided by the world-leading SCUBA-2 instrument; and ii) involvement of the entire Canadian community in CCAT, with a large enough share in the partnership for Canadian astronomers to participate at all levels of the facility. We further recommend continued participation in ALMA development, involvement in many focused PI-led submillimetre experiments, and partnership in SPICA.

  16. The next detectors for gravitational wave astronomy

    CERN Document Server

    Blair, David; Zhao, Chunnong; Wen, Linqing; Miao, Haixing; Cai, Ronggen; Gao, Jiangrui; Lin, Xuechun; Liu, Dong; Wu, Ling-An; Zhu, Zonghong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Ma, Yiqiu; Qin, Jiayi; Page, Michael

    2016-01-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which ari...

  17. Multichannel interference mitigation methods in radio astronomy

    CERN Document Server

    Leshem, A; Boonstra, A J; Leshem, Amir; Veen, Alle-Jan van der; Boonstra, Albert-Jan

    2000-01-01

    Radio-astronomical observations are increasingly corrupted by RF interference, and online detection and filtering algorithms are becoming essential. To facilitate the introduction of such techniques into radio astronomy, we formulate the astronomical problem in an array signal processing language, and give an introduction to some elementary algorithms from that field. We consider two topics in detail: interference detection by rank estimation of short-term covariance matrices, and spatial filtering by subspace estimation and projection. We discuss experimental data collected at the Westerbork radio telescope, and illustrate the effectiveness of the space-time detection and blanking process on the recovery of a 3C48 absorption line in the presence of GSM mobile telephony interference.

  18. Improving Astronomy Achievement and Attitude through Astronomy Summer Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Türk, Cumhur; Kalkan, Hüseyin; Iskeleli', Nazan Ocak; Kiroglu, Kasim

    2016-01-01

    The purpose of this study is to examine the effects of an astronomy summer project implemented in different learning activities on elementary school students, pre-service elementary teachers and in-service teachers' astronomy achievement and their attitudes to astronomy field. This study is the result of a five-day, three-stage, science school,…

  19. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    Science.gov (United States)

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  20. Astronomy in the Netherlands

    Science.gov (United States)

    Boland, Wilfried; Habing, Harm

    2013-01-01

    We describe the state of astronomical research in the Netherlands per early 2012. We add some notes on its history of this research and on the strategic choices for the future. Compared to the size of the country (16 million people) the Netherlands is maintaining a high profile in astronomical research over a period of more than one century. The professional research community consists of about 650 people. This includes research staff, postdocs, PhD students, technical staff working on instrumentation projects and people involved in the operations of ground-based telescopes and astronomical space missions. We do not take into account staff working for international organizations based in the Netherlands. Astronomical research in the Netherlands is carried out at four university institutes and two national research institutes that fall under the umbrella of the national funding agency NWO. The Netherlands is the host of two international organizations: ESTEC, the technology division of the European Space Agency (ESA), and the Joint Institute for VLBI in Europe (JIVE). The Netherlands are one of the founding members of the European Southern Observatory (ESO) and of ESA. This paper will address a number of significant multilateral collaborations.