WorldWideScience

Sample records for astronomy including observations

  1. Extragalactic observational astronomy

    International Nuclear Information System (INIS)

    The lectures on extragalactic observational astronomy includes the redshift controversy, normal galaxies, determination of the Hubble constant using diameters of HII regions, determination of the deceleration parameter, the luminosity--volume test as evidence for the cosmological interpretation of quasars, problems involving clusters and groups of galaxies. (U.S.)

  2. Observing Conditions for Submillimeter Astronomy

    CERN Document Server

    Radford, Simon J E

    2011-01-01

    Consistently superb observing conditions are crucial for achieving the scientific objectives of a telescope. Submillimeter astronomy is possible only at a few exceptionally dry sites, notably Mauna Kea, the Antarctic plateau, and the Chajnantor region in the high Andes east of San Pedro de Atacama in northern Chile. Long term measurements of 225 GHz and 350 \\mu m atmospheric transparency demonstrate all three locations enjoy significant periods of excellent observing conditions. Conditions on the Chajnantor plateau and at the South Pole are better more often than on Mauna Kea. Conditions are better during winter and at night. Near the summit of Cerro Chajnantor, conditions are better than on the Chajnantor plateau.

  3. Observing Projects in Introductory Astronomy

    Science.gov (United States)

    Taylor, M. Suzanne

    2016-01-01

    Introductory astronomy classes without laboratory components face a unique challenge of how to expose students to the process of science in the framework of a lecture course. As a solution to this problem small group observing projects are incorporated into a 40 student introductory astronomy class composed primarily of non-science majors. Students may choose from 8 observing projects such as graphing the motion of the moon or a planet, measuring daily and seasonal motions of stars, and determining the rotation rate of the Sun from sunspots. Each group completes two projects, requiring the students to spend several hours outside of class making astronomical observations. Clear instructions and a check-list style observing log help students with minimal observing experience to take accurate data without direct instructor assistance. Students report their findings in a lab report-style paper, as well as in a formal oral or poster presentation. The projects serve a double purpose of allowing students to directly experience concepts covered in class as well as providing students with experience collecting, analyzing, and presenting astronomical data.

  4. Radio astronomy. [principles and observations

    Science.gov (United States)

    Alexander, J.; Clark, T.

    1974-01-01

    The origins, generation, detection, and interpretation of radio signals are discussed for signals with an assumed random polarization. After defining the basic parameters, the discussion moves to such topics as synchrotron radiation, plasma effects, changes in the electron energy spectrum in the radiating regions, energy loss to ionization, bremsstrahlung, radio astronomical observations of high-energy particles, emission by energetic particles, observation of supernova remnants and pulsars, galactic background continuum radiation, and others.

  5. A Partnership in Observational and Computational Astronomy (POCA)

    Science.gov (United States)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2009-01-01

    A partnership has been established between South Carolina State University (SCSU, a Historically Black College/University), the National Optical Astronomy Observatory (NOAO) and Clemson University (CU) under an award from NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. The mission of POCA is to develop an effective, long-term partnership that combines the strengths of the three institutions to increase the scientific and educational output of all the partners with special emphasis on enhancing diversity in the field of astronomy. Components of the program include enhancing faculty and student research in astronomy at SCSU, recruiting and retaining underrepresented minority students into the field, outreach through planetarium programs and museum exhibits and developing web based resources in astronomy education. Activities in the first year of the program are discussed. We have begun developing and testing several new astronomy laboratory exercises. Our first summer internship program has concluded successfully. With PAARE scholarship money, we are now supporting four physics majors at SCSU who have chosen the astronomy option (concentration) for their degree. SCSU undergraduates have acquired observing experience on the KPNO Mayall 4-meter telescope under the guidance of faculty and graduate students from CU. NOAO astronomers have collaborated with SCSU faculty to begin a research program that studies RV Tauri stars. Funds from PAARE are supporting follow-up research to a just-completed doctoral dissertation by E. A. Mayo described elsewhere in these proceedings. Future plans for graduate fellowships and related activities are discussed in addition to summer internships for POCA undergraduates at CU and NOAO. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.

  6. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    Science.gov (United States)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  7. Astronomy

    CERN Document Server

    Seymour, Percy

    2014-01-01

    With a blend of exciting discoveries and important scientific theory,this innovative and readable introduction to astronomy is ideal for anyone who wants to understand what we know about the universe,and how we know it. Each chapter starts with details of a method of jow astronomers over time have observed the world,and then uses this as a springboard to discuss what they discovered,and why this was important for understanding the cosmos. The last chapter,on dark matter,also focuses on the many things we don''t yet know - reminding us that astronomy,like this book,is a fast-paced and fascinati

  8. First Light Observations from the International Study of Astronomy Reasoning (ISTAR) Database

    Science.gov (United States)

    Tatge, Coty B.; Slater, Stephanie; Slater, Timothy F.; Bretones, Paulo S.; McKinnon, David; Schleigh, Sharon

    2016-01-01

    During the period between Fall 2014 and Summer 2015, the International Astronomical Union reorganized its structure to include the IAU Working Group on Theory and Methods in Astronomy Education. The initial goals of that working group are 1) promoting Astronomy Education Research (AER) by adopting the international collaboration model used by astronomy researchers, 2) fostering international astronomy education and AER capacity through the development of networks, training and shared resources, and 3) improving astronomy education by describing research based approaches to the teaching and learning of astronomy. In support of those efforts, the working group began a collaboration with the Center for Astronomy & Physics Education Research to develop the International Study of Astronomy Reasoning (ISTAR) Database, an online, searchable research tool, intended to catalog, characterize, and provide access to all known astronomy education research production, world-wide. Beginning in the Summer of 2015, a test of ISTAR's functionality began with a survey of a previously uncatalogued set of test objects: U.S.-based doctoral dissertations and masters. This target population was selected for its familiarity to the ISTAR developers, and for its small expected sample size (50-75 objects). First light observations indicated that the sample exceeded 300 dissertation objects. These objects were characterized across multiple variables, including: year of production, document source, type of resource, empirical methodology, context, informal setting type, research construct, type of research subject, scientific content, language, and nation of production. These initial observations provide motivation to extend this project to observe masters levels thesis, which are anticipated to be ten times more numerous as doctoral dissertations, other peer-reviewed contributions, contributions from the larger international community.

  9. Intelligent Cognitive Radio Models for Enhancing Future Radio Astronomy Observations

    Directory of Open Access Journals (Sweden)

    Ayodele Abiola Periola

    2016-01-01

    Full Text Available Radio astronomy organisations desire to optimise the terrestrial radio astronomy observations by mitigating against interference and enhancing angular resolution. Ground telescopes (GTs experience interference from intersatellite links (ISLs. Astronomy source radio signals received by GTs are analysed at the high performance computing (HPC infrastructure. Furthermore, observation limitation conditions prevent GTs from conducting radio astronomy observations all the time, thereby causing low HPC utilisation. This paper proposes mechanisms that protect GTs from ISL interference without permanent prevention of ISL data transmission and enhance angular resolution. The ISL transmits data by taking advantage of similarities in the sequence of observed astronomy sources to increase ISL connection duration. In addition, the paper proposes a mechanism that enhances angular resolution by using reconfigurable earth stations. Furthermore, the paper presents the opportunistic computing scheme (OCS to enhance HPC utilisation. OCS enables the underutilised HPC to be used to train learning algorithms of a cognitive base station. The performances of the three mechanisms are evaluated. Simulations show that the proposed mechanisms protect GTs from ISL interference, enhance angular resolution, and improve HPC utilisation.

  10. A Proposed Astronomy Learning Progression for Remote Telescope Observation

    Science.gov (United States)

    Slater, Timothy F.; Burrows, Andrea C.; French, Debbie A.; Sanchez, Richard A.; Tatge, Coty B.

    2014-01-01

    Providing meaningful telescope observing experiences for students who are deeply urban or distantly rural place-bound--or even daylight time-bound--has consistently presented a formidable challenge for astronomy educators. For nearly 2 decades, the Internet has promised unfettered access for large numbers of students to conduct remote telescope…

  11. Observing photons in space a guide to experimental space astronomy

    CERN Document Server

    Pauluhn, Anuschka; Culhane, J; Timothy, J; Wilhelm, Klaus; Zehnder, Alex

    2013-01-01

    An ideal resource for lecturers, this book provides a comprehensive review of experimental space astronomy. The number of astronomers whose knowledge and interest is concentrated on interpreting observations has grown substantially in the past decades; yet, the number of scientists who are familiar with and capable of dealing with instrumentation has dwindled.  All of the authors of this work are leading and experienced experts and practitioners who have designed, built, tested, calibrated, launched and operated advanced observing equipment for space astronomy. This book also contains concise information on the history of the field, supported by appropriate references. Moreover, scientists working in other fields will be able to get a quick overview of the salient issues of observing photons in any one of the various energy, wavelength and frequency ranges accessible in space. This book was written with the intention to make it accessible to advanced undergraduate and graduate students.

  12. The Lunar Observer Radio Astronomy Experiment (LORAE)

    Science.gov (United States)

    Burns, Jack O.

    1990-01-01

    The paper proposes to place a simple low-frequency dipole antenna on board the Lunar Observer (LO) satellite. LO will orbit the moon in the mid-1990's, mapping the surface at high resolution and gathering new geophysical data. In its modest concept, LORAE will collect crucial data on the radio interference environment while on the near-side (to aid in planning future arrays) and will monitor bursts of emission from the sun and the Jovian planets. LORAE will also be capable of lunar occultation studies of greater than 100 of the brightest sources, gathering arcminute resolution data on sizes and measuring source fluxes. A low resolution all-sky map below 10 MHz, when combined with data from the Gamma-Ray Observatory, will uniquely determine the density of Galactic cosmic ray electrons and the strength of the Galaxy's magnetic field. LORAE also will be able to measure the density of the moon's ionosphere.

  13. Planetary radio astronomy observations during the Voyager 1 Titan flyby

    Science.gov (United States)

    Daigne, G.; Pedersen, B. M.; Kaiser, M. L.; Desch, M. D.

    1982-01-01

    During the Voyager 1 Titan flyby, unusual radio emissions were observed by the planetary radio astronomy experiment in the 20- to 97-kHz frequency range. It is shown that Titan itself is not the source of the observed radio emission. The emission features are attributed to modification of the normal Saturn kilometric radiation by propagation effects in enhanced density structures within the Titan wake. Furthermore, spiky emissions observed in the magnetic wake of Titan are interpreted in terms of local electrostatic instabilities at the electron plasma frequency. From these measurements a range of electron densities in the wake region is derived, and the consistency of the results is discussed.

  14. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise.

    Science.gov (United States)

    Herman, J. R.; Caruso, J. A.; Stone, R. G.

    1973-01-01

    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  15. Planetary radio astronomy observations from Voyager 1 near Saturn

    Science.gov (United States)

    Warwick, J. W.; Pearce, J. B.; Evans, D. R.; Carr, T. D.; Schauble, J. J.; Alexander, J. K.; Kaiser, M. L.; Desch, M. D.; Pedersen, M.; Lecacheux, A.

    1981-01-01

    The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings.

  16. Astronomy Exercises for the Artist: van Gogh the Observer

    Science.gov (United States)

    Lawlor, Timothy M.

    2013-01-01

    We present a set of exercises designed to be used in a survey astronomy course, an introductory astronomy laboratory course, or in secondary education. The exercises use the great works of Vincent van Gogh but could

  17. Rotational spectroscopy and observational astronomy of prebiotic molecules

    Science.gov (United States)

    Widicus Weaver, Susanna Leigh

    It is now widely believed that prebiotic molecules were delivered to the early Earth by planetesimals and their associated interplanetary dust particles. Yet the formation pathways for these molecules are not clear. Amino acids and sugars have been found in carbonaceous chondrites, but only much simpler species have been detected in the interstellar medium (ISM). Prebiotic organics could have formed in the ISM and been directly incorporated into planetesimals, or simpler species could have: formed in the ISM and then been incorporated into planetesimals, undergone further processing, and been delivered to Earth. Limits on interstellar chemistry must therefore be established through observational astronomy before potential prebiotic formation pathways can be assessed. These observations require laboratory spectroscopic investigation of the species of interest. This thesis is an interdisciplinary study involving laboratory rotational spectroscopy and astronomical observations of several key prebiotic molecules. The laboratory work has focused on obtaining the rotational spectra of the simplest three-carbon ketose sugar, 1,3-dihydroxyacetone, and its structural isomers methyl glycolate and dimethyl carbonate, as well as aminoethanol, the predicted interstellar precursor to alanine. The pure rotational spectral analysis of the low-lying torsional states of the simplest a-hydroxy aldehyde, glycolaldehyde, has also been completed. The original Balle-Flygare Fourier transform microwave spectrometer was used to obtain the microwave spectra, while both the Jet Propulsion Laboratory and Caltech direct absorption flow cell spectrometers were used for additional direct absorption millimeter and submillimeter studies. The results of these laboratory experiments were used to guide observational searches with the Caltech Submillimeter Observatory, the Owens Valley Millimeter Array; and the Green Bank Telascope toward the hot core sources Sgr B2(N-LMH), Orion Hot Core

  18. Planetary radio astronomy observations from Voyager 2 near Saturn

    Science.gov (United States)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1982-01-01

    Planetary radio astronomy measurements obtained by Voyager 2 near Saturn have added further evidence that Saturnian kilometric radiation is emitted by a strong dayside source at auroral latitudes in the northern hemisphere and by a weaker source at complementary latitudes in the southern hemisphere. These emissions are variable because of Saturn's rotation and, on longer time scales, probably because of influences of the solar wind and Dione. The electrostatic discharge bursts first discovered by Voyager 1 and attributed to emissions from the B ring were again observed with the same broadband spectral properties and an episodic recurrence period of about 10 hours, but their occurrence frequency was only about 30 percent of that detected by Voyager 1. While crossing the ring plane at a distance of 2.88 Saturn radii, the spacecraft detected an intense noise event extending to above 1 megahertz and lasting about 150 seconds. The event is interpreted to be a consequence of the impact, vaporization, and ionization of charged, micrometer-size G ring particles distributed over a vertical thickness of about 1500 kilometers.

  19. Planetary radio astronomy observations from Voyager-2 near Saturn

    Science.gov (United States)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1981-01-01

    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.

  20. Political astronomy: Comet and meteor observations by Muslim historians

    Science.gov (United States)

    Chander Kapoor, Ramesh

    2015-08-01

    Eclipses and unexpected phenomena like comets, meteors, novae and earthquakes were viewed among various cultures as violating the established order of the heavens. They were considered to be ill omens for kings and emperors and were routinely monitored. The present work looks into the texts of history and literature by Muslim historians and chroniclers in West Asia and India that carry stray references to such phenomena. The accounts often relate the apparitions to specific disastrous events or prognosticate revolts, deaths, epidemics, earthquakes all that that took place in later times. Obviously, the occurrences interested the astrologers more. Comet appearances would last for days and weeks but nearly all the writings lack sequential observations. Meteor showers are annual features but the Islamic calendar being lunar would not easily lead one to notice periodic nature of the incidents, let alone sensing a periodicity in comet appearances. These are non-astronomy texts with little scientific content but being from different ages permit us to see how the astronomical perceptions changed over the times. The recorded details and firm chronology, tested against modern back calculations, can provide valuable information on them, keeping in mind the text and the context in which the original reference was made. We also notice a qualitative change in the Indian writings of the 18th century and later where the authors begin to show up with influence of exposure to the European scientific progress.

  1. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    Science.gov (United States)

    Clark, G.; Mayo, L. A.

    2001-12-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy

  2. Gravitational-wave astronomy: Observational results and their impact

    OpenAIRE

    Shawhan, Peter S.

    2010-01-01

    The successful construction and operation of highly sensitive gravitational-wave detectors is an achievement to be proud of, but the detection of actual signals is still around the corner. Even so, null results from recent searches have told us some interesting things about the objects that live in our universe, so it can be argued that the era of gravitational-wave astronomy has already begun. In this article I review several of these results and discuss what we have learned from them. I the...

  3. The Universe on a Desktop: Observational Astronomy Simulations in the Instructional Laboratory

    Science.gov (United States)

    Marschall, Laurence A.

    2000-08-01

    Though the value of hands-on learning has long been recognised by educators, it is difficult to design laboratories in astronomy classes that present realistic astrophysical techniques to undergraduate students. Unlike most other sciences, astronomy is largely observational, not experimental, and making useful observations involves expensive equipment over time scales inconvenient for pedagogy. In recent years, however, astronomy has gone almost completely digital, and the advent of large on-line databases and fast personal computers has made it possible to realistically simulate the experience of research astrophysics in the laboratory. Since 1992, Project CLEA (Contemporary Laboratory Experiences in Astronomy) has been developing computer-based exercises aimed primarily at the introductory astronomy laboratory. These exercises simulate important techniques of astronomical research using digital data and Windows-based software. Each of the nine exercises developed to date consists of software, technical guides for teachers, and student manuals for the exercises. CLEA software is used at many institutions in all the United States and over 60 countries worldwide, in a variety of settings from middle school to upper-class astronomy classes. The current design philosophy and goals of Project CLEA are discussed along with plans for future development.

  4. US and Turkish preschoolers' observational knowledge of astronomy

    Science.gov (United States)

    Saçkes, Mesut; McCormick Smith, Mandy; Cabe Trundle, Kathy

    2016-01-01

    The purpose of this cross-cultural study was to describe and compare US and Turkish children's observational knowledge of the day and night cycle and to identify similarities predicted by framework theory. Fifty-six (27 US and 29 Turkish) young children (ages 48-60 months) participated in the study. Semi-structured interviews were individually conducted, digitally recorded, transcribed, and analyzed using the constant comparative method. The results demonstrate that preschoolers from the two cultures are able to make comparable informal observations of the sky, and their observational knowledge includes many similarities, with one exception, as predicted by framework theory. US children were more likely to perform better than the Turkish children on the question about the time of observation for the moon. Although science concepts and skills are better represented in US early childhood education programs than the Turkish program, the results suggest that this advantage did not translate into performance differences between US and Turkish children.

  5. Planetary radio astronomy observations from Voyager 2 near Jupiter

    Science.gov (United States)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. D.; Gulkis, S.; Boischot, A.

    1979-01-01

    The Voyager 2 Planetary Radio Astronomy experiment to Jupiter has confirmed and extended to higher zenomagnetic latitudes results from the identical experiment carried by Voyager 1. The kilometric emissions discovered by Voyager 1 often extended to 1 megahertz or higher on Voyager 2 and often consisted of negatively, or less frequently, positively drifting narrowband bursts. On the basis of tentative identification of plasma wave emissions similar to those detected by Voyager 1, the plasma torus associated with Io appeared somewhat denser to Voyager 2 than it did to Voyager 1. The paper reports on quasi-periodic sinusoidal or impulsive bursts in the broadcast band range of wavelengths (800 to 1800 kHz). A Faraday effect appears at decametric frequencies, which probably results from propagation of the radiation near its sources on Jupiter. Finally, the occurrence of decametric emission in homologous arc families is discussed.

  6. User friendly database for Neptune planetary radio astronomy observations

    Science.gov (United States)

    Evans, David R.

    1993-01-01

    Planetary Radio Astronomy (PRA) data from the Voyager Neptune encounter were cleaned and reformatted in a variety of formats. Most of these formats are new and have been specifically designed to provide easy access and use of the data without the need to understand esoteric characteristics of the PRA instrument or the Voyager spacecraft. Several data sets were submitted to the Planetary Data System (PDS) and have either appeared already on peer reviewed CDROM's or are in the process of being reviewed for inclusion in forthcoming CD-ROM's. Many of the data sets are also available online electronically through computer networks; it is anticipated that as time permits, the PDS will make all the data sets that were a part of this contract available both online and on CD-ROM's.

  7. Gravitational-wave astronomy: Observational results and their impact

    CERN Document Server

    Shawhan, Peter S

    2010-01-01

    The successful construction and operation of highly sensitive gravitational-wave detectors is an achievement to be proud of, but the detection of actual signals is still around the corner. Even so, null results from recent searches have told us some interesting things about the objects that live in our universe, so it can be argued that the era of gravitational-wave astronomy has already begun. In this article I review several of these results and discuss what we have learned from them. I then look into the not-so-distant future and predict some ways in which the detection of gravitational-wave signals will shape our knowledge of astrophysics and transform the field.

  8. Gravitational-wave astronomy: observational results and their impact

    International Nuclear Information System (INIS)

    The successful construction and operation of highly sensitive gravitational-wave detectors is an achievement to be proud of, but the detection of actual signals is still around the corner. Even so, null results from recent searches have told us some interesting things about the objects that live in our universe, so it can be argued that the era of gravitational-wave astronomy has already begun. In this paper I review several of these results and discuss what we have learned from them. I then look into the not-so-distant future and predict some ways in which the detection of gravitational-wave signals will shape our knowledge of astrophysics and transform the field.

  9. Astronomy at the frontiers of science

    CERN Document Server

    2011-01-01

    Astronomy is by nature an interdisciplinary activity: it involves mathematics, physics, chemistry and biology. Astronomers use (and often develop) the latest technology, the fastest computers and the most refined software.  In this book twenty-two leading scientists from nine countries talk about how astronomy interacts with these other sciences. They describe modern instruments used in astronomy and the relations between astronomy and technology, industry, politics and philosophy. They also discuss what it means to be an astronomer, the history of astronomy, and the place of astronomy in society today.   The book contains twenty chapters grouped in four parts: ASTRONOMY AND PHYSICS discusses the place of astronomy among various branches of (mostly high-energy) physics. ASTRONOMY IN SOCIETY describes not only the historical context of astronomy, but issues facing astronomers today, including funding, planning, worldwide collaboration and links with industry. THE TOOLS OF OBSERVATION AND THE PROFESSION OF AS...

  10. Infrared astronomy

    International Nuclear Information System (INIS)

    This volume contains lectures describing the important achievements in infrared astronomy. The topics included are galactic infrared sources and their role in star formation, the nature of the interstellar medium and galactic structure, the interpretation of infrared, optical and radio observations of extra-galactic sources and their role in the origin and structure of the universe, instrumental techniques and a review of future space observations. (C.F.)

  11. Early Astronomy

    Science.gov (United States)

    Thurston, Hugh

    The earliest investigations that can be called scientific are concerned with the sky: they are the beginnings of astronomy. Many early civilizations produced astronomical texts, and several cultures that left no written records left monuments and artifacts-ranging from rock paintings to Stonehenge-that show a clear interest in astronomy. Civilizations in China, Mesopotamia, India and Greece had highly developed astronomies, and the astronomy of the Mayas was by no means negligible. Greek astronomy, as developed by the medieval Arab philosophers, evolved into the astronomy of Copernicus. This displaced the earth from the central stationary position that almost all earlier astronomies had assumed. Soon thereafter, in the first decades of the seventeenth century, Kepler found the true shape of the planetary orbits and Galileo introduced the telescope for astronomical observations.

  12. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    Science.gov (United States)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  13. Astronomical Observations Astronomy and the Study of Deep Space

    CERN Document Server

    2010-01-01

    Our Search for knowledge about the universe has been remarkable, heartbreaking, fantastical, and inspiring, and this search is just beginning. Astronomical Observations is part of a 7 book series that takes readers through a virtual time warp of our discovery. From the nascent space programs of the 1960's to today's space tourism and the promise of distant planet colonization, readers will be transfixed. Throughout this journey of the mind, Earth-bound explorers gain keen insight into the celestial phenomena that have fascinated humans for centuries. Thrilling narratives about indefatigable sc

  14. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    Science.gov (United States)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  15. Astronomy 101 Students Learning How Science Works by Writing Credible Observing Proposals

    Science.gov (United States)

    Shipman, H. L.

    2003-12-01

    Teachers of general-audience science courses, astronomy department chairs, and K-12 standards-writing committees all agree that student understanding of the scientific habits of mind is one important goal of any science course. This paper reports the successful use of a problem-based learning approach where students asked to choose the next step in an observational astronomy research program. The course, "Black Holes and Cosmic Evolution," is a rather unusual version of Astronomy 101 which spends the first three weeks on the ways that astronomers search for black holes. The 136 students were given a list of black hole candidates (from Bailyn et al., ApJ 499, 368) and asked to work in groups of 4-5 to choose and justify one for further observations. They learned and used error analysis. They determined the X-ray properties of these objects with an on-line x-ray survey (http://skyview.gsfc.nasa.gov/). The group product was a paper that was, essentially, a standard NOAO observing proposal. The University of Delaware's access to telescopes through its newly-acquired membership in the SMARTS consortium (http://phoenix.astro.yale.edu/smarts/) provided some motivation. In short, these students, none of whom are science majors, were challenged to act like real observational astronomers. Some guidance was provided by the instructor and two undergraduate TA's. Did they rise to the challenge or did they flounder? They succeeded. All 30 groups presented credible papers. Several A-plus papers were so good that they could make up most of an actual observing proposal. A follow-up exam tested students' understanding of underlying concepts (e.g., using Kepler's Laws to analyze binary stars). The average score on these test questions was 89.2 (n=133). We plan to use some SMARTS time to observe student-selected targets. This research has been supported by the Distinguished Teaching Scholars program of the National Science Foundation (DUE-0308557).

  16. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    Science.gov (United States)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  17. Sustainable Astronomy

    Science.gov (United States)

    Blaha, C.; Goetz, J.; Johnson, T.

    2011-09-01

    Through our International Year of Astronomy outreach effort, we established a sustainable astronomy program and curriculum in the Northfield, Minnesota community. Carleton College offers monthly open houses at Goodsell Observatory and donated its recently "retire" observing equipment to local schools. While public evenings continue to be popular, the donated equipment was underutilized due to a lack of trained student observing assistants. With sponsorship from NASA's IYA Student Ambassador program, the sustainable astronomy project began in 2009 to generate greater interest in astronomy and train middle school and high school students as observing assistants. Carleton physics majors developed curricular materials and instituted regular outreach programs for grades 6-12. The Northfield High School Astronomy Club was created, and Carleton undergraduates taught high school students how to use telescopes and do CCD imaging. During the summer of 2009, Carleton students began the Young Astronomers Summer Experience (YASE) program for middle school students and offered a two-week, astronomy-rich observing and imaging experience at Goodsell Observatory. In concert with NASA's Summer of Innovation initiative, the YASE program was offered again in 2010 and engaged a new group of local middle school students in hands-on scientific experiments and observing opportunities. Members of the high school astronomy club now volunteer as observing assistants in the community and graduates of the YASE programs are eager to continue observing as members of a public service astronomy club when they enter the Northfield High School. These projects are training future scientists and will sustain the public's interest in astronomy long after the end of IYA 2009.

  18. Observations of an indigenous Hawaiian planetarium operator: Astronomy content knowledge of Hawaiian school children

    Science.gov (United States)

    Dye, Ahia G.; Ha`o, Celeste; Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    Not so long ago, astronomers visiting schools in Hawaii tried to build awareness among school children and teachers about how stars move across the sky, the nature of planets orbiting our sun, and the physical processes governing stars and galaxies. While these efforts were undertaken with all good intentions, they were often based on our collective understanding of how Mainland children come to know astronomy topics, and with a Western worldview. Research observations of Hawaiian elementary school children indicate that Hawaiian children understand far more about the skies than could have been predicted from the behavior of Mainland children, or from the body of literature on children’s understanding of astronomy. Analysis of elementary students’ responses to a kumu’s, or teacher’s questions relating to the celestial sphere indicate that these students posses a deep knowledge of the night sky and celestial motions. This knowledge base is fluent across two cultural systems of constellations, and is predictive. In an era of curriculum development based upon learning progressions, it appears that Native Hawaiian students possess unexpected knowledge that is well poised to interfere with conventional educational and public outreach approaches if not taken into account. Further, these findings suggest that further inquiry must be made into the astronomical thinking of minority populations prior to the unilateral implementation of national science education standards.

  19. Thunderstorms observed by radio astronomy Explorer 1 over regions of low man made noise

    Science.gov (United States)

    Caruso, J. A.; Herman, J. R.

    1974-01-01

    Radio Astronomy Explorer (RAE) I observations of thunderstorms over regions of low man-made noise levels are analyzed to assess the satellite's capability for noise source differentiation. The investigation of storms over Australia indicates that RAE can resolve noise generation due to thunderstorms from the general noise background over areas of low man-made noise activity. Noise temperatures observed by RAE over stormy regions are on the average 10DB higher than noise temperatures over the same regions in the absence of thunderstorms. In order to determine the extent of noise contamination due to distant transmitters comprehensive three dimensional computer ray tracings were generated. The results indicate that generally, distant transmitters contribute negligibly to the total noise power, being 30DB or more below contributions arriving from an area immediately below the satellite.

  20. Radio Jupiter after Voyager: An overview of the Planetary Radio Astronomy observations

    Science.gov (United States)

    Boischot, A.; Lecacheux, A.; Kaiser, M. L.; Desch, M. D.; Alexander, J. K.; Warwick, J. W.

    1980-01-01

    Jupiter's low frequency radio emission morphology as observed by the Planetary Radio Astronomy (PRA) instrument onboard the Voyager spacecraft is reviewed. The PRA measurement capabilities and limitations are summarized following over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previous unrecognized emission components were discovered: broadband and narrow band kilometric emission and the lesser arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter and hectometer wavelength emission, which is believed to be almost exclusively in the form of complex but repeating arc structures in the frequency time domain, is described. Dramatic changes in the emission morphology of some components as a function of Sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in suit measurements of the Io plasma torus hot to cold electron density and temperature ratios are summarized.

  1. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    Science.gov (United States)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  2. Submillimeter Wave Astronomy Satellite mapping observations of water vapor around Sagittarius B2

    CERN Document Server

    Neufeld, D A; Melnick, G J; Goldsmith, P F; Neufeld, David A.; Bergin, Edwin A.; Melnick, Gary J.; Goldsmith, Paul F.

    2003-01-01

    Observations of the 1(10)-1(01) 556.936 GHz transition of ortho-water with the Submillimeter Wave Astronomy Satellite (SWAS) have revealed the presence of widespread emission and absorption by water vapor around the strong submillimeter continuum source Sagittarius B2. An incompletely-sampled spectral line map of a region of size 26 x 19 arcmin around Sgr B2 reveals three noteworthy features. First, absorption by foreground water vapor is detectable at local standard-of-rest (LSR) velocities in the range -100 to 0 km/s at almost every observed position. Second, spatially-extended emission by water is detectable at LSR velocities in the range 80 to 120 km/s at almost every observed position. This emission is attributable to the 180-pc molecular ring identified from previous observations of CO. The typical peak antenna temperature of 0.075 K for this component implies a typical water abundance of 1.2E-6 to 8E-6 relative to H2. Third, strong absorption by water is observed within 5 arcmin of Sgr B2 at LSR veloci...

  3. Radio Jupiter after Voyager - An overview of the planetary radio astronomy observations

    Science.gov (United States)

    Boischot, A.; Lecacheux, A.; Kaiser, M. L.; Desch, M. D.; Alexander, J. K.; Warwick, J. W.

    1981-01-01

    An overview of Jupiter's low-frequency radio emission morphology as observed by the planetary radio astronomy (PRA) instrument onboard the Voyager spacecraft is presented. The PRA measurement capabilities and limitations are summarized, based on over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previously-unrecognized emission components have been discovered: broadband and narrow-band kilometric emission, and the lesser-arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter wavelength and hectometer wavelength emission, now believed to be almost exclusively in the form of complex but repeating arc structures in the frequencytime domain, is described. Dramatic changes in the emission morphology of some components as a function of the sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in situ measurements of the Io plasma torus hot-to-cold electron density and temperature ratios are summarized.

  4. Teaching and Learning Astronomy

    Science.gov (United States)

    Pasachoff, Jay; Percy, John

    2009-07-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel

  5. Music and Astronomy Under the Stars 2009

    Science.gov (United States)

    Lubowich, D.

    2010-08-01

    Bring telescopes to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded astronomy outreach program at community parks during and after music concerts and outdoor family events—such as a Halloween Stars-Spooky Garden Walk. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience: music lovers who are attending summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500-16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience (Nassau and Suffolk Counties, New York) is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where over 5000 people participated in astronomy activities. The Amateur Observers' Society of New York assisted with the NY concerts and the Springfield STARS astronomy club assisted at Tanglewood. In 2009 over 15,000 people participated in astronomy

  6. Innovation in Astronomy Education

    Science.gov (United States)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  7. TeachAstronomy.com - Digitizing Astronomy Resources

    Science.gov (United States)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  8. College Astronomy Teaching Excellence Workshops

    Science.gov (United States)

    Slater, T. F.; Bennett, M.; Greene, W. M.; Pompea, S.; Prather, E. E.

    2003-12-01

    As part of the education and public outreach efforts of the NASA JPL Navigator, SIRTF Mission and the Astronomical Society of the Pacific, astronomy educators affiliated with the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona are conducting a series of two- and three-day teaching excellence workshops for college faculty. These workshops are being held in conjunction with professional society meetings, such as the American Astronomical Society and the American Association of Physics Teachers, and through the infrastructure of the National Science Foundation's Summer Chautauqua Workshop program. This three-day, interactive teaching excellence workshop focuses on dilemmas astronomy teachers face and develop practical solutions for the troubling issues in curriculum, instruction, and assessment. After reviewing the latest research about how students learn, participants define and set measurable student learning goals and objectives for students in their astronomy courses and construct effective course syllabi reflecting the ASTRO 101 goals publicized by the AAS. To improve instruction, participants learn how to create productive learning environments by using interactive lectures, peer instruction, engaging demonstrations, collaborative groups, tutorials, computer-based laboratories, and observational projects. Participants also learn how to write more effective multiple-choice tests and implement authentic assessment strategies including portfolio assessment, performance tasks, and concept maps. Texts provided at the workshop are: (i) Learner-Centered Astronomy Teaching, Slater and Adams, Prentice Hall, 2002; (ii) Great Ideas for Teaching Astronomy, Pompea, Brooks Cole, 2000; and (iii) Lecture-Tutorials for Introductory Astronomy, Adams, Prather, & Slater, Prentice Hall, 2002.

  9. Remote observations of reentering spacecraft including the space shuttle orbiter

    Science.gov (United States)

    Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, Jay H.; Gibson, David M.

    Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

  10. Early Astronomy

    Science.gov (United States)

    Thurston, Hugh

    The earliest investigations that we can relate to what is now science are observations of the sky: Astronomy. The earliest written records of every civilization we know of - from China, Egypt, the Tigris-Euphrates and Indus valleys, Central America, the Andes, and so forth - all contain at least some astronomical texts. There are in addition monuments and artifacts that show a clear interest in astronomy, such as Stonehenge and rock paintings, from cultures that left no written records. The interest in celestial phenomena contributed to the development of Babylonian arithmetic and Greek geometry.

  11. Neutrino astronomy

    International Nuclear Information System (INIS)

    In recent years, there has been considerable discussion on the field called neutrino astronomy which represents exciting prospect in that it deals with the radiations which are distinct from electromagnetic spectra. Because of the unique, enormously long interaction mean free path of neutrinos, this field can in principle give extremely valuable complementary information about the universe, in particular about the conditions in the core of the sun and the energy balance and extent of the galaxy. Remarkable difference is observed when outlining of the development of neutrino astronomy is attempted in a manner similar to that for radio astronomy. The development on solar neutrinos, calculation of solar neutrino flux, solar neutrino search experiments, efforts to resolve the discrepancy between theory and experiment concerning the neutrinos from the sun, chemistry consideration, nuclear physics problems, astrophysical calculation, neutrino physics and other physical accomplishments are reviewed in the report. (Iwase, T.)

  12. Astronomy essentials

    CERN Document Server

    Brass, Charles O

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Astronomy includes the historical perspective of astronomy, sky basics and the celestial coordinate systems, a model and the origin of the solar system, the sun, the planets, Kepler'

  13. African Cultural Astronomy

    CERN Document Server

    Holbrook, Jarita C; Medupe, R. Thebe; Current Archaeoastronomy and Ethnoastronomy research in Africa

    2008-01-01

    Astronomy is the science of studying the sky using telescopes and light collectors such as photographic plates or CCD detectors. However, people have always studied the sky and continue to study the sky without the aid of instruments this is the realm of cultural astronomy. This is the first scholarly collection of articles focused on the cultural astronomy of Africans. It weaves together astronomy, anthropology, and Africa. The volume includes African myths and legends about the sky, alignments to celestial bodies found at archaeological sites and at places of worship, rock art with celestial imagery, and scientific thinking revealed in local astronomy traditions including ethnomathematics and the creation of calendars. Authors include astronomers Kim Malville, Johnson Urama, and Thebe Medupe; archaeologist Felix Chami, and geographer Michael Bonine, and many new authors. As an emerging subfield of cultural astronomy, African cultural astronomy researchers are focused on training students specifically for do...

  14. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  15. Music and Astronomy Under the Stars

    Science.gov (United States)

    Lubowich, D.

    2008-11-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a public astronomy outreach program at community parks during and after free summer music concerts and outdoor movie nights. This project also includes daytime activities because there are some afternoon concerts and daylight children's concerts, and observations using remotely operated telescopes in cloudy weather. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience---music lovers who are attending free summer concerts held in community parks. The music lovers who may never have visited a science museum, planetarium, or star party will be exposed to telescope observations and astronomy information with no additional travel costs. This program will permit the entire community to participate in telescope observations and view astronomical video information to enhance the public appreciation of astronomy. This program will also reach underrepresented and underserved groups (women, minorities, older adults). The population base for the initial target audience (Nassau and Suffolk Counties, New York) is 2,500,000. My partners are the Amateur Observers' Society of New York (AOS) and the Towns of Oyster Bay, Hempstead, North Hempstead, and Huntington. Music and Astronomy Under the Stars is program that should continue beyond the International Year of Astronomy 2009 (IYA2009) and can be expanded into a national program.

  16. Transmission of Babylonian Astronomy to Other Cultures

    Science.gov (United States)

    Jones, Alexander

    Babylonian astronomy and astrology were extensively transmitted to other civilizations in the second and first millennia BC. Greek astronomy in particular was largely shaped by knowledge of Babylonian observations and mathematical astronomy.

  17. Infrared Astronomy

    Science.gov (United States)

    Mampaso, A.; Prieto, M.; Sánchez, F.

    2004-01-01

    What do we understand of the birth and death of stars? What is the nature of the tiny dust grains that permeate our Galaxy and other galaxies? And how likely is the existence of brown dwarfs, extrasolar planets or other sub-stellar mass objects? These are just a few of the questions that can now be addressed in a new era of infrared observations. IR astronomy has been revolutionised over the past few years by the widespread availability of large, very sensitive IR arrays and the success of IR satellites (IRAS in particular). Several IR space missions due for launch over the next few years promise an exciting future too. For these reasons, the IV Canary Islands Winter School of Astrophysics was dedicated to this burgeoning field. Its primary goal was to introduce graduate students and researchers from other areas to the important new observations and physical ideas that are emerging in this wide-ranging field of research. Lectures from nine leading researchers, renowned for their teaching abilities, are gathered in this volume. These nine chapters provide an excellent introduction as well as a thorough and up-to-date review of developments - essential reading for graduate students entering IR astronomy, and professionals from other areas who realise the importance that IR astronomy may have on their research.

  18. Astronomy in Argentina

    CERN Document Server

    Muriel, Hernán

    2013-01-01

    This article analyses the current state of Astronomy in Argentina and describes its origins. We briefly describe the institutions where astronomical research takes place, the observational facilities available, the training of staff and professionals, and the role of the institutions in scientific promotion. We also discuss the outreach of Astronomy towards the general public, as well as amateur activities. The article ends with an analysis of the future prospects of astronomy in Argentina.

  19. Statistics in astronomy

    OpenAIRE

    Feigelson, Eric D.

    2009-01-01

    Perhaps more than other physical sciences, astronomy is frequently statistical in nature. The objects under study are inaccessible to direct manipulation in the laboratory, so the astronomer is restricted to observing a few external characteristics and inferring underlying properties and physics. Astronomy played a profound role in the historical development of statistics from the ancient Greeks through the 19th century. But the fields drifted apart in the 20th century as astronomy turned tow...

  20. Light Pollution in Lowndes County, Georgia: An Observational Project for Introductory Astronomy Students

    Science.gov (United States)

    Rumstay, K. S.; VSU Astronomy Students Team

    2000-12-01

    A long-term study of light pollution in Lowndes County, Georgia has been initiated as a collaborative project among students enrolled in introductory astronomy courses at Valdosta State University. A single honors student began the project in Spring 2000; during the Fall 2000 semester all students enrolled in ASTR 1020K (Stellar and Galactic Astronomy) were invited to participate on a voluntary basis. Students were provided with charts showing the appearance of the constellations Cygnus, Pegasus, Cassiopeia, and Orion (as appropriate) at limiting magnitudes ranging from 2.5 to 6.0 in 0.5-magnitude steps. On clear, moonless nights students compared the visual appearance of these constellations to the charts, allowing them to determine a limiting magnitude for their location. Preliminary results suggest that, even on the clearest nights, stars fainter than magnitude 5.0 are not visible from any location within Lowndes County. This limitation results largely from ambient light from Valdosta, the only urban area within the county, and also from atmospheric extinction in a region of high humidity. By participating in this exercise, students in a class traditionally populated by non-science majors gain an appreciation for the collaborative nature of modern science. They also become familiar more familiar with the night sky than they might were their exposure limited to the traditional two-hour weekly laboratory session. Most importantly, as young adults they experience first-hand the deleterious effects of light intrusion upon their enjoyment of the night sky!

  1. ASTRO-F/FIS observing simulation including detector effects

    Science.gov (United States)

    Jeong, W.; Pak, S.; Lee, H.; Nakagawa, T.; Kim, M.; Oh, S.; Kaneda, H.; Matsuura, S.; Patrashin, M.; Shibai, H.

    Based on the present hardware specifications and configurations of the ASTRO-F/FIS (Far-Infrared Surveyor), we are developing a software that simulates the observations with this instrument. Various kinds of detector effects affect the quality of the signal obtained from the detector. In order to correct the signal exactly, we need to analyze the characteristics of the detector and simulate various detector effects. In this presentation, we will show the simulated data sets based on the experimental data measured in the laboratory. Using the simulator, we will discuss the effects of cosmic-ray hitting, transient, crosstalk and non-uniformity of detectors, and propose an appropriate methods for the data reduction.

  2. Uncertain LDA: Including Observation Uncertainties in Discriminative Transforms.

    Science.gov (United States)

    Saeidi, Rahim; Astudillo, Ramon Fernandez; Kolossa, Dorothea

    2016-07-01

    Linear discriminant analysis (LDA) is a powerful technique in pattern recognition to reduce the dimensionality of data vectors. It maximizes discriminability by retaining only those directions that minimize the ratio of within-class and between-class variance. In this paper, using the same principles as for conventional LDA, we propose to employ uncertainties of the noisy or distorted input data in order to estimate maximally discriminant directions. We demonstrate the efficiency of the proposed uncertain LDA on two applications using state-of-the-art techniques. First, we experiment with an automatic speech recognition task, in which the uncertainty of observations is imposed by real-world additive noise. Next, we examine a full-scale speaker recognition system, considering the utterance duration as the source of uncertainty in authenticating a speaker. The experimental results show that when employing an appropriate uncertainty estimation algorithm, uncertain LDA outperforms its conventional LDA counterpart.

  3. Syllabus Computer in Astronomy

    Science.gov (United States)

    Hojaev, Alisher S.

    2015-08-01

    One of the most important and actual subjects and training courses in the curricula for undergraduate level students at the National university of Uzbekistan is ‘Computer Methods in Astronomy’. It covers two semesters and includes both lecture and practice classes. Based on the long term experience we prepared the tutorial for students which contain the description of modern computer applications in astronomy.The main directions of computer application in field of astronomy briefly as follows:1) Automating the process of observation, data acquisition and processing2) Create and store databases (the results of observations, experiments and theoretical calculations) their generalization, classification and cataloging, working with large databases3) The decisions of the theoretical problems (physical modeling, mathematical modeling of astronomical objects and phenomena, derivation of model parameters to obtain a solution of the corresponding equations, numerical simulations), appropriate software creation4) The utilization in the educational process (e-text books, presentations, virtual labs, remote education, testing), amateur astronomy and popularization of the science5) The use as a means of communication and data transfer, research result presenting and dissemination (web-journals), the creation of a virtual information system (local and global computer networks).During the classes the special attention is drawn on the practical training and individual work of students including the independent one.

  4. Towards Observational Astronomy of Jets in Active Galaxies from General Relativistic Magnetohydrodynamic Simulations

    Science.gov (United States)

    Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy

    2016-01-01

    We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between

  5. X-ray astronomy

    International Nuclear Information System (INIS)

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  6. Submillimeter Wave Astronomy Satellite Observations of Extended Water Emission in Orion

    CERN Document Server

    Snell, R L; Ashby, M L N; Bergin, E A; Chin, G; Erickson, N R; Goldsmith, P F; Harwit, M; Kleiner, S C; Koch, D G; Neufeld, D A; Patten, B M; Plume, R; Schieder, R; Stauffer, J R; Tolls, V; Wang, Z; Winnewisser, G; Zhang, Y F; Melnick, G J

    2000-01-01

    We have used the Submillimeter Wave Astronomy Satellite to map the ground-state 1_{10}-1_{01} transition of ortho-water at 557 GHz in the Orion molecular cloud. Water emission was detected in Orion over an angular extent of about 20 arcmin, or nearly 3 pc. The water emission is relatively weak, with line widths (3-6 km s^{-1}) and V_{LSR} velocities (9-11 km s^{-1}) consistent with an origin in the cold gas of the molecular ridge. We find that the ortho-water abundance relative to H_2 in the extended gas in Orion varies between 1 and 8x10^{-8}, with an average of 3x10^{-8}. The absence of detectable narrow-line ortho-H_2^{18}O emission is used to set a 3-sigma upper limit on the relative ortho-water abundance of 7x10^{-8}.

  7. Astronomy, space science and geopolitics

    Science.gov (United States)

    Courvoisier, Thierry J.-L.

    2011-06-01

    Astronomy has played a major part in the development of civilisations, not only through conceptual developments, but most importantly through the very practical gains obtained through the observation of Sun, Moon planets and stars. Space sciences, including astronomy, have also played a major rôle in the development of modern societies, as an engine for most subsequent space technology developments. Present trends tend to decrease the rôle of science in space development. This trend should be reversed to give modern ``societies'' their independence in space-related matters that permeate the lives of all inhabitants of the Earth.

  8. Astronomy, Space Science and Geopolitics

    CERN Document Server

    Courvoisier, Thierry J -L

    2010-01-01

    Astronomy has played a major part in the development of civilisations, not only through conceptual developments, but most importantly through the very practical gains obtained through the observation of Sun, Moon planets and stars. Space sciences, including astronomy, have also played a major role in the development of modern societies, as engine for most subsequent space technology developments. Present trends tend to decrease the role of science in space development. This trend should be reversed to give modern "societies" their independence in space related matters that permeate the lives of all inhabitants of the Earth.

  9. Handbook of Practical Astronomy

    CERN Document Server

    Roth, Günter D

    2009-01-01

    With amateurs, students, and teachers of astronomy in high schools and colleges particularly in mind, the Handbook of Practical Astronomy is an essential source to demonstrate trends and variety of astronomical observations. The book presents the substance of celestial bodies for the amateur observer: the planets, the stars, and the galaxies. The sun is the local link to the other stars, the nexus of cosmic evolution. The solar system is made up by the sun and all the celestial bodies orbit it. This system is of special interest for the observing amateur. The Handbook of Practial Astronomy spans astronomy, education and computing. Like many other fields of science, astronomy has become digitized and data rich in recent years. Besides the references at the end of each chapter, there are the notes in the margins with astronomical news and observing highlights on the web.

  10. Armenian Cultural Astronomy

    Science.gov (United States)

    Farmanyan, S. V.; Mickaelian, A. M.

    2015-07-01

    Cultural Astronomy is the reflection of sky events in various fields of nations' culture. In foreign literature this field is also called "Astronomy in Culture" or "Astronomy and Culture". Cultural astronomy is the set of interdisciplinary fields studying the astronomical systems of current or ancient societies and cultures. It is manifested in Religion, Mythology, Folklore, Poetry, Art, Linguistics and other fields. In recent years, considerable attention has been paid to this sphere, particularly international organizations were established, conferences are held and journals are published. Armenia is also rich in cultural astronomy. The present paper focuses on Armenian archaeoastronomy and cultural astronomy, including many creations related to astronomical knowledge; calendars, rock art, mythology, etc. On the other hand, this subject is rather poorly developed in Armenia; there are only individual studies on various related issues (especially many studies related to Anania Shirakatsi) but not coordinated actions to manage this important field of investigation.

  11. What's Up? Use the night sky to engage the public through amateur astronomy in IYA; What's Up monthly astronomy themed podcasts; Annual Saturn Observation Night worldwide celebration of Saturn Opposition

    Science.gov (United States)

    Houston Jones, Jane

    2008-09-01

    Abstract What's Up video podcasts: connecting "astronomy for everyone" monthly astronomical views with related NASA missions, science, images and handson education. Background: What's Up Podcasts are 2 minute video podcasts available through RSS feed, You tube, and NASA websites every month. They feature an astronomy related viewing target in the sky each month, targets visible to everyone, from city or country, just by looking up! No telescope is required to view these objects. Summary: Expand and broaden the scope of the existing "What's Up" public astronomy themed video podcasts. NASA builds partnerships and linkages between Science, Technology, Engineering and Mathematics formal and informal education providers. What's Up podcasts provides a link between astronomical views and events, or "what's up in the night sky this month" with current NASA missions, mission milestones and events, space telescope images or press releases. These podcasts, plus supporting star charts, hands-on activities, standards-based educational lessons and mission links will be used by museums, planetariums, astronomy clubs, civic and youth groups, as well as by classrooms and the general public. They can be translated to other languages, too. Providing the podcasts in high definition, through the NASA websites, You Tube, iTunes and other web video sharing sites reaches wide audiences of all ages. Third Saturn Observation Night - May 18, 2008 Centered on Saturn Opposition, when the Sun and Saturn are on opposite sides of the Earth, all IYA participants - in all countries around the world - will be encouraged to take their telescopes out and share the planet Saturn with their communities. NASA's International Saturn Observation Campaign network of astronomy enthusiasts has now conducted a Saturn Observation Night event for the past 2 years, and it succeeds by building an international community all sharing Saturn. This celebration has been successfully conducted in hundreds of locations

  12. Learning Astronomy by Doing Astronomy

    Science.gov (United States)

    Percy, J. R.

    2006-08-01

    In the modern science curriculum, students should learn science knowledge or "facts"; they should develop science skills, strategies, and habits of mind; they should understand the applications of science to technology, society, and the environment; and they should cultivate appropriate attitudes toward science. While science knowledge may be taught through traditional lecture-and-textbook methods, theories of learning (and extensive experience) show that other aspects of the curriculum are best taught by doing science -- not just hands-on activities, but "minds-on" engagement. That means more than the usual "cookbook" activities in which students use a predetermined procedure to achieve a predetermined result. The activities should be "authentic"; they should mirror the actual scientific process. In this presentation, I will describe several ways to include science processes within astronomy courses at the middle school, high school, and introductory university level. Among other things, I will discuss: topics that reflect cultural diversity and "the nature of science"; strategies for developing science process skills through projects and other practical work; activities based on those developed and carried out by amateur astronomers; topics and activities suitable for technical-level courses (we refer to them as "applied" in my province); projects for astronomy clubs and science fairs; and topics that expose students to astronomy research within lecture courses.

  13. VLA observations of stellar planetary nebulae. [using Very Large Array at National Radio Astronomy Observatory

    Science.gov (United States)

    Johnson, H. M.; Balick, B.; Thompson, A. R.

    1979-01-01

    Coordinates, dimensions, 4885-MHz flux densities, and brightness temperatures of K3-2, NGC 6833, Ps 1, II 5117, Me 2-2, Hb 12, Vy 1-1, and M1-5 are reported. In two other cases, H3-29 and H3-75, confused extended structure was detected in which the nebula could not be identified with certainty. He 2-467, M1-2, and Peterson's H-alpha object in M15 were also included in the observations but not detected with an upper limit of less than 10 mJy. The observations are compared with some of the previous optical and radio data, such as log S(H-beta). Distances are computed from the present data with standard assumptions. Corresponding linear radii range below 0.1 pc, among the smallest in previous distributions of radius.

  14. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  15. Observations of Cygnus X-1 during the two spectral states with the Indian X-ray Astronomy Experiment (IXAE)

    CERN Document Server

    Rao, A R; Paul, B

    1997-01-01

    We present the time variability characteristics of Cygnus X-1 in its two spectral states. The observations were carried out using the Pointed Proportional Counters (PPC) on-board the Indian X-ray Astronomy Experiment (IXAE). The details of the instrument characteristics, the observation strategy, and the background modeling methods are described. In the soft state of Cyg X-1, we confirm the general trend of the Power Density Spectrum (PDS) obtained using the Proportional Counter Array (PCA) on-board the RXTE satellite. The hard state of the source just prior to the spectral transition was not observed by the PCA and we present the PDS obtained in this state. We find that the low frequency end of the PDS is flatter than that observed during the spectral transition. Additionally, we find that there is one more component in the low frequency end of the PDS, which is independent of the spectral state of the source. The time variability is also examined by taking the statistics of the occurrence of shots and it is...

  16. EDITORIAL: `Bridging Gravitational Wave Astronomy and Observational Astrophysics', Proceedings of the 13th Gravitational Wave Data Analysis Workshop (GWDAW13) (San Juan, Puerto Rico, 19-22 January 2009), sponsored by the Center for Gravitational Wave Astronomy, The University of Texas at Brownsville and The National Astronomy and Ionosphere Center `Bridging Gravitational Wave Astronomy and Observational Astrophysics', Proceedings of the 13th Gravitational Wave Data Analysis Workshop (GWDAW13) (San Juan, Puerto Rico, 19-22 January 2009), sponsored by the Center for Gravitational Wave Astronomy, The University of Texas at Brownsville and The National Astronomy and Ionosphere Center

    Science.gov (United States)

    Díaz, Mario; Jenet, Fredrick; Mohanty, Soumya

    2009-10-01

    The 13th Gravitational Wave Data Analysis Workshop took place in San Juan, Puerto Rico on the 19-22 January 2009. This annual event has become the established venue for presenting and discussing new results and techniques in this crucial subfield of gravitational wave astronomy. A major attraction of the event is that scientists working with all possible instruments gather to discuss their projects and report on the status of their observations. The Center for Gravitational Wave Astronomy at the University of Texas at Brownsville, USA (a National Aeronautics and Space Administration University Research Center and a National Science Foundation Center for Research Excellence in Science and Technology) jointly with the National Astronomy and Ionosphere Center (which operates the Arecibo Observatory) were the proud sponsors of the gathering this time. As in previous years, GWDAW13 was well attended by more than 100 participants from over 10 countries worldwide As this issue is going to press GEO, LIGO and VIRGO are undergoing new scientific runs of their instruments with the LIGO detectors holding the promise of increasing their operational sensitivity twofold as compared with the observations finished a couple of years ago. This new cycle of observations is a major milestone compared to the previous observations which have been accomplished. Gravitational waves have not been observed yet, but the instrumental sensitivity achieved has started producing relevant astrophysical results. In particular, very recently (Nature, 20 August 2009) a letter from the LIGO Scientific Collaboration http://www.ligo.org and the VIRGO Collaboration http://www.virgo.infn.it has set the most stringent limits yet on the amount of gravitational waves that could have come from the Big Bang in the gravitational wave frequency band where current gravitational wave detectors can observe. These results have put new constraints on the physical characteristics of the early universe. The proximity

  17. Building Astronomy Curriculum to Include the Sight Impaired: Week long summer camp activities for Middle School Students adherent to Washington State Curriculum Standards (EALR's)

    Science.gov (United States)

    Ramien, Natalie; Loebman, S. R.; Player, V.; Larson, A.; Torcolini, N. B.; Traverse, A.

    2011-01-01

    Currently astronomy learning is heavily geared towards visual aids; however, roughly 10 million people in North America are sight impaired. Every student should have access to meaningful astronomy curriculum; an understanding of astronomy is an expectation of national and state science learning requirements. Over the last ten years, Noreen Grice has developed Braille and large print astronomy text books aimed at sight impaired learners. We build upon Grice's written work and present here a five day lesson plan that integrates 2D reading with 3D activities. Through this curriculum, students develop an intuitive understanding of astronomical distance, size, composition and lifetimes. We present five distinct lesson modules that can be taught individually or in a sequential form: the planets, our sun, stars, stellar evolution and galaxies. We have tested these modules on sight impaired students and report the results here. Overall, we find the work presented here lends itself equally well to a week long science camp geared toward middle school sight impaired taught by astronomers or as supplemental material integrated into a regular classroom science curriculum. This work was made possible by a 2007 Simple Effective Education and Dissemination (SEED) Grant For Astronomy Researchers, Astronomical Society of the Pacific through funds provided by the Planck Mission, Jet Propulsion Laboratory, California Institute of Technology.

  18. Multiwavelength astronomy and big data

    Science.gov (United States)

    Mickaelian, A. M.

    2016-09-01

    Two major characteristics of modern astronomy are multiwavelength (MW) studies (fromγ-ray to radio) and big data (data acquisition, storage and analysis). Present astronomical databases and archives contain billions of objects observed at various wavelengths, both galactic and extragalactic, and the vast amount of data on them allows new studies and discoveries. Astronomers deal with big numbers. Surveys are the main source for discovery of astronomical objects and accumulation of observational data for further analysis, interpretation, and achieving scientific results. We review the main characteristics of astronomical surveys, compare photographic and digital eras of astronomical studies (including the development of wide-field observations), describe the present state of MW surveys, and discuss the Big Data in astronomy and related topics of Virtual Observatories and Computational Astrophysics. The review includes many numbers and data that can be compared to have a possibly overall understanding on the Universe, cosmic numbers and their relationship to modern computational facilities.

  19. Peer Instruction for Astronomy

    Science.gov (United States)

    Green, Paul

    Peer Instruction for Astronomy is an instructor's guide to an exciting and easily-implemented enhancement for lecture classes in introductory astronomy. Application of this powerful and efficient teaching technique requires that the instructor have on hand a large number of thought-provoking, conceptual short answer questions aimed at a variety of levels. While significant numbers of such questions have been published for use in Physics, Peer Instruction for Astronomy provides the first such compilation for Astronomy, and includes hints on use of the technique and applications of the method. KEY TOPICS: Covers peer instruction, incentives, a large database of conceptual questions for use in class, and a list of readings and resources. MARKET: Ideal for introductory astronomy instructors at the undergraduate or advanced high school level.

  20. Book Review: 100 years of observational astronomy and astrophysics : homage to Miklos Konkoly Thege / C. Sterken, 2001 / Vrije Universiteit Brussel, 2001

    Science.gov (United States)

    Sterken, C.; Hearnshaw, J. B.

    Miklós Konkoly Thege (1842-1916) was a wealthy Hungarian nobleman who established a private observatory at Ógyalla, nowadays a state institution known as the Konkoly Observatory. This interesting book is the proceedings of a workshop held in 1999 to celebrate the 100th anniversary of the founding of the Astronomical Research Institute of the Hungarian Academy of Sciences, based on the Konkoly Observatory. There are five parts to the book. The first is about the history of the Konkoly Observatory and its activities. Konkoly Thege was very active in instrumental matters - his book Praktische Anleitung ... (1883) was influential during the period when astrophysics was undergoing its first period of rapid development, and a copy of it exists in the SAAO collection. Konkoly was a pioneer in astronomical photometry and spectroscopy and made use of the Zöllner visual photometer as well as the schraffierkassette method for photographic photometry. The second part of the book is concerned with early astrophysics in various countries. The article on Japanese astronomy around 1899 (by M Takeuti) deals with a period not covered by articles in English. At this time, Japan was still recovering from the two centuries of isolation imposed by the Edo Shogunate, and research astronomy was just beginning. CD Laney's Astronomy in the Dismal Swamp, a quirky collection of stories about the Royal Observatory, Cape, follows. Other chapters deal with the Marseille Observatory and the French astronomer Jules Janssen (1824-1907). Two articles by J Hearnshaw and K Staubermann deal with the history of astronomical photometry in the third part. The fourth part is about early female astronomers and the difficulties they faced, including paragraphs on Dorothea Klumpke (who married Isaac Roberts), Agnes Clerke, Maria Mitchell and the famous ladies of the Harvard Observatory who worked on spectral classification and the Cepheid period-luminosity relation. Most of the last part is a fascinating

  1. Elementary astronomy

    Science.gov (United States)

    Fierro, J.

    2006-08-01

    In developing nations such as Mexico, basic science education has scarcely improved. There are multiple reasons for this problem; they include poor teacher training and curricula that are not challenging for students. I shall suggest ways in which astronomy can be used to improve basic education, it is so attractive that it can be employed to teach how to read and write, learn a second language, mathematics, physics, as well as geography. If third world nations do not teach science in an adequate way, they will be in serious problems when they will try to achieve a better standard of living for their population. I shall also address informal education, it is by this means that most adults learn and keep up to date with subjects that are not their specialty. If we provide good outreach programs in developing nations we can aid adult training; astronomy is ideal since it is particularly multidisciplinary. In particular radio and television programs are useful for popularization since they reach such wide audiences.

  2. The Deep Space Network: An instrument for radio astronomy research

    Science.gov (United States)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  3. Visual astronomy under dark skies a new approach to observing deep space

    CERN Document Server

    Cooke, Antony

    2006-01-01

    Modern astronomical telescopes, along with other advances in technology, have brought the deep sky within reach of astronomers. This book helps you if you are observing the sky from a light-polluted environment. It provides information needed to know about what to observe, and how to get views of faint and distant astronomical objects.

  4. Binocular astronomy

    CERN Document Server

    Tonkin, Stephen

    2014-01-01

    Binoculars have, for many, long been regarded as an “entry level” observational tool, and relatively few have used them as a serious observing instrument. This is changing! Many people appreciate the relative comfort of two-eyed observing, but those who use binoculars come to realize that they offer more than comfort. The view of the stars is more aesthetically pleasing and therefore binocular observers tend to observe more frequently and for longer periods. Binocular Astronomy, 2nd Edition, extends its coverage of small and medium binoculars to large and giant (i.e., up to 300mm aperture) binoculars and also binoviewers, which brings the work into the realm of serious observing instruments. Additionally, it goes far deeper into the varying optical characteristics of binoculars, giving newcomers and advanced astronomers the information needed to make informed choices on purchasing a pair. It also covers relevant aspects of the physiology of binocular (as in “both eyes”) observation. The first edition ...

  5. Miklós Konkoly Thege (1842-1916). 100 Years of Observational Astronomy and Astrophysics. A collection of papers on the history of Observational Astrophysics

    Science.gov (United States)

    Sterken, C.; Hearnshaw, J. B.

    2001-12-01

    This book results from presentations and discussions by a group of astronomers and historians during a three-day workshop held at Tihany (Hungary), on 13-15 August 1999. This meeting - the second forum dedicated to the rise of observational astrophysics in the nineteenth and early twentieth century - coincided with the centenary of Hungary's national observatory. The basic principle of this series of meetings is to reflect on the work and personality of a single individual or of a group of persons, at the same time avoiding the really dominant figures that typify the age. The series focuses on key people who epitomize a way of thinking and working, that has in turn formed many of the ideas by which we do astrophysical research today. Hence the evocation of the scientific spirit of the era under consideration is attempted. Such a leading key person undoubtedly was Miklós Konkoly Thege. A superb instrumentalist and observer, Konkoly became the founding father of Hungarian astronomy through the establishment of his private observatory that later became the Royal Hungarian Ogyalla Observatory, the precursor of the modern Konkoly Observatory. The workshop was organized at the occasion of the centennial anniversary of Konkoly Observatory. The book outlines five major themes. The first part describes the birth of observational astrophysics in Hungary and focuses on historical aspects of 19th-century Hungarian astronomy from three different viewpoints: the historical narrative based on historical facts, the perspective as seen by an expert in historical instrumentation, and a discussion of the socio-political consequences of nineteenth-century developments for our present times. The second part analyses the birth of observational astrophysics in countries with which Konkoly and his collaborators had close contacts: Japan, South Africa and France. The third part of the book discusses the establishment of the discipline of photometry worldwide. An important aspect of 19th

  6. Mathematical Astronomy in India

    Science.gov (United States)

    Plofker, Kim

    Astronomy in South Asia's Sanskrit tradition, apparently originating in simple calendric computations regulating the timing of ancient ritual practices, expanded over the course of two or three millennia to include detailed spherical models, an endless variety of astrological systems, and academic mathematics in general. Assimilating various technical models, methods, and genres from the astronomy of neighboring cultures, Indian astronomers created new forms that were in turn borrowed by their foreign counterparts. Always recognizably related to the main themes of Eurasian geocentric mathematical astronomy, Indian astral science nonetheless maintained its culturally distinct character until Keplerian heliocentrism and Newtonian mechanics replaced it in colonial South Asia's academic mainstream.

  7. Astronomy in Ukraine

    CERN Document Server

    Pavlenko, Ya V; Vavilova, I B; Pavlenko, Ya.V.

    2005-01-01

    The current and prospective status of astronomical research in Ukraine is discussed. A brief history of astronomical research in Ukraine is presented and the system organizing scientific activity is described, including astronomy education, institutions and staff, awarding higher degrees/titles, government involvement, budgetary investments and international cooperation. Individuals contributing significantly to the field of astronomy and their accomplishments are mentioned. Major astronomical facilities, their capabilities, and their instrumentation are described. In terms of the number of institutions and personnel engaged in astronomy, and of past accomplishments, Ukraine ranks among major nations of Europe. Current difficulties associated with political, economic and technological changes are addressed and goals for future research activities presented.

  8. Discovering Astronomy Through Poetry

    Science.gov (United States)

    Mannone, John C.

    2011-05-01

    The literature is replete with astronomical references. And much of that literature is poetry. Using this fact, not only can the teacher infuse a new appreciation of astronomy, but also, the student has the opportunity to rediscover history through astronomy. Poetry can be an effective icebreaker in the introduction of new topics in physics and astronomy, as well as a point of conclusion to a lecture. This presentation will give examples of these things from the ancient literature (sacred Hebraic texts), classical literature (Homer's Iliad and Odyssey), traditional poetry (Longfellow, Tennyson and Poe) and modern literature (Frost, Kooser, and others, including the contemporary work of this author).

  9. Miklós Konkoly Thege (1842-1916). 100 Years of Observational Astronomy and Astrophysics - A collection of papers on the history of Observational Astrophysics.

    Science.gov (United States)

    Sterken, C.; Hearnshaw, J. B.

    2001-10-01

    This book results from presentations and discussions by a group of astronomers and historians during a three-day workshop held at Tihany (Hungary), on 13-15 August 1999. This meeting - the second forum dedicated to the rise of observational astrophysics in the nineteenth and early twentieth century - coincided with the centenary of Hungary's national observatory. The basic principle of this series of meetings is to reflect on the work and personality of a single individual or of a group of persons, at the same time avoiding the really dominant figures that typify the age. The series focuses on key people who epitomize a way of thinking and working, that has in turn formed many of the ideas by which we do astrophysical research today. Hence the evocation of the scientific spirit of the era under consideration is attempted. Such a leading key person undoubtedly was Miklós Konkoly Thege. A superb instrumentalist and observer, Konkoly became the founding father of Hungarian astronomy through the establishment of his private observatory that later became the Royal Hungarian Ógyalla Observatory, the precursor of the modern Konkoly Observatory. The workshop was organized at the occasion of the centennial anniversary of Konkoly Observatory. The book outlines five major themes. The first part describes the birth of observational astrophysics in Hungary and focuses on historical aspects of 19th century Hungarian astronomy from three different viewpoints: the historical narrative based on historical facts, the perspective as seen by an expert in historical instrumentation, and a discussion of the socio-political consequences of nineteenth-century developments for our present times. The second part analyses the birth of observational astrophysics in countries with which Konkoly and his collaborators had close contacts: Japan, South Africa and France. The third part of the book discusses the establishment of the discipline of photometry worldwide. An important aspect of 19th

  10. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    Science.gov (United States)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  11. A Pilot Astronomy Outreach Project in Bangladesh

    Science.gov (United States)

    Bhattacharya, Dipen; Mridha, Shahjahan; Afroz, Maqsuda

    2015-08-01

    In its strategic planning for the "Astronomy for Development Project," the International Astronomical Union (IAU) has ecognized, among other important missions, the role of astronomy in understanding the far-reaching possibilities for promoting global tolerance and citizenship. Furthermore, astronomy is deemed inspirational for careers in science and technology. The "Pilot Astronomy Outreach Project in Bangladesh"--the first of its kind in the country--aspires to fulfill these missions. As Bangladesh lacks resources to promote astronomy education in universities and schools, the role of disseminating astronomy education to the greater community falls on citizen science organizations. One such group, Anushandhitshu Chokro (AChokro) Science Organization, has been carrying out a successful public outreach program since 1975. Among its documented public events, AChokro organized a total solar eclipse campaign in Bangladesh in 2009, at which 15,000 people were assembled in a single open venue for the eclipse observation. The organization has actively pursued astronomy outreach to dispel public misconceptions about astronomical phenomena and to promote science. AChokro is currently working to build an observatory and Science Outreach Center around a recently-acquired 14-inch Scmidt-Cassegrain telescope and a soon-to-be-acquired new 16-inch reflector, all funded by private donations. The telescopes will be fitted with photometers, spectrometers, and digital and CCD cameras to pursue observations that would include sun spot and solar magnetic fields, planetary surfaces, asteroid search, variable stars and supernovae. The Center will be integrated with schools, colleges, and community groups for regular observation and small-scale research. Special educational and observing sessions for adults will also be organized. Updates on the development of the Center, which is expected to be functioning by the end of 2015, will be shared and feedback invited on the fostering of

  12. Weird Astronomy Tales of Unusual, Bizarre, and Other Hard to Explain Observations

    CERN Document Server

    Seargent, David A.J

    2011-01-01

    You go out for a night’s observing and look up at the sky. There are all the usual suspects—a splattering of stars, the Moon, Venus, maybe Mercury and Mars. Perhaps you can identify some of the constellations. If you are using binoculars or a small telescope, you can see many wonders not revealed to the naked eye but still well known to telescope users for centuries. But what if you look up and see something completely new, something unexplainable. Do your eyes deceive you? Are you really seeing what you think you are seeing? What should you do? In this fascinating account of the many oddball things people – from novice astronomers to certified experts – have observed over the years, you will be introduced to a number of unusual – and sometimes still unexplainable – phenomena occurring in our usually familiar and reassuring skies. What exactly did they see? What discoveries followed these unusual sightings? What remains unexplained? In addition to the accounts, you will find scattered throughout t...

  13. Compendium of Practical Astronomy. Volume 1: Instrumentation and Reduction Techniques.

    Science.gov (United States)

    Augensen, H. J.; Heintz, W. D.; Roth, Günter D.

    The Compendium of Practical Astronomy is a revised and enlarged English version of the fourth edition of G. Roth's famous handbook for stargazers. In three volumes 28 carefully edited articles, aimed especially at amateur astronomers and students and teachers of astronomy in high schools and colleges, cover the length and breadth of practical astronomy. Volume 1 contains information on modern instrumentation and reduction techniques, including spherical astronomy, error estimations, telescope mountings, astrophotography, and more. Volume 2 covers the planetary system, with contributions on artificial satellites, comets, the polar aurorae, and the effects of the atmosphere on observational data. Volume 3 is devoted to stellar objects, variable stars and binary stars in particular. An introduction to the astronomical literature and a comprehensive chapter on astronomy education and instructional aids make the Compendium a useful complement to any college library, in addition to its being essential reading for all practical astronomers.

  14. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www...

  15. Cultural Astronomy in Japan

    Science.gov (United States)

    Renshaw, Steven L.

    While Japan is known more for its contributions to modern astronomy than its archaeoastronomical sites, there is still much about the culture's heritage that is of interest in the study of cultural astronomy. This case study provides an overview of historical considerations necessary to understand the place of astronomy in Japanese society as well as methodological considerations that highlight traditional approaches that have at times been a barrier to interdisciplinary research. Some specific areas of study in the cultural astronomy of Japan are discussed including examples of contemporary research based on interdisciplinary approaches. Japan provides a fascinating background for scholars who are willing to go beyond their curiosity for sites of alignment and approach the culture with a desire to place astronomical iconography in social context.

  16. Radio astronomy

    Science.gov (United States)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  17. Greek astronomy

    CERN Document Server

    Heath, Sir Thomas L

    2011-01-01

    Astronomy as a science began with the Ionian philosophers, with whom Greek philosophy and mathematics also began. While the Egyptians and Babylonians had accomplished much of astronomical worth, it remained for the unrivalled speculative genius of the Greeks, in particular, their mathematical genius, to lay the foundations of the true science of astronomy. In this classic study, a noted scholar discusses in lucid detail the specific advances made by the Greeks, many of whose ideas anticipated the discoveries of modern astronomy.Pythagoras, born at Samos about 572 B.C., was probably the first

  18. Astronomy in Antarctica

    CERN Document Server

    Burton, Michael G

    2010-01-01

    Antarctica provides a unique environment for astronomy. The cold, dry and stable air found above the high plateau, as well as the pure ice below, offers new opportunities across the photon & particle spectrum. The summits of the plateau provide the best seeing conditions, the darkest skies and the most transparent atmosphere of any earth-based observing site. Astronomical activities are now underway at four plateau sites: the Amundsen-Scott South Pole Station, Concordia Station at Dome C, Kunlun Station at Dome A and Fuji Station at Dome F, in addition to long duration ballooning from the coastal station of McMurdo. Astronomy conducted includes optical, IR, THz & sub-mm, measurements of the CMBR, solar, as well as high energy astrophysics involving measurement of cosmic rays, gamma rays and neutrinos. Antarctica is also the richest source of meteorites on our planet. An extensive range of site testing measurements have been made over the high plateau. We summarise the facets of Antarctica that are dri...

  19. 2005 College Astronomy Teaching Excellence Workshops

    Science.gov (United States)

    Prather, E. E.; Slater, T. F.; Greene, W. M.; Thaller, M.; Brissenden, G.; UA Steward Observatory CAPER Team; NASA JPL Navigator EPO CenterAstrononomy Education Team; NASA Spitzer EPO Team

    2004-12-01

    As part of the education and public outreach efforts of the NASA JPL Navigator and Spitzer EPO Programs along with the American Astronomical Society and the Astronomical Society of the Pacific, astronomy educators affiliated with the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona are conducting a series of two- and three-day teaching excellence workshops for college faculty. These regional workshops are being held at community colleges around the country and in conjunction with professional society meetings, such as the American Astronomical Society and the American Association of Physics Teachers, and through the infrastructure of the National Science Foundation's Summer Chautauqua Workshop program. These interactive teaching excellence workshops focus on dilemmas astronomy teachers face and develop practical solutions for the troubling issues in curriculum, instruction, and assessment. After reviewing the latest research about how students learn, participants define and set measurable student learning goals and objectives for students in their astronomy courses and construct effective course syllabi reflecting the ASTRO 101 goals publicized by the AAS. To improve instruction, participants learn how to create productive learning environments by using interactive lectures, peer instruction, engaging demonstrations, collaborative groups, tutorials, computer-based laboratories, and observational projects. Participants also learn how to write more effective multiple-choice tests and implement authentic assessment strategies including portfolio assessment, performance tasks, and concept maps. Texts used at the workshop include: (i) Learner-Centered Astronomy Teaching, Slater and Adams, Prentice Hall, 2002; (ii) Great Ideas for Teaching Astronomy, Pompea, Brooks Cole, 2000; Insights into the Universe, Slater and Zeilik, and (iv) Lecture-Tutorials for Introductory Astronomy, Adams, Prather, & Slater, Prentice Hall, 2005.

  20. Bad Astronomy Goes Hollywood

    Science.gov (United States)

    Plait, P.

    2003-05-01

    It can be argued that astronomy is the oldest of all the sciences, so you'd think that after all this time people would have a pretty good understanding of it. In reality, however, misconceptions about astronomy abound, and even basic concepts are misunderstood. There are many sources of these cosmic misconceptions, including incorrect textbooks, parents and/or teachers who don't understand astronomy and therefore spread misinformation, urban legends, and so on. Perhaps the most pervasive source of bad astronomy is Hollywood. Science fiction movies are enormously popular, but are commonly written and directed by people who don't have even a passing familiarity with astronomy. The smash hit "Armageddon" (the number one box office movie of 1998), for example, used vast quantities of incorrect astronomy in the plot. It reinforced such popular misconceptions as huge asteroids impacting the Earth with little warning, small meteorites being hot when they impact, air existing in space, and that a simple bomb can blow up an asteroid the size of a small moon (even when the bomb is buried only 800 feet deep!). However, movie scenes can be used as a hook that engages the student, helping them learn and remember the correct science. In this talk, I will light-heartedly discuss specific examples of common misinformation, using movie clips, diagrams, and a splash of common sense to show just where Hollywood gets it wrong, and what you can do to help students and the public get it right.

  1. Conceptual frameworks in astronomy

    Science.gov (United States)

    Pundak, David

    2016-06-01

    How to evaluate students' astronomy understanding is still an open question. Even though some methods and tools to help students have already been developed, the sources of students' difficulties and misunderstanding in astronomy is still unclear. This paper presents an investigation of the development of conceptual systems in astronomy by 50 engineering students, as a result of learning a general course on astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA) that was initially used in 1989, was adapted to gather data for the present research. In its new version, the tool included 23 questions, and five to six optional answers were given for each question. Each of the answers was characterized by one of the four conceptual astronomical frameworks: pre-scientific, geocentric, heliocentric and sidereal or scientific. The paper describes the development of the tool and discusses its validity and reliability. Using the CFA we were able to identify the conceptual frameworks of the students at the beginning of the course and at its end. CFA enabled us to evaluate the paradigmatic change of students following the course and also the extent of the general improvement in astronomical knowledge. It was found that the measure of the students’ improvement (gain index) was g = 0.37. Approximately 45% of the students in the course improved their understanding of conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks.

  2. A dictionary of Astronomy for the French Sign Language (LSF)

    Science.gov (United States)

    Proust, Dominique; Abbou, Daniel; Chab, Nasro

    2011-06-01

    Since a few years, the french deaf communauty have access to astronomy at Paris-Meudon observatory through a specific teaching adapted from the French Sign Language (Langue des Signes Françcaise, LSF) including direct observations with the observatory telescopes. From this experience, an encyclopedic dictionary of astronomy The Hands in the Stars is now available, containing more than 200 astronomical concepts. Many of them did not existed in Sign Language and can be now fully expressed and explained.

  3. Training in Astronomy for Physics Students

    Indian Academy of Sciences (India)

    J. H. Fan

    2014-09-01

    In this paper, we describe what we have done with regard to astronomy training for physics students. More and more students are interested in astronomy, they spend their summer holidays and spare time in observations and studying the observation data. Some students are familiar with using the telescope for observations, dealing with absorption line features achieved from the observations. Astronomy was selected as the key subject in Guangzhou city and Guangdong province, the laboratory for astronomy science and technology was selected as the key laboratory of Guangzhou city and that for the education department of Guangdong Province. We also provide a master degree programme for astronomy.

  4. Science and Mathematics in Astronomy

    Science.gov (United States)

    Woolack, Edward

    2009-01-01

    A brief historical introduction to the development of observational astronomy will be presented. The close historical relationship between the successful application of mathematical concepts and advances in astronomy will be presented. A variety of simple physical demonstrations, hands-on group activities, and puzzles will be used to understand how the properties of light can be used to understand the contents of our universe.

  5. Music and Astronomy Under the Stars - 2009 Update

    Science.gov (United States)

    Lubowich, Donald A.

    2010-01-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded outreach program at parks during and after concerts and family events - a Halloween Spooky Garden Walk. While there have been many outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience - music lovers who attend summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500 - 16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where 5000 people participated in astronomy activities. The Amateur Observers' Society of NY assisted with the NY concerts and the Springfield STARS club assisted at Tanglewood. 1500 people looked through telescopes at the Halloween program (6000 saw the posters). In 2009 over 15,000 people participated in these astronomy activities which were attended by

  6. Astronomy Allies

    Science.gov (United States)

    Flewelling, Heather; Alatalo, Katherine A.

    2016-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  7. Astronomy education in Thailand

    Science.gov (United States)

    Hutawarakorn, Busaba; Soonthornthum, B.; Kirdkao, T.

    Thailand is one of the developing countries which pursues the goal to advance economy, technology as well as science. Education in Astronomy is considered as a supporting factor, since it is one of the basic sciences which can teach the young generation to understand and conserve their mother nature and at the same time helps to develop analytical thinking. The poster reports the present developments in astronomical education in Thailand which includes (1) current astronomy education in school and university; (2) educational activities outside school; (3) development of programs for teaching astronomy in school (including teacher training); (4) the access of educational resources via internet. Proposals for future development and collaborations will be presented and discussed.

  8. Advanced Amateur Astronomy

    Science.gov (United States)

    North, Gerald

    This book is for amateur astronomers and telescope users who want to move beyond elementary stargazing to more challenging projects. Written by an accomplished amateur astronomer, this indispensable guide to more advanced work is packed with information and lucid explanations. The first section of the book sets out the fundamental principles of practical astronomy, with chapters on telescope optics, the atmosphere, telescope hardware, astrophotography, and electronic imaging. This knowledge is then applied to the full range of celestial bodies accessible by telescope: the solar system, stars and galaxies. For those users who want to move to even greater challenges, chapters on photometry, spectroscopy and radio astronomy bring observational astronomy to a level where data of real scientific value can be acquired.

  9. Rescuing Middle School Astronomy

    Science.gov (United States)

    Mayo, L. A.; Janney, D.

    2010-12-01

    There is a crisis in education at the middle school level (Spellings, 2006). Recent studies point to large disparities in middle school performance in schools with high minority populations. The largest disparities exist in areas of math and science. Astronomy has a universal appeal for K-12 students but is rarely taught at the middle school level. When it is taught at all it is usually taught in isolation with few references in other classes such as other sciences (e.g. physics, biology, and chemistry), math, history, geography, music, art, or English. The problem is greatest in our most challenged school districts. With scores in reading and math below national averages in these schools and with most state achievement tests ignoring subjects like astronomy, there is little room in the school day to teach about the world outside our atmosphere. Add to this the exceedingly minimal training and education in astronomy that most middle school teachers have and it is a rare school that includes any astronomy teaching at all. In this presentation, we show how to develop and offer an astronomy education training program for middle school teachers encompassing a wide range of educational disciplines that are frequently taught at the middle school level. The prototype for this program was developed and launched in two of the most challenged and diverse school systems in the country; D.C. Public Schools, and Montgomery County (MD) Public Schools.

  10. Radio astronomy

    International Nuclear Information System (INIS)

    This report highlights radio astronomy research of the 40th IAU commission in the years 1982-1984. Radio imaging of different objects are treated in separate sections: solar system, galaxy, supernovae, extragalactic objects. The paper begins with a section on radio instrumentation

  11. Python in Astronomy 2016

    Science.gov (United States)

    Jenness, Tim; Robitaille, Thomas; Tollerud, Erik; Mumford, Stuart; Cruz, Kelle

    2016-04-01

    The second Python in Astronomy conference will be held from 21-25 March 2016 at the University of Washington eScience Institute in Seattle, WA, USA. Similarly to the 2015 meeting (which was held at the Lorentz Center), we are aiming to bring together researchers, Python developers, users, and educators. The conference will include presentations, tutorials, unconference sessions, and coding sprints. In addition to sharing information about state-of-the art Python Astronomy packages, the workshop will focus on improving interoperability between astronomical Python packages, providing training for new open-source contributors, and developing educational materials for Python in Astronomy. The meeting is therefore not only aimed at current developers, but also users and educators who are interested in being involved in these efforts.

  12. Astronomy across cultures the history of non-Western astronomy

    CERN Document Server

    Xiaochun, Sun

    2000-01-01

    Astronomy Across Cultures: A History of Non-Western Astronomy consists of essays dealing with the astronomical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Polynesian, Egyptian and Tibetan astronomy, among others, the book includes essays on Sky Tales and Why We Tell Them and Astronomy and Prehistory, and Astronomy and Astrology. The essays address the connections between science and culture and relate astronomical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.

  13. Multimessenger Astronomy and Astrophysics Synergies

    CERN Document Server

    van Putten, Maurice H P M

    2012-01-01

    A budget neutral strategy is proposed for NSF to lead the implementation of multimessenger astronomy and astrophysics, as outlined in the Astro2010 Decadal Survey. The emerging capabilities for simultaneous measurements of physical and astronomical data through the different windows of electromagnetic, hadronic and gravitational radiation processes call for a vigorous pursuit of new synergies. The proposed approach is aimed at the formation of new collaborations and multimessenger data-analysis, to transcend the scientific inquiries made within a single window of observations. In view of budgetary constraints, we propose to include the multimessenger dimension in the ranking of proposals submitted under existing NSF programs.

  14. The New Astronomy

    Science.gov (United States)

    Henbest, Nigel; Marten, Michael

    1996-08-01

    There's more to the Universe than meets the eye. In a marvelous review of multi-wavelength astronomy, The New Astronomy compares traditional optical images to infrared, ultraviolet, radio, and X-ray astronomical observations of a staggering variety of cosmic objects. With over 300 photographs and images obtained by telescopes and detectors operating at different wavelengths, the authors present startlingly different views of the solar system, stars, galaxies and, in this new edition, Halley's Comet and Supernova 1987A. Specially processed by astronomers worldwide, these images reveal in spectacular detail otherwise invisible events such as starbirth, stardeath, and distant quasar eruptions. Emphasizing the physical processes that produce astronomical radiation, they explain how the observations have expanded our existing knowledge and provided new discoveries. They also describe the new techniques in nontechnical language. By giving equal weight to observations at all wavelengths, this book corrects the bias toward optical astronomy and objectively presents all views of the Universe. It will appeal to everyone interested in the mysteries of astronomy. Nigel Henbest and Michael Marten previously collaborated (along with Heather Couper) on The Guide to the Galaxy (CUP, 1994).

  15. Gravity-wave astronomy

    International Nuclear Information System (INIS)

    The theoretical basis for gravity-wave astronomy is described, along with the energy and momentum of gravitational fields. Other topics discussed include:- burst and periodic sources of gravitational waves, the cosmological stochastic background, and the detection of gravitational waves. (U.K.)

  16. Resources for Teaching Astronomy.

    Science.gov (United States)

    Grafton, Teresa; Suggett, Martin

    1991-01-01

    Resources that are available for teachers presenting astronomy in the National Curriculum are listed. Included are societies and organizations, resource centers and places to visit, planetaria, telescopes and binoculars, planispheres, star charts, night sky diaries, equipment, audiovisual materials, computer software, books, and magazines. (KR)

  17. First exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy: Confirmation of Rayleigh scattering in HD 189733 b with HIPO

    CERN Document Server

    Angerhausen, Daniel; Mandell, Avi; Dunham, Edward W; Becklin, Eric E; Collins, Peter L; Hamilton, Ryan T; Logsdon, Sarah E; McElwain, Michael W; McLean, Ian S; Pfueller, Enrico; Savage, Maureen L; Shenoy, Sachindev S; Vacca, William; VanCleve, Jeffry; Wolf, Juergen

    2015-01-01

    Here we report on the first successful exoplanet transit observation with the Stratospheric Observatory for Infrared Astronomy (SOFIA). We observed a single transit of the hot Jupiter HD 189733 b, obtaining two simultaneous primary transit lightcurves in the B and z' bands as a demonstration of SOFIA's capability to perform absolute transit photometry. We present a detailed description of our data reduction, in particular the correlation of photometric systematics with various in-flight parameters unique to the airborne observing environment. The derived transit depths at B and z' wavelengths confirm a previously reported slope in the optical transmission spectrum of HD 189733 b. Our results give new insights to the current discussion about the source of this Rayleigh scattering in the upper atmosphere and the question of fixed limb darkening coefficients in fitting routines.

  18. Colonial American Astronomy

    Science.gov (United States)

    Yeomans, Donald K.

    2007-12-01

    While a foundation of German scientific methods enabled the rapid growth of North American Astronomy in the nineteenth century, during the seventeenth and most of the eighteenth centuries, the colonial men of science looked only to the English mother country for scientific patronage and guidance. An essay on fundamental astronomy appeared in one of the annual colonial almanacs as early as 1656, telescopic observations were made about 1660 and the first original colonial astronomical work was published by Thomas Danforth on the comet of 1664. By 1671 the Copernican ideas were so espoused at Harvard College that a physics class refused to read a Ptolemaic textbook when it was assigned to them by a senior instructor. At least in the Cambridge-Boston area, contemporary colonialist had access to the most recent scientific publications from the mother country. Observations of the great comet of 1680 by the Almanac maker, John Foster, reached Isaac Newton and were used and gratefully acknowledged in his Principia. During the seventeenth century the colonial interest in astronomy was more intense than it was for other sciences but colonists still occupied a position in the scientific backwater when compared with contemporary European scientists. Nevertheless, the science of astronomy was successfully transplanted from England to North America in the seventeenth century.

  19. Astronomy Teacher Training: Towards Year 2009

    Science.gov (United States)

    Doddoli, Consuelo

    2008-05-01

    The Direccion General de Divulgacion de la Ciencia is part of Mexico's National University; its purpose is science outreach. Most of its activities are dedicated to school level audiences; nevertheless due to the speed of science development, courses are given for teachers. The astronomy curricula includes: new results in astronomy research, general astrophysics and tools to teach astronomy. The courses offer twelve two hour long sessions. An astronomy researcher delivers a lecture and teachers are trained to use hands on activity. Beginning last in 2007 it has focused on Galileo. It addressed the way he was modern scientist, he observed and made experiments and wrote his results in common language. Year 2009 is a perfect incentive to carry out activities with teachers and keep them busy organizing telescope construction and observations during and after Galileo's commemoration. A book was written specially for them on the experiments Galileo made. In this book they can find interesting hand-on activities with materials that are readily available. (Los experimentos de Galileo, Silvia Torres y Consuelo Doddoli, Correo del Maestro, 2008, in press.) The magazine Correo del Maestro holds many articles written by the author on astronomical activities aimed to teachers.

  20. Extragalactic astronomy

    International Nuclear Information System (INIS)

    This book condenses the author's yearly semester lectures on 'Extra galactic Astronomy' held almost without interruption over two decades at Cordoba University for students of Astronomy. After a first chapter on Morphology and Classification of galaxies, the second gives most of the basic information about normal galaxies as individuals. Active galaxies are described in chapter III whilst chapter IV deals with the mutual relationship between galaxies and their environment. The Scale of distance is considered in chapter V. Distance indicators are introduced and several conflicting viewpoints of different schools are presented. Chapter VI deals with Cosmology, just to give the necessary elements for chapter VII where the relation between gravitational instability and galaxy formation is discussed. Chapter VIII is an appendix containing additional notes. (Auth.)

  1. Grassroots Astronomy

    Science.gov (United States)

    Marvel, Kevin B.

    Congress has a large impact on the amount and quality of astronomical research that takes place in the United States. By funding NASA and NSF, as well as other agencies such as the Department of Education and the Department of Defense, the Federal Government enables U.S. astronomers to perform cutting edge research. However, Congress makes decisions based on input from citizens. It the citizens are silent on an issue, Congress does not know it exists. Last summer the U.S.amatuer community rallied in support of professional research, resulting in a healthy budget for both NASA and NSF astronomy research. I will present a summary of how the funding process works and how and why amateurs can and should help ensure continued research funding for U.S. astronomy.

  2. Chaco astronomies

    Science.gov (United States)

    Martín López, Alejandro

    2015-08-01

    This presentation discusses the result of 18 years of ethnographic and ethnohistorical studies on Chaco astronomies. The main features of the systems of astronomical knowledge of the Chaco Aboriginal groups will be discussed. In particular we will discuss the relevance of the Milky Way, the role of the visibility of the Pleiades, the ways in which the celestial space is represented, the constitution of astronomical orientations in geographic space, etc. We also address a key feature of their vision of the cosmos: the universe is seen by these groups as a socio-cosmos, where humans and non-humans are related. These are therefore actually socio-cosmologies. We will link this to the theories of Chaco Aboriginal groups about power and political relations.We will discuss how the study of Aboriginal astronomies must be performed along with the studies about astronomies of Creole people and European migrants, as well as anthropological studies about the science teaching in the formal education system and by the mass media. In this form we will discuss the relevance of a very complex system of interethnic relations for the conformation of these astronomical representations and practices.We will also discuss the general methodological implications of this case for the ethnoastronomy studies. In particular we will talk about the advantages of a study of regional scope and about the key importance of put in contact the ethnoastronomy with contemporary issues in social sciences.We also analyze the importance of ethnoastronomy studies in relation to studies of sociology of science, especially astronomy. We also study the potential impact on improving formal and informal science curricula and in shaping effective policies to protect the tangible and intangible astronomical heritage in a context of respect for the rights of Aboriginal groups.

  3. Grote Reber, Radio Astronomy Pioneer, Dies

    Science.gov (United States)

    2002-12-01

    something of a minor tourist attraction, he later recalled. Using electronics he designed and built that pushed the technical capabilities of the era, Reber succeeded in detecting "cosmic static" in 1939. In 1941, Reber produced the first radio map of the sky, based on a series of systematic observations. His radio-astronomy work continued over the next several years. Though not a professional scientist, his research results were published in a number of prestigious technical journals, including Nature, the Astrophysical Journal, the Proceedings of the Institute of Radio Engineers and the Journal of Geophysical Research. Reber also received a number of honors normally reserved for scientists professionally trained in astronomy, including the American Astronomical Society's Henry Norris Russell Lectureship and the Astronomical Society of the Pacific's Bruce Medal in 1962, the National Radio Astronomy Observatory's Jansky Lectureship in 1975, and the Royal Astronomical Society's Jackson-Gwilt Medal in 1983. Reber's original dish antenna now is on display at the National Radio Astronomy Observatory's site in Green Bank, West Virginia, where Reber worked in the late 1950s. All of his scientific papers and records as well as his personal and scientific correspondence are held by the NRAO, and will be exhibited in the observatory's planned new library in Charlottesville, Virginia. Reber's amateur-radio callsign, W9GFZ, is held by the NRAO Amateur Radio Club. This callsign was used on the air for the first time since the 1930s on August 25, 2000, to mark the dedication of the Robert C. Byrd Green Bank Telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  4. Astronomy Education Programs at the Smithsonian National Air and Space Museum

    Science.gov (United States)

    Nagy, Katie; de Messieres, G.; Edson, S.

    2014-01-01

    Astronomy educators present the range of astronomy education programming available at the National Air and Space Museum, including the following. In the Phoebe Waterman Haas Public Observatory, visitors use telescopes and other scientific equipment to observe and discuss the Sun, Venus, and other celestial sights in an unstructured, inquiry-based environment. At Discovery Stations throughout the Museum, staff and volunteers engage visitors in hands-on exploration of a wide range of artifacts and teaching materials. Astronomy-related Discovery Stations include Cosmic Survey, an exploration of gravitational lensing using a rubber sheet, spectroscopy using discharge tubes, and several others. Astronomy lectures in the planetarium or IMAX theater, featuring researchers as the speakers, include a full evening of activities: a custom pre-lecture Discovery Station, a handout to help visitors explore the topic in more depth, and evening stargazing at the Public Observatory. Astronomy educators present planetarium shows, including star tours and explorations of recent science news. During Astronomy Chat, an astronomy researcher engages visitors in an informal conversation about science. The goal is to make the public feel welcome in the environment of professional research and to give busy scientists a convenient outreach opportunity. Astronomy educators also recruit, train, and coordinate a corps of volunteers who contribute their efforts to the programming above. The volunteer program has grown significantly since the Public Observatory was built in 2009.

  5. Astronomy in Iraq

    Science.gov (United States)

    Alsabti, A. W.

    2006-08-01

    The history of modern Iraqi astronomy is reviewed. During the early 1970's Iraqi astronomy witnessed significant growth through the introduction of the subject at university level and extensively within the school curriculum. In addition, astronomy was popularised in the media, a large planetarium was built in Baghdad, plus a smaller one in Basra. Late 1970 witnessed the construction of the Iraqi National Observatory at Mount Korek in Iraqi Kurdistan. The core facilities of the Observatory included 3.5-meter and 1.25-meter optical telescopes, and a 30-meter radio telescope for millimetre wavelength astronomy. The Iraqi Astronomical Society was founded and Iraq joined the IAU in 1976. During the regime of Saddam Hussain in the 1980's, the Observatory was attacked by Iranian artillery during the Iraq-Iran war, and then again during the second Gulf war by the US air force. Years of sanctions during the 1990's left Iraq cut off from the rest of the international scientific community. Subscriptions to astronomical journals were halted and travel to conferences abroad was virtually non-existent. Most senior astronomers left the country for one reason or another. Support from expatriate Iraqi astronomers existed (and still exists) however, this is not sufficient. Recent changes in Iraq, and the fall of Saddam's regime, has meant that scientific communication with the outside world has resumed to a limited degree. The Ministry of Higher Education in Baghdad, Baghdad University and the Iraqi National Academy of Science, have all played active roles in re-establishing Iraqi astronomy and re-building the damaged Observatory at Mount Korek. More importantly the University of Sallahudin in Erbil, capital of Iraqi Kurdistan, has taken particular interest in astronomy and the Observatory. Organized visits to the universities, and also to the Observatory, have given us a first-hand assessment of the scale of the damage to the Observatory, as well as the needs of astronomy teaching

  6. Distributed visual information management in astronomy

    OpenAIRE

    Murtagh, Fionn; Starck, J. L.; Louys, M

    2002-01-01

    Among the many interesting computational problems that observational astronomy poses, broad aspects of visual information management are crucial. In this regard, observational astronomy "collaboratories" provide important testbeds for other fields serving less well?defined communities-telemedicine, Earth observation, and graphic art and design come to mind. The authors review issues related to large-image visualization in astronomy and a recently developed toolset for this purpose. Resolution...

  7. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  8. Next-generation Astronomy

    OpenAIRE

    Norris, Ray P

    2010-01-01

    Fundamental changes are taking place in the way we do astronomy. In twenty years time, it is likely that most astronomers will never go near a cutting-edge telescope, which will be much more efficiently operated in service mode. They will rarely analyse data, since all the leading-edge telescopes will have pipeline processors. And rather than competing to observe a particularly interesting object, astronomers will more commonly group together in large consortia to observe massive chunks of th...

  9. Astronomy Olympiads in Russia and Their Position in Astronomy Education

    Science.gov (United States)

    Eskin, B.; Tarakanov, P.; Kostina, M.

    2012-12-01

    Astronomy olympiads started to be organised in Russia more than 60 years ago (then it was still USSR). In 1994, on the basis of several regional astronomy olympiads, appeared the All-Russian Astronomy Olympiad (Vserossijskaya astronomicheskaya olimpiada) or ARAO. It has been organised under the auspices of the Ministry of Education and pupils attending higher forms have taken part in it. The main objective of ARAO is to find and support talented pupils. Leading universities of the country (Russia) have also organised their own astronomy olympiads. In this way there are Astronomy Olympiads of Saint Petersburg, Moscow and Kazan. Among them the largest is that of Saint Petersburg. The main characteristic of these olympiads is that they have also included pupils of younger forms and have prepared their own tasks. The main objective of these olympiads is to find and support future students of astronomy classes at those universities. All astronomy Olympiads have played an important role in preparing future astronomers. This work is supported by Leading Scientific Schools Grant No. NSH-3290.2010.2.

  10. Solar system radio astronomy at low frequencies

    Science.gov (United States)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  11. Academic Training: Gravitational Waves Astronomy

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 16, 17, 18 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Gravitational Waves Astronomy M. LANDRY, LIGO Hanford Observatory, Richland, USA Gravitational wave astronomy is expected to become an observational field within the next decade. First direct detection of gravitational waves is possible with existing terrestrial-based detectors, and highly probable with proposed upgrades. In this three-part lecture series, we give an overview of the field, including material on gravitional wave sources, detection methods, some details of interferometric detectors, data analysis methods, and current results from observational data-taking runs of the LIGO and GEO projects.ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern...

  12. "Women in Astronomy: an Essay Review"

    Science.gov (United States)

    Cox, M.

    2006-12-01

    Interest in the history of women in astronomy has increased dramatically in the last 30 years. This interest has come from the growing number of professional scientists, historians and feminists researching the lives and work of earlier generations, as well as from amateur astronomers. It is reflected in the vast amount of literature on the subject, both in books and journals, and on the internet. This Essay Review will focus on monographs published in the last 10 years (1996-2006), and will be restricted mainly to pre-20th century women. The scope includes researchers, translators, computers and astronomical assistants as well as observers. Where appropriate, it includes books that discuss the role of women scientists, as well as pure astronomy books. Part 2, to be published later, will consider encyclopaedias and large works of reference .

  13. Division B Commission 40: Radio Astronomy

    Science.gov (United States)

    Chapman, Jessica M.; Giovaninni, Gabriele; Taylor, Russell; Carilli, Christopher; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin L.; Lazio, Joseph; Morganti, Rafaella; Nan, Rendong; Rubio, Monica; Shastri, Prjaval; Kellermann, Ken; Ekers, Ronald; Ohishi, Masatoshi

    2016-04-01

    IAU Commission 40 for Radio Astronomy (hereafter C40) brought together scientists and engineers who carry out observational and theoretical research in radio astronomy and who develop and operate the ground and space-based radio astronomy facilities and instrumentation. As of June 2015, the Commission had approximately 1,100 members from 49 countries, corresponding to nearly 10 per cent of the total IAU membership.

  14. Astronomy Outreach for Large, Unique, and Unusual Audiences

    Science.gov (United States)

    Lubowich, Donald

    2015-08-01

    My successful outreach program venues include: outdoor concerts and festivals; the US National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald Houses of Long Island and Chicago; the Winthrop U. Hospital Children’s Medical Center the Fresh Air Fund summer camps (low-income and special needs); a Halloween star party (costumed kids look through telescopes); a Super Bowl Star Party (targeting women); Science Festivals (World, NYC; Princeton U.; the USA Science and Engineering Festival); and the NYC Columbus Day Parade. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage lifelong learning. In 2010 I created Astronomy Festival on the National Mall (co-sponsored by the White House Office of Science and Technology Policy) with the participation of astronomy clubs, scientific institutions and with Tyco Brahe, Johannes Kepler, and Caroline Herschel making guest appearances. My programs include solar, optical, and radio telescope observations, hands-on activities, a live image projection system; large outdoor posters and banners; videos; hands-on activities, and edible astronomy demonstrations.My NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013) reached 50,000 music lovers at local parks and the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience - often the first time they looked through a telescope. While education

  15. Critical Issues in the Philosophy of Astronomy and Cosmology

    Science.gov (United States)

    Dick, Steven J.

    2016-01-01

    Although the philosophy of science and of specific sciences such as physics, chemistry, and biology are well-developed fields with their own books and journals, the philosophy of astronomy and cosmology have received little systematic attention. At least six categories of problems may be identified in the astronomical context: 1) the nature of reasoning, including the roles of observation, theory, simulation, and analogy, as well as the limits of reasoning, starkly evident in the anthropic principle, fine-tuning, and multiverse controversies; 2) the often problematic nature of evidence and inference, especially since the objects of astronomical interest are for the most part beyond experiment and experience;3) the influence of metaphysical preconceptions and non-scientific worldviews on astronomy, evidenced, for example in the work of Arthur S. Eddington and many other astronomers; 4) the epistemological status of astronomy and its central concepts, including the process of discovery, the problems of classification, and the pitfalls of definition (as in planets); 5) the role of technology in shaping the discipline of astronomy and our view of the universe; and 6) the mutual interactions of astronomy and cosmology with society over time. Discussion of these issues should draw heavily on the history of astronomy as well as current research, and may reveal an evolution in approaches, techniques, and goals, perhaps with policy relevance. This endeavor should also utilize and synergize approaches and results from philosophy of science and of related sciences such as physics (e.g. discussions on the nature of space and time). Philosophers, historians and scientists should join this new endeavor. A Journal of the Philosophy of Astronomy and Cosmology (JPAC) could help focus attention on their studies.

  16. Teach Astronomy: An Online Textbook for Introductory Astronomy Courses and Resources for Informal Learners

    Science.gov (United States)

    Hardegree-Ullman, Kevin; Impey, C. D.; Patikkal, A.

    2012-05-01

    This year we implemented Teach Astronomy (www.teachastronomy.com) as a free online resource to be used as a teaching tool for non-science major astronomy courses and for a general audience interested in the subject. The comprehensive content includes: an introductory astronomy text book by Chris Impey, astronomy articles on Wikipedia, images from the Astronomy Picture of the Day, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy, and astronomy news from Science Daily. Teach Astronomy utilizes a novel technology to cluster, display, and navigate search results, called a Wikimap. Steep increases in textbook prices and the unique capabilities of emerging web technology motivated the development of this free online resource. Recent additions to Teach Astronomy include: images and diagrams for the textbook articles, mobile device implementation, and suggested homework assignments for instructors that utilize recent discoveries in astronomy. We present an overview of how Teach Astronomy has been implemented for use in the classroom and informal settings, and suggestions for utilizing the rich content and features of the web site.

  17. Microstructural observations of HFIR-irratiated austenitic stainless steels including welds from JP9-16

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, T.; Shiba, K.; Hishinuma, A.

    1996-04-01

    Austenitic stainless steels, including specimens taken from various electron beam (EB) welds, have been irradiated in HFIR Phase II capsules, JP9-16. Fifteen specimens irradiated at 300, 400, and 500{degrees}C up to 17 dpa are so far examined by a transmission electron microscope (TEM). In 300{degrees}C irradiation, cavities were smaller than 2nm and different specimens showed little difference in cavity microstructure. At 400{degrees}C, cavity size was larger, but still very small (<8 nm). At 500{degrees}C, cavity size reached 30 nm in weld metal specimens of JPCA, while cold worked JPCA contained a small (<5 nm) cavities. Inhomogeneous microstructural evolution was clearly observed in weld-metal specimens irradiated at 500{degrees}C.

  18. Astronomy in the streets

    Science.gov (United States)

    Kebe, Fatoumata

    2015-08-01

    The Ephemerides Association was founded last year by a PhD student in Astronomy. The association is devoted to the promotion and advancement of knowledge of the universe through research and education.The main activities of the association are scientific meetings, the planning and realization of scientific projects, the support of the scientific activities of its members, and the dissemination of related information among members and other interested persons.The association targets the disadvantaged zones of the Paris suburbs.The main issue was how to bring astronomy in those places. In the suburbs, since most of the youth are poor, most leisure activities like cinema are out of your reach. Thus, mostly of them will play football or basketball outside.We decided to go to meet young people who find themselves together in the evening. We prepare the telescope as well as the fasicules to start the observation of the planets. The discussion finally lead to their career plans and aspirations. Astronomy has become a tool to address societal issues. We present our results after one year of activity.

  19. Freshman Seminars: Interdisciplinary Engagements in Astronomy

    Science.gov (United States)

    Hemenway, M. K.

    2006-08-01

    The Freshman Seminar program at the University of Texas is designed to allow groups of fifteen students an engaging introduction to the University. The seminars introduce students to the resources of the university and allow them to identify interesting subjects for further research or future careers. An emphasis on oral and written communication by the students provides these first-year students a transition to college-level writing and thinking. Seminar activities include field trips to an art museum, a research library, and the Humanities Research Center rare book collection. This paper will report on two seminars, each fifteen weeks in length. In "The Galileo Scandal" students examine Galileo's struggle with the church (including a mock trial). They perform activities that connect his use of the telescope and observations to astronomical concepts. In "Astronomy and the Humanities" students analyze various forms of human expression that have astronomical connections (art, drama, literature, music, poetry, and science fiction); they perform hands-on activities to reinforce the related astronomy concepts. Evaluation of the seminars indicates student engagement and improvement in communication skills. Many of the activities could be used independently to engage students enrolled in standard introductory astronomy classes.

  20. Astronomy on the High Seas

    Science.gov (United States)

    Hughes, S.; Rihani, N.

    2010-06-01

    This article describes the development and launching of a stargazing activity on two cruise ships, Pacific Dawn and Pacific Sun, which sail from Australian ports. The session included a presentation entitled "Voyage to the Stars" that gave passengers an overview of the life cycle of stars from star-birth nebulae to white dwarfs and black holes. In the presentation it was noted that ancient mariners used the celestial sphere to navigate. The presentation was followed by on-deck observing sessions in which objects shown in the presentation were viewed with the naked eye, binoculars and a small telescope. The activity seemed to be well received and resulted in numerous questions to the presenter of the activity. Many people said that the activity had kindled or rekindled their interest in astronomy.

  1. The first radio astronomy from space - RAE

    Science.gov (United States)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  2. Teach Astronomy: An Online Resource for Introductory Astronomy Courses and Informal Learners

    Science.gov (United States)

    Austin, Carmen; Impey, C. D.; Hardegree-Ullman, K.; Patikkal, A.; Ganesan, N.

    2013-01-01

    Teach Astronomy (www.teachastronomy.com) is a new, free online resource—a teaching tool for non-science major astronomy courses and a reference guide for lifelong learners interested in the subject. Digital content available includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Motivation behind the development of Teach Astronomy includes steep increases in textbook prices, the rapid adoption by students and the public of digital resources, and the modern capabilities of digital technology. Recent additions to Teach Astronomy include: AstroPix images—from some of the most advanced observatories and complete with metadata, mobile device functionality, links to WikiSky where users can see the location of astronomical objects in the sky, and end of chapter textbook review questions. Next in line for development are assignments for classroom use. We present suggestions for utilizing the rich content and features of the web site.

  3. EM Monitoring of Crustal Processes Including the Use of the Network-MT Observations

    Science.gov (United States)

    Uyeshima, Makoto

    2007-05-01

    There are several kinds of coupling mechanisms which can convert mechanical, chemical or thermal energies due to seismic or volcanic activities into electromagnetic energies. As a result of concentrated efforts in laboratory and theoretical research, the basic relationship between the intensity of electromagnetic sources and changes in mechanical, chemical and thermal state is becoming established. Also with the progress of the electromagnetic simulation techniques, it has been possible to evaluate in situ sensitivity. Based on this progress and also due to extensive improvement in measuring techniques, many field experiments have been performed to elucidate subsurface geophysical processes underlying the preparation stage, onset, and subsequent healing stage of earthquakes and volcanic eruptions. In volcanic studies, many studies have reported the measurement of electromagnetic signals which were successfully interpreted in terms of various driving mechanisms. Although there have been numerous reports about the existence of precursory electromagnetic signals in seismic studies, only a few of them could be successfully explained by the proposed mechanisms, whereas coseismic phenomena are often consistent with those mechanisms including the absence of detectable signals. In many cases, one or two orders of higher sensitivity were required, especially for precursory signals. Generally, electromagnetic methods are more sensitive to near-surface phenomena. It will be necessary to discriminate electromagnetic signals due to these near-surface sources, which often possess no relationship with the crustal activities. Further efforts to enhance in situ sensitivity through improvements in observation techniques and in data processing techniques are recommended. At the same time, multi-disciplinary confirmation against the validity of electromagnetic phenomena will inevitably be necessary. A Network-MT observation technique has been developed to determine large-scale deep

  4. Physics and astronomy of the Moon

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Physics and Astronomy of the Moon focuses on the application of principles of physics in the study of the moon, including perturbations, equations, light scattering, and photometry. The selection first offers information on the motion of the moon in space and libration of the moon. Topics include Hill's equations of motion, non-solar perturbations, improved lunar ephemeris, optical and physical libration of the moon, and adjustment of heliometric observations of the moon's libration. The text then elaborates on the dynamics of the earth-moon system, photometry of the moon, and polarization of

  5. An antenna, a radio and a microprocessor: which kinds of observation are possible in meteor radio astronomy?

    Science.gov (United States)

    Barbieri, L.

    2016-01-01

    Radio meteors are usually investigated by professional radars. Amateur astronomers cannot have transmitters, so usually they can only listen to sounds generated by a radio tuned to a TV or military transmitter. Until recently, this kind of observation has not produced good data. The experience of "RAMBo" (Radar Astrofilo Meteorico Bolognese) shows which data can be extracted from an amateur meteor scatter observatory and the results which can be achieved.

  6. Islamic Mathematical Astronomy

    Science.gov (United States)

    Montelle, Clemency

    A short survey on Islamic mathematical astronomy practiced during the period running from the eight century until the fifteenth is presented. Various pertinent themes, such as the translation of foreign scientific works and their impact on the tradition; the introduction, assimilation, and critique of the Ptolemaic model; and the role of observations, will be covered. In addition, the zīj, the dominant format for astronomical works, will be briefly explained as well as the legacy of the Islamic tradition of astral sciences to other cultures.

  7. NASE Training Courses in Astronomy for Teachers throughout the World

    Science.gov (United States)

    Ros, Rosa M.

    2012-01-01

    Network for Astronomy School Education, NASE, is a project that is organizing courses for teachers throughout the entire world. The main objective of the project is to prepare secondary and primary school teachers in astronomy. Students love to know more about astronomy and teachers have the opportunity to observe the sky that every school has…

  8. The Durability and Fragility of Knowledge Infrastructures: Lessons Learned from Astronomy

    CERN Document Server

    Borgman, Christine L; Sands, Ashley E; Golshan, Milena S

    2016-01-01

    Infrastructures are not inherently durable or fragile, yet all are fragile over the long term. Durability requires care and maintenance of individual components and the links between them. Astronomy is an ideal domain in which to study knowledge infrastructures, due to its long history, transparency, and accumulation of observational data over a period of centuries. Research reported here draws upon a long-term study of scientific data practices to ask questions about the durability and fragility of infrastructures for data in astronomy. Methods include interviews, ethnography, and document analysis. As astronomy has become a digital science, the community has invested in shared instruments, data standards, digital archives, metadata and discovery services, and other relatively durable infrastructure components. Several features of data practices in astronomy contribute to the fragility of that infrastructure. These include different archiving practices between ground- and space-based missions, between sky su...

  9. Astronomy for teachers in Mexico

    Science.gov (United States)

    Fierro, J.

    2006-08-01

    Mexico has added five more years of compulsory education to its national education system. In the past it only included six year of elementary (grammar) school. Now three years of pre school (kinder garden) and three years of middle school are being implemented. At present an optional course on astronomy if offered in high school (pre college). During my presentation I shall discuss problems concerning education in Mexico; mainly the lack of continuity in different levels of education, the lack of teacher training in science in general and the few topics of astronomy that are addressed. I shall mention for teacher training and public education, which includes books, lectures and videos.

  10. The cost of publishing in Danish astronomy

    DEFF Research Database (Denmark)

    Dorch, Bertil F.

    I investigate the cost of publishing in Danish astronomy on a fine scale, including all direct publication costs: The figures show how the annual number of publications with authors from Denmark in astronomy journals increased by a factor approximately four during 15 years (Elsevier’s Scopus...

  11. Preservice Science Teachers' Beliefs about Astronomy Concepts

    Science.gov (United States)

    Ozkan, Gulbin; Akcay, Hakan

    2016-01-01

    The purpose of this study was to investigate preservice science teachers' conceptual understanding of astronomy concepts. Qualitative research methods were used. The sample consists of 118 preservice science teachers (40 freshmen, 31 sophomores, and 47 juniors). The data were collected with Astronomy Conceptual Questionnaire (ACQ) that includes 13…

  12. Extending Value of Information Methods to Include the Co-Net Benefits of Earth Observations

    Science.gov (United States)

    Macauley, M.

    2015-12-01

    The widening relevance of Earth observations information across the spectrum of natural and environmental resources markedly enhances the value of these observations. An example is observations of forest extent, species composition, health, and change; this information can help in assessing carbon sequestration, biodiversity and habitat, watershed management, fuelwood potential, and other ecosystem services as well as inform the opportunity cost of forest removal for alternative land use such as agriculture, pasture, or development. These "stacked" indicators or co- net benefits add significant value to Earth observations. In part because of reliance on case studies, much previous research about the value of information from Earth observations has assessed individual applications rather than aggregate across applications, thus tending to undervalue the observations. Aggregating across applications is difficult, however, because it requires common units of measurement: controlling for spatial, spectral, and temporal attributes of the observations; and consistent application of value of information techniques. This paper will discuss general principles of co-net benefit aggregation and illustrate its application to attributing value to Earth observations.

  13. Astronomy in the City for Astronomy Education

    Science.gov (United States)

    Ros, Rosa Maria; García, Beatriz

    2015-08-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. “Astronomy in the city” is an important part of NASE (Network for Astronomy School Education). In each NASE course we introduce a “working group session” chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair.After more than 5 years using this method we visited and discovered several examples of astronomy in the city:• Astronomy in ancient typical cloths• Archeological temples oriented according the Sun rise or set.• Petroglyphs with astronomical meaning.• Astronomy in monuments.• Sundials.• Oriented Colonial churches• Astronomy in SouvenirsIn any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus "what is the best part in order to be seat in the shadow during the journey?" The result is motivation to go with “open eyes” when they are in the street and they try to get more and more information about their surroundings.The most significant characteristic of NASE is that the ”Local NASE Working Group” (LWG) in each country continues with astronomy activities using our materials and new materials created by them. These LWG are integrated by 6 to 8 teachers and professors that participated actively in NASE courses. They maintains alive the program and increases the number of students which can learn through our didactical proposal. There are more than 25 LWG that teach and organize activities on astronomy (education and/or communication) in about 20 countries.In summary, one of the main activities is to introduce local

  14. A multimethod investigation including direct observation of 3751 patient visits to 120 dental offices

    Directory of Open Access Journals (Sweden)

    Stephen Wotman

    2010-05-01

    Full Text Available Stephen Wotman1, Catherine A Demko1, Kristin Victoroff1, Joseph J Sudano2, James A Lalumandier11Department of Community Dentistry, Case Western Reserve University, School of Dental Medicine, Cleveland, OH, USA; 2Center of Health Care Research and Policy, Case Western Reserve University, School of Medicine, Cleveland, OH, USAAbstract: This report defines verbal interactions between practitioners and patients as core activities of dental practice. Trained teams spent four days in 120 Ohio dental practices observing 3751 patient encounters with dentists and hygienists. Direct observation of practice characteristics, procedures performed, and how procedure and nonprocedure time was utilized during patient visits was recorded using a modified Davis Observation Code that classified patient contact time into 24 behavioral categories. Dentist, hygienist, and patient characteristics were gathered by questionnaire. The most common nonprocedure behaviors observed for dentists were chatting, evaluation feedback, history taking, and answering patient questions. Hygienists added preventive counseling. We distinguish between preventive procedures and counseling in actual dental offices that are members of a practice-based research network. Almost a third of the dentist’s and half of the hygienist’s patient contact time is utilized for nonprocedure behaviors during patient encounters. These interactions may be linked to patient and practitioner satisfaction and effectiveness of self-care instruction.Keywords: dental practice, dental practice core activities, direct observation of dental practice, Dental Davis Observation Code, dentist, hygienist patient behaviors

  15. Statistical Challenges in Modern Astronomy

    CERN Document Server

    Feigelson, E D

    2003-01-01

    Despite centuries of close association, statistics and astronomy are surprisingly distant today. Most observational astronomical research relies on an inadequate toolbox of methodological tools. Yet the needs are substantial: astronomy encounters sophisticated problems involving sampling theory, survival analysis, multivariate classification and analysis, time series analysis, wavelet analysis, spatial point processes, nonlinear regression, bootstrap resampling and model selection. We review the recent resurgence of astrostatistical research, and outline new challenges raised by the emerging Virtual Observatory. Our essay ends with a list of research challenges and infrastructure for astrostatistics in the coming decade.

  16. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1963-01-01

    Advances in Astronomy and Astrophysics, Volume 2 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of six chapters and begins with a summary of observational record on twilight extensions of the Venus cusps. The next chapter deals with the common and related properties of binary stars, with emphasis on the evaluation of their cataclysmic variables. Cataclysmic variables refer to an object in one of three classes: dwarf nova, nova, or supernova. These topics are followed by discussions on the eclipse phenomena and the eclipses i

  17. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1962-01-01

    Advances in Astronomy and Astrophysics, Volume 1 brings together numerous research works on different aspects of astronomy and astrophysics. This book is divided into five chapters and begins with an observational summary of the shock-wave theory of novae. The subsequent chapter provides the properties and problems of T tauri stars and related objects. These topics are followed by discussions on the structure and origin of meteorites and cosmic dust, as well as the models for evaluation of mass distribution in oblate stellar systems. The final chapter describes the methods of polarization mea

  18. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1966-01-01

    Advances in Astronomy and Astrophysics, Volume 4 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with a description of objective prism and its application in space observations. The next chapter deals with the possibilities of deriving reliable models of the figure, density distribution, and gravity field of the Moon based on data obtained through Earth-bound telescopes. These topics are followed by a discussion on the ideal partially relativistic, partially degenerate gas in an exact manner. A ch

  19. Distance Education with a Computerized Astronomy Laboratory

    Science.gov (United States)

    Connors, Martin

    1992-12-01

    Distance Education is the presentation of an educational curriculum through self-study materials supplemented by regular contact with an instructor. As such it is suitable for offering educational opportunities to students in widely dispersed locations typical of Canada. Since 1989 Athabasca University has offered Science 280, Introduction to Astronomy and Astrophysics, as a broad introduction to Astronomy at a pre-calculus level. The course includes a computer-based laboratory (observing simulation) set done in students' homes. The laboratory allows simulation of naked eye astronomical observations, starting with the motions of the sun and moon. The logical jump to motions not apparently centered on Earth (planetary retrograde motion and periods) seems to present difficulty to students. Stellar proper motions are made observable by the use of long observing intervals of up to 30000 years. The distribution of nearby stars in space is studied through use of stellar color and the assumption that all stars are on the Main Sequence. The erroneous results which this engenders are not recognized as such by most students, who happily submit reports with red stars at .02 parsec distance. Star counts enable rough determination of Galactic structure. Widespread availability of PC-compatible computers has enabled distance education to bring astronomical education, including an 'observational' component, to Canadians who otherwise would not have access to it.

  20. News Note: Administration of astronomy in South Africa

    Science.gov (United States)

    2015-12-01

    The National Research Foundation announced on 31 July that Prof Nithaya Chetty has been appointed as Deputy Chief Executive of the National Research Foundation for Astronomy with effect from 1 October 2014. As such, he will be responsible for coordinating the national strategy for astronomy. This will include supervision of the astronomy national facilities and the SKA-SA Project, developing synergies between the various astronomy departments, the astronomical facilities and the community at large, promoting public awareness and liaising with international partners,

  1. Computers in Astronomy: Astronomy on an Apple Macintosh.

    Science.gov (United States)

    Mosley, John E.

    1987-01-01

    Presents a review of computer programs written for the Apple Macintosh computer that teach astronomy. Reviews general programs, along with some which deal more specifically with sky travel, star charting, the solar system, Halley's Comet, and stargazing. Includes the name and address of each producer. (TW)

  2. Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations

    International Nuclear Information System (INIS)

    The nature of dark energy affects the Hubble expansion rate (namely, the expansion history) H(z) by an integral over w(z). However, the usual observables are the luminosity distances or the angular diameter distances, which measure the distance.redshift relation. Actually, the property of dark energy affects the distances (and the growth factor) by a further integration over functions of H(z). Thus, the direct measurements of the Hubble parameter H(z) at different redshifts are of great importance for constraining the properties of dark energy. In this paper, we show how the typical dark energy models, for example, the ΛCDM, wCDM, CPL, and holographic dark energy models, can be constrained by the current direct measurements of H(z) (31 data used in total in this paper, covering the redshift range of z @ element of [0.07, 2.34]). In fact, the future redshift-drift observations (also referred to as the Sandage-Loeb test) can also directly measure H(z) at higher redshifts, covering the range of z @ element of [2, 5]. We thus discuss what role the redshift-drift observations can play in constraining dark energy with the Hubble parameter measurements. We show that the constraints on dark energy can be improved greatly with the H(z) data from only a 10-year observation of redshift drift. (orig.)

  3. Constraining dark energy with Hubble parameter measurements: an analysis including future redshift-drift observations

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui-Yun [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2016-03-15

    The nature of dark energy affects the Hubble expansion rate (namely, the expansion history) H(z) by an integral over w(z). However, the usual observables are the luminosity distances or the angular diameter distances, which measure the distance.redshift relation. Actually, the property of dark energy affects the distances (and the growth factor) by a further integration over functions of H(z). Thus, the direct measurements of the Hubble parameter H(z) at different redshifts are of great importance for constraining the properties of dark energy. In this paper, we show how the typical dark energy models, for example, the ΛCDM, wCDM, CPL, and holographic dark energy models, can be constrained by the current direct measurements of H(z) (31 data used in total in this paper, covering the redshift range of z @ element of [0.07, 2.34]). In fact, the future redshift-drift observations (also referred to as the Sandage-Loeb test) can also directly measure H(z) at higher redshifts, covering the range of z @ element of [2, 5]. We thus discuss what role the redshift-drift observations can play in constraining dark energy with the Hubble parameter measurements. We show that the constraints on dark energy can be improved greatly with the H(z) data from only a 10-year observation of redshift drift. (orig.)

  4. Astronomy and Politics

    Science.gov (United States)

    Steele, John M.

    The relationship between astronomy and politics is a complex but important part of understanding the practice of astronomy throughout history. This chapter explores some of the ways that astronomy, astrology, and politics have interacted, placing particular focus on the way that astronomy and astrology have been used for political purposes by both people in power and people who wish to influence a ruler's policy. Also discussed are the effects that politics has had on the development of astronomy and, in particular, upon the recording and preservation of astronomical knowledge.

  5. I.S. Shklovsky and modern radio astronomy

    Science.gov (United States)

    Rudnitskij, G. M.

    2006-10-01

    Iosif Samuilovich Shklovsky is one of the founders of radio astronomy as a leading branch in the modern science. Under his leadership in 1953 the Radio Astronomy Department was formed at the Sternberg Astronomical Institute of Moscow State University. Shklovsky's research covered a large variety of topics in radio astronomy, space research, solar physics, X-ray astronomy, etc. In this contribution, Shklovsky's life story is reviewed, including the famous expedition to Brazil for radio observations of the solar eclipse. His main works are presented, such as the prediction of the possibility of observing the 21 cm radio line of neutral hydrogen in the interstellar medium together with some molecular radio lines, the explanation of the spectrum of the Crab Nebula in the optical and radio ranges by a unified synchrotron mechanism, and his studies on the radio emission of the solar corona, including the explanation of drifting solar radio bursts by a plasma mechanism. Other research achievements are reviewed, among which are his idea on the artificial comet implemented during the first lunar launches, and his work on the problem of the search for extraterrestrial intelligence.

  6. Astronomy 3.0 Style

    CERN Document Server

    Accomazzi, Alberto

    2010-01-01

    Over the next decade we will witness the development of a new infrastructure in support of data-intensive scientific research, which includes Astronomy. This new networked environment will offer both challenges and opportunities to our community and has the potential to transform the way data are described, curated and preserved. Based on the lessons learned during the development and management of the ADS, a case is made for adopting the emerging technologies and practices of the Semantic Web to support the way Astronomy research will be conducted. Examples of how small, incremental steps can, in the aggregate, make a significant difference in the provision and repurposing of astronomical data are provided.

  7. Astronomy education and scientific schools in Ukraine

    Science.gov (United States)

    Yatskiv, Yaroslav S.; Vavilova, Iryna B.

    2011-06-01

    We describe briefly the current state of astronomical education in Ukraine, namely the secondary, higher, and post-graduating education systems. A special attention is paid to so called ``scientific schools'', non-formal groups of scientists formed by recognised astronomers, which have played and continue to play an important rôle in development of the astronomy education system. Among the founders of scientific schools were the well-known professors Alexander Ya. Orlov (Odessa University), Nikolai P. Barabashov (Kharkiv University), Sergei K. Vsekhsvyatsky (Kyiv University), Semen Ya. Braude (Kharkiv Polytechnical Institute), and Vladimir P. Tsesevich (Odessa University). We also give a general review on the history of astronomy education during the 16th-18th centuries. In 2000 astronomy was reinstated into the current 12-year secondary education curriculum of Ukraine. At present, some elements of astronomical knowledge are included in the lessons of ``Natural Sciences'' for pupils in the 5th - 10th grades. Astronomy is included as a basic course both in general (non-specialised) schools (17 academic hours in the last 11th or 12th grade) and in lyceums of the natural sciences (34 academic hours in the 12th grade). It is included also as an optional course in the educational program of gymnasiums in humanities. Every year about 75 young persons enter the Ukrainian universities to become astronomers. Results of our monitoring of the efficiency of astronomical higher educational system indicate that about 80% of the entered university students finish their education in 5 years; 50% of those who finished the cursus were working in astronomy. Since 1992 more then 100 astronomers defend Theses of Cand. Sci. (similar to Ph.D) and about 40 astronomers defend Theses of Dr. Sci. (topmost scientific degree, similar to Dr. Hab.). One of our present-day problems is a brain drain of young scientists. About 50% of those who obtained Cand. Sci. degree work outside Ukraine. At

  8. Solution model of nonlinear integral adjustment including different kinds of observing data with different precisions

    Institute of Scientific and Technical Information of China (English)

    郭金运; 陶华学

    2003-01-01

    In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives. The partial derivative of each component in the target function is not computed while iteratively solving the problem. Especially when the nonlinear target function is more complex and very difficult to solve the problem, the method can greatly reduce the computing load.

  9. Exploring the history of New Zealand astronomy trials, tribulations, telescopes and transits

    CERN Document Server

    Orchiston, Wayne

    2016-01-01

    Professor Orchiston is a foremost authority on the subject of New Zealand astronomy, and here are the collected papers of his fruitful studies in this area, including both those published many years ago and new material.  The papers herein review traditional Maori astronomy, examine the appearance of nautical astronomy practiced by Cook and his astronomers on their various stopovers in New Zealand during their three voyagers to the South Seas, and also explore notable nineteenth century New Zealand observatories historically, from significant telescopes now located in New Zealand to local and international observations made during the 1874 and 1882 transits of Venus and the nineteenth and twentieth century preoccupation of New Zealand amateur astronomers with comets and meteors. New Zealand astronomy has a truly rich history, extending from the Maori civilization in pre-European times through to the years when explorers and navigators discovered the region, up to pioneering research on the newly emerging fie...

  10. Main Objectives for this I.A.U. Special Session on Innovation in Teaching/ Learning Astronomy

    Science.gov (United States)

    Pasachoff, J. M.; Ros, R. M.

    2006-08-01

    In the IAU resolution on the Value of Astronomy Education, passed by the IAU's General Assembly in 2003, it was recommended: to include astronomy in school curricula, to assist schoolteachers in their training and backup, and to inform teachers about available resources. The aim of this Special Session 2 on "Innovation in Teaching/Learning Astronomy" is to contribute to the implementation of these recommendations, introducing innovative points of view regarding methods of teaching and learning. Astronomers from all countries—developed or developing—will be equally interested. New methods of dissemination of information are making big changes in the opportunity of spreading astronomical knowledge. The World Wide Web continues to expand its reach, and the Astronomy Picture of the Day reaches the homepage of millions. The new phenomenon of podcasts is spreading rapidly. Astronomy attracts many young people to education in important fields in science and technology. But in many countries, astronomy is not part of the standard curriculum, and teachers do not receive adequate education and support. Still, many scientific and educational societies and government agencies have produced materials and educational resources in astronomy for all educational levels. Technology is used in astronomy both for obtaining observations and for teaching. In any case, it is useful to take their special opportunity to learn about the situation in different countries, to exchange opinions, and to collect information in order to continue, over at least the next triennium, the activities related to promoting astronomy throughout the world. In particular, we would like to invite all participants to explain their positive original experiences so they can be adapted for other regions. Everyone is invited to exchange their initiatives and to try to involve other countries in common projects. All of us are in the same boat. http://www.communicatingastronomy.org/innovation2006/

  11. OBSERVING CONDITIONS FOR SUBMILLIMETER ASTRONOMY

    Directory of Open Access Journals (Sweden)

    S. J. E. Radford

    2011-01-01

    Full Text Available Condiciones de observación consistentemente excelentes son cruciales para lograr los objetivos científicos de un telescopio. La astronomía submilimétrica es posible solamente en algunos sitios excepcionalmente secos, notablemente Mauna Kea, el plateau de Antártida, y la región de Chajnantor en los Andes al este de San Pedro de Atacama en el norte de Chile. Las mediciones de larga duración de la transparencia atmosférica a 225 GHz y 350 micro m demuestran que las tres localidades cuentan con suficientes períodos de excelentes condiciones de observación. Las condiciones en el Llano de Chajnantor y en el Polo Sur son mejores con más frecuencia que en Mauna Kea. Las condiciones son mejores durante el invierno y por la noche. Cerca de la cima del Cerro Chajnantor, las condiciones son mejores que en el Llano de Chajnantor.

  12. Service Learning in Introductory Astronomy

    Science.gov (United States)

    Orleski, Michael

    2013-01-01

    Service learning is a method of instruction where the students in a course use the course's content in a service project. The service is included as a portion of the students' course grades. During the fall semester 2010, service learning was incorporated into the Introduction to Astronomy course at Misericordia University. The class had…

  13. Advances in astronomy and astrophysics 9

    CERN Document Server

    Kopal, Zdenek

    1972-01-01

    Advances in Astronomy and Astrophysics, Volume 9 covers reviews on the advances in astronomy and astrophysics. The book presents reviews on the Roche model and its applications to close binary systems. The text then describes the part played by lunar eclipses in the evolution of astronomy; the classical theory of lunar eclipses; deviations from geometrical theory; and the methods of photometric observations of eclipses. The problems of other phenomena related in one way or another to lunar eclipses are also considered. The book further tackles the infrared observation on the eclipsed moon, as

  14. Behavioral factors to include in guidelines for lifelong oral healthiness: an observational study in Japanese adults

    Directory of Open Access Journals (Sweden)

    Shimozato Miho

    2006-12-01

    Full Text Available Abstract Background The aim of this study was to determine which behavioral factors to include in guidelines for the Japanese public to achieve an acceptable level of oral healthiness. The objective was to determine the relationship between oral health related behaviors and symptoms related to oral disease and tooth loss in a Japanese adult community. Methods Oral health status and lifestyle were investigated in 777 people aged 20 years and older (390 men and 387 women. Subjects were asked to complete a postal questionnaire concerning past diet and lifestyle. The completed questionnaires were collected when they had health examinations. The 15 questions included their preference for sweets, how many between-meal snacks they usually had per day, smoking and drinking habits, presence of oral symptoms, and attitudes towards dental visits. Participants were asked about their behaviors at different stages of their life. The oral health examinations included examination of the oral cavity and teeth performed by dentists using WHO criteria. Odds ratios were calculated for all subjects, all 10 year age groups, and for subjects 30 years or older, 40 years or older, 50 years or older, and 60 years or older. Results Frequency of tooth brushing (OR = 3.98, having your own toothbrush (OR = 2.11, smoking (OR = 2.71 and bleeding gums (OR = 2.03 were significantly associated with number of retained teeth in males. Frequency of between-meal snacks was strongly associated with number of retained teeth in females (OR = 4.67. Having some hobbies (OR = 2.97, having a family dentist (OR = 2.34 and consulting a dentist as soon as symptoms occurred (OR = 1.74 were significantly associated with number of retained teeth in females. Factors that were significantly associated with tooth loss in both males and females included alcohol consumption (OR = 11.96, males, OR = 3.83, females, swollen gums (OR = 1.93, males, OR = 3.04, females and toothache (OR = 3.39, males, OR

  15. Astronomy all the time for everybody

    Science.gov (United States)

    Grigore, Valentin

    2015-08-01

    General contextCommunicating astronomy with the public must be done all year and with all community members using all the available methods to promote the all aspects of astronomy: education, science, research, new technologies, dark-sky protection, astrophotography, mythology, astropoetry, astro arts and music.An annual calendarTwo aspect must be taken in consideration when create a calendar of activity:- astronomical events (eclipses, meteor showers, comets, etc.)- international and local astronomical events: Global Astronomy Months, Astronomy Day, Globe at Night, ISAN, public activitiesCommunicating astronomy with the whole communityA description of the experience of the author organizing over 500 events in 30 years of activity including all the community members: general public, students, teachers, artists, authorities, people with disabilities, minor and adult prisoners, etc.An experience of seven years as TV producer of the astronomy TV show “Ùs and the Sky” is presented.Promotion of the activityThe relation with the mass-media is an important aspect communicating astronomy with the public.Mass-media between rating and correct information of the public.The role of the cooperation with the community in astronomy projectsA successful model: EURONEAR project

  16. New Constraints On Cosmic Polarization Rotation Including SPTpol B-mode Polarization Observations

    CERN Document Server

    Pan, W -P; Ni, W -T; Xu, L

    2016-01-01

    We present an update of the cosmic polarization rotation (CPR) constraint from the recent SPTpol measurements of sub-degree B-mode polarization in the cosmic microwave background (CMB) of 100 square degrees of sky. Our previous CPR fluctuation constraint from the joint ACTpol-BICEP2-POLARBEAR polarization data is 23.7 mrad (1.36{\\deg}). With new SPTpol data included, the CPR fluctuation constraint is updated to 17 mrad (1{\\deg}) with the scalar to tensor ratio r = - 0.05 +- 0.1

  17. COMMUNICATING ASTRONOMY IN EUROPE: Strategies and Challenges in International Organisations

    Science.gov (United States)

    Barrosa, Mariana

    2007-08-01

    How much do Europeans really know about science and technology? What do they think about it? For more than a decade, the European Union (EU) has carried out regular surveys to measure public opinion and knowledge on a variety of themes across its member states. One survey carried out in early 2005 is of particular interest to science communication - "Europeans, Science and Technology". It's easy to see that science and technology are racing along faster than ever and you would think that people's knowledge and interest of science and technology would be keeping pace. Unfortunately, that is not the case. Over the past few years, Europeans' overall interest in science and technology has decreased. Astronomy plays a special role within public science communication. It serves as a general science "catcher", not only for young people. Astronomy embraces core sciences such as mathematics, physics, chemistry, biology and geology as well as technical disciplines including optics, observational techniques and data analysis. Astronomy reaches wide into the realm of philosophy; it rubs shoulders with religion and is at the core of many science fiction stories. In short, astronomy attracts a wide spectrum of people and may serve as a powerful vehicle for improving the public awareness and understanding of science. Several key International Organisations like the European Space Agency (ESA), the European Southern Observatory (ESO), Europlanet and the International Astronomical Union (IAU) work in Astronomy and Space Sciences in Europe. As well as a general overview of the outreach and communication actions of some of these Organisations, focus will be made in specific cases and examples in the context of these organisations. 2009 will be the International Year of Astronomy. It will be interesting to see how these European Organisations are getting ready for this ultimate science communication challenge.

  18. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  19. Applied Historical Astronomy

    Science.gov (United States)

    Stephenson, F. Richard

    2014-01-01

    F. Richard Stephenson has spent most of his research career -- spanning more than 45 years -- studying various aspects of Applied Historical Astronomy. The aim of this interdisciplinary subject is the application of historical astronomical records to the investigation of problems in modern astronomy and geophysics. Stephenson has almost exclusively concentrated on pre-telescopic records, especially those preserved from ancient and medieval times -- the earliest reliable observations dating from around 700 BC. The records which have mainly interested him are of eclipses (both solar and lunar), supernovae, sunspots and aurorae, and Halley's Comet. The main sources of early astronomical data are fourfold: records from ancient and medieval East Asia (China, together with Korea and Japan); ancient Babylon; ancient and medieval Europe; and the medieval Arab world. A feature of Stephenson's research is the direct consultation of early astronomical texts in their original language -- either working unaided or with the help of colleagues. He has also developed a variety of techniques to help interpret the various observations. Most pre-telescopic observations are very crude by present-day standards. In addition, early motives for skywatching were more often astrological rather than scientific. Despite these drawbacks, ancient and medieval astronomical records have two remarkable advantages over modern data. Firstly, they can enable the investigation of long-term trends (e.g. in the terrestrial rate of rotation), which in the relatively short period covered by telescopic observations are obscured by short-term fluctuations. Secondly, over the lengthy time-scale which they cover, significant numbers of very rare events (such as Galactic supernovae) were reported, which have few -- if any-- counterparts in the telescopic record. In his various researches, Stephenson has mainly focused his attention on two specific topics. These are: (i) long-term changes in the Earth's rate of

  20. Astronomy in Syria

    Science.gov (United States)

    Al-Mousli, A. T.

    2006-11-01

    Syria has been involved in the field of astronomy since 1997, when Prof. F.R. QUERCI, France, visited Syria and made a presentation on the International NORT project; (NORT: the Network of Oriental Robotic Telescope), which was a selected project of the sixth United Nations/ European Space Agency Workshop on Basic Space Science (document no. A/AC.105/657 dated 13/12/1996). NORT aims to establish a robotic telescope network on high mountain peaks around the Tropic of Cancer, from Morocco in the west to the desert of China in the east. The purposes for establishing this network are technical and educational. The General Organization of Remote Sensing (GORS) has carried out a pilot study using remote sensing techniques and has selected four sites in order to determine the best location for the astronomical observatory the within NORT programme. Following this project, GORS decided to establish an office for astronomical studies, one of the earliest works of GORS in astronomy was an initiative to establish a planetarium within the GORS campus, to accommodate approximately 120 observers. A contest to choose the best planetarium design, for the Arab World, took place at GORS.

  1. Panoramic Radio Astronomy

    CERN Document Server

    Heald, G

    2009-01-01

    In this contribution we give a brief overview of the Panoramic Radio Astronomy (PRA) conference held on 2-5 June 2009 in Groningen, the Netherlands. The conference was motivated by the on-going development of a large number of new radio telescopes and instruments which, within a few years, will bring a major improvement over current facilities. Interferometers such as the EVLA, ASKAP, ATA, MeerKAT, and APERTIF will provide a combination of larger field of view and increased simultaneous bandwidth, while maintaining good collecting area and angular resolution. They will achieve a survey speed 10-50 times larger at 1-2 GHz than the current possibilities, allowing for the first time optical-like all-sky extra-galactic surveys at these frequencies. Significant progress will be made in many fields of radio astronomy. In this conference we focused on research into the evolution of galaxies over the past few Gyr. In particular, wide-field observations at 1-2 GHz will provide an unprecedented panoramic view of the ga...

  2. Challenges in Astronomy Education

    Science.gov (United States)

    De Greve, Jean-Pierre

    2010-11-01

    Astronomy is an attractive subject for education. It deals with fascination of the unknown and the unreachable, yet is uses tools, concepts and insights from various fundamental sciences such as mathematics, physics, chemistry, biology. Because of this it can be well used for introducing sciences to young people and to raise their interest in further studies in that direction. It is also an interesting subject for teaching as its different aspects (observation techniques, theory, data sampling and analysis, modelling,?) offer various didactical approaches towards different levels of pupils, students and different backgrounds. And it gives great opportunities to teach and demonstrate the essence of scientific research, through tutorials and projects. In this paper we discuss some of the challenges education in general, and astronomy in particular, faces in the coming decades, given the major geophysical and technological changes that can be deducted from our present knowledge. This defines a general, but very important background in terms of educational needs at various levels, and in geographical distribution of future efforts of the astronomical community. Special emphasis will be given to creative approaches to teaching, to strategies that are successful (such as the use of tutorials with element from computer games), and to initiatives complementary to the regular educational system. The programs developed by the IAU will be briefly highlighted.

  3. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  4. The clinical spectrum of laryngeal dystonia includes dystonic cough: observations of a large series.

    Science.gov (United States)

    Payne, Susannah; Tisch, Stephen; Cole, Ian; Brake, Helen; Rough, Judy; Darveniza, Paul

    2014-05-01

    Laryngeal dystonia is a movement disorder of the muscles within the larynx, which most commonly manifests as spasmodic dysphonia (SD). Rarer reported manifestations include dystonic respiratory stridor and dyscoordinate breathing. Laryngeal dystonia has been treated successfully with botulinum neurotoxin (BTX) injections since 1984. We reviewed prospectively collected data in a consecutive series of 193 patients with laryngeal dystonia who were seen at St. Vincent's Hospital between 1991 and 2011. Patient data were analyzed in Excel, R, and Prism. Laryngeal dystonia manifested as SD (92.7%), stridor (11.9%), dystonic cough (6.2%), dyscoordinate breathing (4.1%), paroxysmal hiccups (1.6%), and paroxysmal sneezing (1.6%). There were more women (68.4%) than men (31.6%), and the average age at onset was 47 years. A positive family history of dystonia was present in 16.1% of patients. A higher incidence of extra-laryngeal dystonia (ie, torticollis and blepharospasm) and concurrent manifestations of laryngeal dystonia were present in patients with dystonic cough, dyscoordinate breathing, paroxysmal sneezing, and hiccups than in other patients (P = 0.003 and P Technical failures were rare (1.1%). Dysphonia secondary to vocal cord paresis followed 38.7% of treatments. Laryngeal dystonia manifests predominantly as SD, but other manifestations include stridor, dyscoordinate breathing, paroxysmal cough, hiccups, and sneezing. BTX injections are very effective across all subgroups. Severe adverse events are rare. PMID:24753288

  5. The Ninth-Century Renaissance in Astronomy.

    Science.gov (United States)

    Farrell, Charlotte

    1996-01-01

    Discusses the events in the ninth century that moved astronomy away from the pursuit of mystical hermetic sciences and astrology back toward observation and measurement. Describes the achievements of astronomers and the instruments and calculations used during that period. (JRH)

  6. Astronomy a visual guide

    CERN Document Server

    Garlick, Mark A

    2004-01-01

    Space has fascinated man and challenged scientists for centuries and astronomy is the oldest and one of the most dynamic of the sciences. Here is a book that will stimulate your curiosity and feed your imagination. Detailed and fascinating text is clearly and richly illustrated with fabulous, vibrant photographs and diagrams. This is a comprehensive guide to understanding and observing the night sky, from distant stars and galaxies to our neighbouring planets; from comets to shooting stars; from eclipses to black holes. With details of the latest space probes, a series of monthly sky maps to provide guidance for the amateur observer and the latest photos from space, this book brings the beauty and wonder of our universe into your living room and will have you reaching for the telescope!

  7. Astronomy. Internet site

    Science.gov (United States)

    Maksimenko, Anatoly Vasilievich

    The Internet site covers a wide area of actual astronomical topics, including 1) Astronomical News 2) Didactics of Astronomy 3) Space Research (Cosmonautics) 4) That's interesting 5) A Handbook of an astronomer 6) The Solar system 7) A Photogalery 8) Works of Schoolars 9) History of Astronomy The most important of them is the section concerning Space Research (Cosmonautics). This section covers a wide range of topics, beginning with very complete Illustrated History of Soviet Space research , the building of Soviet Rockets, a complete list of Cosmonauts with biographies, a list of all the flies. The author of the site concerns much ineterest to recent and extraordinary astronomiucal phenomena, such as Hazardous asteroids, Comets, Solar and Moon Eclipses, Meteorites, as well as to correct from the scientifical point of view interpretation of the extraordinary astronomical phenomena. The section concerning the Solar system is richly illustrated and give detailed explanations to Solar System evolution and actual state, explains many phenomena in the Solar system. THe Internet site is designed for schoolars as well as to amateur and professional astronomers.

  8. Astronomy books in Spanish

    Science.gov (United States)

    Fierro, Julieta

    Great cultures have created language. They have discovered its strength among other reasons for education. For a long time the Bible was one of the few books available in western culture, its influence is beyond any doubt. Many developing nations have no science books in their mother tongue. They might carry a few translations but these do not convey the local culture so it is harder for students to grasp the concepts and to build on what they know. Books, even if they are extremely simple, should be written in local languages because that will facilitate the conveying of knowledge and the creation of scientific culture. In the books examples that pertain to every day local life must be given, in particular examples that have to do with women. Women play a central role in developing nations by child bearing; if they become literate they will influence enormously the quality of their children's education, in particular their science comprehension. In Mexico a collection that includes astronomy books has recently been edited by the National Council for Culture and Arts. The books are small and light, which encourages middle-school students to carry them around and read them while traveling in public transportation, such as the subway. Every other page is a new subject, that carries illustrations, abstracts and conclusions. The astronomy books are on search for extraterrestrial life, the stars and the universe. These books are distributed nation-wide and are inexpensive. They have been written by Mexican astronomers.

  9. The Astronomy Genealogy Project

    Science.gov (United States)

    Tenn, Joseph S.

    2014-01-01

    The Astronomy Genealogy Project, to be known as AstroGen, will list as many as possible of the world's astronomers with their academic parents (aka thesis advisors) and enable the reader to trace both academic ancestors and descendants. It will be very similar to the highly successful Mathematics Genealogy Project (MGP), available at http://genealogy.math.ndsu.nodak.edu. The MGP, which has been in operation since 1996, now contains the names of about 170,000 "mathematicians." These include many physicists and astronomers, as well as practitioners of related sciences. Mitchel Keller, the director of the MGP, has generously shared the software used in that project, and the American Astronomical Society (AAS) will host AstroGen, a project of the Historical Astronomy Division, on its website. We expect to start seeking entries soon, depending on the availability of computational assistance from the AAS IT department. We are seeking volunteers to help run the project. If you are interested, please contact me at joe.tenn@sonoma.edu.

  10. Clinical observations of odontomas in Japanese children: 39 cases including one recurrent case.

    Science.gov (United States)

    Tomizawa, M; Otsuka, Y; Noda, T

    2005-01-01

    Retrospective investigations of odontomas in Japanese children and one recurrent case were carried out. Thirty-nine cases of odontoma in 38 children were treated in the Paediatric Dentistry Clinic of Niigata University Dental Hospital between September 1979 and December 2002. The patients consisted of 23 males and 15 females and their ages ranged from 1 year 2 months to 14 years old. The chief complaints were delayed tooth eruption in 19 cases (five: primary teeth, 14: permanent teeth), retention of primary teeth in 11, incidentally found on the radiographic examination in eight cases, and swelling of the jaw in one case. Thirty-four cases (87%) were associated with tooth eruption disturbances. The most frequently affected region was the maxillary anterior region. Treatment consisted of surgical removal of odontomas in all cases, after which if the impacted teeth did not erupt, exposure of the crown and/or orthodontic traction was performed. Pathological diagnoses were compound odontoma in 30 cases, complex odontoma (n = 7), and compound and complex odontoma (n = 2). A retrospective study of the radiographs revealed the developing process of odontomas in four cases and odontoma disturbed tooth eruption since the early uncalcified developing stage. A recurrent case was a boy aged 6 years 5 months in whom the first surgical removal of odontoma was performed at the age of 1 year 8 months. Recurrence of an odontoma is very rare, but in very young children odontomas are in the early developing stages, containing uncalcified portions, so it is important to perform periodical observations until the succedaneous teeth erupt.

  11. Fog Induced Aerosol Modification Observed by AERONET, Including Occurrences During Major Air Pollution Events

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Li, Z.; Platnick, S. E.; Arnold, T.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Kim, J.; Kim, Y. J.; Sinyuk, A.; Dubovik, O.; Arola, A. T.; Schafer, J.; Artaxo, P.; Smirnov, A.; Chen, H.; Goloub, P.

    2015-12-01

    The modification of aerosol optical properties due to interaction with fog is examined from measurements made by sun/sky radiometers at several AERONET sites. Retrieved total column volume size distributions for cases identified as aerosol modified by fog often show very a large 'middle mode' submicron radius (~0.4 to 0.5 microns), which is typically seen as a component of a bimodal sub-micron distribution. These middle mode sized particles are often called cloud-processed or residual aerosol. This bimodal accumulation mode distribution may be due to one mode (the larger one) from fog-processed aerosol and the other from interstitial aerosol, or possibly from two different aerosol species (differing chemical composition) with differing hygroscopic growth factors. The size of the fine mode particles from AERONET retrieved for these cases exceeds the size of sub-micron sized particles retrieved for nearly all other aerosol types, suggesting significant modification of aerosols within the fog or cloud environment. In-situ measured aerosol size distributions made during other fog events are compared to the AERONET retrievals, and show close agreement in the residual mode particle size. Almucantar retrievals are analyzed from the Kanpur site in the Indo-Gangetic Plain in India (fog in January), Beijing (fog in winter), Fresno, CA in the San Joaquin Valley (fog in winter), South Korea (Yellow Sea fog in spring), Arica on the northern coast of Chile (stratocumulus), and several other sites with aerosol observations made after fog dissipated. Additionally, several major air pollution events are discussed where extremely high aerosol concentrations were measured at the surface and during which fog also occurred, resulting in the detection very large fine mode aerosols (residual mode) from AERONET retrievals in some of these events. Low wind speeds that occurred during these events were conducive to both pollutant accumulation and also fog formation. The presence of fog then

  12. Outreach for Families and Girls- Astronomy at Outdoor Concerts and at Super Bowl or Halloween Star Parties

    Science.gov (United States)

    Lubowich, Donald A.

    2011-05-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars (MAUS) is a NASA-funded as astronomy outreach program at community parks and music festivals (1000 - 25,000 people/event). While there have been many astronomy outreach activities and telescope observations at sidewalks and parks, this program targets a different audience - music lovers who are attending concerts in community parks or festivals. These music lovers who may not have visited science museums, planetariums, or star parties are exposed to telescope observations and astronomy information with no additional travel costs. MAUS includes solar observing, telescope observations including a live imaging system, an astronomical video, astronomy banners/posters, and hands-on activities. MAUS increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. Since 2009 over 50,000 people have participated in these outreach activities including a significant number of families and young girls. In addition to concerts in local Long Island parks, there were MUAS events at Tanglewood (summer home of the Boston Symphony Orchestra), Jazz in Central Park, and Astronomy Night on the National Mall (co-sponsored by the White House Office of Science and Technology Policy). In 2011 MUAS will be expanded to include Ravinia (summer home of the Chicago Symphony Orchestra), the Newport Folk Festival, and the Bethel Woods Center for the Arts (site of the 1969 Woodstock festival). According to our survey results, music lovers became more informed about astronomy. Expanding Hofstra University's successful outreach programs, I propose the creation of a National Halloween Stars event targeting children and a National Super Bowl Star Party targeting girls, women, and the 2/3 of Americans who do not watch the Super Bowl. This can be combined with astronomers or amateur astronomers bringing telescopes to Super Bowl parties for football fans to stargaze during

  13. Astronomy in the Service of Islam

    Science.gov (United States)

    King, David A.

    In their assessment of Islamic astronomy, historians have usually been concerned only with that part of the Muslim scientific heritage that was transmitted to the West in the Middle Ages. Yet most Islamic works on astronomy were not transmitted to the West, and they are known today mainly due to the work of orientalists in the nineteenth and twentieth centuries. This is the case of Muslim writings on three aspects of mathematical science that were closely linked with religious observance. This is an overview of those "Islamic aspects of Islamic astronomy".

  14. Exchange of astronomy teaching experiences

    Science.gov (United States)

    Ros, Rosa M.

    The Working Group of the European Association for Astronomy Education responsible for Teacher Training organises an annual Summer School for teachers under expert guidance. For a week the teachers participating can exchange experiences, increase their knowledge and discuss different ideas and perspectives. In general, the instructors are professional astronomers, professors and teachers from different countries. The papers presented offer very practical activities, paying special attention to didactic aspects, and take the form of general lectures to all 40 participants and workshops to reduced groups of 20 participants. There are also day and night observations, without expensive equipment or complicated procedures, that are easy to set up and based on topics that it is possible to use in the classroom. The Summer Schools promote a scientific astronomical education at all levels of astronomy teaching, reinforce the link between professional astronomers and teachers with experience of teaching astronomy, allow debates among the participants on their pedagogical activities already carried out in their own classroom and help them to organise activities outside it. Astronomy teachers need special training, access to specific research, to new educational materials and methods and the opportunity to exchange experiences. All these things are provided by the Summer School.

  15. Space and astronomy

    CERN Document Server

    Kirkland, Kyle

    2010-01-01

    Some daring explorers like to study distant frontiers by venturing out into them, but others prefer to study them by bringing them, or representative samples, a little closer to the lab. Both options are pursued in the fields of space and astronomy. Space exploration and astronomy are intricately linked and are examined in-depth in this guide. Dedicated to the scientists who explore the frontiers of space and astronomy-and the results of their unfamiliar findings-each chapter in Space and Astronomy explores one of the frontiers of this science. The development of technology, such as rocket pro

  16. Astronomy in Indian Schools

    Science.gov (United States)

    Bhatia, V. B.

    Tradition of astronomy in India goes back to ancient times. Many festivals and rituals are associated with astronomical phenomena. Indian children start learning rudiments of astronomy from primary classes. But primary teachers are not equipped to handle this subject so not much learning actually takes place. The first serious interface with astronomy occurs when children reach class X when they are 15 years old. Till last year astronomy was there in class XII also but it has now been dropped. This is a serious setback for the study of astronomy. In class X astronomy forms part of general science. Since children at this stage are not proficient in physics and mathematics the subject remains descriptive though there are useful activities for children to do. However the teachers are not equipped to handle this subject and there is no help in the form of visual material. So the subject remains neglected. The Indian astronomical community can help by training teachers and providing visual material. It must also urge authorities to reintroduce astronomy in class XII if astronomy is to flourish in India. Moreover India needs to network with developing countries share experiences with them and evolve a strategy that promotes astronomy.

  17. Planetary astronomy

    Science.gov (United States)

    1976-01-01

    Color and spectral data from spectrometer observations and computerized analyses of asteroid spectra are discussed. Potential occultations of bright asteroids by the moon are summarized. Analysis of anisotropic scattering within Saturn's rings indicates that mineral contamination of the 120 particles cannot exceed 5 percent by weight, and that the rings formed from particle breakup rather than from particle condensation. Raman probe applications to Jupiter and Uranus atmospheres indicate the presence of aerosol particles. A review of Mariner 9 Mars cloud topography data establishes that most blue clouds are orographic uplift clouds composed of condensates, and that sporadic red clouds are associated with blue clouds or volcanoes and thus probably do not represent dust storm phenomena.

  18. Indigenous Astronomies and Progress in Modern Astronomy

    CERN Document Server

    Ruggles, Clive

    2010-01-01

    From an anthropological point of view, the whole concept of a "path of progress" in astronomical discovery is anathema, since it implicitly downgrades other cultural perspectives, such as the many "indigenous cosmologies" that still exist in the modern world. By doing so, one risks provoking those who hold them and-as is most obvious in places such as Hawaii where the two "world-views" come into direct contact-reating avoidable resistance to that very progress. The problem is complicated by the existence of "fringe" and "new-age" views that are increasingly confused with, and even passed off as, indigenous perceptions. In a modern world where widespread public perceptions include many that are unscientific in the broadest sense of the term, I shall argue that there are actually a range of positive benefits for progress in scientific astronomy to be derived from the mutual awareness and comprehension of "genuine" cultural world-views whose goals-in common with those of modern science-are to make sense of the c...

  19. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  20. Planetary radio astronomy from Voyager

    Science.gov (United States)

    Alexander, J. K.

    1983-01-01

    The technique of radio astronomy makes it possible for a remote observer to detect the presence of magnetic fields and plasmas in planetary environments. Prior to the flights of the Voyager spacecraft, radio astronomical studies of Jupiter from earth and from earth orbit had correctly predicted the strength and orientation of Jupiter's magnetic field and trapped radiation belts. The Voyager Planetary Radio Astronomy investigations have now provided measurements of the complete spectrum of low frequency radio emissions from both planets. Each Voyager instrument consists of a pair of orthogonal, 10-m, electric monopole antennas which are connected to a step-tuned, superheterodyne receiver operating over the frequency range from 1.2 kHz to 40.5 MHz. The Voyager trajectory provided observations from above both the sunlit and nightside hemispheres of Jupiter. Saturn's nonthermal radio emission has been observed at frequencies as low as 3 kHz and as high as 1.2 MHz.

  1. Basic notions of dense matter physics: applications to astronomy

    OpenAIRE

    Celebonovic, V.

    2006-01-01

    The aim of this paper is to present basic notions of dense matter physics and some of its applications to geophysics and astronomy.Topics covered in the paper include:basic observational data,fun- damental ideas of static high pressure experiments, notions of theoretical dense matter physics, and finally some details about theoretical work on dense matter physics and its astronomical applications in Serbia.

  2. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    Science.gov (United States)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  3. The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE): an Educational Experience for Undergraduates at the University of Arizona Alumni Association's Astronomy Camp.

    Science.gov (United States)

    Lemon, Courtney; McCarthy, D.; Rudolph, A.

    2011-01-01

    The California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) is an NSF-funded partnership between the Astronomy Program at Cal Poly Pomona (CPP) and the University of Arizona Steward Observatory designed to promote participation of underrepresented minorities (including women) in astronomy research and education. As part of the education component of the program, CPP undergraduate physics majors and minors are eligible to work as a counselor at the University of Arizona's Astronomy Camp, one of the premier astronomy outreach opportunities in the world. CAMPARE students have the opportunity to work in this learn-by-doing environment with a wide range of students to gain first hand experience of teaching astronomy to students of a wide variety of ages in highly structured educational setting. Cal Poly Pomona students who are interested in education, both formal and informal, work in a variety of camps, from Girl Scout camps to camps for advanced high school students, to further their understanding of what it means to be a professional in the field of education. The CAMPARE student who participated in this program during summer 2010 had the opportunity to work under Dr. Don McCarthy, camp director of University of Arizona's Astronomy Camps for 20 years, and observe the interpersonal relations between campers and staff that is so vital to the learning the students receive. Through these observations, the CAMPARE student was able to learn to gauge students' interest in the material, and experience real life teaching and learning scenarios in the informal education realm.

  4. Strategic Plan for Astronomy in the Netherlands 2011-2020

    CERN Document Server

    Groot, P J; Stark, R

    2012-01-01

    Strategic Plan for Astronomy in the Netherlands 2011 - 2020, written by the Netherlands Committee for Astronomy (NCA), on behalf of the excellence research school in astronomy NOVA, (combining the university astronomy institutes of the universities of Amsterdam, Groningen, Leiden and Nijmegen), the NWO division of Physical Sciences, the Netherlands Institute for Radio Astronomy ASTRON and the Netherlands Institute for Space Research SRON. The Strategic plan outlines the scientific priorities for Dutch astronomy in the next decade; the instrumentation effort required to address these priorities, and the connection between astronomical instrumentation and technology development and fundamental technological R&D; the financial contours needed to realise the priorities; and the role of Dutch astronomy in education and outreach. The Strategic Plan also includes a retrospective on the achievements since the last Strategic Plan (2000) and a forward look beyond 2020.

  5. Interactive Materials In The Teaching Of Astronomy

    Science.gov (United States)

    Macêdo, J. A.; Voelzke, M. R.

    2014-10-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Science. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, research locus of its Campus Januária; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test was conducted with the qualitative and quantitative methodology, combined with a content analysis. The results indicated that in the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; the rates of students prior knowledge in relation to astronomy was low; an evidence of meaningful learning of the concepts related to astronomy, and of viability of resource use involving digital technologies in the Teaching of astronomy, which may contribute to the broadening of methodological options of future teachers and meet their training needs.

  6. Exploring Assessment Tools for Research and Evaluation in Astronomy Education and Outreach

    Science.gov (United States)

    Buxner, S. R.; Wenger, M. C.; Dokter, E. F. C.

    2011-09-01

    The ability to effectively measure knowledge, attitudes, and skills in formal and informal educational settings is an important aspect of astronomy education research and evaluation. Assessments may take the form of interviews, observations, surveys, exams, or other probes to help unpack people's understandings or beliefs. In this workshop, we discussed characteristics of a variety of tools that exist to assess understandings of different concepts in astronomy as well as attitudes towards science and science teaching; these include concept inventories, surveys, interview protocols, observation protocols, card sorting, reflection videos, and other methods currently being used in astronomy education research and EPO program evaluations. In addition, we discussed common questions in the selection of assessment tools including issues of reliability and validity, time to administer, format of implementation, analysis, and human subject concerns.

  7. Extragalactic infrared astronomy

    International Nuclear Information System (INIS)

    The paper concerns the field of Extragalactic Infrared Astronomy, discussed at the Fourth RAL Workshop on Astronomy and Astrophysics. Fifteen papers were presented on infrared emission from extragalactic objects. Both ground-(and aircraft-) based and IRAS infrared data were reviewed. The topics covered star formation in galaxies, active galactic nuclei and cosmology. (U.K.)

  8. Indian Astronomy: History of

    Science.gov (United States)

    Mercier, R.; Murdin, P.

    2002-01-01

    From the time of A macronryabhat under dota (ca AD 500) there appeared in India a series of Sanskrit treatises on astronomy. Written always in verse, and normally accompanied by prose commentaries, these served to create an Indian tradition of mathematical astronomy which continued into the 18th century. There are as well texts from earlier centuries, grouped under the name Jyotishaveda macronn d...

  9. History of Oriental Astronomy

    Science.gov (United States)

    Ansari, S. M. Razaullah

    2002-12-01

    This volume deals specifically with recent original research in the history of Chinese, Korean, Japanese, Islamic, and Indian astronomy. It strikes a balance between landmarks of history of Ancient and Medieval Astronomy in the Orient on one hand, and on the other the transmission of the European Astronomy into the countries of the Orient. Most contributions are based on research by the experts in this field. The book also indicates the status of astronomy research in non-European cultural areas of the world. The book is especially of interest to historians of astronomy and science, and students of cultural heritage. Link: http://www.wkap.nl/prod/b/1-4020-0657-8

  10. Joseph Henry and Astronomy

    Science.gov (United States)

    Rothenberg, Marc

    2016-01-01

    Joseph Henry (1797-1878) is best known for his work in electromagnetism and as the first secretary of the Smithsonian Institution. But he was also a pioneer solar physicist, an early advocate of US participation in astrophysics, and a facilitator of international cooperation in astronomy. This paper will briefly trace his role in the development of the US astronomical community from the time he taught astronomy at Princeton in the 1830s through his death, focusing on failed efforts to persuade US astronomers and patrons of astronomy that the best path for US astronomy should be astrophysics. He thought that the US could make a more significant contribution to astronomy science by striking out on a less travelled path rather than competing with the established European observatories.

  11. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  12. Hawaii Student / Teacher Astronomy Research (HI STAR) Program

    Science.gov (United States)

    Nassir, Michael A.; Kadooka, M.

    2007-05-01

    How do we encourage more students to pursue science, technology, engineering and mathematics (STEM) careers? We are using astronomy to engage rural, at-risk and/or Native Hawaiian students living on other islands with a passion for science. Our workshops on Molokai, Maui, and the Big Island of Hawaii have been unique by including both students and teachers as learners. Participants, as young as 5th-graders, are exposed to the physics principles underlying basic astronomy concepts, including laws of motion, gravitation, orbits, optics, and the EM spectrum. The workshop builds toward research skills such as blink-comparison, astrometry, and photometry of CCD images using commercially available software. Ultimately, students and teachers have an opportunity to use the professional grade 2.0-m LCOGT telescope located atop Haleakala on Maui for observational research. Lessons learned and future plans for a 2007 summer workshop will be shared. This program is supported by a NASA IDEAS EPO Grant.

  13. Astronomy Outreach In Parana state/Brazil

    Science.gov (United States)

    Emilio, Marcelo

    2015-08-01

    Paraná is a state at South of Brazil with a population of 11 million people. There are two planetarium and two fixed observatories devoted to Astronomy outreach. The great majority of population have no access to information and knowledge of astronomy discoveries. Another problem is the teaching formation of astronomy studies. In this work we relate an initiative that started at the International Year of Astronomy in 2009 that involved Universities and amateur groups that is still in place. After several grants from the Brazilian National Council for Scientific and Technological Development and Araucária Foundation we were able to reach more than 100.000 people with a mobile planetarium and night astronomic observations. We also providde one-week classes to more than 1.000 teachers in several cities of the state.

  14. Extragalactic Astronomy and Cosmology An Introduction

    CERN Document Server

    Schneider, Peter

    2006-01-01

    Starting with the description of our home galaxy the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution. Then, from the extensive and thorough introduction to modern observational and theoretical cosmology, the text turns to the formation of structures and astronomical objects in the early universe. In particular, Peter Schneider’s Extragalactic Astronomy and Cosmology has the goal of imparting the fundamental knowledge of this fascinating subfield of astronomy, while leading readers to the forefront of astronomical research. But it seeks to accomplish this not only with extensive textual information and insights. In addition, the author’s evident admiration for the workings of the universe that shines through the lines and the many supporting color illustrations will deeply inspire the reader. While this book has grown out of introductory university courses on astronomy and astrophys...

  15. Extragalactic astronomy and cosmology an introduction

    CERN Document Server

    Schneider, Peter

    2015-01-01

    Accounting for the astonishing developments in the field of Extragalactic Astronomy and Cosmology, this second edition has been updated and substantially expanded. Starting with the description of our home galaxy, the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution in the Universe. After an extensive and thorough introduction to modern observational and theoretical cosmology, the focus turns to the formation of structures and astronomical objects in the early Universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are provided in the appendix. The new edition incorporates some of the most spectacular results from new observatories like the Galaxy Evolution Explorer, Herschel, ALMA, WMAP and Planck, as well as new instruments and multi-wavelength campaigns which have expanded our understanding of the Universe and the objects populating it....

  16. ORGANIZATIONS AND STRATEGIES IN ASTRONOMY VOLUME 7

    CERN Document Server

    HECK, ANDRÉ

    2006-01-01

    This book is the seventh volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series covers a large range of fields and themes: in practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, operational techniques, observing practicalities, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, series of conferences, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information and somet...

  17. Organizations and Strategies in Astronomy Volume 6

    CERN Document Server

    Heck, André

    2006-01-01

    This book is the sixth volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series is intended to cover a large range of fields and themes. In practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, legal issues, operational techniques, observing practicalities, educational policies, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detai...

  18. Ideas for Citizen Science in Astronomy

    CERN Document Server

    Marshall, Philip J; Fletcher, Leigh N

    2014-01-01

    We review the relatively new, internet-enabled, and rapidly-evolving field of citizen science, focusing on research projects in stellar, extragalactic and solar system astronomy that have benefited from the participation of members of the public, often in large numbers. We find these volunteers making contributions to astronomy in a variety of ways: making and analyzing new observations, visually classifying features in images and light curves, exploring models constrained by astronomical datasets, and initiating new scientific enquiries. The most productive citizen astronomy projects involve close collaboration between the professionals and amateurs involved, and occupy scientific niches not easily filled by great observatories or machine learning methods: citizen astronomers are most strongly motivated by being of service to science. In the coming years we expect participation and productivity in citizen astronomy to increase, as survey datasets get larger and citizen science platforms become more efficient...

  19. Revealing the Universe to Our Community: NMSU's Society of Astronomy Students' Dedication to Public Outreach

    Science.gov (United States)

    Maldonado, Mercedes; Rees, S.; Medina, A.; Beasley, D.; Campos, A.; Chanover, N. J.; Uckert, K.; McKeever, J.

    2014-01-01

    The New Mexico State University (NMSU) Society of Astronomy Students (SAS) is an undergraduate organization centered on students’ passions for learning and sharing knowledge about the field of astronomy. The SAS strives to become one of the most active clubs on the NMSU campus by their involvement in both astronomy and non-astronomy related public outreach and community service events. NMSU is located in Las Cruces, NM, where Clyde Tombaugh made great contributions both to the field of astronomy and to our local community. He was able to spark the community's interest in astronomy and science in general; this is an aspect of his career that the SAS strives to emulate. To do this, the SAS participates in community outreach events with the goal of stimulating curiosity and providing opportunities for the public to observe and understand exciting phenomenon occurring in our universe. With help from the NMSU Astronomy Department, the SAS is able to volunteer alongside the Astronomy Graduate Student Organization (AGSO) at events for people of all ages. Working jointly with the AGSO allows us to be mentored by the very students who were in our shoes not long ago; they educate us about the wonders of the universe, just as we wish to educate the community. This provides an enlightening and enriching environment for both club and community members. The NMSU Astronomy Department hosts events for the entire community, such as observing nights held at Tombaugh Observatory — which SAS members attend and help advertise — where community members learn about and view objects in the night sky through telescopes. SAS members assist with field trips where local middle and elementary school students attend presentations and participate in astronomy-related activities on the NMSU campus. These hands-on activities are presented in an understandable way, and are meant to increase appreciation for all of the exciting subjects our universe has to offer. Other outreach events include

  20. LGBT Workplace Climate in Astronomy

    Science.gov (United States)

    Gaudi, B. S.; Danner, R.; Dixon, W. V.; Henderson, C. B.; Kay, L. E.

    2013-01-01

    The AAS Working Group on LGBTIQ Equality (WGLE) held a town hall meeting at the 220th AAS meeting in Anchorage to explore the workplace climate for LGBTIQ individuals working in Astronomy and related fields. Topics of discussion included anti-discrimination practices, general workplace climate, and pay and benefit policies. Four employment sectors were represented: industry, the federal government, private colleges, and public universities. We will summarize and expand on the town hall discussions and findings of the panel members.

  1. Grab 'n' go astronomy

    CERN Document Server

    English, Neil

    2014-01-01

      Like everyone else, most amateur astronomers live busy lives. After a long day, the last thing you want as an observer is to have to lug out a large telescope and spend an hour getting it ready before it can be used. Maybe you are going somewhere sure to have dark skies, but you don’t necessarily want astronomy to dominate the trip. Or you are not quite committed to owning a large telescope, but curious enough to see what a smaller, portable setup can accomplish. These are times when a small “grab ’n’ go” telescope, or even a pair of binoculars, is the ideal in­strument. And this book can guide you in choosing and best utilizing that equipment.   What makes a telescope fall into the “grab ’n’ go” category? That’s easy – speed of setting up, ease of use, and above all, portability. This ambitious text is dedicated to those who love to or – because of their limited time – must observe the sky at a moment’s notice. Whether observing from the comfort of a backyard or while on busi...

  2. Teaching Astronomy with Technology

    Science.gov (United States)

    Austin, Carmen; Impey, Chris David; Wenger, Matthew

    2015-01-01

    Students today are expected to have access to computers and the Internet. Students young and old, in school and out of school, are interested in learning about astronomy, and have computers to use for this. Teach Astronomy is a website with a comprehensive digital astronomy textbook freely available to students and educators. In addition to the textbook, there are astronomy Wikipedia articles, image archives from Astronomy Picture of the Day and AstroPix, and video lectures covering all topics of astronomy. Teach Astronomy has a unique search tool called the wikimap that can be used to search through all of the resources on the site. Astronomy: State of the Art (ASOTA) is a massive, open, online course (MOOC). Over 18,000 students have enrolled over the past year and half. This MOOC has been presented in various forms. First, only to students on the web, with content released weekly on host site Udemy. Then to university students who met formally in the classroom for educational activities, but were also expected to watch lectures online on their own time. Presently, it is available online for students to go at their own pace. In the future it will be available in an extended format on a new host site, Coursera. ASOTA instructors use social media to interact with students. Students ask questions via the course host site, Udemy. Live question and answer sessions are conducted using Google Hangouts on Air, and interesting and relevant astronomy news, or supplementary educational content is shared via the ASOTA Facebook page. Teaching on the Internet may seem impersonal and impractical, but by learning to use all of these tools, instructors have the ability to interact with students, and keep them engaged.

  3. New Maser Emission from Nonmetastable Ammonia in NGC 7538. II. Green Bank Telescope Observations Including Water Masers

    CERN Document Server

    Hoffman, Ian M

    2011-01-01

    We present new maser emission from ^{14}NH_3 (9,6) in NGC 7538. Our observations include the known spectral features near v_LSR = -60 km/s and -57 km/s and several more features extending to -46 km/s. In three epochs of observation spanning two months we do not detect any variability in the ammonia masers, in contrast to the >10-fold variability observed in other ^{14}NH_3 (9,6) masers in the Galaxy over comparable timescales. We also present observations of water masers in all three epochs for which emission is observed over the velocity range -105 km/s < v_LSR < -4 km/s, including the highest velocity water emission yet observed from NGC 7538. Of the remarkable number of maser species in IRS 1, H_2O and, now, ^{14}NH_3 are the only masers known to exhibit emission outside of the velocity range -62 km/s < v_LSR < -51 km/s. However, we find no significant intensity or velocity correlations between the water emission and ammonia emission. We also present a non-detection in the most sensitive search...

  4. Astronomy and culture

    CERN Document Server

    Hetherington, Edith

    2009-01-01

    While astronomy is a burgeoning science, with tremendous increases in knowledge every year, it also has a tremendous past, one that has altered humanity's understanding of our place in the universe. The impact of astronomy on culture - whether through myths and stories, or through challenges to the intellectual status quo - is incalculable. This volume in the Greenwood Guides to the Universe series examines how human cultures, in all regions and time periods, have tried to make sense of the wonders of the universe. Astronomy and Culture shows students how people throughout time have struggled

  5. First radio astronomy from space - RAE

    International Nuclear Information System (INIS)

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed. 11 references

  6. Lectures on High-Energy Neutrino Astronomy

    International Nuclear Information System (INIS)

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature produces protons and photons with energies in excess of 1020 and 1013 eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the science reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos. The outline of these lectures is as follows: Introduction Cosmic Neutrinos Associated with the Highest Energy Cosmic Rays Why Kilometer-Scale Detectors? Blueprints of Cosmic Accelerators: Gamma Ray Bursts and Active Galaxies High Energy Neutrino Telescopes: Methodologies of Neutrino Detection High Energy Neutrino Telescopes: Status

  7. Community Based Astronomy: Bringing families and communities together

    Science.gov (United States)

    Mayo, L. A.

    2001-12-01

    Astronomy in K-12 formal education is still largely underrepresented as a science. Yet, it is arguably one of the most engaging and entertaining of the physical sciences. Many school systems have been slow to adopt curriculum frameworks that include astronomy. Even when astronomy is required either as a distinct subject or hidden within the catagory of "Earth science", many teachers spend little time on it in their classrooms since they have no formal training in this subject. A community based, informal astronomy education model that encorporates resources from government agencies, industry, local colleges, science centers and planetariums, families, civic groups, schools, and amateur astronomy clubs can provide a solution and be highly effective in creating sustained learning environments in this discipline as well as fostering an atmosphere of general acceptance and promotion of astronomy by whole communities. In addition, the opportunity exists to reinforce the teaching of astronomy in schools through the involvement of these groups in an informal education setting. This paper will discuss a Community Based Astronomy program that has been implemented in Montgomery County, Maryland. The tie-in to formal education through both schools and systemic reform initiatives will be presented. In addition, detailed guidelines for running astronomy clubs in conjunction with family astronomy nights will be provided.

  8. Astronomy, Astrology, and Medicine

    Science.gov (United States)

    Greenbaum, Dorian Gieseler

    Astronomy and astrology were combined with medicine for thousands of years. Beginning in Mesopotamia in the second millennium BCE and continuing into the eighteenth century, medical practitioners used astronomy/astrology as an important part of diagnosis and prescription. Throughout this time frame, scientists cited the similarities between medicine and astrology, in addition to combining the two in practice. Hippocrates and Galen based medical theories on the relationship between heavenly bodies and human bodies. In an enduring cultural phenomenon, parts of the body as well as diseases were linked to zodiac signs and planets. In Renaissance universities, astronomy and astrology were studied by students of medicine. History records a long tradition of astrologer-physicians. This chapter covers the topic of astronomy, astrology, and medicine from the Old Babylonian period to the Enlightenment.

  9. Astronomy in Second Life

    Directory of Open Access Journals (Sweden)

    Gauthier, A.

    2007-10-01

    Full Text Available Second Life (SL is a multi-user virtual environment that is not limited to adult social entertainment. SL is also a 3D playground for innovative instructors and education/outreach professionals in the sciences. Astronomy and space science have a presence in SL, but it could be so much more. This paper describes some of the current astronomy themed spaces in SL and briefly discusses future innovations.

  10. Radio Astronomy in LSST Era

    CERN Document Server

    Lazio, T Joseph W; Barger, A J; Brandt, W N; Chatterjee, S; Clarke, T E; Condon, J J; Dickman, Robert L; Hunyh, M T; Jarvis, Matt J; Juric, Mario; Kassim, N E; Myers, S T; Nissanke, Samaya; Osten, Rachel; Zauderer, B A

    2014-01-01

    A community meeting on the topic of "Radio Astronomy in the LSST Era" was hosted by the National Radio Astronomy Observatory in Charlottesville, VA (2013 May 6--8). The focus of the workshop was on time domain radio astronomy and sky surveys. For the time domain, the extent to which radio and visible wavelength observations are required to understand several classes of transients was stressed, but there are also classes of radio transients for which no visible wavelength counterpart is yet known, providing an opportunity for discovery. From the LSST perspective, the LSST is expected to generate as many as 1 million alerts nightly, which will require even more selective specification and identification of the classes and characteristics of transients that can warrant follow up, at radio or any wavelength. The LSST will also conduct a deep survey of the sky, producing a catalog expected to contain over 38 billion objects in it. Deep radio wavelength sky surveys will also be conducted on a comparable time scale,...

  11. Future Professional Communication in Astronomy II

    Science.gov (United States)

    Accomazzi, Alberto

    The present volume gathers together the talks presented at the second colloquium on the Future Professional Communication in Astronomy (FPCAII), held at the Harvard-Smithsonian Center for Astrophysics (Cambridge, MA) on 13-14 April 2010. This meeting provided a forum for editors, publishers, scientists, librarians and officers of learned societies to discuss the future of the field. The program included talks from leading researchers and practitioners and drew a crowd of approximately 50 attendees from 10 countries. These proceedings contain contributions from invited and contributed talks from leaders in the field, touching on a number of topics. Among them: The role of disciplinary repositories such as ADS and arXiv in astronomy and the physical sciences; Current status and future of Open Access Publishing models and their impact on astronomy and astrophysics publishing; Emerging trends in scientific article publishing: semantic annotations, multimedia content, links to data products hosted by astrophysics archives; Novel approaches to the evaluation of facilities and projects based on bibliometric indicators; Impact of Government mandates, Privacy laws, and Intellectual Property Rights on the evolving digital publishing environment in astronomy; Communicating astronomy to the public: the experience of the International Year of Astronomy 2009.

  12. Astronomy Outreach for Large and Unique Audiences

    Science.gov (United States)

    Lubowich, D.; Sparks, R. T.; Pompea, S. M.; Kendall, J. S.; Dugan, C.

    2013-04-01

    In this session, we discuss different approaches to reaching large audiences. In addition to star parties and astronomy events, the audiences for some of the events include music concerts or festivals, sick children and their families, minority communities, American Indian reservations, and tourist sites such as the National Mall. The goal is to bring science directly to the public—to people who attend astronomy events and to people who do not come to star parties, science museums, or science festivals. These programs allow the entire community to participate in astronomy activities to enhance the public appreciation of science. These programs attract large enthusiastic crowds often with young children participating in these family learning experiences. The public will become more informed, educated, and inspired about astronomy and will also be provided with information that will allow them to continue to learn after this outreach activity. Large and unique audiences often have common problems, and their solutions and the lessons learned will be presented. Interaction with the participants in this session will provide important community feedback used to improve astronomy outreach for large and unique audiences. New ways to expand astronomy outreach to new large audiences will be discussed.

  13. Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Hamidouche, M; Marcum, P; Krabbe, A

    2010-01-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  14. Astronomy at the Market

    Science.gov (United States)

    Roten, Robert; Constantin, A.; Christensen, E.; Dick, E.; Lapolla, J.; Nutter, A.; Corcoran, J.; DiDomenico, N.; Eskridge, B.; Saikin, A.

    2014-01-01

    We present here an energetic grass-roots outreach program run entirely by undergraduate physics and astronomy majors at James Madison University. Our "Team Awestronomy" takes Astronomy out to the Market, literally. Once a month, for eight months during the academic year, the group sets up a “scientific corner” at the Harrisonburg Farmers Market, offering people the chance to meet with astrophysicists (in the making) and discuss science. Our group members wear t-shirts with simple messages like “Ask me about the Sun,” “...about Black Holes and Mega-Masers” or “...about Big Bang” that initiate the dialog. We help our audience with observations of solar activity through our department’s Coronado telescope equipped with a safe H-alpha filter, sunspotters, and the incredibly simple yet durable and accurate handheld (Project Star) spectrometers, and invite them to the free Saturday Planetarium shows and the star parties hosted by our department on the JMU campus. The team is also prepared with a suite of fun activities aimed particularly at K-5 kids, e.g., building (and eating, after investigating out-gassing properties of) ”dirty comets,” making craters (in pans with flour or sand) and testing how different types of impactors (pebbles, ping-pong balls or even crumpled aluminum foil) affect crater formation, and demonstrations of shock wave created in supernova explosions. The main goals of this outreach program are: 1) to illustrate to people of all ages that science is a fun, creative, and exciting process; 2) to empower people to be curious and to ask questions; 3) to demonstrate that science is a viable career path chosen by many diverse individuals; and 4) to nurture a sense of wonder and awe for the Universe. While this outreach program is aimed at a very general audience, of an extremely wide range, we expect to produce a significant impact on K-12 students in general and in particular on the home-schooled kids. There is a relatively high

  15. Astronomy Research Seminar

    Science.gov (United States)

    Johson, Jolyon; Genet, Russell; Armstrong, James; Boyce, Grady; Boyce, Pat; Brewer, Mark; Buchheim, Robert; Carro, Joseph; Estrada, Reed; Estrada, Chris; Freed, Rachel; Gillette, Sean; Harshaw, Richard; Hollis, Thomas; Kenney, John; McGaughey, Seven; McNab, Christine; Mohanan, Kakkala; Sepulveda, Babs; Wallace, Dan; Wallen, Vera

    2015-05-01

    Traditional science lectures and labs are often enhanced through project- and team-based learning. Some students go beyond these classroom studies by conducting research, often under the guidance of university professors. A one-semester astronomy research seminar was initiated in 2006 in collaboration with the community of professional and amateur double star astronomers. The result was dozens of jointly-authored papers published in the Journal of Double Star Observations and the Annual Proceedings of the Society of Astronomical Sciences. This seminar, and its affiliated community, launched a series of conferences and books, providing students with additional forums to share their double star research. The original seminar, and its derivatives, enhanced educational careers through college admissions and scholarships. To expand the seminar's reach, it was restructured from a few teams at one school, to many teams, each from a different school. A volunteer from each school became an assistant instructor. Most of them were seminar veterans, experienced astronomers, or science teachers. The assistant instructors, in turn, recruited enthusiastic students for their teams. To avoid student and instructor overload, the seminar focused on its three deliverables: a formal proposal, published paper, and public PowerPoint presentation. Future seminars may offer other astronomical research options such as exoplanet transit or eclipsing binary photometry.

  16. Prehistoric Astronomy in China

    Science.gov (United States)

    Chiu, B. C.

    2000-05-01

    We do not have definite proof, but the situation is very interesting, so here is a summary of what we have from calculations and literature research. The ancient Classics of China were written in an archaic, terse language. But the philologist, Bernhard Karlgren, was able to argue that the constellations, (Niao, Huo, Hsu, Mao) were what the oldest stories referred to when the Sage Yao gave directions for agriculture by use of astronomy. Huo and Mao are now well-identified as the asterisms, Antares and the Pleiades. And using tables of precession, which we now have, we find that the text gives a date thousands of years earlier than previously thought. Together with results from studies in prehistory in the last two decades, we can form a plausible picture of how the Pleiades, and then Antares were observed, telling of the beginning of warming, and then the beginning of harvest. We have had at least two obstacles to overcome: one, we had to show the stories were written earlier than one thousand years ago because the Chinese knew of precession then and could have made up the story. Secondly, that the `culmination' written about by Joseph Needham probably referred to a much later time.

  17. Astronomy from the chair - the application of the Internet in promoting of Astronomy

    Science.gov (United States)

    Tomic, Zoran

    2014-05-01

    Internet and modern communication technologies are an indispensable part of modern life. The use of the Internet makes it possible to enhance the education and expand opportunities for acquiring new knowledge. One example is Astronomy, where today thanks to the Internet, we can control telescopes that are distant from us and listen to lectures from Universities in other countries. "Astronomy from the chair" is the name for a concept where amateur astronomers can deal with astronomy from their homes using the Internet. The concept can be divided into four sections depending on the content being offered: Robotic Observatory, Virtual Observatory, Online astronomy broadcasting and Online courses. Robotic observatory is defined as an astronomical instrument and detection system that enables efficient observation without the need of a person's physical intervention. Virtual Observatory is defined as a collection of databases and software tools that use the Internet as a platform for scientific research. Online astronomy broadcasting is part of concept "Astronomy from the chair" which gives users the opportunity to get directly involved in astronomical observation organized by an amateur astronomer from somewhere in the world. Online courses are groups of sites and organizations that provide the opportunity to amateur astronomers to attend lectures, save and watch video materials from lectures, do homework, communicate with other seminar participants and in that way become familiar with the various areas of Astronomy. This paper discusses a new concept that describes how the Internet can be applied in modern education. In this paper will be described projects that allows a large number of astronomy lovers to do their own research without the need to own a large and expensive set of astronomical equipment (Virtual Telescope from Italy, Observatory "Night Hawk" from Serbia and project "Astronomy from an armchair" at Faculty of Sciences and Mathematics in Nis), to help

  18. Speciality optical fibres for astronomy

    Science.gov (United States)

    Ellis, S. C.; Bland-Hawthorn, J.

    2015-05-01

    Astrophotonics is a rapidly developing area of research which applies photonic technology to astronomical instrumentation. Such technology has the capability of significantly improving the sensitivity, calibration and stability of astronomical instruments, or indeed providing novel capabilities which are not possible using classical optics. We review the development and application of speciality fibres for astronomy, including multi-mode to single-mode converters, notch filters and frequency combs.In particular we focus on our development of instruments designed to filter atmospheric emission lines to enable much deeper spectroscopic observations in the near-infrared. These instruments employ two novel photonic technologies. First, we have developed complex aperiodic fibre Bragg gratings which filter over 100 irregularly spaced wavelengths in a single device, covering a bandwidth of over 200 nm. However, astronomical instruments require highly multi-mode fibres to enable sufficient coupling into the fibre, since atmospheric turbulence heavily distorts the wavefront. But photonic technologies such as fibre Bragg gratings, require single mode fibres. This problem is solved by the photonic lantern, which enables efficient coupling from a multi-mode fibre to an array of single-mode fibres and vice versa. We present the results of laboratory tests of these technologies and of on-sky experiments made using the first instruments to deploy these technologies on a telescope. These tests show that the fibre Bragg gratings suppress the night sky background by a factor of 9. Current instruments are limited by thermal and detector emission. Planned instruments should improve the background suppression even further, by optimising the design of the spectrograph for the properties of the photonic components. Finally we review ongoing research in astrophotonics, including multi-moded multicore fibre Bragg gratings, which enable multiple gratings to be written into the same device

  19. Edible Astronomy Demonstrations

    Science.gov (United States)

    Lubowich, Donald A.

    2007-12-01

    Astronomy demonstrations with edible ingredients are an effective way to increase student interest and knowledge of astronomical concepts. This approach has been successful with all age groups from elementary school through college students - and the students remember these demonstrations after they are presented. In this poster I describe edible demonstrations I have created to simulate the expansion of the universe (using big-bang chocolate chip cookies); differentiation during the formation of the Earth and planets (using chocolate or chocolate milk with marshmallows, cereal, candy pieces or nuts); and radioactivity/radioactive dating (using popcorn). Other possible demonstrations include: plate tectonics (crackers with peanut butter and jelly); convection (miso soup or hot chocolate); mud flows on Mars (melted chocolate poured over angel food cake); formation of the Galactic disk (pizza); formation of spiral arms (coffee with cream); the curvature of Space (Pringles); constellations patterns with chocolate chips and chocolate chip cookies; planet shaped cookies; star shaped cookies with different colored frostings; coffee or chocolate milk measurement of solar radiation; Oreo cookie lunar phases. Sometimes the students eat the results of the astronomical demonstrations. These demonstrations are an effective teaching tool and can be adapted for cultural, culinary, and ethnic differences among the students.

  20. AstroCloud, a Cyber-Infrastructure for Astronomy Research: Architecture

    CERN Document Server

    Xiao, Jian; Cui, Chenzhou; He, Boliang; Li, Changhua; Fan, Dongwei; Hong, Zhi; Yin, Shucheng; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Li, Shanshan; Mi, Linying; Wan, Wanghui; Wang, Jianguo; Zhang, Hailong

    2014-01-01

    AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). The ultimate goal of this project is to provide a comprehensive end-to-end astronomy research environment where several independent systems seamlessly collaborate to support the full lifecycle of the modern observational astronomy based on big data, from proposal submission, to data archiving, data release, and to in-situ data analysis and processing. In this paper, the architecture and key designs of the AstroCloud platform are introduced, including data access middleware, access control and security framework, extendible proposal workflow, and system integration mechanism.

  1. Integration of the digital technologies in the teaching of astronomy

    Science.gov (United States)

    de Macedo, J. A.; Voelzke, M. R.

    2014-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potential uses of interactive materials in the teaching of astronomy. Despite being part of official documents, proposals included in the curriculum of several states, and having contributed to human and technological development, astronomy is rarely taught adequately in the Brazilian basic education. When it is taught, it is with unsatisfactory results as presented by students and teachers as shown by several studies, such as those carried out by (Voelzke and Gonzaga, 2013). Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to help them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the IFNMG, with its Campus Januária as research locus; ii) analysis of students' preconceptions about astronomy and digital technologies, identified by the application of an initial questionnaire; iii) preparation of the course taking into account the students' previous knowledge; iv) application of the education proposal developed under part-time presence modality, using various interactive tools; v) application and analysis of the final questionnaire. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. Among other results, it was verified that: (i) In the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; (ii) the analysis of the initial questionnaire showed even that group

  2. Archaeo- and Cultural Astronomy in Armenia

    Science.gov (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.

    2015-08-01

    We present a general overview on Armenian Archaeoastronomy and Astronomy in Culture to mention and summarize some activities and related organizations involved. Armenia is rather rich in archaeoastronomy and culture, including calendars, rock art, mythology, etc. Archaeoastronomical issues in Armenia include: Zodiac Constellations (believed to be introduced for the first time in the Armenian Highland); Ancient Observatories; Armenian Rock Art; Ancient Armenian Calendar and other (medieval) calendars; Astronomical Terms and Names; Records of Astronomical Events by ancient Armenians; Anania Shirakatsi’s (612-685) Astronomical Heritage; Medieval Sky Maps and Astronomical Devices. During the recent years, we have organized a number of meetings, where archaeoastronomy was involved: Joint European and National Astronomy Meeting (JENAM-2007), Special Session #6: “Archaeoastronomy” (2007), ArAS VIII Annual Meeting “Astronomy and Society”, Session “Archaeoastronomy” (2009), Archaeoastronomical meeting “Astronomical Heritage in the National Culture” dedicated to Anania Shirakatsi’s 1400th anniversary (2012), Meeting “Relation of Astronomy to other Sciences, Culture and Society” (RASCS), Sessions“Archaeoastronomy” and “Astronomy in Culture” (2014). Along with Byurakan Astrophysical Observatory (BAO), there are several other institutions related to Archaeoastronomy and Astronomy in Culture: Institute of History, Institute of Archaeology and Ethnography, Institute of Literature, Institute of Language, Matenadaran (Institute of Ancient Manuscripts). We have introduced a section “Archaeoastronomy and Astronomy in Culture” in the newsletter of Armenian Astronomical Society (ArAS). This is to strengthen ArAS activities and to widen our knowledge in this area, to encourage and establish collaborations with other scientists related to these subjects; historians, archaeologists, ethnographers, philologists, linguists, artists and other

  3. Astronomy in Colombia

    Science.gov (United States)

    Cepeda-Peña, W. E.

    2006-08-01

    Astronomy in Colombia has been done since the beginning of the nineteen century when in 1803 was built one of the oldest or maybe the older astronomical Observatory of America. This is a very beautiful, historical and ancient building. A small dome with a small telescope is also inside the university campus . The Observatory leads since then the development of astronomy in Colombia as a professional science. At the present time a Master Program and a Specialization Program are successfully carried out with a good number of smart young students. The Observatory has a staff of eleven professors all with a master degree in sciences; two of them are PhD and in a couple of years five staff members will be PhD in Physics. With some international collaboration they will shoulder in few years a doctoral astronomical program. There are several research lines mainly in the fields of Astrometry, Galactic and Extragalactic Astronomy, Cosmology, Astrostatistic and Astrobiology. Three research groups have got recognition from the governmental institution that supports the research in sciences COLCIENCIAS. Several papers have been published in national and international journals. Besides the professional line in astronomy, the Observatory sponsors several non professional Colombian astronomical groups that work enthusiastically in the field of astronomy.

  4. Astronomy in Culture

    Science.gov (United States)

    Stavinschi, M.

    2010-07-01

    Which is more appropriate? “Astronomy in culture,” or “Astronomy and culture,” or “Culture without astronomy?” These are only few variants, each with its own sense. I guess the last question is the most pertinent. Does culture really exist without astronomy? The existence and evolution of the human civilization answer NO! But what “culture” means? When we are thinking of a culture (the Hellenistic one, for instance), we mean a set of customs, artistic, religious, intellectual manifestations that differentiate one group or society from another. On the other hand, we often use the notion of culture in a different sense: shared beliefs, ways of regarding and doing, which orient more or less consciously the behavior of an individual or a group. An example would be the laic culture. Moreover, the set of knowledge acquired in one or several domains also constitutes a culture, for instance the scientific culture of an individual or a group. Finally, the set of cultures is nothing else but the civilization. Now, if we come back in time into the history of civilization, we find a permanent component, which was never missing and often played a decisive part in its evolution: the Astronomy.

  5. WorldWide Telescope in High School Astronomy Competitions

    Science.gov (United States)

    Constantin, Ana-Maria; Goodman, A. A.; Udomprasert, P. S.

    2014-01-01

    This project aims to improve astronomy education at the high school level, and to increase awareness in astronomy for pre-university students, on an international scale. In 2013, the WorldWide Telescope Ambassadors Program began a collaboration with the International Olympiad in Astronomy and Astrophysics (IOAA), which was held in the city of Volos, Greece in August 2013. Now at its VIIth edition, IOAA is the largest annual astronomy competition for high school students, and it consists of one team task and three individual ones - Theoretical, Data Analysis, and Observational. Each of the participating countries (35 in 2013, compared to 21 in 2007) is responsible for selecting up to five representative students for the International round. IOAA is meant to promote future collaborations between these students, and to encourage friendships inside a global scientific community. Ana-Maria Constantin, a current Harvard undergraduate student and a former medalist of IOAA, represented WorldWide Telescope Ambassadors in Greece by giving a talk on the advantages of using WWT as a tool for research and education. As a result, the President and the International Board of the Olympiad have expressed support for including WWT in the competition for future editions. WWTA is working with the Organizing Board for next year’s competition in Romania, to include WWT as a testing tool. This poster will summarize key points from the WWTA presentation in Greece, present ideas for WWT-based activities in future IOAA competitions, and outline plans for new collaborations from representatives of Sri Lanka, Poland, Bangladesh, and Colombia. Given the positive feedback we have received after the presentation in Greece, we are also considering future implementations of WWT in summer research camps for high school students, such as the Summer Science Program.

  6. The Helios radio astronomy experiment

    Science.gov (United States)

    Kayser, S.; Stone, R.

    1984-01-01

    Radio bursts traveling between the Sun and the Earth were tracked by radio astronomy experiments on Helios 1 and 2. A relatively short dipole antenna with a well-defined toroidal reception pattern was flown. The antenna spins in the ecliptic at 60.3 rpm and 2 frequencies are measured in each revolution. The signal analysis determines the strength of the signal, the direction of the source in the ecliptic, and the degree of modulation, and estimates source size. The experiments provide three-dimensional direction finding in space. They extend the radio frequency window beyond what is observable on Earth, and offer a long triangulation baseline.

  7. Studies in the History of Astronomy. Issue 32 %t Istoriko-Astronomicheskie Issledovaniya. Vypusk XXXII

    Science.gov (United States)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy. Its basic headlines are: Cosmology and cosmogony of the 20th century; History of observations and astronomical organizations; Scientists and their works; Astronomy and society; Publications and memoirs; Astronomy and astrology; Memory of scientists

  8. International Year of Astronomy (IYA): A Boost to Astronomy Education in Atlanta, GA

    Science.gov (United States)

    Sarrazine, Angela R.; Albin, E.

    2010-01-01

    We report on the International Year of Astronomy (IYA) activities at Fernbank Science Center in Atlanta, GA (USA). The global focus of IYA was to celebrate astronomy and its cultural / scientific contributions, which correlate with the 400th anniversary of Galileo's first look at the heavens with a small telescope. Our planetarium and observatory utilized this opportunity to increase astronomy awareness and education locally. A plethora of special events were organized including two planetarium productions about Galileo and the telescope, special displays in the exhibit hall, two astronaut lectures, a children's workshop with Galileoscopes, and even a Galileo impersonator. Such IYA-related programs increased our overall annual attendance while at the same time served to re-introduce our local audience to astronomy in a creative way.

  9. Astronomy Librarians - Quo Vadis?

    CERN Document Server

    Lagerstrom, Jill

    2011-01-01

    "You don't look like a librarian" is a phrase we often hear in the astronomy department or observatory library. Astronomy librarians are a breed apart, and are taking on new and non-traditional roles as information technology evolves. This talk will explore the future of librarians and librarianship through the lens of the recent talks given at the sixth "Libraries and Information Services in Astronomy" conference held in Pune, India in February 2010. We will explore the librarian's universe, illustrating how librarians use new technologies to perform such tasks as bibliometrics, how we are re-fashioning our library spaces in an increasingly digital world and how we are confronting the brave new world of open access, to name but a few topics.

  10. Marriage of x-ray and optical astronomy

    International Nuclear Information System (INIS)

    An historical discussion of the relation of x-ray and optical astronomy is given including distances within our galaxy, the optical identification of x-ray sources, the binary x-ray stars, neutron stars and black holes, a program in x-ray astronomy, and future missions

  11. Gravitation, Book 3. The University of Illinois Astronomy Program.

    Science.gov (United States)

    Atkin, J. Myron; Wyatt, Stanley P., Jr.

    Presented is book three in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. The causes of celestial motion are investigated and the laws that apply to all moving things in the universe are examined in detail. Topics discussed include: the basic…

  12. The Canadian Astronomy Data Centre

    Science.gov (United States)

    Ball, Nicholas M.; Schade, D.; Astronomy Data Centre, Canadian

    2011-01-01

    The Canadian Astronomy Data Centre (CADC) is the world's largest astronomical data center, holding over 0.5 Petabytes of information, and serving nearly 3000 astronomers worldwide. Its current data collections include BLAST, CFHT, CGPS, FUSE, Gemini, HST, JCMT, MACHO, MOST, and numerous other archives and services. It provides extensive data archiving, curation, and processing expertise, via projects such as MegaPipe, and enables substantial day-to-day collaboration between resident astronomers and computer specialists. It is a stable, powerful, persistent, and properly supported environment for the storage and processing of large volumes of data, a condition that is now absolutely vital for their science potential to be exploited by the community. Through initiatives such as the Common Archive Observation Model (CAOM), the Canadian Virtual Observatory (CVO), and the Canadian Advanced Network for Astronomical Research (CANFAR), the CADC is at the global forefront of advancing astronomical research through improved data services. The CAOM aims to provide homogeneous data access, and hence viable interoperability between a potentially unlimited number of different data collections, at many wavelengths. It is active in the definition of numerous emerging standards within the International Virtual Observatory, and several datasets are already available. The CANFAR project is an initiative to make cloud computing for storage and data-intensive processing available to the community. It does this via a Virtual Machine environment that is equivalent to managing a local desktop. Several groups are already processing science data. CADC is also at the forefront of advanced astronomical data analysis, driven by the science requirements of astronomers both locally and further afield. The emergence of 'Astroinformatics' promises to provide not only utility items like object classifications, but to directly enable new science by accessing previously undiscovered or intractable

  13. Documenting the Vocabulary of Astronomy Communication

    Science.gov (United States)

    Miller, Scott; Parrish, M.; Gay, P. L.

    2008-05-01

    Learning astronomy can be a life-long process, with the seeds of knowledge planted in K-12 classes blossoming in elective college courses to create adults who actively acquire astronomy content. One of the goals of many astronomy 101 courses is to prepare students to be intelligent consumers of mainstream astronomy content, including magazine articles, popular books, and online news. To meet this goal, astronomy educators need to understand what content is being presented in the media and what level vocabulary is being used. The most simplistic way to address this problem is to examine the topics covered and vocabulary used in mainstream astronomy blogs and news feeds. In this study we looked at a selection of prominent blogs and news feeds and we present a statistical study of the frequency different scientific terms are used and topics are addressed. To make this study possible, software to read in RSS feeds was created. This software had to meet the following design specifications: runs in a reasonable amount of time, removes all XML and HTML code from text, sees words with different capitalizations as the same word, ignores end of sentence or phrase punctuation without ignoring hyphens, and has an editable list of "common English words.” This code will be available after the conference at http://www.starstryder.com. Results of this study find that many of the primary topics of Astronomy 101 classes, such as the HR Diagram, are rarely mentioned in blogs and online news, while often de-emphasized topics, such as extra solar planets, cosmology, and high energy astrophysics, show up regularly.

  14. Application of Observed Precipitation in NCEP Global and Regional Data Assimilation Systems, Including Reanalysis and Land Data Assimilation

    Science.gov (United States)

    Mitchell, K. E.

    2006-12-01

    The Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) applies several different analyses of observed precipitation in both the data assimilation and validation components of NCEP's global and regional numerical weather and climate prediction/analysis systems (including in NCEP global and regional reanalysis). This invited talk will survey these data assimilation and validation applications and methodologies, as well as the temporal frequency, spatial domains, spatial resolution, data sources, data density and data quality control in the precipitation analyses that are applied. Some of the precipitation analyses applied by EMC are produced by NCEP's Climate Prediction Center (CPC), while others are produced by the River Forecast Centers (RFCs) of the National Weather Service (NWS), or by automated algorithms of the NWS WSR-88D Radar Product Generator (RPG). Depending on the specific type of application in data assimilation or model forecast validation, the temporal resolution of the precipitation analyses may be hourly, daily, or pentad (5-day) and the domain may be global, continental U.S. (CONUS), or Mexico. The data sources for precipitation include ground-based gauge observations, radar-based estimates, and satellite-based estimates. The precipitation analyses over the CONUS are analyses of either hourly, daily or monthly totals of precipitation, and they are of two distinct types: gauge-only or primarily radar-estimated. The gauge-only CONUS analysis of daily precipitation utilizes an orographic-adjustment technique (based on the well-known PRISM precipitation climatology of Oregon State University) developed by the NWS Office of Hydrologic Development (OHD). The primary NCEP global precipitation analysis is the pentad CPC Merged Analysis of Precipitation (CMAP), which blends both gauge observations and satellite estimates. The presentation will include a brief comparison between the CMAP analysis and other global

  15. Improving Science Communication and Engaging the Public in Astronomy and Nature

    Science.gov (United States)

    Arion, Douglas N.

    2016-01-01

    A partnershipship between Carthage College and the Appalachian Mountain Club has delivered a successful public education and outreach program that merges natural environment topics and astronomy. Over the four years of activity, over 25,000 people have received programming. The effort has trained nature educators, permanent and seasonal AMC staff, and undergraduate physics and astronomy students to integrate diverse topical material and deliver high quality programming to the lay public. Unique to the program is the holistic nature of the material delivered - an 'atypical' astronomy program. Linking observable characteristics of the natural world with astronomical history and phenomena, and emphasizing the unique sequence of events that have led to human life on Earth, the program has changed attitudes and behaviors among the public participants. Successful interventions have included hands-on observing programs (day and night) that link nature content to the observed objects; table-talk presentations on nature/astronomy topics; dark skies preservation workshops; and hands-on activities developed for younger audiences, including schools, camps, and family groups. An extensive evaluation and assessment effort managed by a leading sociologist has demonstrated the effectiveness of the approach, and contributed to continuous improvement in the program content and methods. This work was supported in part by NSF Grant 1432662.

  16. Astronomy in Georgia - Present Status and Perspectives

    Science.gov (United States)

    Todua, M.

    2016-09-01

    Astronomy in Georgia is generally represented in Abastumani Astrophysical Observatory found in 1932. It is one of the leading scientific institutes in the country. Main fields of research are solar system bodies (including near-Earth asteroids), various aspects of solar physics, stellar astronomy (including binary stars and open clusters), extragalactic objects (AGNs), theoretical astrophysics, cosmology, atmospheric and solar-terrestrial physics. Several telescopes are operational today, as well as the instruments for atmospheric studies. In 2007 the Observatory was integrated with Ilia State University, merging scientific research and education which facilitated the growth of a new generation of researchers. There are groups of astronomers and astrophysicists in other Georgian universities and institutions as well. Georgian scientists collaborate with research centers and universities worldwide. Research groups participate in various international scientific projects. The interest in astronomy in Georgia has been growing, which increases future perspectives of its development in the country.

  17. Radio astronomy with microspacecraft

    Science.gov (United States)

    Collins, D.

    2001-01-01

    A dynamic constellation of microspacecraft in lunar orbit can carry out valuable radio astronomy investigations in the frequency range of 30kHz--30MHz, a range that is difficult to explore from Earth. In contrast to the radio astronomy ivestigations that have flown on individual spacecraft, the four microspacecraft together with a carrier spacecraft, which transported them to lunar orbit, form an interferometer with far superior angular resolution. Use of microspacecraft allows the entire constellation to be launched with a Taurus-class vehicle. Also distinguishing this approach is that the Moon is used as needed to shield the constellation from RF interference from the Earth and Sun.

  18. Gamma-ray Astronomy

    CERN Document Server

    Hinton, Jim

    2007-01-01

    The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

  19. Lessons from Mayan Astronomy

    CERN Document Server

    Loeb, Abraham

    2016-01-01

    The Mayan culture collected exquisite astronomical data for over a millennium. However, it failed to come up with the breakthrough ideas of modern astronomy because the data was analyzed within a mythological culture of astrology that rested upon false but mathematically sophisticated theories about the Universe. Have we learned the necessary lessons to prevent our current scientific culture from resembling Mayan Astronomy? Clearly, data collection by itself is not a guarantee for good science as commonly assumed by funding agencies. A vibrant scientific culture should cultivate multiple approaches to analyzing existing data and to collecting new data.

  20. ESASky: a new Astronomy Multi-Mission Interface

    Science.gov (United States)

    Baines, D.; Merin, B.; Salgado, J.; Giordano, F.; Sarmiento, M.; Lopez Marti, B.; Racero, E.; Gutierrez, R.; De Teodoro, P.; Nieto, S.

    2016-06-01

    ESA is working on a science-driven discovery portal for all its astronomy missions at ESAC called ESASky. The first public release of this service will be shown, featuring interfaces for sky exploration and for single and multiple targets. It requires no operational knowledge of any of the missions involved. A first public beta release took place in October 2015 and gives users world-wide simplified access to high-level science-ready data products from ESA Astronomy missions plus a number of ESA-produced source catalogues. XMM-Newton data, metadata and products were some of the first to be accessible through ESASky. In the next decade, ESASky aims to include not only ESA missions but also access to data from other space and ground-based astronomy missions and observatories. From a technical point of view, ESASky is a web application that offers all-sky projections of full mission datasets using a new-generation HEALPix projection called HiPS; detailed geometrical footprints to connect all-sky mosaics to individual observations; direct access to the underlying mission-specific science archives and catalogues. The poster will be accompanied by a demo booth at the conference.

  1. High energy cosmic ray astronomy

    International Nuclear Information System (INIS)

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.104-1020) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  2. The handy astronomy answer book

    CERN Document Server

    Liu, PhD, Charles

    2013-01-01

    From planetary movements and the exploration of our solar system to black holes and dark matter, this comprehensive reference simplifies all aspects of astronomy with an approachable question-and-answer format. With chapters broken into various astronomical studies—including the universe, galaxies, planets, and space exploration—this fully updated resource is an ideal companion for students, teachers, and amateur astronomers, answering more than 1,00 questions, such as Is the universe infinite? What would happen to you if you fell onto a black hole? What are the basic concepts of Einstein''s s

  3. Teaching Astronomy in UK Schools

    Science.gov (United States)

    Roche, Paul; Roberts, Sarah; Newsam, Andy; Barclay, Charles

    2012-01-01

    This article attempts to summarise the good, bad and (occasionally) ugly aspects of teaching astronomy in UK schools. It covers the most common problems reported by teachers when asked about covering the astronomy/space topics in school. Particular focus is given to the GCSE Astronomy qualification offered by Edexcel (which is currently the…

  4. School-Based Extracurricular Astronomy

    Science.gov (United States)

    Stanger, Jeffrey J.

    2010-01-01

    The International Year of Astronomy in 2009 focused considerable public attention on Astronomy and generated valuable resources for educators. These activities are an effective vehicle for promoting Science to students and to the wider school community. The most engaging practical astronomy activities are best delivered with sustained support from…

  5. Quickly Creating Interactive Astronomy Illustrations

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  6. Optical observations of 23 distant Jupiter Family Comets, including 36P/Whipple at multiple phase angles

    CERN Document Server

    Snodgrass, Colin; Fitzsimmons, Alan

    2007-01-01

    We present photometry on 23 Jupiter Family Comets (JFCs) observed at large heliocentric distance, primarily using the 2.5m Isaac Newton Telescope (INT). Snap-shot images were taken of 17 comets, of which 5 were not detected, 3 were active and 9 were unresolved and apparently inactive. These include 103P/Hartley 2, the target of the NASA Deep Impact extended mission, EPOXI. For 6 comets we obtained time-series photometry and use this to constrain the shape and rotation period of these nuclei. The data are not of sufficient quantity or quality to measure precise rotation periods, but the time-series do allow us to measure accurate effective radii and surface colours. Of the comets observed over an extended period, 40P/Vaisala 1, 47P/Ashbrook-Jackson and P/2004 H2 (Larsen) showed faint activity which limited the study of the nucleus. Light-curves for 94P/Russell 4 and 121P/Shoemaker-Holt 2 reveal rotation periods of around 33 and 10 hours respectively, although in both cases these are not unique solutions. 94P w...

  7. Directory of Physics & Astronomy Faculties in North American Colleges & Universities, 1973-1974.

    Science.gov (United States)

    American Inst. of Physics, New York, NY.

    This directory of physics and astronomy faculties includes over 2,200 colleges and universities in the U.S., Canada, Mexico and Central America which offer college level courses in physics and astronomy. Approximately 15,000 faculty members are listed by state. Each listing indicates the type of physics and astronomy programs offered and degrees…

  8. Skyscape of an Amazonian Diaspora: Arawak Astronomy in Historical Comparative Perspective

    Science.gov (United States)

    Jara, Fabiola

    The title of this article "Arawak Astronomy" suggests that the research matter concerns the astronomy of an already well-defined ethnographic entity. This however does not do justice to the complexities of Arawak (pre)history. This contribution aims to discuss and connect the available historical and ethnographic data on Arawak astronomies as gathered by the author (Jara 2000), with the most recent research on the archeology and comparative linguistics of the Arawak diaspora. The article argues that Arawak astronomy has to be related to the cultural and sociopolitical continuities and discontinuities of the Arawak diaspora throughout the lowlands of tropical South America. This article recognizes the need to consider Arawak astronomy has an object to be discovered and explained within its local and regional contexts. Notwithstanding these remarks, based on a sustained examination of ethnohistorical and ethnographic sources, this article proposes that Arawak astronomy can be characterized by at least four elements: firstly, a horizon system of observation which combines the observation of the solar solstices and equinoxes with the near heliacal and near cosmic rising or setting of at least seven star groups - the Pleiades, the Hyades, the upper stars of the constellation of Scorpius (including α Sco), Corvus, the Belt of Orion, several stars near Sirius, and the Milky Way. Secondly, the association of the rising and setting of these star groups with the seasonal cycle, mainly with the start and/or of the end of rainy and dry seasons. Thirdly, the widespread association of the stars of the year (most commonly the Pleiades but sometimes Orion or the head of Scorpius) with the beginning of the agricultural cycle and consequently with the end of the heavy rains announcing the time to plant the new fields. The last and fourth commonality are the inscriptions or markings of the origin of the stars in the local landscape, lakes, mountains, and other salient landscape

  9. Identification and Support of Outstanding Astronomy Students

    Science.gov (United States)

    Stoev, A. D.; Bozhurova, E. S.

    2006-08-01

    The aims, organizational plan and syllabus of a specialized Astronomy School with a subject of training students for participation in the International Astronomy Olympiad, are presented. Thematic frame includes basic educational activities during the preparation and self-preparation of the students and their participation in astronomical Olympiads. A model of identification and selection of outstanding students for astronomical Olympiads has been developed. Examples of didactic systems of problems for development of mathematical, physical and astronomical skills are shown. The programme ends with individual training for solving problems on astronomy and astrophysics. Possibilities, which the characteristic, non-standard astronomical problems give for stimulating the creative and original thinking, are specified. Basic psychological condition for development of the students' creative potential - transformation of the cognitive content in emotional one - is demonstrated. The programme of identification and support of outstanding students on astronomy is realized in collaboration with The Ministry of Education and Science, Public Astronomical Observatories and Planetaria, Institute of Astronomy - Bulgarian Academy of Sciences, and The Union of Astronomers in Bulgaria.

  10. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    Science.gov (United States)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  11. Highlights of Astronomy, Vol. 15

    Science.gov (United States)

    Corbett, Ian

    2010-11-01

    Preface; Part I. Gruber Cosmology Prize Lecture; Part II. Invited Discourses; Part III. Joint Discussions: 1. Dark matter in early-type galaxies Léon V. E. Koopmans and Tommaso Treu; 2. Diffuse light in galaxy clusters Magda Arnaboldi and Ortwin Gerhard; 3. Neutron stars - timing in extreme environments Tomaso Belloni, Mariano Méndez and Chengmin Zhang; 4. Progress in understanding the physics of Ap and related stars Margarida Cunha; 5. Modelling the Milky Way in the age of Gaia Annie C. Robin; 6. Time and astronomy Pascale Defraigne; 7. Astrophysical outflows and associated accretion phenomena Elisabete M. de Gouveia Dal Pino and Alex C. Raga; 8. Hot interstellar matter in elliptical galaxies Dong-Woo Kim and Silvia Pellegrini; 9. Are the fundamental constants varying with time? Paolo Molaro and Elisabeth Vangioni; 10. 3D views on cool stellar atmospheres - theory meets observation K. N. Nagendra, P. Bonifacio and H. G. Ludwig; 11. New advances in helio- and astero-seismology; 12. The first galaxies - theoretical predictions and observational clues; 13. Eta Carinae in the context of the most massive stars Theodore R. Gull and Augusto Damineli; 14. The ISM of galaxies in the far-infrared and sub-millimetre; 15. Magnetic fields in diffuse media Elisabete M. de Gouveia Dal Pino and Alex Lazarian; 16. IHY global campaign - whole heliosphere interval; Part IV. Special Sessions: SpS 1. IR and sub-mm spectroscopy - a new tool for studying stellar evolution Glenn Wahlgren, Hans Käufl and Florian Kerber; SpS 2. The international year of astronomy Pedro Russo, Catherine Cesarsky and Lars Lindberg Christensen; SpS 3. Astronomy in Antarctica in 2009 Michael G. Burton; SpS 4. Astronomy education between past and future J. P. De Greve; SpS 5. Accelerating the rate of astronomical discovery Ray P. Norris; SpS 6. Planetary systems as potential sites for life Régis Courtin, Alan Boss and Michel Mayor; SpS 7. Young stars, brown dwarfs, and protoplanetary disks Jane Gregorio

  12. Summary: Special Session SpS15: Data Intensive Astronomy

    Science.gov (United States)

    Montmerle, Thierry

    2015-03-01

    A new paradigm in astronomical research has been emerging - ``Data Intensive Astronomy'' that utilizes large amounts of data combined with statistical data analyses. The first research method in astronomy was observations by our eyes. It is well known that the invention of telescope impacted the human view on our Universe (although it was almost limited to the solar system), and lead to Keplerfs law that was later used by Newton to derive his mechanics. Newtonian mechanics then enabled astronomers to provide the theoretical explanation to the motion of the planets. Thus astronomers obtained the second paradigm, theoretical astronomy. Astronomers succeeded to apply various laws of physics to reconcile phenomena in the Universe; e.g., nuclear fusion was found to be the energy source of a star. Theoretical astronomy has been paired with observational astronomy to better understand the background physics in observed phenomena in the Universe. Although theoretical astronomy succeeded to provide good physical explanations qualitatively, it was not easy to have quantitative agreements with observations in the Universe. Since the invention of high-performance computers, however, astronomers succeeded to have the third research method, simulations, to get better agreements with observations. Simulation astronomy developed so rapidly along with the development of computer hardware (CPUs, GPUs, memories, storage systems, networks, and others) and simulation codes.

  13. Teaching Astronomy Using Tracker

    Science.gov (United States)

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-01-01

    A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…

  14. Astronomy on the Walls

    Science.gov (United States)

    Santascoy, J.

    2016-01-01

    Many of us are interested in increasing youth and minority involvement in the sciences. Using art that integrates images of space exploration with ethnic astronomical mythology may increase participation in astronomy in general, while also forming a bridge to underrepresented communities. This paper describes a freely available presentation of Carlos Callejo's Discover the Secrets of the Universe Through the Library for outreach.

  15. Outlook for ultraviolet astronomy

    Science.gov (United States)

    Boehm-Vitense, E.

    1981-01-01

    A brief overview of galactic and extragalactic research is given with emphasis on the problems of temperature determination, chemical abundance determination, and the question about the energy sources for the high temperature regions. Stellar astronomy, stellar winds, and the interstellar medium are among the topics covered.

  16. Beyond Casual Observing

    Science.gov (United States)

    Ang, R. J. Y.

    2009-03-01

    Amateur astronomers can go beyond casual observing and contribute to real scientific research and astronomy education. The evolutionary stages of an astronomer is discussed, from stargazing as a pastime to taking up a formal degree in astronomy and advancement of Astronomy as a fielf of study.

  17. Strategies for Teaching Astronomy

    Science.gov (United States)

    Bennett, J.

    2000-12-01

    No matter whether you are teaching school children, undergraduates, or colleagues, a few key strategies are always useful. I will present and give examples for the following five key strategies for teaching astronomy. 1. Provide a Contextual Framework: It is much easier to learn new facts or concepts if they can be ``binned" into some kind of pre-existing mental framework. Unless your listeners are already familiar with the basic ideas of modern astronomy (such as the hierarchy of structure in the universe, the scale of the universe, and the origin of the universe), you must provide this before going into the details of how we've developed this modern picture through history. 2. Create Conditions for Conceptual Change: Many people hold misconceptions about astronomical ideas. Therefore we cannot teach them the correct ideas unless we first help them unlearn their prior misconceptions. 3. Make the Material Relevant: It's human nature to be more interested in subjects that seem relevant to our lives. Therefore we must always show students the many connections between astronomy and their personal concerns, such as emphasizing how we are ``star stuff" (in the words of Carl Sagan), how studying other planets helps us understand our own, and so on. 4. Limit Use of Jargon: The number of new terms in many introductory astronomy books is larger than the number of words taught in many first courses in foreign language. This means the books are essentially teaching astronomy in a foreign language, which is a clear recipe for failure. We must find ways to replace jargon with plain language. 5. Challenge Your Students: Don't dumb your teaching down; by and large, students will rise to meet your expectations, as long as you follow the other strategies and practice good teaching.

  18. Engaging Parents and Pupils in Astronomy

    Science.gov (United States)

    Stevenson, Rod

    2016-04-01

    "The British National Space Centre partnership has recognised for some time that Space and Astronomy are particularly attractive subjects for school students and that including these in the science curriculum can have a positive effect on student interest in science. Drivers are that the number of young people studying science and engineering subjects at A-level and beyond is declining; young people should have an understanding of the importance of science and technology to the world around them; and that UK space industry (including technology, engineering, space science, Earth observation science) must renew itself." BRINGING SPACE INTO SCHOOL Professor Martin Barstow, University of Leicester Published by PPARC on behalf of the British National Space Centre Partnership October 2005 "It has become more and more difficult to persuade young people to follow a career in STEM (Science, Technology, Engineering & Mathematics) subjects. Across the EU, the number of graduates in STEM subjects has dropped from 24.3% in 2002 to 22.6% in 2011" (Source EUSTAT) It was Martin Barstow's report in 2005 that started my attempt to interest people in Science and Technology, At Ormiston Victory Academy (OVA) for the past two years, we have embarked on a program to enthuse pupils to study science related subject through the medium of Astronomy. We teach Edexcel GCSE Astronomy to a joint parent and pupil group. They study together and at the end of the course, both take the GCSE examination. The idea is that the pupils see that science is important to their parents and that a very practical facet of science is also fun. Astronomy is a multidisciplinary course bringing together elements of Science, Maths, Technology, Geography and History. It is hoped that the enthusiasm shown by the pupils will spill over into the mainstream subjects including maths. The parents get an idea of the work and level of knowledge required by their children to complete a GCSE level subject. They also report

  19. My early days in X-ray astronomy

    Science.gov (United States)

    Tanaka, Y.

    I was a cosmic-ray physicist 50 years ago. While working at the Cosmic-Ray Working Group, Leiden, in 1964 we started the observation of the cosmic X-ray background. Since then, I worked in X-ray astronomy at Nagoya University and later at the Institute of Space and Astronautical Science (ISAS), first with balloons and rockets and later with satellites. Here I will discuss the space science policy of Japan, and the central role of ISAS. I was engaged in four X-ray astronomy missions till my retirement from ISAS in 1994. With brief descriptions of ISAS X-ray astronomy missions, I intend to show how quick the development of X-ray astronomy and the detector techniques has been, and how rich is the physics of X-ray astronomy.

  20. Modeled hydraulic redistribution by Helianthus annuus L. matches observed data only after model modification to include nighttime transpiration

    Science.gov (United States)

    Neumann, R. B.; Cardon, Z. G.; Rockwell, F. E.; Teshera-Levye, J.; Zwieniecki, M.; Holbrook, N. M.

    2013-12-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of Helianthus annuus L. in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) could match experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.

  1. Students Across Texas Celebrate Astronomy Day

    Science.gov (United States)

    Preston, S.; Wetzel, M.; Hemenway, M. K.

    2010-08-01

    Over the past three years, McDonald Observatory has offered special Astronomy Day videoconference programs to students across Texas—the second largest state in the U.S. (Only Alaska is larger). Videoconferencing allows many students and teachers access to our Observatory, which is remotely located 180 miles (290 kilometers) from any major city. McDonald Observatory partners with Connect2Texas to advertise the Astronomy Day event. Connect2Texas provides the electronic bridge between schools and the Observatory. They also provide an online evaluation for teachers to complete. In 2009 the Astronomy Day videoconference celebrated the International Year of Astronomy and the historic observations made by Galileo Galilei. During the videoconference, the classes explore the Moon or Venus by making real-time telescopic observations. Students also receive an introduction to the Observatory, an opportunity to perform an activity relating to Galileo's observations, and an interview with an astronomer. A website provides teachers pre-and post-video conference materials, instructions, and a certificate of completion that can be customized for each student. The website also lists content alignment with state science education standards.

  2. Virtual Learning Environment for Astronomy Education

    Science.gov (United States)

    Hoban, S.; Kumar, S.

    2004-12-01

    We have developed a virtual learning environment for astronomy education, which we call VTIE (for Virtual Telescopes in Education). While astronomy often inspires "oohs" and "ahhs" with glorious imagery, the VTIE architecture emphasizes the scientific process, eliciting questions about the nature of celestial objects and the physical processes which give rise to the pretty pictures. VTIE aims to bring observational astronomy directly to learners in both formal and informal settings by providing tools for both educators and students. For educators, VTIE provides the capability to design astronomy experiments, an online review tool to comment upon students proposals and papers, and classroom management tools (e.g. messaging service and ability to create a reading list). For students, VTIE provides an interface for developing an observing proposal (details of which are designed by the educators), access to online data services, an online observing log, and a Paper Writing Tool to complete the process by reporting their results. Details of the system and practical examples will be provided.

  3. What types of astronomy images are most popular?

    Science.gov (United States)

    Allen, Alice; Bonnell, Jerry T.; Connelly, Paul; Haring, Ralf; Lowe, Stuart R.; Nemiroff, Robert J.

    2015-01-01

    Stunning imagery helps make astronomy one of the most popular sciences -- but what types of astronomy images are most popular? To help answer this question, public response to images posted to various public venues of the Astronomy Picture of the Day (APOD) are investigated. APOD portals queried included the main NASA website and the social media mirrors on Facebook, Google Plus, and Twitter. Popularity measures include polls, downloads, page views, likes, shares, and retweets; these measures are used to assess how image popularity varies in relation to various image attributes including topic and topicality.

  4. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  5. What's New in Astronomy for 2012?

    Science.gov (United States)

    Wilkinson, John

    2012-01-01

    There's always something new happening in the field of Astronomy. This includes the immediate environment surrounding Earth, the Solar system and the universe. This article looks at some of the recent research astronomers have been undertaking this year. Each article has reference to a web site so teachers can find out more information or ask…

  6. Berkeley's Advanced Labs for Undergraduate Astronomy Majors

    Science.gov (United States)

    Heiles, C.

    1998-12-01

    We currently offer three advanced laboratory courses for undergraduate majors: optical, IR, and radio. These courses contain both intellectual and practical content; in this talk we focus on the radio lab as a representative example. The first half of the semester concentrates on fundamentals of microwave electronics and radio astronomy techniques in four formal laboratory exercises which emphasize hands-on use of microwave devices, laboratory instruments, and computer-controlled data taking. The second half of the course emphasizes astronomy, using a horn with ~ 1 m(2) aperture to map the HI in the Galaxy and a two-element interferometer composed of ~ 1 m diameter dishes on a ~ 10 m baseline to measure accurate positions of radio sources and accurate diameters for the Sun and Moon. These experiments and observations offer ideal opportunities for teaching coordinates, time, rotation matrices, data reduction techniques, least squares, signal processing, image processing, Fourier transforms, and laboratory and astronomical instrumentation. The students can't get along without using computers as actually used by astronomers. We stay away from packaged software such as IRAF, which are ``black boxes''; rather, students learn far more by writing their own software, usually for the first time. They use the IDL language to take and reduce data and prepare them for the lab reports. We insist on quality reports---including tables, postscript graphs and images, correct grammar, spelling, and all the rest---and we strongly urge (successfully!) the students to use LATEX. The other two lab courses have the same emphasis: the guiding spirit is to place the students in a real-life research-like situation. There is too much to do, so students perform the work in small groups of 3 or 4 and groups are encouraged to share their knowledge. Lab reports are written individually. These courses are very demanding, requiring an average of 20 hours per week from the students (and probably

  7. Implementing Authentic Astronomy Research in the Classroom: The TLRBSE Experience

    Science.gov (United States)

    Pompea, S. M.; Croft, S. K.; Walker, C. E.; Lockwood, J.; McCarthy, D.; Rector, T.; Howell, S.

    2003-12-01

    The Teacher Leaders in Research Based Science Education (TLRBSE) is an NSF-funded program which has as one of its primary goals the implementation of authentic research in the classroom. To achieve this goal, TLRBSE provides an in-depth professional development experience for teachers which includes a semester-long on-line course on research pedagogy, research tools (such as image processing), and astronomy content knowledge. Participants come to the National Optical Astronomy Observatory (NOAO) in Tucson in the summer for two weeks in order to hone their skills and interact with scientists. They also pursue research projects led by a TLRBSE leader in one of several astronomy areas including novae, active galactic nuclei, solar magnetic fields, and spectroscopy of variable stars using research telescopes at Kitt Peak National Observatory. The teachers have access to the data they have taken at the telescope as well as to extensive archival data sets taken by previous TLRBSE teachers. These ongoing research projects are then brought back to the classroom where teachers and students can continue their research in these areas. The student research results are then submitted for review and publication in NOAO's Research Based Science Education Journal. The TLRBSE model is being extended by providing a variety of additional research experiences for teachers and students during the school year, using the same telescopes at Kitt Peak National Observatory used in the summer program. Teachers and students from the program apply for additional research time during the school year and can come to the observatory to make observations for new or continuing projects. As remote telescopes become more widely available, the teachers and students will be able to observe from their home locations and access their observations directly over the internet. Some of the key issues in our program are teacher selection, organization and logistics of the distance learning course, workshop

  8. Developing Astronomy Research and Education in the Philippines

    Science.gov (United States)

    Sese, R. M. D.; Kouwenhoven, M. B. N. Thijs

    2015-03-01

    In the past few years, the Philippines has been gradually developing its research and educational capabilities in astronomy and astrophysics. In terms of astronomy development, it is still lagging behind several neighboring Southeast Asian countries such as Indonesia, Thailand and Malaysia, while it is advanced with respect to several others. One of the main issues hampering progress is the scarcity of trained professional Filipino astronomers, as well as long-term visions for astronomy development. Here, we will be presenting an overview of astronomy education and research in the country. We will discuss the history and current status of astronomy in the Philippines, including all levels of education, outreach and awareness activities, as well as potential areas for research and collaborations. We also discuss issues that need to be addressed to ensure sustainable astronomy development in the Philippines. Finally, we discuss several ongoing and future programs aimed at promoting astronomy research and education. In essence, the work is a precursor of a possible white paper which we envision to submit to the Department of Science and Technology (DOST) in the near future, with which we aim to further convince the authorities of the importance of astrophysics. With the support of the International Astronomical Union (IAU), this may eventually lead to the creation of a separate astronomy agency in the Philippines.

  9. Music Inspired by Astronomy: A Selected Listing for the International Year of Astronomy

    Science.gov (United States)

    Fraknoi, A.

    2008-11-01

    Part of the aim of the International Year of Astronomy is to show the connections between astronomy and other areas of human culture. Such connections are easily found in music, where astronomical ideas have found a wide range of expression. This is not a comprehensive listing, but a sampling of some of the pieces that are available on CD's, and that may be of particular interest to educators and astronomy enthusiasts. To qualify for the list, a piece (or the composer's vision for it) has to include some real science and not just an astronomical term in the title or in a few lyrics. For example, we do not list The Planets, by Gustav Holst, since it treats the astrological view of the planets. And we regret that Philip Glass' opera Galileo is not available on CD and therefore cannot be listed. Nor do we include the thousands of popular songs that use the moon or the stars for an easy rhyme or a quick romantic image. And, while many jazz pieces have astronomy in the title, it is often hard to know just how the piece and the astronomy go together; so we've sadly omitted jazz too. For those with old-fashioned ears, like the author, we note that no warranty is made that all these pieces are easy to listen to, but each takes some key idea from astronomy and makes music out of it. A more comprehensive discussion can be found in my article in Astronomy Education Review: http://aer.noao.edu/cgi-bin/article.pl?id=193

  10. Astronomy Olympiad: An Initiative To Promote Astronomy Education In Nepal

    Science.gov (United States)

    Bhattarai, Suresh

    2015-08-01

    This paper presents National Astronomy Olympiad Program as a new initiative towards the development of astronomy education in Nepal by Nepal Astronomical Society (NASO).Innovoative components of the olympiad programs designed by NASO to engage both scince and non-science backgound people will be discussed in detail. It will discuss the first National Astronomy Olympiad 2014 and Second National Astronomy Olympiad 2015 in details. It will also present crowd funding, its effectiveness to outreach as well as collecting funds from around the world will be presented in brief. Proposed module of astronomy olympiad to promote astronnomy in the countries without formal astronomy education in high school like Nepal,will be presented in dedail. Possible strategry to strengthen such programs in developing nations and role of IAU to promote such educational program will be explored in detail.

  11. Astronomy and Shakespeare's Hamlet.

    Science.gov (United States)

    Usher, P. D.

    1996-05-01

    Payne-Gaposchkin and others have suggested that Hamlet shows evidence of the Bard's awareness of the astronomical revolutions of the sixteenth century. I summarize major arguments and note that the play's themes recur in modern astronomy teaching and research: (1) The play amounts to a redefinition of universal order and humankind's position in it. (2) There is interplay between appearance and reality. Such a contrast is commonplace wherever superficial celestial appearances obscure underlying physical realities, the nature of which emerge as the tale unfolds. (3) The outermost sphere of the Ptolemaic and Copernican models seems to encase humanity, who are liberated by the reality of Digges' model and the implications advanced by Bruno. Similarly the oppressiveness of the castle interior is relieved by the observing platform which enables the heavens to be viewed in their true light. (4) Hamlet could be bounded in a nut-shell and count himself a king of infinite space, were it not that he has bad dreams. These concern the subversiveness of the new doctrine, for Hamlet refers to the infinite universe only hypothetically and in the presence of Rosencrantz and Guildenstern, who are named for relatives of the Danish astronomer Brahe. (5) Hamlet, and Brahe and Bruno, have connections to the university at Wittenberg, as does the Copernican champion Rheticus. (6) Ways are needed to reveal both the truths of nature, and the true nature of Danish royalty. Those unaccustomed to science think that there is madness in Hamlet's method. In particular, `doubt' is advanced as a methodological principle of inquiry. (7) The impression of normalcy and propriety in the upper reaches of society is like the false impression of an encapsulating universe. In Hamlet this duality is dramatized tragically, whereas in King John (cf. BAAS 27, 1325, 1995) it is not; for by 1601 when the writing of Hamlet was probably completed, Shakespeare would have known of the martyrdom of Bruno the previous

  12. Practical Semantic Astronomy

    Science.gov (United States)

    Graham, Matthew; Gray, N.; Burke, D.

    2010-01-01

    Many activities in the era of data-intensive astronomy are predicated upon some transference of domain knowledge and expertise from human to machine. The semantic infrastructure required to support this is no longer a pipe dream of computer science but a set of practical engineering challenges, more concerned with deployment and performance details than AI abstractions. The application of such ideas promises to help in such areas as contextual data access, exploiting distributed annotation and heterogeneous sources, and intelligent data dissemination and discovery. In this talk, we will review the status and use of semantic technologies in astronomy, particularly to address current problems in astroinformatics, with such projects as SKUA and AstroCollation.

  13. Astronomy and astrology

    Science.gov (United States)

    Zarka, Philippe

    2011-06-01

    Astrology meets a large success in our societies, from the private to the political sphere as well as in the media, in spite of the demonstrated inaccuracy of its psychological as well as operational predictions. We analyse here the relations between astrology and astronomy, as well as the criticisms opposed by the latter to the former. We show that most of these criticisms are weak. Much stronger ones emerge from the analysis of the astrological practice compared to the scientific method, leading us to conclude to the non-scientificity of astrology. Then we return to the success of astrology, and from its analysis we propose a renewed (and prophylactic) rôle for astronomy in society.

  14. Invited review article: IceCube: an instrument for neutrino astronomy.

    Science.gov (United States)

    Halzen, Francis; Klein, Spencer R

    2010-08-01

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km(3) of deep and ultratransparent Antarctic ice into a particle detector. A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system including a phototube, digitization electronics, control and trigger systems, and light-emitting diodes for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: neutrino astronomy and kilometer-scale detectors, high-energy neutrino telescopes: methodologies of neutrino detection, IceCube hardware, high-energy neutrino telescopes: beyond astronomy, and future projects.

  15. Teaching Astronomy Online

    Science.gov (United States)

    Maddison, Sarah T.; Mazzolini, Margaret M.

    Swinburne Astronomy Online (SAO) is a fully online graduate astronomy program with students and instructors located in over 30 countries around the globe. SAO uses a hybrid online form of delivery with image and animation-rich course content provided on CD-ROMs and the Internet used for communication research and assessment purposes. Now in its nineth semester and continuing to grow SAO can be considered a 'success story' in new teaching methods and used as an example for online education programs. One of the key distinguishing features of online education as compared to other forms of distance education is the opportunity for instructors and students to interact via online asynchronous discussion forums. Asynchronous discussion forums are used to a varying degree in different online academic programs and in widely different ways. In this paper we will give a historical overview of SAO and how it operates what astronomy we teach online and why specifically focusing on the use of asynchronous discussion forums - which are a central feature of the SAO program - as a learning and teaching tool

  16. Exploring Metacogntive Visual Literacy Tasks for Teaching Astronomy

    Science.gov (United States)

    Slater, Timothy F.; Slater, S.; Dwyer, W.

    2010-01-01

    Undoubtedly, astronomy is a scientific enterprise which often results in colorful and inspirational images of the cosmos that naturally capture our attention. Students encountering astronomy in the college classroom are often bombarded with images, movies, simulations, conceptual cartoons, graphs, and charts intended to convey the substance and technological advancement inherent in astronomy. For students who self-identify themselves as visual learners, this aspect can make the science of astronomy come alive. For students who naturally attend to visual aesthetics, this aspect can make astronomy seem relevant. In other words, the visual nature that accompanies much of the scientific realm of astronomy has the ability to connect a wide range of students to science, not just those few who have great abilities and inclinations toward the mathematical analysis world. Indeed, this is fortunate for teachers of astronomy, who actively try to find ways to connect and build astronomical understanding with a broad range of student interests, motivations, and abilities. In the context of learning science, metacognition describes students’ self-monitoring, -regulation, and -awareness when thinking about learning. As such, metacognition is one of the foundational pillars supporting what we know about how people learn. Yet, the astronomy teaching and learning community knows very little about how to operationalize and support students’ metacognition in the classroom. In response, the Conceptual Astronomy, Physics and Earth sciences Research (CAPER) Team is developing and pilot-testing metacogntive tasks in the context of astronomy that focus on visual literacy of astronomical phenomena. In the initial versions, students are presented with a scientifically inaccurate narrative supposedly describing visual information, including images and graphical information, and asked to assess and correct the narrative, in the form of peer evaluation. To guide student thinking, students

  17. Bringing Astronomy Directly to People Who Do Not Come to Star Parties, Science Museums, or Science Festivals

    Science.gov (United States)

    Lubowich, Donald A.

    2013-01-01

    My successful programs have included telescope observations, hands-on activities, and edible astronomy demonstrations for: outdoor concerts or music festivals; the National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald House of Long Island (New Hyde Park, NY), the Winthrop University Hospital Children’s Medical Center (Mineola, NY); the Fresh Air Fund summer camps; a Halloween star party with costumed kids looking through telescopes; a Super Bowl Star Party; the World Science Festival (NYC); the Princeton University Science and Engineering Expo; the USA Science and Engineering Festival; and the NYC Columbus Day Parade. These outreach activities have reached thousands of people including many young girls. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage learning after these events. In 2010 I created Astronomy Night on the National Mall (co-sponsored the White House Office of Science and Technology Policy) with the participation of astronomy clubs, Chandra X-Ray Center, STScI, NASA, NOAO, NSF and the National Air and Space Museum. Since 2009 my NASA-funded Music and Astronomy Under the Stars (MAUS) program has brought astronomy to 50,000 music lovers who attended the Central Park Jazz, Newport Folk, Tanglewood, or Ravinia music festivals or classical, folk, rock, pop, opera, or county-western concerts in local parks assisted by astronomy clubs. MAUS is an evening, nighttime, and cloudy weather traveling astronomy program combining solar, optical, and radio telescope observations; a live image projection system; large outdoor posters and banners; videos; and hands-on activities before and after the concerts or at intermission. Yo-Yo-Ma and the Chicago Symphony or Boston Symphony Orchestras, the McCoy Tyner Quartet with Ravi Coltrane, Esperanza Spalding, the Stanley Clarke Band, Phish, Blood Sweat and Tears, Deep Purple, Patti Smith

  18. Education in astronomy and solar-terrestrial relations in science research environment

    Science.gov (United States)

    Stoeva, Penka; Stoev, Alexey

    In recent years, more and more attention is paid to educational programmes, which are closely connected with the process of scientific research. Such programmes are developed in collab-oration and included in the schools, universities and scientific institutes in Bulgaria. They are also used in the organization of public events aimed to demonstrate beauty, relevance and significance of Space and Earth science to the whole world. During the last four years, So-lar-Terrestrial Influences Institute of the Bulgarian Academy of Sciences, and the Yuri Gagarin Public Astronomical Observatory and Planetarium, Stara Zagora succeeded to build an ex-cellent partnership, working on the International Heliophysical year and International Year of Astronomy -global efforts initiated by the UNESCO and the International Astronomical Union (IAU) to help the citizens of the world rediscover their place in the Universe. They organized and tutored all the Astronomical Observatories and Planetaria, and teachers from all around Bulgaria to participate in the world initiatives Solar Week, Sun-Earth Day,Yuri's Night, World Astronomy day and World Space week, and use them in the process of education and public outreach. After the official closing of the International Heliophysical year, the IHY follow-on activities in Bulgaria continued and were devoted to the International Year of Astronomy 2009. A lot of lectures, public talks and exhibitions have been organized. Stara Zagora became a host of IHY Space Weather Monitor -SID (Sudden Ionospheric Disturbances), numerous of educational materials have been adapted and translated in Bulgarian. Cycle of lectures "Epock of Great astronomical discoveries", devoted to the International Year of Astronomy was given in April 2009 in the Stara Zagora Art Gallery. Participation in the cornerstone projects of the International Year of Astronomy 2009 was organized: "100 hours of Astronomy" -ob-servations with small telescopes in the period of 5 -9 April

  19. The Astronomy Genealogy Project: A Progress Report

    Science.gov (United States)

    Tenn, Joseph S.

    2016-01-01

    Although it is not yet visible, much progress has been made on the Astronomy Genealogy Project (AstroGen) since it was accepted as a project of the Historical Astronomy Division (HAD) three years ago. AstroGen will list the world's astronomers with information about their highest degrees and advisors. (In academic genealogy, your thesis advisor is your parent.) A small group (the AstroGen Team) has compiled a database of approximately 12,000 individuals who have earned doctorates with theses (dissertations) on topics in astronomy, astrophysics, cosmology, or planetary science. These include nearly all those submitted in Australia, Canada, the Netherlands, and New Zealand, and most of those in the United States (all through 2014 for most universities and all through 1990 for all). We are compiling more information than is maintained by the Mathematics Genealogy Project (MGP). In addition to name, degree, university, year of degree, and thesis advisor(s), all provided by MGP as well, we are including years of birth and death when available, mentors in addition to advisors, and links to the thesis when it is online and to the person's web page or obituary, when we can find it. We are still struggling with some questions, such as the boundaries of inclusion and whether or not to include subfields of astronomy. We believe that AstroGen will be a valuable resource for historians of science as well as a source of entertainment for those who like to look up their academic family trees. A dedicated researcher following links from AstroGen will be able to learn quite a lot about the careers of astronomy graduates of a particular university, country, or era. We are still seeking volunteers to enter the graduates of one or more universities.

  20. An Overview of the Swinburne Online Astronomy Courses

    Science.gov (United States)

    Dempsey, F.

    2013-06-01

    (Abstract only) An overview of the online astronomy courses at Swinburne University of Technology is presented for the benefit of AAVSO members who might be interested in the courses or programs. The decision to take the online Master's degree in astronomy at Swinburne was a natural evolution from being interested in astronomy at an early age, being an amateur astronomer all my life, and being a variable star observer and member of the AAVSO for the past several decades. This presentation provides an overview of the program and examples of the course materials, assignments, and projects that may provide some idea of the commitment and expectations for AAVSO members considering the program.

  1. Astronomy Education for Physics Students

    Indian Academy of Sciences (India)

    J. H. Fan; J. S. Zhang; J. Y. Zhang; Y. Liu; H. G. Wang

    2011-03-01

    Astronomy is a very interesting subject for undergraduate students studying physics. In this paper, we report astronomy education for undergraduate students in the Physics Department of Guangzhou University, and how we are teaching astronomy to the students. Astrophysics has been rapidly developing since 1994, when the center for astrophysics was founded. Now, astrophysics has become a key subject in Guangdong Province, and the Astronomy Science and Technology Research Laboratory one of the key laboratories of the Department of Education of the Guangdong Province. Many undergraduate students, working under the tutorship of faculty members completed their thesis at the Center for Astrophysics in Guangzhou.

  2. Astronomie spatiale infrarouge, aujourd’hui et demain = Infrared space astronomy, today and tomorrow

    CERN Document Server

    Lequeux, J; David, F

    2000-01-01

    This book brings together the lectures given at the Les Houches summer school "Infrared space astronomy, today and tomorrow". It gives a wide overview of infrared astronomy, a wavelength domain crucial for studies of the solar system, stars at the beginning and end of their lives, interstellar matter and galaxies at all distances. Recent developments in observational techniques have been tremendous. The first contributions give an introduction to the basic physical processes and methods of detection and data processing. They are followed by a series of lectures dealing with the wide variety of astronomical objects that can be seen in the infrared.

  3. Evaluation of a 256 x 256 Si:As IBC detector array for astronomy

    Science.gov (United States)

    Mckelvey, M. E.; Mcmurray, Robert E., Jr.; Mccreight, C. R.; Forrest, W. J.; Garnett, J. D.; Lum, N.; Asbrock, J.; White, R.; Kelchner, R.; Lum, L.

    1994-01-01

    256 x 256-element IBC Si:As arrays have been evaluated for applications in IR astronomy from space-borne platforms. Basic figures of merit were measured at IR flux levels simulating those expected in space-based astronomical observations. Results include dark current less than 20 e(-)/s, G-eta as high as 3.8, eta/beta of 20%, and read noise below 100 rms(e(-)).

  4. Submm/FIR astronomy in Antarctica: Potential for a large telescope facility

    OpenAIRE

    Minier, Vincent; Minier, V.; Olmi, L.; Lagage, P. -O.; Spinoglio, L; Durand, G.A.; Daddi, E.; Galilei, D.; Gallee, H; Kramer, C.; Marrone, D.; Pantin, E.; Sabbatini, L.; Schneider, N; Tothill, N.

    2006-01-01

    Preliminary site testing datasets suggest that Dome C in Antarctica is one of the best sites on Earth for astronomical observations in the 200 to 500 micron regime, i.e. for far-infrared (FIR) and submillimetre (submm) astronomy. We present an overview of potential science cases that could be addressed with a large telescope facility at Dome C. This paper also includes a presentation of the current knowledge about the site characterics in terms of atmospheric transmission, stability, sky nois...

  5. Astronomy 101 in Washington State High Schools

    Science.gov (United States)

    Lutz, Julie H.; Garner, S.; Stetter, T.; McKeever, J.; Santo Pietro, V.

    2011-01-01

    The University of Washington in the High School (UWHS) program enables high schools to offer the 5 quarter credits Astronomy 101 (Astr 101) course for college credits. The credits are transferable to most colleges and universities. The course provides an alternative to advance placement courses and programs such as Washington's Running Start whereby high school students take courses at community colleges. Astr 101 focuses on stars, galaxies and the universe, as well as background topics such as gravitation, electromagnetic radiation and telescopes. The course satisfies the UW "natural world” and "quantitative/symbolic reasoning” distribution requirements. Students must pay a fee to enroll, but the credits cost less than half what they would cost for the course if taken on one of the UW campuses. The course can be offered as either one semester or full-year at the high school. Teachers who offer Astr 101 must be approved in advance by the UW Astronomy Department, and their syllabi and course materials approved also. Teachers receive orientation, professional development opportunities, classroom visits and support (special web site, answering questions, making arrangements for campus visits, planetarium visits) from astronomy department course coordinator. The UWHS Astr 101 program has produced positive outcomes for the astronomy department, the participating teachers and the students who complete the course. In this poster we will discuss our 5 years of experience with offering Astr 101, including benefits to the students, teachers, high schools, university and department, student outcomes, course assessments and resources for offering the course.

  6. Multiwavelength Astronomy Modules for High School Students

    Science.gov (United States)

    Thomas, Christie; Brazas, J.; Lane, S.; York, D. G.

    2014-01-01

    The University of Chicago Multiwavelength Astronomy modules are web-based lessons covering the history, science, tools, and impact of astronomy across the wavebands, from gamma ray to infrared. Each waveband includes four lessons addressing one aspect of its development. The lessons are narrated by a historical docent or practicing scientist who contributed to a scientific discovery or instrument design significant to astronomical progress. The process of building each lesson began with an interview conducted with the scientist, or the consultation of a memoir or oral history transcript for historical docents. The source was then excerpted to develop a lesson and supplemented by archival material from the University of Chicago Library and other archives; NASA media; and participant contributed photographs, light curves, and spectra. Practicing educators also participated in the lesson development and evaluation. In July 2013, the University of Chicago sponsored 9 teachers and 15 students to participate in a STEM education program designed to engage participants as co-learners as they used the Multiwavelength Astronomy lessons in conjunction with talks given by the participating scientists. Teachers also practiced implementation of the resources with students and designed authentic research activities that make use of NASA mission data, which were undertaken as mini-research projects by student teams during the course of the program. This poster will introduce the Multiwavelength Astronomy web modules; highlight educator experiences in their use with high school audiences; and analyze the module development process, framing the benefits to and contributions of each of the stakeholders including practicing astronomers in research and space centers, high school science educators, high school students, University libraries and archives, and the NASA Science Mission Directorate. The development of these resources, and the summer professional development workshops were

  7. Teaching Astronomy from Elementary School to University

    Science.gov (United States)

    Amorim, V.; Pereira, M. G.; Liberato, M. L. R.; Caramelo, L.; Amraoui, M.; Alencoão, A. M.; Reis, A.

    2009-04-01

    Earth sciences are included in both elementary and secondary education school curricula in Portugal because it increases students' skills concerning living in planet Earth. Astronomy concepts and laws are learned to provide a global understanding of the constitution and characterization of the universe, the solar system and the position of Earth in these systems. The Earth in Space theme comprises: the universe (scale measurements and characterization); the solar system (origin, constitution, orientation, dimension and characterization); the Earth in the solar system (movements and forces); and the Earth (shape and constitution). Interaction processes between the Sun, the Earth and the Moon, (e.g. earth position, explanation of day and night, reason for the seasons, phases of the moon) are also studied. It is aimed that the students learn to monitor and to register the observations. In this sense, besides the use of planetarium and field observations using telescopes we also propose the use of internet and simulation software. Our experience reveals that software dynamics studies and online exploitation techniques improve student outcomes since they provide the opportunity for students to develop their own mental models. All these resources collectively seem to provide an appropriate creative environment for students. For these reasons, we are working with elementary and secondary school teachers. We firmly believe that it is more likely to result in a gradual progress in their practices, in the curricula and in long-term improvements in students' outcomes.

  8. Academic Training: Astronomy from Space

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 14, 15, 16, 18 March from 11.00 to 12.00 hrs - Main Auditorium, bldg. 500 Astronomy from Space by T. Courvoisier / Observatoire de Genève In the very wide field of High Energy astrophysics we will select a number of topics that range from the source of radiative energy in the deep potential well around Schwarzschild and Kerr black holes and the basics of accretion disks around compact objects to the description and (where possible) the understanding of binary systems including a compact object (neutron star or black hole), of Active Galactic Nuclei and of gamma ray bursts. The approach that is chosen aims at giving an understanding of the most important phenomenologies encountered in high energy astrophysics rather than a detailed knowledge of one specific topic. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch

  9. Dyslexia and Astronomy

    Science.gov (United States)

    Schneps, Matthew H.; Greenhill, L. J.; Rose, L. T.

    2007-12-01

    Dyslexia is a hereditary neurological disability that impairs reading. It is believed that anywhere from 5% to 20% of all people in the US may have dyslexia to a greater or lesser degree. Though dyslexia is common, it is a "silent disability" in the sense that it is not easy to tell which individuals suffer from dyslexia and which do not. There is a substantial body of evidence to suggest that people with dyslexia tend to do well in science. For example, Baruj Benacerraf, a Nobel laureate in medicine, is among those whose impairments have been documented and studied. Given that dyslexia was not diagnosed in schools prior to the late 1970's, many established science researchers may have dyslexia and be unaware of their impairment. Therefore, it would not be surprising to find that substantial numbers of scientists working in the fields of astronomy and astrophysics have dyslexia, and yet be unaware of the effects this disability has had on their research. A recently proposed theory by the authors suggests that there may be specific neurological reasons why those with dyslexia may be predisposed to science, and predicts that dyslexia may be associated with enhanced abilities for certain types of visual processing, with special implications for image processing. Our study, funded by the NSF, investigates this hypothesis in the context of astronomy and astrophysics. We expect this work will uncover and document challenges faced by scientists with dyslexia, but perhaps more importantly, lead to an understanding of the strengths these scientists bring to research. The program will serve as a clearing-house of information for scientists and students with dyslexia, and begin to provide mentoring for young people with dyslexia interested in astronomy. Scientists who have reason to believe they may have dyslexia are encouraged to contact the authors.

  10. Panoramic Radio Astronomy

    OpenAIRE

    Heald, G.; P. Serra

    2009-01-01

    In this contribution we give a brief overview of the Panoramic Radio Astronomy (PRA) conference held on 2-5 June 2009 in Groningen, the Netherlands. The conference was motivated by the on-going development of a large number of new radio telescopes and instruments which, within a few years, will bring a major improvement over current facilities. Interferometers such as the EVLA, ASKAP, ATA, MeerKAT, and APERTIF will provide a combination of larger field of view and increased simultaneous bandw...

  11. Astronomy in the classroom

    Science.gov (United States)

    Moiteiro, Bárbara; Rodrigues, Berta

    2016-04-01

    The motivation of young students to science is much higher when the theoretical teaching is accompanied by practice and these are engaged in activities that involve real problems of their society and requiring a scientific basis for its discussion. Several activities such as collaboration on current scientific experiments, direct contact with scientists, participation in science competitions, visits to Science Museums, artistic and craft activities, the use of simulators and virtual laboratories, increase the degree of student satisfaction and motivate them in their learning processes. This poster shows some of Astronomy activities with students of schools Agrupamento de Escolas José Belchior Viegas within the Physics and Chemistry classes.

  12. Astrology as Cultural Astronomy

    Science.gov (United States)

    Campion, Nicholas

    The practice of astrology can be traced in most if not all human societies, in most time periods. Astrology has prehistoric origins and flourishes in the modern world, where it may be understood as a form of ethnoastronomy - astronomy practiced by the people. The Western tradition, which originated in Mesopotamia and was developed in the Greek world, has been most studied by academics. However, India is also home to a tradition which has survived in a continuous lineage for 2,000 years. Complex systems of astrology also developed in China and Mesoamerica, while all other human societies appear to seek social and religious meaning in the stars.

  13. A Global Prospective of the Indian Optical and Near-Infrared Observational Facilities in the Field of Astronomy and Astrophysics: a review

    CERN Document Server

    Sagar, Ram

    2016-01-01

    A review of modernization and growth of ground based optical and near-infrared astrophysical observational facilities in the globe attributed to the recent technological developments in optomechanical, electronics and computer science areas is presented. Hubble Space Telescope (HST) and speckle and adaptive ground based imaging have obtained images better than 0.1 arc sec angular resolution bringing the celestial objects closer to us at least by a factor of 10 during the last two decades. From the light gathering point of view, building of large size (more than 5 meter aperture) ground based optical and nearinfrared telescopes based on latest technology have become economical in recent years. Consequently, in the world, a few 8-10 meter size ground-based optical and near-infrared telescopes are being used for observations of the celestial objects, three 25-40 meter size are under design stage and making of a ~ 100 meter size telescope is under planning stage. In India, the largest sized optical and near-infra...

  14. AstroSat - a multi-wavelength astronomy satellite

    CERN Document Server

    Rao, A R; Bhattacharya, D

    2016-01-01

    AstroSat is a multi-wavelength astronomy satellite, launched on 2015 September 28. It carries a suite of scientific instruments for multi-wavelength observations of astronomical sources. It is a major Indian effort in space astronomy and the context of AstroSat is examined in a historical perspective. The Performance Verification phase of AstroSat has been completed and all instruments are working flawlessly and as planned. Some brief highlights of the scientific results are also given here.

  15. OLFAR - Orbiting low frequency antennas for radio astronomy

    OpenAIRE

    Bentum, M.J.

    2013-01-01

    One of the last unexplored frequency ranges in radio astronomy is the frequency band below 30 MHz. New interesting astronomical science drivers for low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. However, astronomical observations with Earth-bound radio telescopes at very low frequencies are hampered by the ionospheric plasma, which scatters impinging celestial radio waves.

  16. Development of Student Exercises with Instructor Support at the Astronomy Workshop Solar System Collisions Web Tool

    Science.gov (United States)

    Deming, G. L.; Hamilton, D. P.

    2005-12-01

    During the spring 2005 semester, seven students taking ASTR101 General Astronomy for non-science majors at the University of Maryland were interviewed while completing an assignment using the Astronomy Workshop Solar System Collisions web tool (http://janus.umd.edu/astro/impact/). The Astronomy Workshop Solar System Collisions web tool can be used to investigate how different variables affect collisions in a fun, but informative manner. Based on the 2005 spring interviews, three web-based activities were developed as appropriate for homework or as enrichment to coursework. The first activity explores how the impactor's mass affects energy released, crater diameter, frequency of similar impacts, and magnitude of the earthquake generated by the impact. The second activity investigates the energy released and damage done when the impactor's density is changed. Collisions by icy bodies are compared to those of rocky and metallic materials. The third activity compares collisions on different planets. In addition to masses and densities, velocities vary in these collisions. The activities are written so that introductory astronomy students will interpret the differences observed in terms of kinetic energy. During the fall 2005 semester, ASTR101 students at the University of Maryland were interviewed and observed as they completed the three activities described above using the Solar System Collisions website. The twelve students in this study were selected based on pretest scores on the Astronomy Diagnostic Test. An effort was made to include students of diverse backgrounds and mathematical experiences. Based on these interviews, final revisions have been made. Student exercises on the website and the directions on how instructors can use these materials in their courses are ready for field-testing at other institutions. Faculty interested in participating in the field-test for this project during spring 2006 are encouraged to contact the authors. This research is funded

  17. Strategies for Creating Cornerstone Education Projects for the International Year of Astronomy 2009

    Science.gov (United States)

    Pompea, S. M.; Isbell, D.

    2008-12-01

    The General Assembly of the United Nations has designated 2009 as the International Year of Astronomy (IYA2009), a year-long global education program to commemorates the 400th anniversary of Galileo's first astronomical observations through a telescope. IYA2009 has an importance well beyond what can be accomplished in just one year. The main goal is to use this year to build sustainable, long-term education programs for measurable changes in science literacy in school children and in the public at large. The National Optical Astronomy Observatory (NOAO) with headquarters in Tucson and the American Astronomical Society (AAS) with headquarters in Washington D.C. are leading the coordination of IYA2009 activities in the United States under a grant from the National Science Foundation. NASA is also playing a large role. NOAO and AAS are working closely with United Nations Educational, Scientific and Cultural Organization (UNESCO), the International Astronomical Union (IAU), Astronomical Society of the Pacific (ASP), American Association of Variable Star Observers (AAVSO), The International Dark-Sky Association (IDA), and other trusted astronomy partners worldwide. Through collaboration and coordination, the participating partners will convey the excitement of personal discovery, the merits of the scientific process, and the pleasure of sharing new and fundamental knowledge about the Universe. This talk will describe the goals of the major cornerstone projects led by the United States including the Galileoscope education kit, dark skies education, image exhibition, and Galileo teacher training project. This work was supported by a grant from the National Science Foundation Astronomy Division. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  18. TeV Gamma Ray Astronomy

    CERN Document Server

    Cui, Wei

    2009-01-01

    The field of ground-based gamma ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this review, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play to advance this young but exciting field.

  19. TeV gamma-ray astronomy

    Institute of Scientific and Technical Information of China (English)

    Wei Cui

    2009-01-01

    The field of ground-based gamma-ray astronomy has enjoyed rapid growth in recent years. As an increasing number of sources are detected at TeV energies, the field has matured and become a viable branch of modern astronomy. Lying at the uppermost end of the electromagnetic rainbow, TeV photons are always preciously few in number but carry essential information about the particle acceleration and radiative processes involved in extreme astronomical settings. Together with observations at longer wavelengths, TeV gamma-ray observations have drastically improved our view of the universe. In this re-view, we briefly describe recent progress in the field. We will conclude by providing a personal perspective on the future of the field, in particular, on the significant roles that China could play in advancing this young but exciting field.

  20. Astronomy Courses which Emphasize Communication Skills

    Science.gov (United States)

    Dinerstein, H. L.

    1998-12-01

    The ability to communicate effectively, both in oral and written form, is crucial for success in almost any career path. Furthermore, being able to effectively communicate information requires a high level of conceptual mastery of the material. For these reasons, I have incorporated practice in communication into courses at a variety of levels, ranging from non-science-major undergraduate courses to graduate courses. I briefly describe the content of these courses, particularly the communication-related component. The first, Ast 309N, ``Astronomy Bizarre: Stars and Stellar Evolution," is an elective which follows one semester of general introductory astronomy for non-majors. Instead of homework problems, the students complete a sequence of writing assignments of graduated complexity, beginning with simple tasks such as writing abstracts and critiques of assigned readings, and moving on to writing term papers which require literature research and a short science fiction story incorporating accurate depictions of relativistic effects. In Ast 175/275, a ``Journal Club" course for upper-division astronomy majors, students read articles in the professional literature and give short oral presentations to the rest of the class. To build up their understanding of a topic, we work through the ``paper trail" of key papers on topics with exciting recent developments, such as extrasolar planets, gravitational lenses, or gamma-ray bursts. Finally, in a seminar course for first-semester astronomy graduate students (Ast 185C) that broadly addresses professional development issues, I include a practice AAS oral session, with the students giving 5-minute presentations on a journal paper of their choice. This seminar course also examines career paths and employment trends, the peer review process for papers and proposals, professional norms and ethics, and other topics. Syllabi for these and other courses I teach regularly can be found from my home page (http://www.as.utexas.edu/astronomy/people/dinerstein).

  1. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing

    Directory of Open Access Journals (Sweden)

    Qifeng Lu

    2015-07-01

    Full Text Available A powerful characterization technique, pulse capacitance-voltage (CV technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111 substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD. The results indicated that: (1 more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrOx; (2 the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N2 ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 1012 cm−2 for as-deposited sample to 4.55 × 1012 cm−2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10−6 A/cm2 at Vg = +0.5 V for the as-deposited sample to 10−3 A/cm2 at Vg = +0.5 V for the 900 °C annealed one.

  2. Women in Italian astronomy

    CERN Document Server

    Matteucci, Francesca

    2014-01-01

    This document gives some quantitative facts about the role of women in Italian astronomy. More than 26% of Italian IAU members are women: this is the largest fraction among the world leading countries in astronomy. Most of this high fraction is due to their presence in INAF, where women make up 32% of the research staff (289 out of 908) and 40% of the technical/administrative staff (173 out of 433); the percentage is slightly lower among permanent research staff (180 out of 599, about 30%). The presence of women is lower in the Universities (27 out of 161, about 17%, among staff). In spite of these (mildly) positive facts, we notice that similarly to other countries (e.g. USA and Germany) career prospects for Italian astronomers are clearly worse for women than for men. Within INAF, the fraction of women is about 35-40% among non-permanent position, 36% for Investigators, 17% for Associato/Primo Ricercatore, and only 13% among Ordinario/Dirigente di Ricerca. The situation is even worse at University (only 6% ...

  3. Active Astronomy Roadshow Haiti

    Science.gov (United States)

    Laycock, Silas; Oram, Kathleen; Alabre, Dayana; Douyon, Ralph; UMass Lowell Haiti Development Studies Center

    2016-01-01

    College-age Haitian students working with advisors and volunteers from UMass Lowell in 2015 developed and tested an activity-based K-8 curriculum in astronomy, space, and earth science. Our partner school is located in Les Cayes, Haiti a city where only 65% of children attend school, and only half of those will complete 6th grade. Astronomy provides an accessible and non-intimidating entry into science, and activity-based learning contrasts with the predominant traditional teaching techniques in use in Haiti, to reach and inspire a different cohort of learners. Teachers are predominantly women in Haiti, so part of the effort involves connecting them with scientists, engineers and teacher peers in the US. As a developing nation, it is vital for Haitian (as for all) children to grow up viewing women as leaders in science. Meanwhile in the US, few are aware of the reality of getting an education in a 3rd world nation (i.e. most of the world), so we also joined with teachers in Massachusetts to give US school children a peek at what daily life is like for their peers living in our vibrant but impoverished neighbor. Our Haitian partners are committed to helping their sister-schools with curriculum and educator workshops, so that the overall quality of education can rise, and not be limited to the very few schools with access to resources. We will describe the activites, motivation, and and the lessons learned from our first year of the project.

  4. Making Astronomy Accessible

    Science.gov (United States)

    Grice, Noreen A.

    2011-05-01

    A new semester begins, and your students enter the classroom for the first time. You notice a student sitting in a wheelchair or walking with assistance from a cane. Maybe you see a student with a guide dog or carrying a Braille computer. Another student gestures "hello” but then continues hand motions, and you realize the person is actually signing. You wonder why another student is using an electronic device to speak. Think this can't happen in your class? According to the U.S. Census, one out of every five Americans has a disability. And some disabilities, such as autism, dyslexia and arthritis, are considered "invisible” disabilities. This means you have a high probability that one of your students will have a disability. As an astronomy instructor, you have the opportunity to reach a wide variety of learners by using creative teaching strategies. I will share some suggestions on how to make astronomy and your part of the universe more accessible for everyone.

  5. New vistas in planetary radio astronomy

    Science.gov (United States)

    Alexander, J. K., Jr.

    1976-01-01

    Recent progress in planetary radio astronomy is reviewed, where the most significant advances have come from spacecraft observations. The low-frequency radio spectra of the earth, Jupiter, and Saturn are compared, and the striking similarity in shapes is noted. New radio data are examined which provide a way to compare the magnetic field strengths of the planets. More detailed information on the radio structures of Jupiter and Saturn, and possibly on Uranus, is expected from the 1977 Mariner Jupiter-Saturn mission.

  6. International Agreement Will Advance Radio Astronomy

    Science.gov (United States)

    2007-12-01

    observations to produce extremely high-resolution images, and another network (the High Sensitivity Array) that uses the same technique with large telescopes to observe particularly faint celestial objects. With this technique, NRAO telescopes work with MPIfR's Effelsberg telescope to produce images hundreds of times more detailed than those from the Hubble Space Telescope. Both institutions also are part of the international collaboration building the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile and of the international planning effort to build a Square Kilometer Array. The VLBA is a system of ten antennas, each with a dish 25 meters in diameter. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 8000 kilometers. Under the new agreement, the two institutions will continue their previous observational collaborations, and in addition will share resources to improve the technical capabilities of each other's telescopes, particularly at short wavelengths, They also will collaborate in the peer-reviewed process each uses to allocate observing time, and agree to mutually maintain an "open skies" policy allowing open access to each other's telescopes on a peer-reviewed basis. The agreement notes the report of the U.S. National Science Foundation's (NSF) Senior Review committee, which called upon the NRAO to seek partners to contribute to the operation of the VLBA. The MPIfR affirms its strong interest in maintaining the VLBA's unique scientific capabilities, and its monetary contribution toward the 22 GHz upgrade of the VLBA is a solid sign of that commitment. "The VLBA provides the greatest resolving power of any instrument in astronomy, and the MPIfR's contribution to enhancing its capabilities is an important validation of the VLBA's importance to frontier astrophysics," Lo said. The joint VLBA project calls for the MPIfR to fund the receiving-system upgrades and the NRAO to perform the work. The project is

  7. iSTAR: The International STudy on Astronomy Reasoning

    Science.gov (United States)

    Tatge, Coty B.; Slater, Timothy F.; Slater, Stephanie J.

    2015-08-01

    This paper reports the first steps taken in the International STudy on Astronomy Reasoning (iSTAR). The iSTAR Project is an attempt to look beyond traditional wisdom and practices in astronomy education, to discover the ways in which cognitive abilities and human culture interact to impact individuals’ understanding of and relationship to astronomy content knowledge. In contrast to many international studies that seek to rank nations by student performance on standardized tests, the iSTAR Project seeks to find ways that culture may unexpectedly enhance performance in astronomy. Using the Test of Astronomy Standards (TOAST) as a reasonable, initial proxy for the content knowledge a well educated person might know in astronomy, the iSTAR team then defined culture as a construct with five components: practices, traditional knowledge, historical and genealogical relationships, place-based knowledge, and language. Given the complexity of this construct, Stage 1 of the project focuses on the cultural component of language, and assumed that prior to the collection of data from students, the process of translating the TOAST could provide valuable expert-based information on the impact of language on astronomy knowledge. As such, the work began with a study of the translation process. For each of the languages used in the testing phase of the iSTAR protocol, a succession of translators and analysts were engaged, including two educated, non-astronomer native speakers, a native speaking astronomer, and a native speaking linguistics expert. Multiple translations were analyzed in order to make relevant meaning of differences in the translations, and provide commentary on the ways in which metaphor, idiom, cultural history are embedded in the language, providing potential advantages in the learning of astronomy. The first test languages were German, Hawaiian, and American Sign Language, and initial findings suggest that each of these languages provide specific advantages

  8. DUMAND Summer Workshop, University of California, La Jolla, Calif., July 24-September 2, 1978, Proceedings. Volume 2 - UHE interactions, neutrino astronomy

    Science.gov (United States)

    Roberts, A.

    1979-01-01

    The volume covers categories on inelastic neutrino scattering and the W-boson, and other ultra-high-energy processes, on pulsars, quasars and galactic nuclei, as well as other point sources and constants from gamma ray astronomy. Individual subjects include weak intermediate vector bosons and DUMAND, the Monte Carlo simulation of inelastic neutrino scattering in DUMAND, and Higgs boson production by very high-energy neutrinos. The observability of the neutrino flux from the inner region of the galactic disk, the diffuse fluxes of high-energy neutrinos, as well as the significance of gamma ray observations for neutrino astronomy are also among the topics covered.

  9. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Anton, G; Arguelles, C; Arlen, T C; Auffenberg, J; Axani, S; Bai, X; Bartos, I; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; andaz-Vélez, J C Dí; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eisch, J; Euler, S; Evans, J J; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Haugen, J; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Jones, B J P; Jurkovic, M; Kalekin, O; Kappes, A; Karg, T; Karle, A; Katori, T; Katz, U F; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krauss, C B; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; LoSecco, J; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Marka, S; Marka, Z; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Moore, R W; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Pinfold, J L; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Sandstrom, P; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shaevitz, M H; Shanidze, R; Smith, M W E; Soldin, D; Söldner-Rembold, S; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; andl, A Stöß; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Taketa, A; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Teš, G; andić,; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Wren, S; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2014-01-01

    The recent observation by the IceCube neutrino observatory of an astrophysical flux of neutrinos represents the "first light" in the nascent field of neutrino astronomy. The observed diffuse neutrino flux seems to suggest a much larger level of hadronic activity in the non-thermal universe than previously thought and suggests a rich discovery potential for a larger neutrino observatory. This document presents a vision for an substantial expansion of the current IceCube detector, IceCube-Gen2, including the aim of instrumenting a $10\\,\\mathrm{km}^3$ volume of clear glacial ice at the South Pole to deliver substantial increases in the astrophysical neutrino sample for all flavors. A detector of this size would have a rich physics program with the goal to resolve the sources of these astrophysical neutrinos, discover GZK neutrinos, and be a leading observatory in future multi-messenger astronomy programs.

  10. Gamma-ray Astronomy: Implications for Fundamental Physics

    CERN Document Server

    Rico, Javier

    2011-01-01

    Gamma-ray Astronomy studies cosmic accelerators through their electromagnetic radiation in the energy range between ~100 MeV and ~100 TeV. The present most sensitive observations in this energy band are performed, from space, by the Large Area Telescope onboard the Fermi satellite and, from Earth, by the Imaging Air Cherenkov Telescopes MAGIC, H.E.S.S. and VERITAS. These instruments have revolutionized the field of Gamma-ray Astronomy, discovering different populations of gamma-ray emitters and studying in detail the non-thermal astrophysical processes producing this high-energy radiation. The scientific objectives of these observatories include also questions of fundamental physics. With gamma-ray instruments we study the origin of Galactic cosmic rays, testing the hypothesis or whether they are mainly produced in supernova explosions. Also, we obtain the most sensitive measurement of the cosmic electron-positron spectrum between 20 GeV and 5 TeV. By observing the gamma-ray emission from sources at cosmologi...

  11. Current Trends in Graduate Education in Astronomy in Canada

    Science.gov (United States)

    Percy, J. R.; Douglas, K. A.

    2002-12-01

    We begin by describing the infrastructure for graduate education and research in astronomy in Canada. We then describe recent and current trends and issues, including facilities, funding, curriculum, and job prospects. This information has been collected through two channels: through graduate coordinators in astronomy departments and groups in Canadian universities, and through the Graduate Student Committee of the Canadian Astronomical Society (CAS). We emphasize the benefits of having a graduate student chapter in societies such as the CAS and the AAS.

  12. Introduction. Progress in astronomy: from gravitational waves to space weather.

    Science.gov (United States)

    Thompson, J Michael T

    2008-12-13

    This brief paper introduces and reviews the 'visions of the future' articles prepared by leading young scientists throughout the world for the first of two Christmas 2008 Triennial issues of Phil. Trans. R. Soc. A, devoted, respectively, to astronomy and Earth science. Contributions in astronomy include the very topical gamma-ray bursts, new ideas on stellar collapse and the unusual atmospheres of synchronized planets orbiting nearby stars.

  13. Further observations on Eupelminae (Hymenoptera, Chalcidoidea, Eupelmidae in the Iberian Peninsula and Canary Islands, including descriptions of new species

    Directory of Open Access Journals (Sweden)

    Askew, R. R.

    2004-06-01

    Full Text Available Data on Eupelmus Dalman, additional to that presented in Askew & Nieves-Aldrey (2000, are given here, including the location of type material of three species described by C. Bolívar. Eupelmus hungaricus Erdös is transferred to Reikosiella (n. comb.. Representation of other genera of Eupelminae in the Iberian Peninsula and Canary Islands is reviewed (Anastatus 9 spp., Arachnophaga 2 spp., Brasema 1 sp., Calymmochilus 3 spp., Merostenus 1 sp. and keys to species are given. Three species are described as new, Anastatus maculosus Askew, A. magnoculus Askew and Calymmochilus delphinus Askew.

    Se aportan datos del género Eupelmus Dalman adicionales a los presentados por Askew y Nieves-Aldrey (2000, incluyendo la localización de material tipo de tres especies descritas por C. Bolívar. Se efectúa la transferencia de Eupelmus hungaricus Erdös al género Reikosiella (n. comb.. Se revisa la representación de otros géneros de Eupelminae en la Península Ibérica e Islas Canarias: Anastatus 9 spp., Arachnophaga 2 spp., Brasema 1 sp., Calymmochilus 3 spp., Merostenus 1 sp., y se dan claves para la identificación de las especies. Se describen tres especies nuevas para la ciencia, Anastatus maculosus Askew, A. magnocolus Askew y Calymmochilus delphinus Askew.

  14. IYA2009 and Beyond - Update On "Music and Astronomy Under the Stars” To Bring Telescopes To Where the People Are!

    Science.gov (United States)

    Lubowich, Donald A.

    2009-05-01

    This NASA-funded Music and Astronomy Under the Stars outreach program brings telescopes and astronomy information (via a video display and outdoor exhibit) to community parks during and after music concerts and outdoor family films attended by 500 to 50,000 people. This program will permit the entire community to participate with telescope observations and will enhance the public appreciation of astronomy. The telescopes will be accessible to those with physical disabilities. This program combines music, telescope observations, and astronomy information and targets people who may not attend star parties, planetariums, or science museums. I update this program and discus the lessons learned such as the importance of coordination with local governments, community park districts, and amateur astronomer clubs. This program can be expanded and modified for the local communities. I have expanded this program to large and small venues from New York Philharmonic concert at Heckscher State Park, the boardwalk and a "tail-gate” star party by at pop-music concerts at Jones Beach State Park, and at the Tanglewood Music Festival in Lenox, MA, summer home of the Boston Symphony Orchestra (http://www.bso.org/bso/mods/perf_detail.jsp?pid=prod2880024). This program is expandable to include outdoor dance or theatre programs, festivals in parks or beaches or amusement parks. Music and Astronomy Under the Stars is program that should continue beyond IYA-2009 beaches. Special events such as a Super Bowl Star Party and Halloween Stars will be presented as will the results form NASA-funded hands-on astronomy activities to children and their families receiving medical treatment at the Children's Medical Center at Winthrop University Hospital (Mineola, NY) and the Ronald McDonald House of Long Island (New Hyde Park, NY).

  15. IceCube: An Instrument for Neutrino Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Halzen, F.; Klein, S.

    2010-06-04

    Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms a cubic kilometer of deep and ultra-transparent Antarctic ice into a particle detector. A total of 5,160 optical sensors are embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system, including a phototube, digitization electronics, control and trigger systems and LEDs for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of Galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams.

  16. Emergence and Growth of Solar Astronomy in Korea

    Science.gov (United States)

    Yun, Hong Sik

    2003-06-01

    In this article I review the past and current status of solar astronomy in Korea and present some future prospects. Along with a brief historical account on the introduction of modern astronomy to Korea, I describe in detail how solar astronomy in Korea has developed since its birth about 20 years ago. With education of solar astronomers at domestic universities and collaboration with foreign scientists in China, Japan and the U. S., there has been a rapid growth of solar physics in Korea in the past decade. For further advance of solar astronomy in Korea, Korean solar astronomers have to build their own observing facilities and develop instrumentation programs. Also it is very important to bring up manpower competent for these projects.

  17. Solar Eclipses and the International Year of Astronomy

    Science.gov (United States)

    Pasachoff, Jay M.

    2009-05-01

    Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.

  18. Teaching Advanced Data Analysis Tools to High School Astronomy Students

    Science.gov (United States)

    Black, David V.; Herring, Julie; Hintz, Eric G.

    2015-01-01

    A major barrier to becoming an astronomer is learning how to analyze astronomical data, such as using photometry to compare the brightness of stars. Most fledgling astronomers learn observation, data reduction, and analysis skills through an upper division college class. If the same skills could be taught in an introductory high school astronomy class, then more students would have an opportunity to do authentic science earlier, with implications for how many choose to become astronomers. Several software tools have been developed that can analyze astronomical data ranging from fairly straightforward (AstroImageJ and DS9) to very complex (IRAF and DAOphot). During the summer of 2014, a study was undertaken at Brigham Young University through a Research Experience for Teachers (RET) program to evaluate the effectiveness and ease-of-use of these four software packages. Standard tasks tested included creating a false-color IR image using WISE data in DS9, Adobe Photoshop, and The Gimp; a multi-aperture analyses of variable stars over time using AstroImageJ; creating Spectral Energy Distributions (SEDs) of stars using photometry at multiple wavelengths in AstroImageJ and DS9; and color-magnitude and hydrogen alpha index diagrams for open star clusters using IRAF and DAOphot. Tutorials were then written and combined with screen captures to teach high school astronomy students at Walden School of Liberal Arts in Provo, UT how to perform these same tasks. They analyzed image data using the four software packages, imported it into Microsoft Excel, and created charts using images from BYU's 36-inch telescope at their West Mountain Observatory. The students' attempts to complete these tasks were observed, mentoring was provided, and the students then reported on their experience through a self-reflection essay and concept test. Results indicate that high school astronomy students can successfully complete professional-level astronomy data analyses when given detailed

  19. Indian Astronomy: the missing link in Eurocentric history of Astronomy

    Science.gov (United States)

    Haque, Shirin; Sharma, Deva

    2016-06-01

    A comprehensive history of Astronomy should show in reasonable chronological order, the contributions from wherever they arise in the world, once they are reliably documented. However, the authors note that consistently, the extremely rich contributions from Ancient Indian scholars like Aryabatha and Bhramagupta are omitted in Eurocentric education and syllabi. It is speculated whether religious underpinnings could have been responsible for its suppression in the past. An appeal is made to represent the history of Astronomy in Eurocentric versions, to be inclusive of Indian Astronomy as accurately and completely as possible in science education.

  20. Pioneers in Astronomy and Space Exploration

    CERN Document Server

    2013-01-01

    The pioneers of astronomy and space exploration have advanced humankind's understanding of the universe. These individuals include earthbound theorists such as Aristotle, Ptolemy, and Galileo, as well as those who put their lives on the line travelling into the great unknown. Readers chronicle the lives of individuals positioned at the vanguard of astronomical discovery, laying the groundwork for space exploration past, present, and yet to come.

  1. The Stratospheric Observatory for Infrared Astronomy (sofia)

    Science.gov (United States)

    Gehrz, R. D.; Becklin, E. E.

    2011-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP that began science flights in 2010. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters with an average transmission of greater than 80 percent. SOFIA is staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes high speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. About 100 eight to ten hour flights per year are expected by 2014, and the observatory will operate until the mid 2030's. We will review the status of the SOFIA facility, its initial complement of science instruments, and the opportunities for advanced instrumentation.

  2. Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE

    Science.gov (United States)

    Slater, Timothy F.

    2015-08-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the

  3. A Sidewalk Astronomy Experience in Second Life (R) for IYA2009

    Science.gov (United States)

    Gauthier, Adrienne J.; Huber, D.; I. New Media Task Group

    2009-01-01

    The NMTG has created an IYA 2009 presence in the 3-dimensional multi-user virtual world called Second Life (R), where residents (or avatars) interact with content built by others in dynamic, innovative, and social ways. The IYA2009 virtual real estate (called an island) will open in early January 2009 with an initial set of exhibits and interactives. Through 2009, additional exhibits, live talks, and webstreamed content will be added.Our Sidewalk Astronomy experience will be premiered for the island opening. We have designed the interactive to replicate a real-life small telescope experience. Visitors to our Second Life telescopes will first see an image of the object "as the eye sees" and will hear/read a narrative about the object, as one would experience in real life. The narratives have been carefully crafted to take the observer on a journey and not just hear straight facts about the object. Diving further into astronomical imagery, avatars will explore visible, infrared, X-ray, and radio views of the object (if available), all wrapped in contextual information that ties the multiwavelength views together. The content of the telescopes will update every month to be equivalent to mid-latitude 9pm sky views for the Northern Hemisphere, Southern Hemisphere pending. Supplemental materials will include World Wide Telescope tours and Google Sky layers. We are hoping to add live star party events throughout the year, using real life video feeds from amateur telescopes. Additionally, we will have links to the Sidewalk Astronomy IYA webpage so virtual residents can find real life star parties to attend. The Sidewalk Astronomy Second Life experience will also have a traveling version that can be placed in multiple locations (stores, events, parks) in order to bring astronomy to the virtual masses in a true Sidewalk Astronomy way.

  4. Building an Astronomy Community to Sustain Research in the Classroom

    Science.gov (United States)

    Croft, S. K.; Pompea, S. M.; Walker, C. E.; NOAO Education Outreach Team

    2004-12-01

    Teacher Leaders in Research Based Science Education (TLRBSE) is a teacher professional development program that has been created at the National Optical Astronomy Observatory (NOAO) in Tucson, AZ, for middle and high school science teachers. It integrates several prominent trends in American science education, including the use of technology in the classroom, the development of inquiry-based science curricula closely modeling professional science practice, teacher retention and renewal, and the creation of communities of science learners consisting of both teachers and students. TLRBSE is designed to give middle and high school science teachers experience in working on real astronomy research projects with each other and with professional scientists. The teachers are also trained in research-based pedagogy so that they can effectively take these research projects into their classrooms to share with their students and colleagues. Program elements include: a 14-week graduate-level distance-learning course, a two-week on-site training workshop in Tucson that includes a week's observing at Kitt Peak using world-class telescopes, use of research-based science education in the classroom, and two years mentoring of three inexperienced science teachers. Our current research projects are Nova Search, Active Galactic Nuclei, Variable Stars, and Zeeman Splitting in Sunspots. Students and teachers in the program are also able to publish their research projects in the RBSE Journal. New program elements designed to provide ongoing activity in the learning community and increase teacher and student astronomical research skills include the Remote Telescope Observing Program in which students run telescopes in real time from their classroom, and the Teacher Observing Program in which individual teachers return to Kitt Peak with a small team of students to carry out their own research projects. This project is supported by NSF.

  5. The Importance of Site Selection for Radio Astronomy

    International Nuclear Information System (INIS)

    Radio sources are very weak since this object travel very far from outer space. Radio astronomy studies are limited due to radio frequency interference (RFI) that is made by man. If the harassment is not stopped, it will provide critical problems in their radio astronomy scientists research. The purpose of this study is to provide RFI map Peninsular Malaysia with a minimum mapping techniques RFI interference. RFI mapping technique using GIS is proposed as a tool in mapping techniques. Decision-making process for the selection requires gathering information from a variety of parameters. These factors affecting the selection process are also taken account. In this study, various factors or parameters involved such as availability of telecommunications transmission (including radio and television), rainfall, water line and human activity. This study will benefit radio astronomy research especially in the RFI profile in Malaysia. Keywords: Radio Astronomy, Radio Frequency Interference (RFI), RFI mapping technique : GIS

  6. A New Resource for College Distance Education Astronomy Laboratory Exercises

    CERN Document Server

    Vogt, Nicole P; Muise, Amy Smith

    2015-01-01

    This article introduces a set of distance education astronomy laboratory exercises for use by college students and instructors and discuss first usage results. This General Astronomy Education Source (GEAS) exercise set contains eight two-week projects designed to guide students through both core content and mathematical applications of general astronomy material. Projects are divided between hands-on activities and computer-aided analyses of modern astronomical data. The suite of online resources includes student and instructor guides, laboratory report templates, learning objectives, video tutorials, plotting tools, and web-based applications that allow students to analyze both images and spectra of astronomical objects. A pilot usage study indicates that distance learners using these materials perform as well or better than a comparison cohort of on-campus students. We are actively seeking collaborators to use these resources in astronomy courses and other educational venues.

  7. The Importance of Site Selection for Radio Astronomy

    Science.gov (United States)

    Umar, Roslan; Zainal Abidin, Zamri; Abidin Ibrahim, Zainol

    2014-10-01

    Radio sources are very weak since this object travel very far from outer space. Radio astronomy studies are limited due to radio frequency interference (RFI) that is made by man. If the harassment is not stopped, it will provide critical problems in their radio astronomy scientists research. The purpose of this study is to provide RFI map Peninsular Malaysia with a minimum mapping techniques RFI interference. RFI mapping technique using GIS is proposed as a tool in mapping techniques. Decision-making process for the selection requires gathering information from a variety of parameters. These factors affecting the selection process are also taken account. In this study, various factors or parameters involved such as availability of telecommunications transmission (including radio and television), rainfall, water line and human activity. This study will benefit radio astronomy research especially in the RFI profile in Malaysia. Keywords: Radio Astronomy, Radio Frequency Interference (RFI), RFI mapping technique : GIS.

  8. SABER: The Searchable Annotated Bibliography of Education Research in Astronomy

    Science.gov (United States)

    Bruning, David H.; Bailey, J. M.; Brissenden, G.

    2006-12-01

    Starting a new research project in astronomy education is hard because the literature is scattered throughout many journals. Relevant astronomy education research may be in psychology journals, science education journals, physics education journals, or even in science journals themselves. Tracking the vast realm of literature is difficult, especially since libraries do not carry many of these journals and related abstracting services. SABER is an online resource (http://astronomy.uwp.edu/saber/) that was started in 2001 specifically to reduce this “scatter” by compiling into one place an annotated bibliography of relevant education research articles. The database now includes more than 150 articles specifically addressing astronomy education research. Visit SABER and see what it can do for you.

  9. Gravitational Waves and Time Domain Astronomy

    Science.gov (United States)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  10. Astronomy Outreach Adventures in Rural Guatemala

    Science.gov (United States)

    Strubbe, L.

    2015-03-01

    Astronomy can be an inspirational gateway to learning science and analytical reasoning, and to careers in STEM fields-particularly important in developing countries where educational opportunities can be scarce. Following this idea and my interest in learning about other cultures, I decided to spend 6 weeks in late 2011 (between Ph.D. and postdoc) doing astronomy public outreach in Guatemala. I volunteered through a Spanish language school embedded in a poor rural community (typical earning ~ $3/day), working mostly with children. My teaching goals were primarily attitudinal: to encourage people to observe and ask questions about the world around them, and to show them that phenomena have explanations that we can understand.

  11. Astronomy for beginners

    CERN Document Server

    Becan, Jeff

    2008-01-01

    Astronomy For Beginners is a friendly and accessible guide to our universe, our galaxy, our solar system and the planet we call home. Each year as we cruise through space on this tiny blue-green wonder, a number of amazing and remarkable events occur. For example, like clockwork, we'll run head-on into asteroid and cometary debris that spreads shooting stars across our skies. On occasion, we'll get to watch the disk of the Moon passing the Sun, casting its shadow on the face of the Earth, and sometimes we'll get to watch our own shadow as it glides across the face of the Moon. The Sun's path w

  12. Astronomy and political theory

    Science.gov (United States)

    Campion, Nicholas

    2011-06-01

    This paper will argue that astronomical models have long been applied to political theory, from the use of the Sun as a symbol of the emperor in Rome to the application of Copernican theory to the needs of absolute monarchy. We will begin with consideration of astral divination (the use of astronomy to ascertain divine intentions) in the ancient Near East. Particular attention will be paid to the use of Newton's discovery that the universe operates according to a single set of laws in order to support concepts of political quality and eighteenth century Natural Rights theory. We will conclude with consideration of arguments that the discovery of the expanding, multi-galaxy universe, stimulated political uncertainty in the 1930s, and that photographs of the Earth from Apollo spacecraft encouraged concepts of the `global village'.

  13. Gravitational wave astronomy

    CERN Document Server

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  14. Compressed Sensing in Astronomy

    CERN Document Server

    Bobin, J; Ottensamer, R

    2008-01-01

    Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper we investigate how compressed sensing (CS) can provide new insights into astronomical data compression and more generally how it paves the way for new conceptions in astronomical remote sensing. We first give a brief overview of the compressed sensing theory which provides very simple coding process with low computational cost, thus favoring its use for real-time applications often found on board space mission. We introduce a practical and effective recovery algorithm for decoding compressed data. In astronomy, physical prior information is often crucial for devising effective signal processing methods. We particularly point out that a CS-based compression scheme is flexible enough to account ...

  15. Astronomy Enrollments and Degrees: Results from the 2012 Survey of Astronomy Enrollments and Degrees. Focus On

    Science.gov (United States)

    Mulvey, Patrick; Nicholson, Starr

    2014-01-01

    Interest in astronomy degrees in the U.S. remains strong, with astronomy enrollments at or near all-time highs for the 2012-13 academic year. The total number of students taking an introductory astronomy course at a degree-granting physics or astronomy department is approaching 200,000. Enrollments in introductory astronomy courses have been…

  16. Astronomy and the limits of vision

    Science.gov (United States)

    Schaefer, Bradley E.

    1993-01-01

    Celestial visibility is the study of the limits of observability of objects in the sky, with application to deducing the truth about historical events or to the derivation of astronomical information of modern utility. This study is based on what is seen by ordinary humans, either in their everyday lives or at times of historical events. The results of such studies have more relevance to non-scientists than does any other area of astronomy. Celestial visibility is a young discipline in the sense that the number of interesting applications with simple solutions outnumber the solved problems; it is a broad interdisciplinary field that involves work with astronomy, meteorology, optics, physics, physiology, history, and archeology. Each of these disciplines contribute specialized mathematical formulations which quantify the many processes that affect light as it leaves a source, traverses the atmosphere, and is detected by the human eye. These formulas can then be combined as appropriate to create mathematical models for the visibility of the source under the conditions of interest. These model results can then be applied a wide variety of problems arising in history, astronomy, archeology, meteorological optics, and archeoastronomy. This review also presents a dozen suggestions for observing projects, many of which can be directly taken for individual study, for classroom projects, or for professional research.

  17. Worldwide site comparison for submillimetre astronomy

    CERN Document Server

    Tremblin, P; Minier, V; Durand, G Al; Urban, J

    2012-01-01

    The most important limitation for ground-based submillimetre (submm) astronomy is the broad-band absorption of the total water vapour in the atmosphere above an observation site, often expressed as the Precipitable Water Vapour (PWV). A long-term statistic on the PWV is thus mandatory to characterize the quality of an existing or potential site for observational submm-astronomy. In this study we present a three-year statistic (2008-2010) of the PWV for ground-based telescope sites all around the world and for stratospheric altitudes relevant for SOFIA (Stratospheric Observatory for Far-infrared astronomy). The submm-transmission is calculated for typical PWVs using an atmospheric model. We present the absolute PWV values for each site sorted by year and time percentage. The PWV corresponding to the first decile (10%) and the quartiles (25%, 50%, 75%) are calculated and transmission curves between 150 {\\mu}m and 3 mm for these values are shown. The Antarctic and South-American sites present very good condition...

  18. Interdisciplinary Astronomy Activities

    Science.gov (United States)

    Nerantzis, Nikolaos; Mitrouda, Aikaterini; Reizopoulou, Ioanna; Sidiropoulou, Eirini; Hatzidimitriou, Antonios

    2016-04-01

    On November 9th, 2015, three didactical hours were dedicated to Interdisciplinary Astronomy Activities (http://wp.me/p6Hte2-1I). Our students and their teachers formed three groups and in rotation, were engaged with the following activities: (a) viewing unique images of the Cosmos in the mobile planetarium STARLAB (http://www.planitario.gr/tholos-starlab-classic-standard.html), (b) watching the following videos: Journey to the end of the universe (https://youtu.be/Ufl_Nwbl8xs), Rosetta update (https://youtu.be/nQ9ivd7wv30), The Solar System (https://youtu.be/d66dsagrTa0), Ambition the film (https://youtu.be/H08tGjXNHO4) in the school's library. Students and teachers were informed about our solar system, the Rosetta mission, the universe, etc. and (c) tactile activities such as Meet our home and Meet our neighbors (http://astroedu.iau.org, http://nuclio.org/astroneighbours/resources) and the creation of planets' 3D models (Geology-Geography A' Class Student's book, pg.15). With the activities above we had the pleasure to join the Cosmic Light Edu Kit / International Year of Light 2015 program. After our Interdisciplinary Astronomy Activities, we did a "small" research: our students had to fill an evaluation about their educational gains and the results can be found here http://wp.me/p6Hte2-2q. Moreover, we discussed about Big Ideas of Science (http://wp.me/p3oRiZ-dm) and through the "big" impact of the Rosetta mission & the infinity of our universe, we print posters with relevant topics and place them to the classrooms. We thank Rosa Doran (Nuclio - President of the Executive Council) for her continuous assistance and support on innovative science teaching proposals. She is an inspiration.

  19. Alaska Athabascan stellar astronomy

    Science.gov (United States)

    Cannon, Christopher M.

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  20. Capturing Public Interest in Astronomy through Art and Music

    Science.gov (United States)

    Sharma, M.; Sabraw, J.; Salgado, J. F.; Statler, T.; Summers, F.

    2008-11-01

    This is a summary of our 90-minute International Year of Astronomy (IYA) symposium workshop about engaging greater public interest in astronomy during the International Year of Astronomy 2009 through art and music. The session focused on: (i) plans for visually interesting and challenging astronomy presentations to connect with an audience at venues such as museums, concert halls, etc that might be apprehensive about science but open to creative experiences; (ii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations; (iii) balancing scientific accuracy with artistic license; and (iv) how scientists, Education and Public Outreach (EPO) professionals, artists, musicians et al. can bridge the ``two cultures''---starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters shared with the EPO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of astronomical images that can accompany live performances of Holst's The Planets and Mussorgsky's Pictures at an Exhibition; and SCALE, a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.

  1. Daris, a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Bentum, M.J.; Klooster, van 't K.; Falcke, H.

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy in Space) is a radio astronomy space mission concept aimed at observing the low-frequency radio sky in the range 1-10 MHz. Because of the Earth's ionospheric disturbances and opaqueness, this frequency range can only be observed from space. The a

  2. Satellite observations

    Science.gov (United States)

    1984-05-01

    In 1982 and 1983, six scientific satellites were operated successfully. Two of them, JIKIKEN and ISS-b, performed observations of the Earth's plasma environment. HINOTORI, the solar maximum satellite, observed a number of solar flares. HAKUCHO and newly launched TENMA conducted various observations of cosmic X-ray sources. HIMAWARI-2 is a meteorological satellite but its payload includes a solar particle monitor. EXOS-C was successfully launched in February, 1983, and participants in the MAP (Middle Atmosphere Program). Following these missions, the PLANET-A project comprising two missions, MS-T5 and PLANET-A, is under preparation for the participation in the international cooperative exploration of Comet P/Halley. The third X-ray astronomy satellite ASTRO-C is currently scheduled for 1987 launch.

  3. A Brief History of Radio Astronomy in the USSR A Collection of Scientific Essays

    CERN Document Server

    Salomonovich, A; Samanian, V; Shklovskii, I; Sorochenko, R; Troitskii, V; Kellermann, K; Dubinskii, B; Kaidanovskii, N; Kardashev, N; Kobrin, M; Kuzmin, A; Molchanov, A; Pariiskii, Yu; Rzhiga, O

    2012-01-01

    This translation from Russian makes the history of radio astronomy in the USSR available in the English language for the first time. The book includes descriptions of the antennas and instrumentation used in the USSR, the astronomical discoveries, as well as interesting personal backgrounds of many of the early key players in Soviet radio astronomy. A Brief History of Radio Astronomy in the USSR is a collection of memoirs recounting an interesting but largely still dark era of Soviet astronomy. The arrangement of the essays is determined primarily by the time when radio astronomy studies began at the institutions involved. These include the Lebedev Physical Institute (FIAN), Gorkii State University and the affiliated Physical-Technical Institute (GIFTI), Moscow State University Sternberg Astronomical institute (GAISH) and Space Research Institute (IKI), the Department of Radio Astronomy of the Main Astronomical Observatory in Pulkovo (GAO), Special Astrophysical Observatory (SAO), Byurakan Astrophysical Obse...

  4. Astropy: A Community Python Package for Astronomy

    CERN Document Server

    Robitaille, Thomas P; Greenfield, Perry; Droettboom, Michael; Bray, Erik; Aldcroft, Tom; Davis, Matt; Ginsburg, Adam; Price-Whelan, Adrian M; Kerzendorf, Wolfgang E; Conley, Alexander; Crighton, Neil; Barbary, Kyle; Muna, Demitri; Ferguson, Henry; Grollier, Frédéric; Parikh, Madhura M; Nair, Prasanth H; Günther, Hans M; Deil, Christoph; Woillez, Julien; Conseil, Simon; Kramer, Roban; Turner, James E H; Singer, Leo; Fox, Ryan; Weaver, Benjamin A; Zabalza, Victor; Edwards, Zachary I; Bostroem, K Azalee; Burke, D J; Casey, Andrew R; Crawford, Steven M; Dencheva, Nadia; Ely, Justin; Jenness, Tim; Labrie, Kathleen; Lim, Pey Lian; Pierfederici, Francesco; Pontzen, Andrew; Ptak, Andy; Refsdal, Brian; Servillat, Mathieu; Streicher, Ole

    2013-01-01

    We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future A...

  5. Data Mining and Machine Learning in Astronomy

    CERN Document Server

    Ball, Nicholas M

    2009-01-01

    We review the current state of data mining and machine learning in Astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. On the one hand, it is a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, which promises almost limitless scientific advances. On the other, it can be the application of black-box computing algorithms that at best give little physical insight, and at worst provide questionable results. Here, we give an overview of the entire data mining process, from data collection through the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines; applications from a broad range of Astronomy, with an emphasis on those where data mining resulted in improved physical insights, and important current and future directions, including the construction of full probability density functions, parallel algorithm...

  6. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Science.gov (United States)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  7. COMETWATCHERS: Bringing Research into the Undergraduate Astronomy Curriculum

    Science.gov (United States)

    Womack, M.

    2000-05-01

    Integrating research with education has been an evolving process for me and the "Cometwatchers", the students with whom I work. What started as a totally extracurricular activity, has become well-integrated into St. Cloud State Univerity's upper-division courses on Solar System Astronomy and Observational Astronomy. Maintaining a collaboration with six to eight students is a challenge that is made easier and more efficient when we modularize the projects, utilize each person's expertise, hold weekly meetings, require students to write guides and manuals to instruct others, and require students to write up and present their work at meetings. This also helps students to identify and evaluate their contributions to the research. Here I profile the research component in two courses at SCSU that use a student-run optical observatory equipped with a 0.4-m telescope, CCD, UBVRI photometry filters and a fiber-optic spectrograph. Results from some focused research projects are also discussed, including an optical imaging archive of Comet Hale-Bopp, derivation of dust expansion velocities from comet images, analysis of the visible light-curve of comet Hale-Bopp, spectral analysis of millimeter-wavelength ``datacubes" of HCO+ and of other carbon-bearing molecular spectra in comet Hale-Bopp.

  8. Episodes from the Early History of Astronomy

    Science.gov (United States)

    Aaboe, Asger

    uniformly around the empty focus of its orbit. Thus an eccentric circular orbit with the empty "focus" as the equant point gives a good approximation to Kepler motions. The result of combining two such motions is then shown to be close to Ptolemy's planetary model. This book provides a fascinating look at the night sky and the techniques that early civilizations, particularly Babylonian and Greek, used to model planetary motions¿Aaboe does a masterful job of covering a wide array of intriguing topics in a relatively short book, and any effort expended on reading it will be well rewarded¿ talented students at the high school age and college students who are interested in these topics would likely find this book very enjoyable and enriching¿Overall, the book is fascinating to read for several reasons, including its observational astronomical viewpoint, its rich historical and cultural content, and, of course, its exposition and explanation of ancient techniques of celestial predictions and modeling. ?MAA ONLINE

  9. Europe Unveils 20-Year Plan for Brilliant Future in Astronomy

    Science.gov (United States)

    2008-11-01

    for Earth Sciences and Astronomy (INSU) of the CNRS. To build consensus on priorities in a very diverse community, the Science Vision and Roadmap were developed in an open process involving intensive interaction with the community through large open meetings and feedback via e-mail and the web. The result is a plan now backed by astronomers in 28 Member and Associated States of the EU, with over 500 million inhabitants. Over 60 selected experts from across Europe contributed to the construction of the ASTRONET Roadmap, ensuring that European astronomy has the tools to compete successfully in answering the challenges of the Science Vision. They identified and prioritised a set of new facilities to observe the Universe from radio waves to gamma rays, to open up new ways of probing the cosmos, such as gravitational waves, and to advance in the exploration of our Solar System. In the process, they considered all the elements needed by a successful scientific enterprise, from global-scale cooperation on the largest mega-project to the need for training and recruiting skilled young scientists and engineers. One of two top-priority large ground-based projects is ESO's European Extremely Large Telescope. Its 42-metre diameter mirror will make the E-ELT the largest optical/near-infrared telescope in the world -- "the biggest eye on the sky". The science to be done with the E-ELT is extremely exciting and includes studies of exoplanets and discs, galaxy formation and dark energy. ESO Director General Tim de Zeeuw says: "The top ranking of the E-ELT in the Roadmap is a strong endorsement from the European astronomical community. This flagship project will indisputably raise the European scientific, technological and industrial profile". Among other recommendations, the Roadmap considers how to maximise the future scientific impact of existing facilities in a cost-effective manner. It also identifies a need for better access to state-of-the art computing and laboratory facilities

  10. Essays on medieval computational astronomy

    CERN Document Server

    Bergón, José Chabás

    2014-01-01

    In Essays on Medieval Computational Astronomy the authors provide examples of original and intelligent approaches and solutions given by medieval astronomers to the problems of their discipline, mostly presented in the form of astronomical tables.

  11. Women in Astronomy Workshop Report

    CERN Document Server

    Brough, Sarah; Brooks, Kate; Hopkins, Andrew; Maddison, Sarah

    2011-01-01

    Here we report on the Women in Astronomy Workshop (http://asawomeninastronomy.org/meetings/wia2011/), which was held on 13 May 2011 in Sydney, Australia. The workshop was organised by the Astronomical Society of Australia's Chapter on Women in Astronomy, to discuss some of the issues that face women in astronomy and make recommendations to help support the success of women in Australian astronomy but came to broader conclusions that have value for the whole astronomical community. The workshop consisted of four sessions, with presentations by invited speakers on demographics, leadership, varied career paths, and how institutions & individuals can help. The workshop ended with a discussion panel that summarised the day's debate and presented a list of recommendations for the Australian astronomical community (both individuals and institutions) that are provided in this report.

  12. SkyServer Voyages Website - Using Big Data to Explore Astronomy Concepts in Formal Education Settings

    Science.gov (United States)

    Meredith, Kate K.; Masters, Karen; Raddick, Jordan; Lundgren, Britt

    2015-08-01

    The Sloan Digital Sky Survey (SDSS) web interface “SkyServer” has long included online educational materials designed to help students and the public discover the fundamentals of modern astronomy using real observations from the SDSS database. The newly launched SDSS Voyages website updates and expands these activities to reflect new data from subsequent generations of the survey, advances in web technology, and evolving practices in science education. Voyages provides access to quality astronomy, astrophysics, and engineering materials to educators seeking an inquiry approach to fundamental concepts. During this session we will provide an overview of the design and development of Skyserver Voyages and discuss ways to apply this resource at K-12 and university levels.

  13. Building a Successful Teachers' Workshop in Astronomy & Astrophysics

    Science.gov (United States)

    Smecker-Hane, T. A.; Thornton, C. E.

    2005-12-01

    We discuss the Teachers' Workshop in Astronomy & Astrophysics, a 2-day long summer workshop we designed to aid K-12 grade teachers in incorporating astronomy and astrophysics into their curricula. These workshops are part of a faculty-led outreach program entitled Outreach in Astronomy & Astrophysics with the UCI Observatory, funded by an NSF FOCUS grant to the University of California, Irvine. Approximately 20 teachers from the Compton, Newport/Mesa and Santa Ana Unified School Districts attend each workshop. Our teachers realize that astronomy captures the imagination of their students, and thus lessons in astronomy can very effectively convey a number of challenging math and science concepts. Our workshop is designed to give teachers the content and instruction needed to achieve that goal. Because only a small fraction of teachers have taken a college astronomy course, an important component of the workshop is lectures on: (1) the motion of objects in the night sky, moon phases and the seasons, (2) the solar system, (3) the physics of light, and (4) interesting applications such as searching for planets around other stars and charting the expansion history of the Universe. The second important component of the workshop is the kit of material each teacher receives, which includes a introductory astronomy textbook, planetarium software, and the ASP's "Universe at Your Fingertips" and "More Universe at Your Fingertips", etc.. The latter two books give teachers many examples of creative hands-on activities and experiments they can do with their classes and instruction on how to build a coherent curriculum for their particular grade level. We also introduce teachers to Contemporary Laboratory Exercises in Astronomy (CLEA), a suite of computer lab exercises that can be used effectively in high school physics classes. For more information, see http://www.physics.uci.edu/%7Eobservat/#e&o. Funding provided by NSF grant EHR-0227202 (PI: Ronald Stern).

  14. The Music and the Astronomy

    CERN Document Server

    Caballero, J A; Caballero, I

    2008-01-01

    What do Brian May (the Queen's lead guitarist), William Herschel and the Jupiter Symphony have in common? And a white dwarf, a piano and Lagartija Nick? At first glance, there is no connection between them, nor between the Music and the Astronomy. However, there are many revealing examples of musical Astronomy and astronomical Music. This four-page proceeding describes the sonorous poster that we showed during the VIII Scientific Meeting of the Spanish Astronomical Society.

  15. News clippings for introductory astronomy

    Science.gov (United States)

    Bobrowsky, Matthew

    1999-09-01

    Most students entering our introductory astronomy course for nonscience majors arrive not merely lacking scientific facts-they also have misconceptions about the nature of science, and many have a handicapping ``science anxiety'' (in addition to math anxiety). So I have added a ``current science'' requirement to our introductory course. Each student must compile a file of five astronomy news articles taken from readily available sources.

  16. The European Association for Astronomy Education

    Science.gov (United States)

    Reichen, M.

    2006-06-01

    The still very young EAAE (officially founded in November 1995) is an association grouping astronomy minded "educators" (teachers, professional and amateur astronomers, etc.) whose main goal is the development of the place and role of astronomy teaching at various educational levels. An executive council of nine persons is in charge of the large-scale cohesion of the association, while two standing committees (financial support, communication network) and seven working groups (astronomical concepts, didactic materials, training of teachers, student projects, planetarium links, research on teaching materials, and public education) form the structure through which each member can contribute to the association's actions. Each one of these groups is "multi-national" (members come from over twenty countries in Europe and elsewhere), and thus the adopted structure favors the emergence of an international network of teachers, one of the EAAE's primary concerns. Different projects have been achieved or are on the way of achievement (such as the AOL "astronomy on line," the set up of a summer school for teachers, simultaneous observations of solar and lunar eclipses by students all over Europe, development and testing of didactic material, etc.) partially showing the great educational potential of the EAAE.

  17. Lenses for Seeing Astronomy in Hawaii

    Science.gov (United States)

    Veincent, Lehua M.

    2012-01-01

    It is well know that there has been a history of societal and cultural conflict surrounding the development of Western astronomy science in Hawai'i. To the outside observer, it may seem that the conflict is a residual effect from the manner in which the observatories were built, or that Native Hawaiians simply do not want outsiders encroaching on sacred mountains. While there may be some in the Islands who strongly argue against the observatories for these reasons, there are also individuals that support the idea of such needed research in this progressive time of technology. More importantly, these explanations are overly simplistic. What cultural experts, practitioners and liaisons now recognize is that much of the unexpected difficulties encountered in developing the Hawaiian workforce, science, technologies and sympathies to support the observatories, lie in a failure to understand the Native Hawaiian ontology related to themselves and their place in the world. One very simple way to characterize a Native Hawaiian worldview is that astronomy is not an isolated subject of study; rather, astronomy serves as a deeply interconnected human interface between the ocean, the land, language, genealogy, and a sense of place. In this paper Ke Kumu Lehua Veincent will describe the Hawaiian worldview, and shed light on the problem areas where this worldview, and the strictly academic view of astronomy come into conflict. Cultural intelligence and ancestral knowledge is also brought forth that suggests a much needed pathway in which these two viewpoints can engage and coexist with pono,or with balance without compromising what was, what is, and what is yet to come striving for continuous improvement, in science and for the people of Hawai'i.

  18. Variable Star Network: World Center for Transient Object Astronomy and Variable Stars

    Science.gov (United States)

    Kato, Taichi; Uemura, Makoto; Ishioka, Ryoko; Nogami, Daisaku; Kunjaya, Chatief; Baba, Hajime; Yamaoka, Hitoshi

    2004-03-01

    Variable Star Network (VSNET) is a global professional-amateur network of researchers in variable stars and related objects, particularly in transient objects, such as cataclysmic variables, black-hole binaries, supernovae, and gamma-ray bursts. The VSNET has been playing a pioneering role in establishing the field of transient object astronomy, by effectively incorporating modern advances in observational astronomy and global electronic networks, as well as collaborative progress in theoretical astronomy and astronomical computing. The VSNET is now one of the best-featured global networks in this field of astronomy. We review the historical progress, design concept, associated technology, and a wealth of scientific achievements powered by VSNET.

  19. A Grand Vision for European Astronomy

    Science.gov (United States)

    2007-09-01

    Today, and for the first time, astronomers share their global Science Vision for European Astronomy in the next two decades. This two-year long effort by the ASTRONET network of funding agencies, sponsored by the European Commission and coordinated by INSU-CNRS, underscores Europe's ascension to world leadership in astronomy and its will to maintain that position. It will be followed in just over a year by a prioritised roadmap for the observational facilities needed to implement the Vision. Implementation of these plans will ensure that Europe fully contributes to Mankind's ever deeper understanding of the wonders of our Universe. astronet logo "This is a great opportunity to help create a vibrant long-term future for astronomy and science" says Tim de Zeeuw (Leiden Observatory, The Netherlands) who led this community-wide effort. The ASTRONET Science Vision provides a comprehensive overview of the most important scientific questions that European astronomy should address in the next twenty years. The four key questions are the extremes of the Universe, from the nature of the dark matter and dark energy that comprise over 95% of the Universe to the physics of extreme objects such as black holes, neutron stars, and gamma-ray bursts; the formation of galaxies from the first seeds to our Milky Way; the formation of stars and planets and the origin of life; and the crucial question of how do we (and our Solar System) fit in the global picture. These themes reach well beyond the realm of traditional astronomy into the frontiers of physics and biology. The Vision identifies the major new facilities that will be needed to achieve these goals, but also stresses the need for parallel developments in theory and numerical simulations, high-performance computing resources, efficient astronomical data archiving and the European Virtual Observatory, as well as in laboratory astrophysics. "This report is a key input for the even more challenging task of developing a prioritised

  20. Large Databases in Astronomy

    Science.gov (United States)

    Szalay, Alexander S.; Gray, Jim; Kunszt, Peter; Thakar, Anirudha; Slutz, Don

    The next-generation astronomy digital archives will cover most of the sky at fine resolution in many wavelengths, from X-rays through ultraviolet, optical, and infrared. The archives will be stored at diverse geographical locations. The intensive use of advanced data archives will enable astronomers to explore their data interactively. Data access will be aided by multidimensional spatial and attribute indices. The data will be partitioned in many ways. Small tag indices consisting of the most popular attributes will accelerate frequent searches. Splitting the data among multiple servers will allow parallel, scalable I/O and parallel data analysis. Hashing techniques will allow efficient clustering, and pair-wise comparison algorithms that should parallelize nicely. Randomly sampled subsets will allow debugging otherwise large queries at the desktop. Central servers will operate a data pump to support sweep searches touching most of the data. The anticipated queries will require special operators related to angular distances and complex similarity tests of object properties, like shapes, colors, velocity vectors, or temporal behaviors. These issues pose interesting data management challenges.

  1. The Concise Knowledge Astronomy

    Science.gov (United States)

    Clerke, Agnes Mary; Fowler, Alfred; Ellard Gore, John

    2011-01-01

    Preface; Section I. History Agnes M. Clerke: 1. From Hipparchus to Laplace; 2. A century of progress; Section II. Geometrical Astronomy and Astronomical Instruments A. Fowler: 1. The Earth and its rotation; 2. The Earth's revolution round the Sun; 3. How the positions of the heavenly bodies are defined; 4. The Earth's orbit; 5. Mean solar time; 6. The movements of the Moon; 7. Movements of planets, satellites, and comets; 8. Eclipses and occultations; 9. How to find our situation on the Earth; 10. The exact size and shape of the earth; 11. The distances and dimensions of the heavenly bodies; 12. The masses of celestial bodies; 13. Gravitational effects of Sun and moon upon the Earth; 14. Instrumental measurement of angles and time; 15. Telescopes; 16. Instruments of precision; 17. Astrophysical instruments; Section III. The Solar System Agnes M. Clerke: 1. The solar system as a whole; 2. The Sun; 3. The Sun's surroundings; 4. The interior planets; 5. The Earth and Moon; 6. The planet Mars; 7. The asteroids; 8. The planet Jupiter; 9. The Saturnian system; 10. Uranus and Neptune; 11. Famous comets; 12. Nature and origin of comets; 13. Meteorites and shooting stars; Section IV. The Sidereal Heavens J.E. Gore: 1. The stars and constellations; 2. Double, multiple, and coloured stars; 3. The distances and motions of the stars; 4. Binary stars; 5. Variable and temporary stars; 6. Clusters and nebulae; 7. The construction of the heavens; Index.

  2. Astronomy in India a historical perspective

    CERN Document Server

    2014-01-01

    India has a strong and ancient tradition of astronomy, which seamlessly merges with the current activities in Astronomy and Astrophysics in the country. While the younger generation of astronomers and students are reasonably familiar with the current facilities and the astronomical research, they might not have an equally good knowledge of the rich history of Indian astronomy. This particular volume, brought out as a part of the Platinum Jubilee Celebrations of Indian National Science Academy, concentrates on selected aspects of historical development of Indian astronomy in the form of six invited chapters. Two of the chapters – by Balachandra Rao and M.S. Sriram – cover ancient astronomy and the development of calculus in the ancient Kerela text Yuktibhasa. The other four chapters by B.V. Sreekantan, Siraj Hasan, Govind Swarup and Jayant Narlikar deal with the contemporary history of Indian astronomy covering space astronomy, optical astronomy, radio astronomy and developments in relativistic astrophysic...

  3. Southern Africa Regional Office of Astronomy for Development: A New Hub for Astronomy for Development

    Science.gov (United States)

    Siseho Mutondo, Moola

    2015-08-01

    A new Astronomy for Development hub needs innovative tools and programs. SAROAD is developing exciting tools integrating Raspberry Pi® technology to bring cost-effective astronomy content to learning centres. SAROAD would also like to report achievements in realising the IAU's strategic plan. In order to manage, evaluate and coordinate regional IAU capacity building programmes, including the recruitment and mobilisation of volunteers, SAROAD has built an intranet that is accessible to regional members upon request. Using this resource, regional members can see and participate in regional activities. This resource also forms the foundation for closer collaboration between SAROAD member countries. SAROAD has commenced with projects in the three Task Force areas of Universities and Research, Children and Schools and Public Outreach. Under the three Task Force areas, a total of seven projects have commenced in Zambia. A further two projects involve the collaboration of Zambia and other regional member countries in order to foster engagement with important regional astronomy facilities (e.g. SKA). SAROAD has identified the IAU’s International Year of Light and a starting point for offering regional support for IAU-endorsed global activities. SAROAD has set up a hub dedicated to regional events and activities about the International Year of Light. SAROAD has a database of regional authorities to enable contact with the region's decision makers and experts. SAROAD will hold an annual event which brings forum for astronomy for development. The creation of the database and the SAROAD Road show is a first step towards this goal. The SAROAD website has helped to advertise upcoming events for astronomy development and education; it is used to provide advice, guidance and information for astronomers in all countries in the Southern Africa. Fundraising is the primary goal for SAROAD in 2015 towards financial self-sufficiency by 2020. We report on the methods that work best

  4. AstronomyCenter.org - A Digital Library for Astronomy 101

    Science.gov (United States)

    Gagne, M.; Monahan, P.; Deustua, S.; Mason, B.

    2004-12-01

    The AAS is sponsoring the development of a digital collection of online resources for teaching introductory astronomy: astronomycenter.org. Astronomy Center is part of the ComPADRE project with the AIP and its member organizations (see Deustua et al. at this meeting). The goal of Astronomy Center is to build a portal that will be a broad collection of high-quality digital resources, a useful and inviting interface to search and browse the collection, and an online meeting place for faculty at a variety of institutions to gather and share information. The collection will be launched in early 2005 and will initially contain a few hundred resources, selected primarily by Astronomy Center staff. The collection will grow through user and author submissions. Meanwhile, resources will be peer-reviewed and featured on the site as the collection grows. We will present the astronomycenter.org site, the user interface, some resources in the collection, the peer review process, and how members of the community can get involved with Astronomy Center. This work was made possible by a NSF National Science, Technology, Engineering and Mathematics Digital Library (NSDL) grant to the AAPT, AIP, and AAS.

  5. New Technology Lunar Astronomy Mission

    Science.gov (United States)

    Chen, P. C.; Oliversen, R. J.; Barry, R. K.; Romeo, R.; Pitts, R.; Ma, K. B.

    1995-12-01

    A scientifically productive Moon-based observatory can be established in the near term (3-5 years) by robotic spacecraft. Such a project is affordable even taking into account NASA's currently very tight budget. In fact the estimated cost of a lunar telescope is sufficiently low that it can be financed by private industry, foundations, or wealthy individuals. The key factor is imaginative use of new technologies and new materials. Since the Apollo era, many new areas of space technology have been developed in the US by NASA, the military, academic and industry sectors, ESA, Japan, and others. These include ultralite optics, radiation tolerant detectors, precision telescope drives incorporating high temperature superconductors, smart materials, active optics, dust and thermal control structures, subminiature spectrometers, tiny radio transmitters and receivers, small rockets, innovative fuel saving trajectories, and small precision landers. The combination of these elements makes possible a lunar observatory capable of front line astrophysical research in UV-Vis-IR imaging, spectrometry, and optical interferometry, at a per unit cost comparable to that of Small Explorer (SMEX) class missions. We describe work in progress at NASA GSFC and elsewhere, applications to other space projects, and spinoff benefits to ground-based astronomy, industry, and education.

  6. Planetary radio astronomy receiver. [experiment on Voyager spacecraft

    Science.gov (United States)

    Lang, G. J.; Peltzer, R. G.

    1977-01-01

    The planetary radio astronomy (PRA) experiment on the Voyager spacecraft will measure the amplitude, spectrum, time variations, and polarization of radio emissions over a frequency range of 1.2 kHz to 40.5 MHz with the aid of the PRA receiver (PRAR) and two 10-m orthogonal monopoles. Sensitivity and dynamic range will allow observation of a wide range of Jovian emissions from near earth to encounter. This paper describes the system elements, including the preamp/attenuator/calibrator, the LF polarization discriminator, the four LF-IF amplifier stages, the HF polarization discriminator, the translation LO, the log-IF and detector, the frequency synthesizer, the data processor, control system, power supply, and antennas.

  7. Early Science with SOFIA, the Stratospheric Observatory for Infrared Astronomy

    CERN Document Server

    Young, E T; Marcum, P M; Roellig, T L; De Buizer, J M; Herter, T L; Güsten, R; Dunham, E W; Temi, P; Andersson, B -G; Backman, D; Burgdorf, M; Caroff, L J; Casey, S C; Davidson, J A; Erickson, E F; Gehrz, R D; Harper, D A; Harvey, P M; Helton, L A; Horner, S D; Howard, C D; Klein, R; Krabbe, A; McLean, I S; Meyer, A W; Miles, J W; Morris, M R; Reach, W T; Rho, J; Richter, M J; Roeser, H -P; Sandell, G; Sankrit, R; Savage, M L; Smith, E C; Shuping, R Y; Vacca, W D; Vaillancourt, J E; Wolf, J; Zinnecker, H; 10.1088/2041-8205/749/2/L17

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7-m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 micron to 1.6 mm, SOFIA operates above 99.8 % of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center DLR, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This article provides an overview of the observatory and its early performance.

  8. Kantian epistemology as an alternative to heroic astronomy

    Science.gov (United States)

    Mclaughlin, W. I.

    1985-01-01

    Theoretical and observational methods in astronomy have advanced to a point where certain of their outcomes are difficult to comprehend with the traditional categories of human knowledge. The philosophical discipline of epistemology, the theory of knowledge, is used here to address four current problems in observational astronomy, exobiology, cosmology, and quantum mechanics. The problems are united by an epistemological content which, when unrecognized, has resulted in some heroic solutions of an ad hoc nature. Kant's critical philosophy is employed because his work is consistent with basic attitudes in present-day physics and biology.

  9. Consecutive Course Modules Developed with Simple Materials to Facilitate the Learning of Basic Concepts in Astronomy

    Science.gov (United States)

    Okulu, Hasan Zuhtu; Oguz-Unver, Ayse

    2015-01-01

    From the perspective of teaching, the huge natural laboratory that astronomy provides constitutes the most prominent connection between astronomy and other branches of science. The purpose of this research was to provide educators with activities of observation using simple materials that were developed to facilitate the teaching of basic concepts…

  10. Spatial Thinking as the Dimension of Progress in an Astronomy Learning Progression

    Science.gov (United States)

    Plummer, Julia D.

    2014-01-01

    The big idea of "celestial motion", observational astronomy phenomena explained by the relative position and motion of objects in the solar system and beyond, is central to astronomy in primary and secondary education. In this paper, I argue that students' progress in developing productive, scientific explanations for this class of…

  11. Introducing Slide Sets for the Introductory Astronomy Instructor

    Science.gov (United States)

    Meinke, Bonnie K.; Schneider, Nicholas; Brain, David; Schultz, Gregory; Buxner, Sanlyn; Smith, Denise

    2014-11-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms.In an effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed “DPS Discoveries”, which are short, topical presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides that cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide that includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the Discovery slides and connect them to NASA mission science. http://dps.aas.org/education/dpsdisc Similarly, the NASA SMD Astrophysics Forum is coordinating the development of a series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The “Astro 101 slide sets” are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (not yet in their textbooks) into the

  12. Introducing Astronomy into Mozambican Society

    CERN Document Server

    Ribeiro, V A R M; Besteiro, A M A R; Geraldes, H; Maphossa, A M; Nhanonbe, F A; Uaissine, A J R

    2009-01-01

    Mozambique has been proposed as a host for one of the future Square Kilometre Array stations in Southern Africa. However, Mozambique does not possess a university astronomy department and only recently has there been interest in developing one. South Africa has been funding students at the MSc and PhD level, as well as researchers. Additionally, Mozambicans with Physics degrees have been funded at the MSc level. With the advent of the International Year of Astronomy, there has been a very strong drive, from these students, to establish a successful astronomy department in Mozambique. The launch of the commemorations during the 2008 World Space Week was very successful and Mozambique is to be used to motivate similar African countries who lack funds but are still trying to take part in the International Year of Astronomy. There hare been limited resources and funding, however there is a strong will to carry this momentum into 2009 and, with this, influence the Government to introduce Astronomy into its nationa...

  13. Voyager planetary radio astronomy studies

    Science.gov (United States)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  14. Crowdfunding Astronomy Research With Google Sky

    Science.gov (United States)

    Metcalfe, Travis S.

    2015-12-01

    For nearly four years, NASA's Kepler space telescope searched for planets like Earth around more than 150,000 stars similar to the Sun. In 2008 with in-kind support from several technology companies, our non-profit organization established the Pale Blue Dot Project, an adopt-a-star program that supports scientific research on the stars observed by the Kepler mission. To help other astronomy educators conduct successful fundraising efforts, I describe how this innovative crowdfunding program successfully engaged the public over the past seven years to help support an international team in an era of economic austerity.

  15. Astronomy in the Service of Christianity

    Science.gov (United States)

    McCluskey, Stephen C.

    Medieval European scholars drew on ancient traditions of astronomical knowledge to develop astronomical practices that served the needs of religious institutions by defining the sacred time and sacred space of religious ritual. Techniques employing the luni-solar calendar to determine the date of Easter, observations of the stars and Sun to determine the time of prayer, and orienting churches astronomically to face the symbolically important direction, east, were widely practiced. These varieties of religious astronomy were employed by persons of varying levels of education, working within a variety of contexts.

  16. Asynchronous, web-based course in astronomy

    Science.gov (United States)

    Spergel, M.

    The course described here is a general educational, non-prerequisite and non- mathematical college course in astronomy offered on the web. It consists of readings from the text plus other periodical sources both online and offline. The course also requires the student to utilize a virtual planetarium to perform exercises in viewing the sky. The students respond to conceptual, multiple-choice questions. This course gives the student a sense of the night sky through the use of computer simulations and night observation. The students learn to understand and express scientific ideas. In addition, since the course is enhanced in computer usage and writing, students also develop these important skills.

  17. Status of High-Energy Neutrino Astronomy

    CERN Document Server

    Kowalski, Marek

    2014-01-01

    With the recent discovery of high-energy neutrinos of extra-terrestrial origin by the IceCube neutrino observatory, neutrino-astronomy is entering a new era. This review will cover currently operating open water/ice neutrino telescopes, the latest evidence for a flux of extra-terrestrial neutrinos and current efforts in the search for steady and transient neutrino point sources. Generalised constraints on potential astrophysical sources are presented, allowing to focus the hunt for the sources of the observed high-energy neutrinos.

  18. 'Land-marks of the universe': John Herschel against the background of positional astronomy.

    Science.gov (United States)

    Case, Stephen

    2015-01-01

    John Herschel (1792-1871) was the leading British natural philosopher of the nineteenth century, widely known and regarded for his work in philosophy, optics and chemistry as well as his important research and popular publications on astronomy. To date, however, there exists no extended treatment of his astronomical career. This paper, part of a larger study exploring Herschel's contributions to astronomy, examines his work in the context of positional astronomy, the dominant form of astronomical practice throughout his lifetime. Herschel, who did not himself practice positional astronomy and who was known for his non-meridional observations of specific stellar objects, was nonetheless a strong advocate for positional astronomy-but for very different reasons than the terrestrial applications to which it was most often put. For Herschel, the star catalogues of positional astronomy were the necessary observational foundation upon which information about the stars as physical objects could be constructed. Positional astronomy practiced in the great national observatories was not about navigation or timekeeping; it was a way to standardize stellar observations and make them useful data for constructing theories of the stars themselves. For Herschel, the seeds of the new astronomy emerged from the practices of the old. PMID:26221834

  19. 'Land-marks of the universe': John Herschel against the background of positional astronomy.

    Science.gov (United States)

    Case, Stephen

    2015-01-01

    John Herschel (1792-1871) was the leading British natural philosopher of the nineteenth century, widely known and regarded for his work in philosophy, optics and chemistry as well as his important research and popular publications on astronomy. To date, however, there exists no extended treatment of his astronomical career. This paper, part of a larger study exploring Herschel's contributions to astronomy, examines his work in the context of positional astronomy, the dominant form of astronomical practice throughout his lifetime. Herschel, who did not himself practice positional astronomy and who was known for his non-meridional observations of specific stellar objects, was nonetheless a strong advocate for positional astronomy-but for very different reasons than the terrestrial applications to which it was most often put. For Herschel, the star catalogues of positional astronomy were the necessary observational foundation upon which information about the stars as physical objects could be constructed. Positional astronomy practiced in the great national observatories was not about navigation or timekeeping; it was a way to standardize stellar observations and make them useful data for constructing theories of the stars themselves. For Herschel, the seeds of the new astronomy emerged from the practices of the old.

  20. Explorers of the Southern Sky: A History of Australian Astronomy

    Science.gov (United States)

    Haynes, Raymond; Haynes, Roslynn D.; Malin, David; McGee, Richard

    1996-06-01

    This well-illustrated volume is the most comprehensive account of Australian astronomy to date. It is both an indispensable reference book on the history of astronomy in Australia, and a highly readable study of a scientific discipline in the context of emerging nationhood. It covers not only the science, but the individuals involved and the social and economic climate in which they worked. Starting from the ancient Aboriginal beliefs about the Sky World - the earliest known astronomy, anywhere in the world - we are led through to the most exciting high-tech current and projected research being carried out at Australia's world-class national astronomy facilities, and by groups in Australian universities. All branches of astronomy are covered - optical, infrared, X-ray, gamma-ray, microwave, gravitational wave and theoretical - including the contribution of amateur astronomers. The non-technical language, many illustrations, and explanatory figures, ensure that this guide will appeal to a wide range of readers - including professional astronomers, historians of science, students, amateur astronomers and general readers.

  1. Astronomy education through interactive materials

    Science.gov (United States)

    Voelzke, Marcos Rincon; Antunes de Macêdo, Josué

    2015-08-01

    This study presents results of a survey conducted at the Federal Institution of Education, Science and Technology in the North of Minas Gerais (IFNMG), and aimed to investigate the potentialities of the use of interactive materials in the teaching of astronomy. An advanced training course with involved learning activities about basic concepts of astronomy was offered to thirty-two Licenciate students in Physics, Mathematics and Biological Sciences, using the mixed methodology, combined with the three pedagogical moments. Among other aspects, the viability of the use of resources was noticed, involving digital technologies and interactive materials on teaching of astronomy, which may contribute to the broadening of methodological options for future teachers and meet their training needs.

  2. Scientific literacy: astronomy at school

    Science.gov (United States)

    Gangui, A.; Iglesias, M.; Quinteros, C.

    Models constructed by scientists to explain the world often incorporate their actual individual conceptions about different physical phenomena. Likewise, prospective teachers reach general science courses with preconstructed and consistent models of the universe surrounding them. In this project we present a series of basic questionings that make us reflect on the present situation of the teaching-learning relationship in astronomy within the framework of formal education for elementary school teachers. Our project main aims are: 1) to contribute to finding out the real learning situation of preservice elementary teachers, and 2) from these studies, to try and develop didactic tools that can contribute to improve their formal education in topics of astronomy. In spite of being of chief importance within the science teaching topics, mainly due to its interdisciplinarity and cultural relevance, researches in didactics of astronomy are not well represented in our research institutes. FULL TEXT IN SPANISH

  3. A Brief Subject Index for N.A.S.A.'s Special Publications Relating to Astronomy.

    Science.gov (United States)

    Fraknoi, Andrew

    1981-01-01

    Presents NASA astronomy publications by subject: Earth; Moon; Mercury and Venus; Mars; Jupiter and Saturn; Planets (general); Comets, Meteors, and Asteroids; Sun; Astronomy from Various NASA Missions; Miscellaneous Astrophysics; Telescopes and Instrumentation; and Extra-Terrestrial Life. Includes listing of NASA Technical Conference Proceedings…

  4. Urban Middle-School Teachers' Beliefs about Astronomy Learner Characteristics: Implications for Curriculum

    Science.gov (United States)

    Miranda, Rommel J.

    2010-01-01

    This study addresses the link between urban teachers' beliefs about their students' ability to succeed in astronomy and their instructional decisions and practices in response to those beliefs. The findings suggest that teachers believe that the student characteristics that are necessary for high achievement in astronomy include specific cognitive…

  5. Introductory Astronomy Course at the University of Cape Town: Probing Student Perspectives

    Science.gov (United States)

    Rajpaul, Vinesh; Allie, Saalih; Blyth, Sarah-Louise

    2014-01-01

    We report on research carried out to improve teaching and student engagement in the introductory astronomy course at the University of Cape Town. This course is taken by a diverse range of students, including many from educationally disadvantaged backgrounds. We describe the development of an instrument, the Introductory Astronomy Questionnaire…

  6. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  7. The new Andean Regional Office of Astronomy for Development (ROAD)

    Science.gov (United States)

    Char, Farid; Forero-Romero, Jaime

    2015-08-01

    The Andean Regional Office of Astronomy for Development (ROAD) is a new effort in South America to serve several goals in astronomical development. Six countries (Bolivia, Colombia, Chile, Ecuador, Perú and Venezuela) will work together, representing a common language block in the Andean region and focusing on develop strategies to strengthen the professional research, education and popularization of astronomy. Our current Working Structure comprises a ROAD Coordinator and Coordinators per Task Force, as well as Organizing Committees, Collaborators and Volunteers.The participating institutions of this new ROAD have been involved in many projects involving each of the current OAD’s Task Forces: research, schools and children and public, exploring educational activities/material to be shared among the Andean countries, standardizing the knowledge and creating inspirational experiences. We expect to generate many efforts in order to bring a more homogeneous activity in each Andean country, taking into account the special role of Chile in global astronomy, due to its great conditions for astronomy and the involvement of many professional observatories, universities and astronomy institutions.Our current (and upcoming) most relevant activities includes: Andean Schools on Astronomy, Andean Graduate Program and Massive Open Online Courses (TF1); Virtual Training Sessions and Teaching material for the visually impaired students; Annual TF2 meeting to gather all the collaborators (TF2); Development for planetariums and Communicating Astronomy with the Public (TF3). The Andean region, in the other hand, will also be involved in at least two important events: the CAP Meeting in May 2016 and the XV LARIM in October 2016 (both in Colombia); and Chile will bid to host the XXXI IAU GA in 2021, with the aim of show the great advances in astronomical development from the Andean region and South America.

  8. Outreach Testing of Ancient Astronomy

    Science.gov (United States)

    Sanmartin, J. R. S.; Blanco, M. B. M.

    2015-10-01

    This work is an outreach approach to an ubiquitous recent problem in secondary-school education: how to face back the decreasing interest in natural sciences shown by students under 'pressure' of convenient resources in digital devices/applications. The approach rests on two features. First, empowering of teen-age students to understand regular natural events around, as very few educated people they meet could do. Secondly, an understanding that rests on personal capability to test and verify experimental results from the oldest science, astronomy, with simple instruments as used from antiquity down to the Renaissance (a capability restricted to just solar and lunar motions). Because lengths in astronomy and daily life are so disparate, astronomy basically involved observing and registering values of angles (along with times), measurements being of two types, of angles on the ground and of angles in space, from the ground. First, the gnomon, a simple vertical stick introduced in Babylonia and Egypt, and then in Greece, is used to understand solar motion. The gnomon shadow turns around during any given day, varying in length and thus angle between solar ray and vertical as it turns, going through a minimum (noon time, at a meridian direction) while sweeping some angular range from sunrise to sunset. Further, the shadow minimum length varies through the year, with times when shortest and sun closest to vertical, at summer solstice, and times when longest, at winter solstice six months later. The extreme directions at sunset and sunrise correspond to the solstices, swept angular range greatest at summer, over 180 degrees, and the opposite at winter, with less daytime hours; in between, spring and fall equinoxes occur, marked by collinear shadow directions at sunrise and sunset. The gnomon allows students to determine, in addition to latitude (about 40.4° North at Madrid, say), the inclination of earth equator to plane of its orbit around the sun (ecliptic), this

  9. How Create an Astronomy Outreach Program to Bring Astronomy to Thousands of People at Outdoor Concerts Astronomy Festivals, or Tourist Sites

    Science.gov (United States)

    Lubowich, Donald

    2015-08-01

    I describe how to create an astronomy program for thousands of people at outdoor concerts based on my $308,000 NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013), and the Astronomy Festival on the National Mall (AFNM, 10,000 people/yr).MAUS reached 50,000 music lovers at local parks and at the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. AFNM was started in 2010 with co-sponsorship by the White House Office of Science and Technology Policy. MAUS and AFMN combine solar, optical, and radio telescope observations; large posters/banners; hands-on activities, imaging with a cell phone mount; citizen science activities; hand-outs; and teacher info packet. Representatives from scientific institutions participated. Tyco Brahe, Johannes Kepler, and Caroline Herschel made guest appearances.MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience-often the first time they looked through a telescope. While events; use many telescopes for multiple targets; project a live image or video; select equipment that is easy to use, store, set-up, and take down; use hands-on astronomy activities; position the displays for maximum visibility (they are teachable moments); have educator hand-outs, show citizen science projects, promote astronomy clubs and science museums.

  10. Practical astronomy with your calculator

    CERN Document Server

    Duffett-Smith, Peter

    1989-01-01

    Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr

  11. Outreach Testing of Ancient Astronomy

    Science.gov (United States)

    Sanmartin, J. R. S.; Blanco, M. B. M.

    2015-10-01

    This work is an outreach approach to an ubiquitous recent problem in secondary-school education: how to face back the decreasing interest in natural sciences shown by students under 'pressure' of convenient resources in digital devices/applications. The approach rests on two features. First, empowering of teen-age students to understand regular natural events around, as very few educated people they meet could do. Secondly, an understanding that rests on personal capability to test and verify experimental results from the oldest science, astronomy, with simple instruments as used from antiquity down to the Renaissance (a capability restricted to just solar and lunar motions). Because lengths in astronomy and daily life are so disparate, astronomy basically involved observing and registering values of angles (along with times), measurements being of two types, of angles on the ground and of angles in space, from the ground. First, the gnomon, a simple vertical stick introduced in Babylonia and Egypt, and then in Greece, is used to understand solar motion. The gnomon shadow turns around during any given day, varying in length and thus angle between solar ray and vertical as it turns, going through a minimum (noon time, at a meridian direction) while sweeping some angular range from sunrise to sunset. Further, the shadow minimum length varies through the year, with times when shortest and sun closest to vertical, at summer solstice, and times when longest, at winter solstice six months later. The extreme directions at sunset and sunrise correspond to the solstices, swept angular range greatest at summer, over 180 degrees, and the opposite at winter, with less daytime hours; in between, spring and fall equinoxes occur, marked by collinear shadow directions at sunrise and sunset. The gnomon allows students to determine, in addition to latitude (about 40.4° North at Madrid, say), the inclination of earth equator to plane of its orbit around the sun (ecliptic), this

  12. Candidates of World Heritage Sites of Astronomy in Japan

    Science.gov (United States)

    Watanabe, Jun-ichi; Nakagiri, Masao

    2015-08-01

    Unfortunately there is no heritage site of astronomy until now in Japan. Here we report several candidates based on the importance from the historical point of view.One is the “Nisshinkan” Astronomical Observatory site of the Edo era. Many observatories were established in the Edo era, including "Asakusa observatory" of a Shogunate Government. However, most of them have been disappeared by the urban development. The only one remained until now is the “Nissshinkan” Astronomical Observatory site of which the basement made of stones is preserved. This was made in 1803 mainly for educational purpose at the “Nisshinkan” which was a local school for the Samurai’s children in Aizu area. Although a wooden building of the school was lost by a war, but this observatory mark exists because large basement of a few meters high remained. This site is now designated as a cultural asset by the local government, and can be recognized even at the present time.Another is the Repsold Meridian Transit which was designated as the Important Cultural Property of Japan in 2011. A Repsold meridian transit instrument is a telescope with a diameter of 13.5 cm and a focal length of 212 cm for meridian transit observations. It was manufactured by A. Repsold & Soehne Co. Ltd. in Hamburg, Germany in 1880, and purchased by the Naval Observatory and imported to Japan in 1881, becoming one of the most important telescopes in the dawning era of modern astronomy in Japan. The telescope escaped being damaged in the Great Kanto Earthquake, and continued to be used as a main telescope for time determination, longitude observation, and astrometry of heavenly bodies till the end of the 1950s. We confirmed that this telescope has retained its original form in 2008, and after restoration and repair, the telescope was widely opened for exhibition to the public. In June, 2011 it was designated as one of the important cultural properties of Japan. The related old instruments which brought modern

  13. Indian Astronomy: The Missing Link in Eurocentric History of Astronomy

    Science.gov (United States)

    Haque, Shirin; Sharma, Deva

    2016-01-01

    A comprehensive history of Astronomy should show in reasonable chronological order, the contributions from wherever they arise in the world, once they are reliably documented. However, the authors note that consistently, the extremely rich contributions from Ancient Indian scholars like Aryabatha and Bhramagupta are omitted in Eurocentric…

  14. Calibration of the cameras of the H.E.S.S. {gamma}-ray astronomy experiment and observations of the Galactic Centre above 100 GeV; Etalonnage des cameras de l'experience d'astronomie {gamma} H.E.S.S. et observations du centre galactique au-dela de 100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, L

    2005-05-15

    The H.E.S.S. experiment (High Energy Stereoscopic System) consists of four imaging atmospheric Cherenkov telescopes to study the southern astrophysical sources above 100 GeV. This thesis presents the detector as well as the analysis chain. The calibration methods are described in details and the systematic errors on the image amplitude are derived. Then, an analysis based on a semi-analytical model of the electromagnetic shower development in the atmosphere is presented. Tools to reconstruct the energy spectrum and the morphology of the very high energy {gamma}-ray sources are presented and applied to the Crab Nebula. Systematic errors associated to the spectrum analysis are estimated. All these techniques were applied to study the Galactic Centre emission above 100 GeV. The nature of the source detected in 2003 and 2004 observations is still unknown and its spectrum, variability and morphology are studied. Various candidates are proposed, among them the supermassive black hole Sgr A* located at the dynamical centre of the Milky Way, the supernova remnant Sgr A Est or interactions of accelerated particles with the dense medium of this region. In this thesis, the signal was interpreted in terms of dark matter annihilation (neutralinos or Kaluza-Klein bosons) in a dense halo located at the Galactic Centre. This analysis showed that, in the framework of these models, dark matter annihilation alone can not explain the H.E.S.S. signal. The main component would thus come from astrophysical sources. (author)

  15. Astronomy Education Project for Guangdong High Schools

    Indian Academy of Sciences (India)

    F. P. Pi; K. Y. Guan; J. Wang; H. G. Wang; Y. Liu; J. H. Fan

    2014-09-01

    Guangdong province is an active area in China for astronomy education and popularization. The current status and problems of astronomy education in high schools are reviewed. To tackle these problems, an astronomy education project for high school teachers and students was initiated by Guangzhou University in 2013. The purpose and key points of the projects are introduced in this paper.

  16. Blazing the Trail for Astronomy Education Research

    Science.gov (United States)

    Bailey, Janelle M.; Lombardi, Doug

    2015-01-01

    Education research has long considered student learning of topics in astronomy and the space sciences, but astronomy education research as a sub-field of discipline-based education research is relatively new. Driven by a growing interest among higher education astronomy educators in improving the general education, introductory science survey…

  17. The Challenges of Astronomy in Nigeria

    Science.gov (United States)

    Urama, J. O.

    Some Universities and Research Centres in Nigeria have, over the years, been extensively involved in both research and education in Astronomy and Space Sciences. However, they appear to be trading in an unwanted commodity as modern astronomy appears to continue to lack any serious public appreciation. This paper examines the challenges and problems confronting the development of Astronomy in the country.

  18. X-ray instrumentation in astronomy II; Proceedings of the Meeting, San Diego, CA, Aug. 15-17, 1988

    International Nuclear Information System (INIS)

    Various papers on X-ray instrumentation in astronomy are presented. Individual topics addressed include: concentrating hard X-ray collector, advanced X-ray Astrophysics Facility high resolution camera, Fano-noise-limited CCDs, linear CCD with enhanced X-ray quantum efficiency, advances in microchannel plate detectors, X-ray imaging spectroscopy with EEV CCDs, large aperture imaging gas scintillation proportional counter, all-sky monitor for the X-ray Timing Explorer, and miniature satellite technology capabilities for space astronomy. Also discussed are: high-resolution X-ray spectroscopy using microcalorimeters, high-throughput X-ray astrophysics cornerstone, gas mixtures for X-ray proportional counters, transmission grating spectrometer for SPEKTROSAT, efficiency of X-ray reflection gratings, soft X-ray spectrographs for solar observations, observability of coronal variations, Berkeley extreme-UV calibration facility, SURF-II radiometric instrumentation calibration facility, and evaluation of toroidal gratings in the EUV

  19. Laboratory Astrophysics and the State of Astronomy and Astrophysics

    CERN Document Server

    Brickhouse, AAS WGLA: Nancy; Drake, Paul; Federman, Steven; Ferland, Gary; Frank, Adam; Haxton, Wick; Herbst, Eric; Olive, Keith; Salama, Farid; Savin, Daniel Wolf; Ziurys, Lucy

    2009-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomy and astrophysics and will remain so into the foreseeable future. The impact of laboratory astrophysics ranges from the scientific conception stage for ground-based, airborne, and space-based observatories, all the way through to the scientific return of these projects and missions. It is our understanding of the under-lying physical processes and the measurements of critical physical parameters that allows us to address fundamental questions in astronomy and astrophysics. In this regard, laboratory astrophysics is much like detector and instrument development at NASA, NSF, and DOE. These efforts are necessary for the success of astronomical research being funded by the agencies. Without concomitant efforts in all three directions (observational facilities, detector/instrument development, and laboratory astrophysics) the future progress of astronomy and astrophysics is imperiled. In addition, new developments i...

  20. ``Curious About Astronomy?": Cornell University's Ask an Astronomer Website

    Science.gov (United States)

    Carruba, V.; Carter, L. M.; Cuk, M.; Jackson, M. A.; Jordan, C. E.; Krco, M.; Masters, K. L.; Pandian, J. D.; Rothstein, D. M.; Saintonge, A.; Scharringhausen, B. R.; Spekkens, K.; Springob, C. M.; Kornreich, D. A.; Curious Team

    2002-12-01

    ``Curious About Astronomy? Ask an Astronomer" is a website (http://curious.astro.cornell.edu) run by graduate and undergraduate student volunteers at Cornell University. Questions from the general public, submitted either by email or using a convenient web form, are answered by members of the Curious Team, and particularly interesting questions are posted on the website for visitors to browse. We receive and answer a few hundred questions each month from people of diverse backgrounds, including K-12 and post-secondary students and instructors, amateur astronomers, parents, scientists in various fields and others around the world with an interest in astronomy. We have recently upgraded the website, creating 22 different sections about specific topics in astronomy, a searchable index of hundreds of cross-listed questions and a page of suggestions and guidelines for teachers. The Curious Page has already become a source of useful information for the public. Questions and answers about the so-called ``Moon Hoax" and a recent news article about the Sun going supernova have received thousands of hits. By offering individual responses about any aspect of astronomy to anyone who has Internet access and by continually updating our archive of answered questions, we hope to provide a unique, growing astronomy resource for students, educators and the general public---as well as a valuable opportunity for the Curious Team to participate in educational outreach and improve its communication skills in a setting that requires no formal budget or faculty supervision.

  1. Creation and Maintenance of a Unified Astronomy Thesaurus

    Science.gov (United States)

    Gray, Norman; Erdmann, C.; Accomazzi, A.; Soles, J.; McCann, G.; Cassar, M.; Biemesderfer, C.

    2013-01-01

    We describe a collaborative effort to update and unify the various vocabularies currently in use in Astronomy into a single thesaurus that can be further developed and updated through broad community participation. The Unified Astronomy Thesaurus (UAT) will be an open, interoperable and community-supported thesaurus which unifies the existing divergent and isolated Astronomy & Astrophysics thesauri into a single high-quality, freely-available open thesaurus formalizing astronomical concepts and their inter-relationships. The UAT builds upon the existing IAU Thesaurus with major contributions from the Astronomy portions of the thesauri developed by the Institute of Physics Publishing and the American Institute of Physics. While the AAS has assumed formal ownership of the UAT, the work will be available under a Creative Commons License, ensuring its widest use while protecting the intellectual property of the contributors. We envision that development and maintenance will be stewarded by a broad group of parties having a direct stake in it. This includes professional associations (IVOA, IAU), learned societies (AAS, RAS), publishers (IOP, AIP), librarians and other curators working for major astronomy institutes and data archives. While the impetus behind the creation of a single thesaurus has been the wish to support semantic enrichment of the literature, we expect that use of the UAT (along with other vocabularies and ontologies currently being developed) will be much broader and will have a greater impact on discovery of both literatue and data products.

  2. Pre-course Results from the Astronomy Diagnostic Test

    Science.gov (United States)

    Hufnagel, Beth; Slater, Timothy; Deming, Grace; Adams, Jeff; Adrian, Rebecca L.; Brick, Christine; Zeilik, Michael

    2000-08-01

    We present selected results from the January 1999 semester pre-course administration of the Astronomy Diagnostic Test (ADT), a research-based, multiple-choice instrument that assesses student knowledge and understanding about selected concepts in astronomy. The ADT is valid for undergraduate non-science majors taking an introductory astronomy course. This paper briefly summarises the development and validation processes, which included pre-course administration to 1557 students in 22 classes attending 17 various post-secondary institutions across the USA in the January 1999 semester. Two interesting results of the ADT's pre-course administration are (1) the average class score of the ADT is about the same (32%) regardless of type of post-secondary institution or class size and (2) there is a significant gender difference, with women scoring an average of 28% and men 38%, with the standard errors both less than 1%. The current version of the ADT (Version 2 dated 21 June 1999) and a comparative by-class database is available to astronomy instructors at the (USA) Association of Astronomy Educators' and the National Institute for Science Education's (NISE) WebPages.

  3. Europe Unveils 20-Year Plan for Brilliant Future in Astronomy

    Science.gov (United States)

    2008-11-01

    for Earth Sciences and Astronomy (INSU) of the CNRS. To build consensus on priorities in a very diverse community, the Science Vision and Roadmap were developed in an open process involving intensive interaction with the community through large open meetings and feedback via e-mail and the web. The result is a plan now backed by astronomers in 28 Member and Associated States of the EU, with over 500 million inhabitants. Over 60 selected experts from across Europe contributed to the construction of the ASTRONET Roadmap, ensuring that European astronomy has the tools to compete successfully in answering the challenges of the Science Vision. They identified and prioritised a set of new facilities to observe the Universe from radio waves to gamma rays, to open up new ways of probing the cosmos, such as gravitational waves, and to advance in the exploration of our Solar System. In the process, they considered all the elements needed by a successful scientific enterprise, from global-scale cooperation on the largest mega-project to the need for training and recruiting skilled young scientists and engineers. One of two top-priority large ground-based projects is ESO's European Extremely Large Telescope. Its 42-metre diameter mirror will make the E-ELT the largest optical/near-infrared telescope in the world -- "the biggest eye on the sky". The science to be done with the E-ELT is extremely exciting and includes studies of exoplanets and discs, galaxy formation and dark energy. ESO Director General Tim de Zeeuw says: "The top ranking of the E-ELT in the Roadmap is a strong endorsement from the European astronomical community. This flagship project will indisputably raise the European scientific, technological and industrial profile". Among other recommendations, the Roadmap considers how to maximise the future scientific impact of existing facilities in a cost-effective manner. It also identifies a need for better access to state-of-the art computing and laboratory facilities

  4. Olfar orbiting low frequency antenna for radio astronomy

    NARCIS (Netherlands)

    Bentum, Mark; Boonstra, Albert Jan

    2009-01-01

    New interesting astronomical science drivers for very low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. However, astronomical observations with Earth-bound radio telescopes at very

  5. Greek Astronomy PhDs: The last 200 years

    CERN Document Server

    Charmandaris, V

    2015-01-01

    We have recently compiled a database with all doctoral dissertations (PhDs) completed in modern Greece (1837-2014), in the general area of astronomy and astrophysics, as well as in space and ionospheric physics. A preliminary statistical analysis of the data is presented, along with a discussion of the general trends observed.

  6. MPS/CAS Partner Group on Radio Astronomy

    Institute of Scientific and Technical Information of China (English)

    Han Jinlin; Richard Wielebinski

    2004-01-01

    @@ The Partner Group does research on cosmic magnetic fields using radio astronomy methods. Magnetic fields are found in every astronomical object: the Earth, the Sun,planets, stars, pulsars, the Milky Way,nearby galaxies and in distant radio galaxies. The role of the magnetic fields in the cosmic universe has not been well investigated, mainly because of the difficulties of their observation.

  7. Teaching radio astronomy with Affordable Small Radio Telescope (ASRT)

    Science.gov (United States)

    Joshi, Bhal Chandra

    A simple, easy to build and portable radio telescope, called Affordable Small Radio Telescope (ASRT), has been developed by the Radio Physics Laboratory (RPL), a radio astronomy teaching unit associated with the National Centre for Radio Astrophysics (TIFR) and Inter-University Centre for Astronomy and Astrophysics (IUCAA), which are two premier astronomy institutes in India. ASRT consists of off-the-shelf available Direct to Home television dishes and is easy to assemble. Our design is scalable from simple very low cost telescope to more complex yet moderately costing instrument. ASRT provides a platform for demonstrating radio physics concepts through simple hands-on experiment as well as for carrying out solar monitoring by college/University students. The presentation will highlight the concept of ASRT and the different experiments that can be carried out using it. The solar monitoring observations will be discussed along-with details of methods for calibrating these measurements. The pedagogical usefulness of ASRT in introducing undergraduatephysics students to astrophysics, measurements and analysis methods used in radio astronomy will also be discussed. Use of ASRT in the last three years in the programs of RPL, namely the annual Radio Astronomy Winter School for College students (RAWSC) and Pulsar Observing for Students (POS) is also presented. This year a new program was initiated to form a virtual group of an ASRT community, which will not only share their measurements, but also think of improving the pedagogical usefulness of ASRT by innovative experiments. This initiative is presented with the best practices drawn from our experience in using ASRT as a tool for student training in space sciences. The talk will also point out future ideas in involving a larger body of students in simple radio astronomy experiments with the ASRT, which RPL is likely to nucleate as part of its mandate.

  8. Astronomy Education Challenges in Egypt

    Science.gov (United States)

    El Fady Beshara Morcos, Abd

    2015-08-01

    One of the major challenges in Egypt is the quality of education. Egypt has made significant progress towards achieving the Education for All and the Millennium Development Goals (MDGs). Many associations and committees as education reform program and education support programs did high efforts in supporting scientific thinking through the scientific clubs. The current state of astronomical education in Egypt has been developed. Astronomy became a part in both science and geography courses of primary, preparatory and secondary stages. Nowadays the Egyptian National Committee for Astronomy, put on its shoulders the responsibility of revising of astronomy parts in the education courses, beside preparation of some training programs for teachers of different stages of educations, in collaboration with ministry of education. General lectures program has been prepared and started in public places , schools and universities. Many TV and Radio programs aiming to spread astronomical culture were presented. In the university stage new astronomy departments are established and astrophysics courses are imbedded in physics courses even in some private universities.

  9. Astronomy and Astrophysics in India

    Science.gov (United States)

    Narlikar, J.; Murdin, P.

    2001-07-01

    The growth in astronomy and astrophysics (A&A) in India has been mostly since the country achieved independence in 1947. The present work is carried out in a few select research institutes and in some university departments. The Astronomical Society of India has around 300 working A&A scientists as members, with another 50-60 graduate students....

  10. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  11. Neutrino astronomy: Present and future

    Indian Academy of Sciences (India)

    Thomas McCauley

    2006-10-01

    I briefly review the present and future status of the burgeoning field of neutrino astronomy. I outline the astrophysics and particle physics goals, design, and performance of the various current and proposed neutrino telescopes. Also described are present results and future expectations.

  12. The Nineteenth-Century Revolution in Astronomy

    Science.gov (United States)

    Batten, Alan Henry

    2015-08-01

    The term "revolution" in scientific contexts usually refers either to the beginnings of modern western science in the sixteenth and seventeenth centuries, or to the two great revolutions of early twentieth century physics. Comparison of what was known at the beginning of the nineteenth century with what was known at the end, however, shows that century to have been one of transformation in astronomy, and in the other sciences, that amounts to "revolution". Astronomers in 1800 knew neither the nature of the Sun nor the distances of the stars. Developments in instrumentation enabled the first determinations of stellar parallax in the 1830s, and later enabled the solar prominences to be studied outside the brief momemnts of total eclipses. The development of photography and of spectroscopy led to the birth of observational astrophysics, while the greater understanding of the nature of heat and the rise of thermodynamics made possible the first attempts to investigate the theory of stellar structure. Nothing was known in 1800 of extra-galactic objects apart from some tentative identifcations by William Herschel but, by the end of the century, the discovery of the spiral structure of some nebulae had led some to believe that these were the "island universes" about which Kant had speculated. Of course, astrophysics and cosmology would be much further developed in the twentieth century and those of us whose careers spanned the second half of that century look back on it as a "golden age" for astronomy; but the nineteenth century was undoubtedly a time of rapid transformation and can be reasonably described as as one of the periods of revolution in astronomy.

  13. New astronomy with the Odin Satellite

    Science.gov (United States)

    Hjalmarson, A.

    On 20 February 2001 the Odin satellite - a new observatory for sub-millimetre wave spectroscopy - was launched from Svobodny in far-eastern Russia. The Odin project is a shared (50/50%) astronomy/aeronomy mission support ed by space agencies and scientists in Canada, Finland, France and Sweden. The satellite has been developed and is operated by the Swedish Space Corporation. The astronomy part of the mission is focussed on observations of line emission from interstellar H2O and O2. Odin houses a high-precision 1.1m diameter offset Gregorian telescope equipped with a very flexible cryogenic submm/mm receiver package. The frequency range 541-581 GHz is covered by three tuneable Schottky mixers and a fourth Schottky mixer covers the band 486-504 GHz.A 119 GHz fix-tuned HEMT preamplifier has been installed to allow very sensitive searches for interstellar O2. All receivers are operated in single-sideband mode. Any combination of four, three, or two receivers (depending upon the available power and mode of operation) can be used in combination with two auto-correlation spectrometers (bandwidth range: 100-800 MHz; resolution range: 0.125 -1 MHz) and an acousto-optical spectrometer, AOS (bandwidth: 1000 MHz; resolution 1 MHz). The Odin antenna beam-widths are about 2' and 9' at 557 and 119 GHz. For comparison, the SWAS (previous talk, by G. Melnick) antenna beam size is 3.3' x 4.5' at 557 GHz. In this talk I will focus on new Odin astronomy results where the higher angular resolution, higher frequency resolution, larger spectrometer bandwidth, higher sensitivity, or tuning capability (compared to SWAS) are important. Information on the Odin project can be found on the Odin web-page of the Swedish National Space Board (http://www.snsb.se/Odin/Odin.html).

  14. Schiaparelli and the dawn of astronomy

    Science.gov (United States)

    Antonello, E.

    Schiaparelli is remembered by astronomers and scholars interested in ancient astronomy in particular for his fundamental contributions to the understanding of ancient Greek astronomy and for his pioneer work on babylonian astronomy. In the present paper we will highlight some of his studies and ideas about: a) the origins and the primitive astronomy in the context of the european archaeology and anthropology researches, b) the problems in the analysis of a cuneiform tablet, and c) the interpretation of the astronomical content of a verse in the Old Testament, with an interesting implication for the present day researches in cultural astronomy and archaeoastronomy.

  15. Radio quiet, please! - protecting radio astronomy from interference

    CERN Document Server

    Van Driel, W

    2009-01-01

    The radio spectrum is a finite and increasingly precious resource for astronomical research, as well as for other spectrum users. Keeping the frequency bands used for radio astronomy as free as possible of unwanted Radio Frequency Interference (RFI) is crucial. The aim of spectrum management, one of the tools used towards achieving this goal, includes setting regulatory limits on RFI levels emitted by other spectrum users into the radio astronomy frequency bands. This involves discussions with regulatory bodies and other spectrum users at several levels - national, regional and worldwide. The global framework for spectrum management is set by the Radio Regulations of the International Telecommunication Union, which has defined that interference is detrimental to radio astronomy if it increases the uncertainty of a measurement by 10%. The Radio Regulations are revised every three to four years, a process in which four organisations representing the interests of the radio astronomical community in matters of sp...

  16. The Astronomy Diagnostic Test National Project: Watch Out FCI!

    Science.gov (United States)

    Zeilik, Michael; Deming, Grace L.; Hufnagel, Beth

    2002-04-01

    With funding from the NSF, a multidisciplinary team at the University of New Mexico transformed “Astro 101” from a mostly descriptive to a highly-focused conceptual course based on cognitive models of adult learning. By 1996, we had developed a mature implementation, which required alternative assessment tools. One of these, an Astronomy Diagnostic Test version 1 (ADT), was based on misconceptions research in astronomy, and demonstrated large and robust gains with hundreds of participants at UNM. To improve the ADT and expand its use, we formed the Consortium for Astronomy Education Research (CAER) to develop ADT version 2, which was released in June 1999. With additional NSF funding, we kicked off the ADT National Project, which has so far included over 5000 students in the pretest and almost 4000 in the posttest. I will present selected results from ADT 1 and 2, which now has a database almost as extensive as that of the Force Concept Inventory (FCI).

  17. Astronomy at school: present situation and future perspectives

    CERN Document Server

    Iglesias, Maria; Gangui, Alejandro

    2008-01-01

    Both the basic educational contents for students and study programs for science teachers include several topics in physics and astronomy, from the simplest ones to others as advanced as nuclear fusion to explain stellar evolution and space-time geometry for an approach to modern cosmology. In all these subjects, and most often in the simplest ones, alternative conceptions emerge, as both groups reach science course with preconstructed and consistent models of the universe surrounding them. In this work we present a series of basic questionings that make us reflect on the present situation of the teaching-learning relationship in astronomy within the framework of formal education. We then briefly explain our project aiming at finding the real learning situation of both students and prospective primary-school teachers in astronomical topics and, from the expected results of it, we point towards the need to develop didactic tools that could contribute to improve formal education in astronomy issues.

  18. Highlights of Astronomy, Vol. 16

    Science.gov (United States)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  19. Astronomy for Everyone: Harvard's Move Toward an All-Inclusive Astronomy Lab and Telescope

    Science.gov (United States)

    Bieryla, Allyson

    2016-01-01

    Harvard University has a growing astronomy program that offers various courses to the undergraduate concentrators, secondaries and non-majors. Many of the courses involve labs that use the 16-inch DFM Clay Telescope for night-time observations and the heliostat for observing the Sun. The goal is to proactively adapt the lab and telescope facilities to accommodate all students with disabilities. The current focus is converting the labs to accommodate visually impaired students. Using tactile images and sound, the intention is to create an experience equivalent to that of a student with full sight.

  20. Submm/FIR astronomy in Antarctica: Potential for a large telescope facility

    CERN Document Server

    Minier, Vincent; Olmi, L; Lagage, P -O; Spinoglio, L; Durand, G A; Daddi, E; Galilei, D; Gallee, H; Kramer, C; Marrone, D; Pantin, E; Sabbatini, L; Schneider, N; Tothill, N; Valenziano, L; Veyssière, C

    2008-01-01

    Preliminary site testing datasets suggest that Dome C in Antarctica is one of the best sites on Earth for astronomical observations in the 200 to 500 micron regime, i.e. for far-infrared (FIR) and submillimetre (submm) astronomy. We present an overview of potential science cases that could be addressed with a large telescope facility at Dome C. This paper also includes a presentation of the current knowledge about the site characterics in terms of atmospheric transmission, stability, sky noise and polar constraints on telescopes. Current and future site testing campaigns are finally described.

  1. The statistics of low frequency radio interference at the Murchison Radio-astronomy Observatory

    CERN Document Server

    Sokolowski, Marcin; Lewis, Morgan

    2016-01-01

    We characterize the low frequency radio-frequency interference (RFI) environment at the Murchison Radio-astronomy Observatory (MRO), the location selected for the low-frequency component of the Square Kilometre Array. Data were collected from the BIGHORNS instrument, located at the MRO, which records a contiguous bandwidth between 70 and 300 MHz, between November 2014 to March 2015 inclusive. The data were processed to identify RFI, and we describe a series of statistics in both the time and frequency domain, including modeling of the RFI occupancy and signal power as a series of distribution functions, with the goal of aiding future scientists and operation staff in observation planning.

  2. High-Energy Spectroscopic Astrophysics Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Kahn, Steven M; von Ballmoos, Peter

    2005-01-01

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  3. AstroJazz: Integrating Live Jazz and Astronomy Education

    Science.gov (United States)

    Morrow, C. A.

    2005-12-01

    AstroJazz is an innovative public education program in astronomy that blends stunning imagery with live jazz music and a touch of humor to awaken the cosmic curiosity of both adults and children. The program debuted in February 2005 at the Fiske Planetarium on the campus of the University of Colorado, Boulder with an astronomer-chanteuse (the author), a pianist, bassist, drummer, and technical assistant who created dome effects to compliment the PowerPoint slides associated with each song. This AstroJazz quartet played ten songs, five original tunes (Look Up!, Are We Alone? Andromeda Affaire, StarMan Blues, Star Kissed)), and five standard tunes with lyrical twists toward astronomy & astrobiology (e.g. Stormy Weather - Solar Style and Stardust a la SETI.) The hour-long program also includes educational interludes where the astronomy chanteuse interacts with the audience, providing insights and perspective into the wonders of our universe. The performance program that is handed to all audience members contains additional "gee-whiz" facts and provides leads to websites like Astronomy Picture of the Day and spaceweather.com that provide ongoing points of contact for public interest in astronomy. AstroJazz was very well received in its debut performance and now has several new opportunities to perform. Anecdotal evidence suggests that the AstroJazz program is engaging and educational for a very broad audience, including families with young children, world-class astronomers, and spouses of musicians who had never before been exposed to astronomy. This paper will describe the origins and intended evolution of AstroJazz, and offer a mini-sample of the music and slides used in the program. It will also discuss strategies for how the impact on audiences might be assessed.

  4. Astronomy, Visual Literacy, and Liberal Arts Education

    Science.gov (United States)

    Crider, Anthony

    2016-01-01

    With the exponentially growing amount of visual content that twenty-first century students will face throughout their lives, teaching them to respond to it with visual and information literacy skills should be a clear priority for liberal arts education. While visual literacy is more commonly covered within humanities curricula, I will argue that because astronomy is inherently a visual science, it is a fertile academic discipline for the teaching and learning of visual literacy. Astronomers, like many scientists, rely on three basic types of visuals to convey information: images, qualitative diagrams, and quantitative plots. In this talk, I will highlight classroom methods that can be used to teach students to "read" and "write" these three separate visuals. Examples of "reading" exercises include questioning the authorship and veracity of images, confronting the distorted scales of many diagrams published in astronomy textbooks, and extracting quantitative information from published plots. Examples of "writing" exercises include capturing astronomical images with smartphones, re-sketching textbook diagrams on whiteboards, and plotting data with Google Motion Charts or iPython notebooks. Students can be further pushed to synthesize these skills with end-of-semester slide presentations that incorporate relevant images, diagrams, and plots rather than relying solely on bulleted lists.

  5. High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements

    Science.gov (United States)

    Verhulst, Tobias G. W.; Sapundjiev, Danislav; Stankov, Stanimir M.

    2016-06-01

    The ionospheric behavior over Belgium during the partial solar eclipse of 20 March 2015 is analyzed based on high-resolution solar radio flux, vertical incidence sounding, and GPS TEC measurements. First results of ionosonde-based ionospheric plasma drift and tilt observations are presented and analyzed, including some traveling ionospheric disturbances caused by the eclipse. Also, collocated ionosonde and GPS measurements are used to reconstruct the time evolution of the vertical electron density distribution using the Royal Meteorological Institute (RMI) ionospheric specification system, called Local Ionospheric Electron Density profile Reconstruction (LIEDR).

  6. Online Information in Astronomy - From networking to a virtual observatory

    OpenAIRE

    Genova, Francoise

    2002-01-01

    Astronomy relies on long-term observations of variable phenomena, and conserving and reusing data is the key for major scientific objectives, such as the definition of objects and of their properties, or the study of variability and evolution, all this requiring statistical studies on large number of objects. Observations at different wavelengths, with different techniques, allow one to understand the physical phenomena at work in objects. In addition, astronomical observations rely more and ...

  7. Music Inspired by Astronomy: A Resource Guide Organized by Topic

    Science.gov (United States)

    Fraknoi, Andrew

    2012-01-01

    This annotated resource guide presents 133 pieces of music inspired by astronomical ideas, discoveries, or history, organized in 22 subject categories. Both classical and popular music are included, but only when a clear connection to astronomy could be established. Depending on your musical tastes, you are likely to find some pieces resonating…

  8. Student Understanding of Gravity in Introductory College Astronomy

    Science.gov (United States)

    Williamson, Kathryn E.; Willoughby, Shannon

    2012-01-01

    Twenty-four free-response questions were developed to explore introductory college astronomy students' understanding of gravity in a variety of contexts, including in and around Earth, throughout the solar system, and in hypothetical situations. Questions were separated into three questionnaires, each of which was given to a section of…

  9. A Course Connecting Astronomy to Art, History, and Literature

    Science.gov (United States)

    Olson, Don

    2015-01-01

    For the past 20 years the author has taught an Honors College course combining astronomy and the humanities. The purpose of this note is to give examples of methods that can be adapted to classroom use for topics including night sky paintings by Vincent van Gogh, Edvard Munch, and Claude Monet, historical events influenced by astronomical factors,…

  10. Our Place in the Universe. Session 1; History of Astronomy

    Science.gov (United States)

    Adams, Mitzi

    2016-01-01

    This session includes a very broad overview of a couple of the major ideas of astronomy, along with demonstrations of Earth's motions that, give rise to the seasons, show us the "faces" of Venus (and the Moon), and result in retrograde motion of the outer planets.

  11. How Will Astronomy Archives Survive The Data Tsunami?

    CERN Document Server

    Berriman, G Bruce

    2011-01-01

    The field of astronomy is starting to generate more data than can be managed, served and processed by current techniques. This paper has outlined practices for developing next-generation tools and techniques for surviving this data tsunami, including rigorous evaluation of new technologies, partnerships between astronomers and computer scientists, and training of scientists in high-end software engineering engineering skills.

  12. Armenia as a Regional Centre for Astronomy for Development activities

    Science.gov (United States)

    Mickaelian, A.

    2015-03-01

    The Byurakan Astrophysical Observatory (BAO, Armenia, http://www.bao.am) are among the candidate IAU Regional Nodes for Astronomy for Development activities. It is one of the main astronomical centers of the former Soviet Union and the Middle East region. At present there are 48 qualified researchers at BAO, including six Doctors of Science and 30 PhDs. Five important observational instruments are installed at BAO, the larger ones being 2.6m Cassegrain (ZTA-2.6) and 1m Schmidt (the one that provided the famous Markarian survey). BAO is regarded as a national scientific-educational center, where a number of activities are being organized, such as: international conferences (4 IAU symposia and 1 IAU colloquium, JENAM-2007, etc.), small workshops and discussions, international summer schools (1987, 2006, 2008 and 2010), and Olympiads. BAO collaborates with scientists from many countries. The Armenian Astronomical Society (ArAS, http://www.aras.am/) is an NGO founded in 2001; it has 93 members and it is rather active in the organization of educational, amateur, popular, promotional and other matters. The Armenian Virtual Observatory (ArVO, http://www.aras.am/Arvo/arvo.htm) is one of the 17 national VO projects forming the International Virtual Observatories Alliance (IVOA) and is the only VO project in the region serving also for educational purposes. A number of activities are planned, such as management, coordination and evaluation of the IAU programs in the area of development and education, establishment of the new IAU endowed lectureship program and organization of seminars and public lectures, coordination and initiation of fundraising activities for astronomy development, organization of regional scientific symposia, conferences and workshops, support to Galileo Teacher Training Program (GTTP), production/publication of educational and promotional materials, etc.

  13. Research amateur astronomy; Proceedings of the Symposium, La Paz, Mexico, July 7-12, 1991

    Science.gov (United States)

    Edberg, Stephen J. (Editor)

    1992-01-01

    The present volume on amateur astronomy deals with solar observations; planet, asteroid, and comet studies; photometry; education and communication; and history and sociology. Particular attention is given to the observation of the 1984 annular eclipse in Mexico, amateur solar astronomy in Germany, the Ashen Light of Venus, dust clouds on Mars in 1990, and the importance of comets Encke and Machholz. Also discussed are a UBVRI and occultation photometry acquisition and reduction software package for PC-based observatories, a Skyweek weekly newsletter on astronomy and spaceflight, and the Hubble Space Telescope and the Goddard High Resolution Spectrograph.

  14. NASA International Year of Astronomy 2009 Programs: Impacts and Future Plans (Invited)

    Science.gov (United States)

    Hasan, H.; Smith, D.; Stockman, S. A.

    2009-12-01

    The opportunity offered by the International Year of Astronomy (IYA) 2009 to increase the exposure of the public and students to NASA discoveries in astronomy resulted in several innovative programs which have reached audiences far and wide. Some examples of the impact of these programs and building on the success of these programs beyond 2009 will be discussed in this talk. The spectacular success of the traveling exhibit of NASA images to public libraries around the country prompted NASA to extend it to include more libraries. As a part of the IYA Cornerstone project From Earth To The Universe, NASA images were displayed at non-traditional sites such as airports, parks, and music festivals, exposing them to an audience which would otherwise have been unaware of them. The NASA IYA Student Ambassadors engaged undergraduate and graduate students throughout the U.S. in outreach programs they created to spread NASA astronomy to their local communities. NASA’s Afterschool Universe provided IYA training to community-based organizations, while pre-launch teacher workshops associated with the Kepler and WISE missions were designed to engage educators in the science of these missions. IYA activities have been associated with several missions launched this year. These include the Hubble Servicing Mission 4, Kepler, Herschel/Planck, LCROSS. NASA’sIYA website and Go Observe! feature remain popular. The associated IYA Discovery Guides and Observing with NASA MicroObservatory activities have guided the public and students to perform their own observations of the night sky and to interpret them. NASA intends to work with its Science Education and Public Outreach Forums (SEPOF) to develop a strategy to take forward the best of its IYA2009 plans forward so as to build on the momentum generated by IYA2009 and continue to keep the public and students engaged in the scientific exploration of the universe.

  15. The stars, the moon, and the shadowed earth: Viennese astronomy in the fifteenth century

    Science.gov (United States)

    Byrne, James Steven

    This dissertation is a study of astronomy at the University of Vienna from the beginning of the fifteenth century through the career of Johannes Regiomontanus (d. 1476), the university's most celebrated astronomer. Regiomontanus and his mentor Georg Peurbach (d. 1461) established a framework for the practice of astronomy, including the linkage of cosmology to astronomy, attempts to correct the errors and ambiguities of the medieval astronomical tradition, a renewed interest in Ptolemy's Almagest , and a program of observations intended as a basis for the reform of planetary tables and models, that remained in place for the more celebrated astronomical achievements of the following century. This study traces the roots of this framework to astronomical teaching at the University of Vienna in the first half of the fifteenth century, as well as its expansion by Regiomontanus as he moved from Vienna to Italy, Hungary, and Germany. Chapter One provides background for the reader unfamiliar with medieval, Ptolemaic astronomy, and also argues that the shift described in the next chapter was, in part, motivated by astrological concerns. Chapter Two demonstrates that, by the middle of the fifteenth century, Viennese astronomy had come to incorporate a significant element of Aristotelian cosmology. Chapter Three examines fourteenth- and fifteenth-century responses to the Theorica planetarum , the most common astronomical teaching text at medieval universities, arguing that university astronomers were capable of identifying and addressing problems with the Theorica in a sophisticated manner. Chapter Four argues that the seemingly contradictory aspects of Regiomontanus's astronomical career can be understood as all contributing to a program of reform that encompassed both the correction of astronomical tables on the basis of new and comprehensive observations as well as the construction of homocentric planetary models to replace the venerable Ptolemaic system. Chapter Five shows

  16. A Great Moment for Astronomy

    Science.gov (United States)

    1998-05-01

    VLT First Light Successfully Achieved The European Southern Observatory announces that First Light has been achieved with the first VLT 8.2-m Unit Telescope at the Paranal Observatory. Scientifically useful images have been obtained as scheduled, on May 25 - 26, 1998. A first analysis of these images convincingly demonstrates the exceptional potential of the ESO Very Large Telescope. Just one month after the installation and provisional adjustment of the optics, the performance of this giant telescope meets or surpasses the design goals, in particular as concerns the achievable image quality. Exposures lasting up to 10 minutes confirm that the tracking, crucial for following the diurnal rotation of the sky, is very accurate and stable. It appears that the concept developed by ESO for the construction of the VLT, namely an actively controlled, single thin mirror, yields a very superior performance. In fact, the angular resolution achieved even at this early stage is unequalled by any large ground-based telescope . The combination of large area and fine angular resolution will ultimately result in a sensitivity for point sources (e.g. stars), which is superior to any yet achieved by existing telescopes on Earth. The present series of images demonstrate these qualities and include some impressive first views with Europe's new giant telescope. After further optimization of the optical, mechanical and electronic systems, and with increasing operational streamlining, this telescope will be able to deliver unique astronomical data of the highest quality. The commissioning and science verification phases of the complex facility including instruments will last until April 1, 1999, at which time the first visiting astronomers will be received. The full significance of this achievement for astronomy will take time to assess. For Europe, this is a triumph of the collaboration between nations, institutions and industries. For the first time in almost a century, European

  17. The preliminary conceptions, the traditional resources and digital technologies in teaching of astronomy

    Science.gov (United States)

    de Macedo, J. A.; Voelzke, M. R.

    2014-07-01

    Despite being part of the official documents astronomy is rarely taught adequately in basic education. Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to make them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the Federal Institution of the North of Minas Gerais (IFNMG); ii) analysis of students' preconceptions about astronomy and digital technologies; iii) preparation of the course; iv) application of the education proposal. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. The results indicated that in the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; the rates of students' prior knowledge in relation to astronomy was low; an evidence of meaningfull earning of the concepts related to astronomy, and of viability of resource use involving digital technologies in the Teaching of astronomy.

  18. TOPS and Beyond: Training Master Teachers to Mentor Student Astronomy Projects Using the Faulkes Telescope-North

    Science.gov (United States)

    Bedient, J.; Meech, K. J.; Kadooka, M. A.; Mattei, J. A.; Hamai, J.; Hemphill, R.; Hu, S.

    2003-05-01

    2003 was the fifth and final year of the NSF-funded ``Towards Other Planetary Systems'' (TOPS) secondary school teacher training program conducted by the Institute for Astronomy in Hawai'i. While previous years concentrated on basic astronomy skills, cultural astronomy and astrobiology, TOPS 2003 focused on training master teachers and prior TOPS participants in the requisite skills to mentor student projects using the Faulkes Telescope-North (FTN), a 2-meter telescope under construction at the Haleakala High Altitude Observatory. The FTN and a twin in Australia will be the world's largest telescopes dedicated solely to education. This poster presentation describes the teacher's experiences with several prototype astrobiology projects suitable for a 2-meter-class telescope, including monitoring variable stars in star-forming regions, detecting extrasolar planet transits, and observing objects in the Kuiper Belt. Plans for partnering teachers with amateur astronomers proficient in observational techniques are also discussed; the American Association of Variable Star Observers (AAVSO) is a likely reservoir of such individuals. The recent selection of a University of Hawai'i group led by the TOPS Director as a NASA Astrobiology Institute Lead Team will provide a framework for development of teacher-student-amateur astronomer teams advised by professional astronomers and conducting astrobiology research. This work was supported by a grant from the National Science Foundation, ESI-9731083, and through University of Maryland and University of Hawaii subcontract Z667702, which was awarded under prime contract NASW-00004 from NASA.

  19. Astrology and Astronomy.

    Science.gov (United States)

    Astronomical Society of the Pacific, San Francisco, CA.

    One of a series of information packets, the document provides clear, specific information about the controversial subject of astrology. The packet includes six articles explaining the dozens of careful scientific tests which have concluded that there is no scientific evidence supporting astrology. The packet includes an interview with astronomer…

  20. A Radio Astronomy Curriculum for the Middle School Classroom

    Science.gov (United States)

    Davis, J.; Finley, D. G.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching program at New Mexico Institute of Mining and Technology, spent eight weeks as interns at the Array Operations Center for the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, under the auspices of the National Science Foundation's (NSF) Research Experience for Teachers (RET) program. The resulting projects will directly benefit students in the indvidual classrooms, as well as provide an easy-to-access resource for other educators. One of the products is a Radio Astronomy Curriculum for upper middle school classes. Radio astronomy images, based on scientific research results using NRAO's Very Large Array, are featured on trading cards which include an explanation, a ``web challenge'', and in some cases, a comparison of radio and optical images. Each trading card has corresponding lesson plans with background information about the images and astronomy concepts needed to do the lessons. Comparison of optical and radio astronomy is used as much as possible to explain the information from research using visible and radio wavelengths. New Mexico's Content Standards and Benchmarks (developed using national standards) for science education was used as a guide for the activities. The three strands of science listed in the standards, Unifying Concepts and Processes, Science as Inquiry, and Science Content are addressed in the lessons. Higher level thinking and problem solving skills are featured throughout the curriculum. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  1. SIDECAR ASIC firmware for astronomy applications

    Science.gov (United States)

    Chen, Jing; Loose, Markus; Ricardo, Raphael; Beletic, James; Farris, Mark; Xu, Min; Wong, Andre; Cabelli, Craig

    2014-07-01

    The SIDECAR ASIC is a fully integrated system-on-a-chip focal plane array controller that offers low power and low noise, small size and low weight. It has been widely used to operate different image sensors for ground-based and flightbased astronomy applications. A key mechanism to operating analog detectors is the SIDECAR ASIC's high level of programmability. This paper gives an overview of the SIDECAR ASIC architecture, including its optimized microcontroller featuring a customized instruction set. It describes the firmware components, including timing generation, biasing, commanding, housekeeping and synchronization of multiple detectors. The firmware development tools including compiler and supporting development environment and hardware setup are presented. The firmware capability for ground-based HxRG applications and for flight-based applications like the James Webb Space Telescope (JWST), the repair of the Advanced Camera for Surveys (ACS), and others are also discussed.

  2. Scientific divulgation through the teaching of Astronomy and Mathematics

    Science.gov (United States)

    Silva, Alysson Wanderley Teixeira; de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2015-09-01

    This article presents an experience report of a workshop held at the State School Professor Plínio Ribeiro, who aimed to spread the use of interactive materials for teaching Astronomy and its relationship with Mathematics during the Forum Biotemas. Despite being part of the official documents, be present in the curricular proposals from several Brazilian states, and has contributed to the human and technological development, Astronomy is rarely taught adequately in basic education, with unsatisfactory results presented by students and teachers. In this sense was held a workshop planned for elementary education students called 'Astronomy and Mathematics: Learn to Observe the Sky With Other Eyes' involving several resources. The methodology consisted of awareness of those involved, presentation videos, using Stellarium software, application of Mathematics in Astronomy and discussions. Among the main results, can highlight students' interest in scientific matters, because when the study of the sciences takes place without interaction with natural and technological phenomena, a huge gap in the education of students occurs. In this sense, the use of different resources, as templates, observations, real and virtual experiments, animations, simulations, video lessons, can arouse the interest of students by conceptual content, differently from what happens when the study takes place using only conventional resources, with books and handouts.

  3. Astronomy in Brazilian music and poetry

    Science.gov (United States)

    de Freitas Mourão, Ronaldo Rogério

    2011-06-01

    The rôle of astronomy in the Brazilian cultural diversity -though little known world- has been enormous. Thus, the different forms of popular music and erudite, find musical compositions and lyrics inspired by the stars, the eclipses in rare phenomena such as the transit of Venus in front of the sun in 1882, the appearance of Halley's Comet in 1910, in the Big Bang theory. Even in the carnival parades of the blocks at the beginning of the century astronomy was present. More recently, the parade of 1997, the samba school Unidos do Viradouro, under the direction of Joãozinho Trinta, offered a new picture of the first moments of the creation of the universe to join in the white and dark in the components of their school, the idea of matter and anti-matter that reigned in the early moments of the creation of the universe in an explosion of joy. Examples in classical music include Dawn of Carlos Gomes and Carta Celeste by Almeida Prado. Unlike The Planets by Gustav Holst -who between 1914 and 1916 composed a symphonical tribute to the solar system based on astrology- Almeida Prado composed a symphony that is not limited to the world of planets, penetrating the deep cosmos of galaxies. Using various resources of the technique for the piano on the clusters and static movements, violent conflicts between the records of super acute and serious instrument, harpejos cross, etc . . .

  4. Pre-Inca Astronomy in Peru

    Science.gov (United States)

    McKim Malville, J.

    Huacas (shrines) and ushnus (ceremonial platforms) are ever-present elements of millennia-old Andean cosmology extending backward to 3100 BCE. Major themes of Pan-Andean cosmology include sacred mountains, the power of water, the solstice sun, as well as shamanic-like movement across the three worlds of the cosmos. Common features of many pre-Inca sites are monumental platforms and sunken circular plazas, and stairways with axes established by bi-lateral symmetries oriented along solstice lines. This style of ritual architecture first appeared in Chupacigarro/Caral, other sites in the Norte Chico area, and Sechin Bajo in the Casma Valley. Ceremonial plazas provided opportunities for public viewing of ritual ceremonies on the tops of platforms, which may have been understood as sacred mountains. Mounds and temples of the Casma Valley, such as Sechin Alto, Sechin Bajo, and Chankillo, developed an explicit astronomy associated with June and December solstices. The ritualistic use of water, which is typically associated with visual astronomy at Inca sites, appeared at Chavin de Huantar and later in Tiwanaku.

  5. Evaluating Astronomy Literacy of the General Public

    CERN Document Server

    Love, C; Bonora, S

    2013-01-01

    A scientifically literate society is important for many different reasons, some of which include democratic and scientific topics. This study was performed in order to identify topics in astronomy and science in general that may not be well understood by the general public. Approximately 1,000 adults at a popular science museum in Philadelphia, PA completed True-False survey questions about basic astronomy concepts. The participants were also asked to provide their age, gender, and highest degree obtained. Although 93 +/- 0.8% of the participants correctly answered that scientists can calculate the age of the Earth, only 58 +/- 2% provided the correct response that scientists can calculate the age of the Universe. Some participants (30 +/- 1%) responded that scientists have found life on Mars. Females scored an average total score of 78 +/- 2%, whereas males scored an average 85 +/- 1%. Participants with an age of 56 and over had an average score of 78 +/- 4% compared to participants under the age of 56 that ...

  6. Radio Astronomy Software Defined Receiver Project

    Energy Technology Data Exchange (ETDEWEB)

    Vacaliuc, Bogdan [ORNL; Leech, Marcus [Shirleys Bay Radio Astronomy Consortium; Oxley, Paul [Retired; Flagg, Richard [Retired; Fields, David [ORNL

    2011-01-01

    The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a user s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.

  7. years of astronomy in Odessa

    Science.gov (United States)

    Karetnikov, V. G.

    Astronomy in the city of Odessa, a sea-port, existed from the time immemorial. First it was used nautical practice and in train navigators for applied purposes. The part it played was highly appreciated in Odessa. An Astronomical Observatory already existed in Richelieu Lyceum founded in 1817. One of the rooms of the Lyceums department of physics and mathematics accomodated the Observatory equipped with 24 astronomical and topographic instruments. The observatory was used for educational urposes only and had no applied or scientific significance then. Subsequently, these instruments constituted the base for astronomical study at the astronomy and geodesy Chair of the Novorossiysk University inaugurated in 1865 on the basis of Richelieu Lyceum.

  8. Random time series in Astronomy

    OpenAIRE

    Vaughan, Simon

    2013-01-01

    Progress in astronomy comes from interpreting the signals encoded in the light received from distant objects: the distribution of light over the sky (images), over photon wavelength (spectrum), over polarization angle, and over time (usually called light curves by astronomers). In the time domain we see transient events such as supernovae, gamma-ray bursts, and other powerful explosions; we see periodic phenomena such as the orbits of planets around nearby stars, radio pulsars, and pulsations...

  9. First Results from the iSTAR International STudy on Astronomy Reasoning

    Science.gov (United States)

    Tatge, Coty B.; Slater, Stephanie J.; Slater, Timothy F.

    2015-01-01

    Our best efforts in the United States to dramatically improve teaching and learning in astronomy courses has been less than satisfactory despite Herculean efforts. A possible solution is to expand our view beyond our own culture's borders and presumptions in order to bring our shortcomings in discipline-based astronomy education research to light. Before we can begin the process of international comparisons of student conceptual understanding, we need to better understand how different citizens of different countries position astronomy culturally. Under the banner of the International STudy on Astronomy Reasoning Project, iSTAR, we are now carefully observing how foreign experts in teaching astronomy and the science of astronomy translate the Test Of Astronomy STandards - TOAST multiple-choice assessment instrument to look for subtle clues revealed during the translation process. The TOAST is the widely used standard to evaluate students' gains in the United States' Astronomy classrooms. We hope that the process of translation itself will help us comprehend how other cultures think differently about astronomical concepts and eventually we are looking to obtain useful data of how other cultures develop their society's understanding of particular astronomy aspects where we may fall short. Several of the iSTAR Project's bilingual speakers are documenting their thoughts and insights as they translate the TOAST. The end-goal is to collect a comprehensible, well-defined, and logical translation in various languages that are culturally sensitive and linguistically accurate. This project is sponsored and managed by the CAPER Center for Astronomy & Physics Education Research at CAPERTeam.com in collaboration with members of the International Astronomical Union-Commission 46.

  10. Life standard, science and astronomy

    Science.gov (United States)

    Georgiev, Tsvetan B.

    The bibliometrc data published by Sanches & Benn (2004) are analized. The proportionality in log-log coordinates between the population and annual gross domestic product (GDP) with coefficient equal to unit is used for selection of "developed" countries and for further reveal of dependances through them. The proportionality coefficients between the GDP and the citation of all-science or only of the 1000 astronomy top-articles in 1991-98 occur 0.75 and 0.93, respectivelly. The fact that coefficients are less then 1 gives evidence that when the wealth of the community grows up the citation (i.e. the quality) of the articles increases with a less speed. Correlations between the "cost" of 1% citation as part of the GDP or as a part of the GDP per person for all-science and for the 1000 astronomy top-articles only are found. They show that the scientific papers are relatively more "cheap" for the big scientific communities (USA, EU), but in the same time the most cited astronomical articles are relatively more "expensive", up to 2 times. Generally, the astronomy seems to be more interesting, but also more expensive than the science on average.

  11. Australian Aboriginal Astronomy: Overview

    CERN Document Server

    Norris, Ray P

    2013-01-01

    The traditional cultures of Aboriginal Australians include a significant astronomical component, perpetuated through oral tradition, ceremony, and art. This astronomical component includes a deep understanding of the motion of objects in the sky, and this knowledge was used for practical purposes, such as constructing calendars. There is also evidence that traditional Aboriginal Australians made careful records and measurements of cyclical phenomena, paid careful attention to unexpected phenomena such as eclipses and meteorite impacts, and could determine the cardinal points to an accuracy of a few degrees.

  12. Transiting Exoplanet Survey Satellite (TESS) Community Observer Program including the Science Enhancement Option Box (SEO Box) - 12 TB On-board Flash Memory for Serendipitous Science

    Science.gov (United States)

    Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.

    2010-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.

  13. A technology program for the development of the large deployable reflector for space based astronomy

    Science.gov (United States)

    Kiya, M. K.; Gilbreath, W. P.; Swanson, P. N.

    1982-01-01

    Technologies for the development of the Large Deployable Reflector (LDR), a NASA project for the 1990's, for infrared and submillimeter astronomy are presented. The proposed LDR is a 10-30 diameter spaceborne observatory operating in the spectral region from 30 microns to one millimeter, where ground observations are nearly impossible. Scientific rationales for such a system include the study of ancient signals from galaxies at the edge of the universe, the study of star formation, and the observation of fluctuations in the cosmic background radiation. System requirements include the ability to observe faint objects at large distances and to map molecular clouds and H II regions. From these requirements, mass, photon noise, and tolerance budgets are developed. A strawman concept is established, and some alternate concepts are considered, but research is still necessary in the areas of segment, optical control, and instrument technologies.

  14. Innovative Technology for Teaching Introductory Astronomy

    Science.gov (United States)

    Guidry, Mike

    The application of state-of-the-art technology (primarily Java and Flash MX Actionscript on the client side and Java PHP PERL XML and SQL databasing on the server side) to the teaching of introductory astronomy will be discussed. A completely online syllabus in introductory astronomy built around more than 350 interactive animations called ""Online Journey through Astronomy"" and a new set of 20 online virtual laboratories in astronomy that we are currently developing will be used as illustration. In addition to demonstration of the technology our experience using these technologies to teach introductory astronomy to thousands of students in settings ranging from traditional classrooms to full distance learning will be summarized. Recent experiments using Java and vector graphics programming of handheld devices (Personal Digital Assistants and cell phones) with wireless wide-area connectivity for applications in astronomy education will also be described.

  15. Interstellar medium structure and content and gamma ray astronomy

    International Nuclear Information System (INIS)

    A general description of gamma-ray astronomy is presented with special emphasis on the study of diffuse gamma-ray emission. This is followed by a collection of reflections and observations on the structure and the gas and dust content of the local interstellar medium. Results of gamma-ray observations on the local interstellar medium are given. The last part is devoted to the whole of the galactic gamma-ray emission and its interpretation

  16. Julia and Python in Astronomy: Better Together

    Science.gov (United States)

    Barbary, Kyle

    2016-03-01

    Astronomers love Python because it is open source, easy to learn, and has a tremendous ecosystem for scientific computing. The Julia programming language has many of those same characteristics. In this talk, I'll discuss the use of Julia in astronomy and the growing ecosystem of astronomy packages, particularly those managed by the JuliaAstro organization (http://JuliaAstro.github.io). Most importantly, I will highlight some areas ripe for collaboration between Python and Julia developers in astronomy.

  17. Infrared astronomy seeing the heat : from William Herschel to the Herschel space observatory

    CERN Document Server

    Clements, David L

    2014-01-01

    Uncover the Secrets of the Universe Hidden at Wavelengths beyond Our Optical GazeWilliam Herschel's discovery of infrared light in 1800 led to the development of astronomy at wavelengths other than the optical. Infrared Astronomy - Seeing the Heat: from William Herschel to the Herschel Space Observatory explores the work in astronomy that relies on observations in the infrared. Author David L. Clements, a distinguished academic and science fiction writer, delves into how the universe works, from the planets in our own Solar System to the universe as a whole. The book first presents the major t

  18. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    Science.gov (United States)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have

  19. Optical interferometry in astronomy

    International Nuclear Information System (INIS)

    Here I review the current state of the field of optical stellar interferometry, concentrating on ground-based work although a brief report of space interferometry missions is included. We pause both to reflect on decades of immense progress in the field as well as to prepare for a new generation of large interferometers just now being commissioned (most notably, the CHARA, Keck and VLT Interferometers). First, this review summarizes the basic principles behind stellar interferometry needed by the lay-physicist and general astronomer to understand the scientific potential as well as technical challenges of interferometry. Next, the basic design principles of practical interferometers are discussed, using the experience of past and existing facilities to illustrate important points. Here there is significant discussion of current trends in the field, including the new facilities under construction and advanced technologies being debuted. This decade has seen the influence of stellar interferometry extend beyond classical regimes of stellar diameters and binary orbits to new areas such as mapping the accretion discs around young stars, novel calibration of the cepheid period-luminosity relation, and imaging of stellar surfaces. The third section is devoted to the major scientific results from interferometry, grouped into natural categories reflecting these current developments. Lastly, I consider the future of interferometry, highlighting the kinds of new science promised by the interferometers coming on-line in the next few years. I also discuss the longer-term future of optical interferometry, including the prospects for space interferometry and the possibilities of large-scale ground-based projects. Critical technological developments are still needed to make these projects attractive and affordable

  20. The Relationship between Preservice Science Teachers' Attitude toward Astronomy and Their Understanding of Basic Astronomy Concepts

    Science.gov (United States)

    Bektasli, Behzat

    2016-01-01

    Turkish preservice science teachers have been taking a two-credit astronomy class during the last semester of their undergraduate program since 2010. The current study aims to investigate the relationship between preservice science teachers' astronomy misconceptions and their attitudes toward astronomy. Preservice science teachers were given an…

  1. Improving Astronomy Achievement and Attitude through Astronomy Summer Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Türk, Cumhur; Kalkan, Hüseyin; Iskeleli', Nazan Ocak; Kiroglu, Kasim

    2016-01-01

    The purpose of this study is to examine the effects of an astronomy summer project implemented in different learning activities on elementary school students, pre-service elementary teachers and in-service teachers' astronomy achievement and their attitudes to astronomy field. This study is the result of a five-day, three-stage, science school,…

  2. A dictionary of astronomy

    CERN Document Server

    2003-01-01

    This revised edition contains 4,000 up-to-date entries written by an expert team of contributors, under the editorship of Ian Ridpath, renowned author and broadcaster. Covering the most recent space exploration missions and latest technological development, this authoritative dictionary covers everything from astrophysics to galaxies and time. World-wide coverage of observatories and telescopes, and major entries on supernova, Big Bang theory, and stellar evolution, make this an invaluable reference source for students, professionals, and amateur astronomers. Appendices include tables of Apollo lunar landing missions and the constellations. The entries are supported by numerous tables and diagrams, and the dictionary also features biographical entries on eminent astronomers.

  3. Gravitational Lensing in Astronomy

    CERN Document Server

    Wambsganss, J

    1998-01-01

    Deflection of light by gravity was predicted by General Relativity and observationaly confirmed in 1919. In the following decades various aspects of the gravitational lens effect were explored theoretically, among them the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility to determine Hubble's constant with lensing. Only relatively recently gravitational lensing became an observational science after the discovery of the first doubly imaged quasar in 1979. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered since, e.g. giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, or weak gravitational lensing. By now literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very use...

  4. If ionospheric and geomagnetic disturbances observed before strong earthquakes may result from simultaneous impact of space weather on all geospheres including solid earth

    Science.gov (United States)

    Khachikyan, Galina

    2016-07-01

    It is revealed in previous decades that ionospheric disturbances precede strong earthquakes, thus, the ionospheric precursors of strong earthquakes are now under developing [Pulinets and Boyarchuk, 2004]. Simultaneously, it is revealed that strong earthquakes may be preceded by geomagnetic disturbances as well, as a result, the geomagnetic variations, for example, in the ULF band, are considered now as precursory signals [Fraser-Smith, 1990, doi/10.1029/GL017i009p01465]. At the same time, there is currently no reliable theory nor for ionospheric or to magnetic precursors of earthquakes. Moreover, several researches have reexamined some of above results and concluded that observed magnetic disturbances before strong earthquakes could be generated by other sources, such as global magnetic activity [e.g. Campbell, 2009, doi/10.1029/2008JA013932], and that ionospheric anomalies can also be an effect of the increase of the global magnetic activity [e. g. Masci and Thomas, 2015, doi:10.1002/2015RS005734]. Taking into account such conclusions, one may suggest that the observed ionospheric and geomagnetic disturbances before strong earthquakes might be due to simultaneous influence of a space weather on the complicated surrounding system including the solid earth. This report presents some statistical results to prove such suggestion. In particular, it is shown [Khachikyan et al., 2012, doi:10.4236/ijg.2012.35109] that maximal possible earthquake magnitude (seismic potential) can be determined, in first approximation, on the base of geomagnetic Z-component measured in the Geocentric Solar Magnetosphere (GSM) coordinate system, in which the space weather impact on the earth's environment, due to reconnection of the solar wind magnetic field with the earth's magnetic field, is more ordered.

  5. Multichannel interference mitigation methods in radio astronomy

    CERN Document Server

    Leshem, A; Boonstra, A J; Leshem, Amir; Veen, Alle-Jan van der; Boonstra, Albert-Jan

    2000-01-01

    Radio-astronomical observations are increasingly corrupted by RF interference, and online detection and filtering algorithms are becoming essential. To facilitate the introduction of such techniques into radio astronomy, we formulate the astronomical problem in an array signal processing language, and give an introduction to some elementary algorithms from that field. We consider two topics in detail: interference detection by rank estimation of short-term covariance matrices, and spatial filtering by subspace estimation and projection. We discuss experimental data collected at the Westerbork radio telescope, and illustrate the effectiveness of the space-time detection and blanking process on the recovery of a 3C48 absorption line in the presence of GSM mobile telephony interference.

  6. A Roadmap for Canadian Submillimetre Astronomy

    CERN Document Server

    Webb, Tracy; Di Francesco, James; Matthews, Brenda; Murray, Norm; Scott, Douglas; Wilson, Christine

    2013-01-01

    We survey the present landscape in submillimetre astronomy for Canada and describe a plan for continued engagement in observational facilities to ~2020. Building on Canada's decadal Long Range Plan process, we emphasize that continued involvement in a large, single-dish facility is crucial given Canada's substantial investment in ALMA and numerous PI-led submillimetre experiments. In particular, we recommend: i) an extension of Canadian participation in the JCMT until at least the unique JCMT Legacy Survey program is able to realize the full scientific potential provided by the world-leading SCUBA-2 instrument; and ii) involvement of the entire Canadian community in CCAT, with a large enough share in the partnership for Canadian astronomers to participate at all levels of the facility. We further recommend continued participation in ALMA development, involvement in many focused PI-led submillimetre experiments, and partnership in SPICA.

  7. The next detectors for gravitational wave astronomy

    CERN Document Server

    Blair, David; Zhao, Chunnong; Wen, Linqing; Miao, Haixing; Cai, Ronggen; Gao, Jiangrui; Lin, Xuechun; Liu, Dong; Wu, Ling-An; Zhu, Zonghong; Hammond, Giles; Paik, Ho Jung; Fafone, Viviana; Rocchi, Alessio; Ma, Yiqiu; Qin, Jiayi; Page, Michael

    2016-01-01

    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which ari...

  8. Senses and Hands to the Same Degree as Thought – Ole Rømer’s Mechanical Astronomy

    DEFF Research Database (Denmark)

    Tybjerg, Karin

    2012-01-01

    The astronomer Ole Rømer emphasized the mechanical nature of the practice of astronomy and this paper attempts to unravel what Rømer meant by the close association between mechanics and astronomy. The point of departure is Rømer's work with Tycho Brahe's observations and his stay at the Royal...

  9. Rationale and design of three observational, prospective cohort studies including biobanking to evaluate and improve diagnostics, management strategies and risk stratification in venous thromboembolism: the VTEval Project

    Science.gov (United States)

    Frank, Bernd; Ariza, Liana; Lamparter, Heidrun; Grossmann, Vera; Prochaska, Jürgen H; Ullmann, Alexander; Kindler, Florentina; Weisser, Gerhard; Walter, Ulrich; Lackner, Karl J; Espinola-Klein, Christine; Münzel, Thomas; Konstantinides, Stavros V; Wild, Philipp S

    2015-01-01

    Introduction Venous thromboembolism (VTE) with its two manifestations deep vein thrombosis (DVT) and pulmonary embolism (PE) is a major public health problem. The VTEval Project aims to investigate numerous research questions on diagnosis, clinical management, treatment and prognosis of VTE, which have remained uncertain to date. Methods and analysis The VTEval Project consists of three observational, prospective cohort studies on VTE comprising cohorts of individuals with a clinical suspicion of acute PE (with or without DVT), with a clinical suspicion of acute DVT (without symptomatic PE) and with an incidental diagnosis of VTE (PE or DVT). The VTEval Project expects to enrol a total of approximately 2000 individuals with subsequent active and passive follow-up investigations over a time period of 5 years per participant. Time points for active follow-up investigations are at months 3, 6, 12, 24 and 36 after diagnosis (depending on the disease cohort); passive follow-up investigations via registry offices and the cancer registry are performed 48 and 60 months after diagnosis for all participants. Primary short-term outcome is defined by overall mortality (PE-related death and all other causes of death), primary long-term outcome by symptomatic VTE (PE-related death, recurrence of non-fatal PE or DVT). The VTEval Project includes three ‘all-comer’ studies and involves the standardised acquisition of high-quality data, covering the systematic assessment of VTE including symptoms, risk profile, psychosocial, environmental and lifestyle factors as well as clinical and subclinical disease, and it builds up a large state-of-the-art biorepository containing various materials from serial blood samplings. Ethics and dissemination The VTEval Project has been approved by the local data safety commissioner and the responsible ethics committee (reference no. 837.320.12 (8421-F)). Trial results will be published in peer-reviewed journals and presented at national and

  10. A New Online Astronomy Resource for Education and Outreach

    Science.gov (United States)

    Impey, C. D.; Hardegree-Ullman, K. K.; Patikkal, A.; Srinathan, A.; Austin, C. L.; Ganesan, N. K.; Guvenen, B. C.

    2013-01-01

    A new web site called "Teach Astronomy" (http://www.teachastronomy.com) has been created to serve astronomy instructors and their students, amateur astronomers, and members of the public interested in astronomy. The

  11. Integrating Astronomy with Elementary Non-Science Curricula

    Science.gov (United States)

    Bobrowsky, M.

    1996-05-01

    A workshop was developed for elementary school teachers to enhance students' understanding of astronomy during the formative years of elementary school by incorporating astronomy into various non-science curricula. Educational material was compiled for teachers and students and training was provided for the teachers in the form of a workshop where both information and hands-on activities were disseminated. In addition, we are producing a video tape from the workshop which will be available not only to those who attended the workshop but to other teachers as well. A useful ``multiplier effect" in this project came from our focus on a school that was hosting a group of teachers in training. After these teachers receive certification, they will end up working in all different schools, thereby reaching large numbers of students for many years. The non-scientific subjects that we will connect to astronomy include history, music, art, language arts, social studies, and mathematics, as well as incidental subjects such as health and public safety. Support for this work was provided by NASA through grant number ED90024.01-94A from the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronomy Inc. under NASA Contract NAS5-26555.

  12. Professional Development Through The University of Arizona Astronomy Club

    Science.gov (United States)

    McGraw, Allison M.; Nieberding, Megan N.; Austin, Carmen; Hardegree-Ullman, Kevin

    2015-01-01

    The University of Arizona Astronomy Club creates a unique environment for undergraduates to accomplish goals early in their academic career. The club provides research opportunities with advisors, graduate students, and projects organized by fellow undergraduates. Undergraduates that work side-by-side develop strong working relationships which keeps students interested in astronomy and enables them to thrive in their studies and research. Club members are encouraged to attend and present their research at professional conferences where they are exposed early to the scientific research community, learn about internship and REU opportunities, and get information about graduate programs. In addition to preparing undergraduates to thrive in their academic career, the club also offers outreach opportunities for members to actively educate the southern Arizona community. Members of the club design and create many of their outreach materials including 3D models of our local stellar neighborhood and astronomical objects. Astronomy Club has had a positive impact on its members, the Department of Astronomy, and the southern Arizona community for the past seven years. The club continues to strive to improve undergraduate retention and prepare students for their future careers.

  13. Gravitational Pulse Astronomy

    CERN Document Server

    Gould, Andrew

    2010-01-01

    Thompson has recently argued that the Kozai mechanism is primarily responsible for driving white-dwarf binary mergers and so generating type Ia supernovae (SNe). If this is the case, the gravitational wave signal from these systems will be characterized by isolated repeating pulses that are well approximated by parabolic encounters. I show that standard Fourier-based searches would do a very poor job of digging these sources out of the noise, and propose a new type matched filter search, which can improve sensitivity by up to a factor ~30 relative to Fourier. If these eccentric binaries account for even a modest fraction of the observed SN rate, then there should be of order 1 pulse every 20 seconds coming from within 1 kpc, and there should be of order a thousand detectable sources in this same volume. I outline methods of identifying these sources both to remove this very pernicious background to other signals, and to find candidate SN Ia progenitors, and I sketch practical methods to find optical counterpa...

  14. A pinch of salt goes a long way in communicating astronomy

    Science.gov (United States)

    Manxoyi, S.

    2008-06-01

    The building of the Southern African Large Telescope not only revolutionised the methods of data collection in astronomy as a science in South Africa, but also changed the face, approach and impact of astronomy communication in our country. This presentation examines the various ways in which SALT has been supporting and continues to drive astronomy communication with the public. These include the following strands: learner activities, educator programmes, special events and national events as well general public programmes. The learner activities include SALT tours, space camps, stargazing, astronomy quiz, workshops, science clubs and job shadowing. The educators' strand includes workshops, projects, mini conferences, tours, team and co teaching. The public is catered for through special events, national events, exhibitions, star parties and festivals.

  15. The Silicon Valley Astronomy Lectures: Ongoing Institutional Cooperation for Public Outreach

    Science.gov (United States)

    Fraknoi, A.

    2015-11-01

    For the last 15 years (with one year off for good behavior), four astronomical institutions in the San Francisco Bay Area have cooperated to produce a major evening public-lecture series on astronomy and space science topics. Co-sponsored by Foothill College's Astronomy Program, the Astronomical Society of the Pacific, the SETI Institute, and NASA Ames Research Center, the six annual Silicon Valley Astronomy Lectures have drawn audiences ranging from 450 to 950 people, and represent a significant opportunity to get information about modern astronomical research out to the public. Past speakers have included Nobel Laureate Arno Penzias, Vera Rubin, Frank Drake, Sandra Faber, and other distinguished scientists.

  16. Astronomy in the Netherlands

    Science.gov (United States)

    Boland, Wilfried; Habing, Harm

    2013-01-01

    We describe the state of astronomical research in the Netherlands per early 2012. We add some notes on its history of this research and on the strategic choices for the future. Compared to the size of the country (16 million people) the Netherlands is maintaining a high profile in astronomical research over a period of more than one century. The professional research community consists of about 650 people. This includes research staff, postdocs, PhD students, technical staff working on instrumentation projects and people involved in the operations of ground-based telescopes and astronomical space missions. We do not take into account staff working for international organizations based in the Netherlands. Astronomical research in the Netherlands is carried out at four university institutes and two national research institutes that fall under the umbrella of the national funding agency NWO. The Netherlands is the host of two international organizations: ESTEC, the technology division of the European Space Agency (ESA), and the Joint Institute for VLBI in Europe (JIVE). The Netherlands are one of the founding members of the European Southern Observatory (ESO) and of ESA. This paper will address a number of significant multilateral collaborations.

  17. High-energy Neutrino Astronomy The Cosmic Ray Connection

    CERN Document Server

    Halzen, Francis; Halzen, Francis; Hooper, Dan

    2002-01-01

    This is a review of neutrino astronomy anchored to the observational fact that Nature accelerates protons and photons to energies in excess of $10^{20}$ and $10^{13}$ eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. Basic elementary-particle physics dictates a universal upper limit on their energy of $5\\times10^{19}$ eV, the so-called Greisen-Kuzmin-Zatsepin cutoff; however, particles in excess of this energy have been observed by all experiments, adding one more puzzle to the cosmic ray mystery. Mystery is fertile ground for progress: we will review the facts as well as the speculations about the sources including gamma ray bursts, blazars and top-down scenarios. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. We also briefly review the ongoing...

  18. Inspiration Today: Music, Astronomy, and Popular Culture

    Science.gov (United States)

    Fraknoi, A.

    2016-01-01

    We explore a variety of examples of music inspired by serious astronomy (as opposed to simply an astronomical title or quick allusion to spooning in June to the light of the Moon). The examples are drawn from my recently published catalog of 133 such pieces, including both classical and popular genres of music. We discuss operas based on the life and work of astronomers, six songs based on a reasonable understanding of the properties of black holes, constellation pieces written by composers from around the world who are or were active amateur astronomers, the song that compares walking on the Moon to being in love, the little-known rock song that became a reference in the Astrophysical Journal, pieces that base the patterns of the music on the rhythms of astronomical phenomena, and a number of others.

  19. Compact Radiative Control Structures for Millimeter Astronomy

    Science.gov (United States)

    Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.

    2010-01-01

    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.

  20. Scientific Tools and Techniques: An Innovative Introduction to Planetary Science / Astronomy for 9th Grade Students

    Science.gov (United States)

    Albin, Edward F.

    2014-11-01

    Fernbank Science Center in Atlanta, GA (USA) offers instruction in planetary science and astronomy to gifted 9th grade students within a program called "Scientific Tools and Techniques" (STT). Although STT provides a semester long overview of all sciences, the planetary science / astronomy section is innovative since students have access to instruction in the Center's Zeiss planetarium and observatory, which includes a 0.9 m cassegrain telescope. The curriculum includes charting the positions of planets in planetarium the sky; telescopic observations of the Moon and planets; hands-on access to meteorites and tektites; and an introduction to planetary spectroscopy utilizing LPI furnished ALTA reflectance spectrometers. In addition, students have the opportunity to watch several full dome planetary themed planetarium presentations, including "Back to the Moon for Good" and "Ring World: Cassini at Saturn." An overview of NASA's planetary exploration efforts is also considered, with special emphasis on the new Orion / Space Launch System for human exploration of the solar system. A primary goal of our STT program is to not only engage but encourage students to pursue careers in the field of science, with the hope of inspiring future scientists / leaders in the field of planetary science.