Sample records for astronomical spectrograph calibration

  1. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L


    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  2. Calibration and characterisation of imaging spectrographs

    NARCIS (Netherlands)

    Polder, G.; Young, I.T.


    Spectrograph-based spectral imaging systems provide images with a large number of contiguous spectral channels per pixel. This paper describes the calibration and characterisation of such systems. The relation between pixel position and measured wavelength has been determined using three different

  3. Astronomical calibration of the Maastrichtian (Late Cretaceous)

    DEFF Research Database (Denmark)

    Husson, Dorothée; Galbrun, Bruno; Laskar, Jacques


    Recent improvements to astronomical modeling of the Solar System have contributed to important refinements of the Cenozoic time scale through astronomical calibration of sedimentary series. We extend this astronomical calibration into the Cretaceous, on the base of the 405 ka orbital eccentricity...... of each magnetochron from C32r.2r to C29n are inferred by cycle counting. Astronomical calibrations of Maastrichtian sedimentary series are proposed, based on the 405 ka eccentricity variation according to the most recent astronomical solution La2010a. Two different ages are suggested for the K...

  4. SCALA: In situ calibration for integral field spectrographs (United States)

    Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory


    Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.

  5. Demonstration of an efficient, photonic-based astronomical spectrograph on an 8-m telescope (United States)

    Jovanovic, N.; Cvetojevic, N.; Norris, B.; Betters, C.; Schwab, C.; Lozi, J.; Guyon, O.; Gross, S.; Martinache, F.; Tuthill, P.; Doughty, D.; Minowa, Y.; Takato, N.; Lawrence, J.


    We demonstrate for the first time an efficient, photonic-based astronomical spectrograph on the 8-m Subaru Telescope. An extreme adaptive optics system is combined with pupil apodiziation optics to efficiently inject light directly into a single-mode fiber, which feeds a compact cross-dispersed spectrograph based on array waveguide grating technology. The instrument currently offers a throughput of 5% from sky-to-detector which we outline could easily be upgraded to ~13% (assuming a coupling efficiency of 50%). The isolated spectrograph throughput from the single-mode fiber to detector was 42% at 1550 nm. The coupling efficiency into the single-mode fiber was limited by the achievable Strehl ratio on a given night. A coupling efficiency of 47% has been achieved with ~60% Strehl ratio on-sky to date. Improvements to the adaptive optics system will enable 90% Strehl ratio and a coupling of up to 67% eventually. This work demonstrates that the unique combination of advanced technologies enables the realization of a compact and highly efficient spectrograph, setting a precedent for future instrument design on very-large and extremely-large telescopes.

  6. Combining freeform-shaped holographic grating and curved detectors in a scheme of multi-slit astronomic spectrograph (United States)

    Muslimov, Eduard R.; Hugot, Emmanuel; Ferrari, Marc


    In the present work we consider optical design of a multi-slit astronomic spectrograph for UV domain with freeform reflective elements. The scheme consists of only two reflective elements - a holographic grating imposed on freeform surface and a freeform mirror. The freeforms are described by standard Zernike polynomials and the hologram is recorded by two coherent point sources. We demonstrate that in such a scheme it's possible to obtain quite high optical quality for an extended field of view and relatively high dispersion on a curved image surface. The spectrograph works with linear field of view of 76x32 mm and provides reciprocal linear dispersion equal to 0.5 nm/mm and typical resolving power of 15 000 over the UV range of 100-200 nm. Feasibility of the optical components is discussed and coupling of the spectrograph with a TMA telescope is demonstrated.

  7. Precession of the Equinoxes and the Calibration of Astronomical Epochs

    CERN Document Server

    Sidharth, Burra G


    Astronomical observations were used as a marker for time and the Calendar from ancient times. A more subtle calibration of epochs is thrown up by an observation of the position of the solstices and equinoxes, because these points shift in the sky with the years resulting in the gradual shift of celestial longitudes $\\lambda$. Chronology based on such observations however needs to be backed up by hard evidence. We match both to take us back to $10,000$ B.C., the epi-paleolithic period, and the beginning of civilization itself.

  8. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph (United States)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.


    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  9. The lick-index calibration of the Gemini multi-object spectrographs

    Energy Technology Data Exchange (ETDEWEB)

    Puzia, Thomas H. [Department of Astronomy and Astrophysics, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago (Chile); Miller, Bryan W.; Trancho, Gelys [Gemini Observatory, Casilla 603, La Serena (Chile); Basarab, Brett [Middlebury College, Middlebury, VT 05753 (United States); Mirocha, Jordan T. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Butler, Karen, E-mail:, E-mail: [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)


    We present the calibration of the spectroscopic Lick/IDS standard line-index system for measurements obtained with the Gemini Multi-Object Spectrographs known as GMOS-North and GMOS-South. We provide linear correction functions for each of the 25 standard Lick line indices for the B600 grism and two instrumental setups, one with 0.''5 slit width and 1 × 1 CCD pixel binning (corresponding to ∼2.5 Å spectral resolution) and the other with 0.''75 slit width and 2 × 2 binning (∼4 Å). We find small and well-defined correction terms for the set of Balmer indices Hβ, Hγ {sub A}, and Hδ {sub A} along with the metallicity sensitive indices Fe5015, Fe5270, Fe5335, Fe5406, Mg{sub 2}, and Mgb that are widely used for stellar population diagnostics of distant stellar systems. We find other indices that sample molecular absorption bands, such as TiO{sub 1} and TiO{sub 2}, with very wide wavelength coverage or indices that sample very weak molecular and atomic absorption features, such as Mg{sub 1}, as well as indices with particularly narrow passband definitions, such as Fe4384, Ca4455, Fe4531, Ca4227, and Fe5782, which are less robustly calibrated. These indices should be used with caution.

  10. A Refined Astronomically Calibrated 40Ar/39Ar Age for Fish Canyon Sanidine

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Zeeden, Christian


    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision 40Ar/39Ar age for the Fish Canyon sanidine (FCs) neutron fluence...... monitor, by multi-collector noble gas mass spectrometry, through cross-calibration with A1 tephra sanidines (A1Ts) of the direct astronomically tuned Faneromeni section (Crete). The astronomically intercalibrated 40Ar/39Ar age of FCs of 28.172±0.028 Ma (2σ, external errors) is within the uncertainty of......, but more precise (±0.10%) than, the previous 40Ar/39Ar age determined by intercalibration with astronomically tuned tephras from the Melilla Basin (Morocco). Using this proposed age for FCs, combined with measurements using the A1Ts as the neutron fluence monitor, a weighted mean Bishop Tuff 40Ar/39Ar...

  11. Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibliscemi (Sicily, Italy)

    NARCIS (Netherlands)

    Hilgen, F.J.; Krijgsman, W.; Raffi, I.; Turco, E.; Zachariasse, W.J.


    Results are presented of an integrated stratigraphic (calcareous plankton biostratigraphy, cyclostratigraphy and magnetostratigraphy) study of the Serravallian=Tortonian (S=T) boundary section of Monte Gibliscemi (Sicily, Italy). Astronomical calibration of the sedimentary cycles provides absolute

  12. SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration (United States)

    Bershady, Matthew A.; Andersen, David R.; Harker, Justin; Ramsey, Larry W.; Verheijen, Marc A. W.


    We describe the design and construction of a formatted fiber field unit, SparsePak, and characterize its optical and astrometric performance. This array is optimized for spectroscopy of low surface brightness extended sources in the visible and near-infrared. SparsePak contains 82, 4.7" fibers subtending an area of 72''×71'' in the telescope focal plane and feeds the WIYN Bench Spectrograph. Together, these instruments are capable of achieving spectral resolutions of λ/Δλ~20,000 and an area-solid angle product of ~140 arcsec2 m2 per fiber. Laboratory measurements of SparsePak lead to several important conclusions on the design of fiber termination and cable curvature to minimize focal ratio degradation. SparsePak itself has throughput above 80% redward of 5200 Å and 90%-92% in the red. Fed at f/6.3, the cable delivers an output of 90% encircled energy at nearly f/5.2. This has implications for performance gains if the WIYN Bench Spectrograph were to have a faster collimator. Our approach to integral-field spectroscopy yields an instrument that is simple and inexpensive to build, yet yields the highest area-solid angle product per spectrum of any system in existence. An Appendix details the fabrication process in sufficient detail for others to repeat. SparsePak was funded by the National Science Foundation and the University of Wisconsin-Madison Graduate School, and is now publicly available on the WIYN Telescope through the National Optical Astronomical Observatories.

  13. A stable and inexpensive wavelength reference for precise wavelength calibration of radial velocity spectrographs (United States)

    Feger, Tobias; Ireland, Michael J.; Bento, Joao; Bacigalupo, Carlos


    We present a stable, inexpensive wavelength reference, based on a white-light interferometer for the use on current and future (arrays of) diffraction-limited radial velocity (RV) spectrographs. The primary aim of using an interferometer is to obtain a dense sinusoidal wavelength reference with spectral coverage between 450-650 nm. Its basic setup consists of an unbalanced fiber Mach-Zehnder interferometer (FMZI) that creates an interference pattern in the spectral domain due to superposition of phase delayed light, set by a fixed optical path-length difference (OPD). To achieve long-term stability, the interferometer is actively locked to a stable atomic line. The system operates in closed-loop using a thermo-optic modulator as the phase feedback component. We conducted stability measurements by superimposing the wavelength reference with thorium-argon (ThAr) emission lines and found the differential RMS shift to be ~5 m s-1 within 30 minute bins in an experiment lasting 5 hours.

  14. The third flight of the Colorado high-resolution echelle stellar spectrograph (CHESS): improvements, calibrations, and preliminary results (United States)

    Kruczek, Nicholas; Nell, Nicholas; France, Kevin; Hoadley, Keri; Fleming, Brian; Kane, Robert; Ulrich, Stefan; Egan, Arika; Beatty, Dawson


    In this proceeding, we describe the scientific motivation and technical development of the Colorado HighResolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing of components for the third launch of the payload (CHESS-3). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS is an objective echelle spectrograph, which uses a mechanically-ruled echelle and a powered (f/12.4) crossdispersing grating, and is designed to achieve a resolving power R > 100,000 over the bandpass λλ 1000-1600 Å. Results from final efficiency and reflectivity measurements for the optical components of CHESS-3 are presented. An important role of sounding rocket experiments is the testing and verification of the space flight capabilities of experimental technologies. CHESS-3 utilizes a 40mm-diameter cross-strip anode microchannel plate detector fabricated by Sensor Sciences LLC, capable of achieving high spatial resolution and a high global count rate (˜1 MHz). We present pre-flight laboratory spectra and calibration results, including wavelength solution and resolving power of the instrument. The fourth launch of CHESS (CHESS-4) will demonstrate a δ-doped CCD, assembled in collaboration with the Microdevices Laboratory at JPL and Arizona State University. In support of CHESS-4, the CHESS-3 payload included a photomultiplier tube, used as a secondary confirmation of the optical alignment of the payload during flight. CHESS-3 launched on 26 June 2017 aboard NASA/CU sounding rocket mission 36.323 UG. We present initial flight results for the CHESS-3 observation of the β1 Scorpii sightline.

  15. Astronomical optics

    CERN Document Server

    Schroeder, Daniel J


    Written by a recognized expert in the field, this clearly presented, well-illustrated book provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic instruments used by astronomers of today.Key Features* Written by a recognized expert in the field* Provides both advanced level students and professionals with an authoritative, thorough presentation of the characteristics, including advantages and limitations, of telescopes and spectrographic i

  16. American West Tephras – Geomagnetic polarity events redefined through calibration of radio-isotopic and astronomical time

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael

    calibration. Although this geomagnetic event is not part of the most recent geologic timescale, refined ages on short-lived excursions could hold importance to understanding time scales for the wavering nature of Earth’s magnetic field. We propose a new 40Ar/39Ar age for the Quaternary mineral dating standard....... Using an astronomically calibrated age for the monitor mineral Fish Canyon sanidine (FCs;28.201 ± 0.046 Ma, Kuiper, et al., 2008), ages of Pleistocene geomagnetic polarity events are reexamined. Of particular interest, the Quaternary mineral dating standard Alder Creek sandine (ACs) is the type locality...... ACs that reflects the astronomical calibration of FCs and age of the Cobb Mountain polarity event. It is suggested that this 40Ar/39Ar age replace that of Renne, et al. (1998) when using ACs as the monitor in argon age determinations. The research leading to these results has received funding from...

  17. A refined Astronomically Calibrated 40AR/39Ar age for Fish Canyon Sanidine

    NARCIS (Netherlands)

    Rivera, T.A.; Storey, M.; Zeeden, C.; Hilgen, F.J.; Kuiper, K.F.


    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision

  18. Astronomical calibration of 40Ar/39Ar reference minerals using high-precision, multi-collector (ARGUSVI) mass spectrometry (United States)

    Phillips, D.; Matchan, E. L.; Honda, M.; Kuiper, K. F.


    The new generation of multi-collector mass spectrometers (e.g. ARGUSVI) permit ultra-high precision (1%) in 40K decay constants and the ages of natural reference minerals that form the basis of the technique. For example, reported ages for widely used 40Ar/39Ar reference materials, such as the ca. 28 Ma Fish Canyon Tuff sanidine (FCTs) and the ca. 1.2 Ma Alder Creek Rhyolite sanidine (ACRs), vary by >1%. Recent attempts to independently calibrate these reference minerals have focused on K-Ar analyses of the same minerals and inter-comparisons with astronomically tuned tephras in sedimentary sequences and U-Pb zircon ages from volcanic rocks. Most of these studies used older generation (effectively single-collector) mass spectrometers that employed peak-jumping analytical methods to acquire 40Ar/39Ar data. In this study, we reassess the inter-calibration and ages of commonly used 40Ar/39Ar reference minerals Fish Canyon Tuff sanidine (FCTs), Alder Creek Rhyolite sanidine (ACRs) and Mount Dromedary biotite (MD2b; equivalent to GA-1550 biotite), relative to the astronomically tuned age of A1 Tephra sanidine (A1Ts), Faneromeni section, Crete (Rivera et al., 2011), using a multi-collector ARGUSVI mass spectrometer. These analyses confirm the exceptional precision capability (0.1% in the 40Ar/39Ar ages of reference minerals without consideration of recoil artefacts, thus limiting the benefits of high precision multi-collector analyses. Significant improvement to the accuracy of the 40Ar/39Ar method (<0.1%) will require further inter-laboratory 40Ar/39Ar studies utilizing multi-collector mass spectrometry, additional constraints on recoil 39ArK loss from reference minerals, further resolution of discrepancies between astronomically tuned sedimentary successions and refinement of the 238U/206Pb zircon age cross-calibration approach.

  19. The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results (United States)

    Hoadley, Keri; France, Kevin; Kruczek, Nicholas; Fleming, Brian; Nell, Nicholas; Kane, Robert; Swanson, Jack; Green, James; Erickson, Nicholas; Wilson, Jacob


    In this proceeding, we describe the scientific motivation and technical development of the Colorado High- resolution Echelle Stellar Spectrograph (CHESS), focusing on the hardware advancements and testing supporting the second flight of the payload (CHESS-2). CHESS is a far ultraviolet (FUV) rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium (ISM). CHESS is an objective f/12.4 echelle spectrograph with resolving power > 100,000 over the band pass 1000 - 1600 Å. The spectrograph was designed to employ an R2 echelle grating with "low" line density. We compare the FUV performance of experimental echelle etching processes (lithographically by LightSmyth, Inc. and etching via electron-beam technology by JPL Microdevices Laboratory) with traditional, mechanically-ruled gratings (Bach Research, Inc. and Richardson Gratings). The cross-dispersing grating, developed and ruled by Horiba Jobin-Yvon, is a holographically-ruled, "low" line density, powered optic with a toroidal surface curvature. Both gratings were coated with aluminum and lithium fluoride (Al+LiF) at Goddard Space Flight Center (GSFC). Results from final efficiency and reflectivity measurements for the optical components of CHESS-2 are presented. CHESS-2 utilizes a 40mm-diameter cross-strip anode readout microchannel plate (MCP) detector fabricated by Sensor Sciences, Inc., to achieve high spatial resolution with high count rate capabilities (global rates 1 MHz). We present pre-flight laboratory spectra and calibration results. CHESS-2 launched on 21 February 2016 aboard NASA/CU sounding rocket mission 36.297 UG. We observed the intervening ISM material along the sightline to epsilon Per and present initial characterization of the column densities, temperature, and kinematics of atomic and molecular species in the observation.

  20. A refined astronomically calibrated 40Ar/39Ar age for Fish Canyon sanidine

    NARCIS (Netherlands)

    Rivera, T.A.; Storey, M.; Zeeden, C.; Hilgen, F.J.; Kuiper, K.


    Intercalibration between the astronomical and radio-isotopic dating methods provides a means to improving accuracy and reducing uncertainty of an integrated, multi-chronometer geologic timescale. Here we report a high-precision 40Ar/39Ar age for the FishCanyon sanidine (FCs) neutron fluence monitor,

  1. Replicated spectrographs in astronomy (United States)

    Hill, Gary J.


    As telescope apertures increase, the challenge of scaling spectrographic astronomical instruments becomes acute. The next generation of extremely large telescopes (ELTs) strain the availability of glass blanks for optics and engineering to provide sufficient mechanical stability. While breaking the relationship between telescope diameter and instrument pupil size by adaptive optics is a clear path for small fields of view, survey instruments exploiting multiplex advantages will be pressed to find cost-effective solutions. In this review we argue that exploiting the full potential of ELTs will require the barrier of the cost and engineering difficulty of monolithic instruments to be broken by the use of large-scale replication of spectrographs. The first steps in this direction have already been taken with the soon to be commissioned MUSE and VIRUS instruments for the Very Large Telescope and the Hobby-Eberly Telescope, respectively. MUSE employs 24 spectrograph channels, while VIRUS has 150 channels. We compare the information gathering power of these replicated instruments with the present state of the art in more traditional spectrographs, and with instruments under development for ELTs. Design principles for replication are explored along with lessons learned, and we look forward to future technologies that could make massively-replicated instruments even more compelling.

  2. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary

    NARCIS (Netherlands)

    Hilgen, F.J.


    The early Pleistocene to late Pliocene astronormcally calibrated time scale of Shackleton et al. [1] and Hllgen [2] is extended to the Mlocene/Pllocene boundary This is done by correlating the detailed record of CaCO 3 cycles in the Trubl and the lower part of the overlying Narbone Formation

  3. Development of compact and ultra-high-resolution spectrograph with multi-GHz optical frequency comb (United States)

    Endo, Mamoru; Sukegawa, Takashi; Silva, Alissa; Kobayashi, Yohei


    In recent years, a calibration method for an astronomical spectrograph using an optical frequency comb (OFC) with a repetition rate of more than ten GHz has been developed successfully [1-5]. But controlling filtering cavities that are used for thinning out longitudinal modes precludes long term stability. The super-mode noise coming from the fundamental repetition rate is an additional problem. We developed a laser-diode pumped Yb:Y2O3 ceramic oscillator, which enabled the generation of 4-GHz (maximum repetition rate of 6.7 GHz) pulse trains directly with a spectrum width of 7 nm (full-width half-maximum, FWHM), and controlled its optical frequency within a MHz level of accuracy using a beat note between the 4-GHz laser and a 246-MHz Yb-fiber OFC. The optical frequency of the Yb-fiber OFC was phase locked to a Rb clock frequency standard. Furthermore we also built a table-top multi-pass spectrograph with a maximum frequency resolution of 600 MHz and a bandwidth of 1 nm using a large-size high-efficiency transmission grating. The resolution could be changed by selecting the number of passes through the grating. This spectrograph could resolve each longitudinal mode of our 4-GHz OFC clearly, and more than 10% throughput was obtained when the resolution was set to 600 MHz. We believe that small and middle scale astronomical observatories could easily implement such an OFC-calibrated spectrograph.

  4. The Eucalyptus spectrograph (United States)

    de Oliveira, Antonio C.; Barbuy, Beatriz; Campos, Rodrigo P.; Castilho, Bruno V.; Gneiding, Clemens; Kanaan, Antonio; Lee, David; Lepine, Jacques R. D.; Mendes de Oliveira, Claudia; de Oliveira, Ligia S.; Rodrigues, Francisco; Silva, J. M.; Strauss, C.; Taylor, Keith


    As part of the Brazilian contribution to the 4.2 m SOAR telescope project we are building the Integral Field Unit spectrograph, "SIFUS." With the aim of testing the performance of optical fibers with 50 microns core size on IFUs, we constructed a prototype of the IFU and a spectrograph that were installed at the 1.6 m telescope of the Observatório do Pico dos Dias (OPD), managed by Laboratório Nacional de Astrofísica (LNA) in Brazil. The IFU has 512 fibers coupled to a LIMO microlens array (16 x 32) covering a 15" x 30" field on the sky. The spectrograph is a medium resolution instrument, operating in a quasi-Littrow mode. It was based on the design of the SPIRAL spectrograph built by the Anglo-Australian Observatory. The name Eucalyptus was given following the name of the native Australian tree that adapted very well in Brazil and it was given in recognition to the collaboration with the colleagues of the Anglo-Australian Observatory. The instrument first light occurred in the first semester of 2001. The results confirmed the possibility of using the adopted fibers and construction techniques for the SIFUS. We present the features of the instrument, some examples of the scientific data obtained, and the status of the commissioning, calibration and automation plans. The efficiency of this IFU was determined to be 53% during telescope commissioning tests.

  5. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? (United States)

    Westerhold, Thomas; Röhl, Ursula; Frederichs, Thomas; Agnini, Claudia; Raffi, Isabella; Zachos, James C.; Wilkens, Roy H.


    To fully understand the global climate dynamics of the warm early Eocene with its reoccurring hyperthermal events, an accurate high-fidelity age model is required. The Ypresian stage (56-47.8 Ma) covers a key interval within the Eocene as it ranges from the warmest marine temperatures in the early Eocene to the long-term cooling trends in the middle Eocene. Despite the recent development of detailed marine isotope records spanning portions of the Ypresian stage, key records to establish a complete astronomically calibrated age model for the Ypresian are still missing. Here we present new high-resolution X-ray fluorescence (XRF) core scanning iron intensity, bulk stable isotope, calcareous nannofossil, and magnetostratigraphic data generated on core material from ODP Sites 1258 (Leg 207, Demerara Rise), 1262, 1263, 1265, and 1267 (Leg 208, Walvis Ridge) recovered in the equatorial and South Atlantic Ocean. By combining new data with published records, a 405 kyr eccentricity cyclostratigraphic framework was established, revealing a 300-400 kyr long condensed interval for magnetochron C22n in the Leg 208 succession. Because the amplitudes are dominated by eccentricity, the XRF data help to identify the most suitable orbital solution for astronomical tuning of the Ypresian. Our new records fit best with the La2010b numerical solution for eccentricity, which was used as a target curve for compiling the Ypresian astronomical timescale (YATS). The consistent positions of the very long eccentricity minima in the geological data and the La2010b solution suggest that the macroscopic feature displaying the chaotic diffusion of the planetary orbits, the transition from libration to circulation in the combination of angles in the precession motion of the orbits of Earth and Mars, occurred ˜ 52 Ma. This adds to the geological evidence for the chaotic behavior of the solar system. Additionally, the new astrochronology and revised magnetostratigraphy provide robust ages and

  6. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?

    Directory of Open Access Journals (Sweden)

    T. Westerhold


    Full Text Available To fully understand the global climate dynamics of the warm early Eocene with its reoccurring hyperthermal events, an accurate high-fidelity age model is required. The Ypresian stage (56–47.8 Ma covers a key interval within the Eocene as it ranges from the warmest marine temperatures in the early Eocene to the long-term cooling trends in the middle Eocene. Despite the recent development of detailed marine isotope records spanning portions of the Ypresian stage, key records to establish a complete astronomically calibrated age model for the Ypresian are still missing. Here we present new high-resolution X-ray fluorescence (XRF core scanning iron intensity, bulk stable isotope, calcareous nannofossil, and magnetostratigraphic data generated on core material from ODP Sites 1258 (Leg 207, Demerara Rise, 1262, 1263, 1265, and 1267 (Leg 208, Walvis Ridge recovered in the equatorial and South Atlantic Ocean. By combining new data with published records, a 405 kyr eccentricity cyclostratigraphic framework was established, revealing a 300–400 kyr long condensed interval for magnetochron C22n in the Leg 208 succession. Because the amplitudes are dominated by eccentricity, the XRF data help to identify the most suitable orbital solution for astronomical tuning of the Ypresian. Our new records fit best with the La2010b numerical solution for eccentricity, which was used as a target curve for compiling the Ypresian astronomical timescale (YATS. The consistent positions of the very long eccentricity minima in the geological data and the La2010b solution suggest that the macroscopic feature displaying the chaotic diffusion of the planetary orbits, the transition from libration to circulation in the combination of angles in the precession motion of the orbits of Earth and Mars, occurred  ∼  52 Ma. This adds to the geological evidence for the chaotic behavior of the solar system. Additionally, the new astrochronology and revised

  7. Astronomical calibration of upper Campanian–Maastrichtian carbon isotope events and calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole 762C)

    DEFF Research Database (Denmark)

    Thibault, Nicolas Rudolph; Husson, Dorothée; Harlou, Rikke


    -events have been recorded and plotted against magnetostratigraphy, and provided absolute ages using the results of the cyclostratigraphic study and the recent astronomical calibration of the Maastrichtian. Thirteen carbon-isotope events and 40 nannofossil bio-events are recognized and calibrated with cyclo......-stratigraphy, as well as 14 previously published foraminifer events, thus constituting a solid basis for large-scale correlations. Results show that this site is characterized by a nearly continuous sedimentation from the upper Campanian to the K-Pg boundary, except for a 500 kyr gap in magnetochron C31n. Correlation...... of the age-calibrated d13C profile of ODP Hole 762C to the d13C profile of the Tercis les Bains section, Global Stratotype Section and Point of the Campanian–Maastrichtian boundary (CMB), allowed a precise recognition and dating of this stage boundary at 72.15 ± 0.05 Ma. This accounts for a total duration...

  8. Fibre positioning algorithms for the WEAVE spectrograph

    NARCIS (Netherlands)

    Terrett, David L.; Lewis, Ian J.; Dalton, Gavin; Abrams, Don Carlos; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Middleton, Kevin; Trager, Scott C.

    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. It is a multi-object "pick and place" fibre fed spectrograph with more than one thousand fibres, similar in concept to the Australian Astronomical

  9. A compact echelle spectrograph for characterization of astro-combs (United States)

    Probst, Rafael A.; Steinmetz, Tilo; Wu, Yuanjie; Grupp, Frank; Udem, Thomas; Holzwarth, Ronald


    We present an echelle spectrograph that is optimized for characterization of frequency combs for astronomical applications (astro-combs). In spite of its very compact and cost-efficient design, it allows viewing the spectrum of a frequency comb in nearly the same way as a full-sized high-resolution echelle spectrograph as used at astronomical observatories. This is of great value for testing and characterizing astro-combs during their assembly phase. The spectrograph can further be utilized to effectfully demonstrate the remarkable capabilities of astro-combs.

  10. Curved VPH gratings for novel spectrographs (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.


    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  11. Integrating TV/digital data spectrograph system (United States)

    Duncan, B. J.; Fay, T. D.; Miller, E. R.; Wamsteker, W.; Brown, R. M.; Neely, P. L.


    A 25-mm vidicon camera was previously modified to allow operation in an integration mode for low-light-level astronomical work. The camera was then mated to a low-dispersion spectrograph for obtaining spectral information in the 400 to 750 nm range. A high speed digital video image system was utilized to digitize the analog video signal, place the information directly into computer-type memory, and record data on digital magnetic tape for permanent storage and subsequent analysis.

  12. NRES: The Network of Robotic Echelle Spectrographs (United States)

    Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Barnes, Stuart; Bowman, Mark; De Vera, Jon; Eastman, Jason D.; Kirby, Annie; Norbury, Martin; Smith, Cary; Taylor, Brook; Tufts, Joseph; Van Eyken, Julian C.


    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four to six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12. Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. Barring serious complications, we expect regular scheduled science observing to begin in mid-2017. Three additional units are in building or testing phases and slated for deployment in late 2017. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities. We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first unit, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.

  13. The end-to-end simulator for the E-ELT HIRES high resolution spectrograph (United States)

    Genoni, M.; Landoni, M.; Riva, M.; Pariani, G.; Mason, E.; Di Marcantonio, P.; Disseau, K.; Di Varano, I.; Gonzalez, O.; Huke, P.; Korhonen, H.; Li Causi, Gianluca


    We present the design, architecture and results of the End-to-End simulator model of the high resolution spectrograph HIRES for the European Extremely Large Telescope (E-ELT). This system can be used as a tool to characterize the spectrograph both by engineers and scientists. The model allows to simulate the behavior of photons starting from the scientific object (modeled bearing in mind the main science drivers) to the detector, considering also calibration light sources, and allowing to perform evaluation of the different parameters of the spectrograph design. In this paper, we will detail the architecture of the simulator and the computational model which are strongly characterized by modularity and flexibility that will be crucial in the next generation astronomical observation projects like E-ELT due to of the high complexity and long-time design and development. Finally, we present synthetic images obtained with the current version of the End-to-End simulator based on the E-ELT HIRES requirements (especially high radial velocity accuracy). Once ingested in the Data reduction Software (DRS), they will allow to verify that the instrument design can achieve the radial velocity accuracy needed by the HIRES science cases.

  14. NRES: The Network of Robotic Echelle Spectrographs (United States)

    Siverd, Robert; Brown, Tim; Henderson, Todd; Hygelund, John; Barnes, Stuart; de Vera, Jon; Eastman, Jason; Kirby, Annie; Smith, Cary; Taylor, Brook; Tufts, Joseph; van Eyken, Julian


    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four (up to six in the future) identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12 once the system reaches full capability. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities.Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. After several more months of additional testing and commissioning, regular science operations began with this node in September 2017. The second NRES spectrograph was installed at McDonald Observatory in September 2017 and released to the network after its own brief commissioning period, extending spectroscopic capability to the Northern hemisphere. The third NRES spectrograph was installed at SAAO in November 2017 and released to our science community just before year's end. The fourth NRES unit shipped in October and is currently en route to Wise Observatory in Israel with an expected release to the science community in early 2018.We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first three units, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of

  15. Rocket instrument for far-UV spectrophotometry of faint astronomical objects (United States)

    Hartig, G. F.; Fastie, W. G.; Davidsen, A. F.


    A sensitive sounding rocket instrument for moderate (about 10-A) resolution far-UV (1160-1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employes a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  16. Polarizer mechanism for the space telescope faint object spectrograph (United States)

    Thulson, M. D.


    The polarizer mechanism for the Space Telescope Faint Object Spectrograph is described. This device will allow spectropolarimetric measurements of faint astronomical objects. The mechanism employs a unique arrangement to meet functional requirements in a compact package and with only one actuator. Detailed tolerance analysis and a variety of tests indicate that the polarizer is capable of accurate and reliable performance.

  17. Blind Astronomers (United States)

    Hockey, Thomas A.


    The phrase "blind astronomer” is used as an allegorical oxymoron. However, there were and are blind astronomers. What of famous blind astronomers? First, it must be stated that these astronomers were not martyrs to their craft. It is a myth that astronomers blind themselves by observing the Sun. As early as France's William of Saint-Cloud (circa 1290) astronomers knew that staring at the Sun was ill-advised and avoided it. Galileo Galilei did not invent the astronomical telescope and then proceed to blind himself with one. Galileo observed the Sun near sunrise and sunset or through projection. More than two decades later he became blind, as many septuagenarians do, unrelated to their profession. Even Isaac Newton temporarily blinded himself, staring at the reflection of the Sun when he was a twentysomething. But permanent Sun-induced blindness? No, it did not happen. For instance, it was a stroke that left Scotland's James Gregory (1638-1675) blind. (You will remember the Gregorian telescope.) However, he died days later. Thus, blindness little interfered with his occupation. English Abbot Richard of Wallingford (circa 1291 - circa 1335) wrote astronomical works and designed astronomical instruments. He was also blind in one eye. Yet as he further suffered from leprosy, his blindness seems the lesser of Richard's maladies. Perhaps the most famous professionally active, blind astronomer (or almost blind astronomer) is Dominique-Francois Arago (1786-1853), director until his death of the powerful nineteenth-century Paris Observatory. I will share other _ some poignant _ examples such as: William Campbell, whose blindness drove him to suicide; Leonhard Euler, astronomy's Beethoven, who did nearly half of his life's work while almost totally blind; and Edwin Frost, who "observed” a total solar eclipse while completely sightless.

  18. Echelle/Grism Spectrograph (United States)

    Dantzler, A. A.


    More even spectral dispersion over detector area makes all wavelengths more distinguishable. Proposed echelle spectrograph includes grating/prism combination, called "grism," to make spectral dispersion over detector more even than usually in such instruments. Instrument performance improved, with little additional manufacturing effort. Furthermore, since grism placed within collimated light and its faces are optically flat, introduces no aberrations into optical system.

  19. Astronomical Cybersketching

    CERN Document Server

    Grego, Peter


    Outlines the techniques involved in making observational sketches and more detailed 'scientific' drawings of a wide variety of astronomical subjects using modern digital equipment; primarily PDAs and tablet PCs. This book also discusses about choosing hardware and software

  20. An integral field spectrograph for snap (United States)

    Prieto, Eric; Ealet, Anne; Milliard, Bruno; Aumeunier, Marie-Hélène; Bonissent, Alain; Cerna, Cédric; Crouzet, Pierre-Elie; Karst, Pierre; Kneib, Jean-Paul; Malina, Roger; Pamplona, Tony; Rossin, Christelle; Smadja, Gérard; Vivès, Sébastien


    A well-adapted visible and infrared spectrograph has been developed for the SNAP (SuperNova/Acceleration Probe) experiment proposed for JDEM. The primary goal of this instrument is to ensure the control of Type Ia supernovae. The spectrograph is also a key element for calibration and is able to measure redshift of some thousands of galaxy spectra both in visible and IR. An instrument based on an integral field method with the powerful concept of imager slicing has been designed and is presented. We present the current design and expected performances. We show that with the current optimization and the proposed technology, we expect the most sensitive instrument proposed on this kind of mission. We recall the readiness of the concept and of the slicer technology thanks to large prototyping efforts performed in France which validate the proposition. This work is supported in France by CNRS/INSU, CNRS/IN2P3 and by the French spatial agency (CNES).

  1. Laboratory testing and performance verification of the CHARIS integral field spectrograph (United States)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; Jovanovic, Nemanja; McElwain, Michael W.; Takato, Naruhisa; Hayashi, Masahiko


    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically, the relative alignment of the lenslet array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2 as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  2. Astronomical Ecosystems (United States)

    Neuenschwander, D. E.; Finkenbinder, L. R.


    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  3. The Cosmic Origins Spectrograph (United States)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; hide


    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  4. The BigBOSS spectrograph (United States)

    Jelinsky, Patrick; Bebek, Chris; Besuner, Robert; Carton, Pierre-Henri; Edelstein, Jerry; Lampton, Michael; Levi, Michael E.; Poppett, Claire; Prieto, Eric; Schlegel, David; Sholl, Michael


    BigBOSS is a proposed ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a 14,000 square degree galaxy and quasi-stellar object redshift survey. It consists of a 5,000- fiber-positioner focal plane feeding the spectrographs. The optical fibers are separated into ten 500 fiber slit heads at the entrance of ten identical spectrographs in a thermally insulated room. Each of the ten spectrographs has a spectral resolution (λ/Δλ) between 1500 and 4000 over a wavelength range from 360 - 980 nm. Each spectrograph uses two dichroic beam splitters to separate the spectrograph into three arms. It uses volume phase holographic (VPH) gratings for high efficiency and compactness. Each arm uses a 4096x4096 15 μm pixel charge coupled device (CCD) for the detector. We describe the requirements and current design of the BigBOSS spectrograph. Design trades (e.g. refractive versus reflective) and manufacturability are also discussed.

  5. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories

    Directory of Open Access Journals (Sweden)

    Frédéric P. A. Vogt


    Full Text Available Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF on Unit Telescope 4 (UT4 of the Very Large Telescope (VLT, we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R≅3000 of the uplink laser beams over the wavelength range of 4750 Å–9350 Å. We report the first detection of laser-induced Raman scattering by N_{2}, O_{2}, CO_{2}, H_{2}O, and (tentatively CH_{4} molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT. At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam

  6. Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories (United States)

    Vogt, Frédéric P. A.; Bonaccini Calia, Domenico; Hackenberg, Wolfgang; Opitom, Cyrielle; Comin, Mauro; Schmidtobreik, Linda; Smoker, Jonathan; Blanchard, Israel; Espinoza Contreras, Marcela; Aranda, Ivan; Milli, Julien; Jaffe, Yara L.; Selman, Fernando; Kolb, Johann; Hibon, Pascale; Kuntschner, Harald; Madec, Pierre-Yves


    Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part) the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF) on Unit Telescope 4 (UT4) of the Very Large Telescope (VLT), we characterize the spectral signature of the uplink beams from the 22-W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrograph mounted on the Nasmyth B focus of UT4 to acquire spectra at a resolution of R ≅3000 of the uplink laser beams over the wavelength range of 4750 Å-9350 Å. We report the first detection of laser-induced Raman scattering by N2 , O2 , CO2 , H2O , and (tentatively) CH4 molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons—but 480 Å to 2210 Å redder than the original laser wavelength of 5889.959 Å—landing on the 8.2-m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering, a phenomenon not usually discussed in the astronomical context, is not unique to the observatory of Cerro Paranal, but it is common to any astronomical telescope employing a laser guide star (LGS) system. It is thus essential for any optical spectrograph coupled to a LGS system to thoroughly handle the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope (ELT). At sites hosting multiple telescopes, laser-collision-prediction tools should also account for the presence of Raman emission from the uplink laser beam(s) to avoid the unintentional

  7. Update on the Gemini High-Resolution Optical SpecTrograph (GHOST) (United States)

    Margheim, Steven J.; Ghost Instrument Team


    The Gemini High-Resolution Opitcal SpecTrograph (GHOST) is under development for the Gemini telescopes in collaboration with the Austrailian Astronomical Observatory (AAO), the NRC-Herzberg in Canada, and the Australian National University (ANU). The latest design and project plan will be presented and the scientific role of the instrument will be discussed.

  8. Design and Capabilities of the AAT/HERMES Spectrograph (United States)

    de Silva, G. M.; Heijmans, J.; Gers, L.; Zucker, D.; Aao Hermes Team


    The High Efficiency and Resolution Multi-Element spectrograph (HERMES) currently under construction at the Australian Astronomical Observatory will be the next major instrument for the Anglo-Australian Telescope. It will provide a unique and powerful new facility for multi-object spectroscopy. HERMES uses the 2dF fibre positioning system to provide up to 392 multiplex capability over a 2 degree field of view. The spectrograph design includes 4 wavelength channels, each with VPH-gratings providing a nominal spectral resolving power of 28,000 and a high-resolution mode of 50,000. The initial wavelength channels are tailored for determining a large range of chemical elements suitable for chemical tagging, but allow for grating upgrades reconfigurable between 370 - 1000 nm. An overview of the project and expected performance based on the HERMES simulated data is presented.

  9. Fibre positioning algorithms for the WEAVE spectrograph (United States)

    Terrett, David L.; Lewis, Ian J.; Dalton, Gavin; Abrams, Don Carlos; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Middleton, Kevin; Trager, Scott C.


    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. It is a multi-object "pick and place" fibre fed spectrograph with more than one thousand fibres, similar in concept to the Australian Astronomical Observatory's 2dF1 instrument with two observing plates, one of which is observing the sky while other is being reconfigured by a robotic fibre positioner. It will be capable of acquiring more than 10000 star or galaxy spectra a night. The WEAVE positioner concept uses two robots working in tandem in order to reconfigure a fully populated field within the expected 1 hour dwell-time for the instrument (a good match between the required exposure times and the limit of validity for a given configuration due to the effects of differential refraction). This presents additional constraints and complications for the software that determines the optimal path from one configuration to the next, particularly given the large number of fibre crossings implied by the 1000 fibre multiplex. This paper describes the algorithms and programming techniques used in the prototype implementations of the field configuration tool and the fibre positioner robot controller developed to support the detailed design of WEAVE.

  10. The SED Machine: A Robotic Spectrograph for Fast Transient Classification (United States)

    Blagorodnova, Nadejda; Neill, James D.; Walters, Richard; Kulkarni, Shrinivas R.; Fremling, Christoffer; Ben-Ami, Sagi; Dekany, Richard G.; Fucik, Jason R.; Konidaris, Nick; Nash, Reston; Ngeow, Chow-Choong; Ofek, Eran O.; O’ Sullivan, Donal; Quimby, Robert; Ritter, Andreas; Vyhmeister, Karl E.


    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come online. Presently, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing “follow-up drought”. Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R ∼ 100) integral field unit (IFU) spectrograph with “Rainbow Camera” (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized for spectral classification.

  11. Galactic Archeology - Requirements on Survey Spectrographs (United States)

    Feltzing, S.


    Galactic Archeology is about exploring the Milky Way as a galaxy by, mainly, using its (old) stars as tracers of past events and thus to figure out the formation and evolution of our Galaxy. I will briefly outline some of the key scientific aspects of Galactic Archeology and then discuss the associated instrumentation. Gaia will forever change the way we approach this subject. However, Gaia on its own is not enough. Ground-based complementary spectroscopy is necessary to obtain full phase-space information and elemental abundances for stars fainter than the top few percent of the bright part of the Gaia catalog. I will review the requirement on instrumentation for Gaia follow-up that Galactic Archeology sets. In particular, I will discuss the requirements on radial velocity and elemental abundance determination, including a brief look at potential pitfalls in the abundance analysis (e.g., NLTE, atomic diffusion). This contribution also provides a non-exhaustive comparison of the various current and future spectrographs for Galactic Archeology. Finally, I will discuss the needs for astrophysical calibrations for the surveys and inter-survey calibrations.

  12. Biographical encyclopedia of astronomers

    CERN Document Server

    Trimble, Virginia; Williams, Thomas; Bracher, Katherine; Jarrell, Richard; Marché, Jordan; Palmeri, JoAnn; Green, Daniel


    The Biographical Encyclopedia of Astronomers is a unique and valuable resource for historians and astronomers alike. It includes approx. 1850 biographical sketches on astronomers from antiquity to modern times. It is the collective work of 430 authors edited by an editorial board of 8 historians and astronomers. This reference provides biographical information on astronomers and cosmologists by utilizing contemporary historical scholarship. The fully corrected and updated second edition adds approximately 300 biographical sketches. Based on ongoing research and feedback from the community, the new entries will fill gaps and provide expansions. In addition, greater emphasis on Russo phone astronomers and radio astronomers is given. Individual entries vary from 100 to 1500 words, including the likes of the super luminaries such as Newton and Einstein, as well as lesser-known astronomers like Galileo's acolyte, Mario Guiducci.

  13. Astrophotonics: a new era for astronomical instruments. (United States)

    Bland-Hawthorn, Joss; Kern, Pierre


    Astrophotonics lies at the interface of astronomy and photonics. This burgeoning field has emerged over the past decade in response to the increasing demands of astronomical instrumentation. Early successes include: (i) planar waveguides to combine signals from widely spaced telescopes in stellar interferometry; (ii) frequency combs for ultra-high precision spectroscopy to detect planets around nearby stars; (iii) ultra-broadband fibre Bragg gratings to suppress unwanted background; (iv) photonic lanterns that allow single-mode behaviour within a multimode fibre; (v) planar waveguides to miniaturize astronomical spectrographs; (vi) large mode area fibres to generate artificial stars in the upper atmosphere for adaptive optics correction; (vii) liquid crystal polymers in optical vortex coronographs and adaptive optics systems. Astrophotonics, a field that has already created new photonic capabilities, is now extending its reach down to the Rayleigh scattering limit at ultraviolet wavelengths, and out to mid infrared wavelengths beyond 2500 nm.

  14. The development of WIFIS: a wide integral field infrared spectrograph (United States)

    Sivanandam, Suresh; Chou, Richard C. Y.; Moon, Dae-Sik; Ma, Ke; Millar-Blanchaer, Maxwell; Eikenberry, Stephen S.; Chun, Moo-Young; Kim, Sang Chul; Raines, Steven N.; Eisner, Joshua


    We present the current results from the development of a wide integral field infrared spectrograph (WIFIS). WIFIS offers an unprecedented combination of etendue and spectral resolving power for seeing-limited, integral field observations in the 0.9 - 1.8 μm range and is most sensitive in the 0.9 - 1.35 μ,m range. Its optical design consists of front-end re-imaging optics, an all-reflective image slicer-type, integral field unit (IFU) called FISICA, and a long-slit grating spectrograph back-end that is coupled with a HAWAII 2RG focal plane array. The full wavelength range is achieved by selecting between two different gratings. By virtue of its re-imaging optics, the spectrograph is quite versatile and can be used at multiple telescopes. The size of its field-of-view is unrivalled by other similar spectrographs, offering a 4.511x 1211 integral field at a 10-meter class telescope (or 2011 x 5011 at a 2.3-meter telescope). The use of WIFIS will be crucial in astronomical problems which require wide-field, two-dimensional spectroscopy such as the study of merging galaxies at moderate redshift and nearby star/planet-forming regions and supernova remnants. We discuss the final optical design of WIFIS, and its predicted on-sky performance on two reference telescope platforms: the 2.3-m Steward Bok telescope and the 10.4-m Gran Telescopio Canarias. We also present the results from our laboratory characterization of FISICA. IFU properties such as magnification, field-mapping, and slit width along the entire slit length were measured by our tests. The construction and testing of WIFIS is expected to be completed by early 2013. We plan to commission the instrument at the 2.3-m Steward Bok telescope at Kitt Peak, USA in Spring 2013.

  15. A faint-object grism spectrograph with multiple slits and CCD detector (United States)

    Geary, John C.; Huchra, John P.; Latham, David W.


    A high-efficiency spectrograph for research on faint astronomical objects has been successfully built and is in regular use on the Multiple-Mirror Telescope (MMT). It is equipped with a motorized multi-slit mechanism to allow simultaneous observations of several objects. The combination of high throughput, multiple object capability, and low-noise CCD detector has allowed routine work to be extended to objects of V magnitude 23 and fainter.

  16. The upgraded WIYN bench spectrograph (United States)

    Knezek, Patricia M.; Bershady, Matthew A.; Willmarth, Daryl; Glaspey, John; Poczulp, Gary; Blanco, Dan; Britanik, Lana; McDougall, Eugene; Corson, Charles; Liang, Ming; Keyes, Joe; Jacoby, George


    We present the as-built design overview and post-installation performance of the upgraded WIYN Bench Spectrograph. This Bench is currently fed by either of the general-use multi-fiber instruments at the WIYN 3.5m telescope on Kitt Peak, the Hydra multi-object positioner, and the SparsePak integral field unit (IFU). It is very versatile, and can be configured to accommodate low-order, echelle, and volume phase holographic gratings. The overarching goal of the upgrade was to increase the average spectrograph throughput by ~60% while minimizing resolution loss (three major thrusts: (1) a new CCD was provided with a nearly constant 30% increase is throughput over 320-1000 nm; (2) two Volume Phase Holographic (VPH) gratings were delivered; and (3) installed a new all-refractive collimator that properly matches the output fiber irradiance (EE90) and optimizes pupil placement. Initial analysis of commissioning data indicates that the total throughput of the system has increased 50-70% using the 600 l/mm surface ruled grating, indicating that the upgrade has achieved its goal. Furthermore, it has been demonstrated that overall image resolution meets the requirement of <20% loss.

  17. Calibration beads containing luminescent lanthanide ion complexes (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  18. Fibre positioning concept for the WEAVE spectrograph at the WHT (United States)

    Lewis, Ian J.; Dalton, Gavin B.; Brock, Matthew; Gilbert, James; Abrams, Don C.; Aguerri, J. Alfonso L.; Bonifacio, Piercarlo; Middleton, Kevin; Trager, Scott C.


    WEAVE is the next-generation wide-field optical spectroscopy facility for the William Herschel Telescope (WHT) in La Palma, Canary Islands, Spain. It is a multi-object "pick and place" fibre fed spectrograph with more than one thousand fibres behind a new dedicated 2° prime focus corrector, This is similar in concept to the Australian Astronomical Observatory's 2dF instrument1 with two observing plates, one of which is observing the sky while other is being reconfigured by a robotic fibre positioner. It will be capable of acquiring more than 10000 star or galaxy spectra a night. The WEAVE positioner concept uses two robots working in tandem in order to reconfigure a fully populated field within the expected 1 hour dwell-time for the instrument (a good match between the required exposure times and the limit of validity for a given configuration due to the effects of differential refraction).

  19. Field Raman spectrograph for environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haas, J.W. III; Forney, R.W.; Carrabba, M.M. [EIC Labs, Norwood, MA (United States)] [and others


    This project entails the development of a compact raman spectrograph for field screening and monitoring of a wide variety of wastes, pollutants, and corrosion products in tanks, and environmental materials. The design of a fiber optic probe for use with the spectrograph is also discussed.

  20. Modelling the application of integrated photonic spectrographs to astronomy (United States)

    Harris, R. J.; Allington-Smith, J. R.


    One of the well-known problems of producing instruments for Extremely Large Telescopes is that their size (and hence cost) scales rapidly with telescope aperture. To try to break this relation alternative new technologies have been proposed, such as the use of the Integrated Photonic Spectrograph (IPS). Due to their diraction limited nature the IPS is claimed to defeat the harsh scaling law applying to conventional instruments. The problem with astronomical applications is that unlike conventional photonics, they are not usually fed by diraction limited sources. This means in order to retain throughput and spatial information the IPS will require multiple Arrayed Waveguide Gratings (AWGs) and a photonic lantern. We investigate the implications of these extra components on the size of the instrument. We also investigate the potential size advantage of using an IPS as opposed to conventional monolithic optics. To do this, we have constructed toy models of IPS and conventional image sliced spectrographs to calculate the relative instrument sizes and their requirements in terms of numbers of detector pixels. Using these models we can quantify the relative size/cost advantage for dierent types of instrument, by varying dierent parameters e.g. multiplex gain and spectral resolution. This is accompanied by an assessment of the uncertainties in these predictions, which may prove crucial for the planning of future instrumentation for highly-multiplexed spectroscopy.

  1. Photonic Spectrograph for new Technology Telescope (PSTT) (United States)

    Jones, H. R. A.; PSTT Colaboration

    We outline a high stability precision infrared spectrograph intended for the New Technology Telescope at ESO's La Silla Observatory. This spectrograph known as PSTT (Photonic Spectrograph for new Technology Telescope) is intended to incorporate a number of new technologies that have recently become available, e.g., reformatting photonic lanterns, broadband laser combs and 4k2 infrared arrays. Elements such as OH suppression and an integrated photonic spectrograph should also be considered. The intention is to deliver a high resolution infrared spectrograph that can deliver sub-m/s radial velocity precision to the ESO community. This will enable the opportunity to discover and characterise Earth-mass planets around nearby objects as well as follow-up on results from transit surveys from the ground and space.

  2. Nicolaus Copernicus Astronomical Center (United States)

    Murdin, P.


    Nicolaus Copernicus Astronomical Center is the largest astronomical institution in Poland, located in Warsaw and founded in 1956. At present it is a government-funded research institute supervised by the Polish Academy of Sciences and licensed by the government of Poland to award PhD and doctor habilitatus degrees in astronomy and astrophysics. In September 1999 staff included 21 senior scientist...

  3. Status and Performance Updates for the Cosmic Origins Spectrograph (United States)

    Snyder, Elaine M.; De Rosa, Gisella; Fischer, William J.; Fix, Mees; Fox, Andrew; Indriolo, Nick; James, Bethan; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Sankrit, Ravi; Taylor, Joanna M.; White, James


    The Hubble Space Telescope's Cosmic Origins Spectrograph (COS) moved the spectra on the FUV detector from Lifetime Position 3 (LP3) to a new pristine location, LP4, in October 2017. The spectra were shifted in the cross-dispersion direction by -2.5" (roughly -31 pixels) from LP3, or -5" (roughly -62 pixels) from the original LP1. This move mitigates the adverse effects of gain sag on the spectral quality and accuracy of COS FUV observations. Here, we present updates regarding the calibration of FUV data at LP4, including the flat fields, flux calibrations, and spectral resolution. We also present updates on the time-dependent sensitivities and dark rates of both the NUV and FUV detectors.

  4. SDO-EVE multiple EUV grating spectrograph (MEGS) optical design (United States)

    Crotser, David A.; Woods, Thomas N.; Eparvier, Francis G.; Ucker, Greg; Kohnert, Richard A.; Berthiaume, Gregory D.; Weitz, David M.


    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in 2008, incorporates a suite of instruments including the EUV Variability Experiment (EVE). The EVE instrument package contains grating spectrographs used to measure the solar extreme ultraviolet (EUV) irradiance from 0.1 to 105 nm. The Multiple EUV Grating Spectrograph (MEGS) channels use concave reflection gratings to image solar spectra onto CCDs that are operated at -100°C. MEGS provides 0.1nm spectral resolution between 5-105nm every 10 seconds with an absolute accuracy of better than 25% over the SDO 5-year mission. MEGS-A utilizes a unique grazing-incidence, off-Rowland circle (RC) design to minimize angle of incidence at the detector while meeting high resolution requirements. MEGS-B utilizes a double-pass, cross-dispersed double-Rowland circle design. MEGS-P, a Ly-α monitor, will provide a proxy model calibration in the 60-105 nm range. Finally, the Solar Aspect Monitor (SAM) channel will provide continual pointing information for EVE as well as low-resolution X-ray images of the sun. In-flight calibrations for MEGS will be provided by the on-board EUV Spectrophotometer (ESP) in the 0.1-7nm and 17-37nm ranges, as well as from annual under-flight rocket experiments. We present the methodology used to develop the MEGS optical design.

  5. NIR Camera/spectrograph: TEQUILA (United States)

    Ruiz, E.; Sohn, E.; Cruz-Gonzalez, I.; Salas, L.; Parraga, A.; Torres, R.; Perez, M.; Cobos, F.; Tejada, C.; Iriarte, A.


    We describe the configuration and operation modes of the IR camera/spectrograph called TEQUILA, based on a 1024X1024 HgCdTe FPA (HAWAII). The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN$_2$ dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An optomechanical assembly cooled to -30oC that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provisions to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8 m Mexican Infrared-Optical Telescope (TIM).

  6. The Schmidt-Czerny-Turner spectrograph (United States)

    McClure, Jason P.


    Since the invention of the CCD detector in 1969 by George Smith and Willard Boyle, incremental innovations to the dispersive imaging spectrograph have slowly materialized in response the abounding advances in CCD detector technology. The modern Czerny-Turner type spectrograph, arguably the most commonly used instrument in optical spectroscopy, fails to uphold the ever increasing needs today's researchers demand, let alone tomorrow's. This paper discusses an innovative solution to the Czerny-Turner imaging spectrograph bridging a more than 20 year gap in development and understanding. A manifold of techniques in optical spectroscopy both advantaged and enabled by this innovation are expounded upon.

  7. The amateur astronomer

    CERN Document Server

    Moore, Patrick


    Introduces astronomy and amateur observing together. This edition includes photographs and illustrations. The comprehensive appendices provide hints and tips, as well as data for every aspect of amateur astronomy. This work is useful for amateur astronomers

  8. 16 years of airglow measurement with astronomical facilities (United States)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Unterguggenberger, Stefanie; Jones, Amy; Proxauf, Bastian


    Observations taken with ground-based astronomical telescopes are affected by various airglow emission processes in the Earth's upper atmosphere. This chemiluminescent emission can be used to investigate the physical state of the meso- and the thermosphere. By applying a modified approach of techniques originally developed to characterise and remove these features from the astronomical spectra, which are not primarily taken for airglow studies, these spectra are suitable for airglow research. For our studies, we currently use data from two observing sites on both hemispheres for our studies: The European Southern Observatory operates four 8m telescopes at the Very Large Telescope (VLT) in the Chilean Atacama desert (24.6°S, 70.4°W). The 2.5m Sloan Digital Sky Survey telescope (SDSS) located in New Mexico/USA (32.8°N, 105.8°W) provides observations from the northern hemisphere. Each of these telescopes is equipped with several astronomical instruments. Among them are several spectrographs operating in the optical and near-IR regime with medium to high spectral resolution. Currently, we work on data from the following three spectrographs (1) UVES@VLT (Ultraviolet and Visual Echelle Spectrograph): This instrument provides spectra in the wavelength regime from 0.3 to 1.1μm in small spectral ranges. Its high resolving power (up to R˜110 000) allows a detailed study of oxygen (OI@557nm, OI@630nm), sodium (NaD@589nm), nitrogen (NI@520nm), and many OH bands. UVES has been in operation since 1999 providing the longest time series. (2) X-Shooter@VLT: This spectrograph is unique as it provides the whole wavelength range from 0.3 to 2.5μm at once with medium resolving power (R˜3 300 to 18 000, depending on the setup). This enables us to study the dependency of optical and near-IR airglow processes simultaneously, e.g. the OH bands. In addition, weak airglow continuum emission, e.g. arising from FeO and NiO can be studied. In operation since 2009, the data cover half a

  9. Conceptual design for an AIUC multi-purpose spectrograph camera using DMD technology (United States)

    Rukdee, S.; Bauer, F.; Drass, H.; Vanzi, L.; Jordan, A.; Barrientos, F.


    Current and upcoming massive astronomical surveys are expected to discover a torrent of objects, which need groundbased follow-up observations to characterize their nature. For transient objects in particular, rapid early and efficient spectroscopic identification is needed. In particular, a small-field Integral Field Unit (IFU) would mitigate traditional slit losses and acquisition time. To this end, we present the design of a Digital Micromirror Device (DMD) multi-purpose spectrograph camera capable of running in several modes: traditional longslit, small-field patrol IFU, multi-object and full-field IFU mode via Hadamard spectra reconstruction. AIUC Optical multi-purpose CAMera (AIUCOCAM) is a low-resolution spectrograph camera of R 1,600 covering the spectral range of 0.45-0.85 μm. We employ a VPH grating as a disperser, which is removable to allow an imaging mode. This spectrograph is envisioned for use on a 1-2 m class telescope in Chile to take advantage of good site conditions. We present design decisions and challenges for a costeffective robotized spectrograph. The resulting instrument is remarkably versatile, capable of addressing a wide range of scientific topics.

  10. The 2007 ESO Instrument Calibration Workshop

    CERN Document Server

    Kaufer, Andreas; ESO Workshop


    The 2007 ESO Instrument Calibration workshop brought together more than 120 participants with the objective to a) foster the sharing of information, experience and techniques between observers, instrument developers and instrument operation teams, b) review the actual precision and limitations of the applied instrument calibration plans, and c) collect the current and future requirements by the ESO users. These present proceedings include the majority of the workshop’s contributions and document the status quo of instrument calibration at ESO in large detail. Topics covered are: Optical Spectro-Imagers, Optical Multi-Object Spectrographs, NIR and MIR Spectro-Imagers, High-Resolution Spectrographs, Integral Field Spectrographs, Adaptive Optics Instruments, Polarimetric Instruments, Wide Field Imagers, Interferometric Instruments as well as other crucial aspects such as data flow, quality control, data reduction software and atmospheric effects. It was stated in the workshop that "calibration is a life-long l...

  11. Atlas of Astronomical Discoveries

    CERN Document Server

    Schilling, Govert


    Four hundred years ago in Middelburg, in the Netherlands, the telescope was invented. The invention unleashed a revolution in the exploration of the universe. Galileo Galilei discovered mountains on the Moon, spots on the Sun, and moons around Jupiter. Christiaan Huygens saw details on Mars and rings around Saturn. William Herschel discovered a new planet and mapped binary stars and nebulae. Other astronomers determined the distances to stars, unraveled the structure of the Milky Way, and discovered the expansion of the universe. And, as telescopes became bigger and more powerful, astronomers delved deeper into the mysteries of the cosmos. In his Atlas of Astronomical Discoveries, astronomy journalist Govert Schilling tells the story of 400 years of telescopic astronomy. He looks at the 100 most important discoveries since the invention of the telescope. In his direct and accessible style, the author takes his readers on an exciting journey encompassing the highlights of four centuries of astronomy. Spectacul...

  12. Progress on the Gemini High-Resolution Optical SpecTrograph (GHOST) design (United States)

    Ireland, Michael; Anthony, Andre; Burley, Greg; Chisholm, Eric; Churilov, Vladimir; Dunn, Jennifer; Frost, Gabriella; Lawrence, Jon; Loop, David; McGregor, Peter; Martell, Sarah; McConnachie, Alan; McDermid, Richard M.; Pazder, John; Reshetov, Vlad; Robertson, J. G.; Sheinis, Andrew; Tims, Julia; Young, Peter; Zhelem, Ross


    The Gemini High-Resolution Optical SpecTrograph (GHOST) is the newest instrument being developed for the Gemini telescopes, in a collaboration between the Australian Astronomical Observatory (AAO), the NRC - Herzberg in Canada and the Australian National University (ANU). We describe the process of design optimisation that utilizes the unique strengths of the new partner, NRC - Herzberg, the design and need for the slit viewing camera system, and we describe a simplification for the lenslet-based slit reformatting. Finally, we out- line the updated project plan, and describe the unique scientific role this instrument will have in an international context, from exoplanets through to the distant Universe.

  13. GASP-Galway astronomical Stokes polarimeter

    Directory of Open Access Journals (Sweden)

    Shearer A.


    Full Text Available The Galway Astronomical Stokes Polarimeter (GASP is an ultra-high-speed, full Stokes, astronomical imaging polarimeter based upon a Division of Amplitude Polarimeter. It has been developed to resolve extremely rapid stochastic (~ms variations in objects such as optical pulsars, magnetars and magnetic cataclysmic variables. The polarimeter has no moving parts or modulated components so the complete Stokes vector can be measured from just one exposure - making it unique to astronomy. The time required for the determination of the full Stokes vector is limited only by detector efficiency and photon fluxes. The polarimeter utilizes a modified Fresnel rhomb that acts as a highly achromatic quarter wave plate and a beamsplitter (referred to as an RBS. We present a description of how the DOAP works, some of the optical design for the polarimeter. Calibration is an important and difficult issue with all polarimeters, but particularly in astronomical polarimeters. We give a description of calibration techniques appropriate to this type of polarimeter.


    National Aeronautics and Space Administration — This data set contains Calibrated data taken by the New Horizons Alice Ultraviolet Imaging Spectrograph instrument during the Pluto encounter mission phase. This is...

  15. Korean Astronomical Calendar, Chiljeongsan (United States)

    Lee, Eun Hee

    In fifteenth century Korea, there was a grand project for the astronomical calendar and instrument making by the order of King Sejong 世宗 (1418-1450). During this period, many astronomical and calendrical books including Islamic sources in Chinese versions were imported from Ming 明 China, and corrected and researched by the court astronomers of Joseon 朝鮮 (1392-1910). Moreover, the astronomers and technicians of Korea frequently visited China to study astronomy and instrument making, and they brought back useful information in the form of new published books or specifications of instruments. As a result, a royal observatory equipped with 15 types of instrument was completed in 1438. Two types of calendar, Chiljeongsan Naepyeon 七政算內篇 and Chiljeongsan Oepyeon 七政算外篇, based on the Chinese and Islamic calendar systems, respectively, were published in 1444 with a number of calendrical editions such as corrections and example supplements (假令) including calculation methods and results for solar and lunar eclipses.

  16. Goddard High Resolution Spectrograph SV/GTO Project (United States)

    Ebbets, Dennis


    Contract number NAS5-30433, known at Ball Aerospace as the GHRS SV/GTO project, supported our participation in the post-launch activities of the Goddard High Resolution Spectrograph aboard the Hubble Space Telescope. The period of performance was December 1988 through December 1998. The contract supported the involvement of Dr Dennis Ebbets in the work of the GHRS Investigation Definition Team, and several of the Ball people in the documentation and publication of results. Three main categories of tasks were covered by this contract; in-orbit calibration of the GHRS, guaranteed time observations, and education and public outreach. The nature and accomplishments of these tasks are described in the report. This summary makes many references to publications in the scientific and technical literature. Appendix A is extracted from a complete bibliography, and lists those papers that are directly related to work performed under this GHRS contract. The tasks related to the in-orbit calibration of the GHRS were by far the largest responsibility during the first six years of the project. During this period Dr. Ebbets was responsible for the definition of calibration requirements, design of experiments, preparation of observing proposals, tracking their implementation and execution, and coordinating the analysis and publication of the results. Prior to the launch of HST in 1990 the observing proposals were developed in cooperation with the scientists on the GHRS DDT, engineers at Ball Aerospace, the operations staff at the STScI, and project coordinators at GSFC.

  17. Astronomical Data in Undergraduate courses (United States)

    Clarkson, William I.; Swift, Carrie; Hughes, Kelli; Burke, Christopher J. F.; Burgess, Colin C.; Elrod, Aunna V.; Howard, Brittany; Stahl, Lucas; Matzke, David; Bord, Donald J.


    We present status and plans for our ongoing efforts to develop data analysis and problem-solving skills through Undergraduate Astronomy instruction. While our initiatives were developed with UM-Dearborn’s student body primarily in mind, they should be applicable for a wide range of institution and of student demographics. We focus here on two strands of our effort.Firstly, students in our Introductory Astronomy (ASTR 130) general-education course now perform several “Data Investigations”, in which they interrogate the Hubble Legacy Archive to illustrate important course concepts. This was motivated in part by the realization that typical public data archives now include tools to interrogate the observations that are sufficiently accessible that introductory astronomy students can use them to perform real science, albeit mostly at a descriptive level. We are continuing to refine these investigations, and, most importantly, to critically assess their effectiveness in terms of the student learning outcomes we wish to achieve. This work is supported by grant HST-EO-13758, provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.Secondly, at the advanced-undergraduate level, students taking courses in our Astronomy minor are encouraged to gain early experience in techniques of astronomical observation and analysis that are used by professionals. We present two example projects from the Fall 2015 iteration of our upper-division course ASTR330 (The Cosmic Distance Ladder), one involving Solar System measurements, the second producing calibrated aperture photometry. For both projects students conducted, analysed, and interpreted observations using our 0.4m campus telescope, and used many of the same analysis tools as professional astronomers. This work is supported partly from a Research Initiation and Seed grant from the

  18. Digitizer of astronomical plates at Shanghai Astronomical Observatory and its performance test (United States)

    Yu, Yong; Zhao, Jian-Hai; Tang, Zheng-Hong; Shang, Zheng-Jun


    Before CCD detectors were widely employed in observational astronomy, the main method of detection was the use of glass astrophotographic plates. Astronomical plates have been used to record information on the position and activity of celestial bodies for more than 100 years. There are about 30 000 astronomical plates in China, and the digitization of astronomical plates is of great significance for permanent preservation and to make full use of these valuable observation data. A digitizer with high precision and high measuring speed is a key piece of equipment for carrying out the task of digitizing these astronomical plates. A digitizer for glass astrophotographic plates was developed jointly by Shanghai Astronomical Observatory and Nishimura Co., Ltd of Japan. The digitizer’s hardware was manufactured by Nishimura Co., Ltd, and the performance test, error corrections as well as image processing of the digitizer were carried out by Shanghai Astronomical Observatory. The main structure and working mode of the digitizer are introduced in this paper. A performance test shows that brightness uniformity of illumination within the measuring area is better than 0.15%, the repeatability of digitized positions is better than 0.2 µm and the repeatability of digitized brightness is better than 0.01 instrumental magnitude. The systematic factors affecting digitized positions, such as lens distortion, the actual optical resolution, non-linearity of guide rails, non-uniformity of linear motors in the mobile platform, deviation of the image mosaic, and non-orthogonality between the direction of scanning and camera linear array, are calibrated and evaluated. Based on an astronomical plate with a size of 300mm × 300mm, which was digitized at different angles, the conversion residuals of positions of common stars on different images were investigated. The results show that the standard deviations of the residuals are better than 0.9 µm and the residual distribution is almost

  19. Astronomical Photometry Past, Present, and Future

    CERN Document Server

    Milone, Eugene F


    This book brings together experts in the field of astronomical photometry to discuss how their subfields provide the precision and accuracy in astronomical energy flux measurements that are needed to permit tests of astrophysical theories. Differential photometers and photometry, improvements in infrared precision, the improvements in precision and accuracy of CCD photometry, the absolute calibration of flux, the development of the Johnson UBVRI photometric system and other passband systems to measure and precisely classify specific types of stars and astrophysical quantities, and the current capabilities of spectrophotometry and polarimetry to provide precise and accurate data, are all discussed in this volume. The discussion of `differential’ or `two-star’ photometers ranges from early experiments in visual photometry through the Harvard and Princeton polarizing photometers to the pioneering work of Walraven and differential photometers designed to minimize effects of atmospheric extinction and to count...

  20. Sky Subtraction with Fiber-Fed Spectrograph (United States)

    Rodrigues, Myriam


    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  1. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M


    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  2. Ancient Egyptian Astronomical Calander (United States)

    Marshall, Patrice; Lodhi, M. A. K.


    In this paper, we discuss how certain astronomical concepts are related to the ancient Egyptian culture and their daily life. One of them is different ways of creating their calendar systems. The ancient Egyptian calendar seems to have quite a bit of its origin in astronomy and its development over the course of history. There is an important role played by events, as determined in the heavens, in developing their calendar system. Along with astronomical observations by the ancient people of Egypt, there were several outside cultures that helped develop their calendar system and Egyptian idea of how life was created on this planet, most notably the inclusion of the star Sirius in the constellation of Canis Major. We give a brief discussion of these influences. For the ancient Egyptians, the cycle of life and death is a concept that ties in with a calendar system used to determine daily events.

  3. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka


    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  4. Calibrating the Athena telescope (United States)

    de Bruijne, J.; Guainazzi, M.; den Herder, J.; Bavdaz, M.; Burwitz, V.; Ferrando, P.; Lumb, D.; Natalucci, L.; Pajot, F.; Pareschi, G.


    Athena is ESA's upcoming X-ray mission, currently set for launch in 2028. With two nationally-funded, state-of-the-art instruments (a high-resolution spectrograph named X-IFU and a wide-field imager named WFI), and a telescope collecting area of 1.4-2 m^2 at 1 keV, the calibration of the spacecraft is a challenge in itself. This poster presents the current (spring 2017) plan of how to calibrate the Athena telescope. It is based on a hybrid approach, using bulk manufacturing and integration data as well as dedicated calibration measurements combined with a refined software model to simulate the full response of the optics.

  5. On Tokugawa Bakufu's astronomical officials (United States)

    Yamada, Keiji


    Tokugawa Bakufu's astronomical office, established in 1684, is the post for calendar reform. The reform was conducted when the calendar did not predict peculiar celestial phenomena, such as solar or lunar eclipses. It was, so to speak, the theme of the ancient astronomy. From removal of the embargo on importing western science books in 1720, Japanese astronomers studied European astronomy and attempted to apply its knowledge to calendar making. Moreover, they knew the Copernican system and also faced several modern astronomical subjects. The French astronomer Lalande's work "ASTRONOMY" exerted particularly strong influence on astronomers. This paper overviews the activities of Paris observatory and French astronomers in the 17th and 18th centuries, and survey what modern astronomical subjects were. Finally, it sketches a role of the Edo observatory played in the Japanese cultural history.

  6. Mass production of volume phase holographic gratings for the VIRUS spectrograph array (United States)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis


    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  7. Self-scanned photodiode array - High performance operation in high dispersion astronomical spectrophotometry (United States)

    Vogt, S. S.; Tull, R. G.; Kelton, P.


    A multichannel spectrophotometric detector system has been developed using a 1024 element self-scanned silicon photodiode array, which is now in routine operation with the high-dispersion coude spectrograph of the University of Texas McDonald Observatory 2.7-m telescope. Operational considerations in the use of such arrays for high precision and low light level spectrophotometry are discussed. A detailed description of the system is presented. Performance of the detector as measured in the laboratory and on astronomical program objects is described, and it is shown that these arrays are highly effective detectors for high dispersion astronomical spectroscopy.

  8. A Spectrograph for BigBOSS (United States)

    CARTON, Pierre-Henri; Bebek, C.; Cazaux, S.; Ealet, A.; Eppelle, D.; Kneib, J.; Karst, P.; levi, M.; magneville, C.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.; Schlegel, D.; Yeche, C.


    The Big-Boss spectrographs assembly will take in charge the light from the fiber output to the detector, including the optics, gratings, mechanics and cryostats. The 5000 fibers are split in 10 bundles of 500 ones. Each of these channel feed one spectrograph. The full bandwidth from 0.36µm to 1.05µm is split in 3 bands. Each channel is composed with one collimator (doublet lenses), a VPH grating, and a 6 lenses camera. The 500 fiber spectrum are imaged onto a 4kx4k detector thanks to the F/2 camera. Each fiber core is imaged onto 4 pixels. Each channel of the BigBOSS spectrograph will be equipped with a single-CCD camera, resulting in 30 cryostats in total for the instrument. Based on its experience of CCD cameras for projects like EROS and MegaCam, CEA/Saclay has designed small and autonomous cryogenic vessels which integrate cryo-cooling, CCD positioning and slow control interfacing capabilities. The use of a Linear Pulse Tube with its own control unit, both developed by Thales Cryogenics BV, will ensure versatility, reliability and operational flexibility. CCD's will be cooled down to 140K, with stability better than 1K. CCD's will be positioned within 15µm along the optical axis and 50µm in the XY Plan. Slow Control machines will be directly interfaced to an Ethernet network, which will allow them to be operated remotely. The concept of spectrograph leads to a very robust concept without any mechanics (except the shutters). This 30 channels has a impressive compactness with its 3m3 volume. The development of such number of channel will drive to a quasi mass production philosophy.

  9. The CONTOUR remote imager and spectrograph (United States)

    Fort, D.; Warren, J.; Strohbehn, K.; Murchie, S.; Heyler, G.; Peacock, K.; Boldt, J.; Darlington, E.; Hayes, J.; Henshaw, R.; Izenberg, N.; Kardian, C.; Lees, J.; Lohr, D.; Mehoke, D.; Schaefer, E.; Sholar, T.; Spisz, T.; Willey, C.


    The Comet Nucleus Tour (CONTOUR) is a NASA Discovery mission to study the diversity of comet nuclei. Top level mission goals include imaging the nuclei of several comets at resolutions up to 4 m/ pixel, acquiring spectral information in both the visible and infrared (IR), and obtaining detailed compositional measurements of the gas and dust. The CONTOUR Remote Imager and Spectrograph (CRISP) instrument, under development at The Johns Hopkins University Applied Physics Laboratory, achieves the primary imaging and spectral mapping objectives. CRISP includes a visible imager and 10-position filter wheel to survey the visible spectrum from 400 to 800 nm and provide high-resolution images of the nucleus. An imaging spectrograph, utilizing a 256×256 HgCdTe array and yielding a spectral resolution of 7 nm, analyzes the infrared IR spectrum from 800 to 2500 nm. A Stirling cycle refrigerator cools the IR array to cryogenic operating temperatures. The imager and spectrograph share a common optical path that includes a scan mirror to actively track the comet nucleus during approach and fly-by. An overview of the CRISP instrument is presented.

  10. The Ultraviolet Spectrograph on NASA's Juno Mission (United States)

    Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François


    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.

  11. Astronomical Instruments in India (United States)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  12. SUBARU prime focus spectrograph: integration, testing and performance for the first spectrograph (United States)

    Madec, F.; Le Fur, A.; Le Mignant, D.; Dohlen, K.; Barrette, R.; Belhadi, M.; Pascal, S.; Smee, S.; Gunn, J.; Le Merrer, J.; Lorred, M.; Jaquet, M.; Balard, P.; Blanchard, P.; Tao, W.; Lapere, V.; Gabriel, J. F.; Loomis, C.; Golebiowski, M.; Hart, M.; Oliveira, L.; Oliveira, A.; Tamura, N.; Shimono, A.


    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project for Subaru telescope consists in four identical spectrographs fed by 600 fibers each. Each spectrograph is composed by an optical entrance unit that creates a collimated beam and distributes the light to three channels, two visibles and one near infrared. This paper presents the on-going effort for the tests and integration process for the first spectrograph channel: we have developed a detailed Assembly Integration and Test (AIT) plan, as well as the methods, detailed processes and I and T tools. We describe the tools we designed to assemble the parts and to test the performance of the spectrograph. We also report on the thermal acceptance tests we performed on the first visible camera unit. We also report on and discuss the technical difficulties that did appear during this integration phase. Finally, we detail the important logistic process that is require to transport the components from other country to Marseille.

  13. Grigor Narekatsi's astronomical insights (United States)

    Poghosyan, Samvel


    What stand out in the solid system of Gr. Narekatsi's naturalistic views are his astronomical insights on the material nature of light, its high speed and the Sun being composed of "material air". Especially surprising and fascinating are his views on stars and their clusters. What astronomers, including great Armenian academician V. Ambartsumian (scattering of stellar associations), would understand and prove with much difficulty thousand years later, Narekatsi predicted in the 10th century: "Stars appear and disappear untimely", "You who gather and scatter the speechless constellations, like a flock of sheep". Gr. Narekatsti's reformative views were manifested in all the spheres of the 10th century social life; he is a reformer of church life, great language constructor, innovator in literature and music, freethinker in philosophy and science. His ideology is the reflection of the 10th century Armenian Renaissance. During the 9th-10th centuries, great masses of Armenians, forced to migrate to the Balkans, took with them and spread reformative ideas. The forefather of the western science, which originated in the period of Reformation, is considered to be the great philosopher Nicholas of Cusa. The study of Gr. Narekatsti's logic and naturalistic views enables us to claim that Gr. Narekatsti is the great grandfather of European science.

  14. La Plata Astronomical Observatory (United States)

    Forte, Juan Carlos; Cora, Sofia A.

    La Plata, the current capital city of the province of Buenos Aires, was founded on 19 November 1882 by governor Dardo Rocha, and built on an innovative design giving emphasis to the quality of the public space, official and educational buildings. The Astronomical Observatory was one of the first inhabitants of the main park of the city; its construction started in 1883 including two telescopes that ranked among the largest in the southern hemisphere at that time and also several instruments devoted to positional astronomy (e.g. a meridian circle and a zenith telescope). A dedicated effort has being invested during the last 15 years in order to recover some of the original instrumentation (kept in a small museum) as well as the distinctive architectural values. In 1905, the Observatory, the School of Agriculture and the Museum of Natural Sciences (one of the most important museums in South America) became part of the backbone of La Plata National University, an institution with a strong and distinctive profile in exact and natural sciences. The First School for Astronomy and Related Sciences had been harboured by the Observatory since 1935, and became the current Faculty of Astronomical and Geophysical Sciences in 1983. This last institution carries PhD programs and also a number of teaching activities at different levels. These activities are the roots of a strong connection of the Observatory with the city.

  15. Radiation events in astronomical CCD images

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.R.; McDonald, R.J.; Hurley, D.L.; Holland, S.E.; Groom, D.E.; Brown, W.E.; Gilmore, D.K.; Stover, R.J.; Wei, M.


    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. ''Cosmic rays'' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons (''worms''). Beta emitters inside the dewar, for example high-potassium glasses such as BK7, also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by-products of the U and Th decay chains; these elements always appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to be significantly cleaner than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude flights does not appear to be a problem. Our conclusions are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  16. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph (United States)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  17. East Asian astronomical records (United States)

    Stephenson, F. Richard

    Chinese, Japanese and Korean celestial observations have made major contributions to Applied Historical Astronomy, especially in the study of supernovae, comets, Earth's rotation (using eclipses) and solar variability (via sunspots and aurorae). Few original texts now survive; almost all extant records exist only in printed versions, often with the loss of much detail. The earliest Chinese astronomical observations extend back to before 1000 BC. However, fairly systematic records are only available since 200 BC - and even these have suffered losses through wars, etc. By around AD 800, many independent observations are available from Japan and Korea and these provide a valuable supplement to the Chinese data. Throughout East Asia dates were expressed in terms of a luni-solar calendar and conversion to the Julian or Gregorian calendar can be readily effected.

  18. Measuring the color and brightness of artificial sky glow from cities using an all-sky imaging system calibrated with astronomical methods in the Johnson-Cousins B and V photometric systems (United States)

    Pipkin, Ashley; Duriscoe, Dan M.; Lughinbuhl, Christian


    Artificial light at night, when observed at some distance from a city, results in a dome of sky glow, brightest at the horizon. The spectral power distribution of electric light utilized will determine its color of the light dome and the amount of light will determine its brightness. Recent outdoor lighting technologies have included blue-rich light emitting diode (LED) sources that may increase the relative amount of blue to green light in sky glow compared to typical high pressure sodium (HPS) sources with warmer spectra. Measuring and monitoring this effect is important to the preservation of night sky visual quality as seen from undeveloped areas outside the city, such as parks or other protected areas, since the dark-adapted human eye is more sensitive to blue and green. We present a method using a wide field CCD camera which images the entire sky in both Johnson V and B photometric bands. Standard stars within the images are used for calibration. The resulting all-sky brightness maps, and a derived B-V color index map, provide a means to assess and track the impact of specific outdoor lighting practices. We also present example data from several cities, including Las Vegas, Nevada, Flagstaff, Arizona, and Cheyenne, Wyoming.

  19. pwkit: Astronomical utilities in Python (United States)

    Williams, Peter K. G.; Clavel, Maïca; Newton, Elisabeth; Ryzhkov, Denis


    pwkit is a collection of miscellaneous astronomical utilities in Python, with an emphasis on radio astronomy, reading and writing various data formats, and convenient command-line utilities. Utilities include basic astronomical calculations, data visualization tools such as mapping arbitrary data to color scales and tracing contours, and data input and output utilities such as streaming output from other programs.

  20. Calibrating spectral images using penalized likelihood

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Glasbey, C.


    A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands

  1. Phase A: calibration concepts for HIRES (United States)

    Huke, Philipp; Origlia, Livia; Riva, Marco; Charsley, Jake; McCracken, Richard; Reid, Derryck; Kowzan, Grzegorz; Maslowski, Piotr; Disseau, Karen; Schäfer, Sebastian; Broeg, Christopher; Sarajlic, Mirsad; Dolon, François; Korhonen, Heidi; Reiners, Ansgar; Boisse, Isabelle; Perruchot, Sandrine; Ottogalli, Sebastien; Pepe, Francesco; Oliva, Ernesto


    The instrumentation plan for the E-ELT foresees a High Resolution Spectrograph (HIRES). Among its main goals are the detection of atmospheres of exoplanets and the determination of fundamental physical constants. For this, high radial velocity precision and accuracy are required. HIRES will be designed for maximum intrinsic stability. Systematic errors from effects like intrapixel variations or random errors like fiber noise need to be calibrated. Based on the main requirements for the calibration of HIRES, we discuss different potential calibration sources and how they can be applied. We outline the frequency calibration concept for HIRES using these sources.

  2. Field Raman Spectrograph for Environmental Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.M.; Haas, J.W.; Spencer, K.M.; Carrabba, M.M.; Rauh, R.D.; Forney, R.W.; Johnston, T.M.


    The widespread contamination found across the US Department of Energy (DOE) complex has received considerable attention from the government and public alike. A massive site characterization and cleanup effort has been underway for several years and is expected to continue for several decades more. The scope of the cleanup effort ranges from soil excavation and treatment to complete dismantling and decontamination of whole buildings. To its credit, DOE has supported research and development of new technologies to speed up and reduce the cost of this effort. One area in particular has been the development of portable instrumentation that can be used to perform analytical measurements in the field. This approach provides timely data to decision makers and eliminates the expense, delays, and uncertainties of sample preservation, transport, storage, and laboratory analysis. In this program, we have developed and demonstrated in the field a transportable, high performance Raman spectrograph that can be used to detect and identify contaminants in a variety of scenarios. With no moving parts, the spectrograph is rugged and can perform many Raman measurements in situ with flexible fiber optic sampling probes. The instrument operates under computer control and a software package has been developed to collect and process spectral data. A collection of Raman spectra for 200 contaminants of DOE importance has been compiled in a searchable format to assist in the identification of unknown contaminants in the field.

  3. WIYN bench upgrade: a revitalized spectrograph (United States)

    Bershady, M.; Barden, S.; Blanche, P.-A.; Blanco, D.; Corson, C.; Crawford, S.; Glaspey, J.; Habraken, S.; Jacoby, G.; Keyes, J.; Knezek, P.; Lemaire, P.; Liang, M.; McDougall, E.; Poczulp, G.; Sawyer, D.; Westfall, K.; Willmarth, D.


    We describe the redesign and upgrade of the versatile fiber-fed Bench Spectrograph on the WIYN 3.5m telescope. The spectrograph is fed by either the Hydra multi-object positioner or integral-field units (IFUs) at two other ports, and can be configured with an adjustable camera-collimator angle to use low-order and echelle gratings. The upgrade, including a new collimator, charge-coupled device (CCD) and modern controller, and volume-phase holographic gratings (VPHG), has high performance-to-cost ratio by combining new technology with a system reconfiguration that optimizes throughput while utilizing as much of the existing instrument as possible. A faster, all-refractive collimator enhances throughput by 60%, nearly eliminates the slit-function due to vignetting, and improves image quality to maintain instrumental resolution. Two VPH gratings deliver twice the diffraction efficiency of existing surface-relief gratings: A 740 l/mm grating (float-glass and post-polished) used in 1st and 2nd-order, and a large 3300 l/mm grating (spectral resolution comparable to the R2 echelle). The combination of collimator, high-quantum efficiency (QE) CCD, and VPH gratings yields throughput gain-factors of up to 3.5.

  4. Radial Velocity Fiber-Fed Spectrographs Towards the Discovery of Compact Planets and Pulsations on M Stars (United States)

    Berdiñas, Zaira M.


    This thesis is developed in the framework of the paradigm that seeks for the discovery of an Earth analog. Nowadays, low mass stars, and in particular M dwarf stars, are key targets towards achieving this goal. In this thesis, I focus on the study of the short-time domain of M dwarf stars with the aim of searching for short period planets, but also for the first detection of stellar pulsations on this spectral type. Both science goals are the primary objectives of the “Cool Tiny Beats” (CTB) survey, which has produced most of the data used in this thesis. CTB data consist in high resolution and high-cadence spectroscopic Doppler measurements taken either with HARPS or HARPS-N spectrographs. First of all, a thorough understanding of the spectrographs response in the short time domain was performed to characterize the sources of noise in our range of study. Our first approach to the goals of this thesis consisted in the design of an observational experiment to delve into the HARPS-N sub-night performance. Results unveiled variability of the spectra continuum correlated with instabilities of the spectrograph illumination associated to the airmass. Such distortions, which are wavelength and time dependent, are also present in at least one of the data-products given by the HARPS-N reduction software: the width of the mean-line profiles (i.e. the so-called FWHM index), an index commonly used as a proxy of the stellar activity. As a consequence, we searched for an alternative approach to measure the width index. In particular, we calculated the mean-line profile of the spectrum with a least-squares-deconvolution technique and we obtained the profile indices as the moments of the profile distribution. As part of this study, we also corroborated that the radial velocities calculated with our template matching algorithm TERRA are not affected by the illumination stability. This work unveiled a possible failure of the HARPS-N atmospheric dispersion corrector (or ADC) and

  5. Photonic ring resonator filters for astronomical OH suppression (United States)

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; Spinka, H.; Underwood, D.; Gupta, R. R.; Ocola, L. E.; Liu, P.; Wei, G.; Stern, N. P.; Bland-Hawthorn, J.; Tuthill, P.


    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra, however we also briefly discuss their use as frequency combs for wavelength calibration and as drop filters for Doppler planet searches. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (0.9), but further optimisation is required to achieve higher Q and deeper notches, with current devices having $Q \\approx 4000$ and $\\approx 10$ dB suppression. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.

  6. The deterministic optical alignment of the HERMES spectrograph (United States)

    Gers, Luke; Staszak, Nicholas


    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  7. Young Astronomers' Observe with ESO Telescopes (United States)


    somewhat similar to the Earth, but it is too cold for life as we know it, and because of its comparatively small size, the atmospheric pressure is very low. It would in principle be possible to detect the outermost planet with the HST, if the distance to this planetary system was less than about 30 light-years. Ireland: Mr. Declan MacCuarta (Teacher), Mr. Colm McLoughlin (St. Peter's College, Wexford, Co. Wexford) The nearest star, Alpha Centauri, is a double star and a hypothetical planetary system around the A-component, a solar-type star, is studied in some detail. The presence of the companion star makes some planetary orbits unstable. In this project, 4 planets are placed within 2 AU (300 million km) of the central star; 3 of these are terrestrial (no. 3 is Earth-like) and the outermost is a small gaseous planet. Cometary orbits may be very complex in this gravitatinal field. A planetary system like the one described may be barely observable with the Hubble Space Telescope, and only if one of the planets passes in front of the star (an `occultation') and its light diminishes accordingly. Italy: Mr. Pasquale Ciarletta, Ms. Francesca D'elia, Ms. Ada Fortugna (Teacher), Mr. Alfredo Pudano (Liceo Scientifico `Leonardo da Vinci', Reggio Calabria) This group built a spectrograph from scratch, with a grating and all the usual optical parts. They were able to calibrate the solar spectrum with the help of standard lamps and in this way, they observed several prominent, solar absorption lines. Among them were the H-alpha line at 6562 A, the sodium D-lines at 5890--96 And the magnesium triplet near 5175 A. These observations were made with the eye and also with the photographic recording technique. They were planning to observe the spectra of some stars also, but in the end time was too short and they had to hurry to send in the report. The Netherlands: Mr. Alex De Beer, Mr. KlAs Huijbregts, Mr. Ruud Nellen (Norbertuscollege, RosendAl) This team has designed their own planetary

  8. SINFONI Pipeline: Data reduction pipeline for the Very Large Telescope SINFONI spectrograph (United States)



    The SINFONI pipeline reduces data from the Very Large Telescope's SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument. It can evaluate the detector linearity and generate a corresponding non linear pixel map, create a master dark and a hot-pixel map, a master flat and a map of pixels which have intensities greater than a given threshold. It can also compute the optical distortions and slitlets distances, and perform wavelength calibration, PSF, telluric standard and other science data reduction, and can coadd bad pixel maps, collapse a cube to an image over a given wavelength range, perform cube arithmetics, among other useful tasks.

  9. The control unit of the near infrared spectrograph of the EUCLID space mission: preliminary design (United States)

    Toledo-Moreo, Rafael; Colodro-Conde, Carlos; Díaz-García, José Javier; Tubío-Araujo, Óscar Manuel; Gómez-Sáenz, Jaime; Peña-Godino, Antonio; Velasco-Fernández, Tirso; Sánchez-Prieto, Sebastián.; Villó-Pérez, Isidro; Rebolo-López, Rafael


    The Near Infrared Spectrograph and Photometer (NISP) is one of the instruments on board the ESA EUCLID mission. The Universidad Politecnica de Cartagena and Instituto de Astrofisica de Canarias are responsible of the Instrument Control Unit of the NISP (NI-ICU) in the Euclid Consortium. The NI-ICU main functions are: communication with the S/C and the Data Processing Unit, control of the Filter and Grism Wheels, control of the Calibration Unit and thermal control of the instrument. This paper presents the NI-ICU status of definition and design at the end of the preliminary design phase.

  10. Astronomical Significance of Ancient Monuments (United States)

    Simonia, I.


    Astronomical significance of Gokhnari megalithic monument (eastern Georgia) is considered. Possible connection of Amirani ancient legend with Gokhnari monument is discussed. Concepts of starry practicality and solar stations are proposed.

  11. Annotations of a Public Astronomer (United States)

    Adamo, A.


    Angelo Adamo is an Italian astronomer and artist interested in inspiring people with scientifically-based tales. He has recently published two illustrated books exploring the relationships between mankind and cosmos through physics, art, literature, music, cartoons, and movies.

  12. Astronomical Instrumentation System Markup Language (United States)

    Goldbaum, Jesse M.


    The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.

  13. Fiber Scrambling for High Precision Spectrographs (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.


    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  14. Precision single mode fibre integral field spectroscopy with the RHEA spectrograph (United States)

    Rains, Adam D.; Ireland, Michael J.; Jovanovic, Nemanja; Feger, Tobias; Bento, Joao; Schwab, Christian; Coutts, David W.; Guyon, Olivier; Arriola, Alexander; Gross, Simon


    The RHEA Spectrograph is a single-mode echelle spectrograph designed to be a replicable and cost effective method of undertaking precision radial velocity measurements. Two versions of RHEA currently exist, one located at the Australian National University in Canberra, Australia (450 - 600nm wavelength range), and another located at the Subaru Telescope in Hawaii, USA (600 - 800 nm wavelength range). Both instruments have a novel fibre feed consisting of an integral field unit injecting light into a 2D grid of single mode fibres. This grid of fibres is then reformatted into a 1D array at the input of the spectrograph (consisting of the science fibres and a reference fibre capable of receiving a white-light or xenon reference source for simultaneous calibration). The use of single mode fibres frees RHEA from the issue of modal noise and significantly reduces the size of the optics used. In addition to increasing the overall light throughput of the system, the integral field unit allows for cutting edge science goals to be achieved when operating behind the 8.2m Subaru Telescope and the SCExAO adaptive optics system. These include, but are not limited to: resolved stellar photospheres; resolved protoplanetary disk structures; resolved Mira shocks, dust and winds; and sub-arcsecond companions. We present details and results of early tests of RHEA@Subaru and progress towards the stated science goals.

  15. Quantitative imaging through a spectrograph. 1. Principles and theory.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Mooij, J.M.; Maassen, J.D.M.


    Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman imaging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this

  16. First light results from the Hermes spectrograph at the AAT

    NARCIS (Netherlands)

    Sheinis, A.; Barden, S.; Birchall, M.; Carollo, D.; Bland-Hawthorn, J.; Brzeski, J.; Case, S.; Cannon, R.; Churilov, V.; Couch, W.; Dean, R.; De Silva, G.; D'Orazi, V.; Farrell, T.; Fiegert, K.; Freeman, K.; Frost, G.; Gers, L.; Goodwin, M.; Gray, D.; Heald, R.; Heijmans, J.A.C.; Jones, D.; Keller, S.; Klauser, U.; Kondrat, Y.; Lawrence, J.; Lee, S.; Mali, S.; Martell, S.; Mathews, D.; Mayfield, D.; Miziarski, S.; Muller, R.; Pai, N.; Patterson, R.; Penny, E.; Orr, D.; Shortridge, K.; Simpson, J.; Smedley, S.; Smith, G.; Stafford, D.; Staszak, N.; Vuong, M.; Waller, L.; Wylie de Boer, E.; Xavier, P.; Zheng, J.; Zhelem, R.; Zucker, D.


    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of

  17. MICRONERVA: A Novel Approach to Large Aperture Astronomical Spectroscopy (United States)

    Hall, Ryan; Plavchan, Peter; Geneser, Claire; Giddens, Frank; Klenke, Christopher; Weigand, Denise


    MICRONERVA (MICRO Novel Exoplanet Radial Velocity Array) is a prototype observatory for measuring spectroscopic radial velocities. The primary goal of MICRONERVA is to demonstrate that an array of 8-inch CPC Celestron telescopes can be used at a lower cost in place of a single, larger telescope. The equivalent light gathering power of the larger telescope is achieved by sending the starlight from each of the eight-inch telescopes down single mode fibers and combining the fiber output at a single entrance slit to a multi-object high resolution spectrograph. All of the hardware from the system is automated using Python programs, ASCOM and MaximDL drivers. The detection of exoplanets using the techniques of MICRONERVA opens the door to reducing costs for astronomical spectroscopy.

  18. The New Amateur Astronomer (United States)

    Mobberley, Martin

    Amateur astronomy has changed beyond recognition in less than two decades. The reason is, of course, technology. Affordable high-quality telescopes, computer-controlled 'go to' mountings, autoguiders, CCD cameras, video, and (as always) computers and the Internet, are just a few of the advances that have revolutionized astronomy for the twenty-first century. Martin Mobberley first looks at the basics before going into an in-depth study of what’s available commercially. He then moves on to the revolutionary possibilities that are open to amateurs, from imaging, through spectroscopy and photometry, to patrolling for near-earth objects - the search for comets and asteroids that may come close to, or even hit, the earth. The New Amateur Astronomer is a road map of the new astronomy, equally suitable for newcomers who want an introduction, or old hands who need to keep abreast of innovations. From the reviews: "This is one of several dozen books in Patrick Moore's "Practical Astronomy" series. Amid this large family, Mobberley finds his niche: the beginning high-tech amateur. The book's first half discusses equipment: computer-driven telescopes, CCD cameras, imaging processing software, etc. This market is changing every bit as rapidly as the computer world, so these details will be current for only a year or two. The rest of the book offers an overview of scientific projects that serious amateurs are carrying out these days. Throughout, basic formulas and technical terms are provided as needed, without formal derivations. An appendix with useful references and Web sites is also included. Readers will need more than this book if they are considering a plunge into high-tech amateur astronomy, but it certainly will whet their appetites. Mobberley's most valuable advice will save the book's owner many times its cover price: buy a quality telescope from a reputable dealer and install it in a simple shelter so it can be used with as little set-up time as possible. A poor

  19. Enthusiastic Little Astronomers (United States)

    Novak, Ines


    Younger primary school students often show great interest in the vast Universe hiding behind the starry night's sky, but don't have a way of learning about it and exploring it in regular classes. Some of them would search children's books, Internet or encyclopedias for information or facts they are interested in, but there are those whose hunger for knowledge would go unfulfilled. Such students were the real initiators of our extracurricular activity called Little Astronomers. With great enthusiasm they would name everything that interests them about the Universe that we live in and I would provide the information in a fun and interactive yet acceptable way for their level of understanding. In our class we learn about Earth and its place in the Solar System, we learn about the planets and other objects of our Solar System and about the Sun itself. We also explore the night sky using programs such as Stellarium, learning to recognize constellations and name them. Most of our activities are done using a PowerPoint presentation, YouTube videos, and Internet simulations followed by some practical work the students do themselves. Because of the lack of available materials and funds, most of materials are hand made by the teacher leading the class. We also use the school's galileoscope as often as possible. Every year the students are given the opportunity to go to an observatory in a town 90 km away so that they could gaze at the sky through the real telescope for the first time. Our goal is to start stepping into the world of astronomy by exploring the secrets of the Universe and understanding the process of rotation and revolution of our planet and its effects on our everyday lives and also to become more aware of our own role in our part of the Universe. The hunger for knowledge and enthusiasm these students have is contagious. They are becoming more aware of their surroundings and also understanding their place in the Universe that helps them remain humble and helps

  20. Applications of Integrated Photonic Spectrographs in astronomy (United States)

    Harris, R. J.; Allington-Smith, J. R.


    One of the problems of producing instruments for extremely large telescopes (ELTs) is that their size (and hence cost) scales rapidly with telescope aperture. To try to break this relation alternative new technologies have been proposed, such as the use of the Integrated Photonic Spectrograph (IPS). Due to their diffraction-limited nature, the IPS is claimed to defeat the harsh scaling law applying to conventional instruments. In contrast to photonic applications, devices for astronomy are not usually used at the diffraction limit. Therefore, to retain throughput and spatial information, the IPS requires a photonic lantern (PL) to decompose the input multi-mode light into single modes. This is then fed into either numerous arrayed waveguide gratings (AWGs) or a conventional spectrograph. We investigate the potential advantage of using an IPS instead of conventional monolithic optics for a variety of capabilities represented by existing instruments on 8 m telescopes and others planned for ELTs. To do this, we have constructed toy models of different versions of the IPS and calculated the relative instrument sizes and the number of detector pixels required. This allows us to quantify the relative size/cost advantage for instruments aimed at different science requirements. We show that a full IPS instrument is equivalent to an image slicer. Image slicing is a beneficial strategy for ELTs as previously demonstrated. However, the requirement to decompose the input light into individual modes imposes a redundancy in terms of the numbers of components and detector pixels in many cases which acts to cancel out the advantage of the small size of the photonic components. However, there are specific applications where an IPS gives a potential advantage which we describe. Furthermore, the IPS approach has the potential advantage of minimizing or eliminating bulk optics. We show that AWGs fed with multiple single-mode inputs from an PL require relatively bulky auxiliary optics

  1. Choosing and using astronomical eyepieces

    CERN Document Server

    Paolini, William


    This valuable reference fills a number of needs in the field of astronomical eyepieces, including that of a buyer's guide, observer's field guide and technical desk reference. It documents the past market for eyepieces and its evolution right up to the present day. In addition to appealing to practical astronomers - and potentially saving them money - it is useful both as a historical reference and as a detailed review of the current market place for this bustling astronomical consumer product. What distinguishes this book from other publications on astronomy is the involvement of observers from all aspects of the astronomical community, and also the major manufacturers of equipment. It not only catalogs the technical aspects of the many modern eyepieces but also documents amateur observer reactions and impressions of their utility over the years, using many different eyepieces. Eyepieces are the most talked-about accessories and collectible items available to the amateur astronomer. No other item of equi...

  2. Astronomical Image and Data Analysis

    CERN Document Server

    Starck, J.-L


    With information and scale as central themes, this comprehensive survey explains how to handle real problems in astronomical data analysis using a modern arsenal of powerful techniques. It treats those innovative methods of image, signal, and data processing that are proving to be both effective and widely relevant. The authors are leaders in this rapidly developing field and draw upon decades of experience. They have been playing leading roles in international projects such as the Virtual Observatory and the Grid. The book addresses not only students and professional astronomers and astrophysicists, but also serious amateur astronomers and specialists in earth observation, medical imaging, and data mining. The coverage includes chapters or appendices on: detection and filtering; image compression; multichannel, multiscale, and catalog data analytical methods; wavelets transforms, Picard iteration, and software tools. This second edition of Starck and Murtagh's highly appreciated reference again deals with to...

  3. Temperature control system for optical elements in astronomical instrumentation (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano


    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  4. Astronomical Observations by Speckle Interferometry. (United States)


    NUMBER ORGANIZATION O osf appi)81-061 %A mc’S z &I -- St ADRES (ft, Stat. &WCode) 10. SOURCE OF FUNDING NUMBERS C1X1’Z"/A~N ~ ~rf.. PROGRAM IPROJECT...34Masses and Luminosities of the Giant Spectroscopic/Speckle Interferometric Binaries Gamma Persei and Phi Cygni" H.A. McAlister, THE ASTRONOMICAL JOURNAL...Topical Meeting on Information Processing in Astronomy and Optics sponsored by the American Astronomical Society and the Optical Society of America, St

  5. Choosing and using astronomical filters

    CERN Document Server

    Griffiths, Martin


    As a casual read through any of the major amateur astronomical magazines will demonstrate, there are filters available for all aspects of optical astronomy. This book provides a ready resource on the use of the following filters, among others, for observational astronomy or for imaging: Light pollution filters Planetary filters Solar filters Neutral density filters for Moon observation Deep-sky filters, for such objects as galaxies, nebulae and more Deep-sky objects can be imaged in much greater detail than was possible many years ago. Amateur astronomers can take

  6. Focus on astronomical predictable events

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland


    At the Steno Museum Planetarium we have for many occasions used a countdown clock to get focus om astronomical events. A countdown clock can provide actuality to predictable events, for example The Venus Transit, Opportunity landing on Mars and The Solar Eclipse. The movement of the clock attracs...

  7. Orbit Modeller - Virtual Astronomical Laboratory (United States)

    Avdyushev, V. A.; Banshchikova, M. A.; Bordovitsyna, T. V.; Chuvashov, I. N.; Ryabova, G. O.


    We present a virtual astronomical laboratory project - "Orbit Modeller" (OM). This should be an interactive web-tool enabling one to simulate numerically the orbital motion of any celestial body within or beyond the solar system. Another function of OM is a repository of old observations and documents.

  8. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: ...

  9. Astronomical phenomena in Dresden codex

    Directory of Open Access Journals (Sweden)

    Böhm V.


    Full Text Available The relationship between Maya and our calendar is expressed by a coefficient known as ‘correlation’ which is a number of days that we have to add to the Mayan Long Count date to get Julian Date used in astronomy. There is surprisingly large uncertainty in the value of the correlation, yielding a shift between both calendars (and thus between the history of Maya and of our world to typically several hundred years. There are more than 50 diverse values of the correlation, some of them derived from historical, other by astronomical data. We test here (among others the well established Goodman-Martínez-Thompson correlation (GMT, based on historical data, and the Böhms’ one (B&B, based on astronomical data decoded from the Dresden Codex (DC; this correlation differs by about +104 years from the GMT. In our previous works we used several astronomical phenomena as recorded in the DC for a check. We clearly demonstrated that (i the GMT was not capable to predict these phenomena that really happened in nature and (ii that the GMT predicts them on the days when they did not occur. The phenomena used till now in the test are, however, short-periodic and the test then may suffer from ambiguity. Therefore, we add long-periodic astronomical phenomena, decoded successfully from the DC, to the testing. These are (i a synchrony of Venusian heliacal risings with the solar eclipses, (ii a synchrony of Venus and Mars conjunctions with the eclipses, (iii conjunctions of Jupiter and Saturn repeated in a rare way, and (iv a synchrony of synodic and sideric periods of Mercury with the tropical year. Based on our analysis, we find that the B&B correlation yields the best agreement with the astronomical phenomena observed by the Maya. Therefore we recommend to reject the GMT and support the B&B correlation.

  10. Latin American astronomers and the International Astronomical Union (United States)

    Torres-Peimbert, S.


    Selected aspects of the participation of the Latin American astronomers in the International Astronomical Union are presented: Membership, Governing bodies, IAU meetings, and other activities. The Union was founded in 1919 with 7 initial member states, soon to be followed by Brazil. In 1921 Mexico joined, and in 1928 Argentina also formed part of the Union, while Chile joined in 1947. In 1961 Argentina, Brazil, Chile, Mexico and Venezuela were already member countries. At present (October 2016) 72 countries contribute financially to the Union. The Union lists 12,391 professional astronomers as individual members; of those, 692 astronomers work in Latin America and the Caribbean, from 13 member states (Argentina, Bolivia , Brazil, Chile, Colombia, Costa Rica, Cuba, Honduras, Mexico, Panamá, Perú, Uruguay and Venezuela) as well as from Ecuador and Puerto Rico. This group comprises 5.58% of the total membership, a figure somewhat lower than the fraction of the population in the region, which is 8.6% of the world population. Of the Latin American members, 23.4% are women and 76.6% are men; slightly higher than the whole membership of Union, which is of 16.9%. In the governing bodies it can be mentioned that there have been 2 Presidents of the Union (Jorge Sahade and Silvia Torres-Peimbert), 7 VicePresidents (Guillermo Haro, Jorge Sahade, Manuel Peimbert Claudio Anguita, Silvia Torres-Peimbert, Beatriz Barbuy, and Marta G. Rovira). The IAU meetings held in the region, include 2 General Assemblies (the 1991 XXI GA took place in Buenos Aires, Argentina and the 2009 XXVIII GA, in Rio de Janeiro, Brazil), 15 Regional Meetings (in Argentina, Brazil, Chile, Colombia, Mexico, Venezuela and Uruguay), 29 Symposia (in Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Peru and Mexico), 5 Colloquia (in Argentina and Mexico), 8 International Schools for Young Astronomers (in Argentina, Brazil, Cuba, Honduras and Mexico), and 11 projects sponsored by the Office of Astronomy

  11. Engaging Students through Astronomically Inspired Music (United States)

    Whitehouse, M.


    This paper describes a lesson outline in which astronomically inspired musical compositions are used to teach astronomical concepts via an introductory activity, close listening, and critical/creative reflection.

  12. The astronomical tables of Giovanni Bianchini

    CERN Document Server

    Chabas, Jose


    This book describes and analyses, for the first time, the astronomical tables of Giovanni Bianchini of Ferrara (d. after 1469), explains their context, inserts them into an astronomical tradition that began in Toledo, and addresses their diffusion.

  13. CAB Contribution to HARMONI: The first light spectrograph of the E-ELT (United States)

    Piqueras López, J.; Arribas, S.; Calcines, A.


    HARMONI (High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph) is a visible and near-infrared (0.47 to 2.45 μm) integral field spectrograph selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales (60, 20, 10 and 4 mas) and a wide range of spectral resolving powers (R=3500, 7500, 20000), HARMONI will allow scientists to address many of the E-ELT science cases. The HARMONI Consortium is led by the University of Oxford, and is also formed by the UK Astronomy Technology Centre (UKATC, Edinburgh, UK), Centre de Recherche Astrophysique de Lyon (CRAL), Laboratoire d'Astrophysique de Marseille (LAM), Instituto de Astrofísica de Canarias (IAC, Spain) and the Centro de Astrobiología (CAB INTA-CSIC, Spain). We summarize here the current status of the project, and describe the participation of CAB to design and manufacture two of the instrument sub-systems: the calibration unit and the secondary guiding module. The calibration unit will simulate the optical output of the telescope, and provide the functionality needed to illuminate the focal plane in such a way that the following type of data can be obtained: data aimed at removing the instrumental signature from the raw data and to convert the data into a data product that uses physical units, data required for monitoring the status of the instrument, and data required for calibrating the secondary guiding subsystem. The secondary guiding subsystem basic requirement is to provide knowledge (relative or absolute) of the location of the science focal plane on timescales of a few seconds and longer (up to months), with an accuracy of 2mas or 0.1x the input FWHM (at H/K bands), whichever is greater. The subsystem should achieve this level performance for different observation modes, e.g. no- AO, GLAO and LTAO modes.

  14. Spectral atlas for amateur astronomers a guide to the spectra of astronomical objects and terrestrial light sources

    CERN Document Server

    Walker, Richard


    Featuring detailed commented spectral profiles of more than one hundred astronomical objects, in colour, this spectral guide documents most of the important and spectroscopically observable objects accessible using typical amateur equipment. It allows you to read and interpret the recorded spectra of the main stellar classes, as well as most of the steps from protostars through to the final stages of stellar evolution as planetary nebulae, white dwarfs or the different types of supernovae. It also presents integrated spectra of stellar clusters, galaxies and quasars, and the reference spectra of some terrestrial light sources, for calibration purposes. Whether used as the principal reference for comparing with your recorded spectra or for inspiring independent observing projects, this atlas provides a breathtaking view into our Universe's past. The atlas is accompanied and supplemented by Spectroscopy for Amateur Astronomers, which explains in detail the methods for recording, processing, analysing and interp...

  15. Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS) (United States)

    Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.


    We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.

  16. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene


    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  17. Representations of astronomers in literature. (United States)

    Haynes, R. D.

    The depiction of astronomers as characters in fiction during the last four centuries provides a useful historical indication of the changing popular perception of astronomy and its practitioners. It is apparent that lay attitudes to astronomy, even in any given period, are complex. On the one hand there is the continuing, innate attraction which the spectacle of the night sky has for people of all ages, the sense of wonder it generates and the preception of astronomy as a "pure" science, free from military and environmentally damaging spin-offs. But, on the other hand, astronomy poses particular and radical challenges to the humanist tradition and these have elicited from many writers not only expressions of anguish and confusion but, at times, a personal attack on the astronomers who were considered responsible for the unwelcome views.

  18. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan


    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  19. Observatory Sponsoring Astronomical Image Contest (United States)


    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  20. The Pisgah Astronomical Research Institute (United States)

    Cline, J. Donald; Castelaz, M.


    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance

  1. Euler: Genius Blind Astronomer Mathematician


    Musielak, Dora


    Leonhard Euler, the most prolific mathematician in history, contributed to advance a wide spectrum of topics in celestial mechanics. At the Saint Petersburg Observatory, Euler observed sunspots and tracked the movements of the Moon. Combining astronomical observations with his own mathematical genius, he determined the orbits of planets and comets. Euler laid the foundations of the methods of planetary perturbations and solved many of the Newtonian mechanics problems of the eighteenth century...

  2. Anaximandro : astronomía


    Alonso Bernal, Sonsoles


    Anaximander successfully speculated about the origin of the cosmos: an initial explosion which condensated fragments form the stars. He also worked as an empirical astronomer who observed with a helioscope the Sun’s gaseous surface and its protuberances. He observed Solar and Lunar expectrums of light, probably working with certain set of pinhole cameras that he could optimize with fitted mirrors. Anaximandro especuló acertadamente sobre el origen del cosmos: describe una explosión inicial...

  3. Random Numbers from Astronomical Imaging


    Pimbblet, Kevin A.; Bulmer, Michael


    This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.

  4. Performance and future developments of the RHEA single-mode spectrograph (United States)

    Bento, Joao; Feger, Tobias; Ireland, Michael J.; Rains, Adam; Jovanovic, Nemanja; Coutts, David W.; Schwab, Christian; Arriola, Alexander; Gross, Simon


    The Replicable High-resolution Exoplanet and Asteroseismology (RHEA) spectrograph is being developed to serve as a basis for multiple copies across a network of small robotic telescopes. The spectrograph operates at the diffraction-limit by using a single-mode fiber input, resulting in a compact and modal-noise-free unit. The optical design is mainly based on off-the-shelf available components and comprises a near-Littrow configuration with prism cross-disperser. The échelle format covers a wavelength range of 430-650 nm at R=75,000 resolving power. In this paper we briefly summarize the current status of the instrument and present preliminary results from the first on-sky demonstration of the prototype using a fully automated 16" telescope, where we observe stable and semi-variable stars up to V=3.5 magnitude. Future steps to enhance the efficiency and passive stability of RHEA are discussed in detail. For example, we show the concept of using a multi-fiber injection unit, akin to a photonic lantern, which not only enables increased throughput but also offers simultaneous wavelength calibration.

  5. The infrared imaging spectrograph (IRIS) for TMT: volume phase holographic grating performance testing and discussion (United States)

    Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc


    Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.

  6. Extreme Precision Environmental Control for Next Generation Radial Velocity Spectrographs (United States)

    Stefansson, Gudmundur K.; Hearty, Fred; Levi, Eric; Robertson, Paul; Mahadevan, Suvrath; Bender, Chad; Nelson, Matt; Halverson, Samuel


    Extreme radial velocity precisions of order 10cm/s will enable the discoveries of Earth-like planets around solar-type stars. Temperature and pressure variations inside a spectrograph can lead to thermomechanical instabilities in the optics and mounts, and refractive index variations in both the optical elements as well as the surrounding air. Together, these variations can easily induce instrumental drifts of several tens to hundreds of meters per second. Enclosing the full optical train in thermally stabilized high-vacuum environments minimizes such errors. In this talk, I will discuss the Environmental Control System (ECS) for the Habitable Zone Planet Finder (HPF) spectrograph: a near infrared (NIR) facility class instrument we will commission at the Hobby Eberly Telescope in 2016. The ECS will maintain the HPF optical bench stable at 180K at the sub milli-Kelvin level on the timescale of days, and at the few milli-Kelvin level over months to years. The entire spectrograph is kept under high-quality vacuum (controlled radiation shield outfitted with custom feedback electronics. High efficiency Multi-Layer Insulation (MLI) blankets, and a passive external thermal enclosure further isolate the optics from ambient perturbations. This environmental control scheme is versatile, suitable to stabilize both next generation NIR, and optical spectrographs. I will show how we are currently testing this control system for use with our design concept of the Extreme Precision Doppler Spectrograph (EPDS), the next generation optical spectrograph for the WIYN 3.5m telescope. Our most recent results from full-scale stability tests will be presented.

  7. The AVES adaptive optics spectrograph for the VLT: status report (United States)

    Pallavicini, Roberto; Delabre, Bernard; Pasquini, Luca; Zerbi, Filippo M.; Bonanno, Giovanni; Comari, Maurizio; Conconi, Paolo; Mazzoleni, Ruben; Santin, Paolo; Damiani, Francesco; Di Marcantonio, Paolo; Franchini, Mariagrazia; Spano, Paolo; Bonifacio, P.; Catalano, Santo; Molaro, Paolo P.; Randich, S.; Rodono, Marcello


    We report on the status of AVES, the Adaptive-optics Visual Echelle Spectrograph proposed for the secondary port of the Nasmyth Adaptive Optics System (NAOS) recently installed at the VLT. AVES is an intermediate resolution (R ≍ 16,000) high-efficiency fixed- format echelle spectrograph which operates in the spectral band 500 - 1,000 nm. In addition to a high intrinsic efficiency, comparable to that of ESI at Keck II, it takes advantage of the adaptive optics correction provided by NAOS to reduce the sky and detector contribution in background-limited observations of weak sources, thus allowing a further magnitude gain with respect to comparable non-adaptive optics spectrographs. Simulations show that the instrument will be capable of reaching a magnitude V = 22.5 at S/N > 10 in two hours, two magnitudes weaker than GIRAFFE at the same resolution and 3 magnitudes weaker than the higher resolution UVES spectrograph. Imaging and coronographic functions have also been implemented in the design. We present the results of the final design study and we dicuss the technical and operational issues related to its implementation at the VLT as a visitor instrument. We also discuss the possibility of using a scaled-up non-adaptive optics version of the same design as an element of a double- or triple-arm intermediate-resolution spectrograph for the VLT. Such an option looks attractive in the context of a high-efficiency large-bandwidth (320 - 1,500 nm) spectrograph ("fast-shooter") being considered by ESO as a 2nd-generation VLT instrument.

  8. Optical design of the SuMIRe/PFS spectrograph (United States)

    Pascal, Sandrine; Vives, Sébastien; Barkhouser, Robert; Gunn, James E.


    The SuMIRe Prime Focus Spectrograph (PFS), developed for the 8-m class SUBARU telescope, will consist of four identical spectrographs, each receiving 600 fibers from a 2394 fiber robotic positioner at the telescope prime focus. Each spectrograph includes three spectral channels to cover the wavelength range [0.38-1.26] um with a resolving power ranging between 2000 and 4000. A medium resolution mode is also implemented to reach a resolving power of 5000 at 0.8 um. Each spectrograph is made of 4 optical units: the entrance unit which produces three corrected collimated beams and three camera units (one per spectral channel: "blue, "red", and "NIR"). The beam is split by using two large dichroics; and in each arm, the light is dispersed by large VPH gratings (about 280x280mm). The proposed optical design was optimized to achieve the requested image quality while simplifying the manufacturing of the whole optical system. The camera design consists in an innovative Schmidt camera observing a large field-of-view (10 degrees) with a very fast beam (F/1.09). To achieve such a performance, the classical spherical mirror is replaced by a catadioptric mirror (i.e meniscus lens with a reflective surface on the rear side of the glass, like a Mangin mirror). This article focuses on the optical architecture of the PFS spectrograph and the perfornance achieved. We will first described the global optical design of the spectrograph. Then, we will focus on the Mangin-Schmidt camera design. The analysis of the optical performance and the results obtained are presented in the last section.

  9. The CHARIS Integral Field Spectrograph with SCExAO: Data Reduction and Performance (United States)

    Kasdin, N. Jeremy; Groff, Tyler; Brandt, Timothy; Currie, Thayne; Rizzo, Maxime; Chilcote, Jeffrey K.; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Norris, Barnaby; Tamura, Motohide


    We summarize the data reduction pipeline and on-sky performance of the CHARIS Integral Field Spectrograph behind the SCExAO Adaptive Optics system on the Subaru Telescope. The open-source pipeline produces data cubes from raw detector reads using a Χ^2-based spectral extraction technique. It implements a number of advances, including a fit to the full nonlinear pixel response, suppression of up to a factor of ~2 in read noise, and deconvolution of the spectra with the line-spread function. The CHARIS team is currently developing the calibration and postprocessing software that will comprise the second component of the data reduction pipeline. Here, we show a range of CHARIS images, spectra, and contrast curves produced using provisional routines. CHARIS is now characterizing exoplanets simultaneously across the J, H, and K bands.

  10. Modal noise in an integrated photonic lantern fed diffraction-limited spectrograph. (United States)

    Cvetojevic, N; Jovanovic, N; Gross, S; Norris, B; Spaleniak, I; Schwab, C; Withford, M J; Ireland, M; Tuthill, P; Guyon, O; Martinache, F; Lawrence, J S


    In an attempt to develop a streamlined astrophotonic instrument, we demonstrate the realization of an all-photonic device capable of both multimode to single mode conversion and spectral dispersion on an 8-m class telescope with efficient coupling. The device was a monolithic photonic spectrograph which combined an integrated photonic lantern and an efficient arrayed waveguide grating device. During on-sky testing, we discovered a previously unreported type of noise that made spectral extraction and calibration extremely difficult. The source of the noise was traced to a wavelength-dependent loss mechanism between the feed fiber's multimode near-field pattern and the modal acceptance profile of the integrated photonic lantern. Extensive modeling of the photonic components replicates the wavelength-dependent loss, and demonstrates an identical effect on the final spectral output. We outline that this could be mitigated by directly injecting into the integrated photonic lantern.

  11. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.


    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  12. An integral field spectrograph for SNAP supernova studies

    Energy Technology Data Exchange (ETDEWEB)

    Ealet, Anne; Prieto, E.; Bonissent, A.; Malina, R.; Basa, S.; LeFevre, O.; Mazure, A.; Tarle, G.; Akerlof, C.W.; Aldering, G.; Amidei, D.E.; Astier, P.; Baden, A.R.; Bebek, C.; Bergstrom, L.; Bernstein, G.M.; Bower, C.R.; Campbell, M.; Carithers Jr., W.C.; Commins, E.D.; Curtis, D.W.; Deustua, S.E.; Edwards, W.R.; Ellis, R.S.; Fruchter, A.; Frye, B.L.; Genat, J.; Goldhaber, G.; Goobar, A.; Goodman, J.A.; Graham, J.R.; Hardin, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Honeycutt, R.; Holland, S.E.; Hook, I.; Huterer, D.; Kasen, D.N.; Kim, A.G.; Knop, R.A.; Lafever, R.; Lampton, M.L.; Levi, M.E.; Levin, D.S.; Levy, J.M.; Lidman, C.; Lin, R.P.; Linder, E.V.; Loken, S.C.; McKay, T.; McKee, S.P.; Metzger, M.R.; Miquel, R.; Mourao, A.; Mufson, S.; Musser, J.A.; Nugent, P.E.; Pain, R.; Pankow, D.H.; Pennypacker, C.R.; Perlmutter, S.; Refregier, A.; Rich, J.; Robinson, K.E.; Schahmaneche, K.; Schubnell, M.S.; Spadafora, A.; Smoot, G.F.; Sullivan, G.W.; Tomasch, A.D.; SNAP Collaboration


    A well-adapted spectrograph concept has been developed for the SNAP (SuperNova/Acceleration Probe) experiment. The goal is to ensure proper identification of Type Ia supernovae and to standardize the magnitude of each candidate by determining explosion parameters. An instrument based on an integral field method with the powerful concept of imager slicing has been designed and is presented in this paper. The spectrograph concept is optimized to have very high efficiency and low spectral resolution (R {approx} 100), constant through the wavelength range (0.35-1.7{micro}m), adapted to the scientific goals of the mission.

  13. Using a new, free spectrograph program to critically investigate acoustics (United States)

    Ball, Edward; Ruiz, Michael J.


    We have developed an online spectrograph program with a bank of over 30 audio clips to visualise a variety of sounds. Our audio library includes everyday sounds such as speech, singing, musical instruments, birds, a baby, cat, dog, sirens, a jet, thunder, and screaming. We provide a link to a video of the sound sources superimposed with their respective spectrograms in real time. Readers can use our spectrograph program to view our library, open their own desktop audio files, and use the program in real time with a computer microphone.

  14. Astronomical database and VO-tools of Nikolaev Astronomical Observatory (United States)

    Mazhaev, A. E.; Protsyuk, Yu. I.


    Results of work in 2006-2009 on creation of astronomical databases aiming at development of Nikolaev Virtual Observatory (NVO) are presented in this abstract. Results of observations and theirreduction, which were obtained during the whole history of Nikolaev Astronomical Observatory (NAO), are included in the databases. The databases may be considered as a basis for construction of a data centre. Images of different regions of the celestial sphere have been stored in NAO since 1929. About 8000 photo plates were obtained during observations in the 20th century. Observations with CCD have been started since 1996. Annually, telescopes of NAO, using CCD cameras, create data volume of several tens of gigabytes (GB) in the form of CCD images and up to 100 GB of video records. At the end of 2008, the volume of accumulated data in the form of CCD images was about 300 GB. Problems of data volume growth are common in astronomy, nuclear physics and bioinformatics. Therefore, the astronomical community needs to use archives, databases and distributed grid computing to cope with this problem in astronomy. The International Virtual Observatory Alliance (IVOA) was formed in June 2002 with a mission to "enable the international utilization of astronomical archives..." The NVO was created at the NAO website in 2008, and consists of three main parts. The first part contains 27 astrometric stellar catalogues with short descriptions. The files of catalogues were compiled in the standard VOTable format using eXtensible Markup Language (XML), and they are available for downloading. This is an example of the so-called science-ready product. The VOTable format was developed by the International Virtual Observatory Alliance (IVOA) for exchange of tabular data. A user may download these catalogues and open them using any standalone application that supports standards of the IVOA. There are several directions of development for such applications, for example, search of catalogues and images

  15. Site Calibration

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...

  16. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas


    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration...... uncertainty was verified from independent measurements of the same sample by demonstrating statistical control of analytical results and the absence of bias. The proposed method takes into account uncertainties of the measurement, as well as of the amount of calibrant. It is applicable to all types...

  17. Astronomical measurement a concise guide

    CERN Document Server

    Lawrence, Andy


    This book on astronomical measurement takes a fresh approach to teaching the subject. After discussing some general principles, it follows the chain of measurement through atmosphere, imaging, detection, spectroscopy, timing, and hypothesis testing. The various wavelength regimes are covered in each section, emphasising what is the same, and what is different. The author concentrates on the physics of detection and the principles of measurement, aiming to make this logically coherent. The book is based on a short self contained lecture course for advanced undergraduate students developed and taught by the author over several years.

  18. Explanatory supplement to the astronomical almanac

    CERN Document Server

    Urban, Sean E


    The Explanatory Supplement to the Astronomical Almanac offers explanatory material, supplemental information and detailed descriptions of the computational models and algorithms used to produce The Astronomical Almanac, which is an annual publication prepared jointly by the US Naval Observatory and Her Majesty's Nautical Almanac Office in the UK. Like The Astronomical Almanac, The Explanatory Supplement provides detailed coverage of modern positional astronomy. Chapters are devoted to the celestial and terrestrial reference frames, orbital ephemerides, precession, nutation, Earth rotation, and coordinate transformations. These topics have undergone substantial revisions since the last edition was published. Astronomical positions are intertwined with timescales and relativity in The Astronomical Almanac, so related chapters are provided in The Explanatory Supplement. The Astronomical Almanac also includes information on lunar and solar eclipses, physical ephemerides of solar system bodies, and calendars, so T...

  19. A Pellicle Autoguider for the DSS-7 Spectrograph (United States)

    Cole, G. M.


    A pellicle beamsplitter has been developed to guide long exposures for a SBIG DSS-7 spectrograph on a C-14 telescope. The motivation for this work was to get good quality classification spectra for variable stars in the 12+ magnitude range. The poster will discuss design tradeoffs, physical implementation, and include sample results.

  20. AVES: an adaptive optics visual echelle spectrograph for the VLT (United States)

    Pasquini, Luca; Delabre, Bernard; Avila, Gerardo; Bonaccini, Domenico


    We present the preliminary study of a low cost, high performance spectrograph for the VLT, for observations in the V, R and I bands. This spectrograph is meant for intermediate (R equals 16,000) resolution spectroscopy of faint (sky and/or detector limited) sources, with particular emphasis on the study of solar-type (F-G) stars belonging to the nearest galaxies and to distant (or highly reddened) galactic clusters. The spectrograph is designed to use the adaptive optics (AO) systems at the VLT Telescope. Even if these AO systems will not provide diffraction limited images in the V, R and I bands, the photon concentration will still be above approximately 60% of the flux in an 0.3 arcsecond aperture for typical Paranal conditions. This makes the construction of a compact, cheap and efficient echelle spectrograph possible. AVES will outperform comparable non adaptive optic instruments by more than one magnitude for sky- and/or detector-limited observations, and it will be very suitable for observations in crowded fields.

  1. Commissioning MOS and Fabry-Perot modes for the Robert Stobie Spectrograph on the Southern African Large Telescope (United States)

    Koeslag, A. R.; Williams, T. B.; Nordsieck, K. H.; Romero-Colmenero, E.; Vaisanen, P. H.; Maartens, D. S.


    The Southern African Large Telescope (SALT) currently has three instruments: the imaging SALTICAM, the new High Resolution Spectrograph (HRS) which is in the process of being commissioned and the Robert Stobie Spectrograph (RSS). RSS has multiple science modes, of which long slit spectroscopy was originally commissioned; We have commissioned two new science modes: Multi Object Spectroscopy (MOS) and Fabry-Perot (FP). Due to the short track times available on SALT it is vital that acquisition is as efficient as possible. This paper will discuss how we implemented these modes in software and some of the challenges we had to overcome. MOS requires a slit-mask to be aligned with a number of stars. This is done in two phases: in MOS calibration the positions of the slits are detected using a through-slit image and RA/DEC database information, and in MOS acquisition the detector sends commands to the telescope control system (TCS) in an iterative and interactive fashion for fine mask/detector alignment to get the desired targets on the slits. There were several challenges involved with this system, and the user interface evolved to make the process as efficient as possible. We also had to overcome problems with the manufacturing process of the slit-masks. FP requires the precise alignment each of the two etalons installed on RSS. The software makes use of calibration tables to get the etalons into roughly aligned starting positions. An exposure is then done using a calibration arc lamp, producing a ring pattern. Measurement of the rings allows the determination of the adjustments needed to properly align the etalons. The software has been developed to optimize this process, along with software tools that allow us to fine tune the calibration tables. The software architecture allows the complexity of automating the FP calibration and procedures to be easily managed.

  2. LGBT Workplace Issues for Astronomers (United States)

    Kay, Laura E.; Danner, R.; Sellgren, K.; Dixon, V.; GLBTQastro


    Federal Equal Employment Opportunity laws and regulations do not provide protection from discrimination on the basis of sexual orientation or gender identity or gender expression. Sexual minority astronomers (including lesbian, gay, bisexual and transgender people; LGBT) can face additional challenges at school and work. Studies show that LGBT students on many campuses report experiences of harassment. Cities, counties, and states may or may not have statutes to protect against such discrimination. There is wide variation in how states and insurance plans handle legal and medical issues for transgender people. Federal law does not acknowledge same-sex partners, including those legally married in the U.S. or in other countries. Immigration rules in the U.S. (and many other, but not all) countries do not recognize same-sex partners for visas, employment, etc. State `defense of marriage act' laws have been used to remove existing domestic partner benefits at some institutions, or benefits can disappear with a change in governor. LGBT astronomers who change schools, institutions, or countries during their career may experience significant differences in their legal, medical, and marital status.

  3. Astronomical Signatures of Dark Matter

    Directory of Open Access Journals (Sweden)

    Paul Gorenstein


    Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.

  4. Towards a robust and consistent middle Eocene astronomical timescale (United States)

    Boulila, Slah; Vahlenkamp, Maximilian; De Vleeschouwer, David; Laskar, Jacques; Yamamoto, Yuhji; Pälike, Heiko; Kirtland Turner, Sandra; Sexton, Philip F.; Westerhold, Thomas; Röhl, Ursula


    Until now, the middle Eocene has remained a poorly constrained interval of efforts to produce an astrochronological timescale for the entire Cenozoic. This has given rise to a so-called "Eocene astronomical timescale gap" (Vandenberghe et al., 2012). A high-resolution astrochronological calibration for this interval has proven to be difficult to realize, mainly because carbonate-rich deep-marine sequences of this age are scarce. In this paper, we present records from middle Eocene carbonate-rich sequences from the North Atlantic Southeast Newfoundland Ridge (IODP Exp. 342, Sites U1408 and U1410), of which the cyclical sedimentary patterns allow for an orbital calibration of the geologic timescale between ∼38 and ∼48 Ma. These carbonate-rich cyclic sediments at Sites U1408 and U1410 were deposited as drift deposits and exhibit prominent lithological alternations (couplets) between greenish nannofossil-rich clay and white nannofossil ooze. The principal lithological couplet is driven by the obliquity of Earth's axial tilt, and the intensity of their expression is modulated by a cyclicity of about 173 kyr. This cyclicity corresponds to the interference of secular frequencies s3 and s6 (related to the precession of nodes of the Earth and Saturn, respectively). This 173-kyr obliquity amplitude modulation cycle is exceptionally well recorded in the XRF (X-ray fluorescence)-derived Ca/Fe ratio. In this work, we first demonstrate the stability of the (s3-s6) cycles using the latest astronomical solutions. Results show that this orbital component is stable back to at least 50 Ma, and can thus serve as a powerful geochronometer in the mid-Eocene portion of the Cenozoic timescale. We then exploit this potential by calibrating the geochronology of the recovered middle Eocene timescale between magnetic polarity Chrons C18n.1n and C21n. Comparison with previous timescales shows similarities, but also notable differences in durations of certain magnetic polarity chrons. We

  5. GPI Calibrations (United States)

    Rantakyrö, Fredrik T.


    "The Gemini Planet Imager requires a large set of Calibrations. These can be split into two major sets, one set associated with each observation and one set related to biweekly calibrations. The observation set is to optimize the correction of miscroshifts in the IFU spectra and the latter set is for correction of detector and instrument cosmetics."

  6. Storing Astronomical Information on the Romanian Territory (United States)

    Stavinschi, M.; Mioc, V.


    Romanian astronomy has a more than 2000-year old tradition, which is, however, little known abroad. The first known archive of astronomical information is the Dacian sanctuary at Sarmizegetusa Regia, erected in the first century AD, having similarities with that of Stonehenge. After a gap of more than 1000 years, more sources of astronomical information become available, mainly records of astronomical events. Monasteries were the safest storage places of these genuine archives. We present a classification of the ways of storing astronomical information, along with characteristic examples.

  7. Astronomical Symbolism in Australian Aboriginal Rock Art

    CERN Document Server

    Norris, Ray P


    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  8. Ticking Stellar Time Bomb Identified - Astronomers find prime suspect for a Type Ia supernova (United States)


    it will eventually become heavy enough to explode as a supernova. Combining the NACO images with data obtained with several other telescopes [5] the astronomers could determine the distance of the system - about 25 000 light-years from the Sun - and its intrinsic brightness - over 10 000 times brighter than the Sun. This implies that the vampire white dwarf in this system has a high mass that is near its fatal limit and is still simultaneously being fed by its companion at a high rate. "Whether V445 Puppis will eventually explode as a supernova, or if the current nova outburst has pre-empted that pathway by ejecting too much matter back into space is still unclear," says Woudt. "But we have here a pretty good suspect for a future Type Ia supernova!" Notes [1] White dwarfs represent the evolutionary end product of stars with initial masses up to a few solar masses. A white dwarf is the burnt-out stellar core that is left behind when a star like the Sun sheds its outer layers towards the end of its active life. It is composed essentially of carbon and oxygen. This process normally also leads to the formation of a surrounding planetary nebula. [2] Adaptive optics is a technique that allows astronomers to obtain an image of an object free from the blurring effect of the atmosphere. See the adaptive optics page at ESO: [3] See for example [4] This Chandrasekhar limit, named after the Indian physicist Subrahmanyan Chandrasekhar, is nearly 1.4 times the mass of the Sun. When a white dwarf reaches a mass above this limit, either by sucking matter from a companion or merging with another white dwarf, it will turn itself into a thermonuclear bomb that will burn carbon and oxygen explosively. [5] The team also used the SOFI instrument on ESO's New Technology Telescope, the IMACS spectrograph on the 6.5-metre Magellan Baade telescope, and the Infrared Survey

  9. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H


    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  10. Christopher Clavius astronomer and mathematician

    CERN Document Server

    Sigismondi, Costantino


    The Jesuit scientist Christopher Clavius (1538-1612) has been the most influential teacher of the renaissance. His contributions to algebra, geometry, astronomy and cartography are enormous. He paved the way, with his texts and his teaching for 40 years in the the Collegio Romano, to the development of these sciences and their fruitful spread all around the World, along the commercial paths of Portugal, which become also the missionary paths for the Jesuits. The books of Clavius were translated into Chinese, by one of his students Matteo Ricci "Li Madou" (1562-1610), and his influence for the development of science in China was crucial. The Jesuits become skilled astronomers, cartographers and mathematicians thanks to the example and the impulse given by Clavius. This success was possible also thanks to the contribution of Clavius in the definition of the Ratio Studiorum, the program of studies, in the Jesuit colleges, so influential for the whole history of modern Europe and all western World.

  11. Ancient Astronomical Monuments of Athens (United States)

    Theodossiou, E.; Manimanis, V. N.


    In this work, four ancient monuments of astronomical significance found in Athens and still kept in the same city in good condition are presented. The first one is the conical sundial on the southern slope of the Acropolis. The second one is the Tower of the Winds and its vertical sundials in the Roman Forum of Athens, a small octagonal marble tower with sundials on all 8 of its sides, plus a water-clock inside the tower. The third monument-instrument is the ancient clepsydra of Athens, one of the findings from the Ancient Agora of Athens, a unique water-clock dated from 400 B.C. Finally, the fourth one is the carved ancient Athenian calendar over the main entrance of the small Byzantine temple of the 8th Century, St. Eleftherios, located to the south of the temple of the Annunciation of Virgin Mary, the modern Cathedral of the city of Athens.

  12. An astronomical observatory for Peru (United States)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar


    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  13. Planetary imaging with amateur astronomical instruments (United States)

    Papathanasopoulos, k.; Giannaris, G.


    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  14. Novel Algorithms for Astronomical Plate Analyses

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Powerful computers and dedicated software allow effective data mining and scientific analyses in astronomical plate archives. We give and discuss examples of newly developed algorithms for astronomical plate analyses, e.g., searches for optical transients, as well as for major spectral and brightness ...

  15. Metrology camera system of prime focus spectrograph for Subaru telescope (United States)

    Wang, Shiang-Yu; Chou, Chueh-Yi; Chang, Yin-Chang; Huang, Pin-Jie; Hu, Yen-Sang; Chen, Hsin-Yo; Tamura, Naoyuki; Takato, Naruhisa; Ling, Hung-Hsu; Gunn, James E.; Karr, Jennifer; Yan, Chi-Hung; Mao, Peter; Ohyama, Youichi; Karoji, Hiroshi; Sugai, Hajime; Shimono, Atsushi


    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. The metrology camera system of PFS serves as the optical encoder of the COBRA fiber motors for the configuring of fibers. The 380mm diameter aperture metrology camera will locate at the Cassegrain focus of Subaru telescope to cover the whole focal plane with one 50M pixel Canon CMOS sensor. The metrology camera is designed to provide the fiber position information within 5μm error over the 45cm focal plane. The positions of all fibers can be obtained within 1s after the exposure is finished. This enables the overall fiber configuration to be less than 2 minutes.

  16. Spectroscopic instrumentation fundamentals and guidelines for astronomers

    CERN Document Server

    Eversberg, Thomas


    In order to analyze the light of cosmic objects, particularly at extremely great distances, spectroscopy is the workhorse of astronomy. In the era of very large telescopes, long-term investigations are mainly performed with small professional instruments. Today they can be done using self-designed spectrographs and highly efficient CCD cameras, without the need for large financial investments.   This book explains the basic principles of spectroscopy, including the fundamental optical constraints and all mathematical aspects needed to understand the working principles in detail. It covers the complete theoretical and practical design of standard and Echelle spectrographs. Readers are guided through all necessary calculations, enabling them to engage in spectrograph design. The book also examines data acquisition with CCD cameras and fiber optics, as well as the constraints of specific data reduction and possible sources of error. In closing it briefly highlights some main aspects of the research on massive s...

  17. Astronomical Polarimetry : new concepts, new instruments, new measurements & observations

    NARCIS (Netherlands)

    Snik, F.


    All astronomical sources are polarized to some degree. Polarimetry is therefore a powerful astronomical technique. It furnishes unique diagnostics of e.g. magnetic fields and scattering media. This thesis presents new polarimetric concepts, instruments, and measurements targeting astronomical


    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, V. A. R. M. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Russo, P. [EU Universe Awareness, Leiden Observatory, Leiden University, PO 9513 Leiden, 2300 RA (Netherlands); Cárdenas-Avendaño, A., E-mail:, E-mail: [Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No 26-85, Edificio Gutierréz, Bogotá, DC (Colombia)


    Measuring scientific development is a difficult task. Different metrics have been put forward to evaluate scientific development; in this paper we explore a metric that uses the number of peer-reviewed, and when available non-peer-reviewed, research articles as an indicator of development in the field of astronomy. We analyzed the available publication record, using the Smithsonian Astrophysical Observatory/NASA Astrophysics Database System, by country affiliation in the time span between 1950 and 2011 for countries with a gross national income of less than 14,365 USD in 2010. This represents 149 countries. We propose that this metric identifies countries in ''astronomical development'' with a culture of research publishing. We also propose that for a country to develop in astronomy, it should invest in outside expert visits, send its staff abroad to study, and establish a culture of scientific publishing. Furthermore, we propose that this paper may be used as a baseline to measure the success of major international projects, such as the International Year of Astronomy 2009.

  19. Wide band focusing x-ray spectrograph with spatial resolution. (United States)

    Pikuz, S A; Douglass, J D; Shelkovenko, T A; Sinars, D B; Hammer, D A


    A new, wide spectral bandwidth x-ray spectrograph, the wide-bandwidth focusing spectrograph with spatial resolution (WB-FSSR), based on spherically bent mica crystals, is described. The wide bandwidth is achieved by combining three crystals to form a large aperture dispersive element. Since the WB-FSSR covers a wide spectral band, it is very convenient for application as a routine diagnostic tool in experiments in which the desired spectral coverage is different from one test to the next. The WB-FSSR has been tested in imploding wire-array experiments on a 1 MA pulsed power machine, and x-ray spectra were recorded in the 1-20 A spectral band using different orders of mica crystal reflection. Using a two mirror-symmetrically placed WB-FSSR configuration, it was also possible to distinguish between a real spectral shift and a shift of recorded spectral lines caused by the spatial distribution of the radiating plasma. A spectral resolution of about 2000 was demonstrated and a spatial resolution of approximately 100 microm was achieved in the spectral band of 5-10 A in second order of mica reflection. A simple method of numerical analysis of spectrograph capability is proposed.

  20. SPRAT: Spectrograph for the Rapid Acquisition of Transients (United States)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.


    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  1. Modal Noise Mitigation through Fiber Agitation for Fiber-fed Radial Velocity Spectrographs (United States)

    Petersburg, Ryan R.; McCracken, Tyler M.; Eggerman, Dominic; Jurgenson, Colby A.; Sawyer, David; Szymkowiak, Andrew E.; Fischer, Debra A.


    Optical fiber modal noise is a limiting factor for high precision spectroscopy signal-to-noise in the near-infrared and visible. Unabated, especially when using highly coherent light sources for wavelength calibration, modal noise can induce radial velocity (RV) errors that hinder the discovery of low-mass (and potentially Earth-like) planets. Previous research in this field has found sufficient modal noise mitigation through the use of an integrating sphere, but this requires extremely bright light sources, a luxury not necessarily afforded by the next generation of high-resolution optical spectrographs. Otherwise, mechanical agitation, which “mixes” the fiber’s modal patterns and allows the noise to be averaged over minutes-long exposures, provides some noise reduction but the exact mechanism behind improvement in signal-to-noise and RV drift has not been fully explored or optimized by the community. Therefore, we have filled out the parameter space of modal noise agitation techniques in order to better understand agitation’s contribution to mitigating modal noise and to discover a better method for agitating fibers. We find that modal noise is best suppressed by the quasi-chaotic motion of two high-amplitude agitators oscillating with varying phase for fibers with large core diameters and low azimuthal symmetry. This work has subsequently influenced the design of a fiber agitator, to be installed with the EXtreme PREcision Spectrograph, that we estimate will reduce modal-noise-induced RV error to less than 3.2 cm s‑1.

  2. KiwiSpec: The Design and Performance of a High Resolution Echelle Spectrograph for Astronomy (United States)

    Gibson, Steven Ross

    This document describes the design, analysis, construction and testing of KiwiSpec, a fibre-fed, high resolution astronomical spectrograph of an asymmetric white pupil design. The instrument employs an R4, 31.6 groove mm-1 échelle grating for primary dispersion and a 725 lines mm-1 volume phase holographic (VPH) based grism for cross-dispersion. Two versions of the prototype were designed and constructed: an 'in-air' prototype, and a prototype featuring a vacuum chamber (to increase the stability of the instrument). The KiwiSpec optical design is introduced, as well as a description of the theory behind a cross-dispersed échelle spectrograph. The results of tolerancing the optical design are reported for alignment, optical fabrication, and optical surface quality groups of parameters. The optical windows of an iodine cell are also toleranced. The opto-mechanical mounts of both prototypes are described in detail, as is the design of the vacuum chamber system. Given the goal of 1 m/s radial velocity stability, analyses were undertaken to determine the allowable amount of movement of the vacuum windows, and to determine the allowable changes in temperature and pressure within and outside of the vacuum chamber. The spectral efficiency of the instrument was estimated through a predictive model; this was calculated for the as-built instrument and also for an instrument with ideal, high-efficiency coatings. Measurements of the spectral efficiency of various components of the instrument are reported, as well as a description of the measurement system developed to test the efficiency of VPH gratings. On-sky efficiency measurements from use of KiwiSpec on the 1-m McLellan telescope at Mt John University Observatory are reported. Two possible exposure meter locations are explored via an efficiency model, and also through the measurement of the zero-order reflectivity of the échelle grating. Various stability aspects of the design are investigated. These include the

  3. Astronomical background of global huge earthquakes (United States)

    Hu, Hui; Han, Yan-Ben


    This paper analyzes the astronomical background of the global huge earthquakes with M≥8.5. The result shows that most of the earthquakes has occurred in the seismic belts (regions) where is being corresponding seismic active period with the lunar path, solar active falling period and accelerating period of earth rotation. This is as for the variation of long period of astronomical factors. For the variation of short period of astronomical factors, whether for local time or local sidereal time and lunar phase there is the phenomenon of occurrence of concentrating a interval time for the earthquakes. For the short variation of earth rotation this phenomenon is clear; either the earthquakes occur in most fast or in lowest of earth rotation. The above-mentioned results indicate that the eartquakes occurrence is affected by astronomical factors. The astronomical factors are one of motive force causing earthquake from external world. The astronomical factors with long period may act as modulation for the earthquake-pregnant process. And the astronomical factors with short period will causing huge fluctuations of the system and earthquake occur when it act on seismic structure of away from balance state.

  4. Calibration and characterization of spectral imaging systems (United States)

    Polder, Gerrit; van der Heijden, Gerie W.


    Spectral image sensors provide images with a large umber of contiguous spectral channels per pixel. This paper describes the calibration of spectrograph based spectral imaging systems. The relation between pixel position and measured wavelength was determined using three different wavelength calibration sources. Results indicate that for spectral calibration a source with very small peaks,such as a HgAr source, is preferred to arrow band filters. A second order polynomial model gives a better fit than a linear model for the pixel to wavelength mapping. The signal to noise ratio (SNR)is determined per wavelength. In the blue part of the spectrum,the SNR was lower than in the green and red part.This is due to a decreased quantum efficiency of the CCD,a smaller transmission coefficient of the spectrograph,as well as poor performance of the illuminant. Increasing the amount of blue light,using additional Fluorescent tube with special coating increased the SNR considerably. Furthermore, the spatial and spectral resolution of the system are determined.These can be used to choose appropriate binning factors to decrease the image size without losing information.

  5. Astronomical Knowledge in Holy Books (United States)

    Farmanyan, Sona V.; Mickaelian, Areg M.


    We investigate religious myths related to astronomy from different cultures in an attempt to identify common subjects and characteristics. The paper focuses on astronomy in religion. The initial review covers records from Holy books about sky related superstitious beliefs and cosmological understanding. The purpose of this study is to introduce sky related religious and national traditions (particularly based on different calendars; Solar or Lunar). We carried out a comparative study of astronomical issues contained in a number of Holy books: Ancient Egyptian Religion (Pyramid Texts), Zoroastrianism (Avesta), Hinduism (Vedas), Buddhism (Tipitaka), Confucianism (Five Classics), Sikhism (Guru Granth Sahib), Christianity (Bible), Islam (Quran), Druidism (Mabinogion) and Maya Religion (Popol Vuh). These books include various information on the creation of the Universe, Sun and Moon, the age of the Universe, Cosmic sizes, understanding about the planets, stars, Milky Way and description of the Heavens in different religions. We come to the conclusion that the perception of celestial objects varies from culture to culture, and from religion to religion and preastronomical views had a significant impact on humankind, particularly on religious diversities. We prove that Astronomy is the basis of cultures, and that national identity and mythology and religion were formed due to the special understanding of celestial objects.

  6. Lunar astronomical observatories - Design studies (United States)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Duric, Nebojsa; Gerstle, Walter H.


    The best location in the inner solar system for the grand observatories of the 21st century may be the moon. A multidisciplinary team including university students and faculty in engineering, astronomy, physics, and geology, and engineers from industry is investigating the moon as a site for astronomical observatories and is doing conceptual and preliminary designs for these future observatories. Studies encompass lunar facilities for radio astronomy and astronomy at optical, ultraviolet, and infrared wavelengths of the electromagnetic spectrum. Although there are significant engineering challenges in design and construction on the moon, the rewards for astronomy can be great, such as detection and study of earth-like planets orbiting nearby stars, and the task for engineers promises to stimulate advances in analysis and design, materials and structures, automation and robotics, foundations, and controls. Fabricating structures in the reduced-gravity environment of the moon will be easier than in the zero-gravity environment of earth orbit, as Apollo and space-shuttle missions have revealed. Construction of observatories on the moon can be adapted from techniques developed on the earth, with the advantage that the moon's weaker gravitational pull makes it possible to build larger devices than are practical on earth.

  7. Astronomical problems an introductory course in astronomy

    CERN Document Server

    Vorontsov-Vel'Yaminov, B A


    Astronomical Problems: An Introductory Course in Astronomy covers astronomical problems, together with a summary of the theory and the formula to be exercised. The book discusses the types of problems solved with the help of the celestial globe and how to solve astronomical problems. The text tackles problems on interpolation, the celestial sphere, systems of celestial coordinates, and culmination. Problems about the rising and setting of a heavenly body, precession, planetary movement, and parallax and aberration are also considered. The book presents problems about refraction, the apparent m

  8. Site calibration

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Georgieva Yankova, Ginka

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...... between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment is detailed described in [2]. The possible measurement sector for power performance...... according to [1] is also described in [2] and no results from the site calibration have shown any necessary exclusion from this sector. All parts of the sensors and the measurement system have been installed by DTU....

  9. Longwave Imaging for Astronomical Applications Project (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we will develop and deliver the focal plane array (FPA) - a...

  10. Longwave Imaging for Astronomical Applications Project (United States)

    National Aeronautics and Space Administration — We propose to develop a compact portable longwave camera for astronomical applications. In Phase 1, we successfully developed the eye of the camera, i.e. the focal...

  11. Astronomers no longer in the dark

    CERN Multimedia

    MacMillan, L


    In a significant breakthrough, British and US astronomers have begun to pin down the most elusive material in the universe. They have made a map of dark matter - the heavy, invisible stuff that gives the galaxies their shape (1 page).

  12. Astronomers find distant planet like Jupiter

    CERN Multimedia


    Astronomers searching for planetary systems like our solar system have found a planet similar to Jupiter orbiting a nearby star similar to our Sun, about 90 light-years from Earth, according to researchers (1/2 page).

  13. Astronomers Unveiling Life's Cosmic Origins (United States)


    Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers armed with powerful new research tools, and even better tools soon will be available. Astronomers described three important developments at a symposium on the "Cosmic Cradle of Life" at the annual meeting of the American Association for the Advancement of Science in Chicago, IL. Chemistry Cycle The Cosmic Chemistry Cycle CREDIT: Bill Saxton, NRAO/AUI/NSF Full Size Image Files Chemical Cycle Graphic (above image, JPEG, 129K) Graphic With Text Blocks (JPEG, 165K) High-Res TIFF (44.2M) High-Res TIFF With Text Blocks (44.2M) In one development, a team of astrochemists released a major new resource for seeking complex interstellar molecules that are the precursors to life. The chemical data released by Anthony Remijan of the National Radio Astronomy Observatory (NRAO) and his university colleagues is part of the Prebiotic Interstellar Molecule Survey, or PRIMOS, a project studying a star-forming region near the center of our Milky Way Galaxy. PRIMOS is an effort of the National Science Foundation's Center for Chemistry of the Universe, started at the University of Virginia (UVa) in October 2008, and led by UVa Professor Brooks H. Pate. The data, produced by the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, came from more than 45 individual observations totalling more than nine GigaBytes of data and over 1.4 million individual frequency channels. Scientists can search the GBT data for specific radio frequencies, called spectral lines -- telltale "fingerprints" -- naturally emitted by molecules in interstellar space. "We've identified more than 720 spectral lines in this collection, and about 240 of those are from unknown molecules," Remijan said. He added, "We're making available to all scientists the best collection of data below 50 GHz ever produced for

  14. Astronomical technology - the past and the future


    Appenzeller, Immo


    The past fifty years have been an epoch of impressive progress in the field of astronomical technology. Practically all the technical tools, which we use today, have been developed during that time span. While the first half of this period has been dominated by advances in the detector technologies, during the past two decades innovative telescope concepts have been developed for practically all wavelength ranges where astronomical observations are possible. Further important advances can be ...

  15. Recent Development in Astronomic Position Determinations. (United States)


    community. The comparison of astronomic position determinations using the DanJon and the VUGTK astrolabes published by the German Geodetic Commission...these tests indicated that astrolabes were capable of precision and accuracy surpassing those obtainable with astronomic theodolites, even though some...the urgent need to replace the base instrument with a precise astrolable designed for.maximum optical efficiency with the CID eyepiece. An astrolabe

  16. Basic Optics for the Astronomical Sciences

    CERN Document Server

    Breckinridge, James


    This text was written to provide students of astronomy and engineers an understanding of optical science - the study of the generation, propagation, control, and measurement of optical radiation - as it applies to telescopes and instruments for astronomical research in the areas of astrophysics, astrometry, exoplanet characterization, and planetary science. The book provides an overview of the elements of optical design and physical optics within the framework of the needs of the astronomical community.

  17. Search for Varying Constants of Nature from Astronomical Observation of Molecules (United States)

    Ubachs, Wim


    The status of searches for possible variation in the constants of nature from astronomical observation of molecules is reviewed, focusing on the dimensionless constant representing the proton-electron mass ratio μ =mp/me. The optical detection of H2 and CO molecules with large ground-based telescopes (as the ESO-VLT and the Keck telescopes), as well as the detection of H2 with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope is discussed in the context of varying constants, and in connection to different theoretical scenarios. Radio astronomy provides an alternative search strategy bearing the advantage that molecules as NH3 (ammonia) and CH3OH (methanol) can be used, which are much more sensitive to a varying μ than diatomic molecules. Current constraints are |Δ μ /μ | Universe (both at 3σ statistical significance). Existing bottlenecks and prospects for future improvement with novel instrumentation are discussed.

  18. Phono-spectrographic analysis of heart murmur in children

    Directory of Open Access Journals (Sweden)

    Angerla Anna


    Full Text Available Abstract Background More than 90% of heart murmurs in children are innocent. Frequently the skills of the first examiner are not adequate to differentiate between innocent and pathological murmurs. Our goal was to evaluate the value of a simple and low-cost phonocardiographic recording and analysis system in determining the characteristic features of heart murmurs in children and in distinguishing innocent systolic murmurs from pathological. Methods The system consisting of an electronic stethoscope and a multimedia laptop computer was used for the recording, monitoring and analysis of auscultation findings. The recorded sounds were examined graphically and numerically using combined phono-spectrograms. The data consisted of heart sound recordings from 807 pediatric patients, including 88 normal cases without any murmur, 447 innocent murmurs and 272 pathological murmurs. The phono-spectrographic features of heart murmurs were examined visually and numerically. From this database, 50 innocent vibratory murmurs, 25 innocent ejection murmurs and 50 easily confusable, mildly pathological systolic murmurs were selected to test whether quantitative phono-spectrographic analysis could be used as an accurate screening tool for systolic heart murmurs in children. Results The phono-spectrograms of the most common innocent and pathological murmurs were presented as examples of the whole data set. Typically, innocent murmurs had lower frequencies (below 200 Hz and a frequency spectrum with a more harmonic structure than pathological cases. Quantitative analysis revealed no significant differences in the duration of S1 and S2 or loudness of systolic murmurs between the pathological and physiological systolic murmurs. However, the pathological murmurs included both lower and higher frequencies than the physiological ones (p Conclusion Phono-spectrographic analysis improves the accuracy of primary heart murmur evaluation and educates inexperienced listener

  19. Optical design of WUVS instrument: WSO-UV spectrographs (United States)

    Sachkov, Mikhail; Panchuk, Vladimir; Yushkin, Maxim; Fatkhullin, Timur


    World Space Observatory - Ultraviolet project is an international space observatory for spectroscopy and imaging in 115-310 nm spectral range. The WSO-UV telescope feeds in its focal plane two main instruments for spectroscopy (unit of spectrographs - WUVS) and imaging (field camera unit - FCU) as well as Fine Guidance System (FGS). Significant progress in the CCD development allows to use the back illuminated CCD detectors with anti-reflection coating for spectroscopic observations in this ultraviolet domain instead of wide used MCP detectors. In this paper we present the final optical design of the WUVS instrument.

  20. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Directory of Open Access Journals (Sweden)

    Hébrard G.


    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  1. Novel gratings for next-generation instruments of astronomical observations (United States)

    Ebizuka, N.; Okamoto, T.; Takeda, M.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.


    We will introduce current status of development of a birefringence volume phase holographic (B-VPH) grating, volume binary (VB) grating and reflector facet transmission (RFT) grating developing as the novel dispersive optical element for astronomical instruments for the 8.2m Subaru Telescope, for next generation 30 m class huge ground-based telescopes and for next generation large space-bone telescopes. We will also introduce a hybrid grism developed for MOIRCS (Multi-Object InfraRed Camera and Spectrograph) of the Subaru Telescope and a quasi-Bragg (QB) immersion grating. Test fabrication of B-VPH gratings with a liquid crystal (LC) of UV curable and normal LCs or a resin of visible light curable are performed. We successfully fabricated VB gratings of silicon as a mold with ridges of a high aspect ratio by means of the cycle etching process, oxidation and removal of silicon oxide. The RFT grating which is a surface-relief (SR) transmission grating with sawtooth shaped ridges of an acute vertex angle. The hybrid grism, as a prototype of the RFT grating, combines a high-index prism and SR transmission grating with sawtooth shape ridges of an acute vertex angle. The mold of the SR grating for the hybrid grism on to a work of Ni-P alloy of non-electrolysic plating successfully fabricated by using our ultra-precision machine and a single-crystal diamond bite. The QB immersion grating was fabricated by a combination of an inclined QB grating, Littrow prism and surface reflection mirror.

  2. More flexibility in representing geometric distortion in astronomical images (United States)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir


    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service,, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  3. Advances in Exoplanet Observing by Amateur Astronomers (Abstract) (United States)

    Conti, D. M.


    (Abstract only) This past year has seen a marked increase in amateur astronomer participation in exoplanet research. This has ranged from amateur astronomers helping professional astronomers confirm candidate exoplanets, to helping refine the ephemeris of known exoplanets. In addition, amateur astronomers have been involved in characterizing such exotic objects as disintegrating planetesimals. However, the involvement in such pro/am collaborations has also required that amateur astronomers follow a more disciplined approach to exoplanet observing.

  4. Initial results from the fast imaging solar spectrograph (FISS)

    CERN Document Server


    This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS),  one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of  chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope.    These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations.        This volume is aimed at graduate students and researchers working in...

  5. Raman Spectrograph for Ocean Worlds: Integrating Cavity Enhanced Spectroscopy (United States)

    Retherford, Kurt D.; Moore, Thomas Z.; Davis, Michael W.; Howett, Carly; Soto, Alejandro; Raut, Ujjwal; Molyneux, Philippa M.; Nowicki, Keith; Mandt, Kathleen; E Schmidt, Britney; Mason, John; Yakovlev, Vladislav V.; Fry, Edward S.; RSO Team


    We present a new concept for a Raman spectrograph instrument designed to conduct high sensitivity measurements of biomarkers within Ocean Worlds environments. Our Raman Spectrograph for Ocean worlds (RSO) instrument is a UV+IR multi-laser enhanced Raman system capable of detecting complex, biologically-relevant molecular species mixed within icy surfaces in the outer Solar System. Incorporating two or more lasers with different excitation-emission pathways is crucial for thorough and definitive interpretation of the spectral fingerprints that identify unknown constituents within a sample. Our approach strives to remove fluorescence-driven ambiguities from degenerate, non-unique signatures expected for the most interesting trace constituents, i.e., those best revealed by UV excitation. Our design for deep-UV measurements is based on a novel high-reflectivity integrating cavity invented at Texas A&M University and further developed at SwRI. We report nanomole-range sensitivities of several complex organic molecules measured with our laboratory prototype cavities. Weak optical signals from Raman or fluorescence based instruments require sensitive low-noise detectors and long integration times, which by comparison are undesirable for the high radiation environment and limited battery power conditions anticipated for the Europa Lander mission. The two-to-five orders of magnitude enhanced sensitivity over standard Raman spectroscopy enabled by the integrating cavity enhanced spectroscopy technique makes it well suited for the Europa Lander payload and other future Ocean Worlds missions.

  6. MSE spectrograph optical design: a novel pupil slicing technique (United States)

    Spanò, P.


    The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.

  7. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform (United States)

    Brown, Anthony M.


    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  8. Hyperspectral imaging of the Eagle Nebula with the Fourier Transform Spectrograph SITELLE at CFHT (United States)

    Flagey, Nicolas; McLeod, Anna Faye; Aguilar, Laura; SITELLE instrument team, CHFT science operations team


    We present the very first large field of view, optical, spectral mapping of one of the most famous star-forming regions in the Galaxy: the Eagle Nebula (M 16). The observations have been obtained with the new imaging Fourier transform spectrograph at CFHT: SITELLE. Three spectral cubes are presented, with a spectral range of 30-40 nm around the [OII] 7327, H-alpha and H-beta lines, with a resolving power of 10000, 1500 and 600, respectively. The spectral cubes cover the same region: a field of view of 11’ by 11 centered on the Pillars of Creation.We discuss the performance, calibration and data reduction of SITELLE data by comparing it to MUSE integral field data of the same region, and (within errors) obtain remarkably comparable values for fluxes, velocities, and various diagnostics for star-forming regions.With the spatial and spectral coverage of SITELLE, it was furthermore possible to confirm the bipolar structure of the Herbig-Haro object 216 present in the field. Together with narrow-band H2 and Br-gamma near-infrared data obtained with Wircam at CFHT, we further analyze the spatial correlation of the ionized and molecular emission.

  9. Slaying Hydra: A Python-Based Reduction Pipeline for the Hydra Multi-Object Spectrograph (United States)

    Seifert, Richard; Mann, Andrew


    We present a Python-based data reduction pipeline for the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope, an instrument which enables simultaneous spectroscopy of up to 93 targets. The reduction steps carried out include flat-fielding, dynamic fiber tracing, wavelength calibration, optimal fiber extraction, and sky subtraction. The pipeline also supports the use of sky lines to correct for zero-point offsets between fibers. To account for the moving parts on the instrument and telescope, fiber positions and wavelength solutions are derived in real-time for each dataset. The end result is a one-dimensional spectrum for each target fiber. Quick and fully automated, the pipeline enables on-the-fly reduction while observing, and has been known to outperform the IRAF pipeline by more accurately reproducing known RVs. While Hydra has many configurations in both high- and low-resolution, the pipeline was developed and tested with only one high-resolution mode. In the future we plan to expand the pipeline to work in most commonly used modes.

  10. CRIRES+ : A Cross-dispersed High-resolution Infrared Spectrograph for ESO's VLT (United States)

    Hatzes, Artie; CRIRES+ Team


    CRIRES+ is a major upgrade to the former CRyogenic high resolution Infra-Red Echelle Spectrograph of ESO's 8.2m Very Large Telescope. The major science drivers for this upgrade are the confirmation and characterization (e.g. determination of the mass) of rocky planets in the so-called habitable zone of M-dwarf stars via radial velocity measurements, the characterization of exoplanet atmospheres, and the study of magnetic fields in low mass stars and brown dwarfs. CRIRES+ will maintain the high resolving power (R = 100,000) of its predecessor in the Y, J, H, K, L and M bands, but it will include the following improvements: 1) CRIRES+ will be cross-dispersed recording 8-9 diffraction orders at a time, increasing the observing efficiency approximately by an order of magnitude. 2) New detectors with better sensitivity and cosmetics over the old devices. 3) A new gas absorption cell for improved wavelength calibration. This along with the increased wavelength coverage should yield a radial velocity measurement precision to better than 2-5 m/s in K-band. In addition, in Y to K bands, a new Fabry-Perot etalon device will ensure a precision of 100 m/s. 4) A polarimetric unit which will measure both circular and linear polarization. We present the current status and schedule of the project. The instrument is currently scheduled to be installed at the telescope beginning 2018.

  11. Imaging Spectrograph as a Tool to Enhance the Undergraduate Student Research Experience (United States)

    Williams, B.; Nielsen, K.; Johnson, S.


    Undergraduate students often engage in research activities that are part of a larger project outlined by research faculty, while it is less common for students to explore and define their own research project. The later has been shown to have tremendous impact on the learning outcome of the students and provide a stronger sense of pride and ownership of the research project. It is unrealistic to expect starting undergraduate students to define transformative research projects. However, with the proper training and guidance student-driven transformative research is possible for upper division students. We have instituted a student research paradigm with focus on the development of student research skills in coordination with their course progress. We present here a specific student project that engage students in aeronomy research activities and provide them with a solid base to establish their own research projects for senior year. The core of the project is an imaging spectrograph, which is constructed, tested, and calibrated by the students. The instrument provides unique opportunities student research projects across subject such as optics, quantum mechanics, and how these subjects are applied in the geosciences of aeronomy and space physics.

  12. Next VLT Instrument Ready for the Astronomers (United States)


    FORS2 Commissioning Period Successfully Terminated The commissioning of the FORS2 multi-mode astronomical instrument at KUEYEN , the second FOcal Reducer/low dispersion Spectrograph at the ESO Very Large Telescope, was successfully finished today. This important work - that may be likened with the test driving of a new car model - took place during two periods, from October 22 to November 21, 1999, and January 22 to February 8, 2000. The overall goal was to thoroughly test the functioning of the new instrument, its conformity to specifications and to optimize its operation at the telescope. FORS2 is now ready to be handed over to the astronomers on April 1, 2000. Observing time for a six-month period until October 1 has already been allocated to a large number of research programmes. Two of the images that were obtained with FORS2 during the commissioning period are shown here. An early report about this instrument is available as ESO PR 17/99. The many modes of FORS2 The FORS Commissioning Team carried out a comprehensive test programme for all observing modes. These tests were done with "observation blocks (OBs)" that describe the set-up of the instrument and telescope for each exposure in all details, e.g., position in the sky of the object to be observed, filters, exposure time, etc.. Whenever an OB is "activated" from the control console, the corresponding observation is automatically performed. Additional information about the VLT Data Flow System is available in ESO PR 10/99. The FORS2 observing modes include direct imaging, long-slit and multi-object spectroscopy, exactly as in its twin, FORS1 at ANTU . In addition, FORS2 contains the "Mask Exchange Unit" , a motorized magazine that holds 10 masks made of thin metal plates into which the slits are cut by means of a laser. The advantage of this particular observing method is that more spectra (of more objects) can be taken with a single exposure (up to approximately 80) and that the shape of the slits can be

  13. LARS: An Absolute Reference Spectrograph for solar observations. Upgrade from a prototype to a turn-key system (United States)

    Löhner-Böttcher, J.; Schmidt, W.; Doerr, H.-P.; Kentischer, T.; Steinmetz, T.; Probst, R. A.; Holzwarth, R.


    Context. We designed a Laser-based Absolute Reference Spectrograph (LARS) for ultra-precise solar observations. The high-resolution echelle spectrograph of the Vacuum Tower Telescope is supported by a laser frequency comb to calibrate the solar spectrum on an absolute wavelength scale. In this article, we describe the scientific instrument and focus on the upgrades carried out in the last two years to turn the prototype into a turn-key system. Aims: The goal was to improve the short-term and long-term stability of the systems, and to enable a user-friendly and more versatile operation of the instrument. Methods: The first upgrade involved the modernization of the frequency comb. The laser system generating the comb spectrum was renewed. The Fabry-Pérot cavities were adjusted to filter to a repetition frequency of 8 GHz. A technologically matured photonic crystal fiber was implemented for spectral broadening which simplified and stabilized the setup. The new control software facilitates an automated operation of the frequency comb. The second, quite recent upgrade was performed on the optics which feed the sunlight into a single-mode fiber connected to the spectrograph. A motorized translation stage was deployed to allow the automated selection of three different fields of view with diameters of 1'', 3'', and 10'' for the analysis of the solar spectrum. Results: The successful upgrades allow for long-term observations of up to several hours per day with a stable spectral accuracy of 1 m s-1 limited by the spectrograph. The instrument covers a wavelength range between 480 nm and 700 nm in the visible. Stable, user-friendly operation of the instrument is supported. The selection of the pre-aligned fiber to change the field of view can now be done within seconds. Conclusions: LARS offers the possibility to observe absolute wavelength positions of spectral lines and Doppler velocities in the solar atmosphere. First results demonstrate the capabilities of the instrument

  14. The Galway astronomical Stokes polarimeter: optical development

    Directory of Open Access Journals (Sweden)

    Sheehan B.


    Full Text Available The acquisition time of astronomical polarimeters has in the past been restricted to by the use of polarimeters utilizing modulated or rotating components [1]. If the polarisation state being measured is changing in the order of nanoseconds, how does one measure this? The Galway Astronomical Stokes Polarimeter (GASP is an instantaneous full Stokes Division Of Amplitude Polarimeter (DOAP that has been developed for astronomical imaging polarimetry. It also uses just one camera thus restricting the acquisition time to photon statistics. Following the work of Compain and Drévillon [2], the main component - the Retarding Beam-Splitter, was redesigned and enhanced for imaging use. We present how the polarization and imaging optics were developed to create a broadband imaging instantaneous polarimeter.

  15. Design of a multifunction astronomical CCD camera (United States)

    Yao, Dalei; Wen, Desheng; Xue, Jianru; Chen, Zhi; Wen, Yan; Jiang, Baotan; Xi, Jiangbo


    To satisfy the requirement of the astronomical observation, a novel timing sequence of frame transfer CCD is proposed. The multiple functions such as the adjustments of work pattern, exposure time and frame frequency are achieved. There are four work patterns: normal, standby, zero exposure and test. The adjustment of exposure time can set multiple exposure time according to the astronomical observation. The fame frequency can be adjusted when dark target is imaged and the maximum exposure time cannot satisfy the requirement. On the design of the video processing, offset correction and adjustment of multiple gains are proposed. Offset correction is used for eliminating the fixed pattern noise of CCD. Three gains pattern can improve the signal to noise ratio of astronomical observation. Finally, the images in different situations are collected and the system readout noise is calculated. The calculation results show that the designs in this paper are practicable.

  16. Decoding the mechanisms of Antikythera astronomical device

    CERN Document Server

    Lin, Jian-Liang


    This book presents a systematic design methodology for decoding the interior structure of the Antikythera mechanism, an astronomical device from ancient Greece. The historical background, surviving evidence and reconstructions of the mechanism are introduced, and the historical development of astronomical achievements and various astronomical instruments are investigated. Pursuing an approach based on the conceptual design of modern mechanisms and bearing in mind the standards of science and technology at the time, all feasible designs of the six lost/incomplete/unclear subsystems are synthesized as illustrated examples, and 48 feasible designs of the complete interior structure are presented. This approach provides not only a logical tool for applying modern mechanical engineering knowledge to the reconstruction of the Antikythera mechanism, but also an innovative research direction for identifying the original structures of the mechanism in the future. In short, the book offers valuable new insights for all...

  17. Astronomical Polarimeters and Features of Polarimetric Observations (United States)

    Morozhenko, A. V.; Vid'machenko, A. P.


    We present a general description of ground-based astronomical polarimeters, and provide a detailed description of the spectropolarimeter of the Main astronomical observatory (MAO) of a National Academy of Sciences of Ukraine (NASU). Using a polarization modulator of a rotating quarter-wave phase plate (FP) allows us to measure the parameters of linear and circular polarization simultaneously. In 1983 O. I. Bugaenko with the colleagues from MAO of NASU produced an automatic astronomical spectropolarimeter (ASP), which used a continuous rotation of polarizer with frequency of 61 Hz. Observations in two beam modes allowed it to accommodate changes of transparency of the Earth's atmosphere, air mass the of observational object, inexactness of guiding and displacement from an optical axis because of atmospheric turbulence. In 1995 the spectropolarimeter was upgraded and its spectral interval expanded to 1 micron. Sources of errors and methods of their elimination are described.

  18. Romanian Astronomical Activity in the Middle Ages (United States)

    Stavinschi, Magdalena; Mioc, Vasile

    The authors describe the main astronomical events and personalities in Romania since th Middle Ages, which begun aproximately at the threeshold between the first and second milleniums of ours era and ends only at the beggining of the 19-th century. The contributions by Ioan Vitez, Ioan Honterus, Conrad Haas, Sevastos Kymnitis, Israel Hubner, Constantin Cantacuzino, Hrisant Notara, Nicolae Mavrocordat, Maximilian Hell, Ignatius Bathyanni, Iosif Bede are underlined. The main contacts of Romanian astronomers with foreigners in such areas as teaching and observations are mentioned. The existing today museums of astronomical instruments are also mentioned. Bibliography: 4. The authors ommit to mention in the bibliography the outstanding book by George Stefan Andonie, concerning the History of Mathematics in Romania as well as few other sources.

  19. Thirteenth Joint European and National Astronomical Meeting

    CERN Document Server

    Iniesta, J C


    The book gathers the invited talks to the XIII JENAM conference, organized this time by the European Astronomical Society (EAS) and the Spanish Astronomical Society (SEA), and hosted by the Instituto de Astrofísica de Andalucía (CSIC). All branches of astrophysics are encompassed from the largest scales and cosmology to the solar system and the Sun, through the galaxies and the stars, including a section on astronomical instrumentation. Very relevant experts from all over the world speak in a single book about the most recent, exciting results from their fields in a way which is useful for both researchers in these fields and colleagues working in other disciplines. The book is accompanied by a CD-ROM including the remaining contributions of the meeting in PDF format, hence opening a wide panorama of what is going on in astrophysics nowadays.

  20. Ancient Maya astronomical tables from Xultun, Guatemala. (United States)

    Saturno, William A; Stuart, David; Aveni, Anthony F; Rossi, Franco


    Maya astronomical tables are recognized in bark-paper books from the Late Postclassic period (1300 to 1521 C.E.), but Classic period (200 to 900 C.E.) precursors have not been found. In 2011, a small painted room was excavated at the extensive ancient Maya ruins of Xultun, Guatemala, dating to the early 9th century C.E. The walls and ceiling of the room are painted with several human figures. Two walls also display a large number of delicate black, red, and incised hieroglyphs. Many of these hieroglyphs are calendrical in nature and relate astronomical computations, including at least two tables concerning the movement of the Moon, and perhaps Mars and Venus. These apparently represent early astronomical tables and may shed light on the later books.

  1. A fast new cadioptric design for fiber-fed spectrographs (United States)

    Saunders, Will


    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per

  2. ASTRONIRCAM—the infrared camera-spectrograph for the 2.5-m telescope of SAI Caucasian observatory (United States)

    Nadjip, A. E.; Tatarnikov, A. M.; Toomey, D. W.; Shatsky, N. I.; Cherepashchuk, A. M.; Lamzin, S. A.; Belinski, A. A.


    ASTRONIRCAM is a cryogenic-cooled slit camera-spectrograph for the spectral range 1-2.5 μm installed at the Nasmyth focus of the 2.5-meter telescope of the Caucasian observatory of the Sternberg Astronomical Institute of Lomonosov Moscow State University. The instrument is equipped with a HAWAII-2RG 2048×2048 HgCdTe array. Grisms are used as dispersive elements. In the photometric mode ASTRONIRCAM allows for extended astronomical object imaging in a 4.'6 × 4.'6 field of view with a 0.269 arcsec/pixel scale in standard photometric bands J, H, K, and K s as well as in the narrow-band filters centered on the lines CH4, [Fe II], H2 v=1-0 S(1), Br γ , and CO. In the spectroscopic mode, ASTRONIRCAM takes spectra of extended or point-like sources with a spectral resolution of R = λ/Δ λ ≤ 1200. The general design, optical system, detector electronics and readout, amplification and digitization schemes are considered. The GAIN conversion factor measurement results are described as well as its dependence on the accumulated signal (nonlinearity). The full transmission of the atmosphere-to-detector train ranges from 40 to 50% in the wide-band photometry mode. The ASTRONIRCAMsensitivity at the 2.5-m telescope is characterized by the limiting J = 20, K = 19 stellar magnitudes measured with a 10% precision and 15 minute integration for 1″ atmospheric seeing conditions. References to the first results based on ASTRONIRCAM observations are given.

  3. The Astronomical Society of New York (United States)

    Philip, A. G. D.


    The New York Astronomical Corporation was formed in 1968 by astronomers at New York State universities, colleges and observatories with the aim of building a large telescope for the use of astronomers in the state. Hawaii was selected as a possible site for a 150-in telescope and for a period of five years a vigorous effort was made at fund raising. A grant was received from the New York State Science and Technology Foundation to help in the organization of the group. By 1973 it was decided to stop plans for a New York Telescope since we had no success in the fund raising. However our group was already involved in holding meetings at the member institutions and staff and students would give reports on their work. In 1973 we formally set up the Astronomical Society of New York. Meetings are held twice a year. The Fall meeting is held at Union College or RPI and at this time the business meeting of NYAC is held. The Spring meeting is held at the other member institutions, from Alfred University in the west and the State University of New York at Stony Brook, in the east. The proceedings of the meetings are published in the News Letter of the Astronomical Society of New York. Prizes are awarded for the best graduate and the best undergraduate papers submitted to the Prize Committee. The winners give invited talks at a meeting following the award. Travel grants are awarded to both graduate and undergraduate students who are granted time to observe on optical or radio telescopes. ASNY has provided a good platform for students to give their first papers and by awarding the prizes and travel grants ASNY has been able to support student research. The meetings help to maintain good contacts among New York astronomers.

  4. The Astronomical Tables of Moses Farissol Botarel


    Goldstein, Bernard R.; Chabás, José


    Moses Farissol Botarel (Avignon, late fifteenth century) was an astronomer who wrote in Hebrew and continued various traditions that depended on astronomy in al-Andalus which, in turn, derived in large part from the zij of al-Battānī (Raqqa, d. 929). His astronomical tables are unusual in that they combine elements from the Parisian Alfonsine Tables with elements from the tables of Levi ben Gerson (Orange, France, d. 1344), Immanuel ben Jacob Bonfils (Tarascon, France, fl. 1350), and Jacob be...

  5. Novel Algorithms for Astronomical Plate Analyses

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Hudec, L.


    Roč. 32, 1-2 (2011), s. 121-123 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * astronomical algorithms Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  6. Astronomical Network for Teachers in Thailand (United States)

    Kramer (Hutawarakorn), Busaba; Soonthornthum, Boonraksar; Poshyachinda, Saran

    We report the latest development of a pilot project in establishing the astronomical network for teachers in Thailand. The project has been recently granted by the Institute for the Promotion of Teaching Science and Technology Thailand and operated by Sirindhorn Observatory Chiangmai University. The objectives of the project are (1) to establish a16-inch semi-robotic telescope which can be accessed from schools nationwide; and (2) to establish an educational website in Thai language which contains electronic textbook of astronomy online encyclopedia of astronomy observing projects astronomical database and links to other educational websites worldwide. The network will play important role in the development of teaching and learning astronomy in Thailand.

  7. Spectrographic analysis of waste waters; Analisis espectrografico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Alduan, F.; Capdevila, C.


    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs.

  8. Raman Imaging with a Fiber-Coupled Multichannel Spectrograph

    Directory of Open Access Journals (Sweden)

    Elmar Schmälzlin


    Full Text Available Until now, spatially resolved Raman Spectroscopy has required to scan a sample under investigation in a time-consuming step-by-step procedure. Here, we present a technique that allows the capture of an entire Raman image with only one single exposure. The Raman scattering arising from the sample was collected with a fiber-coupled high-performance astronomy spectrograph. The probe head consisting of an array of 20 × 20 multimode fibers was linked to the camera port of a microscope. To demonstrate the high potential of this new concept, Raman images of reference samples were recorded. Entire chemical maps were received without the need for a scanning procedure.

  9. Initial Results From the USNO Dispersed Fourier Transform Spectrograph

    National Research Council Canada - National Science Library

    Hajian, Arsen R; Behr, Bradford B; Cenko, Andrew T; Olling, Robert P; Mozurkewich, David; Armstrong, J. T; Pohl, Brian; Petrossian, Sevan; Knuth, Kevin H; Hindsley, Robert B


    ... of the advantages inherent to interferometric spectrometers. In addition, we have implemented a simple and inexpensive laser metrology system, which enables very precise calibration of the interferometer wavelength scale...

  10. DMD-based programmable wide field spectrograph for Earth observation (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean


    In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.

  11. Prime Focus Spectrograph: A very wide-field, massively multiplexed, optical & near-infrared spectrograph for Subaru Telescope (United States)

    Tamura, Naoyuki

    This short article is about Prime Focus Spectrograph (PFS), a very wide-field, massively-multiplexed, and optical & near-infrared (NIR) spectrograph as a next generation facility instrument on Subaru Telescope. More details and updates are available on the PFS official website (, blog (, and references therein. The project, instrument, & timeline PFS will position 2400 fibers to science targets or blank sky in the 1.3 degree field on the Subaru prime focus. These fibers will be quickly (~60sec) reconfigurable and feed the photons during exposures to the Spectrograph System (SpS). SpS consists of 4 modules each of which accommodate ~600 fibers and deliver spectral images ranging from 380nm to 1260nm simultaneously at one exposure via the 3 arms of blue, red, and NIR cameras. The instrument development has been undertaken by the international collaboration at the initiative of Kavli IPMU. The project is now going into the construction phase aiming at system integration and on-sky engineering observations in 2017-2018, and science operation in 2019. The survey design has also been under development envisioning a survey spanning ~300 nights over ~5 years in the framework of Subaru Strategic Program (SSP). The key science areas are: Cosmology, galaxy/AGN evolution, and Galactic Archaeology (GA) (Takada et al. 2014). The cosmology program will be to constrain the nature of dark energy via a survey of emission line galaxies over a comoving volume of 10 Gpc3 at z=0.8-2.4. In the galaxy/AGN program, the wide wavelength coverage of PFS as well as the large field of view will be exploited to characterize the galaxy populations and its clustering properties over a wide redshift range. A survey of color-selected galaxies/AGN at z = 1-2 will be conducted over 20 square degrees yielding a fair sample of galaxies with stellar masses down to ~1010 M ⊙. In the GA program, radial velocities and chemical abundances of stars in the Milky

  12. TIMED solar EUV experiment: preflight calibration results for the XUV photometer system (United States)

    Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.


    The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.

  13. A comparison of concepts for a photonic spectrograph (United States)

    Harris, R. J.; Allington-Smith, J. R.; MacLachlan, David; Thomson, Robert R.


    It is possible to significantly improve the performance of astronomical spectroscopy by taking the Point Spread Function from a near diffraction-limited telescope and reformatting it using photonic technologies. This can improve the stability of a conventional instrument or provide an interface to single mode instruments developed for the telecommunications industry. We compare different options for reformatting and interfacing with different types of instruments and examine them using set metrics. We then examine the relative merits for instruments that could be developed for astronomy.

  14. Characterization of micro lenses for Integral Field Spectrographs . (United States)

    Claudi, R. U.; Bozzato, E.; Antichi, J.; Gratton, R.

    Micro lens arrays in use for astronomical integral field spectroscopy have to fulfill several requirements: high filling factor, accurate lens pitch, consistent focal length within the array, good optical quality, low surface roughness, high absolute throughput. In this document we describe the workshop experiments devoted to measure the optical quality (PSF and Encircled Energy ) and the geometrical characteristics (pitch and filling factor) of the micro - lens arrays. The characterization of the mu - lens array is necessary to choose the best lenslet array for a generic IFS. Only refractive mu - lenses are considered (neither diffractive nor graded - index lenslet arrays).

  15. The Virtual Astronomical Observatory Users Forum (United States)

    Muench, August A.; Emery Bunn, S.; Astronomical Observatory, Virtual


    We present the online forum, which has the goal of being a gathering place for the collective community intelligence about astronomical computing. The audience for this forum is anyone engaged in the analysis of astronomical or planetary data, whether that data be observational or theoretical. It is a free, community driven site where discussions are formulated primarily around the "question and answer" format. Current topics on the forum range from “Is there a photometry package in Python?” to “Where are the support forums for astronomy software packages?” and “Why is my SDSS SkyQuery query missing galaxies?” The poster will detail the full scope of discussions in the forum, and provide some basic guidelines for ensuring high quality forum posts. We will highlight the ways astronomers can discover and participate in discussions. Further, we view this as an excellent opportunity to gather feedback and feature requests from AAS221 attendees. Acknowledgement: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  16. Astronomía en la cultura (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    La Astronomía en la Cultura es el estudio interdisciplinario a nivel global de la astronomía prehistórica, antigua y tradicional, en el marco de su contexto cultural. Esta disciplina abarca cualquier tipo de estudios o líneas de investigación en que se relacione a la astronomía con las ciencias humanas o sociales. En ella se incluyen tanto fuentes escritas, relatos orales como fuentes arqueológicas, abarcando entre otros, los siguientes temas: calendarios, observación práctica, cultos y mitos, representación simbólica de eventos, conceptos y objetos astronómicos, orientación astronómica de tumbas, templos, santuarios y centros urbanos, cosmología tradicional y la aplicación ceremonial de tradiciones astronómicas, la propia historia de la astronomía y la etnoastronomía (Krupp, 1989) (Iwaniszewski, 1994). En nuestro trabajo abordamos la historia y situación actual de esta disciplina, sus métodos y sus relaciones con otras áreas de investigación.

  17. Astronomical Plate Archives and Binary Blazars Studies

    Indian Academy of Sciences (India)

    There are about 3 million astronomical photographic plates around the globe, representing an important data source for various aspects of astrophysics. The main advantage is the large time coverage of 100 years or even more. Recent digitization efforts, together with the development of dedicated software, enables for the ...

  18. Integration and test activities for the SUMIRE prime focus spectrograph at LAM (United States)

    Madec, F.; Jaquet, Marc; Pascal, Sandrine; Bozier, A.; Le Mignant, David; Vives, S.; Ferrand, D.; Pegot-Ogier, T.; Arthaud, G.; Golebiowski, M.; Sugai, H.; Tamura, N.; Gunn, J.; Smee, S.; Oliveira, L.


    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project for Subaru telescope consists in four identical spectrographs feed by 600 fibers each. Each spectrograph is composed by an optical entrance unit that creates a collimated beam and distributes the light to three channels, two visible and one near infrared. We present here the integration process of the first spectrograph channel. The verification requirements, the specific integration requirements and the product tree are the main drivers from the top plan for the Assembly Integration and Test (AIT) development process. We then present the AIT flow-down, the details for the AIT processes as well as opto-mechanical alignment procedures and tests setup. In parallel, we are developing and validating dedicated tools to secure and facilitate the AIT activities, as we have to assemble eight visible cameras, integrate and align four fiber slits, integrate and align the components of four spectrographs.

  19. Sociological Profile of Astronomers in Spain (United States)

    Iglesias de Ussel, Julio; Trinidad, Antonio; Ruiz, Diego; Battaner, Eduardo; Delgado, Antonio J.; Rodriguez-Espinosa, José M.; Salvador-Solé, Eduard; Torrelles, José M.

    In this paper the main findings are presented of a recent study made by a team of sociologists from the University of Granada on the professional astronomers currently working in Spain. Despite the peculiarities of this group - its youth, twentyfold increase in size over the last 20 years, and extremely high rate of specialization abroad - in comparison with other Spanish professionals, this is the first time that the sociological characteristics of the group have been studied discretely. The most significant results of the study are presented in the following sections. Section 1 gives a brief historical background of the development of Astronomy in Spain. Section 2 analyzes the socio-demographic profile of Spanish Astronomy professionals (sex, age, marital status, etc.). Sections 3-5 are devoted to the college education and study programs followed by Spanish astronomers, focusing on the features and evaluations of the training received, and pre- and postdoctoral study trips made to research centers abroad. The results for the latter clearly show the importance that Spanish astronomers place on having experience abroad. Special attention is paid to scientific papers published as a result of joint research projects carried out with colleagues from centers abroad as a result of these study trips. Section 6 describes the situation of Astronomy professionals within the Spanish job market, the different positions available and the time taken to find a job after graduation. Section 7 examines Astronomy as a discipline in Spain, including the astronomers' own opinions of the social status of the discipline within Spanish society. Particular attention is paid to how Spanish astronomers view the status of Astronomy in Spain in comparison with that of other European countries.

  20. Herschel SPIRE FTS relative spectral response calibration (United States)

    Fulton, Trevor; Hopwood, Rosalind; Baluteau, Jean-Paul; Benielli, Dominique; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Naylor, David; Polehampton, Edward; Swinyard, Bruce; Valtchanov, Ivan


    Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose noise is reduced by a factor of 2-3, with a gain in the overall spectral sensitivity of 23 % and 21 % for the two detector bands, respectively.

  1. Finding Hidden Treasures: Investigations in US Astronomical Plate Archives

    Directory of Open Access Journals (Sweden)

    René Hudec


    Full Text Available We report here on an ongoing investigation of US astronomical plate archives and tests of the suitability of transportable scanning devices for in situ digitization of archival astronomical plates.

  2. The Virtual Astronomical Observatory: Re-engineering access to astronomical data


    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J; McGlynn, T. A.; Plante, R.


    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within ...

  3. The Development of Replicated Optical Integral Field Spectrographs and their Application to the Study of Lyman-alpha Emission at Moderate Redshifts (United States)

    Chonis, Taylor Steven

    In the upcoming era of extremely large ground-based astronomical telescopes, the design of wide-field spectroscopic survey instrumentation has become increasingly complex due to the linear growth of instrument pupil size with telescope diameter for a constant spectral resolving power. The upcoming Visible Integral field Replicable Unit Spectrograph (VIRUS), a baseline array of 150 copies of a simple integral field spectrograph that will be fed by 3:36 x 104 optical fibers on the upgraded Hobby-Eberly Telescope (HET) at McDonald Observatory, represents one of the first uses of large-scale replication to break the relationship between instrument pupil size and telescope diameter. By dividing the telescope's field of view between a large number of smaller and more manageable instruments, the total information grasp of a traditional monolithic survey spectrograph can be achieved at a fraction of the cost and engineering complexity. To highlight the power of this method, VIRUS will execute the HET Dark Energy Experiment (HETDEX) and survey & 420 degrees2 of sky to an emission line flux limit of ˜ 10-17 erg s-1 cm -2 to detect ˜ 106 Lyman-alpha emitting galaxies (LAEs) as probes of large-scale structure at redshifts of 1:9 VPH) diffraction gratings for VIRUS is presented, which highlights the challenge and success associated with producing of a very large number of highly customized optical elements whose performance is crucial to meeting the efficiency requirements of the spectrograph system. To accommodate VIRUS, the HET is undergoing a substantial wide-field upgrade to increase its field of view to 22' in diameter. The previous HET facility Low Resolution Spectrograph (LRS), which was directly fed by the telescope's previous spherical aberration corrector, must be removed from the prime focus instrument package as a result of the telescope upgrades and instead be fiber-coupled to the telescope focal plane. For a similar cost as modifying LRS to accommodate these

  4. Metrology camera system of prime focus spectrograph for Suburu telescope (United States)

    Wang, Shiang-Yu; Chou, Richard C. Y.; Huang, Pin-Jie; Ling, Hung-Hsu; Karr, Jennifer; Chang, Yin-Chang; Hu, Yen-Sang; Hsu, Shu-Fu; Chen, Hsin-Yo; Gunn, James E.; Reiley, Dan J.; Tamura, Naoyuki; Takato, Naruhisa; Shimono, Atsushi


    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final positioning accuracy between the fibers and observing targets of PFS is required to be less than 10 microns. The metrology camera system (MCS) serves as the optical encoder of the fiber motors for the configuring of fibers. MCS provides the fiber positions within a 5 microns error over the 45 cm focal plane. The information from MCS will be fed into the fiber positioner control system for the closed loop control. MCS will be located at the Cassegrain focus of Subaru telescope in order to cover the whole focal plane with one 50M pixel Canon CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform spot size with a 10 micron FWHM across the field for reasonable sampling of the point spread function. Carbon fiber tubes are used to provide a stable structure over the operating conditions without focus adjustments. The CMOS sensor can be read in 0.8s to reduce the overhead for the fiber configuration. The positions of all fibers can be obtained within 0.5s after the readout of the frame. This enables the overall fiber configuration to be less than 2 minutes. MCS will be installed inside a standard Subaru Cassgrain Box. All components that generate heat are located inside a glycol cooled cabinet to reduce the possible image motion due to heat. The optics and camera for MCS have been delivered and tested. The mechanical parts and supporting structure are ready as of spring 2016. The integration of MCS will start in the summer of 2016. In this report, the performance of the MCS components, the alignment and testing procedure as well as the status of the PFS MCS will be presented.

  5. Calibration and testing of wide-field UV instruments (United States)

    Frey, H. U.; Mende, S. B.; Loicq, J.; Habraken, S.


    As with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. In theory a ray tracing and characterization of each individual component of the optical system (mirrors, windows, and grating) should provide the transmission efficiency of the combined system. However, potentially unknown effects (contamination, misalignment, and measurement errors) can make the final error too large and unacceptable for most applications. Therefore, it is desirable to test and measure the optical properties of the whole system in vacuum and compare the overall response to the response of a calibrated photon detector. A proper comparison then allows the quantification of individual sources of uncertainty and ensures that the whole instrument performance is within acceptable tolerances or pinpoints which parts fail to meet requirements. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera, and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and passband calibration, spot size, imaging distortions, flatfield, and field of view determination.Plain Language SummaryAs with all optical systems the calibration of wide-field ultraviolet (UV) systems includes three main areas: sensitivity, imaging quality, and imaging capability. The one thing that makes UV calibrations difficult is the need for working in vacuum substantially extending the required time and effort compared to visible systems. Based on the experience with the IMAGE Spectrographic Imager, the Wide-band Imaging Camera (WIC), and the ICON Far Ultraviolet instruments, we discuss the steps and procedures for the proper radiometric sensitivity and pass-band calibration

  6. First light observation of GIGMICS (germanium immersion grating mid-infrared cryogenic spectrograph) by Kanata 1.5-m Telescope at Higashi-Hiroshima Observatory (United States)

    Hirahara, Yasuhiro; Aoki, Keishin; Ohta, Kanako; Shibata, Sho; Hirao, Tsuyoshi; Tatamitani, Yoshio; Ebizuka, Noboru; Kawabata, Koji S.; Yoshida, Michitoshi; Uemura, Makoto; Oosugi, Takashi; Kawaguchi, Kentaro; Fujimori, Ryuji; Ohiwa, Hiroki; Nagahiro, Hisayuki


    We have developed a germanium immersion grating mid-infrared cryogenic spectrograph (GIGMICS) designed for the Nasmyth focus stage of NAOJ Subaru 8.2-m telescope, which operates at N-band (8-13 μm) in wavelength (λ) with maximum resolving power R(≡λ/Δλ) ~ 50,000. A single crystal germanium echelle immersion grating (30 × 30 × 72 mm) for collimated beam size of 28 mmφ was fabricated by utilizing ultra precision micro-grinding method coupled with the ELID (ELectrolytic In-process Dressing) technique (Ohmori, H. 1992, Ebizuka et al. 2003, Tokoro et al. 2003). After the critical test for the application to the laboratory gas-phase IR high-resolution spectroscopy(Hirahara et al. 2010), we have conducted the "first light" astronomical observation of GIGMICS by the Kanata 1.5-m telescope at Higashi- Hiroshima Observatory from January to April, 2011. Toward many astronomical objects such as the Moon, Venus, Jupiter, circumstellar envelopes of late-type stars, proto-planetary nebulae, and interstellar molecular clouds in the vicinity of star-forming regions, we conducted spectroscopic observations in the N-band region.

  7. Advancing Absolute Calibration for JWST and Other Applications (United States)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin


    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  8. Revista Mexicana de Astronomía y Astrofísica, a real option for astronomical publication (United States)

    Torres-Peimbert, S.; Allen, C.


    We present statistical data about the Revista Mexicana de Astronomía y Astrofísica. We consider that this journal is well positioned in the international astronomical literature. Similarly we present information about the Serie de Conferencias, which also has a wide level of acceptance by the astronomical community.

  9. Hubble Space Telescope: Faint object spectrograph instrument handbook. Version 1.1 (United States)

    Ford, Holland C. (Editor)


    The Faint Object Spectrograph (FOS) has undergone substantial rework since the 1985 FOS Instrument Handbook was published, and we are now more knowledgeable regarding the spacecraft and instrument operations requirements and constraints. The formal system for observation specification has also evolved considerably, as the GTO programs were defined in detail. This supplement to the FOS Instrument Handbook addresses the important aspects of these changes, to facilitate proper selection and specification of FOS observing programs. Since the Handbook was published, the FOS red detector has been replaced twice, first with the best available spare in 1985 (which proved to have a poor, and steadily degrading red response), and later with a newly developed Digicon, which exhibits a high, stable efficiency and a dark-count rate less than half that of its predecessors. Also, the FOS optical train was realigned in 1987-88 to eliminate considerable beam-vignetting losses, and the collimators were both removed and recoated for greater reflectivity. Following the optics and detector rework, the FOS was carefully recalibrated (although only ambient measurements were possible, so the far-UV characteristics could not be re-evaluated directly). The resulting efficiency curves, including improved estimates of the telescope throughput, are shown. A number of changes in the observing-mode specifications and addition of several optional parameters resulted as the Proposal Instructions were honed during the last year. Target-brightness limitations, which have only recently been formulated carefully, are described. Although these restrictions are very conservative, it is imperative that the detector safety be guarded closely, especially during the initial stages of flight operations. Restrictions on the use of the internal calibration lamps and aperture-illumination sources (TA LEDs), also resulting from detector safety considerations, are outlined. Finally, many changes have been made to

  10. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina


    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  11. Qsys NOC-based MPSOC design for LAMOST Spectrographs (United States)

    Han, Zhongyi; Wang, Jianing; Zeng, Yizhong


    At present, FPGA-based SOPC was used to design the China's LAMOST telescope spectrograph control system. But with the increase of the controlled objects and requirement of telescope’s accuracy, the problems like system performance, I/O source shortage, real-time multi-task processing, Fmax, Logic Element (LE) Usage have to be solved immediately. The combination of multi-processor (NIOS II) method and NOC technology can meet this requirement effectively. This article mainly introduced how to realize the NOC-based MPSOC in the Altera’s Cyclone III FPGA experimental board by Qsys tool. According to the function of task, the system was divided into several subsystems which also include two NIOS II CPU subsystems (implement the control strategies and remote update tasks separately). These different subsystems are interconnected by NOC hierarchical interconnection idea. The results illustrate that this solution can improve system performance, double the Fmax, decrease LE usage, and save the maintenance cost compared with the previous SOPC-based approach. The motor control system designed by this approach also can be applied to other astronomy equipments and industrial control fields.

  12. Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph (United States)

    Yang, Zihao; Tian, Hui; Peter, Hardi; Su, Yang; Samanta, Tanmoy; Zhang, Jingwen; Chen, Yajie


    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hr. Doppler velocities are derived through a single Gaussian fit to the Mg II k 2796 Å and Si IV 1393 Å line profiles. We find coherent and stable redshifts and blueshifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 104 K–105 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.

  13. The Far-Ultraviolet Imaging Spectrograph on KAISTAT-4 (United States)

    Min, K. W.; Edelstein, J.; Korpela, E.; Dixon, W. V.; Seon, J. H.; Han, W. Y.; Nam, U. W.


    The Far-ultraviolet Imaging Spectrograph (FIMS), a joint project of the University of California, Berkeley, The Korea Aerospace Institute of Science and Technology, and the Korea Astronomy Observatory, will conduct observations of diffuse far ultra-violet (900 - 1800 /AA) cosmic emission. FIMS observations will: 1) trace the energy flow through the hot plasmas found on scales ranging from SN bubbles to galaxies and galactic coronae; 2) map the distribution of the local and global structures of 104.5 - 106 K plasma; and 3) Measure the nature, distribution and life cycle of galactic H2 and dust. FIMS's broad band-pass and 1 - 2 /AA spectral resolution provide the diagnostics necessary to disentangle the effects of both abundance variations and ionization equilibrium. The instrument's imaging and background-rejection will yield far-UV emission-line sensitivity that is an order of magnitude fainter than any previous detection. FIMS is the primary payload on the KAITSAT-4 satellite, a 3-axis stabilized platform that will provide both an all-sky survey and a target-pointing program. The mission is scheduled for launch in 2002. The development of FIMS has supported to date by KAIST, KAO and SSL, UCB.

  14. Astronomical context coder for image compression (United States)

    Pata, Petr; Schindler, Jaromir


    Recent lossless still image compression formats are powerful tools for compression of all kind of common images (pictures, text, schemes, etc.). Generally, the performance of a compression algorithm depends on its ability to anticipate the image function of the processed image. In other words, a compression algorithm to be successful, it has to take perfectly the advantage of coded image properties. Astronomical data form a special class of images and they have, among general image properties, also some specific characteristics which are unique. If a new coder is able to correctly use the knowledge of these special properties it should lead to its superior performance on this specific class of images at least in terms of the compression ratio. In this work, the novel lossless astronomical image data compression method will be presented. The achievable compression ratio of this new coder will be compared to theoretical lossless compression limit and also to the recent compression standards of the astronomy and general multimedia.

  15. Astronomical Instrumentation Systems Quality Management Planning: AISQMP (United States)

    Goldbaum, Jesse


    The capability of small aperture astronomical instrumentation systems (AIS) to make meaningful scientific contributions has never been better. The purpose of AIS quality management planning (AISQMP) is to ensure the quality of these contributions such that they are both valid and reliable. The first step involved with AISQMP is to specify objective quality measures not just for the AIS final product, but also for the instrumentation used in its production. The next step is to set up a process to track these measures and control for any unwanted variation. The final step is continual effort applied to reducing variation and obtaining measured values near optimal theoretical performance. This paper provides an overview of AISQMP while focusing on objective quality measures applied to astronomical imaging systems.

  16. Astronomía Mocoví (United States)

    López, A.; Giménez Benitez, S.; Fernández, L.

    El presente trabajo, es una revisión crítica de la astronomía en la cultura Mocoví, aportando a lo realizado previamente por Lehmann Nistche (Lehmann Nistche, 1924 y 1927) el resultado de nuestro trabajo de campo. Un mayor conocimiento de las cosmovisiones de las etnias de esta área es fundamental para una mejor comprensión de la dispersión de las ideas cosmológicas entre los pueblos aborígenes americanos, dada la importancia del corredor chaqueño como conexión entre las altas culturas andinas, la mesopotamia y la región pampeana (Susnik, 1972). Para ello se realiza una comparación con otras cosmovisiones del área americana. Nuestro aporte se enmarca dentro de las actuales líneas de trabajo mundialmente en desarrollo en Astronomía en la Cultura.

  17. The origins of Ptolemy's astronomical tables. (United States)

    Newton, R. R.

    Following the line set by his earlier book 'The crime of Claudius Ptolemy' the author discusses here the numerous astronomical tables in Ptolemy's work that have been calculated with the aid of trigonometric tables, as well as a few that are nonlinear but that do not involve trigonometry. The purpose in this study is to determine, if possible, whether Ptolemy calculated these tables or whether he copied them from now-lost original works. The conclusion isthat Ptolemy made few if any original contributions to astronomy, either observational or computational.Contents: 1. Introduction; thetable of chords. 2. The tables of the latitude and of gnomon shadows.3. Tables of the Sun. 4. Astronomical geography. 5. The tables of theMoon. 6. Eclipse tables. 7. Tables of the planets. 8. The empirical basis for Hipparchus's mean motions of the Moon. 9. Summary and conclusions.

  18. WWW Access to Astronomical Archives and Databases (United States)

    Pasian, Fabio; Smareglia, Riccardo

    In this document, an approach to the development of WWW-accessible astronomical archives and databases is described, which can easily be extended also to other disciplines. The architecture is based on a set of servers running at the archive site, each performing a specialized task: accessing an SQL-based DBMS, retrieving and downlinking 1-D or 2-D data (measurements), displaying quicklook data, or plotting the results of a query to the database. All of the information on the user interface is dynamically stored in the database, allowing the pages to be prepared on-the-fly; no additional software needs to be run on the user’s computer. A WWW-accessible test astronomical archive, containing both 2-D (images) and 1-D (spectra) data, and having NCSA/Mosaic as an interface is described as an example of successful application of the above concepts.

  19. Isaac Newton and the astronomical refraction. (United States)

    Lehn, Waldemar H


    In a short interval toward the end of 1694, Isaac Newton developed two mathematical models for the theory of the astronomical refraction and calculated two refraction tables, but did not publish his theory. Much effort has been expended, starting with Biot in 1836, in the attempt to identify the methods and equations that Newton used. In contrast to previous work, a closed form solution is identified for the refraction integral that reproduces the table for his first model (in which density decays linearly with elevation). The parameters of his second model, which includes the exponential variation of pressure in an isothermal atmosphere, have also been identified by reproducing his results. The implication is clear that in each case Newton had derived exactly the correct equations for the astronomical refraction; furthermore, he was the first to do so.

  20. Statistical methods for astronomical data analysis

    CERN Document Server

    Chattopadhyay, Asis Kumar


    This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for ...

  1. Recruitment and Retention of LGBTIQ Astronomers (United States)

    Dixon, William Van Dyke


    While lesbian, gay, bisexual, transgender, intersex, or questioning (LGBTIQ) astronomers face many of the same workplace challenges as women and racial/ethnic minorities, from implicit bias to overt discrimination, other challenges are unique to this group. An obvious example is the absence at many institutions of health insurance and other benefits for the same-sex domestic partners of their employees. More subtle is the psychological toll paid by LGBTIQ astronomers who remain "in the closet," self-censoring every statement about their personal lives. Paradoxically, the culture of the physical sciences, in which sexuality, gender identity, and gender expression are considered irrelevant, can discourage their discussion, further isolating LGBTIQ researchers. Addressing these challenges is not just a matter of fairness; it is an essential tool in the recruitment and retention of the brightest researchers and in assuring their productivity. We will discuss these issues and what individuals and departments can to make their institutions more welcoming to their LGBTIQ colleagues.

  2. International Astronomical Union Sympoisum No.50

    CERN Document Server

    Westerlund, B


    Dr J. Landi Dessy, Director of the Astronomical Observatory, Cordoba, Argentina, invited the International Astronomical Union to hold a Symposium in Cordoba in connection with the celebration of the Centennial of the Cordoba Observatory; the date of foundation is October 24, 1871. He proposed that the Symposium should deal with Spectral Classification and Multicolour Photometry as seven years had elapsed since the Symposium No. 24 in Saltsj6baden, and much development had occurred in the field. The invitation and the proposal were accepted by the IAU, and the Symposium was held in Villa Carlos Paz, near Cordoba, between October 18 and October 24, 1971. It was attended by about 50 scientists representing Argentina, Canada, Chile, Den­ mark, France, Germany, Italy, Mexico, Sweden, Switzerland, U.K., U.S.A., Vatican City State and Venezuela. The Symposium was divided into four sessions: 1. Classification of slit spectra, 2. Classification of objective-prism spectra, 3. Photometric classification, 4. Catalogues ...


    Directory of Open Access Journals (Sweden)

    Ivan P. Kriachko


    Full Text Available The purpose of this article is to show the way of overcoming one of the major problems of astronomy teaching methods in upper secondary school – organization of educational astronomical observations. Nowadays it became possible to perform such observations on remote access telescopes. By using up-to-date informational and communicational technologies, having an opportunity to work with robotic telescopes allows us to organize a unique cognitive and research oriented activities for students while conducting their specialized astronomical studies. Below here is given a brief description of the most significant robotic telescopes and the way of the usage of open remote access telescopic network which was created by professors and scientists of Harvard-Smithsonian Center for Astrophysics, USA.

  4. Auroral spectrograph data annals of the international geophysical year, v.25

    CERN Document Server

    Carrigan, Anne; Norman, S J


    Annals of the International Geophysical Year, Volume 25: Auroral Spectrograph Data is a five-chapter text that contains tabulations of auroral spectrograph data. The patrol spectrograph built by the Perkin-Elmer Corporation for the Aurora and Airglow Program of the IGY is a high-speed, low-dispersion, automatic instrument designed to photograph spectra of aurora occurring along a given magnetic meridian of the sky. Data from each spectral frame were recorded on an IBM punched card. The data recorded on the cards are printed onto the tabulations in this volume. These tabulations are available

  5. Astronomic Bioethics: Terraforming X Planetary protection


    Palhares, Dario; Santos, Íris Almeida dos


    A hard difficulty in Astrobiology is the precise definition of what life is. All living beings have a cellular structure, so it is not possible to have a broader concept of life hence the search for extraterrestrial life is restricted to extraterrestrial cells. Earth is an astronomical rarity because it is difficult for a planet to present liquid water on the surface. Two antagonistic bioethical principles arise: planetary protection and terraforming. Planetary protection is based on the fear...

  6. The Astronomical Pulse of Global Extinction Events

    Directory of Open Access Journals (Sweden)

    David F.V. Lewis


    Full Text Available The linkage between astronomical cycles and the periodicity of mass extinctions is reviewed and discussed. In particular, the apparent 26 million year cycle of global extinctions may be related to the motion of the solar system around the galaxy, especially perpendicular to the galactic plane. The potential relevance of Milankovitch cycles is also explored in the light of current evidence for the possible causes of extinction events over a geological timescale.

  7. The Astronomical Code of the Rgveda (United States)

    Kak, Subhash

    This is the extensively revised edition of the classic book that presented the author's discovery of an astronomical code in the organization of the Rgveda. This code has changed our understanding of the Vedic system of knowledge, rise of earliest astronomy, history of science, and the chronology of ancient India. The work was first reported in a series of journal articles; this book brings together these discoveries between the same two covers for the first time.

  8. A website for astronomical news in Spanish (United States)

    Ortiz-Gil, A.


    Noticias del Cosmos is a collection of web pages within the Astronomical Observatory of the University of Valencia's website where we publish short daily summaries of astronomical press releases. Most, if not all of, the releases are originally written in English, and often Spanish readers may find them difficult to understand because not many people are familiar with the scientific language employed in these releases. Noticias del Cosmos has two principal aims. First, we want to communicate the latest astronomical news on a daily basis to a wide Spanish-speaking public who would otherwise not be able to read them because of the language barrier. Second, daily news can be used as a tool to introduce the astronomical topics of the school curriculum in a more immediate and relevant way. Most of the students at school have not yet reached a good enough level in their knowledge of English to fully understand a press release, and Noticias del Cosmos offers them and their teachers this news in their mother tongue. During the regular programme of school visits at the Observatory we use the news as a means of showing that there is still a lot to be discovered. So far the visits to the website have been growing steadily. Between June 2003 and June 2007 we had more than 30,000 visits (excluding 2006). More than 50% of the visits come from Spain, followed by visitors from South and Central America. The feedback we have received from teachers so far has been very positive, showing the usefulness of news items in the classroom when teaching astronomy.

  9. Preserving Dark Skies: Do Astronomers Care? (United States)

    Davis, D. R.; Crawford, D. L.


    Ground based telescopes are, even in this era of planetary missions and space telescopes, the dominant source of data on solar system objects. Yet many of the premier observing sites in the world are threatened by increasing artificial light that is scattered into the sky - light pollution. World class observing sites such as Mt. Wilson have long since lost the ability to do cutting edge faint object science and observatories in Southern Arizona have been recently threatened - the Canoa Ranch development being the most recent example. Yet there are actions that can be taken to preserve dark skies, not only for astronomy, but also for the benefit of all humanity. Lead by astronomers, effective outdoor lighting codes have been produced and adopted by many jurisdictional authorities. Advocacy organizations such as the International Dark-sky Association (IDA) distribute educational material on how to preserve dark skies through good outdoor lighting practices. Other institutions, such as the National Park Service, are realizing that dark skies are an integral part of the wilderness experience and are taking steps to preserve the quality of their skies. However, the primary beneficaries of dark sky preservation efforts, namely the ground based astronomical community, have largely failed to become involved in efforts to preserve dark skies. For example, only a few percent of the membership of the American Astronomical Society is active in light pollution work or is even a member of IDA. In this presentation, Iwe will outline what is being done locally to preserve dark skies througout the world. In addition, some observations on the level of support from the astronomical community will be offered.

  10. Radio-Astronomical Instruments Observations (Selected Articles), (United States)


    etc. merged into this translation were extracted from the best quality copy available. iii DOC = 82056401 PAGE 1 RADIO-ASTRONOMICAL INSTRUMENTS...itself the series/row of the positive qualities : the possibility of tracking the observed object and the accumulation of signal, the possibility of...L-intoduc ;j~i.a~r DC 82056409 PAGE the installation of quasi-zero mode/conditions this attenuator has remote contril . I’ DOC =82056409 PAGE NA 4 ly

  11. Astronomical random numbers for quantum foundations experiments


    Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason


    Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedankenexperiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design o...

  12. The la Plata Astronomical Data Center (United States)

    Marraco, H. G.


    RESUMEN. El Centro de Datos Astron6micos tiene su sede en la Facuitad de Ciencias Astron6micas y Geofisicas d la Universidad Nacional de La Plata y funciona por convenio entre esta facultad y el Centre des Stellaires de la Universite' Louis Pasteur en Estrasburgo (CDS), Francia. La finalidad de este centro es la de proveer a los astr6nomos del area con copias de los alrededor de 500 acumulados y/o preparados por el CDS a la vez que promover la producci6n y/o acumulaci6n de en el rea. Para la realizaci6n de esta tarea se cuenta con el apoyo del Centro Superior para el Procesamiento de la Informaci6n (CESPI) de la UNLP cuyos equipos se describen. Las tareas que se estan realizando incluyen la distribuci6n de SIMBAD a los astr6nomos argentinos y se efectuan ensayos de distribuci6n en linea de CD-ROM TEST DISK del Astronomical Data Center (ADC) de la NASA que contiene los 31 mas solicitados por los astr6nomos de todo el mundo. ABSTRACl The La Plata Astronomical Data Center operates by an agreement between the Facultad de Ciencias Astron6micas y Geofisicas at La Plata University and the Centre des Donnees Stellaires of Louis Pasteur University at Strasbourg (CDS), France. The purpose of the Center is to provide to the area astronomers with copies of the catalogs they need amongst those stored and/or prepared at CDS. At the same time the center will act of the astronomical data produced within its area. K words: DATA ANALYSIS

  13. Astronomical Orientations in Sanctuaries of Daunia (United States)

    Antonello, E.; Polcaro, V. F.; Sisto, A. M. Tunzi; Zupone, M. Lo


    Prehistoric sanctuaries of Daunia date back several thousand years. During the Neolithic and Bronze Ages the farmers in that region dug hypogea and holes whose characteristics suggest a ritual use. In the present article we summarize the results of the astronomical analysis of the orientation of the rows of holes in three different sites, and we point out the possible use of the setting of the stars of Centaurus. An interesting archaeological confirmation of an archaeoastronomical prediction is also reported.

  14. Investigating metals in the MLT using astronomical facilities (United States)

    Unterguggenberger, Stefanie; Noll, Stefan; Feng, Wuhu; Plane, John M. C.; Kausch, Wolfgang; Kimeswenger, Stefan; Jones, Amy


    Metals in the mesopause region, such as Na, Fe or Ni, originate from meteoric ablation in the upper atmosphere. Through reactions with ozone they emit airglow and in the case of Fe and Ni form metal oxides. Unlike Na, their emission does not result in line emission but in a (pseudo-) continuum. However, (pseudo-) continuum emission is difficult to observe since it is a broad but weak spectral feature compared to the line emissions arising from Na. The pseudo-continuum of FeO is located in the wavelength range of 0.55 to 0.72 μm, while NiO covers 0.45 to 0.72 μm. So far FeO has been studied with the Odin satellite and with ground-based astronomical facilities (ESI/Keck and Kitt Peak). The observed spectral data were compared to laboratory spectra. The diurnal behaviour of FeO was studied in comparison to OH, Na, and O(5577) during nine nights. For NiO even fewer observations are available. NiO has been detected via night airglow tangent limb spectroscopy with the GLO-1 instrument onboard a space shuttle. For this study on metals in the mesopause region we use astronomical data taken with the Very Large Telescope (VLT) operated by the European Southern Observatory (ESO) in Chile (24° 37' S, 70° 24') and the Apache Point Observatory (APO) in New Mexico/USA (32° 46' N, 105° 49' W). The ESO spectrograph X-shooter (0.30 - 2.48 μm, resolving power R = 3000 - 18000) as well as the APO MaNGA survey instrument (0.36 - 1.03 μm, R ˜ 2000) were utilized. The X-shooter sample consists of 3662 spectra taken between October 2009 to March 2013. The MaNGA sample consists of ˜1500 spectra taken between February 2014 and June 2015. Using X-shooter data the diurnal and seasonal behaviour of FeO and Na was studied for the southern hemisphere. We found a semi-annual amplitude of 27% and 30% with respect to the annual mean for FeO and Na respectively. This compares to 17% and 25% in the amplitude of the annual oscillation for FeO and Na, respectively. In addition simulations

  15. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi


    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance ( to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  16. AAS Publishing News: Astronomical Software Citation Workshop (United States)

    Kohler, Susanna


    Do you write code for your research? Use astronomical software? Do you wish there were a better way of citing, sharing, archiving, or discovering software for astronomy research? You're not alone! In April 2015, AAS's publishing team joined other leaders in the astronomical software community in a meeting funded by the Sloan Foundation, with the purpose of discussing these issues and potential solutions. In attendance were representatives from academic astronomy, publishing, libraries, for-profit software sharing platforms, telescope facilities, and grantmaking institutions. The goal of the group was to establish “protocols, policies, and platforms for astronomical software citation, sharing, and archiving,” in the hopes of encouraging a set of normalized standards across the field. The AAS is now collaborating with leaders at GitHub to write grant proposals for a project to develop strategies for software discoverability and citation, in astronomy and beyond. If this topic interests you, you can find more details in this document released by the group after the meeting: The group hopes to move this project forward with input and support from the broader community. Please share the above document, discuss it on social media using the hashtag #astroware (so that your conversations can be found!), or send private comments to

  17. GalileoMobile: Astronomical activities in schools (United States)

    Dasi Espuig, Maria; Vasquez, Mayte; Kobel, Philippe

    GalileoMobile is an itinerant science education initiative run on a voluntary basis by an international team of astronomers, educators, and science communicators. Our team's main goal is to make astronomy accessible to schools and communities around the globe that have little or no access to outreach actions. We do this by performing teacher workshops, activities with students, and donating educational material. Since the creation of GalileoMobile in 2008, we have travelled to Chile, Bolivia, Peru, India, and Uganda, and worked with 56 schools in total. Our activities are centred on the GalileoMobile Handbook of Activities that comprises around 20 astronomical activities which we adapted from many different sources, and translated into 4 languages. The experience we gained in Chile, Bolivia, Peru, India, and Uganda taught us that (1) bringing experts from other countries was very stimulating for children as they are naturally curious about other cultures and encourages a collaboration beyond borders; (2) high-school students who were already interested in science were always very eager to interact with real astronomers doing research to ask for career advice; (3) inquiry-based methods are important to make the learning process more effective and we have therefore, re-adapted the activities in our Handbook according to these; (4) local teachers and university students involved in our activities have the potential to carry out follow-up activities, and examples are those from Uganda and India.

  18. Philosophy for the Creation of Astronomical Images (United States)

    Rector, T.; Levay, Z. G.; Frattare, L. M.; English, J.; Pu'Uohau-Pummill, K.


    The quality of modern astronomical data, the power of modern computers and the agility of current image-processing software enable the creation of high-quality images in a purely digital form. The combination of these technological advancements has created a new ability to make colour astronomical images. These programs use a layering metaphor that allows for an unlimited number of astronomical datasets to be combined in any desired colour scheme, creating an immense parameter space to be explored. A philosophy is presented on how to use scaling, colour and composition to create images that simultaneously highlight scientific detail and are aesthetically appealing. This philosophy is necessary because most datasets do not correspond to the wavelength range of sensitivity of the human eye. The use of visual grammar, defined as the elements that affect the interpretation of an image, can maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image cannot show intrinsically, such as depth, motion and energy. In addition, composition can be used to engage viewers and keep them interested for a longer period of time. The use of these techniques can result in a striking image that will effectively convey the science within the image to scientists and to the public. Details of the pictorial examples used are presented in the conference web-proceedings and webcast.

  19. Amateur astronomers in support of observing campaigns (United States)

    Yanamandra-Fisher, P.


    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access, and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: - the establishment of a network of astronomers and related professionals that can be galvanized into action on short notice to support observing campaigns; - assist in various science investigations pertinent to the campaign; - provide an alert-sounding mechanism should the need arise; - immediate outreach and dissemination of results via our media/blogger members; - provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been identified: (1) C/2013 A1 (C/Siding Spring) and (2) 67P/Churyumov-Gerasimenko (CG). The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA (Pro-Am Collaborative Astronomy) portal that currently is focused on comets: from supporting observing campaigns for current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers. The recent observation of comet 67P, at a magnitude of 21.2, from Siding

  20. TESELA: a new Virtual Observatory tool to determine blank fields for astronomical observations (United States)

    Cardiel, N.; Jiménez-Esteban, F. M.; Alacid, J. M.; Solano, E.; Aberasturi, M.


    The observation of blank fields, regions of the sky devoid of stars down to a given threshold magnitude, constitutes one of the typical important calibration procedures required for the proper reduction of astronomical data obtained in imaging mode. This work describes a method, based on the use of the Delaunay triangulation on the surface of a sphere, that allows for easy generation of blank-field catalogues. In addition to that, a new tool named TESELA, accessible through the Internet, has been created to facilitate the user to retrieve, and visualize using the Virtual Observatory tool ALADIN, the blank fields available near a given position in the sky.

  1. EUV Cross-Calibration Strategies for the GOES-R SUVI (United States)

    Darnel, Jonathan; Seaton, Daniel


    The challenges of maintaining calibration for solar EUV instrumentation is well-known. The lack of standard calibration sources and the fact that most solar EUV telescopes are incapable of utilizing bright astronomical EUV sources for calibration make knowledge of instrument performance quite difficult. In the recent past, calibration rocket underflights have helped establish a calibration baseline. The EVE instrument on SDO for a time provided well-calibrated, high spectral resolution solar spectra for a broad range of the EUV, but has suffered a loss of coverage at the shorter wavelengths. NOAA's Solar UltraViolet Imager (SUVI), a solar EUV imager with similarities to SDO/AIA, will provide solar imagery over nearly an entire solar cycle. In order to maintain the scientific value of the SUVI's dataset, novel approaches to calibration are necessary. Here we demonstrate a suite of methods to cross-calibrate SUVI against other solar EUV instruments through the use of proxy solar spectra.

  2. Flexible, High Performance Microlens Array Technologies for Integral Field Spectrographs Project (United States)

    National Aeronautics and Space Administration — For the purposes of advancing integral field spectrograph (IFS) microlens capabilities, a new class of high-quality optics-grade nanostructured organic-inorganic...

  3. An Airborne Infrared Telescope and Spectrograph for Solar Eclipse Observations (United States)

    DeLuca, Edward E.; Cheimets, Peter; Golub, Leon


    The solar infrared spectrum offers great possibilities for direct spatially resolved measurements of the solar coronal magnetic fields, via imaging of the plasma that is constrained to follow the magnetic field direction and via spectro-polarimetry that permits measurement of the field strength in the corona. Energy stored in coronal magnetic fields is released in flares and coronal mass ejections (CME) and provides the ultimate source of energy for space weather. The large scale structure of the coronal field, and the opening up of the field in a transition zone between the closed and open corona determines the speed and structure of the solar wind, providing the background environment through which CMEs propagate. At present our only direct measurements of the solar magnetic fields are in the photosphere and chromosphere. The ability to determine where and why the corona transitions from closed to open, combined with measurements of the field strength via infrared coronal spectro-polarimetry will give us a powerful new tool in our quest to develop the next generation of forecasting models.We describe a first step in achieving this goal: a proposal for a new IR telescope, image stabilization system, and spectrometer, for the NCAR HIPER GV aircraft. The telescope/spectrograph will operate in the 2-6micron wavelength region, during solar eclipses, starting with the trans-north American eclipse in August 2017. The HIAPER aircraft flying at ~35,000 ft will provide an excellent platform for IR observations. Our imaging and spectroscopy experiment will show the distribution and intensity of IR forbidden lines in the solar corona.

  4. Calibrations for a MCAO Imaging System (United States)

    Hibon, Pascale; B. Neichel; V. Garrel; R. Carrasco


    "GeMS, the Gemini Multi conjugate adaptive optics System installed at the Gemini South telescope (Cerro Pachon, Chile) started to deliver science since the beginning of 2013. GeMS is using the Multi Conjugate AdaptiveOptics (MCAO) technique allowing to dramatically increase the corrected field of view (FOV) compared to classical Single Conjugated Adaptive Optics (SCAO) systems. It is the first sodium-based multi-Laser Guide Star (LGS) adaptive optics system. It has been designed to feed two science instruments: GSAOI, a 4k×4k NIR imager covering 85"×85" with 0.02" pixel scale, and Flamingos-2, a NIR multi-object spectrograph. We present here an overview of the calibrations necessary for reducing and analysing the science datasets obtained with GeMS+GSAOI."

  5. Gemini Planet Imager observational calibrations XI: pipeline improvements and enhanced calibrations after two years on sky (United States)

    Perrin, Marshall D.; Ingraham, Patrick; Follette, Katherine B.; Maire, Jérôme; Wang, Jason J.; Savransky, Dmitry; Arriaga, Pauline; Bailey, Vanessa P.; Bruzzone, Sebastian; Chilcote, Jeffrey K.; De Rosa, Robert J.; Draper, Zachary H.; Fitzgerald, Michael P.; Greenbaum, Alexandra Z.; Hung, Li-Wei; Konopacky, Quinn; Macintosh, Bruce; Marchis, Franck; Marois, Christian; Millar-Blanchaer, Maxwell A.; Nielsen, Eric; Rajan, Abhijith; Rameau, Julien; Rantakyro, Fredrik T.; Ruffio, Jean-Baptiste; Ward-Duong, Kimberly; Wolff, Schuyler G.; Zalesky, Joseph


    The Gemini Planet Imager has been successfully obtaining images and spectra of exoplanets, brown dwarfs, and debris and protoplanetary circumstellar disks using its integral field spectrograph and polarimeter. GPI observations are transformed from raw data into high-quality astrometrically and photometrically calibrated datacubes using the GPI Data Reduction Pipeline, an open-source software framework continuously developed by our team and available to the community. It uses a flexible system of reduction recipes composed of individual primitive steps, allowing substantial customization of processing depending upon science goals. This paper provides a broad overview of the GPI pipeline, summarizes key lessons learned, and describes improved calibration methods and new capabilities available in the latest version. Enhanced automation better supports observations at the telescope with streamlined and rapid data processing, for instance through real-time assessments of contrast performance and more automated calibration file processing. We have also incorporated the GPI Data Reduction Pipeline as one component in a larger automated data system to support the GPI Exoplanet Survey campaign, while retaining its flexibility and stand-alone capabilities to support the broader GPI observer community. Several accompanying papers describe in more detail specific aspects of the calibration of GPI data in both spectral and polarimetric modes.

  6. Community College Class Devoted to Astronomical Research (United States)

    Genet, R. M.; Genet, C. L.


    A class at a small community college, Central Arizona College, was dedicated to astronomical research. Although hands-on research is usually reserved for professionals or graduate students, and occasionally individual undergraduate seniors, we decided to introduce community college students to science by devoting an entire class to research. Nine students were formed into three closely cooperating teams. The class as a whole decided that all three teams would observe Cepheid stars photometrically using a robotic telescope at the Fairborn Observatory. Speaker-phone conference calls were made to Kenneth E. Kissell for help on Cepheid selection, Michael A. Seeds for instructions on the use of the Phoenix-10 robotic telescope, and Douglas S. Hall for assitance in selecting appropriate comparison and check stars. The students obtained critical references on past observations from Konkoly Observatory via airmail. They spent several long night sessions at our apartment compiling the data, making phase calculations, and creating graphs. Finally, the students wrote up their results for publication in a forthcoming special issue of the international journal on stellar photometry, the IAPPP Communication. We concluded that conducting team research is an excellent way to introduce community college students to science, that a class devoted to cooperation as opposed to competition was refreshing, and that group student conference calls with working astronomers were inspiring. A semester, however, is a rather short time to initiate and complete research projects. The students were Sally Baldwin, Cory Bushnell, Bryan Dehart, Pamela Frantz, Carl Fugate, Mike Grill, Jessica Harger, Klay Lapa, and Diane Wiseman. We are pleased to acknowledge the assistance provided by the astronomers mentioned above, James Stuckey (Campus Dean), and our Union Institute and University doctoral committee members Florence Pittman Matusky, Donald S. Hayes, and Karen S. Grove.

  7. All-sky brightness monitoring of light pollution with astronomical methods. (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar


    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  8. The astronomical orientation of ancient Greek temples. (United States)

    Salt, Alun M


    Despite its appearing to be a simple question to answer, there has been no consensus as to whether or not the alignments of ancient Greek temples reflect astronomical intentions. Here I present the results of a survey of archaic and classical Greek temples in Sicily and compare them with temples in Greece. Using a binomial test I show strong evidence that there is a preference for solar orientations. I then speculate that differences in alignment patterns between Sicily and Greece reflect differing pressures in the expression of ethnic identity.

  9. Technology advancements for future astronomical missions (United States)

    Barnes, Arnold A.; Knight, J. Scott; Lightsey, Paul A.; Harwit, Alex; Coyle, Laura


    Future astronomical telescopes in space will have architectures with complex and demanding requirements in order to meet their science goals. The missions currently being studied by NASA for consideration in the next Decadal Survey range in wavelength from the X-ray to Far infrared; examining phenomenon from imaging exoplanets and characterizing their atmospheres to detecting gravitational waves. These missions have technical challenges that are near or beyond the state of the art from the telescope to the detectors. This paper describes some of these challenges and possible solutions. Promising measurements and future demonstrations are discussed that can enhance or enable these missions.

  10. Astronomical Plate Archives and Binary Blazars Studies

    Czech Academy of Sciences Publication Activity Database

    Hudec, René


    Roč. 32, 1-2 (2011), s. 91-95 ISSN 0250-6335. [Conference on Multiwavelength Variability of Blazars. Guangzhou, 22,09,2010-24,09,2010] R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; MŠMT(CZ) ME09027 Institutional research plan: CEZ:AV0Z10030501 Keywords : astronomical plates * plate archives archives * binary blazars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.400, year: 2011

  11. Weizmann Fast Astronomical Survey Telescope (WFAST) (United States)

    Nir, Guy; Ofek, Eran Oded; Ben-Ami, Sagi; Manulis, Ilan; Gal-Yam, Avishay; Diner, Oz; Rappaport, Michael


    The Weizmann Fast Astronomical Survey Telescope (W-FAST) is an experiment designed to explore variability on sub-second time scales. When completed it will consist of two robotic 55-cm f/2 Schmidt telescopes. The optics is capable of providing $\\sim0.5$" image quality over 23 deg$^2$. The focal plane will be equipped with fast readout, low read-noise sCMOS detectors. The first generation focal plane is expected to have 6.2 deg$^2$ field of view. WFAST is designed to study occultations by solar system objects (KBOs and Oort cloud objects), short time scale stellar variability, and high resolution imaging via proper coaddition.

  12. Le Verrier magnificent and detestable astronomer

    CERN Document Server

    Lequeux, James


    Le Verrier was a superb scientist. His discovery of Neptune in 1846 made him the most famous astronomer of his time. He produced a complete theory of the motions of the planets which served as a basis for planetary ephemeris for a full century. Doing this, he discovered an anomaly in the motion of Mercury which later became the first proof of General Relativity. He also founded European meteorology. However his arrogance and bad temper created many enemies, and he was even fired from his position of Director of the Paris Observatory.

  13. Far-infrared spectrophotometer for astronomical observations (United States)

    Moseley, H.; Silverberg, R. F.


    A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.

  14. ESO's Studentship Programmes: Training Tomorrow's Astronomers Today (United States)

    West, Michael; Rejkuba, Marina; Leibundgut, Bruno; Emsellem, Eric


    Students are the lifeblood of astronomy, the next generation of astronomers. While other scientific disciplines are facing declining student enrollments, the ASTRONET strategic plan for European Astronomy notes “young students have continued to enter the field at a steady level”. Indeed, with Very Large Telescope (VLT), Atacama Large Millimeter/submillimeter Array (ALMA) the European Extremely Large Telescope (E-ELT) and other exciting new facilities on the horizon, it is hard to imagine a better time to be an astronomy student.

  15. The astronomical revolution Copernicus, Kepler, Borelli

    CERN Document Server

    Koyre, Alexandre


    Originally published in English in 1973. This volume traces the development of the revolution which so drastically altered man's view of the universe in the sixteenth and seventeenth centuries. The ""astronomical revolution"" was accomplished in three stages, each linked with the work of one man. With Copernicus, the sun became the centre of the universe. With Kepler, celestial dynamics replaced the kinematics of circles and spheres used by Copernicus. With Borelli the unification of celestial and terrestrial physics was completed by abandonment of the circle in favour the straight line to inf

  16. Astronomical analysis of the taosi observatory site (United States)

    Liu, C. Y.


    An ancient observatory was unearthed recently at Taosi site. This paper discussed the figure of the relic, analyzed the relationship between the 12 backsights and calendar date using astronomical method, and compared the simulated observation with theoretic computation. The investigation shows that backsight E2---E12 indicated the directions of sunrise in the whole year, which were roughly equally distributed and offered an unequal calendar system. The backsight E1 indicated the south-end of the moonrise, giving a time symbol of 18---19 years. This building must be a complex of solar observation, time service, solar worship, and sacrificial ritual

  17. Algorithms for classification of astronomical object spectra (United States)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.


    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  18. European astronomers' successes with the Hubble Space Telescope* (United States)


    American opposite number, John Bahcall, prefers to stress those quasar hosts that look like undisturbed galaxies. But the important thing is that we have wonderfully clear pictures to argue about. Quasar theories were mostly pure speculation before we had Hubble." The history of the elements Astronomers at the Hamburger Sternwarte use the Faint Object Spectrograph to analyse ultraviolet light from distant quasars, which they also examine by visible light from the ground. They trace the origin, through cosmic time, of elements like carbon, silicon and iron, from which planets and living things can be built. On its way to Hubble, the quasar light passes through various intervening galaxies and gas clouds, like the skewer of a kebab. Each object visited absorbs some of the quasar light, depending on the local abundances of the elements. As they detect more and more objects, Dieter Reimers and his colleagues form an impression of galaxies building up their stocks of elements progressively through time, by the alchemy of successive generations of stars. Apart from primordial hydrogen the second lightest element, helium, has also been abundant since the origin of the Universe. The first major discovery after Hubble's last refurbishment came from Peter Jakobsen of ESA's Space Science Department at Noordwijk, who detected ionized helium in the remote Universe, by the light of a very distant quasar, 0302-003. That was in January 1994, and since then Jakobsen has looked for the ionized helium using other quasars. He now suspects that this helium is nearly all gathered in clumps, rather than scattered freely through intergalactic space. If so, it greatly increases the estimates of the total mass of ordinary matter in the Universe. Through a lens to the early Universe Natural lenses scattered through the cosmos reveal distant galaxies, and make an astronomical tool for Richard Ellis of the Institute of Astronomy, Cambridge (UK). The strong gravity of an intervening cluster of galaxies

  19. Care of astronomical telescopes and accessories a manual for the astronomical observer and amateur telescope maker

    CERN Document Server

    Pepin, M Barlow


    Commercially-made astronomical telescopes are better and less expensive than ever before, and their optical and mechanical performance can be superb. When a good-quality telescope fails to perform as well as it might, the reason is quite probably that it needs a little care and attention! Here is a complete guide for anyone who wants to understand more than just the basics of astronomical telescopes and accessories, and how to maintain them in the peak of condition. The latest on safely adjusting, cleaning, and maintaining your equipment is combined with thoroughly updated methods from the old masters. Here, too, are details of choosing new and used optics and accessories, along with enhancements you can make to extend their versatility and useful lifetime. This book is for you. Really. Looking after an astronomical telescope isn't only for the experts - although there are some things that only an expert should attempt - and every serious amateur astronomer will find invaluable information here, gleaned from ...

  20. Astronomical Alignments in a Neolithic Chinese Site? (United States)

    Nelson, S.; Stencel, R. E.


    In the Manchurian province of Liaoning, near 41N19' and 119E30', exist ruins of a middle Neolithic society (2500 to 4000 BC) known as the Hongshan culture. This location, called Niuheliang, is comprised of 16 locations with monumental structures scattered over 80 square kilometers of hills. Most are stone burial structures that contain jade artifacts implying wealth and power. One structure is unique in being unusually shaped and containing oversized effigies of goddess figures. This structure also has a commanding view of the surrounding landscape. The presence of decorated pottery, jade and worked copper suggests the Hongshan people were sophisticated artisans and engaged in long-distance trading. During 1997, we've conducted a course at Denver as part of our Core Curriculum program for upper division students, that has examined the astronomical and cultural aspects of the Niuheliang site, to attempt to determine whether these contemporaries of the builders of Stonehenge may have included astronomical alignments into their constructions. The preliminary result of our studies suggests that certain monuments have potential for lunar standstill observation from the "goddess temple". For updates on these results, please see our website: rstencel/core2103.html.

  1. Astronomers Discover Spectacular Structure in Distant Galaxy (United States)


    Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many

  2. Young Astronomers and Astronomy teaching in Moldavia (United States)

    Gaina, Alex


    Curricular Astronomy is taught in Moldavia , except Transnistria and Gagauzia, in the final (11th class) of the secondary schools and gymnasiums, and in the 12th class of the lyceums. The program takes 35 academic hours. The basic book is by Vorontsov-Veliaminov, used in the former USSR, but the Romanian one is also used, in spite of many criticisms addressed to both by our astronomy teachers. In Transinstria (on the left of the Dniester river)astronomy is taught 17 hours. Extracurricular activities develop at the Real Lyceum, where students and amateur astronomers carry out regular observations. Particularly, photographs of the comet Hale-Bopp have been realized using a Cassegrain 450 mm telescope by young astronomers under supervision of S. Luca and D. Gorodetzky (Gorodetchi). Except the telescope from the Real Lyceum other few telescopes are in construction. Unfortunately, no planetarium exists now in Chisinau, since the old one was returned to church. Astronomy courses are taught at the physical and mathematical departments of the Pedagogical University, Transnistrian Moldavian University in Tiraspol and the State University of |Moldavia. Many efforts were made by the State University lecturers and scientists to popularize Astronomy and Astrophysics in the books and in the press, at the radio and TV. No astronomy is taught at the Gagauzian National University in Comrat. No astronomiucal departments exist in Universities of |Moldavia.

  3. Sketching the moon an astronomical artist's guide

    CERN Document Server

    Handy, Richard; McCague, Thomas; Rix, Erika; Russell, Sally


    Soon after you begin studying the sky through your small telescope or binoculars, you will probably be encouraged by others to make sketches of what you see. Sketching is a time-honored tradition in amateur astronomy and dates back to the earliest times, when telescopes were invented. Even though we have lots of new imaging technologies nowadays, including astrophotography, most observers still use sketching to keep a record of what they see, make them better observers, and in hopes of perhaps contributing something to the body of scientific knowledge about the Moon. Some even sketch because it satisfies their artistic side. The Moon presents some unique challenges to the astronomer-artist, the Moon being so fond of tricks of the light. Sketching the Moon: An Astronomical Artist’s Guide, by five of the best lunar observer-artists working today, will guide you along your way and help you to achieve really high-quality sketches. All the major types of lunar features are covered, with a variety of sketching te...

  4. Harvey Butcher: a passion for astronomical instrumentation (United States)

    Bhathal, Ragbir


    This paper covers some aspects of the scientific life of Harvey Butcher who was the Director of the Research School for Astronomy and Astrophysics at the Australian National University in Canberra from September 2007 to January 2013. He has made significant contributions to research on the evolution of galaxies, nucleosynthesis, and on the design and implementation of advanced astronomical instrumentation including LOFAR (Low Frequency Array Radio telescope). He is well known for his discovery of the Butcher-Oemler effect. Before coming to Australia he was the Director of the Netherlands Foundation for Research in Astronomy from September 1991 to January 2007. In 2005 he was awarded a Knighthood in the Order of the Netherlands Lion for contributions to interdisciplinary science, innovation and public outreach.This paper is based on an interview conducted by the author with Harvey Butcher for the National Project on Significant Australian Astronomers sponsored by the National Library of Australia. Except otherwise stated, all quotations used in this paper are from the Butcher interview which has been deposited in the Oral History Archives of the National Library.

  5. Powerful Radio Burst Indicates New Astronomical Phenomenon (United States)


    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  6. Heavens Open Up for UK Astronomers (United States)


    A significant milestone for British and European science occurred today (July 8, 2002) when the Council of the European Southern Observatory (ESO) met in London. At this historical meeting, the United Kingdom was formally welcomed into ESO by the nine other member states. The UK, one of the leading nations in astronomical research, now joins one of the world's major astronomical organisations. UK astronomers will now be able to use the four 8.2-metre and several 1.8-metre telescopes that comprise the Very Large Telescope (VLT) facility located at the Paranal Observatory in the northern part of the Atacama desert in Chile, as well as two 4-m class telescopes and several smaller ones at the ESO La Silla Observatory further south. The UK will also benefit from increased involvement in the design and construction of the Atacama Large Millimetre Array (ALMA), a network of 64 twelve-metre telescopes also sited in Chile, and play a defining role in ESO's 100-metre Overwhelmingly Large Telescope (OWL). Sir Martin Rees , The Astronomer Royal, said, "Joining ESO is good for UK science, and I think good for Europe as well. It offers us access to the VLT's 8-m class telescopes and restores the UK's full competitiveness in optical astronomy. We're now guaranteed full involvement in ALMA and in the next generation of giant optical instruments - projects that will be at the forefront of the research in the next decade and beyond. Moreover, our commitment to ESO should enhance its chances of forging ahead of the US in these technically challenging and high profile scientific projects. UK membership of ESO is a significant and welcome outcome of this government's increasing investment in science". Prof. Ian Halliday , Chief Executive of the Particle Physics and Astronomy Research Council (PPARC), the UK's strategic science investment agency said, "The United Kingdom already participates in Europe's flagship particle physics research and the space science research programmes through

  7. The First Astronomical Observatory in Cluj-Napoca (United States)

    Szenkovits, Ferenc


    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  8. Grid-Enabled Interactive Data Language for Astronomical Data Project (United States)

    National Aeronautics and Space Administration — Grid technologies provide a valuable solution for data intensive scientific applications but are not readily available for astronomical data and Interactive Data...

  9. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves (United States)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.


    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  10. Brightness Variations of Sun-like Stars: The Mystery Deepens - Astronomers facing Socratic "ignorance" (United States)


    An extensive study made with ESO's Very Large Telescope deepens a long-standing mystery in the study of stars similar to the Sun. Unusual year-long variations in the brightness of about one third of all Sun-like stars during the latter stages of their lives still remain unexplained. Over the past few decades, astronomers have offered many possible explanations, but the new, painstaking observations contradict them all and only deepen the mystery. The search for a suitable interpretation is on. "Astronomers are left in the dark, and for once, we do not enjoy it," says Christine Nicholls from Mount Stromlo Observatory, Australia, lead author of a paper reporting the study. "We have obtained the most comprehensive set of observations to date for this class of Sun-like stars, and they clearly show that all the possible explanations for their unusual behaviour just fail." The mystery investigated by the team dates back to the 1930s and affects about a third of Sun-like stars in our Milky Way and other galaxies. All stars with masses similar to our Sun become, towards the end of their lives, red, cool and extremely large, just before retiring as white dwarfs. Also known as red giants, these elderly stars exhibit very strong periodic variations in their luminosity over timescales up to a couple of years. "Such variations are thought to be caused by what we call 'stellar pulsations'," says Nicholls. "Roughly speaking, the giant star swells and shrinks, becoming brighter and dimmer in a regular pattern. However, one third of these stars show an unexplained additional periodic variation, on even longer timescales - up to five years." In order to find out the origin of this secondary feature, the astronomers monitored 58 stars in our galactic neighbour, the Large Magellanic Cloud, over two and a half years. They acquired spectra using the high resolution FLAMES/GIRAFFE spectrograph on ESO's Very Large Telescope and combined them with images from other telescopes [1

  11. An astro-comb calibrated solar telescope to study solar activity and search for the radial velocity signature of Venus (United States)

    Phillips, David; HARPS-N Collaboration


    We recently demonstrated sub-m/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope, which is calibrated with a laser frequency comb calibrator optimized for calibrating high resolution spectrographs and referred to as an astro-comb. We are using the solar telescope to characterize the effects of stellar (solar) RV jitter due to activity on the solar surface over the course of many hours every clear day. With the help of solar satellites such as the Solar Dynamics Observatory (SDO), we are characterizing the correlation between observed RV and detailed imaging of the solar photosphere. We plan to use these tools to mitigate the effects of stellar jitter with the goal of the detection of Venus from its solar RV signature, thus showing the potential of the RV technique to detect true Earth-twins.

  12. The 2-Meter Telescope of the National Astronomical Observatory Rozhen: Opportunities for GAIA-FUN-SSO (United States)

    Bonev, T.


    The 2 meter reflector of the National Astronomical Observatory (NAO) Rozhen offers two main modi of observations: imaging in the Ritchey-Chretien (RC) focus and spectroscopy in the Coude focus. Images can be obtained with two spatial scales: 0.25 arcsec/px or 0.89 arcsec/px. High signal-to-noise, high resolution (up to 35000) spectra are obtained with the Coudé spectrograph. Upgrades of the 2 meter telescope performed in the last years are presented: autoguiding system in 2007, recoating of the optics in 2008, installation of a new telescope control system in 2009. The performance of the 2-m telescope after these upgrades will be illustrated by a sample of observations and the capabilities for observations of Gaia follow-up of SSO will be discussed. Some of the characteristics of the telescope presented here and many more, can be found on the web-site of the National Observatory:

  13. The problem of scattering in fibre-fed VPH spectrographs and possible solutions (United States)

    Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott


    All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.

  14. Synthesis Polarimetry Calibration (United States)

    Moellenbrock, George


    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  15. SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration

    NARCIS (Netherlands)

    Bershady, Matthew A.; Andersen, David R.; Harker, Justin; Ramsey, Larry W.; Verheijen, Marc A. W.


    We describe the design and construction of a formatted fiber field unit, SparsePak, and characterize its optical and astrometric performance. This array is optimized for spectroscopy of low surface brightness extended sources in the visible and near-infrared. SparsePak contains 82, 4.7" fibers

  16. Multinational History of Strasbourg Astronomical Observatory

    CERN Document Server

    Heck, André


    Strasbourg Astronomical Observatory is quite an interesting place for historians: several changes of nationality between France and Germany, high-profile scientists having been based there, big projects born or installed in its walls, and so on. Most of the documents circulating on the history of the Observatory and on related matters have however been so far poorly referenced, if at all. This made necessary the compilation of a volume such as this one, offering fully-documented historical facts and references on the first decades of the Observatory history, authored by both French and German specialists. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in the details of European history. After an introductory chapter by the Editor, contributions by Wolfschmidt and by Duerbeck respectively deal extensively with the German periods and review people and instrumentation, while another paper by Duerbeck is more...

  17. Young astronomer in Denmark 1946 to 1958

    CERN Document Server

    Høg, Erik


    This is a personal account of how I became an astronomer. Fascinated by the stars and planets in the dark sky over Lolland, an island 100 km south of Copenhagen, the interest in astronomy was growing. Encouraged by my teachers, I polished mirrors and built telescopes with generous help from the local blacksmith and I observed light curves of variable stars. Studies at the Copenhagen University from 1950 gradually led me deeper into astronomy, especially astrometry (the astronomy of positions), guided by professor Bengt Str\\"omgren and my mentor dr. phil. Peter Naur. I was lucky to take part in the buildup of the new observatory at Brorfelde during the first difficult years and the ideas I gathered there have contributed to the two astrometry satellites Hipparcos and Gaia launched by the European Space Agency (ESA) in respectively 1989 and 2013.

  18. Astronomical knowledge transmission through illustrated Aratea manuscripts

    CERN Document Server

    Dolan, Marion


    This carefully researched monograph is a historical investigation of the illustrated Aratea astronomical manuscript and its many interpretations over the centuries. Aratus' 270 B.C.E. Greek poem describing the constellations and astrological phenomena was translated and copied over 800 years into illuminated manuscripts that preserved and illustrated these ancient stories about the constellations. The Aratea survives in its entirety due to multiple translations from Greek to Latin and even to Arabic, with many illuminated versions being commissioned over the ages. The survey encompasses four interrelated disciplines: history of literature, history of myth, history of science, and history of art. Aratea manuscripts by their nature are a meeting place of these distinct branches, and the culling of information from historical literature and from the manuscripts themselves focuses on a wider, holistic view; a narrow approach could not provide a proper prospective. What is most essential to know about this work is...

  19. Cultural contacts at International Astronomical Olympiads (United States)

    Babakhanova, Siranush


    It is surprising, but the fact is that the International Olympiads are often only combined with the competition, whereas the intercultural communication between the representatives of different nationalities and the expanding of ideologies of young people are the general-purpose components of not only in frames of the boundaries of scientific expertise, but also such communications, the Olympiads. Worldviews meeting and collaboration are driving forces of progress and play the most important role in the development of the modern science. Armenia participates in the International Astronomical Olympiads since 1997, and in the International Olympiads on Astronomy and Astrophysics since 2013. The Armenian team has always shown high results in competitions and is actively involved in cultural activities.

  20. Shirakatsi Astronomical and Natural Philosophical Views (United States)

    Mkrtchyan, Lilit


    Our work is aimed at presenting Shirakatsi astronomical and natural philosophical views. Karl Anania Shirakatsi is classified as one of the world-class intellectual geniuses. He was endowed with exceptional talent and analyzing scientific understanding of natural phenomena. He refers his philosophical works to almost all fields of science, cosmography, mathematics, calendarology, historiography, etc. Shirakatsy's earnings of natural science and natural philosophy in medieval is too big He was the first prominent scholar and thinker of his time, creating a unique, comprehensive gitapilisopayakan system that still feeds the human mind. The scientific value of Shirakatsi has great importance not only for Armenians but also for the whole world of science, history, culture and philosophy. Shirakatsi can be considered not only national but also universal greatness.

  1. Dacic Ancient Astronomical Research in Sarmizegetuza

    Directory of Open Access Journals (Sweden)

    Emanuel George Oprea


    Full Text Available The actual Romanian territory belongs to Carpatho-Danubian Space and to Ancient Europe. The Ancient European Society was a vast cultural entity based on a theocratic, matriarchal society, peaceful and art creating.Temples of Sarmizegetusa have given rise to several theories over time, proven by historians with the most diverse arguments. The largest complex of temples and sanctuaries was founded in Sarmizegetusa Regia, the Dacian’s main fortress and ancient capital of Dacia in the time of King Decebalus. The mysterious form of settlements has led researchers to the conclusion that the locations were astronomical observation shrines. Among the places of Dacian worship in Orastie Mountains the most impressive is the Great Circular Sanctuary, used to perform some celestial observations, and also as original solar calendar. This paper had the purpose to re-discover the Dacian Civilization and Dacian cosmogony based on the accumulated knowledge upon our country’s past.

  2. A Star Formation/ISM Astronomical Database (United States)

    Molinari, Sergio; Ali, Babar; Good, John; Noriega-Crespo, Alberto


    The Star Formation/ISM Astronomical Database (hereafter SFD) will be a set of on-line services adding value to existing data archives and published journals, along the lines of the very successful NASA/IPAC Extragalactic Database (NED) and SIMBAD projects but with a focus on star formation an the interstellar medium (ISM) within the Milky Way. Unlike NED and SIMBAD, however, the SFD must deal with multi-wavelength measurements of extended regions and cross-correlative relationships between disparate measurements. The SFD will rely heavily on existing databases, primarily adding data content and connectivity between datasets around the world, and custom tailoring of existing tools to provide interfaces (programming API, Web, and JAVA GUI) specific to this application. We consider the SFD as a valuable component in the broader context of a future Virtual Observatory.

  3. A possible Harappan Astronomical Observatory at Dholavira

    CERN Document Server

    Vahia, Mayank N


    Astronomy arises very early in a civilization and evolves as the civilization advances. It is therefore reasonable to assume that a vibrant knowledge of astronomy would have been a feature of a civilization the size of the Harappan Civilization. We suggest that structures dedicated to astronomy existed in every major Harappan city. One such city was Dholavira, an important trading port that was located on an island in what is now the Rann of Kutch during the peak of the Harappan Civilization. We have analyzed an unusual structure at Dholavira that includes two circular rooms. Upon assuming strategically-placed holes in their ceilings we examine the internal movement of sunlight within these rooms and suggest that the larger structure of which they formed a part could have functioned as an astronomical observatory.

  4. Preparing Colorful Astronomical Images III: Cosmetic Cleaning (United States)

    Frattare, L. M.; Levay, Z. G.


    We present cosmetic cleaning techniques for use with mainstream graphics software (Adobe Photoshop) to produce presentation-quality images and illustrations from astronomical data. These techniques have been used on numerous images from the Hubble Space Telescope when producing photographic, print and web-based products for news, education and public presentation as well as illustrations for technical publication. We expand on a previous paper to discuss the treatment of various detector-attributed artifacts such as cosmic rays, chip seams, gaps, optical ghosts, diffraction spikes and the like. While Photoshop is not intended for quantitative analysis of full dynamic range data (as are IRAF or IDL, for example), we have had much success applying Photoshop's numerous, versatile tools to final presentation images. Other pixel-to-pixel applications such as filter smoothing and global noise reduction will be discussed.

  5. Thirty years of astronomical discovery with UKIRT

    CERN Document Server

    Davies, John; Robson, Ian; The Scientific Achievement of the United Kingdom InfraRed Telescope


    These are the proceedings of an international meeting hosted by the Royal Observatory, Edinburgh, to commemorate the 30th anniversary of the dedication of the UKIRT, the United Kingdom InfraRed Telescope. The volume comprises 31 professional level papers. The first part of the book has 10 thorough reviews of the conception, design and build of the telescope, as well as accounts of some its key instruments such as IRCAM (the common-user infrared camera), CGS4 (the fourth Cooled Grating Spectrometer) and the Wide Field Camera. The second part of the book comprises 14 reviews of scientific achievements during its twenty years of visitor mode operations. The final part of the book is a series of 7 reviews of the results from the multiple surveys being done as part of UKIDSS (UKIRT Infrared Deep Sky Survey). The authors are all experts in their respective fields, for example instrument scientists, operations staff and leading astronomers.

  6. Polarization in astronomical spectra - Theoretical evidence (United States)

    Fymat, A. L.


    Theoretical evidence for the existence and behavior of polarization in astronomical spectra is provided. The theory for the study of spectral multiple scattering of arbitrarily polarized light is first developed, and the detailed and integrated spectropolarimetry of a planetary atmosphere is then studied for cases in which the spectra are formed in the presence of either very small nonspherical particles (Rayleigh-Cabannes scattering) or large polydisperse spherical particles (Mie scattering). It is shown in both cases that polarization is indeed present; it increases with the line strength but decreases afterwards as the line becomes very strong and tends to saturation. A polarization reversal is also predicted during latitudinal (pole-to-equator) scan and possibly also during longitudinal (terminator-to-limb) scan of the planet. The reversal happened at all phase angles considered. Our companion article (Forbes and Fymat) will provide observational substantiation to these theoretical predictions.

  7. Integral Programme of Basic Astronomic Literacy Development (United States)

    Tignanelli, H.


    We discuss the development and optimization of an ongoing educational project involving the whole population of the province of San Luis, Argentina. The core of the project includes activities and resources that capture formal curricular aspects directed towards all levels of teaching. The educational activities related to this project have been benefited by the acquisition of two planetariums made in Argentina, a MEADE 16'' telescope to be operated by remote control from any school-room in San Luis, and a naked-eye observatory with more than 30 pre-telescopic instruments, and other didactic tools specially designed for the teaching of Astronomy. Furthermore, an Internet site to upload all the astronomical activities suggested that has been developed along with a number of didactic and general-interest publications.

  8. The astronomical revolution. Copernicus - Kepler - Borelli. (United States)

    Koyré, A.

    The work was originally published in 1961 under the title "La révolution astronomique" as part of the series, Histoire de la pensée. This book is an unabridged and unaltered republication of the English translation, by R. E. W. Maddison, originally published in 1973 (see 10.003.074). The author elucidates, precisely and in stages, the revolutionary ideas of Nicolaus Copernicus as well as the work of two other thinkers who made major contributions to the astronomical revolution: Johannes Kepler and Giovanni Borelli. He illuminates the exact contribution of each man, placing his work in its historical context and dispelling a host of misconceptions about it. In order to effectively recapture the ferment and flavor of the times, the author, whenever possible, has allowed Copernicus, Kepler and Borelli to speak for themselves by quoting key passages from their writings. Many of these passages were here translated for the first time.

  9. Geographic Information Processings for Astronomical Site Survey (United States)

    Wu, N.; Liu, Y.; Zhao, M. Y.


    The geographic information is of great importance for the site survey of ground-based telescopes. Especially, an effective utilization of the geographic information system (GIS) has been one of the most significant methods for the remote analysis of modern site survey. The astronomical site survey should give consideration to the following geographical conditions: a large relative fall, convenient traffic conditions, and far away from populated areas. Taking into account of the convenience of construction and maintenance of the observatories as well as the living conditions of the scientists-in-residence, the optimum candidate locations may meet the conditions to be at a altitude between 3000 m and 5000 m and within one-hour drive from villages/towns. In this paper, as an example, we take the regions of the Great Baicao mountain ridge at Dayao county in Yunnan province to research the role of the GIS for site survey task. The results indicate that the GIS can provide accurate and intuitive data for us to understand the three dimensional landforms, rivers, roads, villages, and the distributions of the electric power as well as to forecast the tendency of the population and city development around. According to the analysis based on the GIS, we find that the top of the Great Baicao mountain ridge is flat and droughty. There are few inhabitants to distribute around the place while the traffic conditions are convenient. Moreover, it is a natural conservation area protected by the local government, and no industry with pollution sources exists in this region. Its top is 1500 m higher than the nearby village 10 km away, and 1800 m higher than the town center 50 km away. The Great Baicao mountain ridge is definitely an isolated peak in the area of the Yi nationality of Yunnan. Therefore, the GIS data analysis is a very useful for the remote investigation stage for site survey, and the GIS is the indispensable source for modern astronomical site survey.

  10. US Astronomers Access to SIMBAD in Strasbourg (United States)

    Oliversen, Ronald (Technical Monitor); Eichhorn, Guenther


    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 4500 US users registered. We also provided user support by answering questions from users and handling requests for lost passwords when still necessary. Even though almost all users now access SIMBAD without a password, based on hostnames/IP addresses, there are still some users that need individual passwords. We continued to maintain the mirror copy of the SIMBAD database on a server at SAO. This allows much faster access for the US users. During the past year we again moved this mirror to a faster server to improve access for the US users. We again supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We provided support for the demonstration activities at the SIMBAD booth. We paid part of the fee for the SIMBAD demonstration. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SA0 makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. During the last year we also installed a mirror copy of the Vizier system from the CDS, in addition to the SIMBAD mirror.

  11. US Gateway to SIMBAD Astronomical Database (United States)

    Eichhorn, G.; Oliversen, R. (Technical Monitor)


    During the last year the US SIMBAD Gateway Project continued to provide services like user registration to the US users of the SIMBAD database in France. Currently there are over 3400 US users registered. We also provide user support by answering questions from users and handling requests for lost passwords when still necessary. We have implemented in cooperation with the CDS SIMBAD project access to the SIMBAD database for US users on an Internet address basis. This allows most US users to access SIMBAD without having to enter passwords. We have maintained the mirror copy of the SIMBAD database on a server at SAO. This has allowed much faster access for the US users. We also supported a demonstration of the SIMBAD database at the meeting of the American Astronomical Society in January. We shipped computer equipment to the meeting and provided support for the demonstration activities at the SIMBAD booth. We continued to improve the cross-linking between the SIMBAD project and the Astrophysics Data System. This cross-linking between these systems is very much appreciated by the users of both the SIMBAD database and the ADS Abstract Service. The mirror of the SIMBAD database at SAO makes this connection faster for the US astronomers. We exchange information between the ADS and SIMBAD on a daily basis. The close cooperation between the CDS in Strasbourg and SAO, facilitated by this project, is an important part of the astronomy-wide digital library initiative called Urania. It has proven to be a model in how different data centers can collaborate and enhance the value of their products by linking with other data centers.

  12. World's fastest and most sensitive astronomical camera (United States)


    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these

  13. A New Approach to Tagging Data in the Astronomical Literature (United States)

    Alexov, A.; Good, J. C.


    Data Tags are strings used in journals to indicate the origin of the archival data and to enable the reader to recover the data. The NASA/IPAC Infrared Science Archive (IRSA) has recently introduced a new approach to production of data tags and recovery of data from them. Many of the data access services at the IRSA return filtered data sets (such as subsets of source catalogs) and dynamically created products (such as image cutouts); these dynamically created products are not saved permanently at the archive. Rather than tag the data sets from which the query result sets are drawn, the archive tags the query that generates the results. A single tag can, then, encode a complex dynamic data set and simplifies the embedding of tags in manuscripts and journals. By logging user queries and all the parameters for those query as Data Tags, IRSA can re-create the query and rerun the IRSA service using the same search parameters used when the Data Tag was created. At the same time, the logs give a simple count of the actual numbers of queries made to the archive, a powerful metric of archive usage unobtainable from the Apache web server logs. Currently, IRSA creates tags for queries to more than 20 data sets, including the Infrared Astronomical Satellite (IRAS), Cosmic Evolution Survey (COSMOS) and Spitzer Space Telescope Legacy Data Sets. These tags are returned by the spatial query engine, Atlas {}. IRSA plans to create tags for queries to the rest of its services in late Spring 2007. The archive provides a simple web interface {} which recovers a data set that corresponds to the input data tag. Archived data sets may evolve in time due to improved calibrations or augmentations to the data set. IRSA's query based approach guarantees that users always receive the best available data sets.

  14. Software Package for Preparing and Processing of an Astronomical Observation (United States)

    Vaduvescu, Ovidiu; Birlan, Mirel

    This paper presents an astronomical software package which draws celestial charts. It was conceived taking into account the technical possibilities available for the Romanian astronomers and the actual trend of the observational astronomy. The software package, now to its third version, comes to decrease the time to prepare an observation and to perform accurate charts for searching and identification.

  15. Project ASTRO: How-To Manual for Teachers and Astronomers. (United States)

    Richter, Jessica; Fraknoi, Andrew

    Project ASTRO is an innovative program to support science education by linking teachers and students in grades 4-9 with amateur and professional astronomers with the overall goal being to increase students' interest in astronomy and science in general. This manual was designed for teachers, amateur and professional astronomers, youth group…

  16. Astronomical Books and Charts in the Book of Bibliographie Coreenne

    Directory of Open Access Journals (Sweden)

    Ki-Won Lee


    Full Text Available We investigate astronomical materials listed in the book of Bibliographie Coreenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (部 and thirty six Classes (類, and published them as three volumes (ranging from 1894 to 1896 and one supplement (in 1901. In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho 天文類抄, Si-Heon-Seo 時憲書, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do 天象列次分野之圖, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (種 are related to astronomy or astrology, and verified that most of them are located in the Kyujanggak Royal Library 奎章閣. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do 渾天總星列次分野之圖. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  17. Astronomical Books and Charts in the Book of Bibliographie Coreenne (United States)

    Lee, Ki-Won; Yang, Hong-Jin; Park, Myeong-Gu


    We investigate astronomical materials listed in the book of Bibliographie Coréenne written by Maurice Courant. He classified ancient Korean books into nine Divisions (?) and thirty six Classes (?), and published them as three volumes (ranging from 1894 to 1896) and one supplement (in 1901). In total, 3,821 books including astronomical ones are listed together with information on physical size, possessional place, bibliographical note, and so forth. Although this book is an essential one in the field of Korea bibliography and contains many astronomical materials such as Cheon-Mun-Ryu-Cho ????, Si-Heon-Seo ??????, and Cheon-Sang-Yeol-Cha-Bun-Ya-Ji-Do ????????, it has not been well known to the public nor to astronomical society. Of 3,821 catalogues, we found that about 50 Items (?) are related to astronomy or astrology, and verified that most ! of them are located in the Kyujanggak Royal Library ???. We also found an unknown astronomical chart, Hon-Cheon-Chong-Seong-Yeol-Cha-Bun-Ya-Ji-Do ??????????. Because those astronomical materials are not well known to international astronomical community and there have been few studies on the materials in Korea, we here introduce and review them, particularly with the astronomical viewpoint.

  18. How Astronomers Focused the Scope of their Discussions: The Formation of the Astronomical Society of Australia (United States)

    Lomb, Nick


    Scientific societies provide an important forum for scientists to meet and exchange ideas. In the early days of European settlement in Australia the few people interested in the sciences joined together to form societies that embraced all their individual disciplines. From 1888 the Australasian Association for the Advancement of Science with its different sections allowed a growing number of astronomers to share meetings only with researchers in the closely allied fields of mathematics and physics. Eventually, all three of these groups formed their own societies with the Astronomical Society of Australia (ASA) being the last in 1966. Archival records are used to illustrate how the formation of the ASA came about and to identify the people involved. The makeup of Australian astronomy at that period and some of its research fields are looked at, as well as the debates and discussions in the Society's first year while its future structure and role were established.

  19. [Improvement of grating spectrograph and its application to frequency-doubling in PPLN]. (United States)

    Zhou, Jun; Lou, Qi-hong; Zhu, Xiao-zheng; Dong, Jing-xing; Ye, Zhen-huan; Wei, Yun-rong


    Charge-coupled device (CCD) has been widely used in spectral detection and spectral imaging fields, which has a number of benefits: broad spectral range response, low detection limit, wide dynamic range, minimal dark current and readout noise as well as the abilities of signal integration, simultaneous multichannel detection, and real-time detection. The combination of a traditional one meter grating spectrograph and a science charge-coupled device (CCD) led to a real-time grating spectrograph for laser spectrum detection developed in this paper. Based on the new grating spectrograph, the spectral characteristic of frequency-doubling of a broad band double-cladding fiber laser in polarized lithium niobate (PPLN) has been investigated. Dynamic spectrum of the second harmonic with varying temperature of PPLN has been observed and analyzed in detail.

  20. BESO: a high-resolution spectrograph for the Hexapod-Telescope (United States)

    Steiner, Ingo; Seifert, Walter; Stahl, Otmar; Lemke, Roland; Chini, Rolf; Appenzeller, Immo


    BESO (Bochum Echelle Spectrograph for OCA) is a high-resolution echelle spectrograph which is built by the Ruhr-Universitaet, Bochum and the Landessternwarte Heidelberg. It will be operated with the 1.5m Hexapod-Telescope at the Observatorio Cerro Armazones (OCA), Chile - the new observatory of the Ruhr-Universitaet and the Universidad Catolica del Norte in Antofagasta. The site at 2800m altitude is located 30 km east of Paranal and provides superb observing conditions. BESO is fiber-coupled to the Hexapod-Telescope, covers a spectral range of 370 to 840nm with a resolution of 48,000. Instrument controls are embedded in the ALMA Common Software environment. The spectrograph is part of a monitoring project that studies the variability of young stars and AGN.

  1. Astronomical Orientation in the Ancient Dacian Sanctuaries of Romania (United States)

    Stănescu, Florin

    Sarmizegetusa Regia, the former capital city of the Dacians' kingdom, is situated in the Şureanu (Orăştie) Mountains in the Southern Carpathians, Romania. This chapter reviews, from the astronomical point of view, two of the monuments located on its Sacred Terrace - the altar known as the "Andesite Sun" and the Central Apse of the Great Round Sanctuary - as well as sanctuaries at the nearby site of Costeşti. Astronomical analyses taking into consideration (a) the astronomical-geometrical methods of the time (the analemma of a sundial after Vitruvius and the stereographical projection in the sense of Hipparchus), (b) astronomical instruments of the time (the gnomon, the sundial and the astrolabe), and (c) other instruments known to the Dacians (the compass), have concluded that these monuments may have enabled the Dacians to carry out a number of astronomical observations. This would confirm several reports by contemporary historians regarding the Dacians' knowledge of astronomy.

  2. The Role of Amateur Astronomy to Outreach Astronomical Knowledge (United States)

    Khachatryan, Vachik; Voskanyan, Tsovak


    It is known that in the educational system of republic the astronomy is not taught as a separate subject. Moreover, there are no telescopes in the vast majority of schools. "Goodricke John" NGO of amateur astronomers tries to fill this gap by organizing practical lessons of astronomy in secondary schools. NGO is equipped with high quality portable amateur telescopes and organizes periodic mass observations of planets, Moon, star clusters, nebulae in Yerevan and in regions. In addition, mass observations of rare astronomical phenomena are organized, such as the transit of Venus and Mercury across the disk of the Sun. Being the only NGO of amateur astronomers, it has a goal to contribute to publicizing astronomical knowledge and to ensure the availability of astronomical equipment, telescopes also to those segments of the society who have no opportunity to deal with them, in particular, persons with disabilities, prisoners, persons with disabilities, prisoners, soldiers, children from orphanages, school children and others.

  3. Linking Young Astronomers in Southeast Asia: The SEAYAC Story (United States)

    Dionisio Sese, Rogel Mari


    The importance of involving young astronomers in developing astronomy cannot be overemphasized. This is very much true in areas where astronomy is still an emerging and minor field, such as in the Southeast Asian (SEA) region. However, recent years have seen a sudden spark of interest in developing professional astronomy within SEA, primarily for young astronomers and students. This was especially highlighted during the 2009 International Year of Astronomy. In this presentation, we introduce the Southeast Asian Young Astronomers Collaboration (SEAYAC), a recently formed organization that aims to provide a venue for professional and personal interaction for young astronomers in the SEA region. Here we present the background and rationale behind the formation of SEAYAC, its current status as well as planned future activities aimed at developing collaborations between young astronomers in the SEA region. We will also discuss the problems and challenges being faced by SEAYAC as well as its future plan of actions.

  4. Astronomers Discover Six-Image Gravitational Lens (United States)


    An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard

  5. BESO: first light at the high-resolution spectrograph for the Hexapod-Telescope (United States)

    Steiner, Ingo; Stahl, Otmar; Seifert, Walter; Chini, Rolf; Quirrenbach, Andreas


    BESO (Bochum Echelle Spectrograph for OCA)is a high-resolution echelle spectrograph which has been built by Ruhr-Universitaet, Bochum and Landessternwarte Heidelberg. It is fiber-coupled to the 1.5m Hexapod-Telescope at the Observatario Cerro Armazones (OCA), Chile. The first light spectra show that the resolution of 48.000 over a spectral range from 370 nm to 840 nm has been achieved. An alignment by design approach has been followed to assemble the fiber-head optics at the telescope side of fiber coupled instrument.

  6. AVES-IMCO: an adaptive optics visible spectrograph and imager/coronograph for NAOS (United States)

    Beuzit, Jean-Luc; Lagrange, A.-M.; Mouillet, D.; Chauvin, G.; Stadler, E.; Charton, J.; Lacombe, F.; AVES-IMCO Team


    The NAOS adaptive optics system will very soon provide diffraction-limited images on the VLT, down to the visible wavelengths (0.020 arcseconds at 0.83 micron for instance). At the moment, the only instrument dedicated to NAOS is the CONICA spectro-imager, operating in the near-infrared from 1 to 5 microns. We are now proposing to ESO, in collaboration with an Italian group, the development of a visible spectrograph/imager/coronograph, AVES-IMCO (Adaptive Optics Visual Echelle Spectrograph and IMager/COronograph). We present here the general concept of the new instrument as well as its expected performances in the different modes.

  7. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala


    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  8. Astronomers Discover Fastest-Spinning Pulsar (United States)


    Astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope have discovered the fastest-spinning neutron star ever found, a 20-mile-diameter superdense pulsar whirling faster than the blades of a kitchen blender. Their work yields important new information about the nature of one of the most exotic forms of matter known in the Universe. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) "We believe that the matter in neutron stars is denser than an atomic nucleus, but it is unclear by how much. Our observations of such a rapidly rotating star set a hard upper limit on its size, and hence on how dense the star can be.," said Jason Hessels, a graduate student at McGill University in Montreal. Hessels and his colleagues presented their findings to the American Astronomical Society's meeting in Washington, DC. Pulsars are spinning neutron stars that sling "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes at the end of its "normal" life. With no nuclear fuel left to produce energy to offset the stellar remnant's weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name "neutron star." "Neutron stars are incredible laboratories for learning about the physics of the fundamental particles of nature, and this pulsar has given us an important new limit," explained Scott Ransom, an astronomer at the National Radio Astronomy Observatory and one of Hessels' collaborators on this work. The scientists discovered the pulsar, named PSR J1748-2446ad, in a globular cluster of stars called Terzan 5, located some 28,000 light-years from Earth in the constellation Sagittarius. The newly-discovered pulsar is spinning 716 times per second, or at 716 Hertz (Hz), readily beating the previous record of 642 Hz from a pulsar

  9. Database-Driven Analyses of Astronomical Spectra (United States)

    Cami, Jan


    Spectroscopy is one of the most powerful tools to study the physical properties and chemical composition of very diverse astrophysical environments. In principle, each nuclide has a unique set of spectral features; thus, establishing the presence of a specific material at astronomical distances requires no more than finding a laboratory spectrum of the right material that perfectly matches the astronomical observations. Once the presence of a substance is established, a careful analysis of the observational characteristics (wavelengths or frequencies, intensities, and line profiles) allows one to determine many physical parameters of the environment in which the substance resides, such as temperature, density, velocity, and so on. Because of this great diagnostic potential, ground-based and space-borne astronomical observatories often include instruments to carry out spectroscopic analyses of various celestial objects and events. Of particular interest is molecular spectroscopy at infrared wavelengths. From the spectroscopic point of view, molecules differ from atoms in their ability to vibrate and rotate, and quantum physics inevitably causes those motions to be quantized. The energies required to excite vibrations or rotations are such that vibrational transitions generally occur at infrared wavelengths, whereas pure rotational transitions typically occur at sub-mm wavelengths. Molecular vibration and rotation are coupled though, and thus at infrared wavelengths, one commonly observes a multitude of ro-vibrational transitions (see Figure 13.1). At lower spectral resolution, all transitions blend into one broad ro-vibrational molecular band. The isotope. Molecular spectroscopy thus allows us to see a difference of one neutron in an atomic nucleus that is located at astronomical distances! Since the detection of the first interstellar molecules (the CH [21] and CN [14] radicals), more than 150 species have been detected in space, ranging in size from diatomic

  10. Effect of Training Japanese L1 Speakers in the Production of American English /r/ Using Spectrographic Visual Feedback (United States)

    Patten, Iomi; Edmonds, Lisa A.


    The present study examines the effects of training native Japanese speakers in the production of American /r/ using spectrographic visual feedback. Within a modified single-subject design, two native Japanese participants produced single words containing /r/ in a variety of positions while viewing live spectrographic feedback with the aim of…

  11. Effect of Acoustic Spectrographic Instruction on Production of English /i/ and /I/ by Spanish Pre-Service English Teachers (United States)

    Quintana-Lara, Marcela


    This study investigates the effects of Acoustic Spectrographic Instruction on the production of the English phonological contrast /i/ and / I /. Acoustic Spectrographic Instruction is based on the assumption that physical representations of speech sounds and spectrography allow learners to objectively see and modify those non-accurate features in…

  12. Project overview of OPTIMOS-EVE: the fibre-fed multi-object spectrograph for the E-ELT

    NARCIS (Netherlands)

    Navarro, R.; Chemla, F.; Bonifacio, P.; Flores, H.; Guinouard, I.; Huet, J.-M.; Puech, M.; Royer, F.; Pragt, J.H.; Wulterkens, G.; Sawyer, E.C.; Caldwell, M.E.; Tosh, I.A.J.; Whalley, M.S.; Woodhouse, G.F.W.; Spanò, P.; Di Marcantonio, P.; Andersen, M.I.; Dalton, G.B.; Kaper, L.; Hammer, F.


    OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro Armazones (Chile). It is designed to provide a spectral resolution of

  13. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory (United States)

    Tull, R. G.


    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  14. Optimizing significance testing of astronomical forcing in cyclostratigraphy (United States)

    Kemp, David B.


    The recognition of astronomically forced (Milankovitch) climate cycles in geological archives marked a major advance in Earth science, revealing a heartbeat within the climate system of general importance and key utility. Power spectral analysis is the primary tool used to facilitate identification of astronomical cycles in stratigraphic data, but commonly employed methods for testing the statistical significance of relatively high narrow-band variance of potential astronomical origin in spectra have been criticized for inadequately balancing the respective probabilities of type I (false positive) and type II (false negative) errors. This has led to suggestions that the importance of astronomical forcing in Earth history is overstated. It can be readily demonstrated, however, that the imperfect nature of the stratigraphic record and the quasiperiodicity of astronomical cycles sets an upper limit on the attainable significance of astronomical signals. Optimized significance testing is that which minimizes the combined probability of type I and type II errors. Numerical simulations of stratigraphically preserved astronomical signals suggest that optimum significance levels at which to reject a null hypothesis of no astronomical forcing are between 0.01 and 0.001 (i.e., 99-99.9% confidence level). This is lower than commonly employed in the literature (90-99% confidence levels). Nevertheless, in consonance with the emergent view from other scientific disciplines, fixed-value null hypothesis significance testing of power spectra is implicitly ill suited to demonstrating astronomical forcing, and the use of spectral analysis remains a difficult and subjective endeavor in the absence of additional supporting evidence.

  15. Astronomical optical interferometry, I: Methods and instrumentation

    Directory of Open Access Journals (Sweden)

    Jankov S.


    Full Text Available Previous decade has seen an achievement of large interferometric projects including 8-10m telescopes and 100m class baselines. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milli-arcsecond (mas resolution and astrometry with micro-arcsecond (µas precision have thus become reality. Here, I review the methods and instrumentation corresponding to the current state in the field of astronomical optical interferometry. First, this review summarizes the development from the pioneering works of Fizeau and Michelson. Next, the fundamental observables are described, followed by the discussion of the basic design principles of modern interferometers. The basic interferometric techniques such as speckle and aperture masking interferometry, aperture synthesis and nulling interferometry are discussed as well. Using the experience of past and existing facilities to illustrate important points, I consider particularly the new generation of large interferometers that has been recently commissioned (most notably, the CHARA, Keck, VLT and LBT Interferometers. Finally, I discuss the longer-term future of optical interferometry, including the possibilities of new large-scale ground-based projects and prospects for space interferometry.

  16. Is astronomical research appropriate for developing countries? (United States)

    Snowden, Michael S.

    An unproductive 45-cm astronomical telescope, given by JICA (Japan) to Sri Lanka, raises general questions as to the reasons for unproductive pure science in developing countries. Before installation, site, maintenance, and scientific objectives were discussed. The facility was launched with a conference organised by the UN Office for Outer Space Affairs. Unfortunately, no research or significant education has resulted after four years. The annual operating cost is U.S. $5000 per year, including salary for a trainee, maintenance, and a modest promotional programme. Comparison with a similar installation in Auckland suggests lack of funding or technical competence do not explain the failure in Sri Lanka. The facility in New Zealand, on the roof of Auckland University's Physics Department, has a slightly smaller budget but has led to modest but useful research and teaching. Lack of financial backing and expertise are often blamed for weak science in developing countries, but examination shows most of these countries have adequately skilled people, and plenty of resources for religion and military. General lack of motivation for science appears to be the principal reason. This lack of interest and highly inefficient bureaucracies are common to scientifically unproductive countries. They mostly lack the cultural and philosophical base of the European Renaissance that motivate the pursuit of modern science, an activity that violates human preferences. There are excellent facilities (ESO, SAAO, Cerro Tololo, and GONG) in some of these same countries, when administered from the West.

  17. Book Review: Scientific Writing for Young Astronomers (United States)

    Uyttenhove, Jos


    EDP Sciences, Les Ulis, France. Part 1 : 162 pp. € 35 ISBN 978-2-7598-0506-8 Part 2 : 298 pp. € 60 ISBN 978-2-7598-0639-3 The journal Astronomy & Astrophysics (A&A) and EDP Sciences decided in 2007 to organize a School on the various aspects of scientific writing and publishing. In 2008 and 2009 Scientific Writing for Young Astronomers (SWYA) Schools were held in Blankenberge (B) under the direction of Christiaan Sterken (FWO-VUB). These two books (EAS publication series, Vol. 49 and 50) reflect the outcome of these Schools. Part 1 contains a set of contributions that discuss various aspects of scientific publication; it includes A&A Editors' view of the peer review and publishing process. A very interesting short paper by S.R. Pottasch (Kapteyn Astronomical Institute, Groningen, and one of the two first Editors-in Chief of A&A) deals with the history of the creation of the journal Astronomy & Astrophysics. Two papers by J. Adams et al. (Observatoire de Paris) discuss language editing, including a detailed guide for any non-native user of the English language. In 2002 the Board of Directors decided that all articles in A&A must be written in clear and correct English. Part 2 consists of three very extensive and elaborated papers by Christiaan Sterken, supplying guidelines to PhD students and postdoctoral fellows to help them compose scientific papers for different forums (journals, proceedings, thesis, etc.). This part is of interest not only for young astronomers but it is very useful for scholars of all ages and disciplines. Paper I "The writing process" (60 pp.) copes with the preparation of manuscripts, with communicating with editors and referees and with avoiding common errors. Delicate problems on authorship, refereeing, revising multi-authored papers etc. are treated in 26 FAQ's. Paper II "Communication by graphics" (120 pp.) is entirely dedicated to the important topic of communication with images, graphs, diagrams, tables etc. Design types of graphs

  18. An embeddable control system for astronomical instrumentation (United States)

    Cirami, Roberto; Comari, Maurizio; Corte, Claudio; Golob, Damjan; Di Marcantonio, Paolo; Plesko, Mark; Pucillo, Mauro; Santin, Paolo; Sekoranja, Matej; Vuerli, Claudio


    Large experimental facilities, like telescopes and focal plane instrumentation in the astronomical domain, are becoming more and more complex and expensive, as well as control systems for managing such instruments. The general trend, as can be learned by realizations carried out in the most recent years, clearly drives to most cost-effective solutions: widespread, stable standards in the software field, COTS (commercial off-the-shelf) components and industry standards in the hardware field. Therefore a new generation of control system products needs to be developed, in order to help the scientific community to minimize the cost and efforts required for maintenance and control of their facilities. In the spirit of the aforementioned requirements and to provide a low-cost software and hardware environment we present a working prototype of a control system, based on RTAI Linux and on ACS (Advanced Control System) framework ported to an embedded platform. The hardware has been chosen among COTS components: a PC/104+ platform equipped with a PMAC2A motion controller card and a commercial StrongARM single board controller. In this way we achieved a very powerful, inexpensive and robust real-time control system which can be used as a general purpose building block in the design of new instruments and could also be proposed as a standard in the field.

  19. An Astronomical Life Salted by Pure Chance (United States)

    Kraft, Robert P.


    My childhood upbringing in no way suggested that I would become an astronomer, but accidents of fate pushed me in the direction of science, and I have benefited greatly from being in the right place at the right time. I grew up in Seattle, earned B.S. and M.S. degrees in mathematics at the University of Washington, and eventually a Ph.D. in astronomy from the University of California, Berkeley. I was a postdoc at the Mt. Wilson Observatory, an assistant professor at Indiana University, later the Yerkes Observatory (University of Chicago), and still later I became a staff member of the Mt. Wilson and Palomar Observatories. After several years, I returned to the University of California, this time with the Lick Observatory staff at its new academic home on the Santa Cruz campus, where I have been ever since. My research has focused on the relation of Cepheids and RR Lyrae stars to problems of Galactic structure, the binary nature of cataclysmic variables, the decay of angular momentum of solar type stars, and the chemical history of the Galaxy as revealed by the abundances of very old stars in globular clusters and the Galactic halo field. None of this work would have been possible without the help of excellent teachers and mentors, great colleagues, and superb postdocs and graduate students. Most of all, I am grateful for the educational opportunities afforded me by state-supported public Universities.

  20. Conceptualizing Astronomical Distances for Urban Populations (United States)

    Popinchalk, Mark; Olson, Kristen; Ingber, Jenny; O'Brien, Mariel


    Students living in urban environments may have a washed-out night sky, but their enthusiasm for astronomy can still shine bright. As an educator, it can sometimes be a challenge to see the opportunities afforded by city living to the teaching of astronomy; however, several benefits can be identified. For example, the intrinsic understanding children have of the distances and scales involved in their everyday life is enhanced when they live in a regimented urban structure. This existing understanding of scale is critical to building a foundation for later conceptualizing of the universe.Leveraging the assets of New York City and the resources found in the American Museum of Natural History, The Science and Nature Program offers students (PreK through 8th grade) robust science learning experiences. To address concepts important for studying astronomy, we present a novel twist on the classic lesson “Earth as a Peppercorn,” by scaling the solar system to the size of New York City. Using local landmarks and their distance in relation to the Museum to represent the planets, students can use their prior knowledge of their surroundings to appreciate the impressive scale of our neighborhood in space in the context of their own neighborhoods. We correlate the activity with NGSS standards, present preliminary feedback on it’s success, and discuss the opportunities to apply a similar model lesson to other astronomical systems.

  1. Astronomers Find Enormous Hole in the Universe (United States)


    Astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies, and gas, and the mysterious, unseen "dark matter." While earlier studies have shown holes, or voids, in the large-scale structure of the Universe, this new discovery dwarfs them all. Void Illustration Hole in Universe revealed by its effect on Cosmic Microwave Background radiation. CREDIT: Bill Saxton, NRAO/AUI/NSF, NASA Click on image for page of graphics and detailed information "Not only has no one ever found a void this big, but we never even expected to find one this size," said Lawrence Rudnick of the University of Minnesota. Rudnick, along with Shea Brown and Liliya R. Williams, also of the University of Minnesota, reported their findings in a paper accepted for publication in the Astrophysical Journal. Astronomers have known for years that, on large scales, the Universe has voids largely empty of matter. However, most of these voids are much smaller than the one found by Rudnick and his colleagues. In addition, the number of discovered voids decreases as the size increases. "What we've found is not normal, based on either observational studies or on computer simulations of the large-scale evolution of the Universe," Williams said. The astronomers drew their conclusion by studying data from the NRAO VLA Sky Survey (NVSS), a project that imaged the entire sky visible to the Very Large Array (VLA) radio telescope, part of the National Science Foundation's National Radio Astronomy Observatory (NRAO). Their careful study of the NVSS data showed a remarkable drop in the number of galaxies in a region of sky in the constellation Eridanus. "We already knew there was something different about this spot in the sky," Rudnick said. The region had been dubbed the "WMAP Cold Spot," because it stood out in a map of the Cosmic Microwave Background (CMB) radiation made by the Wilkinson Microwave Anisotopy Probe (WMAP) satellite

  2. Model based systems engineering for astronomical projects (United States)

    Karban, R.; Andolfato, L.; Bristow, P.; Chiozzi, G.; Esselborn, M.; Schilling, M.; Schmid, C.; Sommer, H.; Zamparelli, M.


    Model Based Systems Engineering (MBSE) is an emerging field of systems engineering for which the System Modeling Language (SysML) is a key enabler for descriptive, prescriptive and predictive models. This paper surveys some of the capabilities, expectations and peculiarities of tools-assisted MBSE experienced in real-life astronomical projects. The examples range in depth and scope across a wide spectrum of applications (for example documentation, requirements, analysis, trade studies) and purposes (addressing a particular development need, or accompanying a project throughout many - if not all - its lifecycle phases, fostering reuse and minimizing ambiguity). From the beginnings of the Active Phasing Experiment, through VLT instrumentation, VLTI infrastructure, Telescope Control System for the E-ELT, until Wavefront Control for the E-ELT, we show how stepwise refinements of tools, processes and methods have provided tangible benefits to customary system engineering activities like requirement flow-down, design trade studies, interfaces definition, and validation, by means of a variety of approaches (like Model Checking, Simulation, Model Transformation) and methodologies (like OOSEM, State Analysis)

  3. Astronomical Constraints on Quantum Cold Dark Matter (United States)

    Spivey, Shane; Musielak, Z.; Fry, J.


    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  4. The Blue Comet: A Railroad's Astronomical Heritage (United States)

    Rumstay, Kenneth S.


    Between 1929 February 21 and 1941 September 27, the Central New Jersey Railroad operated a luxury passenger train between Jersey City and Atlantic City. Named The Blue Comet, the locomotive, tender, and coaches sported a unique royal blue paint scheme designed to evoke images of celestial bodies speeding through space. Inside each car were etched window panes and lampshades featuring stars and comets. And each coach sported the name of a famous comet on its side; these comets were of course named for their discoverers. Some of the astronomers honored in this unique fashion remain famous to this day, or at least their comets do. The names D'Arrest, Barnard, Encke, Faye, Giacobini, Halley, Olbers, Temple, Tuttle, and Westphal are familiar ones. But Biela, Brorsen, deVico, Spitaler, and Winnecke have now largely faded into obscurity; their stories are recounted here. Although more than sixty years have elapsed since its last run, The Blue Comet, perhaps the most famous passenger train in American history, lives on in the memories of millions of passengers and railfans. This famous train returned to the attention of millions of television viewers on the evening of 2007 June 3, in an episode of the HBO series The Sopranos. This work was supported by a faculty development grant from Valdosta State University.

  5. Spatial Statistical Analysis of Large Astronomical Datasets (United States)

    Szapudi, Istvan


    The future of astronomy will be dominated with large and complex data bases. Megapixel CMB maps, joint analyses of surveys across several wavelengths, as envisioned in the planned National Virtual Observatory (NVO), TByte/day data rate of future surveys (Pan-STARRS) put stringent constraints on future data analysis methods: they have to achieve at least N log N scaling to be viable in the long term. This warrants special attention to computational requirements, which were ignored during the initial development of current analysis tools in favor of statistical optimality. Even an optimal measurement, however, has residual errors due to statistical sample variance. Hence a suboptimal technique with significantly smaller measurement errors than the unavoidable sample variance produces results which are nearly identical to that of a statistically optimal technique. For instance, for analyzing CMB maps, I present a suboptimal alternative, indistinguishable from the standard optimal method with N3 scaling, that can be rendered N log N with a hierarchical representation of the data; a speed up of a trillion times compared to other methods. In this spirit I will present a set of novel algorithms and methods for spatial statistical analyses of future large astronomical data bases, such as galaxy catalogs, megapixel CMB maps, or any point source catalog.

  6. Monitoring of the wavelength calibration lamps for the Hubble Space Telescope (United States)

    Pascucci, Ilaria; Proffitt, Charles; Ghavamian, Parviz; Sahnow, David; Oliveira, Cristina; Aloisi, Alessandra; Keyes, Tony; Penton, Steven V.


    The Space Telescope Imaging Spectrograph (STIS) and the Cosmic Origins Spectrograph (COS) are the two optical-UV spectrographs on board the Hubble Space Telescope. To determine the wavelength scale for individual science observations, internal arc lamp spectra accompany most observations of external targets. Here we present a detailed analysis of the changes in the COS and STIS internal lamp fluxes and spectra over time, and also compare our results to pre-launch ground testing, and to laboratory accelerated aging testing of similar lamps. Most of the analysis presented here focuses on the behaviour of the lamps in the far-UV (FUV). We find that the STIS LINE lamp has faded by a factor of ~15 in the very short FUV wavelengths (1150-1200Å) over the 13-year period on which STIS was in space, a much steeper fading than predicted from accelerated aging tests in the laboratory. We also find that all STIS lamps have faded during the period in which the spectrograph was not operational (2004-2009) thus pointing to on-orbit conditions as an additional and important cause of lamp fading. We report that the COS P1 lamp output appears to decline with usage with a similar slope as the LINE and HITM1 lamps on STIS. Finally, we recommend switching from the LINE to the HITM2 lamp for a more efficient wavelength calibration of the STIS settings covering the very short FUV wavelengths.

  7. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based ...

    Indian Academy of Sciences (India)

    Ravindra P Singh


    SABER) derived temperatures and .... tial resolution spectrograph which uses 1200 lines mm. −1 grating as the dispersing element and ..... After putting in the theoretical constants for P1(2) and P1(4) lines in equation (1), we get: ...

  8. Grazing-incidence telescope-spectrograph for space solar-imaging spectroscopy. (United States)

    Poletto, L; Tondello, G


    The design of a stigmatic grazing-incidence instrument for space applications to solar-imaging spectroscopy is presented. It consists of a double telescope and a spectrograph: Telescope I consists of a single cylindrical mirror with parabolic section, focusing the radiation on the entrance slit of the spectrograph in the spectral dispersion plane; telescope II consists of two cylindrical mirrors with aspherical section in a Wolter configuration, focusing the radiation on the spectrograph focal plane in the direction perpendicular to the spectral dispersion plane. The spectrograph consists of a grazing-incidence spherical variable-line-spaced grating with flat-field properties. Telescope II is crossed with respect to the grating and telescope I; i.e., it is mounted with its tangential planes coincident with the grating equatorial plane. The spectrum is acquired by a detector mounted at near-normal incidence with respect to the direction of the exit beam. The spectral resolution is also preserved for off-axis angles. The effective collecting area of the instrument can be preserved by adoption of a nested configuration for telescope II without degradation of the spectral resolution.

  9. Observations of the radial velocity of the Sun as measured with the novel SONG spectrograph

    DEFF Research Database (Denmark)

    Pallé, P. L.; Grundahl, F.; Hage, A. Triviño


    Deployment of the prototype node of the SONG project took place in April 2012 at Observatorio del Teide (Canary Islands). Its key instrument (echelle spectrograph) was installed and operational a few weeks later while its 1 m feeding telescope suffered a considerable delay to meet the required sp...

  10. Are opthalmic hydrophobic coatings useful for astronomical optics? (United States)

    Schwab, Christian; Phillips, Andrew C.


    Astronomical optics are often exposed to moisture and dust in observatory environments, which frequently compromises their high-performance coatings. Suitable protective layers to resist dust and moisture accumulation would be extremely advantageous, but have received scant attention thus far. Hydrophobic and scratch-resistant coatings, developed primarily for opthalmic use, exhibit several attractive properties for astronomical optics. We examine the properties of one such coating and its applicability to astronomical mirrors and lenses. This includes efficiency of dust removal, abrasion resistance, moisture resistance, ease of stripping, and transmission across a wide wavelength range.

  11. Astronomical Dating of Edvard Munch's Summer Sky Paintings (United States)

    Pope, Ava; Olson, Donald


    Norwegian painter Edvard Munch, most famous for The Scream, created many spectacular works depicting the skies of Norway. Our Texas State group used astronomical methods to analyze three of these paintings: Starry Night, The Storm, and Sunrise in Asgardstrand. Astronomical dating of these paintings has some importance because the precise days when Munch visited Asgardstrand are unknown. Our research group traveled to Norway in August 2008 to find the locations from which Munch painted these three works. We then used astronomical calculations, topographical analysis, historical photographs, and weather records to determine the precise dates and times for the scenes depicted in these paintings. )

  12. Serbian Astronomers in Science Citation Index in the XX Century (United States)

    Dimitrijevic, Milan S.

    The book is written paralelly in Serbian and English. The presence of works of Serbian astronomers and works in astronomical journals published by other Serbian scientists, in Science Citation Index within the period from 1945 up to the end of 2000, has been analyzed. Also is presented the list of 38 papers which had some influence on the development of astronomy in the twentieth century. A review of the development of astronomy in Serbia in the last century is given as well. Particular attention is payed to the Astronomical Observatory, the principal astronomical institution in Serbia, where it is one of the oldest scientific organizations and the only autonomous astronomical institute. Its past development forms an important part of the history of science and culture in these regions. In the book is also considered and the history of the university teaching of astronomy in Serbia after the second world war. First of all the development of the Chair of Astronomy at the Faculty of Mathematics in Belgrade, but also the teaching of astronomy at University in Novi Sad, Ni and Kragujevac is discussed. In addition to professional Astronomy, well developed in Serbia is also the amateur Astronomy. In the review is first of all included the largest and the oldest organization of amateur-astronomers in Serbia, founded in 1934. Besides, here are the Astronomical Society "Novi Sad", ADNOS and Research Station "Petnica". In Valjevo, within the framework of the Society of researchers "Vladimir Mandic - Manda", there is active also the Astronomical Group. In Kragujevac, on the roof of the Institute of Physics of the Faculty of Sciences, there is the "Belerofont" Observatory. In Ni, at the close of the sixties and the start of the seventies, there was operating a branch of the Astronomical Society "Rudjer Bokovic", while at the Faculty of Philosophy there existed in the period 1976-1980 the "Astro-Geophysical Society". In the year 1996 there was founded Astronomical Society

  13. Optical parametric evaluation model for a broadband high resolution spectrograph at E-ELT (E-ELT HIRES) (United States)

    Genoni, M.; Riva, M.; Pariani, G.; Aliverti, M.; Moschetti, M.


    We present the details of a paraxial parametric model of a high resolution spectrograph which can be used as a tool, characterized by good approximation and reliability, at a system engineering level. This model can be exploited to perform a preliminary evaluation of the different parameters as long as different possible architectures of high resolution spectrograph like the one under design for the E-ELT (for the moment called E-ELT HIRES in order to avoid wrong association with the HIRES spectrograph at Keck telescope). The detailed equations flow concerning the first order effects of all the spectrograph components is described; in addition a comparison with the data of a complete physical ESPRESSO spectrograph model is presented as a model proof.

  14. The Virtual Astronomical Observatory: Re-engineering access to astronomical data (United States)

    Hanisch, R. J.; Berriman, G. B.; Lazio, T. J. W.; Emery Bunn, S.; Evans, J.; McGlynn, T. A.; Plante, R.


    The US Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the US coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the US National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards within the International Virtual Observatory Alliance. The VAO also demonstrated how an operational virtual observatory could be deployed, providing a robust operational environment in which VO services worldwide were routinely checked for aliveness and compliance with international standards. Finally, the VAO engaged in community outreach, developing a comprehensive web site with on-line tutorials, announcements, links to both US and internationally developed tools and services, and exhibits and hands-on training at annual meetings of the American Astronomical Society and through summer schools and community days. All digital products of the VAO Project, including software, documentation, and tutorials, are stored in a repository for community access. The enduring legacy of the VAO is an increasing expectation that new telescopes and facilities incorporate VO capabilities during the design of their data management systems.

  15. The Double Didactic Astronomical Quadrant for the XIII International Astronomical Olympiad

    CERN Document Server

    Maris, Michele; Boehm, Conrad; Iafrate, Giulia; Ramella, Massimo


    Here we present the development of a simplified version of double astronomical quadrant, designed for educational aims and realized on the occasion of the observational round of the XIII International Astronomy Olympiad, held in Trieste (Italy) October 13-21, 2008. (Italia: In questo contributo illustriamo il progetto di una versione semplificata di doppio quadrante astronomico, progettato per fini didattici e realizzato in occasione dello svolgimento della gara osservativa delle XIII Olimpiadi Internazionali di Astronomia (XIII International Astronomy Olympiad, XIII IAO), Trieste (I), 13-21 ottobre 2008))

  16. An Astronomer In The Classroom: Observatoire de Paris's Partnership Between Teachers and Astronomers (United States)

    Doressoundiram, A.; Barban, C.


    The Observatoire de Paris is offering a partnership between teachers and astronomers. The principle is simple: any teacher wishing to undertake a pedagogical project in astronomy, in the classroom or involving the entire school, can request the help of a mentor. An astronomer from the Observatoire de Paris will then follow the teacher's project progress and offer advice and scientific support throughout the school year. The projects may take different forms: construction projects (models, instruments), lectures, posters, exhibitions, etc. The type of assistance offered is as varied as the projects: lecture(s) in class, telephone and e-mail exchanges, visits to the Observatoire; an almost made-to-measure approach that delighted the thirty or so groups that benefited such partnership in the 2005-2006 academic year. And this number is continuously growing. There was a rich variety of projects undertaken, from mounting a show and building a solar clock to visiting a high altitude observatory, or resolving the mystery of Jupiter's great red spot. The Universe and its mysteries fascinate the young (and the not so- young) and provide a multitude of scientific topics that can be exploited in class. Astronomy offers the added advantage of being a multidisciplinary field. Thus, if most projects are generally initiated by a motivated teacher, they are often taken over by teachers in other subjects: Life and Earth Sciences (SVT), history, mathematics, French, and so forth. The project may consist in an astronomy workshop or be part of the school curriculum. Whatever the case, the astronomer's task is not to replace the teacher or the textbooks, but to propose activities or experiments that are easy to implement. Representing the Solar system on a school-yard scale, for instance, is a perfect way to make youngsters realize that the Universe consists mostly of empty space. There is no shortage of topics, and the students' enthusiasm, seldom absent, is the best reward for the

  17. Optical design of a versatile FIRST high-resolution near-IR spectrograph (United States)

    Zhao, Bo; Ge, Jian


    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  18. Site Calibration, FGW

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Site Calibration report is describing the results of a measured site calibration for a site in Denmark. The calibration is carried out by DTU Wind Energy in accordance with Ref.[3] and Ref.[4]. The measurement period is given. The site calibration is carried out before a power performance...... measurement on a given turbine to clarify the influence from the terrain on the ratio between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment...

  19. Spectroscopy for amateur astronomers recording, processing, analysis and interpretation

    CERN Document Server

    Trypsteen , Marc F M


    This accessible guide presents the astrophysical concepts behind astronomical spectroscopy, covering both the theory and the practical elements of recording, processing, analysing and interpreting your spectra. It covers astronomical objects, such as stars, planets, nebulae, novae, supernovae, and events such as eclipses and comet passages. Suitable for anyone with only a little background knowledge and access to amateur-level equipment, the guide's many illustrations, sketches and figures will help you understand and practise this scientifically important and growing field of amateur astronomy, up to the level of Pro-Am collaborations. Accessible to non-academics, it benefits many groups from novices and learners in astronomy clubs, to advanced students and teachers of astrophysics. This volume is the perfect companion to the Spectral Atlas for Amateur Astronomers, which provides detailed commented spectral profiles of more than 100 astronomical objects.

  20. The application of interferometry to optical astronomical imaging. (United States)

    Baldwin, John E; Haniff, Christopher A


    In the first part of this review we survey the role optical/infrared interferometry now plays in ground-based astronomy. We discuss in turn the origins of astronomical interferometry, the motivation for its development, the techniques of its implementation, examples of its astronomical significance, and the limitations of the current generation of interferometric arrays. The second part focuses on the prospects for ground-based astronomical imaging interferometry over the near to mid-term (i.e. 10 years) at optical and near-infrared wavelengths. An assessment is made of the astronomical and technical factors which determine the optimal designs for imaging arrays. An analysis based on scientific capability, technical feasibility and cost argues for an array of large numbers of moderate-sized (2 m class) telescopes rather than one comprising a small number of much larger collectors.

  1. Application of digital image processing techniques to astronomical imagery 1977 (United States)

    Lorre, J. J.; Lynn, D. J.


    Nine specific techniques of combination of techniques developed for applying digital image processing technology to existing astronomical imagery are described. Photoproducts are included to illustrate the results of each of these investigations.

  2. Lessons from the masters current concepts in astronomical image processing

    CERN Document Server


    There are currently thousands of amateur astronomers around the world engaged in astrophotography at increasingly sophisticated levels. Their ranks far outnumber professional astronomers doing the same and their contributions both technically and artistically are the dominant drivers of progress in the field today. This book is a unique collaboration of individuals, all world-renowned in their particular area, and covers in detail each of the major sub-disciplines of astrophotography. This approach offers the reader the greatest opportunity to learn the most current information and the latest techniques directly from the foremost innovators in the field today.   The book as a whole covers all types of astronomical image processing, including processing of eclipses and solar phenomena, extracting detail from deep-sky, planetary, and widefield images, and offers solutions to some of the most challenging and vexing problems in astronomical image processing. Recognized chapter authors include deep sky experts su...

  3. Astronomical sketching a step-by-step introduction

    CERN Document Server

    Handy, Richard; Perez, Jeremy; Rix, Erika; Robbins, Sol


    This book presents the amateur with fine examples of astronomical sketches and step-by-step tutorials in each medium, from pencil to computer graphics programs. This unique book can teach almost anyone to create beautiful sketches of celestial objects.

  4. PPARC: Grid technology helps astronomers keep pace with the Universe

    CERN Multimedia


    "Intelligent Agent" computer programs are roaming the Internet and watching the skies. These programs, using Grid computing technology, will help astronomers detect some of the most dramatic events in the universe, such as massive supernova explosions (1 page).

  5. Profile fitting in crowded astronomical images (United States)

    Manish, Raja

    Around 18,000 known objects currently populate the near Earth space. These constitute active space assets as well as space debris objects. The tracking and cataloging of such objects relies on observations, most of which are ground based. Also, because of the great distance to the objects, only non-resolved object images can be obtained from the observations. Optical systems consist of telescope optics and a detector. Nowadays, usually CCD detectors are used. The information that is sought to be extracted from the frames are the individual object's astrometric position. In order to do so, the center of the object's image on the CCD frame has to be found. However, the observation frames that are read out of the detector are subject to noise. There are three different sources of noise: celestial background sources, the object signal itself and the sensor noise. The noise statistics are usually modeled as Gaussian or Poisson distributed or their combined distribution. In order to achieve a near real time processing, computationally fast and reliable methods for the so-called centroiding are desired; analytical methods are preferred over numerical ones of comparable accuracy. In this work, an analytic method for the centroiding is investigated and compared to numerical methods. Though the work focuses mainly on astronomical images, same principle could be applied on non-celestial images containing similar data. The method is based on minimizing weighted least squared (LS) error between observed data and the theoretical model of point sources in a novel yet simple way. Synthetic image frames have been simulated. The newly developed method is tested in both crowded and non-crowded fields where former needs additional image handling procedures to separate closely packed objects. Subsequent analysis on real celestial images corroborate the effectiveness of the approach.

  6. Reliability centered maintenance in astronomical infrastructure facilities (United States)

    Ansorge, W. R.


    Hundreds of mirror segment, thousands of high precision actuators, highly complex mechanical, hydraulic, electrical and other technology subsystems, and highly sophisticated control systems: an ELT system consists of millions of individual parts and components, each of them may fail and lead to a partial or complete system breakdown. The traditional maintenance concepts characterized by predefined preventive maintenance activities and rigid schedules are not suitable for handling this large number of potential failures and malfunctions and the extreme maintenance workload. New maintenance strategies have to be found suitable to increase reliability while reducing the cost of needless maintenance services. The Reliability Centred Maintenance (RCM) methodology is already used extensively by airlines, and in industrial and marine facilities and even by scientific institutions like NASA. Its application increases the operational reliability while reducing the cost of unnecessary maintenance activities and is certainly also a solution for current and future ELT facilities. RCM is a concept of developing a maintenance scheme based on the reliability of the various components of a system by using "feedback loops between instrument / system performance monitoring and preventive/corrective maintenance cycles." Ideally RCM has to be designed within a system and should be located in the requirement definition, the preliminary and final design phases of new equipment and complicated systems. However, under certain conditions, an implementation of RCM into the maintenance management strategy of already existing astronomical infrastructure facilities is also possible. This presentation outlines the principles of the RCM methodology, explains the advantages, and highlights necessary changes in the observatory development, operation and maintenance philosophies. Presently, it is the right time to implement RCM into current and future ELT projects and to save up to 50% maintenance

  7. Preservation and maintenance of the astronomical sites in Armenia (United States)

    Mickaelian, A. M.


    Astronomy in Armenia was popular since ancient times. There are signs of astronomical observations coming from a few thousands years ago. Two ancient observatories, Karahunge and Metzamor are especially well known. Karahunge is the Armenian twin of the Stonehenge and is even older. However, there is no proper attention from the state authorities and efforts are needed for preservation of such historical-astronomical monuments. The Byurakan Astrophysical Observatory (BAO) is the modern famous Armenian observatory founded in 1946 by the outstanding scientist Victor Ambartsumian. It was one of the world astronomical centres in 1950-s to 1970-s, and at present is the largest observatory in the Middle East area. As the ancient astronomical sites, Byurakan also needs a proper attitude from the state authorities and corresponding international organizations to preserve its values and importance for the present and future astronomical activities in the region, including its rich observational archive, telescopes, and human resources. Despite all the difficulties, the Armenian astronomers keep high international level of research and display various activities organizing international meetings and schools, preparing new young generation for the future research. The Armenian Astronomical Society (ArAS) is an affiliated member of EAS. Armenia has its Virtual Observatory project (ArVO) as well. The next Joint European and National Astronomy Meeting (JENAM-2007) will be held in Yerevan, Armenia, in August 2007. There are plans to organize astronomical tours to Armenia for making observations from various sites, including the ancient observatories. The future of astronomy in Armenia strongly depends on all of this activities and the proper attention both from state authorities and society.

  8. Applying artificial intelligence to astronomical databases - a surveyof applicable technology. (United States)

    Rosenthal, D. A.

    This paper surveys several emerging technologies which are relevant to astronomical database issues such as interface technology, internal database representation, and intelligent data reduction aids. Among the technologies discussed are natural language understanding, frame and object representations, planning, pattern analysis, machine learning and the nascent study of simulated neural nets. These techniques will become increasingly important for astronomical research, and in particular, for applications with large databases.

  9. Astronomical guidance for directed searches for continuous gravitational waves (United States)

    Owen, Benjamin


    The LIGO Scientic Collaboration and Virgo Collaboration have published a search for continuous gravitational-waves from the non-pulsing neutron star in supernova remnant Cas A and, more recently, from the galactic center. More such searches, where the direction is known but no pulsar timing is available, are under way. I describe the astronomical criteria for good targets for such gravitational-wave searches, list classes of astronomical objects, and give examples of each class.

  10. Astronomers watch the stars come out in berkeley. (United States)


    New and strange sightings caught the attention of astronomers at this June's American Astronomical Society (AAS) meeting in Berkeley: a supernova that has changed its identity, a clutch of mysterious blue stars, and objects at the edge of the universe, shining brilliantly at the far end of the ultraviolet spectrum. Meanwhile, a more familiar object-one species of supernova-is raising hopes of predicting the ultimate fate of this cosmic zoo.

  11. Blowing bubbles in the cosmos astronomical winds, jets, and explosions

    CERN Document Server

    Hartquist, T W; Ruffle, D P


    1. The First Discoveries of Astronomical Winds2. The Magnitudes of Astronomical Quantities3. Stellar Evolution4. Basic Structures of Winds and Windblown Bubbles5. Star Formation and Low-Mass Young Stellar Objects6. Regions of High-Mass Star Formation7. Winds from Main-Sequence and Post-Main-Sequence Stars8. Supernovae and Their Remnants9. Galactic Winds, Starburst Superwinds, and the Epoch of Galaxy Formation10. Active Galaxies and Their Nuclei11. Some Other Windy and Explosive Sources

  12. Realization of High Dynamic Range Imaging in the GLORIA Network and Its Effect on Astronomical Measurement

    Directory of Open Access Journals (Sweden)

    Stanislav Vítek


    Full Text Available Citizen science project GLORIA (GLObal Robotic-telescopes Intelligent Array is a first free- and open-access network of robotic telescopes in the world. It provides a web-based environment where users can do research in astronomy by observing with robotic telescopes and/or by analyzing data that other users have acquired with GLORIA or from other free-access databases. Network of 17 telescopes allows users to control selected telescopes in real time or schedule any more demanding observation. This paper deals with new opportunity that GLORIA project provides to teachers and students of various levels of education. At the moment, there are prepared educational materials related to events like Sun eclipse (measuring local atmosphere changes, Aurora Borealis (calculation of Northern Lights height, or transit of Venus (measurement of the Earth-Sun distance. Student should be able to learn principles of CCD imaging, spectral analysis, basic calibration like dark frames subtraction, or advanced methods of noise suppression. Every user of the network can design his own experiment. We propose advanced experiment aimed at obtaining astronomical image data with high dynamic range. We also introduce methods of objective image quality evaluation in order to discover how HDR methods are affecting astronomical measurements.

  13. WISDOM: the WIYN spectrograph for Doppler monitoring: a NASA-NSF concept for an extreme precision radial velocity instrument in support of TESS (United States)

    Fżrész, Gábor; Simcoe, Robert; Barnes, Stuart I.; Buchhave, Lars A.; Egan, Mark; Foster, Rick; Hellickson, Tim; Malonis, Andrew; Phillips, David; Shectman, Stephen; Walsworth, Ronald; Winn, Josh; Woods, Deborah


    The Kepler mission highlighted that precision radial velocity (PRV) follow-up is a real bottleneck in supporting transiting exoplanet surveys. The limited availability of PRV instruments, and the desire to break the "1 m/s" precision barrier, prompted the formation of a NASA-NSF collaboration `NN-EXPLORE' to call for proposals designing a new Extreme Precision Doppler Spectrograph (EPDS). By securing a significant fraction of telescope time on the 3.5m WIYN at Kitt Peak, and aiming for unprecedented long-term precision, the EPDS instrument will provide a unique tool for U.S. astronomers in characterizing exoplanet candidates identified by TESS. One of the two funded instrument concept studies is led by the Massachusetts Institute of Technology, in consortium with Lincoln Laboratories, Harvard-Smithsonian Center for Astrophysics and the Carnegie Observatories. This paper describes the instrument concept WISDOM (WIYN Spectrograph for DOppler Monitoring) prepared by this team. WISDOM is a fiber fed, environmentally controlled, high resolution (R=110k), asymmetric white-pupil echelle spectrograph, covering a wide 380-1300nm wavelength region. Its R4 and R6 echelle gratings provide the main dispersion, symmetrically mounted on either side of a vertically aligned, vacuum-enclosed carbon fiber optical bench. Each grating feeds two cameras and thus the resulting wavelength range per camera is narrow enough that the VPHG cross-dispersers and employed anti-reflection coatings are highly efficient. The instrument operates near room temperature, and so thermal background for the near-infrared arm is mitigated by thermal blocking filters and a short (1.7μm) cutoff HgCdTe detector. To achieve high resolution while maintaining small overall instrument size (100/125mm beam diameter), imposed by the limited available space within the observatory building, we chose to slice the telescope pupil 6 ways before coupling light into fibers. An atmospheric dispersion corrector and fast

  14. The Expansion of the Astronomical Photographic Data Archive at PARI (United States)

    Cline, J. Donald; Barker, Thurburn; Castelaz, Michael


    A diverse set of photometric, astrometric, spectral and surface brightness data exist on decades of photographic glass plates. The Astronomical Photographic Data Archive (APDA) at the Pisgah Astronomical Research Institute (PARI) was established in November 2007 and is dedicated to the task of collecting, restoring, preserving and storing astronomical photographic data and PARI continues to accept collections. APDA is also tasked with scanning each image and establishing a database of images that can be accessed via the Internet by the global community of scientists, researchers and students. APDA is a new type of astronomical observatory - one that harnesses analog data of the night sky taken for more than a century and making that data available in a digital format.In 2016, APDA expanded from 50 collections with about 220,000 plates to more than 55 collections and more than 340,000 plates and films. These account for more than 30% of all astronomical photographic data in the United States. The largest of the new acquisitions are the astronomical photographic plates in the Yale University collection. We present details of the newly added collections and review of other collections in APDA.

  15. Site Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the site calibration carried out at Østerild, during a given period. The site calibration was performed with two Windcube WLS7 (v1) lidars at ten measurements heights. The lidar is not a sensor approved by the current version of the IEC 61400-12-1 [1] and therefore the site...

  16. TWSTFT Link Calibration Report (United States)


    Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302...and Bauch A (2014) THE EUROPEAN TW CALIBRATION CAMPAIGN 2014 IN THE SCOPE OF GALILEO (TGVF- FOC), An opportunity to update, TW link calibrations in

  17. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and correspondi...

  18. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)


    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  19. Astronomers Find World with Thick, Inhospitable Atmosphere and an Icy Heart (United States)


    planets, they found that the observed radius exceeds the models' predictions: there is something more than the planet's solid surface blocking the star's light - a surrounding atmosphere, 200 km thick. "This atmosphere is much thicker than that of the Earth, so the high pressure and absence of light would rule out life as we know it," says Charbonneau, "but these conditions are still very interesting, as they could allow for some complex chemistry to take place." "Because the planet is too hot to have kept an atmosphere for long, GJ1214b represents the first opportunity to study a newly formed atmosphere enshrouding a world orbiting another star," adds team member Xavier Bonfils. "Because the planet is so close to us, it will be possible to study its atmosphere even with current facilities." The planet was first discovered as a transiting object within the MEarth project, which follows about 2000 low-mass stars to look for transits by exoplanets [4]. To confirm the planetary nature of GJ1214b and to obtain its mass (using the so-called Doppler method), the astronomers needed the full precision of the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla. An instrument with unrivalled stability and great precision, HARPS is the world's most successful hunter for small exoplanets. "This is the second super-Earth exoplanet for which the mass and radius could be obtained, allowing us to determine the density and to infer the inner structure," adds co-author Stephane Udry. "In both cases, data from HARPS was essential to characterise the planet." "The differences in composition between these two planets are relevant to the quest for habitable worlds," concludes Charbonneau. If super-Earth planets in general are surrounded by an atmosphere similar to that of GJ1214b, they may well be inhospitable to the development of life as we know it on our own planet. Notes [1] A super-Earth is defined as a planet between one and ten times the mass of the Earth. An exoplanet

  20. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet (United States)

    Nealy, J. E.


    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  1. On-board data processing for the near infrared spectrograph and photometer instrument (NISP) of the EUCLID mission (United States)

    Bonoli, Carlotta; Balestra, Andrea; Bortoletto, Favio; D'Alessandro, Maurizio; Farinelli, Ruben; Medinaceli, Eduardo; Stephen, John; Borsato, Enrico; Dusini, Stefano; Laudisio, Fulvio; Sirignano, Chiara; Ventura, Sandro; Auricchio, Natalia; Corcione, Leonardo; Franceschi, Enrico; Ligori, Sebastiano; Morgante, Gianluca; Patrizii, Laura; Sirri, Gabriele; Trifoglio, Massimo; Valenziano, Luca


    The Near Infrared Spectrograph and Photometer (NISP) is one of the two instruments on board the EUCLID mission now under implementation phase; VIS, the Visible Imager is the second instrument working on the same shared optical beam. The NISP focal plane is based on a detector mosaic deploying 16x, 2048x2048 pixels^2 HAWAII-II HgCdTe detectors, now in advanced delivery phase from Teledyne Imaging Scientific (TIS), and will provide NIR imaging in three bands (Y, J, H) plus slit-less spectroscopy in the range 0.9÷2.0 micron. All the NISP observational modes will be supported by different parametrization of the classic multi-accumulation IR detector readout mode covering the specific needs for spectroscopic, photometric and calibration exposures. Due to the large number of deployed detectors and to the limited satellite telemetry available to ground, a consistent part of the data processing, conventionally performed off-line, will be accomplished on board, in parallel with the flow of data acquisitions. This has led to the development of a specific on-board, HW/SW, data processing pipeline, and to the design of computationally performing control electronics, suited to cope with the time constraints of the NISP acquisition sequences during the sky survey. In this paper we present the architecture of the NISP on-board processing system, directly interfaced to the SIDECAR ASICs system managing the detector focal plane, and the implementation of the on-board pipe-line allowing all the basic operations of input frame averaging, final frame interpolation and data-volume compression before ground down-link.

  2. Astronomical Data Integration Beyond the Virtual Observatory (United States)

    Lemson, G.; Laurino, O.


    "Data integration" generally refers to the process of combining data from different source data bases into a unified view. Much work has been devoted in this area by the International Virtual Observatory Alliance (IVOA), allowing users to discover and access databases through standard protocols. However, different archives present their data through their own schemas and users must still select, filter, and combine data for each archive individually. An important reason for this is that the creation of common data models that satisfy all sub-disciplines is fraught with difficulties. Furthermore it requires a substantial amount of work for data providers to present their data according to some standard representation. We will argue that existing standards allow us to build a data integration framework that works around these problems. The particular framework requires the implementation of the IVOA Table Access Protocol (TAP) only. It uses the newly developed VO data modelling language (VO-DML) specification, which allows one to define extensible object-oriented data models using a subset of UML concepts through a simple XML serialization language. A rich mapping language allows one to describe how instances of VO-DML data models are represented by the TAP service, bridging the possible mismatch between a local archive's schema and some agreed-upon representation of the astronomical domain. In this so called local-as-view approach to data integration, “mediators" use the mapping prescriptions to translate queries phrased in terms of the common schema to the underlying TAP service. This mapping language has a graphical representation, which we expose through a web based graphical “drag-and-drop-and-connect" interface. This service allows any user to map the holdings of any TAP service to the data model(s) of choice. The mappings are defined and stored outside of the data sources themselves, which allows the interface to be used in a kind of crowd-sourcing effort

  3. SPHEREx: Science Opportunities for the Astronomical Community (United States)

    Cooray, Asantha; SPHEREx Science Team


    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A study in August 2017, will perform an all-sky near-infrared spectral survey between 0.75 - 5.0 microns. The survey will reach 18.3 AB mag (5 sigma) in R=41 filters, with R=135 coverage between 4.2 - 5.0 microns. The key science topics of the SPHEREx team are: (a) primordial non-Gaussianity through 3-dimensional galaxy clustering; (b) extragalactic background light fluctuations; and (c) ices and biogenic molecules in the interstellar medium and towards protoplanetary environments.The large legacy dataset of SPHEREx will enable a large number of scientific studies and find interesting targets for follow-up observations with Hubble, JWST, ALMA, among other facilities. The SPHEREx catalog will include 1.4 billion galaxies, with redshifts secured for more than 10 and 120 million with fractional accuracies in error/(1+z) better than 0.3% and 3%, respectively. The spectral coverage and resolution provided by SPHEREx are adequate to determine redshifts for most WISE-detected sources with an accuracy better than 3%. The catalog will contain close to 1.5 million quasars including 300 bright QSOs at z > 7 during the epoch of reionization, based on observational extrapolations. The catalog will be adequate to obtain redshifts for all 25,000 galaxy clusters expected to be detected in X-rays with e-Rosita. SPHEREx produces all-sky maps of the Galactic emission lines, including hydrocarbon emission around 3 microns.In this poster, we will show example science studies the broader astronomical community will be able to lead using the SPHEREx database. We will also outline existing plans within the SPHEREx team to develop software tools to enable easy access to the data and to conduct catalog searches, and ways in which the community can provide input to the SPHEREx Science Team on scientific studies and data/software requirements for those studies. The team is eager to develop best software

  4. Cosmic Blasts Much More Common, Astronomers Discover (United States)


    A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova

  5. The eShel Spectrograph: A Radial-velocity Tool at the Wise Observatory (United States)

    Engel, M.; Shahaf, S.; Mazeh, T.


    The eShel, an off-the-shelf, fiber-fed echelle spectrograph (R≈ {{10,000}}), was installed on the 1 m telescope at the Wise observatory in Israel. We report the installation of the multi-order spectrograph, and describe our pipeline to extract stellar radial velocity from the obtained spectra. We also introduce a new algorithm—UNICOR, to remove radial-velocity systematics that can appear in some of the observed orders. We show that the system performance is close to the photon-noise limit for exposures with more than 107 counts, with a precision that can get better than 200 m s-1 for F-K stars, for which the eShel spectral response is optimal. This makes the eShel at Wise a useful tool for studying spectroscopic binaries brighter than m V = 11. We demonstrate this capability with orbital solutions of two binaries from projects being performed at Wise.

  6. Initial observations of Jupiter's aurora from Juno's Ultraviolet Spectrograph (Juno-UVS) (United States)

    Gladstone, R.; Versteeg, M.; Greathouse, T.; Hue, V.; Davis, M. W.; Gerard, J. C. M. C.; Grodent, D. C.; Bonfond, B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.; Bagenal, F.; Mauk, B.; Kurth, W. S.; McComas, D. J.; Valek, P. W.


    Juno-UVS is an imaging spectrograph with a bandpass of 70MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. The two mirrors and the grating are coated with MgF2 to improve FUV reflectivity. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Here we present the first near-Jupiter results from the UVS instrument following measurements made during PJ1, Juno's first perijove pass with its instruments powered on and taking data.

  7. In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1). (United States)

    Li, Chih-Hao; Glenday, Alexander G; Benedick, Andrew J; Chang, Guoqing; Chen, Li-Jin; Cramer, Claire; Fendel, Peter; Furesz, Gabor; Kärtner, Franz X; Korzennik, Sylvain; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L


    Improved wavelength calibrators for high-resolution astrophysical spectrographs will be essential for precision radial velocity (RV) detection of Earth-like exoplanets and direct observation of cosmological deceleration. The astro-comb is a combination of an octave-spanning femtosecond laser frequency comb and a Fabry-Pérot cavity used to achieve calibrator line spacings that can be resolved by an astrophysical spectrograph. Systematic spectral shifts associated with the cavity can be 0.1-1 MHz, corresponding to RV errors of 10-100 cm/s, due to the dispersive properties of the cavity mirrors over broad spectral widths. Although these systematic shifts are very stable, their correction is crucial to high accuracy astrophysical spectroscopy. Here, we demonstrate an in-situ technique to determine the systematic shifts of astro-comb lines due to finite Fabry-Pérot cavity dispersion. The technique is practical for implementation at a telescope-based spectrograph to enable wavelength calibration accuracy better than 10 cm/s.

  8. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  9. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope

    DEFF Research Database (Denmark)

    Vernet, J.; Dekker, H.; D'Odorico, S.


    X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300...... characteristics of the instrument and present its performance as measured during commissioning, science verification and the first months of science operations. © ESO, 2011....

  10. NEID: A High Precision Radial Velocity Spectrograph for the WIYN 3.5-m Telescope (United States)

    Allen, Lori E.; Wright, Jason; Rajagopal, Jayadev; Santoro, Fernando; Liang, Ming; Timmerman, Erik; Christensen, Robert; Hunting, Emily; Wolf, Marsha; Jaehnig, Kurt; Percival, Jeffrey; Smith, Michael; Mahadevan, Suvrath; Hearty, Fred; Bender, Chad; Blake, Cullen; Logsdon, Sarah E.; Akeson, Rachel; Capps, Richard W.; Callas, John; Willems, Phillip A.; McElwain, Michael; McElwain, Michael W.; Basten, Fabienne; Monson, Andy; Stefansson, Gudmundur; Ramsey, Larry; Ninan, Joe; Blakeslee, Scott; Kaplan, Kyle; Halverson, Sam; Roy, Arpita; Terrien, Ryan; Robertson, Paul; Schwab, Christian; Rud, Mayer; Kanodia, Shubham


    NEID will be an ultra-stable optical high resolution echelle spectrograph on the 3.5 WIYN telescope at Kitt Peak National Observatory, with a design goal of NASA initiative (NN-EXPLORE) to support ground-based Doppler velocimetry of nearby stars for the detection and characterization of rocky exoplanets around nearby stars. Here we describe the instrument's design, construction and commissioning schedule, capabilities, and future opportunities to apply for public time on this flagship Doppler instrument.

  11. General method of quantitative spectrographic analysis; Estudio de un metodo general de analisis espectrografico cuantitativo

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, C.; Roca, M.


    A spectrographic method was developed to determine 23 elements in a wide range of concentrations; the method can be applied to metallic or refractory samples. Previous melting with lithium tetraborate and germanium oxide is done in order to avoid the influence of matrix composition and crystalline structure. Germanium oxide is also employed as internal standard. The resulting beads ar mixed with graphite powder (1:1) and excited in a 10 amperes direct current arc. (Author) 12 refs.

  12. EELT-HIRES the high-resolution spectrograph for the E-ELT


    Marconi, A; Di Marcantonio, P; D'Odorico, V; Cristiani, S; Maiolino, R; Oliva, E; Origlia, L; Riva, M; Valenziano, L; Zerbi, FM; Abreu, M; Adibekyan, V; Allende Prieto, C; Amado, PJ; Benz, W


    The first generation of E-ELT instruments will include an optic-infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Den...

  13. Juno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach (United States)

    Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Hue, Vincent; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand


    We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour, acquired during 2016 June 3-30) with in situ solar wind observations, as well as related Jupiter observations obtained from Earth.

  14. First observations from a CCD all-sky spectrograph at Barentsburg (Spitsbergen

    Directory of Open Access Journals (Sweden)

    S. A. Chernouss


    Full Text Available A digital CCD all-sky spectrograph was made by the Polar Geophysical Institute (PGI to support IPY activity in auroral research. The device was tested at the Barentsburg observatory of PGI during the winter season of 2005–2006. The spectrograph is based on a cooled CCD and a transmission grating. The main features of this spectrograph are: a wide field of view (~180°, a wide spectral range (380–740 nm, a spectral resolution of 0.6 nm, a background level of about 100 R at 1-min exposure time. Several thousand spectra of nightglow and aurora were recorded during the observation season. It was possible to register both the strong auroral emissions, as well as weak ones. Spectra of aurora, including nitrogen and oxygen molecular and atomic emissions, as well as OH emissions of the nightglow are shown. A comparison has been conducted of auroral spectra obtained by the film all-sky spectral camera C-180-S at Spitsbergen during IGY, with spectra obtained at Barentsburg during the last winter season. The relationship between the red (630.0 nm and green (557.7 nm auroral emissions shows that the green emission is dominant near the minimum of the solar cycle activity (2005–2006. The opposite situation is observed during 1958–1959, with a maximum solar cycle activity.

  15. Space Telescope Imaging Spectrograph Instrument Handbook for Cycle 21 v. 12.0 (United States)

    Hernandez, S.; et al.


    The Space Telescope Imaging Spectrograph (STIS) is a versatile imaging spectrograph, complementary to (not superseded by) the Cosmic Origins Spectrograph (COS). The instrument provides spatially resolved spectroscopy from 1150 to 10,300 Å at low to medium spectral resolution, high spatial resolution echelle spectroscopy in the ultraviolet (UV), solar-blind imaging in the UV, time tagging of photons in the UV for high time resolution, and direct and coronagraphic imaging in the optical. STIS was successfully repaired during the fourth HST servicing mission (SM4) in May 2009 and has resumed science operations with all channels. This followed a nearly 5 year long suspension of science operations that began in August 2004, when a power supply in the Side-2 electronics had failed. Most aspects of instrument operations and performance are very similar to what they were prior to the 2004 failure. There are, however, some important changes, which will be outlined in Chapter 2 with additional details given elsewhere in this Handbook as appropriate. This Handbook provides instrument-specific information you need to propose for STIS observations (Phase I), design accepted programs (Phase II), and understand STIS in detail.

  16. Gregor@night: The future high-resolution stellar spectrograph for the GREGOR solar telescope (United States)

    Strassmeier, K. G.; Ilyin, I. V.; Woche, M.; Granzer, T.; Weber, M.; Weingrill, J.; Bauer, S.-M.; Popow, E.; Denker, C.; Schmidt, W.; von der Lühe, O.; Berdyugina, S.; Collados, M.; Koubsky, P.; Hackman, T.; Mantere, M. J.


    We describe the future night-time spectrograph for the GREGOR solar telescope and present its science core projects. The spectrograph provides a 3-pixel resolution of up to R=87 000 in 45 échelle orders covering the wavelength range 390-900 nm with three grating settings. An iodine cell can be used for high-precision radial velocity work in the 500-630 nm range. The operation of the spectrograph and the telescope will be fully automated without the presence of humans during night-time and will be based on the successful STELLA control system. Future upgrades include a second optical camera for even higher spectral resolution, a Stokes-V polarimeter and a link to the laser-frequency comb at the Vacuum Tower Telescope. The night-time core projects are a study of the angular-momentum evolution of ``The Sun in Time'' and a continuation of our long-term Doppler imaging of active stars.

  17. A high-resolution spectrograph for the 72cm Waltz Telescope at Landessternwarte, Heidelberg (United States)

    Tala, M.; Heeren, P.; Grill, M.; Harris, R. J.; Stürmer, J.; Schwab, C.; Gutcke, T.; Reffert, S.; Quirrenbach, A.; Seifert, W.; Mandel, H.; Geuer, L.; Schäffner, L.; Thimm, G.; Seeman, U.; Tietz, J.; Wagner, K.


    The Waltz Spectrograph is a fiber-fed high-resolution échelle spectrograph for the 72 cm Waltz Telescope at the Landessternwarte, Heidelberg. It uses a 31.6 lines/mm 63.5° blaze angle échelle grating in white-pupil configuration, providing a spectral resolving power of R 65,000 covering the spectral range between 450-800nm in one CCD exposure. A prism is used for cross-dispersion of échelle orders. The spectrum is focused by a commercial apochromat onto a 2k×2k CCD detector with 13.5μm per pixel. An exposure meter will be used to obtain precise photon-weighted midpoints of observations, which will be used in the computation of the barycentric corrections of measured radial velocities. A stabilized, newly designed iodine cell is employed for measuring radial velocities with high precision. Our goal is to reach a radial velocity precision of better than 5 m/s, providing an instrument with sufficient precision and sensitivity for the discovery of giant exoplanets. Here we describe the design of the Waltz spectrograph and early on-sky results.

  18. [Design and analysis of a novel light visible spectrum imaging spectrograph optical system]. (United States)

    Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu


    A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.

  19. A color spectrographic phonocardiography (CSP applied to the detection and characterization of heart murmurs: preliminary results

    Directory of Open Access Journals (Sweden)

    Hassani Kamran


    Full Text Available Abstract Background Although cardiac auscultation remains important to detect abnormal sounds and murmurs indicative of cardiac pathology, the application of electronic methods remains seldom used in everyday clinical practice. In this report we provide preliminary data showing how the phonocardiogram can be analyzed using color spectrographic techniques and discuss how such information may be of future value for noninvasive cardiac monitoring. Methods We digitally recorded the phonocardiogram using a high-speed USB interface and the program Gold Wave in 55 infants and adults with cardiac structural disease as well as from normal individuals and individuals with innocent murmurs. Color spectrographic analysis of the signal was performed using Spectrogram (Version 16 as a well as custom MATLAB code. Results Our preliminary data is presented as a series of seven cases. Conclusions We expect the application of spectrographic techniques to phonocardiography to grow substantially as ongoing research demonstrates its utility in various clinical settings. Our evaluation of a simple, low-cost phonocardiographic recording and analysis system to assist in determining the characteristic features of heart murmurs shows promise in helping distinguish innocent systolic murmurs from pathological murmurs in children and is expected to useful in other clinical settings as well.

  20. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs (United States)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi


    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  1. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR (United States)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.


    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  2. Rotational temperature of N2+ (0,2 ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements

    Directory of Open Access Journals (Sweden)

    D. Lummerzheim


    Full Text Available High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES which forms part of the Spectrographic Imaging Facility (SIF, located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2, which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR. Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K and the energy lowest (1 keV. In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular

  3. The Sensitization of French Observatory Directors to Astronomical Heritage (United States)

    Le Guet Tully, Françoise; Davoigneau, Jean


    An inventory of the heritage of historical astronomical observatories was launched in the mid 1990s as part of a collaboration between the Ministry of Research and the Ministry of Culture. This has produced a significant body of knowledge not only on astronomical instruments, but also on the specificities of astronomical sites and on the architecture of observatories. Other major results of this operation are (i) the development of numerous works on the institutional history of observatories and (ii), at the request of a few directors, the protection as "historical monuments" of some buildings and of collections of instruments. Given that knowledge about astronomical heritage is a prerequisite for proper conservation and intelligent outreach, and given also that the protection of such heritage (as historical monuments) is a major asset that bolsters its cultural value, the long term sustainability of such heritage depends on political decisions and the search for financial support. We shall describe the complex administrative situation of French observatories and outline the various actions undertaken recently to sensitize their directors to astronomical heritage issues.

  4. Analysis of Korean astronomical records with Chinese equatorial coordinates (United States)

    Lee, K. W.


    The historical documents of ancient Korea contain abundant records on various astronomical phenomena. The historical documents of the Joseon dynasty contain observational values based on Chinese equatorial coordinate system (i.e., angular distances from the reference star of a lunar mansion and the North Pole). However, quantitative analysis of the observational values has not been carried out. In this study, we investigate the observational accuracy during the Joseon dynasty by comparing the astronomical records of Joseonwangjo Sillok (Annals of the Joseon Dynasty) and Seungjeongwon Ilgi (Daily Records of the Royal Secretariat) with modern astronomical calculations. Consequently, we find that the observational accuracy during the early Joseon dynasty was approximately 1.2° 0.3° in the right ascension and declination, respectively. On the other hand, we find that the observational accuracy during the later Joseon dynasty was considerably poor. Observations of Halley's comet in 1759 were off by approximately 7° in declination. We believe that further investigation is required to verify the reason for this poor accuracy. Thus, we list the complete records used for this study in the appendix. We believe that these records also can contribute to modern studies on phenomena such as supernovae or Halley's comet. In conclusion, we believe that this study is useful for understanding ancient Korean astronomical records, even though we have considered a small number of astronomical events.

  5. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf


    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  6. SRHA calibration curve (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  7. Air Data Calibration Facility (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  8. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.


    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  9. Ames Balance Calibration Laboratory (United States)

    Federal Laboratory Consortium — Operations at the lab include calibrating balances for the Ames Wind Tunnels as well as for approved outside projects. Ames has a large inventory of TASK multi-piece...

  10. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig


    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  11. Exploration of the Transition Region-Corona Interface With the Multi-Order Solar EUV Spectrograph Project (United States)

    National Aeronautics and Space Administration — We propose to observe the solar upper transition region and lower corona in Ne VII 46.5 nm with the Multi-Order Solar EUV Spectrograph (MOSES) rocket payload. The...

  12. Astronomers Detect Powerful Bursting Radio Source Discovery Points to New Class of Astronomical Objects (United States)


    Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce

  13. Jet Calibration at ATLAS

    CERN Document Server

    Camacho, R; The ATLAS collaboration


    The accurate measurement of jets at high transverse momentum produced in proton proton collision at a centre of mass energy at \\sqrt(s)=7 TeV is important in many physics analysis at LHC. Due to the non-compensating nature of the ATLAS calorimeter, signal losses due to noise thresholds and in dead material the jet energy needs to be calibrated. Presently, the ATLAS experiment derives the jet calibration from Monte Carlo simulation using a simple correction that relates the true and the reconstructed jet energy. The jet energy scale and its uncertainty are derived from in-situ measurements and variation in the Monte Carlo simulation. Other calibration schemes have been also developed, they use hadronic cell calibrations or the topology of the jet constituents to reduce hadronic fluctuations in the jet response, improving in that way the jet resolution. The performances of the various calibration schemes using data and simulation, the evaluation of the modelling of the properties used to derive each calibration...

  14. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.


    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  15. Teaching astronomical navigation at the university: an historical overview (United States)

    López Varela, P.; Salgado Don, A.; Manteiga Outeiro, M.


    Astronomy and navigation are two sciences whose historical evolution have been linked for centuries through relationships of mutual dependency, up to the point of leading to a new science: astronomical or celestial navigation. Currently, astronomy has a very important well defined area within all university nautical degrees. Knowledge of astronomical navigation is still mandatory for deck officers in merchant ships. In the GPS era, practicing astronomical navigation has been relegated to a mere control procedure, and the tendency is to falling into disuse. Nevertheless, it is still the only method through which seamen can depend on their own means and knowledge to keep a track in a safe way. The new syllabi of our majors contemplates a drastic reduction of the contents of this subject, whose importance in the seafarer's profession we want to highlight in this paper.

  16. The Astronomer Alexander I. Postoiev (1900-1976) (United States)

    Dos Santos, P. M.; Matsuura, O. T.

    This is a biographical note on the life of Dr Alexander I. Postoiev, a victim of Stalin's purge of Soviet astronomers in 1936-1937 (McCutcheon, 1985). Along with his family, he left the Soviet Union in 1943, and lived in Germany as a refugee and "displaced person" until 1952, when he moved to Brazil. Then he started the second part of his professional career. Thanks to his efforts the Astronomical and Geophysical Institute (IAG) from the University of Sao Paulo (USP) was involved, for the first time, in programme of international cooperation, thus contributing to the institutional consolidation of IAG/USP as a leading centre of astronomical research and teaching today in Brazil.

  17. Profiling Some of the Lesser-Known Historical Women Astronomers (United States)

    Pagnotta, Ashley


    Although some historical women astronomers such as Henrietta Swan Leavitt and Cecilia Payne Gaposchkin have recently become somewhat well known among the astronomical community, many others--especially those from non-Western cultures--remain a mystery even to those of us who are actively aware of and interested in the role of early women in astronomy. As part of a project to educate myself on some of these women, I started a blog series ( to share this newfound knowledge with a population that is on average relatively young, extremely tech savvy, and generally would not consider themselves to be science-inclined. I will discuss some of the more interesting women I have profiled, as well as my observations on the efficacy of this method of history education.

  18. ImgCutout, an Engine of Instantaneous Astronomical Discovery (United States)

    Nieto-Santisteban, M. A.; Szalay, A. S.; Gray, J.


    ImgCutout is a Web application that enables professional astronomers and the general public to interactively visualize and explore large, complex astronomical data sets. The application consists of a Web interface that calls a Web service, which accesses SkyServer, a 1 TB SQL Server database containing catalog data for 100 million objects, spectra and images from the Sloan Digital Sky Survey. ImgCutout builds, in real time, color mosaic-images of user-selected regions of the sky, and overlays additional information about astronomical and spatial objects in the database including: boundaries of survey fields and aperture plates, outlines of individual objects and data quality masks, in addition to locations of photometric and spectroscopic objects. The tool can search for lists of known objects, allows new database queries, and provides detailed information about selected objects.

  19. Optical studies conducted by Shogunal astronomers of Edo-period (United States)

    Nakamura, Tsuko


    Although basic duty for astronomical officers of the Tokugawa Shogunal government had been to compile yearly and sometimes improve luni-solar calendars, they were obliged from necessity, toward the 19th century, to learn the astronomical navigation and optical instruments as well. This paper discusses why and how they coped with the fundamental optics. We also shed light on that Cornelis Douwes (1712-1773), the principal of the Amsterdam Naval Academy, made an important contribution to the Japanese astronomy of the Edo-period, through both the booklet on the octant written by him and his Dutch-translation enterprise of the four-volume books "Astronomie" authored by the famed French astronomer J. J. F. Lalande.

  20. Using Modern Technologies to Capture and Share Indigenous Astronomical Knowledge

    CERN Document Server

    Nakata, N M; Warren, J; Byrne, A; Pagnucco, M; Harley, R; Venugopal, S; Thorpe, K; Neville, R; Bolt, R


    Indigenous Knowledge is important for Indigenous communities across the globe and for the advancement of our general scientific knowledge. In particular, Indigenous astronomical knowledge integrates many aspects of Indigenous Knowledge, including seasonal calendars, navigation, food economics, law, ceremony, and social structure. We aim to develop innovative ways of capturing, managing, and disseminating Indigenous astronomical knowledge for Indigenous communities and the general public for the future. Capturing, managing, and disseminating this knowledge in the digital environment poses a number of challenges, which we aim to address using a collaborative project involving experts in the higher education, library, and industry sectors. Using Microsoft's WorldWide Telescope and Rich Interactive Narratives technologies, we propose to develop software, media design, and archival management solutions to allow Indigenous communities to share their astronomical knowledge with the world on their terms and in a cult...

  1. Examination and notes to the astronomical records in >SUISHU<. (United States)

    Liu, Ciyuan


    Astronomical records are an important part in Chinese official historical books. Their main purpose was for astrology and they are an obstacle for historians who read those books. With modern astronomical methods, one can compute and examine most of those ancient records. By comparing the computed results with the original texts, one can examine the texts, find their mistakes, study their observation method and regulation, inspect astrological theory, take a deeper understanding to those important historical materials. As an example the author deals with the astronomcial records of Dynasties Liang and Chen for 60 years in >SUISHU<, the official history of Dynasty Sui. He also synthesized other historical sources in addition to the astronomical computation.

  2. Xia-Shang-Zhou Chronology Project and its astronomical problems (United States)

    Liu, Ciyuan


    "Xia-Shang-Zhou Chronology Project" incorporates more than 200 experts on historical literature, ancient script, archeology, astronomy and C-14 measurement to promote early Chinese chronology (Xia, Shang, Zhou dynasties). Various astronomical problems have been studied in 12 separate groups. They are conjunctions of the five planets during the dynasties; Fire star for seasons determination; the famous solar eclipse in King Zhongkang's time; horizontal stars positions in Calendar Xiaxiaozheng; solar eclipse in King Yu; the lunar and solar eclipses recorded on oracle bones; celestial phenomena took place on King Wu's conquest; "double dawn" solar eclipse; lunar phase series on bronzes; calendar regulation of Zhou dynasty, and a comparison with foreign chronolgy. The astronomical conclusions of King Wuding by 5 lunar eclipses, King Wu by various astronomical records, King Yi by "double dawn" eclipse have been accepted as important frame of the Xia Shang Zhou chronology list while the years of west Zhou dynasty depended on the records of lunar phases.

  3. Radio Recombination Lines as Tools for Astronomers and Physicists (United States)

    Gordon, M. A.


    Described by simple atomic theory published in 1913 by Niels Bohr, spectral lines in the radio range arising from transitions between large principal quantum numbers of atoms have proved to be useful tools for astronomers and physicists. Called ``radio recombination lines'' because of the wavelength range where most are observed, they are usually easy to detect, give unique information about astronomical objects, and facilitate the study of physical effects in environments that cannot be created in terrestrial laboratories. Observations have revealed unexpected results regarding thermodynamic populations of the principal quantum levels and about pressure broadening in astronomical environments. Detections of large-n lines, such as the n = 1006-->1010 absorption line of interstellar carbon, show the existence of atoms with classical diameters of about 0.1 mm, the thickness of a sheet of typing paper. This paper briefly discusses observations of Stark broadening reported by Bell et al. in 2002.

  4. The Research Tools of the Virtual Astronomical Observatory (United States)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, T. J.; Project, VAO


    Astronomy is being transformed by the vast quantities of data, models, and simulations that are becoming available to astronomers at an ever-accelerating rate. The U.S. Virtual Astronomical Observatory (VAO) has been funded to provide an operational facility that is intended to be a resource for discovery and access of data, and to provide science services that use these data. Over the course of the past year, the VAO has been developing and releasing for community use five science tools: 1) "Iris", for dynamically building and analyzing spectral energy distributions, 2) a web-based data discovery tool that allows astronomers to identify and retrieve catalog, image, and spectral data on sources of interest, 3) a scalable cross-comparison service that allows astronomers to conduct pair-wise positional matches between very large catalogs stored remotely as well as between remote and local catalogs, 4) time series tools that allow astronomers to compute periodograms of the public data held at the NASA Star and Exoplanet Database (NStED) and the Harvard Time Series Center, and 5) A VO-aware release of the Image Reduction and Analysis Facility (IRAF) that provides transparent access to VO-available data collections and is SAMP-enabled, so that IRAF users can easily use tools such as Aladin and Topcat in conjuction with IRAF tasks. Additional VAO services will be built to make it easy for researchers to provide access to their data in VO-compliant ways, to build VO-enabled custom applications in Python, and to respond generally to the growing size and complexity of astronomy data. Acknowledgements: The Virtual Astronomical Observatory (VAO) is managed by the VAO, LLC, a non-profit company established as a partnership of the Associated Universities, Inc. and the Association of Universities for Research in Astronomy, Inc. The VAO is sponsored by the National Science Foundation and the National Aeronautics and Space Administration.

  5. Eminent Astronomers - Odessa University Graduates - In European Astronomy (United States)

    Volyanskaya, M. Yu.


    A brief description of scientific activity of some eminent astronomers - graduates of the Odessa University named after I.I. Mechnikov (earlier - Novorossiiski University) in European astronomy is given: * Stratonov V.V. (1869-1938), professor, wellknown specialist in stellar astronomy, who was exiled abroad in 1992 among many scientists and writers, lived in Germany and Prague, where died; * Gansky A.P. (1870-1908) - famous investagator of the Sun, worked at the Meudon Observatory, ascended 9 times to Mount Blanc to make observations, was awarded by P.Z.C. Jansen medal of the Paris Academy of Sciences; * Donitch N.N. (1874-1956) - wellknown investigator of the Solar system, one of the first Romanian astronomers, a brilliant personality of the astronomical community of his time, a honorary member of the Romanian Academy of Sciences, died in Nice (France); * Zalesky Bogdan (1887-1927), specialist in astrometry, which became a wellknown astronomer in Poland. One of the founders and the first director of the University Observatory in Poznan; * Witkowsky Josef (1892- 1976) - specialist in astrometry, practical astronomy, and tidal phenomena studies, history of astronomy. Professor, Director of the Astronomical Centre in Poznan; *Stoiko N.M. ((1894-1976) - investigator of the irregularities of the Earth's rotation, the Earth's poles motions and the universal time determination. A member of many scientific societies. He was awarded by prizes of the Paris Academy of Sciences, of the French astronomical society, of the Royal Academy of Belgium. He worked at the Paris Observatory and was one of the Directors of the International Time Service; * Jardecky (Zhardecky) Vietcheslaw (1896-1962), worked at the Department of Mathematics of the Beograd University; eminent specialist in the field of Mechanics of Fluids; After the Second World War he emmigrated to the USA, Professor of Geophysics at the Columbia Univeristy (New York), where died.

  6. Application of Astronomical Compositions in Small Architectural Forms (United States)

    Haykazun, Ani


    The small architectural forms are an important part of the Armenian architecture. Their compositions are diverse including quadrihedral structures, cross-stones, monuments, gravestones, memorial stones, etc. From ancient times to the late middle ages, and up to themodern small architectural forms, there are many decorative elements of astronomical character. Among them, one can more often see stars, the sun, the moon, the sky, the planets, the sign of eternity and other symbolic decorative images, which play a major role in the formation of the artistic image of the architectural compositions. The analysis of application of astronomical compositions will help more comprehensively introduce the compositional peculiarities of the small architectural forms.

  7. The Potential of Deep Learning with Astronomical Data (United States)

    Schafer, Chad


    Modern astronomical surveys yield massive catalogs of noisy high-dimensional objects, e.g., images, spectra, and light curves. Valuable information stored in individual objects can be lost when ad hoc approaches of feature extraction are used in an effort to build data sets amenable to established data analysis tools. Deep learning procedures provide a promising avenue to enabling the use of data in their raw form and hence allowing both for estimates of greater accuracy and for novel discoveries with greater confidence. This talk will give an overview of deep learning and its potential in astronomical applications.

  8. Astroinformatics, data mining and the future of astronomical research

    Energy Technology Data Exchange (ETDEWEB)

    Brescia, Massimo, E-mail: [INAF, Astronomical Obs. of Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Longo, Giuseppe [Department of Physics, University Federico II, Via Cintia 6, 80126 Napoli (Italy); Department of Astronomy, Caltech, Pasadena (United States)


    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies.

  9. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy


    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  10. WFIRST WFI Calibration Requirements (United States)

    Scolnic, Daniel; Casertano, Stephano; WFIRST Calibration Group


    The Wide Field InfraRed Survey Telescope (WFIRST), with a planned launch in the mid-2020’s, will enable multiple generation-defining measurements in astrophysics and cosmology. One of the key goals of the mission is to limit calibration uncertainties in order to enable a wide range of experiments. Here we present the work of the WFIRST WFI Calibration Working Group, which has compiled a comprehensive set of calibration needs derived from the Mission science requirements, and has outlined a plan toachieve them. In many areas, the accuracy required has yet to be reached in any comparable mission or project. We present here the various plans of on-ground characterization, pre-launch data; internal measurements and observations in orbit; and external observations.

  11. Site Calibration report

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Vesth, Allan

    The report describes site calibration measurements carried out on a site in Denmark. The measurements are carried out in accordance to Ref. [1]. The site calibration is carried out before a power performance measurement on a given turbine to clarify the influence from the terrain on the ratio...... between the wind speed at the center of the turbine hub and at the met mast. The wind speed at the turbine is measured by a temporary mast placed at the foundation for the turbine. The site and measurement equipment is detailed described in [2]. The possible measurement sector for power performance...... according to [1] is also described in [2] and no results from the site calibration have shown any necessary exclusion from this sector. All parts of the sensors and the measurement system have been installed by DTU....


    Directory of Open Access Journals (Sweden)

    L. Barazzetti


    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  13. Deep Impact instrument calibration (United States)

    Klaasen, K.; A'Hearn, M. F.; Baca, M.; Delamere, A.; Desnoyer, M.; Farnham, T.; Groussin, O.; Hampton, D.; Ipatov, S.; Li, J.-Y.; Lisse, C.; Mastrodemos, N.; McLaughlin, S.; Sunshine, J.; Thomas, P.; Wellnitz, D.


    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [~1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of ~9 pixels. The charge coupled device (CCD) read noise is ~1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to ~1%. Spectrometer read noise is ~2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to ~10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of ~2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to ~0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  14. Recent Advances for LGBT Astronomers in the United States (United States)

    Dixon, William V.; Rigby, Jane; Oppenheimer, Rebecca


    The legal environment for lesbian, gay, bisexual, and transgender (LGBT) astronomers in the United States has changed dramatically in recent years. In 2013, the Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA), which had barred the federal government from recognizing same-sex marriages, was unconstitutional. This decision particularly affects astronomers, since astronomers in the U.S. are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In 2014, the Attorney General directed the Department of Justice to take the position in litigation that the protection of Title VII of the Civil Rights Act of 1964 extends to claims of discrimination based on an individual’s gender identity, including transgender status. Title VII makes it unlawful for employers to discriminate in the employment of an individual “because of such individual’s... sex,” among other protected characteristics. As of March 2015, more than 70% of the population lives in states that recognize same-sex marriage, and the Supreme Court is expected to rule on the constitutionality of the remaining same-sex marriage bans during the current term. In this poster, we discuss these advances and their implications for the personal and professional lives of LGBT astronomers across the United States.

  15. Factors Contributing to Lifelong Science Learning: Amateur Astronomers and Birders (United States)

    Jones, M. Gail; Corin, Elysa Nicole; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa


    This research examined lifelong science learning reported by amateur astronomers and birders. One hundred seven adults who reported engaging in an informal (out-of-school) science interest were interviewed as part of an ongoing series of studies of lifelong science learners. The goal of the study was to gain insight into how and why amateur…

  16. Astronomy for Astronomical Numbers: A Worldwide Massive Open Online Class (United States)

    Impey, Chris D.; Wenger, Matthew C.; Austin, Carmen L.


    Astronomy: State of the Art is a massive, open, online class (MOOC) offered through Udemy by an instructional team at the University of Arizona. With nearly 24,000 enrolled as of early 2015, it is the largest astronomy MOOC available. The astronomical numbers enrolled do not translate into a similar level of engagement. The content consists of 14…

  17. The Astronomical Information Infrastructure from the End-User Perspective

    NARCIS (Netherlands)

    Hogeveen, S.J.


    Information Technology (IT) today has found so many applications in as- tronomy, that we may speak of an electronic `Astronomical Information Infrastructure' (AII). At this moment, the AII really is nothing but a collection of disparate services. Over the last few years the collection has grown

  18. Leveraging data lineage to infer logical relationships between astronomical catalogs

    NARCIS (Netherlands)

    Buddelmeijer, Hugo; Valentijn, Edwin A.

    A novel method to infer logical relationships between sets is presented. These sets can be any collection of elements, for example astronomical catalogs of celestial objects. The method does not require the contents of the sets to be known explicitly. It combines incomplete knowledge about the

  19. How did the Supreme Court ruling on DOMA affect astronomers? (United States)

    Rigby, Jane R.; The AAS Working Group on LGBTIQ Equality


    In June 2013, the United States Supreme Court ruled that Section 3 of the Defense of Marriage Act (DOMA) was unconstitutional. Section 3 had barred the federal government from recognizing same-sex marriages. The decision in United States v. Windsor, made headlines around the world, and particularly affected astronomers, since astronomers in the US are more likely than the general population to be foreign nationals, to have a foreign-born spouse, or to work for the federal government. In this poster, we highlight some of the real-world ways that the Windsor case has affected US astronomers and our profession. Bi-national couples can now apply for green cards granting permanent residency. Scientists who work for the federal government, including NASA and the NSF, can now obtain health insurance for a same-sex spouse. From taxes to death benefits, health insurance to daycare, immigration to ethics laws, the end of S3 of DOMA has had profoundly improved the lives of US scientists who are lesbian, gay, bisexual, or transgender (LGBT). Here we, highlight several real-world examples of how DOMA's demise has improved the lives and careers of US astronomer.

  20. GPU accelerated processing of astronomical high frame-rate videosequences (United States)

    Vítek, Stanislav; Švihlík, Jan; Krasula, Lukáš; Fliegel, Karel; Páta, Petr


    Astronomical instruments located around the world are producing an incredibly large amount of possibly interesting scientific data. Astronomical research is expanding into large and highly sensitive telescopes. Total volume of data rates per night of operations also increases with the quality and resolution of state-of-the-art CCD/CMOS detectors. Since many of the ground-based astronomical experiments are placed in remote locations with limited access to the Internet, it is necessary to solve the problem of the data storage. It mostly means that current data acquistion, processing and analyses algorithm require review. Decision about importance of the data has to be taken in very short time. This work deals with GPU accelerated processing of high frame-rate astronomical video-sequences, mostly originating from experiment MAIA (Meteor Automatic Imager and Analyser), an instrument primarily focused to observing of faint meteoric events with a high time resolution. The instrument with price bellow 2000 euro consists of image intensifier and gigabite ethernet camera running at 61 fps. With resolution better than VGA the system produces up to 2TB of scientifically valuable video data per night. Main goal of the paper is not to optimize any GPU algorithm, but to propose and evaluate parallel GPU algorithms able to process huge amount of video-sequences in order to delete all uninteresting data.

  1. Jan Hendrik Oort – A Complete Astronomer (1900 –1992)

    Indian Academy of Sciences (India)

    IAS Admin

    therefore makes our vision shortsighted. The radio map revealed spiral arms of our Galaxy, and showed that the Milky Way was similar in appearance to other spiral galaxies. Oort is remembered not only as the father of Dutch astronomy, but also as a major figure in spearheading astronomical research in Europe, and in ...

  2. This Month in Astronomical History: Preliminary Survey Results (United States)

    Wilson, Teresa


    This Month in Astronomical History is a short (~500 word) column on the AAS website that revisits significant astronomical events or the lives of people who have made a large impact on the field. The monthly column began in July 2016 at the request of the Historical Astronomical Division. Examples of topics that have been covered include Comet Shoemaker-Levy’s collision with Jupiter, the discovery of the moons of Mars, the life of Edwin Hubble, Maria Mitchell’s comet discovery, and the launch of Sputnik II. A survey concerning the column is in progress to ensure the column addresses the interests and needs of a broad readership, including historians, educators, research astronomers, and the general public. Eleven questions focus on the style and content of the column, while eight collect simple demographics. The survey has been available on the AAS website since and was mentioned in several AAS newsletters; however, non-members of AAS were also recruited to include respondents from a variety of backgrounds. Preliminary results of the survey are presented and will be used to hone the style and content of the column to serve the widest possible audience. Responses continue to be collected at:

  3. Revised Miocene splice, astronomical tuning and calcareous plankton biochronology

    NARCIS (Netherlands)

    Zeeden, C.; Hilgen, F.; Westerwold, T.; Lourens, L.; Röhl, Ursula; Bickert, Torsten


    The distinctly cyclic sediments recovered during ODP Leg 154 played an important role in constructing the astronomical time scale and associated astro(bio)chronology for the Miocene, and in deciphering ocean–climate history. The accuracy of the timescale critically depends on the reliability of

  4. The Top Ten Astronomical 'breakthroughs' of the 20th century

    Directory of Open Access Journals (Sweden)

    Hughes, D. W.


    Full Text Available Astronomy was revolutionized in the 20th century. The electron was discovered in 1897 and this transformed spectroscopy and introduced plasma and magnetohydrodynamic physics and astro-chemistry. Einstein’s E = mc2, solved the problem of stellar energy generation and spawned the study of elemental nuclear synthesis. Large telescopes led to a boom in astronomical spectroscopic and photometric data collection, leading to such cornerstones as the Hertzprung-Russell diagram and the mass-luminosity relationship, and to the realization that the Universe contained a multitude of galaxies and was expanding. Radio astronomy was introduced and the advent of the space age saw the astronomical wavelength range expand into the ultraviolet, X-ray and gamma-ray regions, as well as the infrared and millimetre. We also startedwandering around roaming the Solar System instead of merely glimpsing its members from the bottom of our warm, turbulent atmosphere. Astronomical “breakthroughs” abounded. We have asked astronomers to select their “top ten” and these are listed and discussed in this paper.

  5. Analytical algorithms of relativistic reduction of astronomical observations. (United States)

    Brumberg, V. A.; Bretagnon, P.; Francou, G.

    Using the analytical planetary theories VSOP87 (Bretagnon and Francou, 1988) and the relativistic theory of astronomical reference systems of Brumberg and Kopejkin (1989) the authors have derived the analytical expressions of the relativistic quantities enabling one to set the relationships between (1) TCB and TCG, (2) barycentric spatial coordinates and geocentric spatial coordinates and (3) observer's proper time and TCG.

  6. Radio Recombination Lines. Their Physics and Astronomical Applications (United States)

    Gordon, M. A.; Sorochenko, R. L.


    This book is a comprehensive guide to the physics and observations of Radio Recombination Lines from astronomical sources, written for astronomers, physicists, and graduate students. It serves as a graduate-level textbook. It includes the history of RRL detections, the astrophysics underlying their intensities and line shapes including topics like departures from LTE and Stark broadening, the maximum possible size of an atom, as well as detailed descriptions of the astronomical topics for which RRLs have proved to be effective tools. The text includes more than 250 equations and 110 illustrations. It also contains hundreds of specific references to the astronomical literature to enable readers to explore additional details. The appendix includes supplementary information such as the detailed physics underlying the Bohr atomic model, tables of RRL frequencies including fine structure components, techniques for calculating hydrogenic oscillator strengths, FORTRAN code for calculating departure coefficients, and a discussion with formulas for converting observational (telescope) intensity units to astrophysical ones. Link:

  7. Instrument Remote Control via the Astronomical Instrument Markup Language (United States)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard


    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  8. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  9. Calibrated entanglement entropy (United States)

    Bakhmatov, I.; Deger, N. S.; Gutowski, J.; Colgáin, E. Ó.; Yavartanoo, H.


    The Ryu-Takayanagi prescription reduces the problem of calculating entanglement entropy in CFTs to the determination of minimal surfaces in a dual anti-de Sitter geometry. For 3D gravity theories and BTZ black holes, we identify the minimal surfaces as special Lagrangian cycles calibrated by the real part of the holomorphic one-form of a spacelike hypersurface. We show that (generalised) calibrations provide a unified way to determine holographic entanglement entropy from minimal surfaces, which is applicable to warped AdS3 geometries. We briefly discuss generalisations to higher dimensions.

  10. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer


    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  11. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul


    is suggested to cope with the singular design matrix most often seen in chemometric calibration. Furthermore, the proposed algorithm may be generalized to all convex norms like Sigma/beta (j)/(gamma) where gamma greater than or equal to 1, i.e. a method that continuously varies from ridge regression...... to the lasso. The lasso is applied both directly as a calibration method and as a method to select important variables/wave lengths. It is demonstrated that the lasso algorithm, in general, leads to parameter estimates of which some are zero while others are quite large (compared to e.g. the traditional PLS...

  12. Spectrographic analysis of uranium-molybdenum alloys; Analisis espectrografico de aleaciones uranio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M.


    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO{sub 3}. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO{sub 3}. (Author) 5 refs.

  13. MOSAIC: A Multi-Object Spectrograph for the E-ELT (United States)

    Kelz, A.; Hammer, F.; Jagourel, P.; MOSAIC Consortium


    The instrumentation plan for the European Extremely Large Telescope foresees a Multi-Object Spectrograph (E-ELT MOS). The MOSAIC project is proposed by a European-Brazilian consortium, to provide a unique MOS facility for astrophysics, studies of the inter-galactic medium and for cosmology. The science cases range from spectroscopy of the most distant galaxies, mass assembly and evolution of galaxies, via resolved stellar populations and galactic archaeology, to planet formation studies. A further strong driver is spectroscopic follow-up observations of targets that will be discovered with the James Webb Space Telescope.

  14. The Addition of EI/CI Capability to the Mattauch-herzog Spectrograph with EOID (United States)

    Fergusson, G. J.; Koslin, M. E.


    A modification was made to the Mattauch-Herzog Spectrograph with an electro-optical ion detector (EOID) previously designed and constructed, so that it would be capable of operating not only in the electron-impact (EI) mode of ionization, but also in the chemical ionization (CI) mode. This modification necessitated an effort in three specific design areas: (1) sample inlet; (2) ion source and analyzer regions; and (3) the pumping system. In addition, an appropriate electronics package had to be designed to control and operate the combined EI/CI source.

  15. Galaxy and Mass Assembly (GAMA): Optimal Tiling of Dense Surveys with a Multi-Object Spectrograph (United States)

    Robotham, A.; Driver, S. P.; Norberg, P.; Baldry, I. K.; Bamford, S. P.; Hopkins, A. M.; Liske, J.; Loveday, J.; Peacock, J. A.; Cameron, E.; Croom, S. M.; Doyle, I. F.; Frenk, C. S.; Hill, D. T.; Jones, D. H.; van Kampen, E.; Kelvin, L. S.; Kuijken, K.; Nichol, R. C.; Parkinson, H. R.; Popescu, C. C.; Prescott, M.; Sharp, R. G.; Sutherland, W. J.; Thomas, D.; Tuffs, R. J.


    A heuristic greedy algorithm is developed for efficiently tiling spatially dense redshift surveys. In its first application to the Galaxy and Mass Assembly (GAMA) redshift survey we find it rapidly improves the spatial uniformity of our data, and naturally corrects for any spatial bias introduced by the 2dF multi-object spectrograph. We make conservative predictions for the final state of the GAMA redshift survey after our final allocation of time, and can be confident that even if worse than typical weather affects our observations, all of our main survey requirements will be met.

  16. Spectrographic analysis of plutonium (1960); L'analyse spectrographique du plutonium (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J.; Chaput, M.; Robichet, J. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires


    Various possibilities for the spectrographic determination of impurities in plutonium are considered. The application of the 'copper spark' method, of sparking on graphite and of fractional distillation in the arc are described and discussed in some detail (apparatus, accessories, results obtained). (author) [French] On examine diverses possibilites pour le dosage spectrographique des impuretes dans le plutonium. On decrit et discute plus particulierement de l'application des methodes 'copper spark', de l'etincelage sur graphite et de la distillation fractionnee dans l'arc (montages, accessoires, resultats obtenus). (auteur)

  17. OSIRIS Toolbox: OH-Suppressing InfraRed Imaging Spectrograph pipeline (United States)

    Lyke, Jim; Do, Tuan; Boehle, Anna; Campbell, Randy; Chappell, Sam; Fitzgerald, Mike; Gasawy, Tom; Iserlohe, Christof; Krabbe, Alfred; Larkin, James; Lockhard, Kelly; Lu, Jessica; Mieda, Etsuko; McElwain, Mike; Perrin, Marshall; Rudy, Alex; Sitarski, Breann; Vayner, Andrey; Walth, Greg; Weiss, Jason; Wizanski, Tommer; Wright, Shelley


    OSIRIS Toolbox reduces data for the Keck OSIRIS instrument, an integral field spectrograph that works with the Keck Adaptive Optics System. It offers real-time reduction of raw frames into cubes for display and basic analysis. In this real-time mode, it takes about one minute for a preliminary data cube to appear in the “quicklook” display package. The reduction system also includes a growing set of final reduction steps including correction of telluric absorption and mosaicing of multiple cubes.

  18. An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus (United States)

    Phillips, David F.; Glenday, Alex G.; Dumusque, Xavier; Buchschacher, Nicolas; Cameron, Andrew Collier; Cecconi, Massimo; Charbonneau, David; Cosentino, Rosario; Ghedina, Adriano; Haywood, Raphäelle; Latham, David W.; Li, Chih-Hao; Lodi, Marcello; Lovis, Christophe; Molinari, Emilio; Pepe, Francesco; Sasselov, Dimitar; Szentgyorgyi, Andrew; Udry, Stephane; Walsworth, Ronald L.


    We recently demonstrated sub-m/s sensitivity in measuring the radial velocity (RV) between the Earth and Sun using a simple solar telescope feeding the HARPS-N spectrograph at the Italian National Telescope, which is calibrated with a green astro-comb. We are using the solar telescope to characterize the effects of stellar (solar) RV jitter due to activity on the solar surface with the goal of detecting the solar RV signal from Venus, thereby demonstrating the sensitivity of these instruments to detect true Earth-twin exoplanets.

  19. The Astronomical Virtual Observatory: Lessons Learned, Looking Forward (United States)

    Genova, F.


    The astronomical Virtual Observatory (VO) aims at providing seamless access to the wealth of the discipline's on-line resources, hence at developing global interoperability between them. This is coordinated by the International Virtual Observatory Alliance (IVOA). The paper summarizes the VO history and current evolution. During the first period of VO development, a huge amount of work has been devoted to the development of basic interoperability standards, to set up the VO framework for publication of data and for tools interoperability. This has proven to be a major asset for seamless usage of data. Now the VO is in operation, and the emphasis on supporting the take-up by astronomers and data providers, as well as on outreach, is increasing. A census of European astronomical data centres performed in 2009/2010 shows a large interest in the VO, and a wide diversity of sizes and organisations, in the data centre community. The different strands of work of an operational VO, and the challenges ahead are described, taking in particular the example of the European VO. The European implementation of the VO has been moulded by the specific organisation of European astronomy, with complementary roles of the national and European levels. Local and national projects contribute to the VO development and implementation in their domains of interest and expertise. Several projects supported by the European Commission have helped to shape Euro-VO, with a strong emphasis on coordination of national and intergovernmental agency projects, with actions towards astronomers, data centres and VO developers, including during the last period of outreach towards education and the public. The Astronet Infrastructure Roadmap for European astronomy (2009) has recognized data and the VO as one of the infrastructures of astronomy. The way forward in this context is discussed. In conclusion, the astronomical data infrastructure is put in perspective with the general trends around scientific

  20. International Astronomical Search Collaboration -- Astronomical Discovery Program for High School and College Students (United States)

    Miller, Patrick


    Centered at Hardin-Simmons University (Abilene, TX) the International Astronomical Search Collaboration (IASC) has conducted successful student-based asteroid search programs, called campaigns. Since 2006 these campaigns have engaged 3,000 high school and college students per year. These students come from 300 schools worldwide located in more than 40 countries on 5 continents. Students have made thousands of observations of near-Earth objects and >300 provisional discoveries of Main Belt asteroids, both reported to the Minor Planet Center (Harvard). To date students have 15 numbered discoveries, catalogued by the IAU and currently being named by the student discoverers. The first telescope of the Panoramic Survey and Rapid Response System (PS1, University of Hawaii) is conducting the largest optical survey ever attempted. In support of education and public outreach, Pan-STARRS collaborated with IASC in 2010-2012 to use the PS1 images in the student asteroid search and discovery campaigns. The PS1 images are wide field with 7o FOV and 1.4 Gpix in size. These were partitioned into 144 sub-images and distributed to 40 high schools in Texas, Hawaii, Washington, Germany, Taiwan, Poland, Brazil, and Bulgaria. In two 6-week campaigns per year, students from these schools made 1000 preliminary asteroid discoveries. This poster presents the results of the first and second year of the IASC-PS1 campaigns plus other asteroid search campaigns conducted by IASC. Also, plans will be described for future campaigns. These future campaigns will reach 500 schools in 2012 and 1,000 high schools within the coming 36 months.


    NARCIS (Netherlands)

    Kazemi, S.; Yatawatta, S.; Zaroubi, S.


    This paper introduces an amendment to radio interferometric calibration of sources below the noise level. The main idea is to employ the information of the stronger sources' measured signals as a plug-in criterion to solve for the weaker ones. For this purpose, we construct a number of source

  2. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.


    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  3. Calibrating Communication Competencies (United States)

    Surges Tatum, Donna


    The Many-faceted Rasch measurement model is used in the creation of a diagnostic instrument by which communication competencies can be calibrated, the severity of observers/raters can be determined, the ability of speakers measured, and comparisons made between various groups.

  4. ECAL Energy Flow Calibration

    CERN Multimedia

    CERN. Geneva


    My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.

  5. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail:; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)


    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  6. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A part of the sensors has been installed by others, the rest of the sensors have been installed by DTU. The results of the measurements, described in this report, are only val...

  7. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini


    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  8. Sports stars: analyzing the performance of astronomers at visualization-based discovery


    Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.


    In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between "sources" and "noise?" What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By look...

  9. Constraining the age of the Matuyama-Brunhes reversal using intercalibrated 40Ar/39Ar and astronomical ages of the Bishop Tuff and Australasian Tektite

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Palike, Heiko

    Recent high-resolution δ18O records from North Atlantic (I)ODP cores, with reliable paleomagnetic signals, have placed the mean age of the Matuyama-Brunhes (MB) geomagnetic polarity reversal ca. 8 ka younger than previous estimates when correlated to ice-volume age models (Channell et al., 2010......). However, this age offset is not synchronous with a new astronomically intercalibrated 40Ar/39Ar age for the normal-polarity Quaternary Bishop Tuff, stratigraphically above the MB boundary by approximately 15 ka. In order to best constrain the age of the boundary, an astronomically calibrated radio......-isotopic age is needed on a datable unit from the reversed-polarity side of the MB boundary. The Australasian tektite is a suitable unit from the Matuyama chron for dating the MB boundary because the positions of microtektite layers relative to the MB boundary have been documented in (I)ODP and other drill...

  10. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten


    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  11. Different Categories of Astronomical Heritage: Issues and Challenges (United States)

    Ruggles, Clive


    Since 2008 the AWHWG has, on behalf of the IAU, been working with UNESCO and its advisory bodies to help identify, safeguard and promote cultural properties relating to astronomy and, where possible, to try to facilitate the eventual nomination of key astronomical heritage sites onto the World Heritage List. Unfortunately, the World Heritage Convention only covers fixed sites (i.e., the tangible immovable heritage of astronomy), and a key question for the UNESCO-IAU Astronomy and World Heritage Initiative (AWHI) is the extent to which the tangible moveable and intangible heritage of astronomy (e.g. moveable instruments; ideas and theories) influence the assessment of the tangible immovable heritage. Clearly, in an ideal world we should be concerned not only with tangible immovable heritage but, to quote the AWHWG's own Terms of Reference, ``to help ensure that cultural properties and artefacts significant in the development of astronomy, together with the intangible heritage of astronomy, are duly studied, protected and maintained, both for the greater benefit of humankind and to the potential benefit of future historical research''. With this in mind, the IAU/INAF symposium on ``Astronomy and its Instruments before and after Galileo'' held in Venice in Sep-Oct 2009 recommended that urgent steps should be taken 1. to sensitise astronomers and the general public, and particularly observatory directors and others with direct influence and control over astronomical resources, to the importance of identifying, protecting and preserving the various material products of astronomical research and discovery that already have, or have significant potential to acquire, universal value; (N.B. National or regional interests and concerns have no relevance in the assessment of ``universal value'', which, by definition, extends beyond cultural boundaries and, by reasonable expectation, down the generations into the future. 2. to identify modes of interconnectivity between

  12. Development of a slicer integral field unit for the existing optical spectrograph FOCAS: progress (United States)

    Ozaki, Shinobu; Tanaka, Yoko; Hattori, Takashi; Mitsui, Kenji; Fukushima, Mitsuhiro; Okada, Norio; Obuchi, Yoshiyuki; Tsuzuki, Toshihiro; Miyazaki, Satoshi; Yamashita, Takuya


    We are developing an integral field unit (IFU) with an image slicer for the existing optical spectrograph, Faint Object Camera And Spectrograph (FOCAS), on the Subaru Telescope. The slice width is 0.43 arcsec, the slice number is 23, and the field of view is 13.5 × 9.89 arcsec2. Sky spectrum separated by about 5.7 arcmin from an object field can be simultaneously obtained, which allows us precise background subtraction. Slice mirrors, pupil mirrors and slit mirrors are all glass, and their mirror surfaces are fabricated by polishing. Our IFU is about 200 mm × 300 mm × 80 mm in size and 1 kg in weight. It is installed into a mask storage in FOCAS along with one or two mask plates, and inserted into the optical path by using the existing mask exchange mechanism. This concept allow us flexible operation such as Targets of Opportunity observations. High reflectivity of multilayer dielectric coatings offers high throughput (>80%) of the IFU. In this paper, we will report a final optical layout, its performances, and results of prototyping works.

  13. The FUV detector for the cosmic origins spectrograph on the Hubble Space Telescope

    CERN Document Server

    Vallerga, J; Welsh, B; Siegmund, O; McPhate, J; Hull, J; Gaines, G; Buzasi, D L


    The Cosmic Origins Spectrograph (COS) is a high throughput spectrometer that will be placed on the Hubble Space Telescope (HST) during the last servicing mission in the year 2003. COS will be the most sensitive UV spectrograph ever flown aboard HST and will investigate such fundamental issues as the ionization and baryon content of the intergalactic medium and the origin of large-scale structure of the Universe. The driving design goal for COS is to maximize throughput at a moderate spectral resolution of >20,000 using optics with very few reflections and detectors with high quantum efficiency in two bandpass channels: FUV (1150-1775 A) and NUV (1750-3200 A). The COS FUV detector, a windowless microchannel plate (MCP) detector, consists of two segments each 85 mmx10 mm concatenated end to end with a 9 mm gap between them. The design is based on the Far Ultraviolet Spectroscopic Explorer detectors with identical format and front surface radius of curvature that matches the grating focal plane of the spectrogra...

  14. A solar radio dynamic spectrograph with flexible temporal-spectral resolution (United States)

    Du, Qing-Fu; Chen, Lei; Zhao, Yue-Chang; Li, Xin; Zhou, Yan; Zhang, Jun-Rui; Yan, Fa-Bao; Feng, Shi-Wei; Li, Chuan-Yang; Chen, Yao


    Observation and research on solar radio emission have unique scientific values in solar and space physics and related space weather forecasting applications, since the observed spectral structures may carry important information about energetic electrons and underlying physical mechanisms. In this study, we present the design of a novel dynamic spectrograph that has been installed at the Chashan Solar Radio Observatory operated by the Laboratory for Radio Technologies, Institute of Space Sciences at Shandong University. The spectrograph is characterized by real-time storage of digitized radio intensity data in the time domain and its capability to perform off-line spectral analysis of the radio spectra. The analog signals received via antennas and amplified with a low-noise amplifier are converted into digital data at a speed reaching up to 32 k data points per millisecond. The digital data are then saved into a high-speed electronic disk for further off-line spectral analysis. Using different word lengths (1-32 k) and time cadences (5 ms-10 s) for off-line fast Fourier transform analysis, we can obtain the dynamic spectrum of a radio burst with different (user-defined) temporal (5 ms-10 s) and spectral (3 kHz˜320 kHz) resolutions. This enables great flexibility and convenience in data analysis of solar radio bursts, especially when some specific fine spectral structures are under study.

  15. Compatibility of Spatially Coded Apertures with a Miniature Mattauch-Herzog Mass Spectrograph (United States)

    Russell, Zachary E.; DiDona, Shane T.; Amsden, Jason J.; Parker, Charles B.; Kibelka, Gottfried; Gehm, Michael E.; Glass, Jeffrey T.


    In order to minimize losses in signal intensity often present in mass spectrometry miniaturization efforts, we recently applied the principles of spatially coded apertures to magnetic sector mass spectrometry, thereby achieving increases in signal intensity of greater than 10× with no loss in mass resolution Chen et al. (J. Am. Soc. Mass Spectrom. 26, 1633-1640, 2015), Russell et al. (J. Am. Soc. Mass Spectrom. 26, 248-256, 2015). In this work, we simulate theoretical compatibility and demonstrate preliminary experimental compatibility of the Mattauch-Herzog mass spectrograph geometry with spatial coding. For the simulation-based theoretical assessment, COMSOL Multiphysics finite element solvers were used to simulate electric and magnetic fields, and a custom particle tracing routine was written in C# that allowed for calculations of more than 15 million particle trajectory time steps per second. Preliminary experimental results demonstrating compatibility of spatial coding with the Mattauch-Herzog geometry were obtained using a commercial miniature mass spectrograph from OI Analytical/Xylem.

  16. MuSICa: the Multi-Slit Image Slicer for the est Spectrograph (United States)

    Calcines, A.; López, R. L.; Collados, M.


    Integral field spectroscopy (IFS) is a technique that allows one to obtain the spectra of all the points of a bidimensional field of view simultaneously. It is being applied to the new generation of the largest night-time telescopes but it is also an innovative technique for solar physics. This paper presents the design of a new image slicer, MuSICa (Multi-Slit Image slicer based on collimator-Camera), for the integral field spectrograph of the 4-m aperture European Solar Telescope (EST). MuSICa is a multi-slit image slicer that decomposes an 80 arcsec2 field of view into slices of 50 μm and reorganizes it into eight slits of 0.05 arcsec width × 200 arcsec length. It is a telecentric system with an optical quality at diffraction limit compatible with the two modes of operation of the spectrograph: spectroscopic and spectro-polarimetric. This paper shows the requirements, technical characteristics and layout of MuSICa, as well as other studied design options.

  17. Top astronomers head to the city. Experts to talk on exciting quasar discoveries.

    CERN Multimedia

    Grant, S


    The UK National Astronomy Meeting - NAM 2002 - is at Bristol University this week. The meeting is one of the most important regular gatherings of astronomers in the UK. Sponsored by the Royal Astronomical Society and PPARC, it should attract about 300 astronomers from the UK and beyond.

  18. Mercury Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster


    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  19. The PACA Project: When Amateur Astronomers Become Citizen Scientists (United States)

    Yanamandra-Fisher, P. A.


    The Pro-Am Collaborative Astronomy (PACA) project evolved from the observational campaign of C/2012 S1 or C/ISON in 2013. Following the success of the professional-amateur astronomer collaboration in scientific research via social media, it is now implemented in other comet observing campaigns. While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers: (1) the establishment of a network of astronomers and related professionals, that can be galvanized into action on short notice to support observing campaigns; (2) assist in various science investigations pertinent to the campaign; (3) provide an alert-sounding mechanism should the need arise; (4) immediate outreach and dissemination of results via our media/blogger members; (5) provide a forum for discussions between the imagers and modelers to help strategize the observing campaign for maximum benefit. In 2014, two new comet observing campaigns involving pro-am collaborations have been initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of PACA portal that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers. The integration of science, observations by professional and amateur astronomers, and various social media provides a dynamic and evolving collaborative partnership between professional and amateur astronomers

  20. Can the European ELT detect super-Earths? Measuring the contrast limit of an image slicer spectrograph in a laboratory experiment (United States)

    Barnsley, Robert M.; Tecza, Matthias; Thatte, Niranjan A.


    One of the highest scientific priorities for the E-ELT is to characterise exoplanets and to image Earth-like planets with the dedicated planetary camera and spectrograph, ELT-PCS. Detailed design and construction of ELT-PCS requires R and D to be undertaken for specific components. In this paper we discuss plans to progress this R and D for the integral field spectrograph technology, with the aim of determining the best contrast achievable with both a lenslet and a slicer based spectrograph. In particular, we present the preliminary design for a new bench spectrograph capable of accepting either of the two competing technologies as its input.