WorldWideScience

Sample records for astronaut absorbed dose

  1. [Absorbed doses in dental radiology].

    Science.gov (United States)

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  2. Absorbed radiation dose on LHC interconnects

    CERN Document Server

    Versaci, R; Vlachoudis, V; CERN. Geneva. ATS Department

    2011-01-01

    Here we present the results of our FLUKA simulations devoted to the evaluation of the peak dose absorbed by the busbar insulator in the LHC Interaction Region 7 interconnects. The peak dose absorbed by the cold magnet coils are also presented.

  3. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  4. Radiation absorbed dose during special extra-oral radiography

    Science.gov (United States)

    Farag, Hamed I.; Abdel Latif, Zeinab A. S.; Hamed, Abdel Fattah A.

    1996-05-01

    The absorbed dose from radiographic examinations of adult patients using extra-oral dental radiography as lateral-oblique and postero-anterior views was examined. The absorbed dose at various sites in the head and neck was measured with thermoluminescent dosimeters (TLD). The maximum absorbed dose for both radiographic views is located at the point of entry. The absorbed doses in the various sites are compared and discussed in both techniques.

  5. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations

    Science.gov (United States)

    Siebers, J. V.; Keall, P. J.; Nahum, A. E.; Mohan, R.

    2000-04-01

    Current clinical experience in radiation therapy is based upon dose computations that report the absorbed dose to water, even though the patient is not made of water but of many different types of tissue. While Monte Carlo dose calculation algorithms have the potential for higher dose accuracy, they usually transport particles in and compute the absorbed dose to the patient media such as soft tissue, lung or bone. Therefore, for dose calculation algorithm comparisons, or to report dose to water or tissue contained within a bone matrix for example, a method to convert dose to the medium to dose to water is required. This conversion has been developed here by applying Bragg-Gray cavity theory. The dose ratio for 6 and 18 MV photon beams was determined by computing the average stopping power ratio for the primary electron spectrum in the transport media. For soft tissue, the difference between dose to medium and dose to water is approximately 1.0%, while for cortical bone the dose difference exceeds 10%. The variation in the dose ratio as a function of depth and position in the field indicates that for photon beams a single correction factor can be used for each particular material throughout the field for a given photon beam energy. The only exception to this would be for the clinically non-relevant dose to air. Pre-computed energy spectra for 60 Co to 24 MV are used to compute the dose ratios for these photon beams and to determine an effective energy for evaluation of the dose ratio.

  6. Astronaut's organ doses inferred from measurements in a human phantom outside the international space station.

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Facius, Rainer; Hajek, Michael; Petrov, Vladislav; Puchalska, Monika; Zhou, Dazhuang; Bossler, Johannes; Akatov, Yury; Shurshakov, Vyacheslav; Olko, Pawel; Ptaszkiewicz, Marta; Bergmann, Robert; Fugger, Manfred; Vana, Norbert; Beaujean, Rudolf; Burmeister, Soenke; Bartlett, David; Hager, Luke; Pálfalvi, József; Szabó, Julianna; O'Sullivan, Denis; Kitamura, Hisashi; Uchihori, Yukio; Yasuda, Nakahiro; Nagamatsu, Aiko; Tawara, Hiroko; Benton, Eric; Gaza, Ramona; McKeever, Stephen; Sawakuchi, Gabriel; Yukihara, Eduardo; Cucinotta, Francis; Semones, Edward; Zapp, Neal; Miller, Jack; Dettmann, Jan

    2009-02-01

    Space radiation hazards are recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a potentially limiting factor since current protection limits for low-Earth orbit missions may be approached or even exceeded. In such a situation, an accurate risk assessment requires knowledge of equivalent doses in critical radiosensitive organs rather than only skin doses or ambient doses from area monitoring. To achieve this, the MATROSHKA experiment uses a human phantom torso equipped with dedicated detector systems. We measured for the first time the doses from the diverse components of ionizing space radiation at the surface and at different locations inside the phantom positioned outside the International Space Station, thereby simulating an extravehicular activity of an astronaut. The relationships between the skin and organ absorbed doses obtained in such an exposure show a steep gradient between the doses in the uppermost layer of the skin and the deep organs with a ratio close to 20. This decrease due to the body self-shielding and a concomitant increase of the radiation quality factor by 1.7 highlight the complexities of an adequate dosimetry of space radiation. The depth-dose distributions established by MATROSHKA serve as benchmarks for space radiation models and radiation transport calculations that are needed for mission planning.

  7. Variation of PM-355 properties by high gamma absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Energy Resources Div.; Hala, A.M. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nuclear Engineering Dept.; Farhat, M. [Alshifa Medical Syringes Mfg. Co. Ltd., Dammam (Saudi Arabia)

    1997-02-01

    PM-355 super grade nuclear track detectors were exposed to high gamma absorbed doses up to 5 x 10{sup 5} Gy (50 Mrad), with an incremental dose of 2.5 x 10{sup 4} Gy, from a 9.03 PBq (244 kCi) Co-60 source. Results indicate that each of the bulk etch rate (V{sub b}), the track etch rate (V{sub t}) and the sensitivity (V) of the detectors increases with the high gamma absorbed dose, but there is a drop in these parameters at the low gamma absorbed dose. The V{sub b}`s for all gamma absorbed doses decreased while their V{sub t}`s and V increased with increasing etching time. Signs of surface roughness were observed by increasing the gamma absorbed doses and changes in color observed for doses larger than 2 x 10{sup 5} Gy. The temperature of the detectors during irradiation reached 40{sup o}C. The fission fragment tracks (from a Cf-252 source) disappeared quickly within the etching time (minutes), for total absorbed doses greater than 3 x 10{sup 5} Gy, due to their high bulk etch rate. (author).

  8. Comparison of absorbed doses resulting from various intraoral periapical radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mi Ae; Park, Tae Won [Dept. of Oral and Maxillofacial Radiology, Graduate School, Seoul National University, Seoul (Korea, Republic of)

    1995-08-15

    This study was designed to measure the absorbed dose to organs of special interest from full mouth with intraoral film (14 films) and to compare the five periapical techniques. Thermoluminescent crystals (TLD-100 chip) were located in brain, orbit, bone marrow of mandibular ramus, bone marrow of mandibular body, bone marrow of 4th cervical spine, parotid gland, submandibular gland and thyroid gland. X-ray machine was operated at 70 kVp and round collimating film holding device (XCP) and rectangular collimating film holding device (Precision Instrument) were used. The distance from the X-ray focus to the open end of the collimator was 8 inch, 12 inch and 16 inch. The following results obtained; 1. The absorbed dose was the highest in bone marrow of mandibular body (5.656 mGy) and the lowest in brain (0.050 mGy). 2. Generally, the lowest absorbed dose was measured from 16 inch cylinder, rectangular collimating film holding device with paralleling technique. But, in bone marrow of mandibular body and the floor of mouth, the highest absorbed dose was measured from 12 inch cylinder, rectangular collimating film holding device with paralleling techniques. 3. Comparing of five intraoral radiographic techniques, it was appeared statistically significant reduction of the absorbed doses measured with rectangualr collimating film holding device compared to XCP film holding device (p<0.05). 4. No statistically significant reduction in the absorbed dose was found as cylinder length was change (p>0.05).

  9. Thyroid absorbed dose using TLDs during mammography

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, M.; Melendez L, M. [IPN, Centro de Investigacion y de Estudios Avanzados, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Mexico D. F. (Mexico); Davila M, P., E-mail: biomedica.sst@gmail.com [UNEME-DEDICAM de Ciudad Victoria, Circuito Medico s/n, 87087 Ciudad Victoria, Tamaulipas (Mexico)

    2015-10-15

    Full text: In this study, the mean glandular dose (MGD) and the thyroid dose (D Thy) were measured in 200 women screened with mammography in Cranio caudal (Cc) and mediolateral oblique projections. All mammograms were performed with Giotto-Ims (6000-14-M2 Model) equipment, which was verified to meet the criteria of quality of NOM-229-Ssa-2002. During audits performance and HVL, for each anode filter combinations was measured with the camera Radcal mammography equipment 10 X 6-6M (HVL = 0.26 mm Al). D Thy measurements were performed with TLD dosimeters (LiF:Mn) , that were read with the Harshaw 3500 TLD reader. The MGD, was obtained according to the UK and European protocols for mammographic dosimetry using a plane parallel chamber (Standard Imaging, Model A-600) calibrated by a radiation beam UW-23-Mo (= 0.279 mm Al HVL). A comparative statistical analysis was carried out with the measured MGD and D thy. The thyroid mean dose was 0.063 mGy and 0.078 mGy for Cc and mediolateral oblique respectively. There is a linear correlation between the MGD and the D Thy slightly influenced by the anode-filter combination. Using a 95% for the confidence interval in MGD (1.07 mGy), the 90% of measurements are in agreement with the established uncertainty limits. The D Thy are lower than the MGD. There is no risk for cancer induction in thyroid in women due to mammography screening. (Author)

  10. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  11. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  12. Some comments on the concept of absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-12-15

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity d{epsilon} divided by dm, where d{epsilon} is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted {epsilon}. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  13. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  14. Automation of PCXMC and ImPACT for NASA Astronaut Medical Imaging Dose and Risk Tracking

    Science.gov (United States)

    Bahadori, Amir; Picco, Charles; Flores-McLaughlin, John; Shavers, Mark; Semones, Edward

    2011-01-01

    To automate astronaut organ and effective dose calculations from occupational X-ray and computed tomography (CT) examinations incorporating PCXMC and ImPACT tools and to estimate the associated lifetime cancer risk per the National Council on Radiation Protection & Measurements (NCRP) using MATLAB(R). Methods: NASA follows guidance from the NCRP on its operational radiation safety program for astronauts. NCRP Report 142 recommends that astronauts be informed of the cancer risks from reported exposures to ionizing radiation from medical imaging. MATLAB(R) code was written to retrieve exam parameters for medical imaging procedures from a NASA database, calculate associated dose and risk, and return results to the database, using the Microsoft .NET Framework. This code interfaces with the PCXMC executable and emulates the ImPACT Excel spreadsheet to calculate organ doses from X-rays and CTs, respectively, eliminating the need to utilize the PCXMC graphical user interface (except for a few special cases) and the ImPACT spreadsheet. Results: Using MATLAB(R) code to interface with PCXMC and replicate ImPACT dose calculation allowed for rapid evaluation of multiple medical imaging exams. The user inputs the exam parameter data into the database and runs the code. Based on the imaging modality and input parameters, the organ doses are calculated. Output files are created for record, and organ doses, effective dose, and cancer risks associated with each exam are written to the database. Annual and post-flight exposure reports, which are used by the flight surgeon to brief the astronaut, are generated from the database. Conclusions: Automating PCXMC and ImPACT for evaluation of NASA astronaut medical imaging radiation procedures allowed for a traceable and rapid method for tracking projected cancer risks associated with over 12,000 exposures. This code will be used to evaluate future medical radiation exposures, and can easily be modified to accommodate changes to the risk

  15. Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water

    Science.gov (United States)

    Dogan, N.; Siebers, J. V.; Keall, P. J.

    2006-10-01

    Conventional photon radiation therapy dose-calculation algorithms typically compute and report the absorbed dose to water (Dw). Monte Carlo (MC) dose-calculation algorithms, however, generally compute and report the absorbed dose to the material (Dm). As MC-calculation algorithms are being introduced into routine clinical usage, the question as to whether there is a clinically significant difference between Dw and Dm remains. The goal of the current study is to assess the differences between dose-volume indices for Dm and Dw MC-calculated IMRT plans. Ten head-and-neck (H&N) and ten prostate cancer patients were selected for this study. MC calculations were performed using an EGS4-based system. Converting Dm to Dw for MC-based calculations was accomplished as a post-MC calculation process. Dw and Dm results for target and critical structures were evaluated using the dose-volume-based indices. For H&N IMRT plans, systematic differences between dose-volume indices computed with Dw and Dm were up to 2.9% for the PTV prescription dose (D98), up to 5.8% for maximum (D2) dose to the PTV and up to 2.7% for the critical structure dose indices. For prostate IMRT plans, the systematic differences between Dw- and Dm-based computed indices were up to 3.5% for the prescription dose (D98) to the PTVs, up to 2.0% for the maximum (D2) dose to the PTVs and up to 8% for the femoral heads due to their higher water/bone mass stopping power ratio. This study showed that converting Dm to Dw in MC-calculated IMRT treatment plans introduces a systematic error in target and critical structure DVHs. In some cases, this systematic error may reach up to 5.8% for H&N and 8.0% for prostate cases when the hard-bone-containing structures such as femoral heads are present. Ignoring differences between Dm and Dw will result in systematic dose errors ranging from 0% to 8%.

  16. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections.

    Science.gov (United States)

    Berge, T I; Wøhni, T

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  17. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved...... in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent...... of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...

  18. Evaluation of absorbed dose and image quality in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Hemdal, Bengt

    2009-07-01

    Mammography refers to the X-ray examination of the human breast, and is considered the single most important diagnostic tool in the early detection of breast cancer, which is by far the most common cancer among women. There is good evidence from clinical trials, that mammographic screening can reduce the breast cancer mortality with about 30%. The side effects include a small and age related risk of carcinogenesis due to the exposure of the glandular tissues in the breast to ionising radiation. As for all X-ray examinations, and of special importance when investigating large populations of asymptomatic women, the relationship between radiation risk and diagnostic accuracy in mammography must be optimised. The overall objective of this thesis was to investigate and improve methods for average glandular dose (AGD) and image quality evaluation in mammography and provide some practical guidance. Dose protocols used for so-called reference dose levels in Sweden 1989 (Nordic) and 1998 (European) were compared in a survey of 32 mammography units. The study showed that the AGD values for a 'standard breast' became 5+-2% (total variation 0-9%) higher at clinical settings, when estimated according to the European protocol. For the Sectra MDM, a digital mammography (DM) unit with a scanning geometry, it was impossible to follow procedures for characterisation of the X-ray beam (HVL=half value layer) specified in the European protocol. In an experimental setup, it was shown that non-invasive measurements of HVL can be performed accurately with a sensitive and well collimated semiconductor detector with simultaneous correction for the energy dependence. AGD values could then be estimated according to 3 different dose protocols. A dosimetry system based on radioluminescence and optically stimulated luminescence from Al2O3:C crystals was developed and tested for in vivo absorbed dose measurements. It was shown that both entrance and exit doses could be measured and that

  19. Absorbed dose determination in photon fields using the tandem method

    CERN Document Server

    Marques-Pachas, J F

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF sub 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with sup 9 sup 0 Sr- sup 9 sup 0 Y, calibrated with the energy of sup 6 sup 0 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than ...

  20. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  1. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Aydogan, B.; Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.; Sparks, R.B. [Oak Ridge Inst. for Science and Education, TN (United States); Stubbs, J.B. [Radiation Dosimetry Systems of Oak Ridge, Inc., Knoxville, TN (United States)

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  2. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    Science.gov (United States)

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  3. Predicting astronaut radiation doses from major solar particle events using artificial intelligence

    Science.gov (United States)

    Tehrani, Nazila H.

    1998-06-01

    Space radiation is an important issue for manned space flight. For long missions outside of the Earth's magnetosphere, there are two major sources of exposure. Large Solar Particle Events (SPEs) consisting of numerous energetic protons and other heavy ions emitted by the Sun, and the Galactic Cosmic Rays (GCRs) that constitute an isotropic radiation field of low flux and high energy. In deep-space missions both SPEs and GCRs can be hazardous to the space crew. SPEs can provide an acute dose, which is a large dose over a short period of time. The acute doses from a large SPE that could be received by an astronaut with shielding as thick as a spacesuit maybe as large as 500 cGy. GCRs will not provide acute doses, but may increase the lifetime risk of cancer from prolonged exposures in a range of 40-50 cSv/yr. In this research, we are using artificial intelligence to model the dose-time profiles during a major solar particle event. Artificial neural networks are reliable approximators for nonlinear functions. In this study we design a dynamic network. This network has the ability to update its dose predictions as new input dose data is received while the event is occurring. To accomplish this temporal behavior of the system we use an innovative Sliding Time-Delay Neural Network (STDNN). By using a STDNN one can predict doses received from large SPEs while the event is happening. The parametric fits and actual calculated doses for the skin, eye and bone marrow are used. The parametric data set obtained by fitting the Weibull functional forms to the calculated dose points has been divided into two subsets. The STDNN has been trained using some of these parametric events. The other subset of parametric data and the actual doses are used for testing with the resulting weights and biases of the first set. This is done to show that the network can generalize. Results of this testing indicate that the STDNN is capable of predicting doses from events that it has not seen

  4. The changes in optical absorbance of ZrO{sub 2} thin film with the rise of the absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Abayli, D., E-mail: abayli@itu.edu.tr; Baydogan, N., E-mail: dogannil@itu.edu.tr [Energy Institute, Istanbul Technical University, Ayazaga Campus, 34469, Istanbul (Turkey)

    2016-03-25

    In this study, zirconium oxide (ZrO{sub 2}) thin film samples prepared by sol–gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO{sub 2} thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO{sub 2} thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 – 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.

  5. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  6. Absorbed Dose Distributions in Irradiated Plastic Tubing and Wire Insulation

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1979-01-01

    Plastic tubing and wire insulation were simulated by radiochromic dye dosimeter films having electron absorbing properties similar to the materials of interest (polyethylene and PVC). A 400-keV electron accelerator was used to irradiate from 1, 2, 3 and 4 sides simulating possible industrial...

  7. Measuring absorbed dose for i-CAT CBCT examinations in child, adolescent and adult phantoms.

    Science.gov (United States)

    Choi, E; Ford, N L

    2015-01-01

    Design and construct child and adolescent head phantoms to measure the absorbed doses imparted during dental CBCT and compare with the absorbed dose measured in an adult phantom. A child phantom was developed to represent the smallest patients receiving CBCT, usually for craniofacial developmental concerns, and an adolescent phantom was developed to represent healthy orthodontic patients. Absorbed doses were measured using a thimble ionization chamber for the custom-built child and adolescent phantoms and compared with measurements using a commercially available adult phantom. Imaging was performed with an i-CAT Next Generation (Imaging Sciences International, Hatfield, PA) CBCT using two different fields of view covering the craniofacial complex (130 mm high) or maxilla/mandible (60 mm high). Measured absorbed doses varied depending on the location of the ionization chamber within the phantoms. For CBCT images obtained using the same protocol for all phantoms, the highest absorbed dose was measured in all locations of the small child phantom. The lowest absorbed dose was measured in the adult phantom. Images were obtained with the same protocol for the adult, adolescent and child phantoms. A consistent trend was observed with the highest absorbed dose being measured in the smallest phantom (child), while the lowest absorbed dose was measured in the largest phantom (adult). This study demonstrates the importance of child-sizing the dose by using dedicated paediatric protocols optimized for the imaging task, which is critical as children are more sensitive to harmful effects of radiation and have a longer life-span post-irradiation for radiation-induced symptoms to develop than do adults.

  8. Influence of lead apron shielding on absorbed doses from panoramic radiography

    National Research Council Canada - National Science Library

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO(®) full body phantom...

  9. Influence of lead apron shielding on absorbed doses from panoramic radiography

    National Research Council Canada - National Science Library

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO® full body phantom...

  10. Absorbed dose evaluations in retrospective dosimetry: Methodological developments using quartz

    DEFF Research Database (Denmark)

    Bailiff, I.K.; Bøtter-Jensen, L.; Correcher, V.

    2000-01-01

    Dose evaluation procedures based on luminescence techniques were applied to 50 quartz samples extracted from bricks that had been obtained from populated or partly populated settlements in Russia and Ukraine downwind of the Chernobyl NPP. Determinations of accrued dose in the range similar to 30...

  11. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  12. Design of a reusable kinetic energy absorber for an astronaut safety tether to be used during extravehicular activities on the Space Station

    Science.gov (United States)

    Borthwick, Dawn E.; Cronch, Daniel F.; Nixon, Glen R.

    1991-01-01

    The goal of this project is to design a reusable safety device for a waist tether which will absorb the kinetic energy of an astronaut drifting away from the Space Station. The safety device must limit the tension of the tether line in order to prevent damage to the astronaut's space suit or to the structure of the spacecraft. The tether currently used on shuttle missions must be replaced after the safety feature has been developed. A reusable tether for the Space Station would eliminate the need for replacement tethers, conserving space and mass. This report presents background information, scope and limitations, methods of research and development, alternative designs, a final design solution and its evaluation, and recommendations for further work.

  13. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  14. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  15. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up......, the dyed polychlorostyrenes show essentially the same response to radiation-processing gamma-ray fields and to very high-intensity electron beams, and a relatively stable absorption spectrum at wavelengths for dosimetry analysis in the visible spectral region of ≈430 nm....... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride...

  16. A Proposal for the Absorbed Dose to Water Dosimetry for Flattening Filter-free Beams.

    Science.gov (United States)

    Katayose, Tetsurou; Kawachi, Toru; Miyasaka, Ryohei; Kodama, Takumi; Takase, Nobuhiro; Iriyama, Eri; Chang, Weishan; Saitoh, Hidetoshi

    2016-01-01

    Flattening filter-free (FFF) beams generated by linear accelerators have been widely adopted in many hospitals recently for radiation therapy. FFF technology can provide higher dose rates so that shortening of the treatment time and less intra-fraction motion error are expected.In Japan, the current way of determining absorbed dose to water for FFF beams is to follow the Standard Dosimetry 12 protocol which was developed for flattened beams. Since it has been reported that the flattened beams and FFF beams have different beam properties, it is necessary to evaluate the usefulness of Standard Dosimetry 12 protocol for FFF beam dosimetry.This report reviews physical and dosimetric properties of FFF beams especially in terms of the effect on absorbed dose to water dosimetry using an ionization chamber. From the review, it became evident that the absorbed dose to water is underestimated by volume averaging effect of the ionization chamber. On the other hand, the absorbed dose to water is overestimated by using the beam-quality specifier TPR 20,10 to predict the restricted mass collision stopping power ratio for FFF beams. Therefore, an alternative method was proposed for absorbed dose to water dosimetry of FFF beams based on Standard Dosimetry 12.

  17. Absorbed doses in tissue-equivalent spheres above radioactive sources in soil

    Energy Technology Data Exchange (ETDEWEB)

    Ulanovsky, Alexander [Institute for Radiation Protection, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Neuherberg (Germany)

    2014-11-15

    Doses due to external exposure of terrestrial biota are assessed using differential air kerma from radioactive sources in soil and energy-dependent 'absorbed dose-per-air kerma' conversion factors computed for spherical tissue-equivalent bodies. The presented approach allows computing average whole body absorbed dose for terrestrial organisms with body masses from 1 mg to 1,000 kg located at heights from 10 cm to 500 m above ground. Radioactive sources in soil emitting photons with energies from 10 keV to 10 MeV have been considered. Interpolation of the computed quantities over source energy, body mass, and height above ground results in plausible estimates of whole body average absorbed doses for non-human terrestrial biota from gamma-radiation emitted by any radionuclides in contaminated terrain. (orig.)

  18. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  19. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    Science.gov (United States)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  20. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  1. Absorbed dose calculations using mesh-based human phantoms and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Richard [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2010-07-01

    Full text. Health risks attributable to ionizing radiation are considered to be a function of the absorbed dose to radiosensitive organs and tissues of the human body. However, as human tissue cannot express itself in terms of absorbed dose, exposure models have to be used to determine the distribution of absorbed dose throughout the human body. An exposure model, be it physical or virtual, consists of a representation of the human body, called phantom, plus a method for transporting ionizing radiation through the phantom and measuring or calculating the absorbed dose to organ and tissues of interest. Female Adult meSH (FASH) and the Male Adult meSH (MASH) virtual phantoms have been developed at the University of Pernambuco in Recife/Brazil based on polygon mesh surfaces using open source software tools. Representing standing adults, FASH and MASH have organ and tissue masses, body height and mass adjusted to the anatomical data published by the International Commission on Radiological Protection for the reference male and female adult. For the purposes of absorbed dose calculations the phantoms have been coupled to the EGSnrc Monte Carlo code, which transports photons, electrons and positrons through arbitrary media. This presentation reports on the development of the FASH and the MASH phantoms and will show dosimetric applications for X-ray diagnosis and for prostate brachytherapy. (author)

  2. The absorbed doses from each exposure program of the Orthopos panoramic machine

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soon Chul; Lee, Sul Mi [Seoul National Univ. College of Dentistry, Seoul (Korea, Republic of)

    2001-12-15

    The objective of this study was to estimate the radiation absorbed doses in certain critical organs in the head and neck region with 16 imaging programs available on the Orthopos panoramic machine. A Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses were measured at the thyroid gland, the submandibular gland, the parotid gland, the mouth floor, the maxillary sinus, the brain, the mandibular body, the mandibular ramus, the 2nd cervical spine and the skin over TMJ area. The overall absorbed doses with imaging programs available on the Orthopos panoramic machine were much less than that of standard program (program 1) except program 8, 11, and 16. Generally, the absorbed doses to the bone marrow of the mandibular ramus and the parotid gland were high, but the absorbed doses to the bone marrow in the mandibular body, brain, maxillary sinus, and, especially, the thyroid gland were very low. The modified imaging programs available on the Orthopos panoramic can be effectively used in aspect of radiation protection.

  3. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Johansson, Lennart; Fernlund, Per; Nosslin, Bertil

    2007-04-15

    The Swedish radiation protection authority, (SSI), has supported work on estimates of radiation doses to patients from nuclear medicine examinations since more than 20 years. A number of projects have been reported. The results are put together and published under the name 'Doskatalogen' which contains data on doses to different organs and tissues from radiopharmaceuticals used for diagnostics and research. This new report contains data on: {sup 11}C-labelled substances (realistic maximum model), amino acids labelled with {sup 11}C, {sup 18}F or {sup 75}Se, {sup 99m}Tc-apcitide, {sup 123}I-labelled fatty acids ({sup 123}I- BMIPP and {sup 123}I-IPPA) and revised models for previously reported {sup 15}O-labelled water, {sup 99m}Tc-tetrofosmin (rest as well as exercise) and {sup 201}Tl-ion Data for almost 200 substances and radionuclides are included in the 'Doskatalogen' today. Since the year 2001 the 'Doskatalogen' is available on the authority's home page (www.ssi.se)

  4. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-09-15

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines.

  5. Absorbed dose in the full-mouth periapical radiography, panoramic radiography, and zonography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soon Chul; Choi, Hang Moon [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1999-02-15

    The objective of this study was to evaluate the possibility of substitution of the zonography for the full-mouth periapical radiography in aspect of radiation protection. Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses at brain, skin above the TMJ, parotid gland, bone marrow in the mandibular body, and thyroid gland during the full-mouth periapical radiography, panoramic radiography, and zonography were measured. From the zonography, the absorbed doses to the brain, the skin over the TMJ, and the parotid gland were relatively high, but the absorbed doses to the bone marrow in the mandibular body and, especially, the thyroid gland were very low. The zonography can be an alternative to the full-mouth periapical radiography in aspect of radiation protection.

  6. Peculiarities of absorbed dose forming in some wild animals in Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    V. A. Gaychenko

    2015-10-01

    Full Text Available Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, the peculiarities are identified of formation of absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. It was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Data were displayed about the importance of different types of irradiation according to the period of stay of the animals in the ground, in burrows and nests. The questions were reviewed about value of external and internal radiation in absorbed dose of different types of wildlife. Results of the calculation of the absorbed dose of bird embryos from egg shell were shown.

  7. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    Science.gov (United States)

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  8. Absorbed radiation doses to staff after implementation of a radiopharmacy clean room.

    Science.gov (United States)

    Ponto, James A

    2014-12-01

    In response to U.S. Pharmacopeia general chapter standards, a clean room was constructed for our in-house radiopharmacy. Previously, most patient doses were prepared as needed just before injection. Currently, to minimize repeated entries into the clean room, most patient doses are prepared in batches; that is, early morning and noontime preparation of doses to be injected at various times throughout the morning and the afternoon, respectively. Because these patient doses may be prepared well before injection time, radioactive decay necessitates higher amounts of radioactivity to be handled for patient dose preparation. Hence, absorbed radiation doses to staff, all of whom rotate into the radiopharmacy clean room in addition to their regular patient-related activities, were retrospectively evaluated. Monthly dosimetry reports for body (chest badge) and extremities (finger ring) were retrospectively reviewed for each staff member for 12 mo before and 12 mo after implementation of the radiopharmacy clean room. Monthly data were evaluated for average and SD, and 12-mo groups were evaluated using a paired t test. Data for the second 12-mo period were also normalized to the same number of patient doses to account for an increase in procedure volume and were reevaluated. Before the radiopharmacy clean room had been implemented, average monthly absorbed radiation doses to body and extremities were 23 ± 15 mrem (0.23 ± 0.15 mSv) and 93 ± 59 mrem (0.93 ± 0.59 mSv), respectively. After the clean room had been implemented, average monthly absorbed radiation doses increased to 32 ± 16 mrem (0.32 ± 0.16 mSv) (P radiopharmacy clean room, absorbed radiation doses to body and extremities increased by 26% and 18%, respectively, even after normalizing for procedure volume. Because absorbed radiation doses from other activities, such as patient dose administration and patient imaging, are assumed to remain relatively constant, these increases in absorbed radiation doses to

  9. The 1997 determination of the Australian standards of exposure and absorbed dose at {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, R.B.; Boas, J.F. [Australian Radiation Laboratory, Yallambie, VIC (Australia); Van der Gaast, H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-05-01

    The arrangements for the maintenance of the Australian standards for {sup 60}Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding {sup 90}Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) {sup 90}Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of {sup 90}Sr is confirmed. The usefulness of {sup 90}Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with

  10. Improved estimates of the radiation absorbed dose to the urinary bladder wall.

    Science.gov (United States)

    Andersson, Martin; Minarik, David; Johansson, Lennart; Mattsson, Sören; Leide-Svegborn, Sigrid

    2014-05-07

    Specific absorbed fractions (SAFs) have been calculated as a function of the content in the urinary bladder in order to allow more realistic calculations of the absorbed dose to the bladder wall. The SAFs were calculated using the urinary bladder anatomy from the ICRP male and female adult reference computational phantoms. The urinary bladder and its content were approximated by a sphere with a wall of constant mass, where the thickness of the wall depended on the amount of urine in the bladder. SAFs were calculated for males and females with 17 different urinary bladder volumes from 10 to 800 mL, using the Monte Carlo computer program MCNP5, at 25 energies of mono-energetic photons and electrons ranging from 10 KeV to 10 MeV. The decay was assumed to be homogeneously distributed in the urinary bladder content and the urinary bladder wall, and the mean absorbed dose to the urinary bladder wall was calculated. The Monte Carlo simulations were validated against measurements made with thermoluminescent dosimeters. The SAFs obtained for a urine volume of 200 mL were compared to the values calculated for the urinary bladder wall using the adult reference computational phantoms. The mean absorbed dose to the urinary wall from (18)F-FDG was found to be 77 µGy/MBq formales and 86 µGy/MBq for females, while for (99m)Tc-DTPA the mean absorbed doses were 80 µGy/MBq for males and 86 µGy/MBq for females. Compared to calculations using a constant value of the SAF from the adult reference computational phantoms, the mean absorbed doses to the bladder wall were 60% higher for (18)F-FDG and 30% higher for (99m)Tc-DTPA using the new SAFs.

  11. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    Tetrazolium salts as heterocyclic organic compounds are known to form highly coloured, water insoluble formazans by reduction, which can be utilized in radiation processing dosimetry. Radiochromic films containing nitro blue tetrazolium dissolved in a polymer matrix were found suitable for dose...... determination in a wide dose range both by absorbance and reflectance measurements. The concept of measuring reflected light from dose labels has been discussed earlier and emerged recently due to the requirement of introducing semiquantitative label dose indicators for quarantine control. The usefulness...

  12. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  13. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially avail...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  14. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  15. Calculation of absorbed dose in water by chemical Fricke dosimetry; Calculo de dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Adenilson Paiva, E-mail: adenilson-fisica@hotmail.com.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Meireles, Ramiro Conceicao [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  16. Skin Absorbed Doses from Full Mouth Standard Intraoral Radiography in Bisecting Angle and Paralleling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Soo; Kim, Ae Ji [Dept. of Oral Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of); Doh, Shi Hong [Dept. of Applied physics . National Fisheries University of Pusan Department of Radiotherapy, Pusan (Korea, Republic of); Kim, Hyun Ja [Dept. of Oral Radiology, Baptist Hospital, Pusan (Korea, Republic of); Yoo, Meong Jin [Dept. of Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    1990-08-15

    This study was performed to measure the skin absorbed doses from full mouth standard intraoral radiography(14 exposures) in bisecting angle and paralleling techniques. Thermoluminescent dosimeters were used in a phantom. Circular tube collimator (60 mm in diameter, 20 cm in length) and rectangular collimator (35 mm X 44 mm, 40 cm in length) were set for bisecting angle and paralleling techniques respectively. All measurement sites were classified into 8 groups according to distance from each point of central rays. The results were as follows: 1. The skin absorbed doses from the paralleling technique were significantly decreased than those from the bisecting technique in both points at central ray and points away from central ray. The percentage rats of decrease were greater at points away from central ray than those at central ray. 2. The skin absorbed doses at the lens of eye, parotid gland, submandibular gland and thyroid region were significantly decreased in paralleling technique, but those of the midline of palate remained similar in both techniques. 3. The highest doses were measured at the site 20 mm above the point of central ray for the mandibular premolars in bisecting angle technique and at the point of central ray for the mandibular premolars in paralleling techniques. The lowest doses were measured at the thyroid region in both techniques.

  17. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A.; Semiochkina, N. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Vasilenko, E.; Aladova, E.; Smetanin, M. [Southern Urals Biophysics Institute, Ozyorsk (Russian Federation); Fattibene, P. [Istituto Superiore di Sanita, Rome (Italy)

    2014-05-15

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. (orig.)

  18. Study of the clinical thermoluminescent dosimeter in the direct measurement of radiation absorbed dose for radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, R.K.; Wessels, B.W.; Woodson, Mildred; Limas, Catherine (Veterans Affairs Medical Center, Minneapolis, MN (USA) George Washington Univ. Medical Center, Washington, DC (USA). Div. of Radiation Oncology and Biophysics)

    1991-01-01

    One of the major obstacles facing radioimmunotherapy (RIT) is the lack of a device to measure directly tumor and normal tissue radiation absorbed dose. Calculations based on the clearance and imaging scans have several limitations; hence we design and fabricate a sheathed clinical thermoluminescent dosimeter (TLD) for the measurement of absorbed dose by implantation in humans. Preclinical studies are performed in nine normal rabbits. Complete blood count, body temperature monitoring, clinical observation and necropsy show no untoward effects from the TLD. Consistent bone marrow radiation doses are noted in the four rabbits receiving {sup 131}I-labeled monoclonal antibody A6H. By using up to 20 clinical TLDs in one sheath, it will be possible to determine macroscopic heterogeneities in organs undergoing RIT. (author).

  19. Fetal and maternal absorbed dose estimates for positron-emitting molecular imaging probes.

    Science.gov (United States)

    Xie, Tianwu; Zaidi, Habib

    2014-09-01

    PET and hybrid (PET/CT and PET/MR) imaging currently play a pivotal role in clinical diagnosis, staging and restaging, treatment, and surveillance of several diseases. As such, limiting the radiation exposure of special patients, such as pregnant women, from PET procedures is an important challenge that needs to be appropriately addressed because of the high sensitivity of the developing embryo/fetus to ionizing radiation. Therefore, accurate radiation dose calculation for the embryo/fetus and pregnant patient from common positron-emitting radiotracers is highly desired. To obtain representative estimates of radiation dose to the human body, realistic biologic and physical models should be used. In this work, we evaluate the S values of 9 positron-emitting radionuclides ((11)C, (13)N, (15)O, (18)F, (64)Cu, (68)Ga, (82)Rb, (86)Y, and (124)I) and the absorbed and effective doses for 21 positron-emitting labeled radiotracers using realistic anthropomorphic computational phantoms of early pregnancy and at 3-, 6-, and 9-mo of gestation and the most recent biokinetic data available. The Monte Carlo N-Particle eXtended general-purpose Monte Carlo code was used for radiation transport simulation. The absorbed dose to the pregnant model is less influenced by the gestation for most organs or tissues, but the anatomic changes of the maternal body increases the effective dose for some radiotracers. For (18)F-FDG, the estimated absorbed doses to the embryo/fetus are 3.05E-02, 2.27E-02, 1.50E-02, and 1.33E-02 mGy/MBq at early pregnancy and 3-, 6-, and 9-mo gestation, respectively. The absorbed dose is nonuniformly distributed in the fetus and would be 1.03-2 times higher in the fetal brain than in other fetal soft tissues. The generated S values can be exploited to estimate the radiation dose delivered to pregnant patients and the embryo/fetus from various PET radiotracers used in clinical and research settings. The generated dosimetric database of radiotracers using new

  20. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    Energy Technology Data Exchange (ETDEWEB)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V., E-mail: etieli@ird.gov.br [Instituto de Radioprotecao e Dosimetria / CNEN, Av. Salvador Allende s/n, Barra de Tijuca, 22783-127 Rio de Janeiro (Brazil)

    2014-08-15

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  1. Comparison of the neutron ambient dose equivalent and ambient absorbed dose calculations with different GEANT4 physics lists

    Science.gov (United States)

    Ribeiro, Rosane Moreira; Souza-Santos, Denison

    2017-10-01

    A comparison between neutron physics lists given by GEANT4, is made in the calculation of the ambient dose equivalent, and ambient absorbed dose, per fluence conversion coefficients (H* (10) / ϕ and D* (10) / ϕ) for neutrons in the range of 10-9 MeV to 15 MeV. Physics processes are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles. Results obtained for QBBC, QGSP_BERT, QGSP_BIC and Neutron High Precision physics lists are compared with values published in ICRP 74 and previously published articles. Neutron high precision physics lists showed the best results in the studied energy range.

  2. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A. [Cancer Institute of São Paulo State (ICESP), Clinical Hospital, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Watanabe, T. [Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Traino, A. C. [Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa 56126 (Italy)

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  3. The evaluation of lens absorbed dose according to the optimold for whole brain radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Mo; Park, Byoung Suk; Ahn, Jong Ho; Song, Ki Won [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-15

    In the current whole brain Radiation Therapy, Optimold was used to immobilize the head. However, skin dose was increased about 22% due to the scattering radiation by the Optimold. Since the minimum dose causing cataracts was 2 Gy, it could be seen that the effects were large especially on the lens. Therefore, in the whole brain Radiation Therapy, it was to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part. In order to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part, the Optimold mask was made up to 5 mm bolus on the part of the eye lens in the human model phantom (Anderson Rando Phantom, USA). In the practice treatment, to measure the lens dose, the simulation therapy was processed by placing the GafChromic EBT3 film under bolus, and after the treatment plan was set up through the treatment planning system (Pinnacle, PHILIPS, USA), the treatments were measured repeatedly three times in the same way. After removing the Optimold mask in the eyeball part, it was measured in the same way as above. After scanning the film and measuring the dose by using the Digital Flatbed Scanner (Expression 10000XL, EPSON, USA), the doses were compared and evaluated according to the presence of Optimold mask in the eyeball part. When there was the Optimold mask in the eyeball part, it was measured at 10.2cGy ± 1.5 in the simulation therapy, and at 24.8cGy ± 2.7 in the treatment, and when the Optimold mask was removed in the eye part, it was measured at 12.9cGy ± 2.2 in the simulation therapy, and at 17.6cGy ± 1.5 in the treatment. In case of removing the Optimold mask in the eyeball part, the dose was increased approximately 3cGy in the simulation therapy and was reduced approximately 7cGy in the treatment in comparison to the case that the Optimold mask was not removed. During the whole treatment, since the lens absorbed dose was reduced about 27%, the chance to cause

  4. Absorbed fraction and dose conversion coefficients of alpha particles for radon dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nikezic, D. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Faculty of Sciences, University of Kragujevac, Kragujevac (Yugoslavia); Yu, K.N. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Vucic, D. [Faculty of Technology, University of Nis, Lescovac (Yugoslavia)

    2001-07-01

    The sensitivity to different relevant parameters of the absorbed fraction of alpha particles emitted from the {sup 222}Rn chain in sensitive cells of the tracheo-bronchial tree have been investigated. The structure of the airway wall given by ICRP (ICRP66) has been adopted and employed in the present calculations. The source thickness (mucous gel and sol + cilia), target layer thickness and the depth of the sensitive layers have been varied within reasonable ranges around the default values recommended by ICRP66. The results have shown that the depth of the sensitive layers is the most important parameter in calculating the absorbed fraction. In addition, dose conversion coefficients were calculated and presented along with the absorbed fractions. (author)

  5. X-ray absorbed doses evaluation on patients under radiological studies; Avaliacao das doses de radiacao X recebidas por pacientes em estudos radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Regina Bitelli; Daros, Kellen A.C. [Universidade Federal de Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem

    1996-12-31

    The skin absorbed doses were evaluated on patient submitted to the following x-ray exams : chest, facial sinus, lumbar spine. Thermoluminescent dosimetry was used and a variety of irradiation techniques performed. The results shown considerable differences on the absorbed dose for the various alternative technical conditions

  6. Comparison of cone beam CT and conventional CT in absorbed and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Yeon; Han, Jin Woo; Park, In Woo [Department of Oral and Maxillofacial Radiology, College of Dentistry, Kangnung National University and Reseach Institute of Oral Science, Gangneung (Korea, Republic of)

    2008-03-15

    This study provides comparative measurements of absorbed and effective doses for newly developed cone beam computed tomography (CT) in comparison with these doses for conventional CT. Thermoluminescent dosimeter rods (TLD rod: GR-200, Thermo Fisher Scientific Inc., Waltham, MA, USA) were placed at 25 sites throughout the layers of Male ART Head and Neck Phantom (Radiology Support Devices Inc., Long Beach, USA) for dosimetry. Implagraphy, DCT Pro (Vatech Co., Hwasung, Korea) units, SCT-6800TXL (Shimadzu Corp., Kyoto, Japan), and Cranex 3+ (Soredex Orion Corp., Helsinki, Finland) were used for radiation exposures. Absorption doses were measured with Harshaw 3500TLD reader (Thermo Fisher Scientific Inc., Waltham, MA, USA). Radiation weighted doses and effective doses were measured and calculated by 2005 ICRP tissue weighting factors. Absorbed doses in Rt. submandibular gland were 110.57 mGy for SCT 6800TXL (Implant), 24.56 mGy for SCT 6800TXL (3D), 22.39 mGy for Implagraphy3, 7.19 mGy for DCT Pro, 5.96 mGy for Implagraphy1, 0.70 mGy for Cranex 3+. Effective doses (E2005draft) were 2.551 mSv for SCT 6800TXL (Implant), 1.272 mSv for SCT 6800TXL (3D), 0.598 mSv for Implagraphy3, 0.428 mSv for DCT Pro and 0.146 mSv for Implagraphy1. These are 108.6, 54.1, 25.5, 18.2 and 6.2 times greater than panoramic examination (Cranex 3+) doses (0.023 mSv). Cone beam CT machines recently developed in Korea, showed lower effective doses than conventional CT. Cone beam CT provides a lower dose and cost motive to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology.

  7. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans.

    Science.gov (United States)

    Miró-Casas, E; Covas, M-I; Fitó, M; Farré-Albadalejo, M; Marrugat, J; de la Torre, R

    2003-01-01

    To investigate the absorption of tyrosol and hydroxytyrosol from moderate and sustained doses of virgin olive oil consumption. The study also aimed to investigate whether these phenolic compounds could be used as biomarkers of virgin olive oil intake. Ingestion of a single dose of virgin olive oil (50 ml). Thereafter, for a week, participants followed their usual diet which included 25 ml/day of the same virgin olive oil as the source of raw fat. Unitat de Recerca en Farmacologia. Institut Municipal d'Investigació Mèdica (IMIM). Seven healthy volunteers. An increase in 24 h urine of tyrosol and hydroxytyrosol, after both a single-dose ingestion (50 ml) and short-term consumption (one week, 25 ml/day) of virgin olive oil (P<0.05) was observed. Urinary recoveries for tyrosol were similar after a single dose and after sustained doses of virgin olive oil. Mean recovery values for hydroxytyrosol after sustained doses were 1.5-fold those obtained after a single 50 ml dose. Tyrosol and hydroxytyrosol are absorbed from realistic doses of virgin olive oil. With regard to the dose-effect relationship, 24 h urinary tyrosol seems to be a better biomarker of sustained and moderate doses of virgin olive oil consumption than hydroxytyrosol.

  8. Radiation absorbed dose estimates for [1-carbon-11]-glucose in adults: The effects of hyperinsulinemia

    Energy Technology Data Exchange (ETDEWEB)

    Powers, W.J. [Washington School of Medicine, St. Louis, MO (United States)]|[Lillian Strauss Institute for Neuroscience of the Jewish Hospital, St. Louis, MO (United States)

    1996-10-01

    As preparation for studies of blood-brain glucose transport in diabetes mellitus, radiation absorbed dose estimates from intravenous administration of [1-{sup 11}C]-glucose for 24 internal organs, lens, blood and total body were calculated for three physiologic conditions: euinsulinemic euglycemia, hyperinsulinemic euglycemia and hyperinsulinemic hyperglycemia. Cumulated activities in blood, insulin-independent and insulin-dependent compartments were calculated from blood time-activity curves in normal human volunteers and macaques. Apportionment of cumulated activity to individual organs in insulin-dependent and insulin-independent compartments was based on previously published data. Absorbed doses were calculated with the computer program MIRDOSE 3 for the 70-kg adult phantom. S for blood was calculated separately. The heart wall, lungs and spleen were the organs receiving the highest dose. The effect of hyperinsulinemia was demonstrated by the increase in adsorbed dose to the muscle, heart and blood with a decrease to other internal organs. This effect was more pronounced during hyperinsulinemic hyperglycemia. Hyperinsulinemia produced a decrease in effective dose due to the decrease in cumulated activity in organs with specified weighting factors greater than 0.05. The effective dose per study for [1-{sup 11}C]-glucose is comparable to that reported for 2-deoxy-[2-{sup 18}F]-glucose. 43 refs., 1 fig., 4 tabs.

  9. Absorbed dose assessment in particle-beam irradiated metal-oxide and metal-nonmetal memristors

    Directory of Open Access Journals (Sweden)

    Knežević Ivan D.

    2012-01-01

    Full Text Available Absorbed dose was estimated after Monte Carlo simulation of proton and ion beam irradiation on metal-oxide and metal-nonmetal memristors. A memristive device comprises two electrodes, each of a nanoscale width, and a double-layer active region disposed between and in electrical contact with electrodes. Following materials were considered for the active region: titanium dioxide, zirconium dioxide, hafnium dioxide, strontium titanium trioxide and galium nitride. Obtained results show that significant amount of oxygen ion - oxygen and nonmetal ion - nonmetal vacancy pairs is to be generated. The loss of such vacancies from the device is believed to deteriorate the device performance over time. Estimated absorbed dose values in the memristor for different constituting materials are of the same order of magnitude because of the close values of treshold displacement energies for the investigated materials.

  10. Measurement of absorbed dose by 7-GeV bremsstrahlung in a PMMA phantom

    CERN Document Server

    Job, P K; Semones, E

    1999-01-01

    High-energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the particle beam with the residual gas molecules and other components inside the storage ring. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous bremsstrahlung spectrum, with a maximum energy of the stored particle beam, will be present. At the advanced photon source (APS), where the stored beam energy is 7 GeV, bremsstrahlung generated in the straight sections of the insertion device beamlines, which are a total of 15.38 m in length, can be significant. The contribution from each bremsstrahlung interaction adds up to produce a narrow mono-directional bremsstrahlung beam that comes down through the insertion device beamlines. The resulting absorbed dose distributions by this radiation in a 300 mmx300 mmx300 mm tissue substitute cube phantom were measured with LiF:Mg,Ti (TLD-700) thermoluminescent dosemeters. The normalized absorbed dose, in a cro...

  11. Optimization algorithm for absorbed dose calculation during single intake of 131І to rats

    Directory of Open Access Journals (Sweden)

    I. P. Drozd

    2016-02-01

    Full Text Available Original calculation algorithms are proposed for absorbed doses in the thyroid gland and thymus of rats at single income of 131I that enable to simplify the calculations and at the same time ensure high reliability of results in the range of input activities of 1 - 115000 Bq. According to the algorithms, the program is developed in the MATLAB environment, adapted for use on Windows running PC. Relative error of calculations is ±2 %.

  12. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.

    Science.gov (United States)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-06-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil); Pereira, Aline Garcia, E-mail: aalinegp@gmail.co [Sinan Project - Sistema de Informacao de Agravos de Notificacao, Florianopolis, SC (Brazil)

    2011-03-15

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  14. Mycosis Fungoides electron beam absorbed dose distribution using Fricke xylenol gel dosimetry

    Science.gov (United States)

    da Silveira, Michely C.; Sampaio, Francisco G. A.; Petchevist, Paulo C. D.; de Oliveira, André L.; Almeida, Adelaide de

    2011-12-01

    Radiotherapy uses ionizing radiation to destroy tumor cells. The absorbed dose control in the target volume is realized through radiation sensors, such as Fricke dosimeters and radiochromic film, which permit to realize bi-dimensional evaluations at once and because of that, they will be used in this study as well. Among the several types of cancer suitable for ionizing radiation treatment, the Mycosis Fungoides, a lymphoma that spreads on the skin surface and depth, requires for its treatment total body irradiation by high-energy electrons. In this work the Fricke xylenol gel (FXG) was used in order to obtain information about the absorbed dose distribution induced by the electron interactions with the irradiated tissues and to control this type of treatment. FXG can be considered as an alternative dosimeter, since up to now only films have been used. FXG sample cuvettes, simulating two selected tomos (cranium and abdomen) of the Rando anthropomorphic phantom, were positioned along with radiochromic films for comparison. The phantom was subjected to Stanford total body irradiation using 6 MeV electrons. Tomographic images were acquired for both dosimeters and evaluated through horizontal and vertical profiles along the tomographic centers. These profiles were obtained through a Matlab routine developed for this purpose. From the obtained results, one could infer that, for a superficial and internal patient irradiation, the FXG dosimeter showed an absorbed dose distribution similar to the one of the film. These results can validate the FXG dosimeter as an alternative dosimeter for the Mycosis Fungoides treatment planning.

  15. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  16. Absorbed dose by thyroid in case of nuclear accidents; Dose absorvida pela tireoide em casos de acidentes nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia; Attie, Marcia Regina Pereira [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Amaral, Ademir [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ({sup 131}I, {sup 132}I, {sup 133}I, {sup 134}I and {sup 135}I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  17. Preliminary Study on the Quantitative Value Transfer Method of Absorbed Dose to Water in 60Co γ Radiation

    Directory of Open Access Journals (Sweden)

    SONG Ming-zhe

    2015-01-01

    Full Text Available Absorbed dose to water in 60Co γ radiation is the basic physics quantity in the quantitative value system of radiation therapy, it is very necessary for radiation therapy. The study on the quantitative value transfer method of absorbed dose to water in 60Co γ Radiation could provide important technical support to the establishment of Chinese absorbed dose to water quantity system. Based on PTW-30013 ionization chamber, PMMA water phantom and 3D mobile platform, quantitative value transfer standard instrument was established, combined with the requirement of IAEA-TRS398, developed preliminary study of 60Co absorbed dose to water quantity value transfer method. After the quantity value transfer, the expanded uncertainty of absorbed dose to water calibration factor of PTW-30013 was 0.90% (k=2, the expanded uncertainty of absorbed dose to water of 60Co γ reference radiation in Radiation Metrology Center (SSDL of IAEA was 1.4% (k=2. The results showed that, this value transfer method can reduce the uncertainty of 60Co absorbed dose to water effectively in Secondary Standard Dosimetry Laboratory.

  18. Identification of Trends into Dose Calculations for Astronauts through Performing Sensitivity Analysis on Calculational Models Used by the Radiation Health Office

    Science.gov (United States)

    Adams, Thomas; VanBaalen, Mary

    2009-01-01

    The Radiation Health Office (RHO) determines each astronaut s cancer risk by using models to associate the amount of radiation dose that astronauts receive from spaceflight missions. The baryon transport codes (BRYNTRN), high charge (Z) and energy transport codes (HZETRN), and computer risk models are used to determine the effective dose received by astronauts in Low Earth orbit (LEO). This code uses an approximation of the Boltzman transport formula. The purpose of the project is to run this code for various International Space Station (ISS) flight parameters in order to gain a better understanding of how this code responds to different scenarios. The project will determine how variations in one set of parameters such as, the point of the solar cycle and altitude can affect the radiation exposure of astronauts during ISS missions. This project will benefit NASA by improving mission dosimetry.

  19. The estimation of absorbed dose rates for non-human biota: an extended intercomparison.

    Science.gov (United States)

    Vives i Batlle, J; Beaugelin-Seiller, K; Beresford, N A; Copplestone, D; Horyna, J; Hosseini, A; Johansen, M; Kamboj, S; Keum, D-K; Kurosawa, N; Newsome, L; Olyslaegers, G; Vandenhove, H; Ryufuku, S; Vives Lynch, S; Wood, M D; Yu, C

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  20. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C. (Environmental Science Division); (Westlakes Scientific Consulting Ltd.); (Inst. de Radioprotection et de Surete Nucleaire); (Centre for Ecology & Hydrology); (Norwegian Radiation Protection Authority); (State Office for Nuclear Safety); (Korea Atomic Energy Research Institute); (Visible Information Centre Inc.); (Belgian Nuclear Research Centre); (University of Liverpool)

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  1. Dose absorbed by technologists in positron emission tomography procedures with FDG

    Directory of Open Access Journals (Sweden)

    Ademir Amaral

    2007-09-01

    Full Text Available The objective of this work was to evaluate radiation doses delivered to technologists engaged in different tasks involving positron emission tomography (PET studies with FDG (fluorodeoxyglucose. This investigation was performed in two French nuclear medicine departments, which presented significant differences in their arrangements and radiation safety conditions. Both centers administered about 300 MBq per PET/CT study, although only one of them is a dedicated clinical PET center. Dose equivalent Hp(10 and skin dose Hp(0.07 were measured using Siemens electronic personnel dosimeters. For assessment dose absorbed by hands during drawing up of tracer and injection into the patient, a Polimaster wristwatch gamma dosimeter was employed. Absorbed dose and the time spent during each investigated task were recorded for a total of 180 whole-body PET studies. In this report, the methodology employed, the results and their radioprotection issues are presented as well as discussed.O objetivo deste trabalho foi o de avaliar doses absorvidas por profissionais de saúde em diferentes tarefas relacionadas à tomografia por emissão de pósitrons com [18F]-FDG (fluordesoxiglicose. Esta pesquisa foi realizada em dois centros de medicina nuclear na França, os quais apresentavam diferenças significativas em sua organização e radioproteção. Esses centros aplicavam aproximadamente 300 MBq por exame PET/CT, embora apenas um deles correspondesse a um serviço de medicina nuclear dedicado a exames por PET. A dose equivalente (Hp(10 e a dose na pele Hp(0,07 foram medidas usando dosímetros eletrônicos (Siemens. Para avaliação da dose nas mãos do tecnologista durante a preparação do radiofármaco e durante injeção no paciente, um dosímetro tipo relógio de pulso (Polimaster foi empregado. A dose absorvida e o tempo empregado durante cada tarefa foram registrados para um total de 180 exames de corpo inteiro através da PET. Neste trabalho, a metodologia

  2. A Study to Compare the Radiation Absorbed Dose of the C-arm Fluoroscopic Modes

    Science.gov (United States)

    Cho, Jae Hun; Kang, Joo Eun; Park, Pyong Eun; Kim, Jae Hun; Lim, Jeong Ae; Kim, Hae Kyoung; Woo, Nam Sik

    2011-01-01

    Background Although many clinicians know about the reducing effects of the pulsed and low-dose modes for fluoroscopic radiation when performing interventional procedures, few studies have quantified the reduction of radiation-absorbed doses (RADs). The aim of this study is to compare how much the RADs from a fluoroscopy are reduced according to the C-arm fluoroscopic modes used. Methods We measured the RADs in the C-arm fluoroscopic modes including 'conventional mode', 'pulsed mode', 'low-dose mode', and 'pulsed + low-dose mode'. Clinical imaging conditions were simulated using a lead apron instead of a patient. According to each mode, one experimenter radiographed the lead apron, which was on the table, consecutively 5 times on the AP views. We regarded this as one set and a total of 10 sets were done according to each mode. Cumulative exposure time, RADs, peak X-ray energy, and current, which were viewed on the monitor, were recorded. Results Pulsed, low-dose, and pulsed + low-dose modes showed significantly decreased RADs by 32%, 57%, and 83% compared to the conventional mode. The mean cumulative exposure time was significantly lower in the pulsed and pulsed + low-dose modes than in the conventional mode. All modes had pretty much the same peak X-ray energy. The mean current was significantly lower in the low-dose and pulsed + low-dose modes than in the conventional mode. Conclusions The use of the pulsed and low-dose modes together significantly reduced the RADs compared to the conventional mode. Therefore, the proper use of the fluoroscopy and its C-arm modes will reduce the radiation exposure of patients and clinicians. PMID:22220241

  3. Selective fallopian tube catheterisation in female infertility: clinical results and absorbed radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Ishiguchi, T. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Maekoshi, H. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Ando, Y. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan); Tsuzaka, M. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Tamiya, T. [Department of Radiological Technology, Nagoya University College of Medical Technology, Nagoya (Japan); Suganuma, N. [Department of Obstetrics and Gynecology, Branch Hospital, Nagoya University School of Medicine, Nagoya (Japan); Ishigaki, T. [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466 (Japan)

    1996-08-01

    Clinical results of fluoroscopic fallopian tube catheterisation and absorbed radiation doses during the procedure were evaluated in 30 infertility patients with unilateral or bilateral tubal obstruction documented on hysterosalpingography. The staged technique consisted of contrast injection through an intrauterine catheter with a vacuum cup device, ostial salpingography with the wedged catheter, and selective salpingography with a coaxial microcatheter. Of 45 fallopian tubes examined, 35 (78 %) were demonstrated by the procedure, and at least one tube was newly demonstrated in 26 patients (87 %). Six of these patients conceived spontaneously in the follow-up period of 1-11 months. Four pregnancies were intrauterine and 2 were ectopic. This technique provided accurate and detailed information in the diagnosis and treatment of tubal obstruction in infertility patients. The absorbed radiation dose to the ovary in the average standardised procedure was estimated to be 0.9 cGy. Further improvement in the X-ray equipment and technique is required to reduce the radiation dose. (orig.). With 3 figs., 3 tabs.

  4. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    Science.gov (United States)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2–14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0–4 years old) were a factor of 2.4 greater than those of the older, larger patients (8–12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original

  5. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy.

    Science.gov (United States)

    Gallagher, Kyle J; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J

    2018-01-11

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients' computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients' image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients' data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original computed

  6. Internal absorbed dose estimation by a TLD method for -FDG and comparison with the dose estimates from whole body PET

    Science.gov (United States)

    Deloar, Hossain M.; Fujiwara, Takehiko; Shidahara, Miho; Nakamura, Takashi; Yamadera, Akira; Itoh, Masatoshi

    1999-02-01

    The thermoluminescent dosimeter (TLD) method has been proposed as a useful tool for estimating internal radiation absorbed dose in nuclear medicine. An efficient approach to verify the accuracy of the TLD method has been performed in this study. Under the standard protocol for 2-[F-18]fluoro-2-deoxy-D-glucose , whole body PET experiments and simultaneous body surface dose measurements by TLDs were performed on six normal volunteers. By using the body surface dose measured with TLDs, the cumulated activities of nine source organs were estimated with a mathematical unfolding technique for three different initial guesses. The accuracy of the results obtained by the TLD method was investigated by comparison with the actual cumulated activity of the same source organs measured by whole body PET. The cumulated activities of the source organs obtained by the TLD method and whole body PET show a significant correlation (correlation coefficient, , level of confidence, ) with each other. The mean effective doses in this study are obtained from the TLD method and obtained from the whole body PET. Good agreement between the results of the TLD method and whole body PET was observed.

  7. FLUKA predictions of the absorbed dose in the HCAL Endcap scintillators using a Run1 (2012) CMS FLUKA model

    CERN Document Server

    CMS Collaboration

    2016-01-01

    Estimates of absorbed dose in HCAL Endcap (HE) region as predicted by FLUKA Monte Carlo code. Dose is calculated in an R-phi-Z grid overlaying HE region, with resolution 1cm in R, 1mm in Z, and a single 360 degree bin in phi. This allows calculation of absorbed dose within a single 4mm thick scintillator layer without including other regions or materials. This note shows estimates of the cumulative dose in scintillator layers 1 and 7 during the 2012 run.

  8. {sup 99m}Tc Auger electrons - Analysis on the effects of low absorbed doses by computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Adriana Alexandre S., E-mail: adriana_tavares@msn.co [Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465 Porto (Portugal); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.p [Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, S/N, 4200-465 Porto (Portugal)

    2011-03-15

    We describe here the use of computational methods for evaluation of the low dose effects on human fibroblasts after irradiation with Technetium-99m ({sup 99m}Tc) Auger electrons. The results suggest a parabolic relationship between the irradiation of fibroblasts with {sup 99m}Tc Auger electrons and the total absorbed dose. Additionally, the results on very low absorbed doses may be explained by the bystander effect, which has been implicated on the cell's effects at low doses. Further in vitro evaluation will be worthwhile to clarify these findings.

  9. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    Directory of Open Access Journals (Sweden)

    Sudha Rana

    2010-01-01

    Full Text Available Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation.

  10. Absorbed dose distribution visualization for superficial treatments through the Fricke Xylenol Gel dosimeter (FXG)

    Energy Technology Data Exchange (ETDEWEB)

    Alva, M; Sampaio, F G A; Moreira, M V; Petchevist, P C D; De Almeida, A, E-mail: dalmeida@ffclrp.usp.b

    2010-11-01

    Electrons, orthovoltage X-rays and betas are used for superficial treatments. It has been shown that it is practical to measure these three types of radiation using gel dosimetry, which is an accurate dosimetric tool, from which one can infer the absorbed dose. The Fricke Xylenol Gel (FXG) dosimeter has presented adequate results due to its spatial resolution, effective atomic number and density that are near to those of soft tissue. The aim of this work is to compare three types of radiation for skin treatments like orthovoltage (X-rays), brachytherapy (beta rays) and megavoltage (electrons) using the FXG-CCD dosimetric system to determine the calibration curves (CC), beam profiles (BP) and percentage depth dose curves (PDD), evidencing why for clinical applications a specific type of radiation is selected for superficial treatment. From the results obtained we can infer that the FXG-CCD system is adequate for linear, area and volume measurements.

  11. Evaluation of absorbed radiation dose in mammography using Monte Carlo simulation; Avaliacao da dose absorvida em mamografia usando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruno L.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    Mammography is the main tool for breast cancer diagnosis, and it is based on the use of X-rays to obtain images. However, the glandular tissue present within the breast is highly sensitive to ionizing radiation, and therefore requires strict quality control in order to minimize the absorbed dose. The quantification of the absorbed dose in the breast tissue can be done by using Monte Carlo simulation, which allows a detailed study of the deposition of energy in different regions of the breast. Besides, the results obtained from the simulation can be associated with experimental data and provide values of dose interest, such as the dose deposited in glandular tissue. (author)

  12. Assessment of the absorbed dose to organs from bone mineral density scan by using TLDS and the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Karimian Alireza

    2014-01-01

    Full Text Available Nowadays, dual energy X-ray absorptiometry is used in bone mineral density systems to assess the amount of osteoporosis. The purpose of this research is to evaluate patient organ doses from dual X-ray absorptiometry by thermoluminescence dosimeters chips and Monte Carlo method. To achieve this goal, in the first step, the surface dose of the cervix, kidney, abdomen region, and thyroid were measured by using TLD-GR 200 at various organ locations. Then, to evaluate the absorbed dose by simulation, the BMD system, patient's body, X-ray source and radiosensitive tissues were simulated by the Monte Carlo method. The results showed, for the spine (left femur bone mineral density scan by using thermoluminescence dosimeters, the absorbed doses of the cervix and kidney were 4.5 (5.64 and 162.17 (3.99(mGy, respectively. For spine (left femur bone mineral density scan in simulation, the absorbed doses of the cervix and kidney were 4.19 (5.88 and 175 (3.68(mGy, respectively. The data obtained showed that the absorbed dose of the kidney in the spine scan is noticeable. Furthermore, because of the small relative difference between the simulation and experimental results, the radiation absorbed dose may be assessed by simulation and software, especially for internal organs, and at different depths of otherwise inaccessible organs which is not possible in experiments.

  13. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    Energy Technology Data Exchange (ETDEWEB)

    Lessard, E.T.; Miltenberger, R.P.; Conrad, R.A.; Musoline, S.V.; Naidu, J.R.; Moorthy, A.; Schopfer, C.J.

    1985-03-01

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs.

  14. Response Funtions for Computing Absorbed Dose to Skeletal Tissues from Photon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eckerman, Keith F [ORNL; Bolch, W E [University of Florida, Gainesville; Zankl, M [Institute of Radiation Protection, GSF-National Reserach Center for Environ; Petoussi-Henss, N [Institute of Radiation Protection, GSF-National Reserach Center for Environ

    2007-01-01

    The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbed energy over the active marrow within the spongiosa and over the soft tissues within 10 mm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 mm of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose response functions. This paper outlines the development of such response functions for photons.

  15. Response functions for computing absorbed dose to skeletal tissues from photon irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Eckerman, K.F. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6480 (United States); Bolch, W.E. [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Zankl, M.; Petoussi-Henss, N. [GSF-National Research Center for Environment and Health, Institute of Radiation Protection, Ingolstaedter Landstr, 1, 85764 Neuherberg (Germany)

    2007-07-01

    The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualized in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteo-progenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbed energy over the active marrow within the spongiosa and over the soft tissues within 10 {mu}m of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 {mu}m of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose-response functions. This paper outlines the development of such response functions for photons. (authors)

  16. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, A Ram; Ahn, Sung Min [Dept. of Radiological Science, The Graduate School, Gachon University, Incheon (Korea, Republic of); Lee, In Ja [Dept. of Radiologic technology, Dongnam health University, Suwon (Korea, Republic of)

    2017-09-15

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

  17. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    Science.gov (United States)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    Space radiation effects mitigation has been identified as one of the highest priority technology development areas for human space flight in the NASA Strategic Space Technology Investment Plan (Dec. 2012). In this paper we review the special features of space radiation that lead to severe constraints on long-term (more than 180 days) human flight operations outside Earth's magnetosphere. We then quantify the impacts of human space radiation dose limits on spacecraft engineering design and development, flight program architecture, as well as flight program schedule and cost. A new Deep Space Habitat (DSH) concept, the hybrid inflatable habitat, is presented and shown to enable a flexible, affordable approach to long term manned interplanetary flight today.

  18. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post Radioembolization 90Y PET

    Directory of Open Access Journals (Sweden)

    Shyam Mohan Srinivas

    2014-10-01

    Full Text Available Background: Radioembolization with Yttrium-90 (90Y microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC. Using post-treatment 90Y PET/CT scans,the distribution of microspheres within the liver can be determined and quantitatively assessesed . We studied the radiation dose of 90Y delivered to liver and treated tumors.Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres® to the frequency of complications with mRECIST. 90Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL to an absorbed dose (Gy.Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90-120 Gy;range 0-570 Gy. Tumor response by mRECIST criteria was performed for 48 tumors that had follow up scans. There were 21 responders (mean dose 215 Gy and 27 nonresponders (mean dose 167 Gy. The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p=0.099. Normal liver tissue received a mean dose of 67 Gy (mode 60-70 Gy; range 10-120 Gy. There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p=0.036.Conclusion: Our cohort of patients showed a possible dose response trend for the tumors. Collateral dose to normal liver is nontrivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or treatment failure can be attributed to the dose which the tumor or normal liver received.

  19. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized by the B...

  20. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Regazzoni, V.; Grisotto, S.; Artuso, E.; Giove, D. [Universita degli Studi di Milano, Department of Physics, via Celoria 16, 20133 Milano (Italy); Borroni, M.; Carrara, M.; Pignoli, E. [Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Medical Physics Unit, via Giacomo Venezian 16, 20133 Milano (Italy); Mirandola, A.; Ciocca, M., E-mail: grazia.gambarini@mi.infn.it [Centro Nazionale Adroterapia Oncologica, Medical Physics Unit, Strada Campeggi 53, 27100 Pavia (Italy)

    2014-08-15

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of {sup 60}Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  1. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    Science.gov (United States)

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  2. Determination of. gamma. -ray absorbed dose rates in air above igneous and sedimentary rocks on SW Dartmoor

    Energy Technology Data Exchange (ETDEWEB)

    Day, L.R.; Zumpe, H.H. (North East London Polytechnic (UK))

    1984-01-01

    Calculations have been made to determine the ..gamma..-ray absorbed dose rate in air above different types of rock using a single group radiation attenuation model. The results obtained are then compared with dose rates measured with a compensated environmental Geiger-Muller counter. The measurements were made above granite, slate, and dolerite and also on alluvium overlying granite. The comparison shows good agreement between measured and calculated dose rates taking into account the limitations inherent in both the calculations and measurements.

  3. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    Science.gov (United States)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  4. A descriptive and broadly applicable model of therapeutic and stray absorbed dose from 6 to 25 MV photon beams.

    Science.gov (United States)

    Schneider, Christopher W; Newhauser, Wayne D; Wilson, Lydia J; Schneider, Uwe; Kaderka, Robert; Miljanić, Saveta; Knežević, Željka; Stolarcyzk, Liliana; Durante, Marco; Harrison, Roger M

    2017-07-01

    To develop a simple model of therapeutic and stray absorbed dose for a variety of treatment machines and techniques without relying on proprietary machine-specific parameters. Dosimetry measurements conducted in this study and from the literature were used to develop an analytical model of absorbed dose from a variety of treatment machines and techniques in the 6 to 25 MV interval. A modified one-dimensional gamma-index analysis was performed to evaluate dosimetric accuracy of the model on an independent dataset consisting of measured dose profiles from seven treatment units spanning four manufacturers. The average difference between the calculated and measured absorbed dose values was 9.9% for those datasets on which the model was trained. Additionally, these results indicate that the model can provide accurate calculations of both therapeutic and stray radiation dose from a wide variety of radiotherapy units and techniques. We have developed a simple analytical model of absorbed dose from external beam radiotherapy treatments in the 6 to 25 MV beam energy range. The model has been tested on measured data from multiple treatment machines and techniques, and is broadly applicable to contemporary external beam radiation therapy. © 2017 American Association of Physicists in Medicine.

  5. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry; Analise das incertezas na determinacao da dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre, E-mail: fabiavasco@hotmail.com, E-mail: ederuni01@gmail.com [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2016-07-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  6. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    Science.gov (United States)

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared

  7. Measurement of ionization chamber absorbed dose k(Q) factors in megavoltage photon beams.

    Science.gov (United States)

    McEwen, Malcolm R

    2010-05-01

    Absorbed dose beam quality conversion factors (k(Q) factors) were obtained for 27 different types of ionization chamber. The aim was to obtain objective evidence on the performance of a wide range of chambers currently available, and potentially used for reference dosimetry, and to investigate the accuracy of the k(Q) calculation algorithm used in the TG-51 protocol. Measurements were made using the 60Co irradiator and Elekta Precise linac facilities at the National Research Council of Canada. The objective was to characterize the chambers over the range of energies applicable to TG-51 and determine whether each chamber met the requirements of a reference-class instrument. Chamber settling, leakage current, ion recombination and polarity, and waterproofing sleeve effects were investigated, and absorbed dose calibration coefficients were obtained for 60Co and 6, 10, and 25 MV photon beams. Only thimble-type chambers were considered in this investigation and were classified into three groups: (i) Reference chambers ("standard" 0.6 cm3 Farmer-type chambers and their derivatives traditionally used for beam output calibration); (ii) scanning chambers (typically 0.1 cm3 volume chambers used for beam commissioning with 3-D scanning phantoms); and (iii) microchambers (very small volume ion chambers (measured and calculated k(Q) factors was within 0.4%; for some chambers, differences of more than 1% were seen that may be related to the recombination/polarity results. Use of such chambers could result in significant errors in the determination of reference dose in the clinic. Based on the experimental evidence obtained here, specification for a reference-class ionization chamber could be developed that would minimize the error in using a dosimetry protocol with calculated beam quality conversion factors. The experimental k(Q) data obtained here for a wide range of thimble chambers can be used when choosing suitable detectors for reference dosimetry and are intended to be

  8. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  9. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    Energy Technology Data Exchange (ETDEWEB)

    Bankvall, G.; Hakansson, H.A.

    1982-05-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted.

  10. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations.

    Science.gov (United States)

    Granlund, Christina; Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-10-01

    During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19-75 μSv, depending on the panoramic equipment used. The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk-benefit profile of this technique must be assessed for the individual patient. The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used.

  11. Absorbed organ and effective doses from digital intra-oral and panoramic radiography applying the ICRP 103 recommendations for effective dose estimations

    Science.gov (United States)

    Thilander-Klang, Anne; Ylhan, Betȕl; Lofthag-Hansen, Sara; Ekestubbe, Annika

    2016-01-01

    Objective: During dental radiography, the salivary and thyroid glands are at radiation risk. In 2007, the International Commission on Radiological Protection (ICRP) updated the methodology for determining the effective dose, and the salivary glands were assigned tissue-specific weighting factors for the first time. The aims of this study were to determine the absorbed dose to the organs and to calculate, applying the ICRP publication 103 tissue-weighting factors, the effective doses delivered during digital intraoral and panoramic radiography. Methods: Thermoluminescent dosemeter measurements were performed on an anthropomorphic head and neck phantom. The organ-absorbed doses were measured at 30 locations, representing different radiosensitive organs in the head and neck, and the effective dose was calculated according to the ICRP recommendations. Results: The salivary glands and the oral mucosa received the highest absorbed doses from both intraoral and panoramic radiography. The effective dose from a full-mouth intraoral examination was 15 μSv and for panoramic radiography, the effective dose was in the range of 19–75 μSv, depending on the panoramic equipment used. Conclusion: The effective dose from a full-mouth intraoral examination is lower and that from panoramic radiography is higher than previously reported. Clinicians should be aware of the higher effective dose delivered during panoramic radiography and the risk–benefit profile of this technique must be assessed for the individual patient. Advances in knowledge: The effective dose of radiation from panoramic radiography is higher than previously reported and there is large variability in the delivered radiation dosage among the different types of equipment used. PMID:27452261

  12. Absorbed dose in ion beams: comparison of ionisation- and fluence-based measurements.

    Science.gov (United States)

    Osinga, Julia-Maria; Brons, Stephan; Bartz, James A; Akselrod, Mark S; Jäkel, Oliver; Greilich, Steffen

    2014-10-01

    A direct comparison measurement of fluorescent nuclear track detectors (FNTDs) and a thimble ionisation chamber is presented. Irradiations were performed using monoenergetic protons (142.66 MeV, ϕ=3×10(6) cm(-2)) and carbon ions (270.55 MeV u(-1), ϕ=3 × 10(6) cm(-2)). It was found that absorbed dose to water values as determined by fluence measurements using FNTDs are, in case of protons, in good agreement (2.4 %) with ionisation chamber measurements, if slower protons and Helium secondaries were accounted for by an effective stopping power. For carbon, however, a significant discrepancy of 4.5 % was seen, which could not be explained by fragmentation, uncertainties or experimental design. The results rather suggest a W-value of 32.10 eV ± 2.6 %. Additionally, the abundance of secondary protons expected from Monte-Carlo transport simulation was not observed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Changes in deviation of absorbed dose to water among users by chamber calibration shift.

    Science.gov (United States)

    Katayose, Tetsurou; Saitoh, Hidetoshi; Igari, Mitsunobu; Chang, Weishan; Hashimoto, Shimpei; Morioka, Mie

    2017-07-01

    The JSMP01 dosimetry protocol had adopted the provisional 60Co calibration coefficient [Formula: see text], namely, the product of exposure calibration coefficient N C and conversion coefficient k D,X. After that, the absorbed dose to water D w standard was established, and the JSMP12 protocol adopted the [Formula: see text] calibration. In this study, the influence of the calibration shift on the measurement of D w among users was analyzed. The intercomparison of the D w using an ionization chamber was annually performed by visiting related hospitals. Intercomparison results before and after the calibration shift were analyzed, the deviation of D w among users was re-evaluated, and the cause of deviation was estimated. As a result, the stability of LINAC, calibration of the thermometer and barometer, and collection method of ion recombination were confirmed. The statistical significance of standard deviation of D w was not observed, but that of difference of D w among users was observed between N C and [Formula: see text] calibration. Uncertainty due to chamber-to-chamber variation was reduced by the calibration shift, consequently reducing the uncertainty among users regarding D w. The result also pointed out uncertainty might be reduced by accurate and detailed instructions on the setup of an ionization chamber.

  14. Absorbed dose evaluation based on a computational voxel model incorporating distinct cerebral structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas; Trindade, Bruno; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)]. E-mail: samiabrandao@gmail.com; bmtrindade@yahoo.com; campos@nuclear.ufmg.br

    2007-07-01

    Brain tumors are quite difficult to treat due to the collateral radiation damages produced on the patients. Despite of the improvements in the therapeutics protocols for this kind of tumor, involving surgery and radiotherapy, the failure rate is still extremely high. This fact occurs because tumors can not often be totally removed by surgery since it may produce some type of deficit in the cerebral functions. Radiotherapy is applied after the surgery, and both are palliative treatments. During radiotherapy the brain does not absorb the radiation dose in homogeneous way, because the various density and chemical composition of tissues involved. With the intention of evaluating better the harmful effects caused by radiotherapy it was developed an elaborated cerebral voxel model to be used in computational simulation of the irradiation protocols of brain tumors. This paper presents some structures function of the central nervous system and a detailed cerebral voxel model, created in the SISCODES program, considering meninges, cortex, gray matter, white matter, corpus callosum, limbic system, ventricles, hypophysis, cerebellum, brain stem and spinal cord. The irradiation protocol simulation was running in the MCNP5 code. The model was irradiated with photons beam whose spectrum simulates a linear accelerator of 6 MV. The dosimetric results were exported to SISCODES, which generated the isodose curves for the protocol. The percentage isodose curves in the brain are present in this paper. (author)

  15. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  16. Evaluation of skin absorbed doses during manipulation of radioactive sources: a comparison between VARSKIN code and Monte Carlo simulations.

    Science.gov (United States)

    Amato, Ernesto; Italiano, Antonio

    2017-12-13

    The evaluation of skin doses during manipulation of radioactive sources can be a critical issue, worth using the most accurate calculation strategies available. The aim of this work was to compare the results of the analytical approach used in VARSKIN with the simulation of radiation transport and interaction by Monte Carlo calculations in GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations), and to provide an accurate and versatile tool for the evaluation of skin doses from radionuclide sources of any realistic shape (e.g. cylindrical, parallelepiped), even in the presence of multiple interposed absorber layers. A set of twenty radionuclides (pure β, β-γ, Auger and γ emitters) was selected for comparison, which are among the most frequently employed in nuclear medicine and laboratory practices. We studied a point-like and a cylindrical source, also in the presence of varying thicknesses of absorbing layers. We found a general agreement for most nuclides when the source was directly in contact with skin or in the presence of a thin layer of absorbing material. However, when the absorber thickness increased, significant differences were found for several nuclides. In these cases, the proposed method based on a dedicated Monte Carlo simulation could give more accurate results in reasonable times, which could optimise accuracy when assessing skin doses in routine as well as in incidental exposure scenarios. © 2017 IOP Publishing Ltd.

  17. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation

    Science.gov (United States)

    Schneider, T.

    2011-06-01

    The application of more and more low-energy photon radiation in brachytherapy—either in the form of low-dose-rate radioactive seeds such as Pd-103 or I-125 or in the form of miniature x-ray tubes—has induced greater interest in determining the absorbed dose to water in water in this energy range. As it seems to be hardly feasible to measure the absorbed dose with calorimetric methods in this low energy range, ionometric methods are the preferred choice. However, the determination of the absorbed dose to water in water by ionometric methods is difficult in this energy range. With decreasing energy, the relative uncertainty of the photon cross sections increases and as the mass energy transfer coefficients show a steep gradient, the spectra of the radiation field must be known precisely. In this work two ionometric methods to determine the absorbed dose to water are evaluated with respect to their sensitivity to the uncertainties of the spectra and of the atomic database. The first is the measurement of the air kerma free in air and the application of an MC-based conversion factor to the absorbed dose to water. The second is the determination of the absorbed dose to water by means of an extrapolation chamber as an integral part of a phantom. In the complementing MC-calculations, two assortments of spectra each of which is based on a separate unfolding procedure were used as well as two kinds of databases: the standard PEGS and the recently implemented NIST database of EGSnrc. Experimental results were obtained by using a parallel-plate graphite extrapolation chamber and a free-air chamber. In the case when the water kerma in a phantom is determined from the measurements of air kerma free in air, differences in the order of 10% were found, according to which the database or the kind of spectrum is used. In contrast to this, for the second method, the differences found were about 0.5%.

  18. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T, E-mail: thorsten.schneider@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany)

    2011-06-07

    The application of more and more low-energy photon radiation in brachytherapy-either in the form of low-dose-rate radioactive seeds such as Pd-103 or I-125 or in the form of miniature x-ray tubes-has induced greater interest in determining the absorbed dose to water in water in this energy range. As it seems to be hardly feasible to measure the absorbed dose with calorimetric methods in this low energy range, ionometric methods are the preferred choice. However, the determination of the absorbed dose to water in water by ionometric methods is difficult in this energy range. With decreasing energy, the relative uncertainty of the photon cross sections increases and as the mass energy transfer coefficients show a steep gradient, the spectra of the radiation field must be known precisely. In this work two ionometric methods to determine the absorbed dose to water are evaluated with respect to their sensitivity to the uncertainties of the spectra and of the atomic database. The first is the measurement of the air kerma free in air and the application of an MC-based conversion factor to the absorbed dose to water. The second is the determination of the absorbed dose to water by means of an extrapolation chamber as an integral part of a phantom. In the complementing MC-calculations, two assortments of spectra each of which is based on a separate unfolding procedure were used as well as two kinds of databases: the standard PEGS and the recently implemented NIST database of EGSnrc. Experimental results were obtained by using a parallel-plate graphite extrapolation chamber and a free-air chamber. In the case when the water kerma in a phantom is determined from the measurements of air kerma free in air, differences in the order of 10% were found, according to which the database or the kind of spectrum is used. In contrast to this, for the second method, the differences found were about 0.5%.

  19. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    Science.gov (United States)

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber

    Science.gov (United States)

    2013-01-01

    Background We measured and assessed ways to reduce the secondary neutron dose from a system for proton eye treatment. Methods Proton beams of 60.30 MeV were delivered through an eye-treatment snout in passive scattering mode. Allyl diglycol carbonate (CR-39) etch detectors were used to measure the neutron dose in the external field at 0.00, 1.64, and 6.00 cm depths in a water phantom. Secondary neutron doses were measured and compared between those with and without a high-hydrogen–boron-containing block. In addition, the neutron energy and vertices distribution were obtained by using a Geant4 Monte Carlo simulation. Results The ratio of the maximum neutron dose equivalent to the proton absorbed dose (H(10)/D) at 2.00 cm from the beam field edge was 8.79 ± 1.28 mSv/Gy. The ratio of the neutron dose equivalent to the proton absorbed dose with and without a high hydrogen-boron containing block was 0.63 ± 0.06 to 1.15 ± 0.13 mSv/Gy at 2.00 cm from the edge of the field at depths of 0.00, 1.64, and 6.00 cm. Conclusions We found that the out-of-field secondary neutron dose in proton eye treatment with an eye snout is relatively small, and it can be further reduced by installing a borated neutron absorbing material. PMID:23866307

  1. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water.

    Science.gov (United States)

    Bahar-Gogani, J; Grindborg, J E; Johansson, B E; Wickman, G

    2001-03-01

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min(-1) and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min(-1). The volume sensitivity of the chambers was measured to be of the order of 10(-9) C Gy(-1) mm3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (sigma Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility.

  2. Influence of lead apron shielding on absorbed doses from panoramic radiography.

    Science.gov (United States)

    Rottke, D; Grossekettler, L; Sawada, K; Poxleitner, P; Schulze, D

    2013-01-01

    This study investigated the absorbed doses in a full anthropomorphic body phantom from two different panoramic radiography devices, performing protocols with and without applying a lead apron. A RANDO(®) full body phantom (Alderson Research Laboratories Inc., Stamford, CT) was equipped with 110 thermoluminescent dosemeters at 55 different sites and set up in two different panoramic radiography devices [SCANORA(®) three-dimensional (3D) (SOREDEX, Tuusula, Finland) and ProMax(®) 3D (Planmeca, Helsinki, Finland)] and exposed. Two different protocols were performed in the two devices. The first protocol was performed without any lead shielding, whereas the phantom was equipped with a standard adult lead apron for the second protocol. A two-tailed paired samples t-test for the SCANORA 3D revealed that there is no difference between the protocol using lead apron shielding (m = 87.99, s = 102.98) and the protocol without shielding (m = 87.34, s = 107.49), t(54) = -0.313, p > 0.05. The same test for the ProMax 3D showed that there is also no difference between the protocol using shielding (m = 106.48, s = 117.38) and the protocol without shielding (m = 107.75, s = 114,36), t(54) = 0.938, p > 0.05. In conclusion, the results of this study showed no statistically significant differences between a panoramic radiography with or without the use of lead apron shielding.

  3. Renal function affects absorbed dose to the kidneys and haematological toxicity during {sup 177}Lu-DOTATATE treatment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Johanna; Berg, Gertrud [Sahlgrenska University Hospital, Department of Oncology, Goeteborg (Sweden); Waengberg, Bo [Sahlgrenska University Hospital, Department of Surgery, Goeteborg (Sweden); Larsson, Maria [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Forssell-Aronsson, Eva; Bernhardt, Peter [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Medical Bioengineering, Goeteborg (Sweden)

    2015-05-01

    Peptide receptor radionuclide therapy (PRRT) has become an important treatment option in the management of advanced neuroendocrine tumours. Long-lasting responses are reported for a majority of treated patients, with good tolerability and a favourable impact on quality of life. The treatment is usually limited by the cumulative absorbed dose to the kidneys, where the radiopharmaceutical is reabsorbed and retained, or by evident haematological toxicity. The aim of this study was to evaluate how renal function affects (1) absorbed dose to the kidneys, and (2) the development of haematological toxicity during PRRT treatment. The study included 51 patients with an advanced neuroendocrine tumour who received {sup 177}Lu-DOTATATE treatment during 2006 - 2011 at Sahlgrenska University Hospital in Gothenburg. An average activity of 7.5 GBq (3.5 - 8.2 GBq) was given at intervals of 6 - 8 weeks on one to five occasions. Patient baseline characteristics according to renal and bone marrow function, tumour burden and medical history including prior treatment were recorded. Renal and bone marrow function were then monitored during treatment. Renal dosimetry was performed according to the conjugate view method, and the residence time for the radiopharmaceutical in the whole body was calculated. A significant correlation between inferior renal function before treatment and higher received renal absorbed dose per administered activity was found (p < 0.01). Patients with inferior renal function also experienced a higher grade of haematological toxicity during treatment (p = 0.01). The residence time of {sup 177}Lu in the whole body (range 0.89 - 3.0 days) was correlated with grade of haematological toxicity (p = 0.04) but not with renal absorbed dose (p = 0.53). Patients with inferior renal function were exposed to higher renal absorbed dose per administered activity and developed a higher grade of haematological toxicity during {sup 177}Lu-DOTATATE treatment. The study confirms the

  4. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    Science.gov (United States)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  5. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    Science.gov (United States)

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies 80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Direct comparison of extrapolation chamber measurements of the absorbed dose rate for beta radiation between PTB (Germany) and VNIIM (Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R. [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, (Germany); Fedina, S.; Oborin, A. [D I Mendeleyev Institute for Metrology (VNIIM), 198005 St Petersburg, (Russian Federation)

    2011-07-01

    An intercomparison of the absorbed dose rate in tissue, Dt(0.07), at radiation protection levels for beta dosimetry was performed between two national metrology institutes, the D I Mendeleyev Institute for Metrology (VNIIM) in St Petersburg (Russia) and the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig (Germany), from 2009 to 2010. For this comparison, radiation sources of both institutes were calibrated using the primary standard measuring devices (extrapolation chambers) of both institutes, i.e. no transfer instrument was used as both primary standards were directly compared. The values of the absorbed dose rates in tissue agree within 1.2% for two different {sup 90}Sr/{sup 90}Y sources, within 1.0% for one {sup 85}Kr source and within 1.5% and 4.2% for two different {sup 147}Pm sources. All these deviations are within 1 to 2 times the corresponding standard deviations. (authors)

  7. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging.

    Science.gov (United States)

    Hellén-Halme, Kristina; Nilsson, Mats

    2013-01-01

    Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs. The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic(®) film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV. The patient receives approximately 40 - 50% higher (mean and integral) absorbed dose when a tube voltage of 70 kV is used. The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  8. Determination of the absorbed radiation dose in urograms according to equipment technical characteristics and quality control results; Determinacao da dose absorvida em exames de urografia excretora a partir das caracteristicas tecnologicas do equipamento e dos resultados do controle de qualidade

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Regina Bitelli; Daros, Kellen Adriana Curci; Idagawa, Marcos Hideki [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem

    2000-02-01

    The radiation dose absorbed by the patient on the skin during urograms was determined using thermoluminescent dosimeters (Ca SO{sub 4}:Dy). The measure dose values were compared to the results of the radiological equipment quality control program. Consequently, an equation to calculate the absorbed dose was proposed as a function of the dose rate associated with the X-rays output (m C/kg.m As). This allows calculation of the absorbed dose in urogramsin any radiological center provided that operational conditions are known through the quality control program and the applied technique is compared to the one used in this study. (author)

  9. Analyse of the international recommendations on the calculation of absorbed dose in the biota; Analise das recomendacoes internacionais sobre calculo de dose absorvida na biota

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de S.; Py Junior, Delcy de A., E-mail: wspereira@inb.gov.b, E-mail: delcy@inb.gov.b [Industrias Nucleares do Brasil (UTM/INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Universidade Federal Fluminense (LARARA/UFF), Niteroi, RJ (Brazil). Lab. de Radiobiologia e Radiometria; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Ciencia Ambiental

    2011-10-26

    This paper evaluates the recommendations of ICRP which has as objective the environmental radioprotection. It was analysed the recommendations 26, 60, 91, 103 and 108 of the ICRP. The ICRP-103 defined the concept of animal and plant of reference (APR) to be used in the RAP based on the calculation of absorbed dose based on APR concept. This last view allows to build a legal framework of environmental protection with a etic, moral and scientific visualization, more defensible than the anthropomorphic concept

  10. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities.

    Science.gov (United States)

    Bueno, M; Carrasco, P; Jornet, N; Muñoz-Montplet, C; Duch, M A

    2014-08-01

    The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)-two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a (7)Li-enriched LiF:Mg,Ti-based (MTS-7s)-as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5 x 5 cm2 to 20 x 20 cm2. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs' response was evaluated. TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%-5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a[Formula: see text] thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT's active layer material. TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  11. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, M., E-mail: marta.bueno@upc.edu; Duch, M. A. [Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Carrasco, P.; Jornet, N. [Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i de Sant Pau, 08025 Barcelona (Spain); Muñoz-Montplet, C. [Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia—Girona, 17007 Girona (Spain)

    2014-08-15

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)—two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a{sup 7}Li-enriched LiF:Mg,Ti-based (MTS-7s)—as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5×5 cm{sup 2} to 20×20 cm{sup 2}. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs’ response was evaluated. Results: TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%–5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a50 μm thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT’s active layer material. Conclusions: TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  12. Evaluation of {sup 99}Mo/{sup 99m}Tc generator columns after irradiation with different absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza T.O.; Mengatti, Jair; Matsuda, Margareth M.N., E-mail: ntfukumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The {sup 99}Mo/{sup 99m}Tc generator is widely used in nuclear medicine and it consists of a glass column containing Teflon® strips and alumina in which {sup 99}Mo produced by {sup 235}U fission is adsorbed. The {sup 99}mTcO4- eluate shall meet the sterile and pyrogen free conditions for injectable radiopharmaceuticals as determined by the Good Manufacturing Practices. The purpose of this study was to evaluate the feasibility of using gamma radiation in the sterilization of the {sup 99}Mo/{sup 99m}Tc generator column and the influence on the elution efficiency. Alumina-containing columns were irradiated with 10, 15, 25 and 50 kGy absorbed doses. Alumina samples and control (non-irradiated) were submitted to X-ray diffraction and the combined use of scanning electron microscopy and elemental analysis. Teflon® samples were evaluated by thermogravimetry (TGA) and differential scanning calorimetry (DSC). X-ray diffractograms and micrographies with elemental analysis showed no significant changes in the crystalline structure of the alumina because it was stable α-Al{sub 2}O{sub 3}. TGA demonstrated that higher doses showed changes in lower temperatures and times than the control material. For DSC the higher the absorbed dose, the greater the polymer chain breakage and crosslinking in the material. The generator system without radioactivity was set up with the irradiated columns and the eluates demonstrated to be sterile and pyrogen free. The effects of different absorbed doses on the generator column, although some reported changes in the materials, demonstrated that the sterilization of the columns by irradiation with gamma rays as an alternative to wet heat sterilization is feasible from a technical and financial point of view. (author)

  13. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    Science.gov (United States)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  14. Absorbed dose at subcellular level by Monte Carlo simulation for a {sup 99m}Tc-peptide with nuclear internalization

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L.; Ferro F, G. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Santos C, C. L., E-mail: leticia.rojas@inin.gob.m [Universidad Autonoma del Estado de Mexico, Paseo Tollocan esquina Paseo Colon s/n, Toluca 50120, Estado de Mexico (Mexico)

    2010-10-15

    The utility of radiolabeled peptides for the early and specific diagnosis of cancer is being investigated around the world. Recent investigations have demonstrated the specificity of {sup 99m}Tc-bombesin conjugates to target breast and prostate cancer cells. The novel idea of adding the Tat (49-57) peptide to the radiopharmaceutical in order to penetrate the cell nucleus is a new proposal for therapy at cellular level. {sup 99m}Tc radionuclide produces Auger energy of 0.9 keV/decay and internal conversion electron energy of 15.4 keV/decay, which represent 11.4% of the total {sup 99m}Tc energy released per decay. It is expected that the dose delivered at specific microscopic levels in cancer cells induce a therapeutic effect. The aim of this research was to assess in vitro internalization kinetics in breast and prostate cancer cells of {sup 99m}Tc-Tat(49-57)-bombesin and to evaluate the radiation absorbed dose at subcellular level simulating the electron transport. The pen main program from the 2006 version of the Penelope code was used to simulate and calculate the absorbed dose by Auger and internal conversion electron contribution in the membrane, cytoplasm and nucleus of Pc-3 prostate cancer and MCF7 and MDA human breast cancer cell lines. Nuclear data were obtained from the 2002 BNM-LNHB {sup 99m}Tc decay scheme. The spatial distribution of the absorbed doses to the membrane, cytoplasm and nucleus were calculated using a geometric model built from real images of cancer cells. The elemental cell composition was taken from the literature. The biokinetic data were obtained evaluating total disintegrations in each subcellular compartment by integration of the time-activity curves acquired from experimental data. Results showed that 61, 63 and 46% of total disintegrations per cell-bound {sup 99m}Tc-Tat-Bn activity unit occurred in the nucleus of Pc-3, MCF7 and MDA-MB231 respectively. {sup 99m}Tc--Tat-Bn absorbed doses were 1.78, 5.76 and 2.59 Gy/Bq in the nucleus of

  15. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism; Dose absorvida em orgaos de pacientes com hipertiroidismo devido a radioiodoterapia

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L. [Pernambuco Univ., Recife, PE (Brazil); Laboratorios CERPE, Recife, PE (Brazil); Bertelli Neto, L. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    The dose absorbed by organs of patients with hyperthyroidism treated with {sup 131} I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of {sup 131} I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach.

  16. Development of a mid-head radiation dose response function. [Phantom determinations of neutron and. gamma. absorbed doses in mid-brain for military applications

    Energy Technology Data Exchange (ETDEWEB)

    Trubey, D. K.; Knight, J. R.; Bartine, D. E.; Pace, III, J. V.

    1979-02-01

    Calculations have been made of the incident neutron and gamma-ray absorbed dose response as a function of energy in the mid-head position of a phantom model. The calculations were performed with the DOT discrete ordinates transport code in the adjoint mode using co-axial cylinders to represent the head and torso. Results, given in a coupled 37-neutron-group, 21-gamma-ray-group structure (37/21) and a 22-neutron-group, 18-gamma-ray-group structure (22/18), are compared with previously obtained results. The mid-head response is less than the conventional radiation protection fluence-to-dose factors which are based on maximum phantom values. In the case of a fission source in air the neutron dose is about a factor of 4 less, and the secondary gamma-ray dose is about a factor of 1.5 less. For a fusion source the neutron dose ratio varies from about 1.9 at close range to about 3. The gamma-ray dose ratio is about the same as for the fission source. Tables of the various response functions are presented in the Appendix A.

  17. The effect of backscattering on the beta dose absorbed by individual quartz grains

    DEFF Research Database (Denmark)

    Autzen, Martin; Guérin, G.; Murray, A. S.

    2017-01-01

    We describe the effect on dose rates and over-dispersion (OD) of changing the spectrum of energies to which grains of various shapes and volumes are exposed during beta irradiation, either by changing the backscattering medium or attenuating the incident spectrum. Dose rates are found to increase...

  18. Methodology for calibration of ionization chambers for X-ray of low energy in absorbed dose to water

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, C.T.; Vivolo, V.; Potiens, M.P.A., E-mail: camila_fmedica@hotmail.com [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The beams of low energy X-ray (10 to 150 kV) are used in several places in the world to treat a wide variety of surface disorders, and between these malignancies. As in Brazil, at this moment, there is no calibration laboratory providing the control service or calibration of parallel plate ionization chambers, the aim of this project was to establish a methodology for calibration of this kind of ionization chambers at low energy X-ray beams in terms of absorbed dose to water using simulators in the LCI. (author)

  19. Absorbed and effective dose from newly developed cone beam computed tomography in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Nyeong; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absolved and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposure. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  20. Assessment of breast absorbed doses during thoracic computed tomography scan to evaluate the effectiveness of bismuth shielding.

    Science.gov (United States)

    Alonso, Thessa C; Mourão, Arnaldo P; Santana, Priscila C; da Silva, Teógenes A

    2016-11-01

    During a lung computed tomography (CT) examination, breast and nearby radiosensitive organs are unnecessarily irradiated because they are in the path of the primary beam. The purpose of this paper is to determine the absorbed dose in breast and nearby organs for unshielded and shielded exposures with bismuth. The experiment was done with a female anthropomorphic phantom undergoing a typical thoracic CT scan, with TLD-100 thermoluminescent detectors insert at breast, lung and thyroid positions. Results showed that dose reduction due to bismuth shielding was approximately 30% and 50% for breast and thyroid, respectively; however, the influence of the bismuth on the image quality needs to be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Absorbed dose measurements in mammography using Monte Carlo method and ZrO{sub 2}+PTFE dosemeters

    Energy Technology Data Exchange (ETDEWEB)

    Duran M, H. A.; Hernandez O, M. [Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, 83190 Hermosillo, Sonora (Mexico); Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Pinedo S, A.; Ventura M, J.; Chacon, F. [Hospital General de Zona No. 1, IMSS, Interior Alameda 45, 98000 Zacatecas (Mexico); Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F.(Mexico)], e-mail: hduran20_1@hotmail.com

    2009-10-15

    Mammography test is a central tool for breast cancer diagnostic. In addition, programs are conducted periodically to detect the asymptomatic women in certain age groups; these programs have shown a reduction on breast cancer mortality. Early detection of breast cancer is achieved through a mammography, which contrasts the glandular and adipose tissue with a probable calcification. The parameters used for mammography are based on the thickness and density of the breast, their values depend on the voltage, current, focal spot and anode-filter combination. To achieve an image clear and a minimum dose must be chosen appropriate irradiation conditions. Risk associated with mammography should not be ignored. This study was performed in the General Hospital No. 1 IMSS in Zacatecas. Was used a glucose phantom and measured air Kerma at the entrance of the breast that was calculated using Monte Carlo methods and ZrO{sub 2}+PTFE thermoluminescent dosemeters, this calculation was completed with calculating the absorbed dose. (author)

  2. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, A K.; Durack, L. D.; Press, O. W.; Eary, Janet F.

    2004-06-01

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient

  3. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Directory of Open Access Journals (Sweden)

    Kristina Hellén-Halme

    2013-10-01

    Full Text Available Objectives: Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs.Material and Methods: The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic® film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV.Results: The patient receives approximately 40 - 50% higher (mean and integral absorbed dose when a tube voltage of 70 kV is used.Conclusions: The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  4. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL C.P. 66600 (Mexico)], E-mail: hgarnica@cinvestav.mx

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 deg. arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  5. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Science.gov (United States)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  6. Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Lee, Woo Suk; Koo, Ki Lae; Kim, Joo Seob; Lee, Sang Hyeon [Dept. of Radiation Oncology, GangNeung Asan Hospital, Gangneung (Korea, Republic of)

    2016-06-15

    To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography). Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv. As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  7. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons; Desenvolvimento de uma metodologia para estimativa da dose absorvida e do poder de freamento para eletrons de conversao de baixa energia

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internalcontamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy {sup 109} Cd conversion electrons, working with a 4 {pi} proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin {sup 109} Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  8. Development and characterization of an interferometer for calorimeter-based absorbed dose to water measurements in a medical linear accelerator

    Science.gov (United States)

    Flores-Martinez, Everardo; Malin, Martha J.; DeWerd, Larry A.

    2016-11-01

    The quantity of relevance for external beam radiotherapy is absorbed dose to water (ADW). An interferometer was built, characterized, and tested to measure ADW within the dose range of interest for external beam radiotherapy using the temperature dependence of the refractive index of water. The interferometer was used to measure radiation-induced phase shifts of a laser beam passing through a (10 × 10 × 10) cm3 water-filled glass phantom, irradiated with a 6 MV photon beam from a medical linear accelerator. The field size was (7 × 7) cm2 and the dose was measured at a depth of 5 cm in the water phantom. The intensity of the interference pattern was measured with a photodiode and was used to calculate the time-dependent phase shift curve. The system was thermally insulated to achieve temperature drifts of less than 1.5 mK/min. Data were acquired 60 s before and after the irradiation. The radiation-induced phase shifts were calculated by taking the difference in the pre- and post-irradiation drifts extrapolated to the midpoint of the irradiation. For 200, 300, and 400 monitor units, the measured doses were 1.6 ± 0.3, 2.6 ± 0.3, and 3.1 ± 0.3 Gy, respectively. Measurements agreed within the uncertainty with dose calculations performed with a treatment planning system. The estimated type-A, k = 1 uncertainty in the measured doses was 0.3 Gy which is an order of magnitude lower than previously published interferometer-based ADW measurements.

  9. Evaluation of Absorbed Dose of Critical Organ in Rando Phantom under Head, Abdomen and Pelvis Spiral CT Scan by Thermo Luminescent Dosimetery - TLD

    Directory of Open Access Journals (Sweden)

    Gholamhosein Haddadi

    2011-12-01

    Full Text Available Background & Objectives: Computed tomography (CT represents 11% of all diagnostic radiology procedures but it contributes to almost 67% of the total effective dose to the human population. In head and neck CT which consist of 1/3 of total CT scans, other critical organs such as lenses and thyroid are in the radiation field. Also in the abdomen and pelvis scan, irradiation of ovaries is unavoidable. Because of high sensitivity of these organs, the probability of abnormality and cancer in these organs has increased. Therefore the dose assessment in these organs is very important. The aim of this study is to estimate the absorbed dose in critical organ of patient undergoing common head, neck, abdomen and pelvic spiral CT scan. Materials & Methods: In this study, Lithium fluoride thermo luminescent dosimeters (TLD-100, Harshaw were used to determine the absorbed dose of critical organ of tissue equivalent rando phantom (Alderson research industries, Inc, Stanford, Conn, U.S.A. The phantom was sectional in design and manufactured with a 2.5 cm slab thickness. Each section contained some holes that allowed accommodation of TLDs. At least two crystals were placed in each hole. The average value of the TLD readings was taken as the organ dose. Readouts were obtained on a Harshaw 4500 reader (Harshaw, Ohio, USA. For calibration, the annealed dosimeters were exposed to an X-ray beam resulting from 120 kVp tube voltage and calibration curve was plotted. Results: result of this study showed during head CT scan the maximum absorbed dose belongs to occipital bones skin. Which were about 11.45 mGy and the minimum absorbed dose belong to thyroid gland which was 0.5 mGy. During abdomen & pelvic spiral CT, the maximum absorbed dose of abdomen skin was 23.32 mGy and the minimum absorbed dose in the eye region was 0.15 mGy. The readout results are correlated with the results of spiral CT detector with the “ALARA” principle, we recommend suitable techniques

  10. Optimization of Parameters in 16-slice CT-‌‌scan Protocols for Reduction of the Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Shahrokh Naseri

    2014-08-01

    Full Text Available Introduction In computed tomography (CT technology, an optimal radiation dose can be achieved via changing radiation parameters such as mA, pitch factor, rotation time and tube voltage (kVp for diagnostic images. Materials and Methods In this study, the brain, abdomen, and thorax scaning was performed using Toshiba 16-slice scannerand standard AAPM and CTDI phantoms. AAPM phantom was used for the measurement of image-related parameters and CTDI phantom was utilized for the calculation of absorbed dose to patients. Imaging parameters including mA (50-400 mA, pitch factor (1 and 1.5 and rotation time (range of 0.5, 0.75, 1, 1.5 and 2 seconds were considered as independent variables. The brain, abdomen and chest imaging was performed multi-slice and spiral modes. Changes in image quality parameters including contrast resolution (CR and spatial resolution (SR in each condition were measured and determined by MATLAB software. Results After normalizing data by plotting the full width at half maximum (FWHM of point spread function (PSF in each condition, it was observed that image quality was not noticeably affected by each cases. Therefore, in brain scan, the lowest patient dose was in 150 mA and rotation time of 1.5 seconds. Based on results of scanning of the abdomen and chest, the lowest patient dose was obtained by 100 mA and pitch factors of 1 and 1.5. Conclusion It was found that images with acceptable quality and reliable detection ability could be obtained using smaller doses of radiation, compared to protocols commonly used by operators.

  11. Modeling the absorbed dose to the common carotid arteries following radioiodine treatment of benign thyroid disease

    DEFF Research Database (Denmark)

    la Cour, Jeppe Lerche; Hedemann-Jensen, Per; Søgaard-Hansen, Jens

    2013-01-01

    External fractionated radiotherapy of cancer increases the risk of cardio- and cerebrovascular events, but less attention has been paid to the potential side effects on the arteries following internal radiotherapy with radioactive iodine (RAI), i.e. 131-iodine. About 279 per million citizens...... in the western countries are treated each year with RAI for benign thyroid disorders (about 140,000 a year in the EU), stressing that it is of clinical importance to be aware of even rare radiation-induced side effects. In order to induce or accelerate atherosclerosis, the dose to the carotid arteries has...

  12. Determination of Radon Level in Drinking Water in Mehriz Villages and Evaluation the Annual Effective Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-03-01

    Results: Radon concentrations of samples ranged from 0.187 BqL-1 to 14.8 BqL-1.These results were related to samples No.12 and 9 and also to aqueducts of Tang-e-chenar and Malekabad village respectively. Based on the amount of radon in the sample, the lowest annual effective absorbed dose through drinking water or breathing(In an environment where water was used was 0.0005msv/y and the maximum amount was 0.04msv/y. Conclusion: Apart from samples No.9 and 16 that were elated to the aqueduct of Malekabad village and a private well in Dare Miankoohvillagehaving48 persons as total population, Radon concentrations of other samples used by people of Mehriz villages as drinking water was low and less than permitted limit set by the Environmental Protection Agency of United States of America.

  13. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Darafsheh, A; Kassaee, A; Finlay, J [University of Pennsylvania, Philadelphia, PA (United States); Taleei, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanism of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.

  14. Estimation of organ-absorbed radiation doses during 64-detector CT coronary angiography using different acquisition techniques and heart rates: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Kosuke; Koshida, Kichiro; Kawashima, Hiroko (Dept. of Quantum Medical Technology, Faculty of Health Sciences, Kanazawa Univ., Kanazawa (Japan)), email: matsuk@mhs.mp.kanazawa-u.ac.jp; Noto, Kimiya; Takata, Tadanori; Yamamoto, Tomoyuki (Dept. of Radiological Technology, Kanazawa Univ. Hospital, Kanazawa (Japan)); Shimono, Tetsunori (Dept. of Radiology, Hoshigaoka Koseinenkin Hospital, Hirakata (Japan)); Matsui, Osamu (Dept. of Radiology, Faculty of Medicine, Kanazawa Univ., Kanazawa (Japan))

    2011-07-15

    Background: Though appropriate image acquisition parameters allow an effective dose below 1 mSv for CT coronary angiography (CTCA) performed with the latest dual-source CT scanners, a single-source 64-detector CT procedure results in a significant radiation dose due to its technical limitations. Therefore, estimating the radiation doses absorbed by an organ during 64-detector CTCA is important. Purpose: To estimate the radiation doses absorbed by organs located in the chest region during 64-detector CTCA using different acquisition techniques and heart rates. Material and Methods: Absorbed doses for breast, heart, lung, red bone marrow, thymus, and skin were evaluated using an anthropomorphic phantom and radiophotoluminescence glass dosimeters (RPLDs). Electrocardiogram (ECG)-gated helical and ECG-triggered non-helical acquisitions were performed by applying a simulated heart rate of 60 beats per minute (bpm) and ECG-gated helical acquisitions using ECG modulation (ECGM) of the tube current were performed by applying simulated heart rates of 40, 60, and 90 bpm after placing RPLDs on the anatomic location of each organ. The absorbed dose for each organ was calculated by multiplying the calibrated mean dose values of RPLDs with the mass energy coefficient ratio. Results: For all acquisitions, the highest absorbed dose was observed for the heart. When the helical and non-helical acquisitions were performed by applying a simulated heart rate of 60 bpm, the absorbed doses for heart were 215.5, 202.2, and 66.8 mGy for helical, helical with ECGM, and non-helical acquisitions, respectively. When the helical acquisitions using ECGM were performed by applying simulated heart rates of 40, 60, and 90 bpm, the absorbed doses for heart were 178.6, 139.1, and 159.3 mGy, respectively. Conclusion: ECG-triggered non-helical acquisition is recommended to reduce the radiation dose. Also, controlling the patients' heart rate appropriately during ECG-gated helical acquisition with

  15. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    Directory of Open Access Journals (Sweden)

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  16. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values

    Science.gov (United States)

    Falzone, Nadia; Lee, Boon Q.; Fernández-Varea, José M.; Kartsonaki, Christiana; Stuchbery, Andrew E.; Kibédi, Tibor; Vallis, Katherine A.

    2017-03-01

    The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67Ga, 80mBr, 89Zr, 90Nb, 99mTc, 111In, 117mSn, 119Sb, 123I, 124I, 125I, 135La, 195mPt and 201Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKs using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKs in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.

  17. Absorbed dose calculation from beta and gamma rays of 131I in ellipsoidal thyroid and other organs of neck with MCNPX code

    Directory of Open Access Journals (Sweden)

    Mohammad Mirzaie

    2012-09-01

    Full Text Available Background: The 131I radioisotope is used for diagnosis and treatment of hyperthyroidism and thyroid cancer. In optimized Iodine therapy, a specific dose must be reached to the thyroid gland with minimum radiation to the cervical spine, cervical vertebrae, neck tissue, subcutaneous fat and skin. Dose measurement inside the alive organ is difficult therefore the aim of this research was dose calculation in the organs by MCNPX code. Materials and Methods: First of all, the input file for MCNPX code has been prepared to calculate F6 and F8 tallies for ellipsoidal thyroid lobes with long axes is tow times of short axes which the 131I is distributed uniformly inside the lobes. Then the code has been run for F6 and F8 tallies for variation of lobe volume from 1 to 25 milliliters. From the output file of tally F6, the gamma absorbed dose in ellipsoidal thyroid, spinal neck, neck bone, neck tissue, subcutaneous fat layer and skin for the volume lobe variation from 1 ml to 25 ml have been derived and the graphs are drew. As well as, form the output of F8 tally the absorbed energy of beta in thyroid and soft tissue of neck is obtained and listed in the table and then absorbed dose of bate has been calculated. Results: The results of this research show that for constant activity in thyroid, the absorbed dose of gamma decreases about 88.3% in thyroid, 6.9% at soft tissue, 19.3% in adipose layer and 17.4% in skin, but it increases 32.1% in spinal of neck and 32.3% in neck bone when the lobe volume varied from 1 to 25 milliliters. For the same situation, the beta absorbed dose decreases 95.9% in thyroid and 64.2% in soft tissue. Conclusion: For the constant activity in thyroid by increasing the thyroid volume, absorbed dose of gamma in thyroid and soft tissue of neck, adipose layer under the skin and skin of neck decreased, but it increased at spinal of neck and neck bone. Also, by increasing of the lobe volume in constant activity, the beta absorbed dose

  18. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease

    Science.gov (United States)

    Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

    2011-02-01

    Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

  19. Absorbed Doses and Risk Estimates of {sup 211}At-MX35 F(ab'){sub 2} in Intraperitoneal Therapy of Ovarian Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cederkrantz, Elin [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Andersson, Håkan [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Bernhardt, Peter; Bäck, Tom [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Hultborn, Ragnar [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jacobsson, Lars [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jensen, Holger [PET and Cyclotron Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Copenhagen (Denmark); Lindegren, Sture [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund (Sweden); Magnander, Tobias; Palm, Stig [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Albertsson, Per, E-mail: per.albertsson@oncology.gu.se [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden)

    2015-11-01

    Purpose: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of {sup 211}At-MX35 F(ab'){sub 2}. Methods and Materials: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of {sup 211}At-MX35 F(ab'){sub 2}. Potassium perchlorate was given to block unwanted accumulation of {sup 211}At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. Results: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. Conclusion: Intraperitoneal {sup 211}At

  20. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    Energy Technology Data Exchange (ETDEWEB)

    Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Department of Oncology, Sahlgrenska University Hospital, Gothenburg (Sweden); Olsson, Caroline [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Wilderaeng, Ulrica [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Dunberger, Gail; Lind, Helena; Alevronta, Eleftheria [Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Al-Abany, Massoud [Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, Stockholm (Sweden); Tucker, Susan [Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Avall-Lundqvist, Elisabeth [Department of Gynecologic Oncology, Karolinska University Hospital, Stockholm (Sweden); Johansson, Karl-Axel [Department of Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg (Sweden); Steineck, Gunnar [Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg (Sweden); Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden)

    2012-10-01

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one in three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.

  1. Activity of natural radionuclides and their contribution to the absorbed dose in the fish cubera snapper (lutjanus cyanopterus, cuvier, 1828 on the coast of Ceara, Brazil

    Directory of Open Access Journals (Sweden)

    Wagner de S. Pereira

    2010-01-01

    Full Text Available A methodology was developed for converting the activity concentration of radionuclides (Bq kg-1 into absorbed dose rate (Gy y-1, aiming an approach to environmental radioprotection based on the concept of standard dose limit. The model considers only the internal absorbed dose rate. This methodology was applied to the cubera snapper fish (Lutjanus cyanopterus, Cuvier, 1828 caught off the coast of Ceará. The natural radionuclides considered were uranium-238, radium-226, lead-210, thorium-232 and radium-228. The absorbed dose rates were calculated for individual radionuclides and the type of emitted radiation. The average dose rate due to these radionuclides was 5.36 µGy y-1, a value six orders of magnitude smaller than the threshold value of absorbed dose rate used in this study (3.65 10³ mGy y-1, and similar to that found in the literature for benthic fish. Ra-226 and U-238 contributed 67% and 22% of the absorbed dose rate, followed by Th-232 with 10%. Ra-228 and Pb-210, in turn, accounted for less than 1% of the absorbed dose rate. This distribution is somewhat different from that reported in the literature, where the Ra-226 accounts for 86% of the absorbed dose rate.Visando a radioproteção ambiental, baseada no conceito de limite de taxa de dose absorvida, foi desenvolvida uma metodologia de conversão da concentração de atividade de radionuclídeos (Bq kg-1 em taxa de dose absorvida (Gy a-1. O modelo considera apenas a taxa de dose absorvida interna. Essa metodologia foi aplicada ao peixe vermelho-caranho (Lutjanus cyanopterus, Cuvier, 1828 capturado na costa do Ceará e aos radionuclídeos naturais: urânio-238, rádio-226, chumbo-210, tório-232 e rádio-228. As taxas de dose absorvidas foram calculadas por radionuclídeo e por tipo de radiação emitida. A taxa de dose média devida a esses radionuclídeos foi de 5.36 µGy a-1, valor seis ordens de grandeza menor que o valor de limite de taxa de dose absorvida utilizada no presente

  2. The effect of anatomical modeling on space radiation dose estimates: a comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts

    Energy Technology Data Exchange (ETDEWEB)

    Bahadori, Amir A; Bolch, Wesley E [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Van Baalen, Mary; Semones, Edward J [NASA Johnson Space Center, Houston, TX 77058 (United States); Shavers, Mark R [Wyle Integrated Science and Engineering, Houston, TX 77058 (United States); Dodge, Charles, E-mail: wbolch@ufl.edu [University of Houston-Downtown, Houston, TX 77002 (United States)

    2011-03-21

    The National Aeronautics and Space Administration (NASA) performs organ dosimetry and risk assessment for astronauts using model-normalized measurements of the radiation fields encountered in space. To determine the radiation fields in an organ or tissue of interest, particle transport calculations are performed using self-shielding distributions generated with the computer program CAMERA to represent the human body. CAMERA mathematically traces linear rays (or path lengths) through the computerized anatomical man (CAM) phantom, a computational stylized model developed in the early 1970s with organ and body profiles modeled using solid shapes and scaled to represent the body morphometry of the 1950 50th percentile (PCTL) Air Force male. With the increasing use of voxel phantoms in medical and health physics, a conversion from a mathematical-based to a voxel-based ray-tracing algorithm is warranted. In this study, the voxel-based ray tracer (VoBRaT) is introduced to ray trace voxel phantoms using a modified version of the algorithm first proposed by Siddon (1985 Med. Phys. 12 252-5). After validation, VoBRAT is used to evaluate variations in body self-shielding distributions for NASA phantoms and six University of Florida (UF) hybrid phantoms, scaled to represent the 5th, 50th, and 95th PCTL male and female astronaut body morphometries, which have changed considerably since the inception of CAM. These body self-shielding distributions are used to generate organ dose equivalents and effective doses for five commonly evaluated space radiation environments. It is found that dosimetric differences among the phantoms are greatest for soft radiation spectra and light vehicular shielding.

  3. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi [Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976 (Japan); Kakei, Kiyotaka; Yoshiyama, Fumiaki [Department of Radiotherapy, Kumamoto University Hospital, 1-1-1 Honjyo, Kumamoto 860-8556 (Japan); Kawamura, Shinji [Department of Radiotherapy, Miyazaki University Hospital, 5200 Kihara Ohaza Kiyotake-Machi, Miyazaki 889-1692 (Japan)

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43

  4. Absorbed dose in AgBr in direct film for photon energies (<150 keV): relation to optical density. Theoretical calculation and experimental evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Helmrot, E. [Linkoeping Univ. (Sweden). Dept. of Radiation Physics; Alm Carlsson, G. [Linkoeping Univ. (Sweden). Dept. of Radiation Physics

    1996-12-31

    Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING`s theory. They were also found to be proportional to the collision kerma in silver bromide (K{sub c,AgBr}) indicating proportionality between K{sub c,AgBr} and the mean absorbed dose in silver bromide. While GREENING`s theory shows that the quotient of the mean absorbed dose in silver bromide and K{sub c,AgBr} varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between K{sub c,AgBr} and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies (<30 keV) and GREENING`s theory, which is strictly valid at energies above 50 keV. This study shows that the blackening of non-screen films can be related directly to the energy absorbed in the AgBr grains of the emulsion layer and that, for the purpose of modelling the imaging chain in intraoral radiography, film response can be represented by K{sub c,AgBr} (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving K{sub c,AgBr} is clearly demonstrated, showing that the concept of effective energy must be used with care. (orig./HP).

  5. Absorbed doses received by infants subjected to panoramic dental and cephalic radiographs; Dosis absorbida recibida por infantes sometidos a radiografias dentales panoramicas y cefalicas

    Energy Technology Data Exchange (ETDEWEB)

    Carrizales, L.; Carreno, S. [Instituto Venezolano de Investigaciones Cientificas. Laboratorio Secundario de Calibracion Dosimetrica. Carretera Panamericana Km. 11. Apartado Postal 21827, Caracas (Venezuela)

    1998-12-31

    The IAEA Report No. 115 recommends that each country or region can establish levels of absorbed doses for each radiographic technique employed in diagnostic. assuming the extended and expensive of this purpose, we have been to begin in a first step with the dentistry area, in order to estimate the dose levels received at crystalline and thyroid level in infants that go to an important public institution in our country to realize panoramic and cephalic radiographs. This work will serve to justify and impel a quality assurance program in Venezuela on the dentistry area which includes aspects such as training for the medical lap referring the justification of the radiological practice, optimization of X-ray units to produce an adequate image quality that delivers to patient an absorbed dose as much lower as reasonably it can be reached without diagnostic detriment. (Author)

  6. An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: numerical and experimental proof-of-principle.

    Science.gov (United States)

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-01

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 (192Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR 192Ir brachytherapy source was simulated using COMSOL MULTIPHYSICS software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k(c) was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502 +/- 0.007) microGy/(s U) compares well with the TG-43 derived 0.505 microGy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR 192Ir brachytherapy.

  7. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  8. Role of shielding in modulating the effects of solar particle events: Monte Carlo calculation of absorbed dose and DNA complex lesions in different organs

    Science.gov (United States)

    Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.

    2004-01-01

    Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for

  9. Absorbed dose during helical CT acquisition: influence of acquisition parameters; Dose delivree lors d'un examen scanner en acquisition helicoidale influence des parametres d'acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, J.Y.; Sage, J.; Dusserre, A.; Bolla, M.; Kolodie, H. [Centre Hospitalier Universitaire, Service de Cancerologie-Radiotherapie, 38 - Grenoble (France); Taisant, D. [Clinique du Mail, Service de Radiotherapie, 38 - Grenoble (France); Coulomb, M.; Ferretti, G. [Centre Hospitalier Universitaire, Service Central de Radiologie et Imagerie Medicale, 38 - Grenoble (France); Barthelemy, R.; Aumont, B. [Clinique du Mail, Service de Radiologie, 38 - Grenoble (France)

    2001-01-01

    Purpose. European directive 97/43 specifies that the dose delivered to the patient during a radiological procedure should be estimated. In order to prepare for implementation of this new regulation, we have studied the dose delivered during spiral CT acquisition. Materials and methods. We have studied the influence of slice thickness, pitch, tube voltage and intensity, and acquisition volume length. We present measurements for single and dual detector CT scanners. We used a pencil ionization chamber to measure air kerma. We measured absorbed dose in water with a waterproof ionization chamber set in a semi-customized phantom filled with water. Chambers were set on the rotation axis of the CT scanners. We studied the dose outside the acquisition volume. Results. We quantified the influence of each parameter on the absorbed dose. We used our measurements to calculate the dose for different acquisition protocols. Also we evaluated the dose to organs distant from the acquisition area. Conclusion. This study is one step toward a systematic estimation of the dose delivered to patient during helical CT exams. To use these results in daily practice, we have to develop software using our measurements. (authors)

  10. Prediction of Therapy Tumor-Absorbed Dose Estimates in I-131 Radioimmunotherapy Using Tracer Data Via a Mixed-Model Fit to Time Activity

    Science.gov (United States)

    Koral, Kenneth F.; Avram, Anca M.; Kaminski, Mark S.; Dewaraja, Yuni K.

    2012-01-01

    Abstract Background For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors. Methods The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation. Results The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; ptracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; ptracer study for tumor dosimetry-based treatment planning in RIT. PMID:22947086

  11. Absorbed dose rate due to intake of natural radionuclides by Tilapia fish (Tilapia nilotica, Linnaeus, 1758) estimated near uranium anomaly at Santa Quiteria, Ceara, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de [Industrias Nucleares do Brasil S.A. (INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Unidade de Tratamento de Minerios], E-mail: wspereira@inb.gov.br; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Ciencia Ambiental; Py Junior, Delcy de Azevedo [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil). Coordenacao de Protecao Radiologica. Unidade de Concentrado de Uranio], E-mail: Delcy@inb.gov.br

    2007-07-01

    The uranium mining at Santa Quiteria (Santa Quiteria Unit - USQ) is in its environmental licensing phase. Aiming to estimate the radiological environmental impact of the USQ, a monitoring program is underway. However, radioprotection of biota is not explicitly mentioned in Brazilian norms. In order to preserve the biota of the deleterious effects from radiation and to behave in a pro-active way as expected by licensing organs, the present work aims to use an environmental protection methodology, based on the calculation of absorbed dose rate in biota. Thus, selected biomarker was the fish tilapia (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). Since there are no exposition limits for biota, in Brazil, the value proposed by the Department of Energy (DOE) of the United States of 3.5 x 10{sup 3} {mu}Gy/y has been used. The derived absorbed dose rate calculated for tilapia was 2.76 x 10{sup 0} {mu}Gy/y, that is less than 0.1 % of the limit established by DOE. The critical radionuclide was U-238, with 99% of the absorbed dose rate. This value of 0.1% of the limit allows to state that in pre-operational conditions analyzed natural radionuclides do not represent a radiological problem to the biota. (author)

  12. Measurement of the absorbed dose distribution near an 192Ir intravascular brachytherapy seed using a high-spatial-resolution gel dosimetry system

    Science.gov (United States)

    Massillon-JL, G.; Minniti, R.; Mitch, M. G.; Soares, C. G.

    2012-06-01

    The absorbed dose distribution at sub-millimeter distances from the Best single 192Ir intravascular brachytherapy seed was measured using a high-spatial-resolution gel dosimetry system. Two gel phantoms from the same batch were used; one for the seed irradiation and one for calibration. Since the response of this gel is energy independent for photons between 20 and 1250 keV, the gel was calibrated using a narrowly collimated 60Co gamma-ray beam (cross-sectional area ˜1 cm2). A small format laser computed tomography scanner was used to acquire the data. The measurements were carried out with a spatial resolution of 100 µm in all dimensions. The seed was calibrated at NIST in terms of air-kerma strength. The absorbed dose rate as well as the radial dose function, gL(r), was measured for radial distances between 0.6 and 12.6 mm from the seed center. The dose rate constant was measured, yielding a value of Λ = (1.122 ± 0.032) cGy h-1 U-1, which agrees with published data within the measurement uncertainty. For distances between 0.6 and 1.5 mm, gL(r) decreases from a maximum value of 1.06 down to 1.00; between 1.5 and 6.7 mm, an enhancement is clearly observed with a maximum value around 1.24 and beyond 6.7 mm, gL(r) has an approximately constant value around 1.0, which suggests that this seed can be considered as a point source only at distances larger than 6.7 mm. This latter observation agrees with data for the same seed reported previously using Gafchromic film MD-55-2. Additionally, published Monte Carlo (MC) calculations have predicted the observed behavior of the radial dose function resulting from the absorbed dose contributions of beta particles and electrons emitted by the 192Ir seed. Nonetheless, in the enhancement region, MC underestimates the dose by approximately 20%. This work suggests that beta particles and electrons emitted from the seed make a significant contribution to the total absorbed dose delivered at distances near the seed center (less

  13. Philosophy on astronaut protection: Perspective of an astronaut

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.

    1997-04-30

    There are significant differences in the risks during the launch of a spacecraft, its journey, and its subsequent return to earth, as contrasted to the risks of latent cancers that may develop as a result of the associated radiation exposures. Once the spacecraft has landed, following a successful mission, the risks of accidental death are over. The risks of latent cancers, however, will remain with the astronauts for the rest of their lives. The same may be true for many of the effects of the space environment, including microgravity. Compounding the problem with respect to radiation are the large uncertainties accompanying the estimates of the associated latent cancer risks. In addition to radiation doses received as a result of being exposed in space, astronauts have received significant does of radiation in conjunction with medical examinations and experiments conducted to obtain data on the effects of the space environment on humans. The experiments were considered to be a part of the {open_quotes}job{close_quotes} of being an astronaut, and the resulting doses were included in the medical records. Following this approach, the accompanying doses were counted against the career limits being imposed on each astronaut. As a result, volunteering for such experiments could cause an earlier termination of the career of an astronaut than would otherwise have occurred and add to the total radiation exposure, thereby increasing one`s risk of subsequent illness. Through cooperative efforts, these does have been significantly reduced in recent years. In fact, one of the outcomes of these efforts has been the incorporation of the ALARA concept into the radiation protection program for the astronauts. The fact that a space mission has a range of risks, including some that are relatively large, is no justification for failing to reduce the accompanying radiation risk.

  14. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    Science.gov (United States)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  15. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX; Calculo de dosis absorbida en volumenes esfericos alrededor del Mammosite utilizando el codigo de simulacion Monte Carlo MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2008-07-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  16. Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters; Verificacao das doses de radiacao absorvidas durante a tecnica de irradiacao de corpo inteiro nos transplantes de medula ossea, por meio de dosimetros termoluminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Giordani, Adelmo Jose; Segreto, Helena Cristina Comodo; Segreto, Roberto Araujo; Medeiros, Regina Bitelli; Oliveira, Jose Salvador R. de [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Setor de Radioterapia]. E-mail: adelmogiordani@ig.com.br

    2004-10-01

    The objective was to evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. Two-hundred CaSO{sub 4}:Dy + teflon tablets were calibrated in air and in 'phantom'. These tablets were randomly selected and divided in groups of five in the patients' body. The dosimetric readings were obtained using a Harshaw 4000A reader. Nine patients had their entire bodies irradiated in parallel and opposite laterals in a cobalt-60 Alcion II model, with a dose rate of 0.80 Gy/min at 80.5 cm, {l_brace}(10 ? 10) cm{sup 2} field. The dosimetry of this unit was performed using a Victoreen 500 dosimeter. For the determination of the mean dose at each point evaluated, the individual values of the tablets calibrated in air or 'phantom' were used, resulting in a build up of 2 mm to superficialize the dose at a distance of 300 cm. In 70% of the patients a variation of less than 5% in the dose was obtained. In 30% of the patients this variation was less than 10%, when values obtained were compared to the values calculated at each point. A mean absorption of 14% was seen in the head, and an increase of 2% of the administered dose was seen in the lungs. In patients with latero-lateral distance greater than 35 cm the variation between the calculated doses and the measured doses reached 30% of the desired dose, without the use of compensation filters. The measured values of the absorbed doses at the various anatomic points compared to the desired doses (theoretic) presented a tolerance of {+-} 10%, considering the existent anatomical differences and when using the individual calibration factors of the tablets. (author)

  17. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging: Implications for CT dosimetry.

    Science.gov (United States)

    Perisinakis, Kostas; Tzedakis, Antonis; Spanakis, Kostas; Papadakis, Antonios E; Hatzidakis, Adam; Damilakis, John

    2018-01-01

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. • Radiation absorption ability of organs/tissues is considerably affected by iodine uptake • Iodinated organ/tissues may absorb up to 100 % higher radiation dose • Compared to non-enhanced, contrast-enhanced CT may deliver higher dose to patient tissues • CT dosimetry of contrast-enhanced CT imaging should encounter tissue iodine uptake.

  18. Evaluation of the dose absorbed by the thyroid of patients undergoing treatment of Graves disease;Avaliacao da dose absorvida pela tireoide de pacientes submetidos ao tratamento da doenca de Graves

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Tiago L.; Filho, Joao A. [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Dept. de Fisica; Silva, Jose M.F. da [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2009-07-01

    The radioiodine is used as complementary treatment of thyroid cancer and as first choice for the treatment of Graves' disease, being efficient, safe and easy administration, but without there is a protocol defined. This work was evaluated the thyroid absorbed dose from its mass and maximum uptake of I-131 obtained in the examination of diagnostic radiology of radiotherapeutic patients undergoing treatment of Graves' disease. Based on the results, it is observed that the thyroid absorbed dose, as much in terms of mass as the maximum uptake of I-131 for different values of administered activity, varies significantly. The analysis of these parameters is an excellent indicator for the pre-define quantity of radionuclide that is administered to the patient in terms of the radiation dose required to achieve an efficient therapeutic treatment. Moreover, it was observed that the thyroid absorbed dose depends on the degree of pathology of the disease, its mass and of the maximum uptake of I-131. (author)

  19. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  20. Absorbed radiation doses in women undergone to PET-CT exams for cancer diagnosis; Dose absorvida e efetiva em mulheres submetidas a exames de PET-CT para diagnostico oncologico

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Priscila do Carmo; Bernardes, Felipe Dias; Mamede, Marcelo, E-mail: pridili@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Oliveira, Paulo Marcio Campos de; Silva, Teogenes Augusto da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Mourao FIlho, Arnaldo Prata [Centro Federal de Educacao Tecnologica de Minas Gerais, Belo Horizonte, MG (Brazil)

    2014-07-01

    The absorbed dose in several organs and the effective dose in patients submitted to PET-CT exams with the radiopharmaceutical {sup 18}F-FDG were assessed. The ICRP-106 biokinetic model and thermoluminescent detectors in a anthropomorphic phantom were used. The use of the PET-CT image acquisition protocol, with the CT protocol for anatomical mapping, showed that 60% of effective dose was from the radiotracer administration, being the effective dose values for a female patient of (5.80 ± 1.57) mSv. In conclusion, patient doses can be reduced by using appropriate imaging acquisition in {sup 18}F-FDG PET-CT examinations and promoting the compliance with the radiation protection principles. (author)

  1. Quantitative assessment of selective in-plane shielding of tissues in computed tomography through evaluation of absorbed dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Geleijns, J.; Veldkamp, W.J.H. [Leiden University Medical Center, Radiology Department, ZA Leiden (Netherlands); Salvado Artells, M.; Lopez Tortosa, M. [Universitat Rovira i Virgili, Facultat de Medicina i Ciencies de la Salut, Departament de Ciencies Mediques Basiques, Reus, Tarragona (Spain); Calzado Cantera, A. [Universidad Complutense de Madrid, Departamento de Radiologia, Madrid (Spain)

    2006-10-15

    This study aimed at assessment of efficacy of selective in-plane shielding in adults by quantitative evaluation of the achieved dose reduction and image quality. Commercially available accessories for in-plane shielding of the eye lens, thyroid and breast, and an anthropomorphic phantom were used for the evaluation of absorbed dose and image quality. Organ dose and total energy imparted were assessed by means of a Monte Carlo technique taking into account tube voltage, tube current, and scanner type. Image quality was quantified as noise in soft tissue. Application of the lens shield reduced dose to the lens by 27% and to the brain by 1%. The thyroid shield reduced thyroid dose by 26%; the breast shield reduced dose to the breasts by 30% and to the lungs by 15%. Total energy imparted (unshielded/shielded) was 88/86 mJ for computed tomography (CT) brain, 64/60 mJ for CT cervical spine, and 289/260 mJ for CT chest scanning. An increase in image noise could be observed in the ranges were bismuth shielding was applied. The observed reduction of organ dose and total energy imparted could be achieved more efficiently by a reduction of tube current. The application of in-plane selective shielding is therefore discouraged. (orig.)

  2. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning.

    Science.gov (United States)

    Walsh, Linda

    2013-03-01

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays-leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both

  3. The influence of the patient's posture on organ and tissue absorbed doses caused by radiodiagnostic examinations; Influencia da postura do paciente na dose absorvida em orgaos e tecidos causada por exames radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    Cassola, Vagner F.; Kramer, Richard; Khoury, Helen J.; Lira, Carlos A.B.O., E-mail: vagner.cassola@gmail.co [Universidade Federal de Pernambuco (DEN/UFPE), Recife (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Due to the gravitational force, organ positions and subcutaneous fat distribution change when a standing person lies down on her/his back, which is called 'supine posture'. Both postures, standing and supine, are very common in X-ray diagnosis, however, phantoms used for the simulation of patients for organ and tissue absorbed dose assessments normally represent humans either in standing or in supine posture. Consequently, the exposure scenario simulated sometimes does not match the real X-ray examination with respect to the patient's posture. Using standing and supine versions of mesh-based female and male adult phantoms, this study investigates the 'posture-effect' on organ and tissue absorbed doses for radiographs of the pelvis and the lumbar spine in order to find out if the errors from simulating the false posture are significant. (author)

  4. SU-E-T-30: Absorbed Doses Determined by Texture Analysis of Gafchromic EBT3 Films Using Scanning Electron Microscopy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Park, S [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, H [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Ye, S [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon (Korea, Republic of)

    2014-06-01

    Purpose: The texture analysis method is useful to estimate structural features of images as color, size, and shape. The study aims to determine a dose-response curve by texture analysis of Gafchromic EBT3 film images using scanning electron microscopy (SEM). Methods: The uncoated Gafchromic EBT3 films were prepared to directly scan over the active surface layer of EBT3 film using SEM. The EBT3 films were exposed at a dose range of 0 to 10 Gy using a 6 MV photon beam. The exposed film samples were SEM-scanned at 100X, 1000X, and 3000X magnifications. The four texture features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) derived from the SEM images at each dose. To validate a correlation between delivered doses and texture features, an R-squared value in linear regression was tested. Results: The results showed that the Correlation index was more suitable as dose indices than the other three texture features due to higher linearity and sensitivity of the dose response curves. Further the Correlation index of 3000X magnified SEM images with 9 pixel offsets had an R-squared value of 0.964. The differences between the delivered doses and the doses measured by this method were 0.9, 1.2, 0.2, and 0.2 Gy at 5, 10, 15, and 20 Gy, respectively. Conclusion: It seems to be feasible to convert micro-scale structural features of {sub χ}t{sub χχχ}he EBT3 films to absorbed doses using the texture analysis method.

  5. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment; Quantificacao de micronucleos em linfocitos de pacientes expostas a radiacao gama para a avaliacao da dose absorvida

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-15

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with {sup 60}Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  6. Evaluation of the absorbed dose, half-thickness layer and the yield of X-ray an diagnostic equipment; Evaluacion de la dosis absorbida, capa semirreductora y del rendimento en equipos de rayos X diagnosticos

    Energy Technology Data Exchange (ETDEWEB)

    Benito C, Luis R. [Universidad Nacional del Callao (UNAC), (Peru). Facultad de Ciencias Naturales y Matematica]. E-mail: luilink_222@yahoo.com; Marquez P, Fernando [Universidad Nacional Mayor de San Marcos (UNMSM), Lima (Peru). Facultad de Ciencias Fisicas; Instituto de Enfermedades Neoplasicas (INEN), Lima (Peru). Servicio de Fisica Medica

    2004-07-01

    This work develops parametrization methods for evaluation the absorbed doses, the half-thickness and the effectiveness of a X-ray beams from a Shimadzu Radiotex and a SRO 2550 Philips models equipment.

  7. Den danske astronaut

    DEFF Research Database (Denmark)

    Jakobsen, Lars Sejersgård

    2015-01-01

    Undervisningsmateriale til mellemtrinnet om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015......Undervisningsmateriale til mellemtrinnet om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015...

  8. Den danske astronaut

    DEFF Research Database (Denmark)

    Jakobsen, Lars Sejersgård

    2015-01-01

    Undervisningsmateriale til udskolingen om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015......Undervisningsmateriale til udskolingen om raketter, astronauter og rummet lavet for Planetariet i anledning af opsendelsen af den første danske astronaut, Andreas Mogensen, til Den Internationale Rumstation (ISS) i sensommeren 2015...

  9. A Minute Dose of 14C-b-Carotene is Absorbed and Converted to Retinoids in Humans

    Science.gov (United States)

    We dosed 8 adults with 14C-all-trans [10,10',11,11'-14C]-B-carotene (1.01 nmol) to quantify its absorption and metabolism. We used accelerator mass spectrometry (AMS) to measure 14C eliminated in feces over 14 days, in urine over 30 days, and that was retained in plasma over 166 days since dose. We...

  10. Code intercomparison and benchmark for muon fluence and absorbed dose induced by an 18-GeV electron beam after massive iron shielding

    CERN Document Server

    Fassò, Alberto; Ferrari, Anna; Mokhov, Nikolai V.; Müller, Stefan E.; Nelson, Walter Ralph; Roesler, Stefan; Sanami, Toshiya; Striganov, Sergei I.; Versaci, Roberto

    2015-01-01

    In 1974, Nelson, Kase, and Svenson published an experimental investigation on muon shielding using the SLAC high energy LINAC. They measured muon fluence and absorbed dose induced by a 18 GeV electron beam hitting a copper/water beam dump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical mode ls available at the time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results will then be compared between the codes, and with the SLAC data.

  11. Update on the Code Intercomparison and Benchmark for Muon Fluence and Absorbed Dose Induced by an 18 GeV Electron Beam After Massive Iron Shielding

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A. [SLAC; Ferrari, A. [CERN; Ferrari, A. [HZDR, Dresden; Mokhov, N. V. [Fermilab; Mueller, S. E. [HZDR, Dresden; Nelson, W. R. [SLAC; Roesler, S. [CERN; Sanami, t.; Striganov, S. I. [Fermilab; Versaci, R. [Unlisted, CZ

    2016-12-01

    In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, and with the SLAC data.

  12. Absorbed doses received by patients submitted to chest radiographs in hospitals of the city of Sao Paulo, Brazil; Doses absorvidas pelos pacientes submetidos a radiografias toracicas em hospitais do municipio de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Marcelo Baptista de

    2000-07-01

    Medical irradiation contributes with a significant amount to the dose received by the population. Here, this contribution was evaluated in a survey of absorbed doses received by patients submitted to chest radiological examinations (postero-anterior (PA) and lateral (LAT) projections) in hospitals of the city of Sao Paulo. Due to the variety of equipment and procedures used in radiological examinations, a selection of hospitals was made (12, totalizing 27 X-ray facilities), taking into account their representativeness as medical institutions in the city, in terms of characteristics and number of radiographs carried out. An anthropomorphic phantom, provided with thermoluminescent dosemeters (TLD-1 00), was irradiated simulating the patient, and the radiographic image quality was evaluated. Absorbed doses were determined to the thoracic region (entrance and exit skin and lung doses), and to some important organs from the radiation protection point of view (lens of the eye, thyroid and gonads). The great variation on the exposure parameters (kV, mA.s, beam size) leads to a large interval of entrance skin doses-ESD (coefficients of variation, CV, of 60% and 76%, for PA and LAT projections, respectively, were found) and of organ doses (CV of 60% and 46%. for thyroid and lung respectively). Mean values of ESD for LAT and PA projections were 0.22 and 0.98 mGy, respectively. The average absorbed doses per exam (PA and LAT) to thyroid and lung, 0.15 and 0.24 mGy respectively,showed that the thyroid was irradiated by the primary beam in many cases. Values of lens of the eye and gonad absorbed doses were below 30 {mu}Gy. Comparison of the lung doses obtained in this study with values in the literature, calculated by Monte Carlo simulation, showed good agreement. On the other hand, the comparison shows significant differences in the dose values to organs outside the chest region (thyroid, lens of eye and gonads). The effective dose calculated for a chest examination, PA and

  13. Astronaut Donald Slayton

    Science.gov (United States)

    1959-01-01

    Astronaut Donald 'Deke' Slayton, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. Astronaut Slayton had never been into space, grounded because of an irregular heartbeat, until he flew on the Apollo/Soyuz Test Project (ASTP) on July 15, 1975.

  14. Image-Based Assessment and Clinical Significance of Absorbed Radiation Dose to Tumor in Repeated High-Dose {sup 131}I Anti-CD20 Monoclonal Antibody (Rituximab) Radioimmunotherapy for Non-Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Kim, Kyeong Min; Woo, Sang Keun; Choi, Tae Hyun; Kang, Hye Jin; Oh, Dong Hyun; Kim, Byeong Il; Choen, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-02-15

    We assessed the absorbed dose to the tumor (Dose tumor) by using pretreatment FDG-PET and whole-body (WB) planar images in repeated radioimmunotherapy (RIT) with {sup 131}I rituximab for NHL. Patients with NHL (n=4) were administered a therapeutic dose of {sup 131}I rituximab. Serial WB planar images after RIT were acquired and overlaid to the coronal maximum intensity projection (MIP) PET image before RIT. On registered MIP PET and WB planar images, 2D-ROIs were drawn on the region of tumor (n=7) and left medial thigh as background, and Dosetumor was calculated. The correlation between Dosetumor and the CT-based tumor volume change after RIT was analyzed. The differences of Dosetumor and the tumor volume change according to the number of RIT were also assessed. The values of absorbed dose were 397.7{+-}646.2cGy (53.0{approx}2853.0cGy). The values of CT-based tumor volume were 11.3{+-}9.1 cc (2.9{approx}34.2cc), and the % changes of tumor volume before and after RIT were -29.8{+-}44.3% (-100.0%{approx}+42.5%), respectively. Dosetumor and the tumor volume change did not show the linear relationship (p>0.05). Dosetumor and the tumor volume change did not correlate with the number of repeated administration (p>0.05). We could determine the position and contour of viable tumor by MIP PET image. And, registration of PET and gamma camera images was possible to estimate the quantitative values of absorbed dose to tumor.

  15. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation; Comparacao da dose absorvida no tratamento do cancer ginecologico por braquiterapia de alta taxa de dose utilizando o planejamento convencional do tratamento e simulacao de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aneli Oliveira da

    2010-07-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of {sup 192}Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results

  16. Evaluation of the absorbed dose to the lungs due to Xe{sup 133} and Tc{sup 99m} (MAA); Evaluacion de la dosis absorbida en los pulmones debido al Xe{sup 133} y Tc{sup 99m} (MAA)

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo (Peru); Rojas P, E. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima (Peru); Marquez P, F., E-mail: marvva@hotmail.com [Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos 2520, Lima (Peru)

    2015-10-15

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe{sup 133} or Tc{sup 99m} (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to {sup 133}Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the {sup 133}Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc{sup 99m} (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc{sup 99m} biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  17. Absorbed Doses and Risk Estimates of (211)At-MX35 F(ab')2 in Intraperitoneal Therapy of Ovarian Cancer Patients

    DEFF Research Database (Denmark)

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter

    2015-01-01

    PURPOSE: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence...... dose associated with i.p. administration of (211)At-MX35 F(ab')2. METHODS AND MATERIALS: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of (211)At-MX35 F(ab')2. Potassium perchlorate was given to block unwanted accumulation...... of (211)At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical...

  18. Absorbed doses by the thyroid follicles due to the short half-lives isotope; Dose absorvida pelos foliculos tireoideanos devido aos isotopos de iodo de meia-vida curta

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia; Amaral, Ademir; Colas-Linhart, Nicole; Hindie, Elif; Oliveira, Jairo R. de; Oliveira, Pedro A.R. de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR); Universite Paris 7, Paris Cedex 18 (France). Faculte de Medecine Xavier Bichat. Lab. de Chimie et Biophysique des Traceurs; Paris Cedex 12 (France). Hopital Saint-Antoine. Service de Medecine Nucleaire; Universidade Federal de Pernambuco UFPE, Recife, PE (Brazil). Dept. de Fisica e Matematica; E-mails: lpbcampos@uol.com.br; amaral@ufpe.br

    2005-11-15

    The aim of this work is to evaluate the contributions of internally deposited short-lived iodines to the dose absorbed by thyroid's follicle, in the case of nuclear accidents . Dose calculation was carried out, at follicular level, for {sup 131} I and short-lived iodines ({sup 132}I, {sup 133}I, {sup 134}I and {sup 135}I), using the code MCNP4C. The thyroid's follicles were modeled as spheres, with different diameters (between 40 to 240 {mu}m), having the same density as for soft tissue ({rho} = 1.04 g.cm{sup -3}). The results showed that the contribution of short-lived iodines for total dose is about 72%. The results reported in this work pointed out that, in case of nuclear accidents, the contributions of the short-lived iodines to the total dose absorbed by thyroid, at follicular level, cannot be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine.(author)

  19. Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced MR finding of radiation-induced hepatic injury: relationship to absorbed dose and time course after irradiation.

    Science.gov (United States)

    Okamoto, Daisuke; Nishie, Akihiro; Asayama, Yoshiki; Tajima, Tsuyoshi; Ishigami, Kousei; Kakihara, Daisuke; Nakayama, Tomohiro; Ohga, Saiji; Yoshitake, Tadamasa; Shioyama, Yoshiyuki; Honda, Hiroshi

    2014-07-01

    To evaluate if Gd-EOB-DTPA-enhanced MRI could identify liver tissue damage caused by radiation exposure in patients undergoing external beam radiation therapy. We enrolled 11 patients who underwent Gd-EOB-DTPA-enhanced MRI during or after radiotherapy in which the radiation field included the liver. External beam radiotherapy was delivered through multiple fields using a 10-MV linear accelerator. The hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI were qualitatively evaluated for the presence of a decreased uptake of Gd-EOB-DTPA in the irradiated area in the liver. Next, signal intensity (SI) ratio of the irradiated area to the non-irradiated liver parenchyma was also calculated. The absorbed dose of the irradiated area in the liver was standardized using equivalent dose in 2Gy fraction (EQD2) and biological effective dose (BED). The results of qualitative analysis were compared with EQD2 or BED, and linear regression analysis was performed between EQD2 or BED and SI ratio. Twenty-two irradiated areas were evaluated. Qualitative analysis revealed a decreased uptake of Gd-EOB-DTPA in 14 areas and no decreased uptake of Gd-EOB-DTPA in eight areas. The thresholds of EQD2 and BED causing a decreased uptake of Gd-EOB-DTPA were considered to be 24 to 29Gy and 29 to 35Gy, respectively. Quantitatively, SI ratio decreased as EQD2 or BED increased (r=0.89, pradiotherapy. Gd-EOB-DTPA-enhanced MRI described RLI as a decreased uptake of Gd-EOB-DTPA matching the irradiated area. The occurrence of this finding was significantly correlated with the absorbed dose of the irradiated area in the liver. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Comparison of the calculated absorbed dose using the Cadplan™ treatment planning software and Tld-100 measurements in an Alderson-Rando phantom for a bronchogenic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez Castillo, J. G., E-mail: jggc59@hotmail.com [Departamento de Física, Hospital de Oncología, IMSS, CMN Siglo XXI, Cuauhtémoc 330 Col. Doctores (Mexico); Álvarez Romero, J. T., E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx; Calderón, A. Torres, E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx; M, V. Tovar, E-mail: trinidad.alvarez@inin.gob.mx, E-mail: fisarmandotorres@gmail.com, E-mail: victor.tovar@inin.gob.mx [SSDL, Departamento de Metrología ININ, Salazar, Estado de México 15245 (Mexico)

    2014-11-07

    To verify the accuracy of the absorbed doses D calculated by a TPS Cadplan for a bronchogenic treatment (in an Alderson-Rando phantom) are chosen ten points with the following D's and localizations. Point 1, posterior position on the left edge with 136.4 Gy. Points: 2, 3 and 4 in the left lung with 104.9, 104.3 and 105.8 Gy, respectively; points 5 and 6 at the mediastinum with 192.4 and 173.5 Gy; points 7, 8 and 9 in the right lung with 105.8, 104.2 and 104.7 Gy, and 10 at posterior position on right edge with 143.7 Gy. IAEA type capsules with TLD 100 powder are placed, planned and irradiated. The evaluation of the absorbed dose is carried out a curve of calibration for the LiF response (nC) {sup vs} {sup DW}, to several cavity theories. The traceability for the DW is obtained with a secondary standard calibrated at the NRC (Canada). The dosimetric properties for the materials considered are determined from the Hounsfield numbers reported by the TPS. The stopping power ratios are calculated for nominal spectrum to 6 MV photons. The percent variations among the planned and determined D in all the cases they are < ± 3%.

  1. Evaluation of variation of voltage (kV) absorbed dose in chest CT scans; Avaliacao da variacao da tensao (kV) na dose absorvida em varreduras de TC torax

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Bruna G.A.; Mourao, Arnaldo P., E-mail: brunabgam@gmail.com [Centro Federal de Educacao Tecnologica de Minas Gerais (CENEB/CEFET-MG), Belo Horionte, MG, (Brazil)

    2013-07-01

    Computed tomography (CT) is one of the most important diagnostic techniques images today. The increasing utilization of CT implies a significant increase of population exposure to ionizing radiation. Optimization of practice aims to reduce doses to patients because the image quality is directly related to the diagnosis. You can decrease the amount of dose to the patient, and maintain the quality of the image. There are several parameters that can be manipulated in a CT scan and these parameters can be used to reduce the energy deposited in the patient. Based on this, we analyzed the variation of dose deposited in the lungs, breasts and thyroid, by varying the supply voltage of the tube. Scans of the thorax were performed following the protocol of routine chest with constant and variable current for the same applied voltage. Moreover, a female phantom was used and thermoluminescent dosimeters (TLD-100), model bat, were used to record the specific organ doses. Scans were performed on a GE CT scanner, model 64 Discovery channels. Higher doses were recorded for the voltage of 120 kV with 200 mAs in the lungs (22.46 mGy) and thyroid (32.22 mGy). For scans with automatic mAs, variable between 100 and 440, this same tension contributed to the higher doses. The best examination in terms of the dose that was used with automatic 80 kV mAs, whose lungs and thyroid received lower dose. For the best breast exam was 100 kV. Since the increase in the 80 kV to 100 kV no impact so much the dose deposited in the lungs, it can be concluded that lowering the applied voltage to 100 kV resulted in a reduction in the dose absorbed by the patient. These results can contribute to optimizing scans of the chest computed tomography.

  2. Assessment of absorbed dose and therapeutic response of tumor in repeated high-dose I-131 anti-CD20 monoclonal antibody (rituximab) radioimmunotherapy for non-Hodgkin's lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Byung Hyun; Lim, Sang Moo; Kim, Kyeong Min [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    We assessed the therapeutic dose absorbed to the tumor and response in repeated RIT with I-131 rituximab for NHL. Patients with NHL (n=6) were administered a therapeutic dose of I-131 rituximab (192.527.0 mCi). The number of repeated administration was 3 for all patients. Total 12 measurable tumor regions were assessed at the time of each RIT. Whole-body (WB) planar images with anterior and posterior views were acquired sequentially at 5 min, 5hr, 24hr, 48hr, and 72hr post-injection using gamma camera. F-18-FDG PET/CT was performed before (within 7 days) and after (on Day 30) RIT. From PET/CT image acquired before RIT, maximum intensity projection (MIP) image of coronal view was acquired. Serial WB planar images were overlaid to the coronal MIP PET image, respectively, by means of registration using 4 fiducial marks (bilateral shoulder and buttock) implemented in AMIDE software. On registered MIP PET and WB planar images, both 2D-ROIs were drawn on the region of tumor and background nearby tumor. The shape of 2D-ROI of tumor was determined from the MIP PET image. The volume of tumor was measured from the CT image, the % change of tumor volume before and after RIT was used in evaluation of the therapeutic response. The values of CT-based tumor volume were 8.216.3cc. The values of absorbed dose for tumor and the % changes of tumor volume before and after RIT were 231.8603.0rad, and 55.548.7%, respectively, and did not show the linear relationship (r=0.2787). The values of absorbed dose for tumor and the % changes of tumor volume did not correlate with the number of repeated administration (p>0.05, ANOVA). Aligning PET and planar images could estimate the quantitative values of absorbed dose to tumor. The data suggest that repeated RIT with I-131 rituximab is necessary for NHL, because single-RIT is insufficient to achieve remission of disease.

  3. Assessment of Brain absorbed X-ray dose during CT- Scan using ImPACT software in Tehran Univeristy hospitals

    Directory of Open Access Journals (Sweden)

    Khalilpour M

    2009-07-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: CT scan was first introduced into clinical practice in 1972, and since then has grown into one of the predominant diagnostic procedures. In 1998, the UK National Radiological Protection Board reported that 20% of the national collective dose from medical X-ray examinations derived from CT-scans, although it represented only 2% of all X- ray examinations the aim of this study was to determine the X-ray dosage received by patients in brain CT scan."n"n Methods: In this work, we have estimated patient dose arising from CT examination of brain in five hospitals in Tehran. Organ and effective doses were estimated for 150 patients who underwent CT examination of brain. "ImPACT" version 0.99v was used to estimate organ and effective dose. Brain examinations were performed with fixed Kvp, mAs and T (slice thickness for each scanner. "n"n Results: Patients, who were scanned by CT of emam Khomeini center (Toshiba Xvision /EX Scanner, received maximum organ dose (brain and minimum organ dose was delivered to patients who were scanned by CT of amir alam center (Toshiba Xvision /EX Scanner. Maximum effective dose was 1.7 mSv acquired in this study for emam Khomeini haspital, smaller than

  4. Radioiodine therapy in Graves' disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Michael J.; Joe, Alexius Y.; Mallek, Dirk von; Ezziddin, Samer; Palmedo, Holger [Department of Nuclear Medicine, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Brink, Ingo [Department of Nuclear Medicine, University Hospital of Freiburg (Germany); Krause, Thomas M. [Department of Nuclear Medicine, Inselspital Bern (Switzerland)

    2002-09-01

    This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15{+-}9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256{+-}80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses

  5. Estimation of absorbed dose by newborn patients subjected to chest radiographs; Estimativa de dose efetiva para radiografias do torax em pediatria neonatal

    Energy Technology Data Exchange (ETDEWEB)

    Bunick, Ana P. [Faculdades Pequeno Principe, Curitiba, PR (Brazil); Schelin, Hugo R. [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil); Denyak, Valeriy [Hospital Infantil Pequeno Principe, Curitiba, PR (Brazil)

    2016-07-01

    The aim of this study is to present an estimate of the effective dose received by newborn patients hospitalized in NICU and subjected to X-ray examinations of the chest in the AP projection. Initially, were followed examinations chest X-rays performed on newborn patients and subsequently, simulated in a newborn simulator object. The ESAK values obtained by TLDs were used to calculate the effective dose obtained at each examination by Caldose{sub X} software. The estimated values for the effective dose in the simulated exams in this study range from 2,3μSv the 10,7μSv. The results achieved are, generally, inferior to those reported for similar previous studies. (author)

  6. Influence of thermoplastic masks on absorbed skin dose for head and neck radiotherapy; Influence des masques thermoformes de contention sur la dose a la peau en radiotherapie des tumeurs des voies aerodigestives superieures

    Energy Technology Data Exchange (ETDEWEB)

    Amiel Halm, E.; Tamri, A.; Bridier, A.; Wibault, P.; Eschwege, F. [Institut Gustave Roussy, 94 - Villejuif (France); Amiel Halm, E. [Centre Medico-Chirurgical, 15 - Aurillac (France)

    2002-09-01

    The influence of thermoplastic masks used in clinical routine for patient immobilization in head and neck radiotherapy treatment on the absorbed skin dose has been investigated at Gustave-Roussy Institute. The measurements were performed in {sup 60}Co {gamma}-rays, 4 and 6 MV X-rays and in 8 and 10 MeV electron beams. Initially, the measurements were performed with thermoluminescent dosimeters (LiF) and a NACP chamber on a polystyrene phantom in order to study the influence of physical parameters (distance, field size, energy...) on first millimeters depth variation dose. The study was completed with in vivo measurements on 14 patients using various dosimeters (thermoluminescent detectors, diodes) in order to assess the increase of dose on first millimeters depth and to verify the delivered dose during treatment sessions (quality control). In treatment conditions, masks lead to an important increase of dose on the first millimeter in {sup 60}Co {gamma}-rays beams (dose value normalized to maximum of dose increase from 57.1% to 77.7% for 0.5 mm-water depth and from 78.5% to 88% for l mm-water depth); its contribution is less important in 4 and 6 MV X-rays beams (dose value normalized to maximum of dose increase from 49.5% to 63.2% for 0.5 mm-water depth and from 59% to 70.1 % for 1 mm-water depth). Concerning 8 and 10 MeV electron beams, the normalized dose value increase respectively from 78.4% to 81.7% and from 82.2% to 86.1% for 0.5 mm-water depth. In vivo dosimetry enabled the quality control of delivered dose during treatment. Measured dose is in agreement within {+-} 5% with the prescribed dose for 92.3% of cases. In routine, in vivo dosimetry allowed to quantify the increase of skin dose induced by thermoplastic masks for various energies of photon and electron beams as well as quality control. (authors)

  7. Review of personal monitoring techniques for the measurement of absorbed dose from external beta and low energy photon radiation

    DEFF Research Database (Denmark)

    Christensen, Poul

    1986-01-01

    The techniques available at present for personal monitoring of doses from external beta and low energy photon radiation are reviewed. The performance of currently used dosimetry systems is compared with that recommended internationally, and developments for improving the actual performance...... are outlined. The subjects dealt with compromise: the quantity to be measured, the required accuracy of measurement, calibration procedures, and dosemeter design including the main parameters influencing the energy and angular response of the dosemeter, such as detector thickness, filter thickness, dosemeter...

  8. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry; Comparacao entre o LCR/Brasil e o NRC/Canada da dose absorvida na agua usando a dosimetria Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Salata, Camila; David, Mariano Gazineu; Almeida, Carlos Eduardo de [Universidade do Estado do Rio de Janeiro (UERJ/LCR), Rio de Janeiro (Brazil). Lab. de Ciencias Radiologicas; El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcom, E-mail: mila.salata@gmail.com [National Research Council, Ottawa (Canada)

    2014-07-01

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  9. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and {sup 60}Co γ-rays

    Energy Technology Data Exchange (ETDEWEB)

    Vadrucci, M., E-mail: monia.vadrucci@enea.it; Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)–Application of Radiations Technical Unit, Via E. Fermi 45, Frascati, Rome 00044 (Italy); Esposito, G.; De Angelis, C. [Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, Rome I-00161, Italy and INFN, Sezione di Roma1, Gruppo Collegato Sanità, Rome 00100 (Italy); Cherubini, R. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Università 2, Legnaro, Padova I-35020 (Italy); Pimpinella, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (ENEA–INMRI), Via Anguillarese 301, Rome 00123 (Italy)

    2015-08-15

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference {sup 60}Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a {sup 60}Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to {sup 60}Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose

  10. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    Energy Technology Data Exchange (ETDEWEB)

    De la Mora, Eugenio [Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210 (Mexico); Lovett, Janet E. [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); EaStCHEM School of Chemistry, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3JJ, Scotland (United Kingdom); Blanford, Christopher F. [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN (United Kingdom); Garman, Elspeth F. [University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Valderrama, Brenda; Rudino-Pinera, Enrique, E-mail: rudino@ibt.unam.mx [Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210 (Mexico)

    2012-05-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O{sub 2}. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O{sub 2} reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  11. Absorbed doses profiles vs Synovia tissue depth for the Y-90 and P-32 used in radiosynoviortesis treatment; Perfiles de dosis absorbida vs profundidad de tejido sinovial para el Y-90 y el P-32 empleados en tratamiento de radiosinoviortesis

    Energy Technology Data Exchange (ETDEWEB)

    Torres B, M.B.; Ayra P, F.E. [Centro de Isotopos (Cuba); Garcia R, E. [Hospital General Docente Enrique Cabrera (Cuba); Cornejo D, N. [CPHR, (Cuba); Yoriyaz, H. [IPEN, (Brazil)]. e-mail: nestor@cphr.edu.cu

    2006-07-01

    The radiosynoviortesis treatment has been used during more of 40 years as an alternative to the chemical and surgical synovectomy to alleviate the pain and to reduce the inflammation in suffered patients of rheumatic arthropathies, haemophilic arthropathies and other articulation disorders. It consists on the injection of radioactive isotopes inside a synovial cavity. For to evaluate the dosimetry of the radiosynoviortesis treatment is of great interest to know the absorbed dose in the volume of the target (synovia). The precise calculation of the absorbed dose in the inflamed synovia it is difficult, for numerous reasons, since the same one will depend on the thickness of the synovial membrane, the size of the articular space, the structure of the synovial membrane, the distribution in the articulation, the nature of the articular liquid, etc. Also the presence of the bone and the articular cartilage, components also of the articulation, it even complicated more the calculations. The method used to evaluate the dosimetry in radioactive synovectomy is known as the Monte Carlo method. The objective of our work consists on estimating with the Monte Carlo code MCNP4B the absorbed dose of the Y-90 and the P-32 in the depth of the synovial tissue. The results are presented as absorbed dose for injected millicurie (Gy/mCi) versus depth of synovial tissue. The simulation one carries out keeping in mind several synovia areas, of 50 cm{sup 2} to 250 cm{sup 2} keeping in mind three states of progression of the illness. Those obtained values of absorbed dose using the MCNP4B code will allow to introduce in our country an optimized method of dose prescription to the patient, to treat the rheumatic arthritis in medium and big articulations using the Y-90 and the P-32, eliminating the fixed doses and fixed radionuclides for each articulation like it happens in many clinics of Europe, as well as the empiric doses. (Author)

  12. The biodistribution and dosimetry of {sup 117m}Sn DTPA with special emphasis on active marrow absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, J. [Radiation Dosimetry Systems of Oak Ridge Inc., Knoxville, TN (United States); Atkins, H. [Brookhaven National Lab., Upton, NY (United States)

    1999-01-01

    {sup 117m}Sn(4+) DTPA is a new radiopharmaceutical for the palliation of pain associated with metastatic bone cancer. Recently, the Phase 2 clinical trials involving 47 patients were completed. These patients received administered activities in the range 6.7--10.6 MBq/kg of body mass. Frequent collections of urine were acquired over the first several hours postadministration and daily cumulative collections were obtained for the next 4--10 days. Anterior/posterior gamma camera images were obtained frequently over the initial 10 days. Radiation dose estimates were calculated for 8 of these patients. Each patient`s biodistribution data were mathematically simulated using a multicompartmental model. The model consisted of the following compartments: central, bone, kidney, other tissues, and cumulative urine. The measured cumulative urine data were used as references for the cumulative urine excretion compartment. The total-body compartment (sum of the bone surfaces, central, kidney, and other tissues compartments) was reference to all activity not excreted in the urine.

  13. Fishes of water bodies within the Ukrainian part of the Chernobyl exclusion zone: current levels of radioactive contamination and absorbed dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Kaglyan, Alexander Ye.; Gudkov, Dmitri I. [Institute of Hydrobiology of the NAS of Ukraine, Geroyiv Stalingrada Ave. 12, UA- 04210, Kyiv (Ukraine)

    2014-07-01

    The results of studies of radioactive contamination of ichthyofauna of water bodies of the Chernobyl exclusion zone (ChEZ) during 2012-2013 are presented. The fish sampled from water bodies with different hydrological mode was used: (1) stagnant lakes (Vershyna, Glyboke, Azbuchyn, Daleke); (2) reservoir with slow water exchange (cooling pond of the Chernobyl NPP); (3) conditionally stagnant water bodies (separated from the main riverbed of the Pripyat River - Yanovsky and Novoshepelichesky Crawls and part of the Krasnensky former river bed); (4) semi-flowing water body (Krasnensky former river bed located outside of the dammed territory); (5) open crawls of the Pripyat river ('Schepochka' and Chernobylsky) and (6) waterway (riverbed sites of the Pripyat River). The highest levels of radionuclide concentrations were determined in fish of the stagnant water objects - 937-25907 Bq/kg (w.w.) of {sup 137}Cs and 1845-101220 Bq/kg of {sup 90}Sr. In fish of cooling pond the concentration of {sup 137}Cs registered in range 750-4200 and {sup 90}Sr - 41-512 Bq/kg. In ichthyofauna of water bodies which concern to the third group, specific activity of {sup 137}Cs and {sup 90}Sr fluctuated accordingly within range of 520-3385 and 722-6210, and in a semi-flowing reservoir - 573-2948 and 97-4484 Bq/kg. The concentrations of {sup 137}Cs in fish of the fifth and sixth groups were accordingly 25-159 and 11-224 as well as {sup 90}Sr - 36-174 and 3-14 Bq/kg. The ratio of specific activity of {sup 90}Sr/{sup 137}Cs for pray fish from all studied groups of water bodies, except the second and the sixth ones, was in range 1.5-39.7. Thus intensity of water exchange is one of the defining factors, influencing on level of radionuclide specific activity in fish, especially {sup 90}Sr - the higher the flow age, the lower the level of radioactive contamination of fish inhabiting it. Calculation of the absorbed dose rate has shown that highest radiation dose was in fish inhabiting lake

  14. Determination of the optimal statistical uncertainty to perform electron-beam Monte Carlo absorbed dose estimation in the target volume; Determination de l'incertitude statistique optimale pour realiser un calcul de dose dans le volume cible en utilisant la methode de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Isambert, A.; Lefkopoulos, D. [Institut Gustave-Roussy, Medical Physics Dept., 94 - Villejuif (France); Brualla, L. [NCTeam, Strahlenklinik, Universitatsklinikum Essen (Germany); Benkebil, M. [DOSIsoft, 94 - Cachan (France)

    2010-04-15

    Purpose of study Monte Carlo based treatment planning system are known to be more accurate than analytical methods for performing absorbed dose estimation, particularly in and near heterogeneities. However, the required computation time can still be an issue. The present study focused on the determination of the optimum statistical uncertainty in order to minimise computation time while keeping the reliability of the absorbed dose estimation in treatments planned with electron-beams. Materials and methods Three radiotherapy plans (medulloblastoma, breast and gynaecological) were used to investigate the influence of the statistical uncertainty of the absorbed dose on the target volume dose-volume histograms (spinal cord, intra-mammary nodes and pelvic lymph nodes, respectively). Results The study of the dose-volume histograms showed that for statistical uncertainty levels (1 S.D.) above 2 to 3%, the standard deviation of the mean dose in the target volume calculated from the dose-volume histograms increases by at least 6%, reflecting the gradual flattening of the dose-volume histograms. Conclusions This work suggests that, in clinical context, Monte Carlo based absorbed dose estimations should be performed with a maximum statistical uncertainty of 2 to 3%. (authors)

  15. A feasibility study on the use of phantoms with statistical lung masses for determining the uncertainty in the dose absorbed by the lung from broad beams of incident photons and neutrons.

    Science.gov (United States)

    Khankook, Atiyeh Ebrahimi; Hakimabad, Hashem Miri; Motavalli, Laleh Rafat

    2017-05-01

    Computational models of the human body have gradually become crucial in the evaluation of doses absorbed by organs. However, individuals may differ considerably in terms of organ size and shape. In this study, the authors sought to determine the energy-dependent standard deviations due to lung size of the dose absorbed by the lung during external photon and neutron beam exposures. One hundred lungs with different masses were prepared and located in an adult male International Commission on Radiological Protection (ICRP) reference phantom. Calculations were performed using the Monte Carlo N-particle code version 5 (MCNP5). Variation in the lung mass caused great uncertainty: ~90% for low-energy broad parallel photon beams. However, for high-energy photons, the lung-absorbed dose dependency on the anatomical variation was reduced to photon sources, whereas for higher energy photon sources the organ-absorbed dose was independent of the organ volume. In the case of neutron beam exposure, the maximum discrepancy (of 8%) occurred in the energy range between 0.1 and 5 MeV. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  16. On the implementation of new versions of the algorithms of calculation of dose absorbed in radiotherapy external; Sobre la implementacion de nuevas versiones de los algoritmos de calculo de dosis absorbida en radioterapia externa

    Energy Technology Data Exchange (ETDEWEB)

    Latorre-Musoll, A.; Carrasco de Fez, P.; Lizondo Gisbert, M.; Jordi-Ollero, O.; Jornet Sala, N.; Eudaldo Puell, T.; Ruiz Martinez, A.; Ribas Morales, M.

    2015-07-01

    The changes of version of the algorithms of calculation of dose absorbed in radiotherapy external should implement in a time reduced due to the pressure care. A set reduced of checks could pass by high discrepancies significant between the stones and the measures experimental, as illustrate in this work. (Author)

  17. Production, quality control, and determination of human absorbed dose of no carrier added (177) Lu-risedronate for bone pain palliation therapy.

    Science.gov (United States)

    Salek, Nafise; Mehrabi, Mohsen; Shirvani Arani, Simindokht; Bahrami Samani, Ali; Erfani, Mostafa; Vosoghi, Sara; Ghannadi Maragheh, Mohammad; Shamsaei, Mojtaba

    2017-01-01

    In this study, the radiocomplexation of risedronic acid, a potent bisphosphonate with a no carrier added (NCA) (177) Lu, was investigated and followed by quality control studies, biodistribution evaluation, and dosimetry study for human based on biodistribution data in Wistar rats. The moderate energy β(-) emitter, (177) Lu (T½  = 6.7 days, Eβmax  = 497 keV), has been considered as a potential agent for development of bone-seeking radiopharmaceuticals. Because the specific activity of the radiolabeled carrier molecules should be high, the NCA radionuclides have an effective role in nuclear medicine. Many researchers illustrated an NCA (177) Lu production; among these separation techniques, extraction chromatography has been considered more capable than other methods. The NCA (177) Lu was produced with specific activity of 48 Ci/mg and radionuclidic purity of 99.99% by the irradiation of enriched (176) Yb target in thermal neutron flux of 4 × 10(13)  n·cm(-)(2) ·s(-)(1) for 14 days. The NCA (177) Lu was mixed to a desired amount of sodium risedronate (15 mg/mL, 200 μL) and incubated with stirring at 95°C for 30 minutes. The radiochemical purity of (177) Lu-risedronate was determined by radio thin-layer chromatography, and high radiochemical purities (>97%) were obtained under optimized reaction conditions. The complex was injected to Wistar rats, and complex biodistribution was performed 4 hours to 7 days postinjections showing high bone uptake (9.8% ± 0.24% ID/g at 48 hours postinjection). Also, modeling the radiation dose delivery by RADAR software for the absorbed dose evaluation of each human organ showed a major accumulation of the radiocomplex in bone tissue. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Key comparison BIPM.RI(I)-K6 of the standards for absorbed dose to water of the VSL, Netherlands and the BIPM in accelerator photon beams

    Science.gov (United States)

    Picard, S.; Burns, D. T.; Roger, P.; de Prez, L. A.; Jansen, B. J.; Pooter, J. A.

    2017-01-01

    A comparison of the dosimetry for accelerator photon beams was carried out between the Dutch Metrology Institute (VSL) and the Bureau International des Poids et Mesures (BIPM) from 23 September to 20 October 2014. The comparison was based on the determination of absorbed dose to water for three radiation qualities of the medical accelerator facilities of the National Physical Laboratory (United Kingdom). After establishing Draft B, the VSL discovered an error in the calculation of the correction factor for excess-heat linked to the VSL glass vessel used in the measurements at the NPL. The comparison results for the revised standard, reported as ratios of the VSL and the BIPM evaluations (and with the combined standard uncertainties given in parentheses), are 0.9959 (54) at 6 MV, 0.9958 (64) at 10 MV and 0.9991 (75) at 25 MV. This result is part of the on-going BIPM.RI(I)-K6 series of comparisons. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  20. Impact of X-ray energy on absorbed dose assessed with Monte Carlo simulations in a mouse tumor and in nearest organs irradiated with kilovoltage X-ray beams.

    Science.gov (United States)

    Hamdi, M; Mimi, M; Bentourkia, M

    2017-05-01

    Radiotherapy treatments to local tumors are always associated with dose deposit in surrounding tissues and even in distant tissues not traversed by the radiation beams. In the present work, we demonstrate by Monte Carlo simulations the impact of radiation energy on absorbed dose in a lung tumor and in other secondary organs in a digital mouse. We also report the energy difference between simulations of monoenergetic and spectral radiations, and between CT-based and atlas-made digital mouse. We simulated seven monoenergetic and spectral radiation beams from 50keV (or kVp) to 450keV (or kVp). For each energy mode, the beams were generated along seven angles converging on the tumor. We assessed the absorbed dose in ten volumes including the lungs, the heart and the spine. The results showed an increase of absorbed dose as a function of energy with a lowest dose at 100keV. In the secondary organs not traversed by the beams, the spinal cord received doses of 0.78% and 0.07%, and the spinal bone received 2.36% and 0.35% relative to those in the tumor, respectively at 50keV and at 450keV. A region in the heart not traversed by the beams received 2% of the dose to the tumor. The optimal energy to the tumor with relatively reduced doses to other organs was achieved at energies around 200keV. At these energies, the surrounding of the tumor received lesser doses. Monoenergetic radiations were found to be more appropriate to target the tumor than spectral radiations produced by X-ray tubes, and CT-based digital mouse was more realistic than atlas-based mouse since it accounts for tissue heterogeneity. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  1. The 68Ga/177Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates.

    Science.gov (United States)

    Scarpa, Lorenza; Buxbaum, Sabine; Kendler, Dorota; Fink, Katharina; Bektic, Jasmin; Gruber, Leonhard; Decristoforo, Clemens; Uprimny, Christian; Lukas, Peter; Horninger, Wolfgang; Virgolini, Irene

    2017-05-01

    A targeted theragnostic approach based on increased expression of prostate-specific membrane antigen (PSMA) on PC cells is an attractive treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). Ten consecutive mCRPC patients were selected for 177Lu-PSMA617 therapy on the basis of PSMA-targeted 68Ga-PSMA-HBED-CC PET/CT diagnosis showing extensive and progressive tumour load. Following dosimetry along with the first therapy cycle restaging (68Ga-PSMA-HBED-CC and 18F-NaF PET/CT) was performed after 2 and 3 therapy cycles (each 6.1 ± 0.3 GBq, range 5.4-6.5 GBq) given intravenously over 30 minutes, 9 ± 1 weeks apart. PET/CT scans were compared to 177Lu-PSMA617 24-hour whole-body scans and contrast-enhanced dual-phase CT. Detailed comparison of SUVmax values and absorbed tumour doses was performed. 177Lu-PSMA617 dosimetry indicated high tumour doses for skeletal (3.4 ± 1.9 Gy/GBq; range 1.1-7.2 Gy/GBq), lymph node (2.6 ± 0.4 Gy/GBq; range 2.3-2.9 Gy/GBq) as well as liver (2.4 ± 0.8 Gy/GBq; range 1.7-3.3 Gy/GBq) metastases whereas the dose for tissues/organs was acceptable in all patients for an intention-to-treat activity of 18 ± 0.3 GBq. Three patients showed partial remission, three mixed response, one stable and three progressive disease. Decreased 177Lu-PSMA617 and 68Ga-PSMA-HBED-CC uptake (mean SUVmax values 20.2 before and 15.0 after 2 cycles and 11.5 after 3 cycles, p < 0.05) was found in 41/54 skeletal lesions, 12/13 lymph node metastases, 3/5 visceral metastases and 4/4 primary PC lesions. Due to substantial individual variance, dosimetry is mandatory for a patient-specific approach following 177Lu-PSMA617 therapy. Higher activities and/or shorter treatment intervals should be applied in a larger prospective study.

  2. Análise da distribuição espacial de dose absorvida em próton terapia ocular Spatial distribution analysis of absorbed dose in ocular proton radiation therapy

    Directory of Open Access Journals (Sweden)

    Marília Tavares Christóvão

    2010-08-01

    of proton therapy were performed based on preexisting facilities. RESULTS: Simulation data were integrated into SISCODES on the eye's model generating spatial dose distributions. Dose depth profiles reproducing the pure and modulated Bragg peaks are presented. Relevant aspects of proton beam radiotherapy planning are considered such as material absorber, modulation, collimator dimensions, incident proton energy and isodose generation. CONCLUSION: The conclusion is that proton therapy when properly modulated and directed can reproduce the ideal conditions for the dose deposition in the treatment of ocular tumors.

  3. Characterization of an absorbed dose standard in water through ionometric methods; Caracterizacion de un patron de dosis absorbida en agua mediante metodos ionometricos

    Energy Technology Data Exchange (ETDEWEB)

    Vargas V, M.X

    2003-07-01

    In this work the unit of absorbed dose at the Secondary Standard Dosimetry Laboratory (SSDL) of Mexico, is characterized by means of the development of a primary standard of absorbed dose to water, D{sub agua}. The main purpose is to diminish the uncertainty in the service of dosimetric calibration of ionization chambers (employed in radiotherapy of extemal beams) that offers this laboratory. This thesis is composed of seven chapters: In Chapter 1 the position and justification of the problem is described, as well as the general and specific objectives. In Chapter 2, a presentation of the main quantities and units used in dosimetry is made, in accordance with the recommendations of the International Commission on Radiation Units and Measurements (ICRU) that establish the necessity to have a coherent system with the international system of units and dosimetric quantities. The concepts of equilibrium and transient equilibrium of charged particles (TCPE) are also presented, which are used later in the quantitative determination of D{sub agua}. Finally, since the proposed standard of D{sub agua} is of ionometric type, an explanation of the Bragg-Gray and Spencer-Attix cavity theories is made. These theories are the foundation of this type of standards. On the other hand, to guarantee the complete validity of the conditions demanded by these theories it is necessary to introduce correction factors. These factors are determined in Chapters 5 and 6. Since for the calculation of the correction factors Monte Carlo (MC) method is used in an important way, in Chapter 3 the fundamental concepts of this method are presented; in particular the principles of the code MCNP4C [Briesmeister 2000] are detailed, making emphasis on the basis of electron transport and variance reduction techniques used in this thesis. Because a phenomenological approach is carried out in the development of the standard of D{sub agua}, in Chapter 4 the characteristics of the Picker C/9 unit, the

  4. Perspectives in absorbed dose metrology with regard to the technical evolutions of external beam radiotherapy; Perspectives en metrologie de la dose face aux evolutions techniques de la radiotherapie externe

    Energy Technology Data Exchange (ETDEWEB)

    Chauvenet, B.; Bordy, J.M. [CEA Saclay, Lab. National Henri Becquerel (LNE-LNHB), 91 - Gif-sur-Yvette (France); Barthe, J. [CEA Saclay (LIST), 91 - Gif-sur-Yvette (France)

    2009-07-01

    This paper presents several R and D axes in absorbed close metrology to meet the needs resulting from the technical evolutions of external beam radiotherapy. The facilities in operation in France have considerably evolved under the impulse of the plan Cancer launched in 2003: replacements and increase of the number of accelerators, substitution of accelerators for telecobalt almost completed and acquisition of innovative facilities for tomo-therapy and stereotaxy. The increasing versatility of facilities makes possible the rapid evolution of treatment modalities, allowing to better delimit irradiation to tumoral tissues and spare surrounding healthy tissues and organs at risk. This leads to a better treatment efficacy through dose escalation. National metrology laboratories must offer responses adapted to the new need, i.e. not restrict themselves to the establishment of references under conventional conditions defined at international level, contribute to the improvement of uncertainties at all levels of reference transfer to practitioners: primary measurements under conditions as close as possible to those of treatment, characterization of transfer and treatment control dosimeters., metrological validation of treatment planning tools... Those axes have been identified as priorities for the next years in ionizing radiation metrology at the European level and included in the European. Metrology Research Programme. A project dealing with some of those topics has been selected in the frame of the Eranet+ Call EMRP 2007 and is now starting. The LNE-LAM is strongly engaged in it. (authors)

  5. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  6. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators; Modelos de regresion en la determinacion de la dosis absorbida con camara de extrapolacion para aplicadores oftalmologicos

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T.; Morales P, R

    1992-06-15

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ({sup 90} Sr/{sup 90} Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  7. Comparison in the determination of absorbed dose by biological and physical methods to patients in treatment of cardiac intervention; Comparacion en la determinacion de dosis absorbida por metodos biologicos y fisicos a pacientes en tratamiento de intervencionismo cardiaco

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Arceo M, C., E-mail: citlali.guerrero@inin.gob.mx [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The use of less invasive procedures, lower risk and quick recovery as cardiac intervention have proven to be an efficient alternative to reestablish the correct bloodstream of the patient. In this case the patient is subjected to values of absorbed dose above to which is subjected in a study with X-rays for medical diagnosis, and this can cause radiation injuries to the skin. The target organ, in this case can be exposed to doses of 2 Gy above. Different methods to estimate the dose were use, physical by Radiochromic film, as biological by dicentric analysis. Both methods provided additional information demonstrating thus the risk in the target organ and the patient. The most reliable biological indicator of exposure to ionizing radiation is the study of chromosomal aberrations, specifically dicentric in human lymphocytes. This test allowed establishing the exposure dose depending of the damage. (Author)

  8. Air kerma and absorbed dose on the torso of a patient during a mammography study;Kerma en aire y dosis absorbida en el torso de una paciente durante un estudio mastografico

    Energy Technology Data Exchange (ETDEWEB)

    Hernadez O, M.; Duran M, H. A.; Pinedo S, A.; Gonzalez G, R.; Guerra M, J. A.; Salas L, M. A.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria 694, 11500 Mexico D. F. (Mexico); Azorin N, J., E-mail: mar_h2o@hotmail.co [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, 09340 Mexico D. F. (Mexico)

    2009-10-15

    Two dosimetric magnitudes, due to the dispersed radiation, have been determined during a mammography study. The magnitudes that were determined are the kerma at the entrance of the torso and the absorbed dose by the torso. This determination was made in a paraffin phantom and with thermoluminescent dosemeters. One of the important parameters in the radiological protection of a patient to which is practiced a mammography is the value of the media glandular dose. However, during the taking of the X-ray a radiation portion that impacts on the mammary gland it is dispersed toward the patient's torso. In this work thermoluminescent dosemeters of ZrO{sub 2} has been used to determine the kerma at the entrance of the torso like the absorbed dose. The dosemeters was placed on the surface of the torso phantom while to the mamma phantom was made the mammography. As mamma phantom was used glucose serum to 5%. Of the obtained results we find that 3% of the air kerma at the entrance of the mamma it corresponds at the air kerma that receives the torso and 3.2% of the media glandular dose it is the absorbed dose of the same one. Another important result is the percentage value of the air kerma on the entrance of the thyroid area during a mammography, due to the dispersed radiation, it is 4% of the kerma at the entrance of the mamma. The air kerma at the entrance of the thyroid is of 0.41 +-0.07 mGy, 10% of this value corresponds to the absorbed dose by the thyroid. Therefore, it is observed that the media glandular dose and the air kerma at the entrance of the mamma they influence on the dispersed radiation toward the torso. Also, the superior part of the torso has less attenuation capacity to the dispersed radiation that those located in the inferior part. Therefore, the thyroid receives the major quantity of air kerma at the entrance. (Author)

  9. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with {sup 137} Cs using thermoluminescent dosemeters; Medicion de la dosis absorbida en organos criticos durante braquiterapia de baja tasa de dosis con {sup 137} Cs usando dosimetros termoluminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, A. [UAEM, Fac. de Medicina, 50180 Toluca, Estado de Mexico (Mexico); Gonzalez, P.R. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Furetta, C.; Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Andres, U.; Mendez, G. [Centro Estatal de Cancerologia de Tabasco, A. Gregorio Mendez No. 2838, Col. Atasta, 86100 Villahermosa, Tabasco (Mexico)

    2003-07-01

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose {sup 137}Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  10. Energy absorber

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, J.

    1980-03-04

    The collection of solar energy, radiated onto roofs, is the goal of this invention, to supply a heating system. The invention is based on the utilization of sealing webs. The prefered material for such energy absorbers is ethylen-copolymer-bitumen. Two each of the bitumen sheets are bonded together to form a bag flown through bag the heat transfer medium. The bag simultaneously serves for roof sealing.

  11. Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James

    2016-01-01

    Introduction: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The risks for renal stone formation in astronauts due to bone loss and hypercalcuria are unknown. Astronauts have a stone risk which is about the same as commercial aviation pilots, which is about half that of the general population. However, proper management of this condition is still crucial to mitigate health and mission risks in the spaceflight environment. Methods: An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was done. The NASA Flight Medicine Clinic's electronic medical record and Longitudinal Survey of Astronaut Health were also reviewed. Using this work, a screening and management algorithm was created that takes into consideration the unique operational environment of spaceflight. Results: Renal stone screening and management guidelines for astronauts were created based on accepted standards of care, with consideration to the environment of spaceflight. In the proposed algorithm, all astronauts will receive a yearly screening ultrasound for renal calcifications, or mineralized renal material (MRM). Any areas of MRM, 3 millimeters or larger, are considered a positive finding. Three millimeters approaches the detection limit of standard ultrasound, and several studies have shown that any stone that is 3 millimeters or less has an approximately 95 percent chance of spontaneous passage. For mission-assigned astronauts, any positive ultrasound study is followed by low-dose renal computed tomography (CT) scan, and flexible ureteroscopy if CT is positive. Other specific guidelines were also created. Discussion: The term "MRM" is used to account for small areas of calcification that may be outside the renal collecting system, and allows objectivity without otherwise constraining the diagnostic and treatment process for potentially very small calcifications of uncertain

  12. Effect of Anatomical Modeling on Space Radiation Dose Estimates: A Comparison of Doses for NASA Phantoms and 5th, 50th, and 95th Percentile UF Hybrid Phantoms

    Science.gov (United States)

    Bahadori, A.; VanBaalen, M.; Shavers, M.; Semones, E.; Dodge, C.; Bolch, W.

    2010-01-01

    The estimate of absorbed dose to individual organs of a space crewmember is affected by the geometry of the anatomical model of the astronaut used in the radiation transport calculation. For astronaut dosimetry, NASA currently uses the computerized anatomical male (CAM) and computerized anatomical female (CAF) stylized phantoms to represent astronauts in its operational radiation dose analyses. These phantoms are available in one size and in two body positions. In contrast, the UF Hybrid Adult Male and Female (UFHADM and UFHADF) phantoms have organ shapes based on actual CT data. The surfaces of these phantoms are defined by non-uniform rational B-spline surfaces, and are thus flexible in terms of body morphometry and extremity positioning. In this study, UFHADM and UFHADF are scaled to dimensions corresponding to 5th, 50th, and 95th percentile (PCTL) male and female astronauts. A ray-tracing program is written in Visual Basic 2008, which is then used to create areal density maps for dose points corresponding to various organs within the phantoms. The areal density maps, along with appropriate space radiation spectra, are input into the NASA program couplet HZETRN/BRYNTRN, and organ doses are calculated. The areal density maps selected tissues and organs of the 5th, 50th, and 95th PCTL male and female phantoms are presented and compared. In addition, the organ doses for the 5th, 50th, and 95th PCTL male and female phantoms are presented and compared to organ doses for CAM and CAF.

  13. Estimation of absorbed and effective dose in {sup 18}F-FDG em PET- CT exams for diagnosis of lung cancer; Estimativa de dose absorvida e efetiva em exames de {sup 18}F-FDG em PET- CT para diagnostico de cancer de pulmao

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Guilherme Neto de Pinho; Santana, Priscila do Carmo, E-mail: guinpc1@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Oliveira, Paulo Marcio Campos de; Reis, Lucas Paixao dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-04-15

    This paper presents an evaluation of tissues and organs absorbed doses as well as the effective dose resulting from PET-CT scans performed with {sup 18}F-FDG radiopharmaceutical for lung cancer diagnosis in whole body scans. The ICRP-106 biokinetic model was used to estimate the absorbed and effective doses from the radiopharmaceutical for both male and female patient according to the characteristics of anthropomorphic Alderson Rando® simulators. Computer Tomography doses were evaluated using thermoluminescent detectors inserted in the same anthropomorphic simulators. Optimization protocols for image acquisition and the use of automatic exposure control were used in order to reduce patient doses, taking into account the equipment model and its system. The effective dose in female patients was 5.8 mSv. The effective dose in male patients was 8.4 mSv. The dose values estimated for the {sup 18}F-FDG PET-CT scan are below the values described in the literature. This is because the CT was not used for diagnostic but for morphological mapping. (author)

  14. Astronaut health monitoring

    Science.gov (United States)

    Inscore, Frank; Shende, Chetan; Gift, Alan; Maksymiuk, Paul; Farquharson, Stuart

    2006-10-01

    Extended weightlessness causes numerous deleterious changes in human physiology, including space motion sickness, cephalad fluid shifts, reduced immune response, and breakdown of muscle tissue with subsequent loss of bone mass and formation of renal stones. Furthermore, these physiological changes also influence the metabolism of drugs used by astronauts to minimize these deleterious effects. Unfortunately, the changes in human physiology in space are also reflected in drug metabolism, and current pre-flight analyses designed to set dosage are inadequate. Furthermore, current earth-based analytical laboratory methods that employ liquid or gas chromatography for separation and fluorescence or mass spectrometry for trace detection are labor intensive, slow, massive, and not cost-effective for operation in space. In an effort to overcome these instrument limitations we have been developing a sampling device to both separate these drugs and metabolites from urine, and generate surface-enhanced Raman (SER) spectra. The detailed molecular vibrational information afforded by Raman scattering allows chemical identification, while the surface-enhancement increases sensitivity by six or more orders of magnitude and allows detection of nanogram per milliliter concentrations. Generally no more than 1 milliliter of sample is required and complete analysis can be performed in 5 minutes using a portable, light-weight Raman spectrometer. Here we present the SER analysis of several drugs used by astronauts measured in synthetic urine and reconstituted urine.

  15. Dose absorbed in adults and children thyroid due to the I{sup 123} using the dosimetry MIRD and Marinelli; Dosis absorbida en tiroides de adultos y ninos debido al I{sup 123} utilizando las dosimetrias MIRD y Marinelli

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.; Castillo, C.; Cabrera, C.; Sarachaga, R.; Castaneda, J. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Ciudad Universitaria, Trujillo (Peru); Diaz, E., E-mail: marvva@hotmail.com [Universidade Federal do Rio Grande do Sul, Av. Paulo Gamma 110, Bairro Farropilhas, Porto Alegre, RS 90040-060 (Brazil)

    2014-08-15

    Using the dosimetry MIRD, and representation Cristy-Eckerman in the thyroid gland and organs of their bio-kinetics when I{sup 123} (Iodine) is used, the study demonstrates that the absorbed dose by the gland of an adult, children, and newly born, is their auto-dose, independent of the compartments number of their bio-kinetics. The dosimetric contributions of the organs of their bio-kinetics are insignificant. Their results are not significantly different to those obtained by the formalism MARINELLI (auto-dose) when it uses a sphere like glandular representation. In consequence, the kinetic model corresponding to the glandular representation decreases to a compartment, where the gland can also be represented like a sphere. (Author)

  16. Tumoral fibrosis effect on the radiation absorbed dose of {sup 177}Lu-Tyr{sup 3}-octreotate-gold nanoparticles and {sup 177}Lu-Tyr{sup 3}-octreotate radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano R, O. D.

    2015-07-01

    In this work was comparatively evaluated the effect of tumoral fibrosis in the radiation absorbed dose of the radiopharmaceutical {sup 177}Lu-Tyr{sup 3}-octreotate with and without gold nanoparticles. For this, was used an experimental array of tumoral fibrosis and computer models based on Monte Carlo calculations to simulate tumoral micro environments without fibrosis and with fibrosis. The computer simulation code Penelope (Penetration Energy Loss of Positron and Electrons) and MCNP (Monte Carlo N-particle Transport Code System) which are based on the Monte Carlo methodology were used to create the computer models for the simulation of the transport of particles (emitted by {sup 177}Lu) in the micro environments (without fibrosis and with fibrosis) with the purpose of calculating the radiation absorbed dose in the interstitial space and in the nucleus of cancer cells. The first computational model consisted of multiple concentric spheres (as onion shells) with the radioactive source homogeneously distributed in the shell between 5 and 10 μm in diameter which represents the internalization of the radioactive source into the cell cytoplasm as it occurs in target specific radiotherapy. The concentric spheres were useful to calculate the radiation absorbed dose in depth in the models without fibrosis and with fibrosis. Furthermore, there were constructed other computer models using two different codes that simulate the transport of radiation (Penelope and MCNP). These models consist of seven spheres that represent cancer cells (HeLa cells) of 10 μm in diameter and each one of them contain another smaller sphere in the center that represents the cell nucleus. A comparison was done of the radiation absorbed dose in the nucleus of the cells, calculated with both codes, Penelope and MCNP. The radioactive source ({sup 177}Lu) used for the simulations was given to the codes by means of a convoluted spectrum of the most important beta particles (high percentage emission

  17. Control letters and uncertainties of the kerma patterns in air, dose absorbed in water and dose absorbed in air of the LSCD; Cartas de control e incertidumbres de los patrones de kerma en aire, dosis absorbida en agua y dosis absorbida en aire del LSCD

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, M.T.; Tovar M, V.M.; Cejudo A, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-12-15

    With the purpose of characterizing the component of uncertainty of long term of the patron ionization chambers of the LSCD, for the magnitudes: speed of kerma in air {kappa}{sub {alpha}}{sub {center_dot}}, dose speed absorbed in water D{alpha}{sub {center_dot}}, and speed absorbed dose in air D{alpha}{sub {center_dot}}, it use the technique of letters of control l-MR/S. This statistical technique it estimates the component of uncertainty of short term by means of the deviation standard inside groups {sigma}{sub {omega}} and that of long term by means of the standard deviation among groups {sigma}{sub {beta}}, being this it finishes an estimator of the stability of the patterns.The letters of control l-MR/S it construct for: i) {kappa}{sub {alpha}}{sub {center_dot}}, in radiation field of {sup 60}Co for patterns: primary CC01 series 131, secondary NE 2611 series 176, secondary PTW TN30031 series 578 and Third PTW W30001 series 365. ii) D{alpha}),en radiation field of {sup 60}Co for patterns: primary CC01 series 131, Secondary PTW TN30031 series 578 and tertiary PTW W30001 series 365. iii) I-MR/S with extrapolation chamber PTW primary pattern, measurement realizes in secondary patron fields of {sup 90}Sr-{sup 90}Y. The expanded uncertainty U it is calculated of agreement with the Guide of the ISO/BIPM being observed the following thing: a. In some the cases {sigma}{sub {beta}}, is the component of the U that more contributed to this. Therefore, it is necessary to settle down technical of sampling in those mensurations that allow to reduce the value of {sigma}{sub {beta}}. For example with sizes of subgroup {eta}{sub {approx}} 30 data, or with a number of subgroups {kappa}{sub {>=}}. That which is achieved automating the mensuration processes. b.The component of the temperature is also one of those that but they contribute to the U, of there the necessity of: to recover the tracking for this magnitude of it influences and to increase the precision in the

  18. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    Science.gov (United States)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  19. Astronauts For Hire The Emergence of a Commercial Astronaut Corps

    CERN Document Server

    Seedhouse, Erik

    2012-01-01

    The spaceflight industry is being revolutionized. It is no longer the sole preserve of professional astronauts working on government-funded manned spaceflight programs. As private companies are being encouraged to build and operate launch vehicles, and even spacecraft that can be hired on a contract basis, a new breed of astronauts is coming into being. Astronauts for Hire describes how this commercial astronaut corps will be selected and trained. It provides a unique insight into the kinds of missions and tasks that the astronauts will be involved in, from suborbital science missions to commercial trips to low Earth orbit. The book also describes the new fleet of commercial spaceships being developed - reusable rocket-propelled vehicles that will offer quick, routine, and affordable access to the edge of space. The author also explores the possibility of private enterprise establishing interplanetary spaceports, lunar bases, and outposts on the surface of Mars.

  20. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV; Espectros y dosis absorbida por fotoneutrones en un maniqui de agua solida expuesta a una Linac de 15 MV

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. [Centro Estatal de Cancerologia de Nayarit, Servicio de Seguridad Radiologica, Calz. de la Cruz 118 Sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico); Velazquez F, J., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Posgrado en Ciencias Biologico Agropecuarias, Carretera Tepic-Compostela Km 9, 63780 Jalisco-Nayarit (Mexico)

    2012-10-15

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm{sup 3}. The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  1. Point absorbed dose verification for volumetric modulated arc therapy plans. A comparative study between ionization microchamber and chamber array; Verificacion de dosis absorbida en un punto para planes de arcoterapia volumetrica modulada. Estudio comparativo entre microcamara de ionizacion y matriz de camaras

    Energy Technology Data Exchange (ETDEWEB)

    Caudepon Moreno, F.; Pizarro Trigo, F.; Sanchez Jimenez, J.; Nunez Martinez, L.; Morillas Ruiz, J.; Palomo Llinares, R.

    2016-10-01

    According to the international recommendations a quality control must be made for IMRT treatments before these can be delivered. These recommendations are applied to volumetric modulated arc therapy treatments in our Department. As a part of the verifications chain, measurements of absorbed dose in a phantom point and in the phantom volume are made for a specific patient with ionization chamber and ionization chambers array, respectively. The aim of this issue is to compare measurements of absorbed dose between these two kinds of detectors. The predictions of absorbed dose from Treatment Planning System are taken as the reference one. The differences among these measurements and the reference are calculated for 105 specific patients. A statistical analysis shows that the measurements of absorbed dose with chamber and array are strongly correlated. This result allows us to eliminate from our verifications chain the measurements of absorbed dose in a phantom point with ionization chamber because these ones are included in measurements of absorbed dose in the volume with a very small statistic risk. As a result, much time can be saved in the verifications process without any lack of quality. (Author)

  2. Evaluation of the absorbed dose to the kidneys due to Tc{sup 99m} (DTPA) / Tc{sup 99m} (Mag3) and Tc{sup 99m} (Dmsa); Evaluacion de la dosis absorbida en los rinones debido al Tc{sup 99m} (DTPA) / Tc{sup 99m} (MAG3) y Tc{sup 99m} (DMSA)

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez A, M.; Murillo C, F.; Castillo D, C.; Rocha J, J.; Sifuentes D, Y.; Sanchez S, P. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo (Peru); Idrogo C, J.; Marquez P, F., E-mail: marvva@hotmail.com [Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos 2520, Lima (Peru)

    2015-10-15

    The absorbed dose in the kidneys of adult patients has been assessed using the biokinetics of radiopharmaceuticals containing Tc{sup 99m} (DTPA) / Tc{sup 99m} (Mag3) or Tc{sup 99m} (Dmsa).The absorbed dose was calculated using the formalism MIRD and the Cristy-Eckerman representation for the kidneys. The absorbed dose to the kidneys due to Tc{sup 99m} (DTPA) / Tc{sup 99m} (Mag3), are given by 0.00466 mGy.MBq{sup -1} / 0.00339 mGy.MBq{sup -1}. Approximately 21.2% of the absorbed dose is due to the bladder (content) and the remaining tissue, included in biokinetics of Tc{sup 99m} (DTPA) / Tc{sup 99m} (Mag3). The absorbed dose to the kidneys due to Tc{sup 99m} (Dmsa) is 0.17881 mGy.MBq{sup -1}. Here, 1.7% of the absorbed dose is due to the bladder, spleen, liver and the remaining tissue, included in biokinetics of Tc{sup 99m} (Dmsa). (Author)

  3. Educating Astronauts About Conservation Biology

    Science.gov (United States)

    Robinson, Julie A.

    2001-01-01

    This article reviews the training of astronauts in the interdisciplinary work of conservation biology. The primary responsibility of the conservation biologist at NASA is directing and supporting the photography of the Earth and maintaining the complete database of the photographs. In order to perform this work, the astronauts who take the pictures must be educated in ecological issues.

  4. ASTRONAUT ALDRIN UNDERGOES SPACESUIT CHECKS

    Science.gov (United States)

    1969-01-01

    ASTRONAUT ALDRIN UNDERGOES SPACESUIT CHECKS KSC-69PC-0374 69-HC-742,S-266,ARCHIVE-00337 White undergoing spacesuit checks, Apollo 11 lunar module pilot Edwin E. Aldrin, Jr., watches Astronauts Neil A. Armstrong and Michael Collins suit up for launch.

  5. Universal values of Canadian astronauts

    Science.gov (United States)

    Brcic, Jelena; Della-Rossa, Irina

    2012-11-01

    Values are desirable, trans-situational goals, varying in importance, that guide behavior. Research has demonstrated that universal values may alter in importance as a result of major life events. The present study examines the effect of spaceflight and the demands of astronauts' job position as life circumstances that affect value priorities. We employed thematic content analysis for references to Schwartz's well-established value markers in narratives (media interviews, journals, and pre-flight interviews) of seven Canadian astronauts and compared the results to the values of National Aeronautics and Space Administration (NASA) and Russian Space Agency (RKA) astronauts. Space flight did alter the level of importance of Canadian astronauts' values. We found a U-shaped pattern for the values of Achievement and Tradition before, during, and after flight, and a linear decrease in the value of Stimulation. The most frequently mentioned values were Achievement, Universalism, Security, and Self-Direction. Achievement and Self Direction are also within the top 4 values of all other astronauts; however, Universalism was significantly higher among the Canadian astronauts. Within the value hierarchy of Canadian astronauts, Security was the third most frequently mentioned value, while it is in seventh place for all other astronauts. Interestingly, the most often mentioned value marker (sub-category) in this category was Patriotism. The findings have important implications in understanding multi-national crew relations during training, flight, and reintegration into society.

  6. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    Science.gov (United States)

    George, K.; Cucinotta, F. A.

    2008-01-01

    Cytogenetic analysis of astronauts blood lymphocytes provides a direct in vivo measurement of space radiation damage, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times beginning directly after return from space to several years after flight. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and the Relative Biological Effect (RBE) was estimated by comparison with individually measured physically absorbed doses. Values for average RBE were compared to the average quality factor (Q), from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. Results prove that cytogenetic biodosimetry analyses on blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk after protracted exposure to space radiation of a few months or more. However, data collected several months or years after flight suggests that the yield of chromosome translocations may decline with time after the mission, indicating that retrospective doses may be more difficult to estimate. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember, who has participated in two separate long-duration space missions and has been followed up for over 10 years, provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  7. Estimation of absorbed dose in irradiated dates ( Phoenix dactylifera L.). Test of ESR response function by a weighted linear least-squares regression analysis

    Science.gov (United States)

    Ghelawi, M. A.; Moore, J. S.; Bisby, R. H.; Dodd, N. J. F.

    2001-01-01

    Food spoilage is caused by infestation by insects, contamination by bacteria and fungi and by deterioration by enzymes. In the third world, it has been estimated that 25% of agricultural products are lost before they reach the market. One way to decrease such losses is by treatment with ionising radiation and maximum permitted doses have been established for treatment of a wide variety of foods. For dates this dose is 2.0 kGy. Detection of irradiated foods is now essential and here we have used ESR to detect and estimate the dose received by a single date. The ESR spectrum of unirradiated date stone contains a single line g=2.0045 (signal A). Irradiation up to 2.0 kGy induces radical formation with g=1.9895, g=2.0159 (signal C) and g=1.9984 (signal B) high field. The lines with g=1.9895 and 2.0159 are readily detected and stable at room temperature for at least 27 months for samples irradiated up to this dose. The yield of the radicals resulting in these lines increase linearly up to a dose of 5.0 kGy as is evidenced by the linear increase in their intensity. In blind trials of 21 unirradiated and irradiated dates we are able to identify with 100% accuracy an irradiated sample and to estimate the dose to which the sample was irradiated to within ˜0.5 kGy.

  8. Investigation of conformal and intensity-modulated radiation therapy techniques to determine the absorbed fetal dose in pregnant patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Öğretici, Akın, E-mail: akinogretici@gmail.com; Akbaş, Uğur; Köksal, Canan; Bilge, Hatice

    2016-07-01

    The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealed that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.

  9. Astronautics summary and prospects

    CERN Document Server

    Kiselev, Anatoly Ivanovich; Menshikov, Valery Alexandrovich

    2003-01-01

    The monograph by A.I.Kiselev, A.A. Medvedev and Y.A.Menshikov, Astronautics: Summary and Prospects, aroused enthusiasm both among experts and the public at large. This is due to the felicitous choice of presentation that combines a simple description of complex space matters with scientificsubstantiation of the sub­ jectmatter described. The wealth of color photos makes the book still more attractive, and it was nominated for an award at the 14th International Moscow Book Fair, being singled out as the "best publication of the book fair". The book's popularity led to a second edition, substantially revised and enlarged. Since the first edition did not sufficiently cover the issues of space impact on ecology and the prospective development of space systems, the authors revised the entire volume, including in it the chapter "Space activity and ecology" and the section "Multi-function space systems". Using the federal monitoring system, now in the phase of system engi­ neering, as an example, the authors consi...

  10. Incident air kerma to absorbed organ dose conversion factors for breast and lung in PA thorax radiography: The effect of patient thickness and radiation quality.

    Science.gov (United States)

    Kelaranta, A; Toroi, P; Vock, P

    2016-12-01

    Converting the measurable quantities to patient organ doses in projection radiography is usually based on a standard-sized patient model and a specific radiation quality, which are likely to differ from the real situation. Large inaccuracies can therefore be obtained in organ doses, because organ doses are dependent on the exposure parameters, exposure geometry and patient anatomy. In this study, the effect of radiation quality and patient thickness on the organ dose conversion factors were determined. In this study, the posterior-anterior projection radiograph of the thorax was selected in order to determine the effect of radiation quality (tube voltages of 70-130kV and total filtrations of 3mmAl to 4mmAl+0.2 mmCu) and patient thickness (anterior-posterior thicknesses of 19.4-30.8cm) on the breast and lung dose conversion factors. For this purpose, Monte Carlo simulation programs ImpactMC and PCXMC were used with computed tomography examination data of adult male and female patients and mathematical hermaphrodite phantoms, respectively. Compared to the reference beam quality and patient thickness, the relative variation range in organ dose conversion factors was up to 74% for different radiation qualities and 122% for different patient thicknesses. Conversion factors should only be used with comprehensive understanding of the exposure conditions, considering the exposure parameters, exposure geometry and patient anatomy they are valid for. This study demonstrates that patient thickness-specific and radiation quality-specific conversion factors are needed in projection radiography. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Thyroid dose of I-131 absorbed by the internal organs of a pregnant woman; Dosis tiroidea de I-131 absorbida por los organos internos de una embarazada

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Manzanares A, E.; Vega C, H.R.; Leon, C.L. de [Cuerpo Academico de Radiobiologia de la Universidad Autonoma de Zacatecas (Mexico)]. e-mail: emanz_44@yahoo.com

    2007-07-01

    The use of nuclear techniques, for diagnosis or treatment, generates stress in the patient and its relatives. During the pregnancy some sufferings related with the thyroid gland can be presented. If the patient is pregnant, OEP or NOEP, the stress comes from the fear to that the product can it turns affected. The dose is calculated that the Iodine 131, captured by the thyroid of a woman with three months of pregnancy, it deposits in the brain, stomach, heart, kidneys, liver, lungs, ovaries, pancreas, thymus, spleen and in the uterus. The thymus is the organ that receives the biggest dose. (Author)

  12. Alanine-EPR dosimetry for measurements of ionizing radiation absorbed doses in the range 0.5-10 kGy

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The usefulness of two, easy accessible alanine dosimeters (ALANPOL from IChTJ and foil dosimeter from Gamma Service, Radeberg, Germany) to radiation dose measurement in the range of 0.5-10 kGy, were investigated. In both cases, the result of the test was positive. The foil dosemeter from Gamma Service is recommended for dose distribution measurements in fantoms or products, ALANPOL - for routine measurements. The EPR-alanine method based on the described dosimeters can be successfully used, among others, in the technology of radiation protection of food.

  13. Assessment of the accuracy of an MCNPX-based Monte Carlo simulation model for predicting three-dimensional absorbed dose distributions

    Science.gov (United States)

    Titt, U.; Sahoo, N.; Ding, X.; Zheng, Y.; Newhauser, W. D.; Zhu, X. R.; Polf, J. C.; Gillin, M. T.; Mohan, R.

    2008-08-01

    In recent years, the Monte Carlo method has been used in a large number of research studies in radiation therapy. For applications such as treatment planning, it is essential to validate the dosimetric accuracy of the Monte Carlo simulations in heterogeneous media. The AAPM Report no 105 addresses issues concerning clinical implementation of Monte Carlo based treatment planning for photon and electron beams, however for proton-therapy planning, such guidance is not yet available. Here we present the results of our validation of the Monte Carlo model of the double scattering system used at our Proton Therapy Center in Houston. In this study, we compared Monte Carlo simulated depth doses and lateral profiles to measured data for a magnitude of beam parameters. We varied simulated proton energies and widths of the spread-out Bragg peaks, and compared them to measurements obtained during the commissioning phase of the Proton Therapy Center in Houston. Of 191 simulated data sets, 189 agreed with measured data sets to within 3% of the maximum dose difference and within 3 mm of the maximum range or penumbra size difference. The two simulated data sets that did not agree with the measured data sets were in the distal falloff of the measured dose distribution, where large dose gradients potentially produce large differences on the basis of minute changes in the beam steering. Hence, the Monte Carlo models of medium- and large-size double scattering proton-therapy nozzles were valid for proton beams in the 100 MeV-250 MeV interval.

  14. The influence of saliva flow stimulation on the absorbed radiation dose to the salivary glands during radioiodine therapy of thyroid cancer using {sup 124}I PET(/CT) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jentzen, Walter; Schmitz, Jochen; Freudenberg, Lutz; Eising, Ernst; Bockisch, Andreas; Stahl, Alexander [Universitaet Duisburg-Essen, Klinik fuer Nuklearmedizin, Essen (Germany); Balschuweit, Dorothee; Hilbel, Thomas [Fachhochschule Gelsenkirchen, Fachbereich Physikalische Technik, Gelsenkirchen (Germany)

    2010-12-15

    A serious side effect of high-activity radioiodine therapy in the treatment of differentiated thyroid cancer is radiogenic salivary gland damage. This damage may be diminished by lemon-juice-induced saliva flow immediately after {sup 131}I administration. The aim of this study was to assess the effect of chewing lemon slices on the absorbed (radiation) doses to the salivary glands. Ten patients received (pretherapy) {sup 124}I PET(/CT) dosimetry before their first radioiodine therapy. The patients underwent a series of six PET scans at 0.5, 1, 2, 4, 48 and {>=}96 h and one PET/CT scan at 24 h after administration of 27 MBq {sup 124}I. Blood samples were also collected at about 2, 4, 24, 48, and 96 h. Contrary to the standard radioiodine therapy protocol, the patients were not stimulated with lemon juice. Specifically, the patients chewed no lemon slices during the pretherapy procedure and neither ate food nor drank fluids until after completion of the last PET scan on the first day. Organ absorbed doses per administered {sup 131}I activity (ODpAs) as well as gland and blood uptake curves were determined and compared with published data from a control patient group, i.e. stimulated per the standard radioiodine therapy protocol. The calculations for both groups used the same methodology. A within-group comparison showed that the mean ODpA for the submandibular glands was not significantly different from that for the parotid glands. An intergroup comparison showed that the mean ODpA in the nonstimulation group averaged over both gland types was reduced by 28% compared to the mean ODpA in the stimulation group (p=0.01). Within each gland type, the mean ODpA reductions in the nonstimulation group were statistically significant for the parotid glands (p=0.03) but not for the submandibular glands (p=0.23). The observed ODpAs were higher in the stimulation group because of increased initial gland uptake rather than group differences in blood kinetics. The {sup 124}I PET

  15. Use of Monte Carlo simulations with a realistic rat phantom for examining the correlation between hematopoietic system response and red marrow absorbed dose in Brown Norway rats undergoing radionuclide therapy with {sup 177}Lu- and {sup 90}Y-BR96 mAbs

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Erik; Ljungberg, Michael; Martensson, Linda; Nilsson, Rune; Tennvall, Jan; Strand, Sven-Erik; Joensson, Bo-Anders [Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund (Sweden); Department of Oncology, Clinical Sciences, Lund University, Lund (Sweden); Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund (Sweden)

    2012-07-15

    Purpose: Biokinetic and dosimetry studies in laboratory animals often precede clinical radionuclide therapies in humans. A reliable evaluation of therapeutic efficacy is essential and should be based on accurate dosimetry data from a realistic dosimetry model. The aim of this study was to develop an anatomically realistic dosimetry model for Brown Norway rats to calculate S factors for use in evaluating correlations between absorbed dose and biological effects in a preclinical therapy study. Methods: A realistic rat phantom (Roby) was used, which has some flexibility that allows for a redefinition of organ sizes. The phantom was modified to represent the anatomic geometry of a Brown Norway rat, which was used for Monte Carlo calculations of S factors. Kinetic data for radiolabeled BR96 monoclonal antibodies were used to calculate the absorbed dose. Biological data were gathered from an activity escalation study with {sup 90}Y- and {sup 177}Lu-labeled BR96 monoclonal antibodies, in which blood cell counts and bodyweight were examined up to 2 months follow-up after injection. Reductions in white blood cell and platelet counts and declines in bodyweight were quantified by four methods and compared to the calculated absorbed dose to the bone marrow or the total body. Results: A red marrow absorbed dose-dependent effect on hematological parameters was observed, which could be evaluated by a decrease in blood cell counts. The absorbed dose to the bone marrow, corresponding to the maximal tolerable activity that could safely be administered, was determined to 8.3 Gy for {sup 177}Lu and 12.5 Gy for {sup 90}Y. Conclusions: There was a clear correlation between the hematological effects, quantified with some of the studied parameters, and the calculated red marrow absorbed doses. The decline in body weight was stronger correlated to the total body absorbed dose, rather than the red marrow absorbed dose. Finally, when considering a constant activity concentration, the phantom

  16. Determination of absorbed dose distribution in water for COC ophthalmic applicator of {sup 106}Ru/{sup 106}Rh using Monte Carlo code-MCNPX; Determinacao da distribuicao de dose absorvida na agua para o aplicador oftalmico COC de {sup 106}Ru/{sup 106}Rh utilizando o codigo de Monte Carlo - MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Nilseia A.; Rosa, Luiz A. Ribeiro da, E-mail: nilseia@ird.gov.br, E-mail: lrosa@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Braz, Delson, E-mail: delson@nuclear.ufrj.br [Coordenacao dos programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2014-07-01

    The COC ophthalmic applicators using beta radiation source of {sup 106}Ru/{sup 106}Rh are used in the treatment of intraocular tumors near the optic nerve. In this type of treatment is very important to know the dose distribution in order to provide the best possible delivery of prescribed dose to the tumor, preserves the optic nerve region extremely critical, that if damaged, can compromise the patient's visual acuity, and cause brain sequelae. These dose distributions are complex and doctors, who will have the responsibility on the therapy, only have the source calibration certificate provided by the manufacturer Eckert and Ziegler BEBIG GmbH. These certificates provide 10 absorbed dose values at water depth along the central axis applicator with the uncertainties of the order of 20% isodose and in a plane located 1 mm from the applicator surface. Thus, it is important to know with more detail and precision the dose distributions in water generated by such applicators. To this end, the Monte Carlo simulation was used using MCNPX code. Initially, was validated the simulation by comparing the obtained results to the central axis of the applicator with those provided by the certificate. The different percentages were lower than 5%, validating the used method. Lateral dose profile was calculated for 6 different depths in intervals of 1 mm and the dose rates in mGy.min{sup -1} for the same depths.

  17. Aerial gamma spectrometry of the uranium province of Lagoa Real (Caetite, BA, Brazil): go environmental aspects and distribution of the absorbed dose in the air; Espectrometria gama aerea da provincia uranifera de Lagoa Real (Caetite, BA): aspectos geoambientais e distribuicao da dose absorvida no ar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Esau Francisco Sena

    2006-07-01

    In the present study, it was analyzed the surface concentrations of the natural radioelements K, U and Th, as well as the absorbed dose rate in air caused by gamma radiation from the Lagoa Real uranium province, which is located at the center southern portion of Bahia State and comprises an area of approximately 4.600 Km{sup 2}. Data from the airborne gamma ray spectrometric survey of the region (Sao Timoeo Project) carried out in 1979, was used in this study. Besides, recent data of U, Th and absorbed dose rates from the Environmental Monitoring Program of the uranium concentration plant (URA), operated in the region by the Brazilian Nuclear Industries (INB), were used with the aim of inter compare the sampling points in the same geo referenced area. Imaging geo processing software's give support to frame maps of surface concentrations and ternary maps, as well as allow the integration of these with other themes (e.g. hydrology, geology, pedology) favouring the interpretation of geo environmental process from the radioactive cartography. Considering the whole study area, it was obtained the following mean values: absorbed dose rate in air (61,08 nGy.h{sup -1}), Potassium (1,65 % K) , Uranium (3,02 ppm eU) and thorium (18,26 ppm eTh). The geological unities bounding the uranium anomalies were placed in the areas characterized by the highest values of radioelements and, as expected, the major dose levels. The use of ternary maps coupled with the geology and hydrology allowed distinguishing the relationship between the surface distribution of natural radioelements and the geo environmental aspects, including the influence of the catchment in their transport and migration. (author)

  18. Development of a multi-electrode extrapolation chamber as a prototype of a primary standard for the realization of the unit of the absorbed dose to water for beta brachytherapy sources

    CERN Document Server

    Bambynek, M

    2002-01-01

    The prototype of a primary standard has been developed, built and tested, which enables the realization of the unit of the absorbed dose to water for beta brachytherapy sources. In the course of the development of the prototype, the recommendations of the American Association of Physicists in Medicine (AAPM) Task Group 60 (TG60) and the Deutsche Gesellschaft fuer Medizinische Physik (DGMP) Arbeitskreis 18 (AK18) were taken into account. The prototype is based on a new multi-electrode extrapolation chamber (MEC) which meets, in particular, the requirements on high spatial resolution and small uncertainty. The central part of the MEC is a segmented collecting electrode which was manufactured in the clean room center of PTB by means of electron beam lithography on a wafer. A precise displacement device consisting of three piezoelectric macrotranslators has been incorporated to move the wafer collecting electrode against the entrance window. For adjustment of the wafer collecting electrode parallel to the entranc...

  19. An Update of Couch Effect on the Attenuation of Megavoltage Radiotherapy Beam and the Variation of Absorbed Dose in the Build-up Region.

    Science.gov (United States)

    Sedaghatian, T; Momennezhad, M; Rasta, S H; Makhdoomi, Y; Abdollahian, S

    2017-09-01

    Fiber carbon is the most common material used in treating couch as it causes less beam attenuation than other materials. Beam attenuation replaces build-up region, reduces skin-sparing effect and causes target volume under dosage. In this study, we aimed to evaluate beam attenuation and variation of build-up region in 550 TxT radiotherapy couch. In this study, we utilized cylindrical PMMA Farmer chamber, DOSE-1 electrometer and set PMMA phantom in isocenter of gantry and the Farmer chamber on the phantom. Afterwards, the gantry rotated 10°, and attenuation was assessed. To measure build-up region, we used Markus chamber, Solid water phantom and DOSE-1 electrometer. Doing so, we set Solid water phantom on isocenter of gantry and placed Markus chamber in it, then we quantified the build-up region at 0° and 180° gantry angels and compared the obtained values. Notable attenuation and build-up region variation were observed in 550 TxT treatment table. The maximum rate of attenuation was 5.95% for 6 MV photon beam, at 5×5 cm2 field size and 130° gantry angle, while the maximum variation was 7 mm for 6 MV photon beam at 10×10 cm2 field size. Fiber carbon caused beam attenuation and variation in the build-up region. Therefore, the application of fiber carbon is recommended for planning radiotherapy to prevent skin side effects and to decrease the risk of cancer recurrence.

  20. Astronautics and psychology: recommendations for the psychological training of astronauts.

    Science.gov (United States)

    Haupt, G F

    1991-11-01

    The methods presently applied in the psychological training of astronauts are based on the principle of ensuring maximum performance of astronauts during missions. The shortcomings are obvious since those undergoing training provide nothing but the best ability to cope with Earth problem situations and add simply an experience of space problem situations as they are presently conceived. Earth attitudes and Earth behaviour remain and are simply modified. Through the utilization of interdisciplinary space knowledge a much higher degree of problem anticipation could be achieved and the astronaut be psychologically transformed into a space-being. This would at the same time stimulate interdisciplinary space research. The interdisciplinary space knowledge already available suggests that space requires not only physical and mental adjustments, but a profoundly new relationship with life.

  1. Screening and Management of Asymptomatic Renal Stones in Astronauts

    Science.gov (United States)

    Reyes, David; Locke, James; Sargsyan, Ashot; Garcia, Kathleen

    2017-01-01

    Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.

  2. Biological assay of chromatin dispersal simplified for determining absorbed dose of ionizing radiation; Ensayo biologico simplificado de dispersion de cromatina para la determinacion de dosis de radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Galaz, S.; Perez, G.; Stockert, J. C.; Blazquez-Castro, A.

    2011-07-01

    Currently, the production of nuclear halos chromatin dispersion methods is a good procedure for nuclear analysis by in situ hybridization (Wiegant et al., 1992, Gerdes et al. 1994), to detect apoptosis, DNA fragmentation and cell death rates in cell cultures (Fernandez et al., 2005, Enciso et al. 2006). It is customary to display the nuclear halos by fluorescence microscopy using propidium iodide, ethidium bromide or DAPI (Gerdes et al., 1994, Sestili et al. 2006). Using this technique based on a modified protocol of fast halo assay [FHA],(Sestili et al. 2006), has developed a simplified method to quantify the cytogenetic damage induced by ionizing radiation (dispersion test chromatin in agarose thin smear), which allows visualization of halos after staining for light microscopy or fluorescence and correlating the ratio: total area occuped by the halo nucleus / nucleus (halo-core index [IHN] ) with radiation dose.

  3. Determination of the absorbed dose rate to a person exposed to a spent source of {sup 60}Co for radiotherapy; Determinacion de la rapidez de dosis absorbida a una persona expuesta a una fuente gastada de {sup 60}Co para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Angeles C, A.; Benitez, J. A.; Ruiz C, M. A., E-mail: teodoro.garcia@inin.gob.mx [ININ, Departamento de Proteccion Radiologica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    In this work the analysis of absorbed dose rate to a person in made due to the exposure to a spent source of {sup 60}Co of radiotherapy, which has been removed from its shielding clandestinely to sell the shielding as scrap. During the removal of the source of their shielding the people were necessarily exposed to the field of gamma radiation. The activity of the source is considered to be 2595 Ci at the exposure time and to determine the rate of absorbed dose to different organs and the velocity of effective absorbed dose to which the person (s) who manipulated the source of {sup 60}Co were considered three plausible scenarios of manipulation of the source , through modeling with MCNP5. For the execution of the scenarios and the determination of the absorbed doses, two different phantoms are considered. The results obtained for each scenario show that the dose rates to which the people who manipulated the source without the shielding were exposed are extremely high, and in short time the lethal dose is reached. (Author)

  4. Applicability of a prototype for determination of absorbed dose using brachytherapy equipment with Ir-192 sources; Aplicabilidade de um prototipo para determinacao da dose absorvida utilizando equipamentos de braquiterapia com fontes de IR-192

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Vivianne Lucia Bormann; Almeida, Mayara Gabriella Oliveira de; Vieira, Rafaela Etelvina de Amorim; Silva, Waldecy Ananias da; Nascimento, Rizia Keila, E-mail: vlsouza@cnen.gov.br, E-mail: mayaradqf@hotmail.com, E-mail: rodriguesss@hootmail.com, E-mail: waldecy@cnen.gov.br, E-mail: riziakeila@hotmail.com [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    This work aims at the development and improvement of a device to perform the absolute dosimetry sources of Ir-192 using the Fricke solution contained in a flask. The Fricke solution used was prepared using amounts of ferrous ammonium sulfate, sodium chloride and sulfuric acid, diluted with water tri distilled pre-established in the literature. The spectrophotometer used was a UV-VIS spectrophotometer (Beckman DU-640 Counter) for measuring the optical density at wavelength 304 nm. The calculation for determining the radial dose takes into account the radial distance and the angle formed with the transverse axis of the source. As the results obtained can be seen that the states of Pernambuco, Ceara, Paraiba e Piaui are in accordance with the recommendations of international standards of the International Atomic Energy Agency (IAEA), which considers not acceptable a difference greater than 5% of prescribed dose and measured dose.

  5. A method for a short-term forecast of the absorbed dose accumulation dynamics on the international space station based on radiation monitoring system data

    Science.gov (United States)

    Lishnevskii, A. E.; Benghin, V. V.

    2014-12-01

    Many papers are devoted to the prediction of radiation conditions on board of a spacecraft (Pichkhadze et al., 2004; Khamidullina et al., 2008; 2012), and a number of software systems for corresponding calculations have been developed: the US information system CREME96 (https://creme.isde.vander-bilt.edu/); European SPENVIS (http://www.spenvis.oma.be/intro.php); Russian SEREIS (Kuznetsov et al., 2001; Model' kosmosa, 2007) and COSRAD (http://cosrad.sinp.msu.ru/manual.html; Kuznetsov et al., 2011) based on the models of the radiation environment in near-Earth space (Bashkirov et al., 1998; Nymmik, 2004; Model' kosmosa, 2007; Kuznetsov et al., 2011). In this paper we propose a simple calculation algorithm of short-term (for a few days) forecasting of dynamics of the radiation dose on the International Space Station (ISS) in radiation environment undisturbed by solar proton events. This algorithm does not use radiation environment models and detailed ballistic calculations, while it uses data of the onboard radiation monitoring system (RMS) and empirical relations, obtained for ISS orbital motion.

  6. Comparação entre fatores de calibração em termos de dose absorvida no ar para uma câmara de ionização de placas paralelas Comparison of absorbed dose to air calibration factors for a parallel plate ionization chamber

    Directory of Open Access Journals (Sweden)

    Roseli T. Bulla

    2006-06-01

    Full Text Available OBJETIVO: O objetivo deste trabalho foi realizar uma comparação entre os fatores de calibração em termos de dose absorvida no ar determinados em feixes gama (60Co e de elétrons. MATERIAIS E MÉTODOS: Foram utilizados um irradiador de 60Co e um acelerador linear Varian, modelo Clinac 2100C, com feixes de fótons e de elétrons. Foram testadas uma câmara de ionização cilíndrica e três de placas paralelas. RESULTADOS: Os sistemas de medidas foram submetidos aos testes preliminares (estabilidade de resposta e corrente de fuga, com resultados muito bons. Os fatores de calibração em termos de dose absorvida no ar foram determinados utilizando-se quatro sistemas de medidas e dois tipos de objetos simuladores, com a obtenção de resultados dentro das recomendações internacionais. CONCLUSÃO: Os resultados mostraram que os fatores de calibração em termos de dose absorvida no ar obtidos para câmaras de ionização de placas paralelas, determinados em feixes de 60Co, são no máximo 1,2% mais altos que os valores obtidos em feixes de elétrons de altas energias.OBJECTIVE: The objective of this study was to compare the absorbed dose to air calibration factors determined in gamma (60Co and electron beams. MATERIALS AND METHODS: An irradiator with a 60Co source and a Varian, Clinac 2100C linear accelerator with photon and electron beams were utilized. One thimble-type and three parallel-plate ionization chambers were tested. RESULTS: The measurement systems were submitted to preliminary tests (response stability and leakage current, with quite good results. The absorbed dose to air calibration factors were determined using four measurement systems and two types of phantoms. Results were obtained in compliance with the international recommendations. CONCLUSION: Absorbed dose to air calibration factors obtained for parallel plate ionization chambers, determined in 60Co beams, at maximum, are 1.2% higher than the values obtained in high energy

  7. Determination of absorbed dose in water: evaluation of dosimetric factors calibration sets used in radiotherapy; Determinacao da dose absorvida na agua: avaliacao dos fatores de calibracao de conjuntos dosimetricos de uso em radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina. Departamento de Dermatologia e Radioterapia; Fontana, Julia M.; Santos, Vitor H.P.; Nunes, Isabella P.F.; Okawabata, Francine S., E-mail: marfernandes@fmb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Instituto de Biociencia

    2014-12-15

    This paper presents a methodology for measuring the dose rate (cGy/min) in a telecobaltotherapy beam, looking emphasize the need for calibration of dosimetric set used and the importance of conducting periodic clinical megavoltage dosimetry of these beams. Two dosimetric set with their respective calibration factors were used. The correction parameters indicated in dosimetry protocols were determined by ionization chambers used. The difference between the value of the dose rate used in the calculation of the service routine and the values obtained in this work with both dosimetric sets proved to be less than 1.5%, and therefore satisfies the maximum recommended tolerance on quality control protocols for this type of therapeutic beam. (author)

  8. Origins of astronautics in Switzerland

    Science.gov (United States)

    Wadlis, A.

    1977-01-01

    Swiss contributions to astronautics are recounted. Scientists mentioned include: Bernoulli and Euler for their early theoretical contributions; the balloonist, Auguste Piccard; J. Ackeret, for his contributions to the study of aerodynamics; the rocket propulsion pioneer, Josef Stemmer; and the Swiss space scientists, Eugster, Stettbacker, Zwicky, and Schurch.

  9. Study of the heterogeneity effects of lung in the evaluation of absorbed dose in radiotherapy; Estudo dos efeitos da heterogeneidade de pulmao na avaliacao da dose absorvida em radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Luciana Tourinho

    2006-02-15

    The main objective of radiotherapy is to deliver the highest possible dose to the tumour, in order to destroy it, reducing as much as possible the doses to healthy tissues adjacent to the target volume. Therefore, it is necessary to do a planning of the treatment. The more complex is the treatment, the more difficult the planning will be, demanding computation sophisticated methods in its execution, in order to consider the heterogeneities present in the human body. Additionally, with the appearing of new radiotherapeutic techniques, that used irradiation fields of small area, for instance, the intensity modulated radiotherapy, the difficulties for the execution of a reliable treatment planning, became still larger. In this work it was studied the influence of the lung heterogeneity in the planning of the curves of percentage depth dose, PDP, obtained with the Eclipse{sup R} planning system for different sizes of irradiation fields, using the correction algorithms for heterogeneities available in the planning system: modified Batho, general Batho and equivalent tissue-air ratio. A thorax phantom, manufactured in acrylic, containing a region made of cork to simulate the lung tissue, was used. The PDP curves generated by the planning system were compared to those obtained by Monte Carlo simulation and with the use of thermoluminescent, TL, dosimetry. It was verified that the algorithms used by the Eclipse{sup R} system for the correction of heterogeneity effects are not able to generate correct results for PDP curves in the case of small fields, occurring differences of up to 100%, when the 1x1 cm{sup 2} treatment field is considered. These differences can cause a considerable subdosage in the lung tissue, reducing the possibility of the patient cure. (author)

  10. Official portrait of astronaut Robert C. Springer

    Science.gov (United States)

    1988-01-01

    Official portrait of astronaut Robert C. Springer, United Stated Marine Corps (USMC) Colonel, member of Astronaut Class 9 (1980), and mission specialist. Springer wears launch and entry suit (LES) while holding helmet.

  11. Technical note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV-18 MeV.

    Science.gov (United States)

    Hermida-López, M; Lüdemann, L; Flühs, A; Brualla, L

    2014-11-01

    Water is the reference medium for radiation therapy dosimetry, but for film dosimetry it is more practical to use a solid phantom. As the composition of solid phantoms differs from that of water, the energy dependence of film exposed within solid phantoms may also differ. The energy dependence of a radiochromic film for a given beam quality Q (energy for monoenergetic beams) has two components: the intrinsic energy dependence and the absorbed-dose energy dependence f(Q), the latter of which can be calculated through a Monte Carlo simulation of radiation transport. The authors used Monte Carlo simulations to study the influence of the phantom material on the f(Q) of the EBT3 radiochromic film (Ashland Specialty Ingredients, Wayne, NJ) for photon beams with energies between 3 keV and 18 MeV. All simulations were carried out with the general-purpose Monte Carlo code penelope 2011. The geometrical model consisted of a cylindrical phantom, with the film positioned at different depths depending on the initial photon energy. The authors simulated monoenergetic parallel photon beams and x-ray beams from a superficial therapy system. To validate their choice of simulation parameters, they also calculated f(Q) for older film models, EBT and EBT2, comparing with published results. In addition to water, they calculated f(Q) of the EBT3 film for solid phantom materials commonly used for film dosimetry: RW1 and RW3 (PTW-Freiburg, Freiburg, Germany), Solid Water (Gammex-RMI, Madison, WI), and PMMA. Finally, they combined their calculated f(Q) with published overall energy response data to obtain the intrinsic energy dependence of the EBT3 film in water. The calculated f(Q) for EBT and EBT2 films was statistically compatible with previously published data. Between 10 keV and 18 MeV, the variation found in f(Q) of the EBT3 film for water was within 2.3%, with a standard statistical uncertainty less than 1%. If the quantity dose-to-water in the phantom is considered, which is the

  12. Technical Note: Influence of the phantom material on the absorbed-dose energy dependence of the EBT3 radiochromic film for photons in the energy range 3 keV–18 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hermida-López, M., E-mail: mhermida@vhebron.net [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, Essen D-45122, Germany and Servei de Física i Protecció Radiològica, Hospital Universitari Vall d’Hebron, Pg. Vall d’Hebron 119-129, Barcelona 08035 (Spain); Lüdemann, L.; Flühs, A. [Medical Physics, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, Essen D-45122 (Germany); Brualla, L. [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, Essen D-45122 (Germany)

    2014-11-01

    Purpose: Water is the reference medium for radiation therapy dosimetry, but for film dosimetry it is more practical to use a solid phantom. As the composition of solid phantoms differs from that of water, the energy dependence of film exposed within solid phantoms may also differ. The energy dependence of a radiochromic film for a given beam quality Q (energy for monoenergetic beams) has two components: the intrinsic energy dependence and the absorbed-dose energy dependence f(Q), the latter of which can be calculated through a Monte Carlo simulation of radiation transport. The authors used Monte Carlo simulations to study the influence of the phantom material on the f(Q) of the EBT3 radiochromic film (Ashland Specialty Ingredients, Wayne, NJ) for photon beams with energies between 3 keV and 18 MeV. Methods: All simulations were carried out with the general-purpose Monte Carlo code PENELOPE 2011. The geometrical model consisted of a cylindrical phantom, with the film positioned at different depths depending on the initial photon energy. The authors simulated monoenergetic parallel photon beams and x-ray beams from a superficial therapy system. To validate their choice of simulation parameters, they also calculated f(Q) for older film models, EBT and EBT2, comparing with published results. In addition to water, they calculated f(Q) of the EBT3 film for solid phantom materials commonly used for film dosimetry: RW1 and RW3 (PTW-Freiburg, Freiburg, Germany), Solid Water (Gammex-RMI, Madison, WI), and PMMA. Finally, they combined their calculated f(Q) with published overall energy response data to obtain the intrinsic energy dependence of the EBT3 film in water. Results: The calculated f(Q) for EBT and EBT2 films was statistically compatible with previously published data. Between 10 keV and 18 MeV, the variation found in f(Q) of the EBT3 film for water was within 2.3%, with a standard statistical uncertainty less than 1%. If the quantity dose-to-water in the phantom is

  13. Bend-absorbing clamp

    Science.gov (United States)

    Abbott, J. R.; Valencia, B., Jr.

    1979-01-01

    Compact, inexpensive clamp for flexible cables or rigid tubes absorbs vibrations and other motion. It accomodates wide range of dimensions, and saves space by eliminating pigtails or bellows commonly used to absorb linear movement or vibrations

  14. Determination of absorbed dose in crystalline and thyroid gland with irradiation protocols applied in orthopantomography equipment for dental examination; Determinacion de dosis absorbida en cristalino y glandula tiroides con protocolos de irradiacion aplicados en equipos de ortopantomografia para panoramica dental

    Energy Technology Data Exchange (ETDEWEB)

    Munoz A, A. A.; Ramirez A, L. M. [Instituto Tecnologico Metropolitano, Grupo de Investigacion e Innovacion Biomedica, Medellin, Antioquia (Colombia); Sosa A, M. A.; Azorin V, J. C.; Vallejo H, M. A. [Universidad de Guanajuato, Departamento de Fisica, Loma del Bosque 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2016-10-15

    Ionizing radiations are very useful in the medical field for the diagnostic use of different pathologies. Currently there are different technologies for diagnostic imaging using conventional X-ray, computed tomography, mammography, angiography, dental panoramic X-ray, among others. However, it should be noted that exposure to radiation in this type of diagnostic tests has increased considerably in recent years, because radiological examinations are not always carried out according to the actual clinical needs of each patient, increasing the risk to develop cancer. In this paper, the absorbed dose in the lens and thyroid gland was measured with the help of TLD-100 dosimeters located in a PMMA phantom adapted for orthopantomography (dental panoramic X-ray) equipment in 5 hospitals; using the parameters pre-configured for normal adult for irradiation. A Harshaw 3500 equipment was used to read the dosimeters, obtaining a value of 1.324 ± Sd 0.01 mGy for crystalline and 1.044 ± Sd 0.03 mGy values which are intended to be validated under other conditions and protocols. (Author)

  15. Calculus of the fluence and the absorbed dose by the different head tissues before photons of distinct energies; Calculo de la fluencia y la dosis absorbida por los diferentes tejidos de la cabeza ante fotones de distintas energias

    Energy Technology Data Exchange (ETDEWEB)

    Azorin V, C.; Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Azorin N, J. [Departamento de Fisica, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: claudiaazorin@yahoo.com.mx

    2009-10-15

    Two models were used, in the first one the head was built with the scalp that includes the skin and the adipose tissue, the skull, the brain and the tumor, it is modeled as a sphere of 1 cm of radius that be places in the center of the head pattern. The spherical models of the scalp, the skull and the brain were built respectively with spheres of 8.5, 8 and 7 cm of radius. The tumor was irradiated with an unidirectional beam of photons, the calculated cases were photons of {sup 6}0Co and monoenergetic photons beams of 6, 8, 10 and 15 MeV. For each case be calculated the total photons fluence to 5, 10 and 15 cm in air and to 20.5 cm that is the interface between the air and head. This calculus included values of photons fluence halfway the scalp, halfway the skull, halfway the brain and in the tumor center. Also is calculated the total absorbed dose by the scalp, the skull, the brain and the tumor. (author)

  16. Astronautics

    Science.gov (United States)

    1977-01-01

    Principles of rocket engineering, flight dynamics, and trajectories are discussed in this summary of Soviet rocket development and technology. Topics include rocket engine design, propellants, propulsive efficiency, and capabilities required for orbital launch. The design of the RD 107, 108, 119, and 214 rocket engines and their uses in various satellite launches are described. NASA's Saturn 5 and Atlas Agena launch vehicles are used to illustrate the requirements of multistage rockets.

  17. Analysis of Chromosomal Aberrations in the Blood Lymphocytes of Astronauts after Space Flight

    Science.gov (United States)

    George, K.; Kim, M. Y.; Elliott, T.; Cucinotta, F. A.

    2007-01-01

    It is a NASA requirement that biodosimetry analysis be performed on all US astronauts who participate in long duration missions of 3 months or more onboard the International Space Station. Cytogenetic analysis of blood lymphocytes is the most sensitive and reliable biodosimetry method available at present, especially if chromosome damage is assessed before as well as after space flight. Results provide a direct measurement of space radiation damage in vivo that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present data obtained from all twenty-five of the crewmembers who have participated in the biodosimetry program so far. The yield of chromosome exchanges, measured using fluorescence in situ hybridization (FISH) technique with chromosome painting probes, increased after space flight for all these individuals. In vivo dose was derived from frequencies of chromosome exchanges using preflight calibration curves of in vitro exposed cells from the same individual, and RBE was compared with individually measured physically absorbed dose and projected organ dose equivalents. Biodosimetry estimates using samples collected within a few weeks of return from space lie within the range expected from physical dosimetry. For some of these individuals chromosome aberrations were assessed again several months after their respective missions and a temporal decline in stable exchanges was observed in some cases, suggesting that translocations are unstable with time after whole body exposure to space radiation. This may indicate complications with the use of translocations for retrospective dose reconstruction. Data from one crewmember who has participated in two separate long duration space missions and has been followed up for over 10 years provides limited data on the effect of repeat flights and shows a possible adaptive response to space radiation exposure.

  18. Study of dose levels absorbed by members of the public in the nuclear medicine departments; Estudo dos niveis de dose em individuos do publico nos servicos de medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Geovanna Oliveira de Mello

    2001-03-01

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  19. The {sup 68}Ga/{sup 177}Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUV{sub max} values and absorbed dose estimates

    Energy Technology Data Exchange (ETDEWEB)

    Scarpa, Lorenza; Buxbaum, Sabine; Kendler, Dorota; Decristoforo, Clemens; Uprimny, Christian; Virgolini, Irene [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Fink, Katharina [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Medical University of Innsbruck, Department of Radiotherapy / Radiation Oncology, Innsbruck (Austria); Bektic, Jasmin; Horninger, Wolfgang [Medical University of Innsbruck, Department of Urology, Innsbruck (Austria); Gruber, Leonhard [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Lukas, Peter [Medical University of Innsbruck, Department of Radiotherapy / Radiation Oncology, Innsbruck (Austria)

    2017-05-15

    A targeted theragnostic approach based on increased expression of prostate-specific membrane antigen (PSMA) on PC cells is an attractive treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). Ten consecutive mCRPC patients were selected for {sup 177}Lu-PSMA617 therapy on the basis of PSMA-targeted {sup 68}Ga-PSMA-HBED-CC PET/CT diagnosis showing extensive and progressive tumour load. Following dosimetry along with the first therapy cycle restaging ({sup 68}Ga-PSMA-HBED-CC and {sup 18}F-NaF PET/CT) was performed after 2 and 3 therapy cycles (each 6.1 ± 0.3 GBq, range 5.4-6.5 GBq) given intravenously over 30 minutes, 9 ± 1 weeks apart. PET/CT scans were compared to {sup 177}Lu-PSMA617 24-hour whole-body scans and contrast-enhanced dual-phase CT. Detailed comparison of SUVmax values and absorbed tumour doses was performed. {sup 177}Lu-PSMA617 dosimetry indicated high tumour doses for skeletal (3.4 ± 1.9 Gy/GBq; range 1.1-7.2 Gy/GBq), lymph node (2.6 ± 0.4 Gy/GBq; range 2.3-2.9 Gy/GBq) as well as liver (2.4 ± 0.8 Gy/GBq; range 1.7-3.3 Gy/GBq) metastases whereas the dose for tissues/organs was acceptable in all patients for an intention-to-treat activity of 18 ± 0.3 GBq. Three patients showed partial remission, three mixed response, one stable and three progressive disease. Decreased {sup 177}Lu-PSMA617 and {sup 68}Ga-PSMA-HBED-CC uptake (mean SUVmax values 20.2 before and 15.0 after 2 cycles and 11.5 after 3 cycles, p < 0.05) was found in 41/54 skeletal lesions, 12/13 lymph node metastases, 3/5 visceral metastases and 4/4 primary PC lesions. Due to substantial individual variance, dosimetry is mandatory for a patient-specific approach following {sup 177}Lu-PSMA617 therapy. Higher activities and/or shorter treatment intervals should be applied in a larger prospective study. (orig.)

  20. Verificação das doses de radiação absorvidas durante a técnica de irradiação de corpo inteiro nos transplantes de medula óssea, por meio de dosímetros termoluminescentes Measurement of absorbed radiation doses during whole body irradiation for bone marrow transplants using thermoluminescent dosimeters

    Directory of Open Access Journals (Sweden)

    Adelmo José Giordani

    2004-10-01

    Full Text Available OBJETIVO: Avaliar a precisão das doses de radiação absorvidas na terapia de transplantes de medula óssea durante a técnica de irradiação de corpo inteiro. MATERIAIS E MÉTODOS: Utilizaram-se 200 pastilhas de sulfato de cálcio com disprósio compactado com teflon (CaSO4 + teflon, calibradas no ar e no "phantom", selecionadas aleatoriamente e dispostas em grupos de cinco no corpo dos pacientes. As leituras dosimétricas foram efetuadas pela leitora Harshaw 4000A. Nove pacientes foram irradiados no corpo inteiro em paralelos e em opostos laterais, utilizando-se unidade de cobalto-60, modelo Alcion II, com taxa de dose de 0,80 Gy/min a 80,5 cm, {campo (10 × 10 cm²}. A dosimetria dessa unidade foi realizada com dosímetro Victoreen 500. Para a determinação da dose média em cada ponto avaliado usaram-se os fatores individuais de calibração das pastilhas no ar e no "phantom", colocando-se um "build up" de 2 mm para superficializar a dose à distância de 300 cm. RESULTADOS: Em 70% dos pacientes obteve-se variação de dose menor que 5% e em 30% dos pacientes essa variação foi inferior a 10%, quando comparados os valores medidos com aqueles calculados em cada ponto. Na cabeça ocorre absorção, em média, de 14% da dose administrada, e nos pulmões, acréscimo de 2% na dose administrada. Nos pacientes com distância látero-lateral maior que 35 cm as variações entre as doses calculadas e medidas podem chegar a 30% da dose desejada, sem o uso de filtros compensadores. CONCLUSÃO: Os valores medidos das doses absorvidas nos diversos pontos anatômicos, comparados aos valores desejados (teóricos, apresentam tolerância de ±10%, considerando-se as diferenças anatômicas existentes, quando utilizados os fatores de calibração individuais das pastilhas.OBJECTIVE: To evaluate the precision of the absorbed radiation doses in bone marrow transplant therapy during whole body irradiation. MATERIALS AND METHODS: Two-hundred CaSO4:Dy + teflon

  1. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  2. Multispectral metamaterial absorber

    OpenAIRE

    Grant, James; McCrindle, I.J.H.; Li, C; D. R. S. Cumming

    2014-01-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inhe...

  3. Adaptation of penelope Monte Carlo code system to the absorbed dose metrology: characterization of high energy photon beams and calculations of reference dosimeter correction factors; Adaptation du code Monte Carlo penelope pour la metrologie de la dose absorbee: caracterisation des faisceaux de photons X de haute energie et calcul de facteurs de correction de dosimetres de reference

    Energy Technology Data Exchange (ETDEWEB)

    Mazurier, J

    1999-05-28

    This thesis has been performed in the framework of national reference setting-up for absorbed dose in water and high energy photon beam provided with the SATURNE-43 medical accelerator of the BNM-LPRI (acronym for National Bureau of Metrology and Primary standard laboratory of ionising radiation). The aim of this work has been to develop and validate different user codes, based on PENELOPE Monte Carlo code system, to determine the photon beam characteristics and calculate the correction factors of reference dosimeters such as Fricke dosimeters and graphite calorimeter. In the first step, the developed user codes have permitted the influence study of different components constituting the irradiation head. Variance reduction techniques have been used to reduce the calculation time. The phase space has been calculated for 6, 12 and 25 MV at the output surface level of the accelerator head, then used for calculating energy spectra and dose distributions in the reference water phantom. Results obtained have been compared with experimental measurements. The second step has been devoted to develop an user code allowing calculation correction factors associated with both BNM-LPRI's graphite and Fricke dosimeters thanks to a correlated sampling method starting with energy spectra obtained in the first step. Then the calculated correction factors have been compared with experimental and calculated results obtained with the Monte Carlo EGS4 code system. The good agreement, between experimental and calculated results, leads to validate simulations performed with the PENELOPE code system. (author)

  4. Geoscience Training for NASA Astronaut Candidates

    Science.gov (United States)

    Young, K. E.; Evans, C. A.; Bleacher, J. E.; Graff, T. G.; Zeigler, R.

    2017-01-01

    After being selected to the astronaut office, crewmembers go through an initial two year training flow, astronaut candidacy, where they learn the basic skills necessary for spaceflight. While the bulk of astronaut candidate training currently centers on the multiple subjects required for ISS operations (EVA skills, Russian language, ISS systems, etc.), training also includes geoscience training designed to train crewmembers in Earth observations, teach astronauts about other planetary systems, and provide field training designed to investigate field operations and boost team skills. This training goes back to Apollo training and has evolved to support ISS operations and future exploration missions.

  5. Designing Interfaces for Astronaut Autonomy in Space

    Science.gov (United States)

    Hillenius, Steve

    2015-01-01

    As we move towards human deep space missions, astronauts will no longer be able to say, Houston, we have a problem. The restricted contact with mission control because of the incredible distance from Earth will require astronauts to make autonomous decisions. How will astronauts take on the roles of mission control? This is an area of active research that has far reaching implications for the future of distant spaceflight. Come to this talk to hear how we are using design and user research to come up with innovative solutions for astronauts to effectively explore the Moon, Mars, and beyond.

  6. Astronaut Clothing for Exploration Missions

    Science.gov (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  7. Multispectral metamaterial absorber.

    Science.gov (United States)

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  8. Philosophy on astronaut protection: A physician`s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, H.

    1997-04-30

    The National Aeronautics and Space Administration has a responsibility to assure that proper ethical standards are applied in establishing and applying limits for the control of radiation doses to the astronauts. Such a responsibility obviously includes assuring that the astronauts are properly informed of the hazards associated with individuals missions and that they agree to accept the associated risks. The responsibility, however, does not end there. It includes a need to discuss how to initiate a discourse for developing the related ethical standards and how to determine who should be involved in their establishment. To assure that such proper communications on matters that encompass the realms of policy, science, politics, and ethics. There is also a need to mesh public perceptions with those of the scientific and technical community. This will be a monumental undertaking.

  9. Calculation of the absorbed dose for contamination in skin imparted by beta radiation through the Varskin code modified for 122 isotopes of interest for nuclear medicine, nuclear plants and research; Calculo de dosis absorbida para contaminacion en piel impartida por radiacion beta mediante el codigo Varskin modificado para 122 isotopos de interes para medicina nuclear, plantas nucleares e investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T

    1992-06-15

    In this work the implementation of a modification of the Varskin code for calculation of absorbed dose by contamination in skin imparted by external radiation fields generated by beta emitting is presented. The necessary data for the execution of the code are: isotope, dose depth, isotope activity, geometry type, source radio and time of integration of the isotope, being able to execute combinations of up to five radionuclides. This program it was implemented in Fortran 5 by means of the FFSKIN source program and the executable one in binary language BFFSKIN being the maximum execution time of 5 minutes. (Author)

  10. Skylab-4 Mission Onboard Photograph - Astronaut Carr Testing Astronaut Maneuvering Equipment.

    Science.gov (United States)

    1975-01-01

    This Skylab-4 onboard photograph depicts Astronaut Gerald Carr testing Astronaut Maneuvering Equipment (M509) by flying it around under weightless conditions in the Orbital Workshop. The M509 experiment was an operational study to evaluate and conduct an in-orbit verification of the utility of various maneuvering techniques to assist astronauts in performing tasks that were representative of future extravehicular activity requirements.

  11. Internal absorber solar collector

    Science.gov (United States)

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  12. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  13. Space Plants for Astronaut Consumption

    Science.gov (United States)

    Mickens, Matthew A.; Grandpre, Ayla Moriah; Boehm, Emma; Barnwell, Payton

    2017-01-01

    Growing plants in space will be an essential part of sustaining astronauts during long-range missions. During the summer of 2017, three female NASA interns, have been engaged in research relevant to food production in space, and will present their projects to an all female program known as Girls in STEM camp. Ayla Grandpre, a senior from Rocky Mountain College, has performed data mining and analysis of crop growth results gathered through Fairchild Botanical Gardens program, Growing Beyond Earth. Ninety plants were downselected to three for testing in controlled environment chambers at KSC. Ayla has also managed an experiment testing a modified hydroponics known as PONDS, to grow mizuna mustard greens and red robin cherry tomatoes. Emma Boehm, a senior from the University of Minnesota, has investigated methods to sterilize seeds and analyzed the most common microbial communities on seed surfaces. She has tested a bleach fuming method and an ethanol treatment. Emma has also tested Tokyo bekana Chinese cabbage seeds from four commercial seed vendors to identity differences in germination and growth variability. Lastly, Payton Barnwell, a junior from Florida Polytechnic University has shown that light recipes provided by LEDs can alter the growth and nutrition of 'Outredgeous' lettuce, Chinese cabbage, and Mizuna. The results of her light quality experiments will provide light recipe recommendations for space crops that grown in the Advanced Plant Habitat currently aboard the International Space Station.

  14. Peritoneal Dialysis Dose and Adequacy

    Science.gov (United States)

    ... Navigation Peritoneal Dialysis Peritoneal Dialysis: Dose & Adequacy Peritoneal Dialysis: Dose & Adequacy When kidneys fail, waste products such ... absorbed from the abdominal cavity. Types of Peritoneal Dialysis The two types of peritoneal dialysis differ mainly ...

  15. Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions

    Science.gov (United States)

    Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.

    2009-01-01

    Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.

  16. Official portrait of astronaut Linda M. Godwin

    Science.gov (United States)

    1990-01-01

    Official portrait of Linda M. Godwin, Ph.D., member of Astronaut Class 11 (1984), and space shuttle mission specialist. Godwin wears a navy blue flight suit with space shuttle model displayed on table in front of her.

  17. Haige astronaut venitab Atlantise missiooni / Liisi Poll

    Index Scriptorium Estoniae

    Poll, Liisi, 1980-

    2008-01-01

    Saksamaa astronaut ei saanud haiguse tõttu minna avakosmosesse, mistõttu lükkus edasi ka Euroopa Kosmoseagentuuri laborimooduli paigaldamine rahvusvahelisse kosmosejaama (ISS). Lisa: Teaduslabor Columbos

  18. Astronaut Neil Armstrong participates in simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, Apollo 11 commander, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission SImulator in the Kennedy Space Center's Flight Crew Training Building.

  19. Evaluation of Space Food for Commercial Astronauts

    OpenAIRE

    Ahlstrom, Britt Karin

    2016-01-01

    As commercial aerospace companies advance toward manned spaceflight, they must overcome many hurdles – not only technical, but also human. One of the greatest human challenges they face is food. Throughout the history of human spaceflight, astronauts have primarily eaten food developed by government space agencies. Now, with manned commercial flights on the horizon, astronauts will be provided with an entirely new diet – one comprised of commercially available, ready-to-eat food. Yet will thi...

  20. Astronaut Neil Armstrong during thermovacuum training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, commander of the Apollo 11 lunar landing mission, is photographed during thermovacuum training in Chamber B of the Space Environment Simulation Laboratory, Building 32, Manned Spacecraft Center. He is wearing an Extravehicular Mobility Unit. The training simulated lunar surface vacuum and thermal conditions during astronaut operations outside the Lunar Module on the moon's surface. The mirror was used to reflect solar light.

  1. Astronautical Hygiene - A New Discipline to Protect the Health of Astronauts Working in Space

    Science.gov (United States)

    Cain, J. R.

    This paper outlines the rationale for a new scientific discipline namely astronautical hygiene. Astronautical hygiene is an applied science that utilises a knowledge of space toxicology, space medicine, astronautics, occupational hygiene etc. to identify the hazards, assess the exposure risks to health, and thereby determine the measures to mitigate exposure to protect the health of astronauts during living and working in space. This paper describes the nature of the hazards (i.e. physical, chemical, microbial and psychological) encountered during space flight. It discusses exposure risk assessment and the use of sampling techniques to assess astronaut health risks. This paper then discusses the measures used to mitigate exposure to the exposure hazards during space exploration. A case study of the application of the principles of astronautical hygiene to control lunar dust exposure is then described.

  2. Evaluation of the absorbed dose during studies of the renal function due to I{sup 123} / I{sup 131} (hippuran) and In{sup 111} (DTPA); Evaluacion de la dosis absorbida durante estudios de la funcion renal debido a I{sup 123} / I{sup 131} (hippuran) e In{sup 111} (DPTA)

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.; Castillo, C.; Sarachaga, R.; Rojas, R.; Zelada, L.; Melendez, J.; Gomez, M. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Ciudad Universitaria, Trujillo (Peru); Diaz, E., E-mail: marvva@hotmail.com [Universidade Federal do Rio Grande do Sul, Av. Paulo Gamma 110, Bairro Farropilhas, Porto Alegre, RS 90040-060 (Brazil)

    2014-08-15

    Using the methodology MIRD and representation Cristy-Eckerman for kidneys, bladder, and whole body as organs of the bio-kinetics of I{sup 123} / I{sup 131} (hippuran) and the In{sup 111} (D PTA), the absorbed dose for studies of the renal function of adults due to the I{sup 123} is 0,0071 mGy/MBq where 88.16% corresponds to its auto-dose and 11,96% to the organs of their bio-kinetics; while for the I{sup 131} their dose is 0,032 mGy/MBq where 95,03% corresponds to its auto-dose and 4,97% to the organs of their bio-kinetics. For the In{sup 111} their dose is 0,0168 mGy/MBq where 71,68% corresponds to their auto-dose and 28,32% to the organs of their bio-kinetics. In all the cases the dosimetric contributions of the organs of the bio-kinetics (whole body and urinary bladder) are very significant, and this fundamentally is due to the photons of the whole body. (Author)

  3. Aperiodic-metamaterial-based absorber

    OpenAIRE

    Quanlong Yang; Xieyu Chen; Yanfeng Li; Xueqian Zhang; Yuehong Xu; Zhen Tian; Chunmei Ouyang; Jianqiang Gu; Jiaguang Han; Weili Zhang

    2017-01-01

    The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber), how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based abs...

  4. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  5. Measurement of extrapolation curves for the secondary pattern of beta radiation Nr. 86 calibrated in rapidity of absorbed dose for tissue equivalent by the Physikalisch Technische Bundesanstalt; Medicion de curvas de extrapolacion para el patron secundario de radiacion beta Nr. 86 calibrado en rapidez de dosis absorbida para tejido equivalente por el Physikalisch Technische Bundesanstalt

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T

    1988-10-15

    The following report has as objective to present the obtained results of measuring - with a camera of extrapolation of variable electrodes (CE) - the dose speed absorbed in equivalent fabric given by the group of sources of the secondary pattern of radiation Beta Nr. 86, (PSB), and to compare this results with those presented by the calibration certificates that accompany the PSB extended by the primary laboratory Physikalisch Technische Bundesanstalt, (PTB), of the R.F.A. as well as the uncertainties associated to the measure process. (Author)

  6. Astronaut Gerald P. Carr flies the Astronaut Maneuvering Equipment in the OWS

    Science.gov (United States)

    1974-01-01

    Astronaut Gerald P. Carr, Skylab 4 commander, flies the M509 Astronaut Maneuvering Equipment. Carr is strapped into the back-mounted, hand-controlled Automatically stabilized Maneuvering Unit (ASMU). The M509 exercise was in the forward dome area of the OWS. THe dome area is about 22 feet in diameter and 19 feet form top to bottom.

  7. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  8. Evaluation of absorbed dose in studies of renal function due to {sup 123}I/{sup 131}I (hippuran) e {sup 111}In (DPTA); Evaluacion de la dosis absorbida durante estudios de la funcion renal debido al {sup 123}I/{sup 131}I (hippuran) e {sup 111}In (DPTA)

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M.V.; Castillo, C.E.; Rojas, R.; Cabrera, C.; Abanto, D.; Morgan, A. [Universidad Nacional de Trujillo (UNT), Area de Fisica Medica, Trujillo (Peru); Diaz, E.E., E-mail: marvva@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2015-07-01

    The absorbed dose of the kidneys during renal function studies of adult patients is estimated through biokinetics of radiopharmaceuticals containing the {sup 123}I/{sup 131}I (hippuran) e {sup 111}In (DPTA). Using the methodology MIRD and representation Cristy-Eckerman for adult kidneys, it is shown that dosimetric contributions of organs of biokinetics {sup 123}I/{sup 131}I (hippuran) e {sup 111}In (DPTA) are significant, in estimative of dose for renal function studies. Dosimetric contributions (body and whole bladder, kidneys excluding) are given by 11.90% (for {sup 123}I), 4.97% (for {sup 131}I) and 28.32% (for {sup 111}In). In all cases, the dosimetric contributions are mainly due to photons issued by the whole body.

  9. Universal metamaterial absorbe

    CERN Document Server

    Smaali, Rafik; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of $\\lambda/100$ thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  10. Optimal Sound Absorbing Structures

    CERN Document Server

    Yang, Min; Fu, Caixing; Sheng, Ping

    2016-01-01

    Causal nature of the acoustic response, for any materials or structures, dictates an inequality that relates the absorption spectrum of the sample to its thickness. We present a general recipe for constructing sound-absorbing structures that can attain near-equality for the causal relation with very high absorption performance; such structures are denoted optimal. Our strategy involves using carefully designed acoustic metamaterials as backing to a thin layer of conventional sound absorbing material, e.g., acoustic sponge. By using this design approach, we have realized a 12 cm-thick structure that exhibits broadband, near-perfect flat absorption spectrum starting at around 400 Hz. From the causal relation, the calculated minimum sample thickness is 11.5 cm for the observed absorption spectrum. We present the theory that underlies such absorption performance, involving the evanescent waves and their interaction with a dissipative medium, and show the excellent agreement with the experiment.

  11. 10 CFR 20.1004 - Units of radiation dose.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy... Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray (Gy) is the SI unit of absorbed dose. One gray is equal to an absorbed dose of 1 Joule/kilogram (100...

  12. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  13. The Digital Astronaut Project Bone Remodeling Model

    Science.gov (United States)

    Pennline, James A.; Mulugeta, Lealem; Lewandowski, Beth E.; Thompson, William K.; Sibonga, Jean D.

    2014-01-01

    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur: (1) The most commonly used countermeasure against bone loss has been prescribed exercise, (2) However, current exercise countermeasures do not completely eliminate bone loss in long duration, 4 to 6 months, spaceflight, (3,4) leaving the astronaut susceptible to early onset osteoporosis and a greater risk of fracture later in their lives. The introduction of the Advanced Resistive Exercise Device, coupled with improved nutrition, has further minimized the 4 to 6 month bone loss. But further work is needed to implement optimal exercise prescriptions, and (5) In this light, NASA's Digital Astronaut Project (DAP) is working with NASA physiologists to implement well-validated computational models that can help understand the mechanisms of bone demineralization in microgravity, and enhance exercise countermeasure development.

  14. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  15. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  16. Calculus of spatial distribution of absorbed dose to cellular level by Monte Carlo simulation for a radio-labelled peptide with {sup 188}Re and with nuclear internalization : preliminary results; Calculo de la distribucion espacial de dosis absorbida a nivel celular por simulacion Monte Carlo para un peptido radiomarcado con {sup 188}Re y con internalizacion nuclear : resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Santos C, C. L. [Universidad Autonoma del Estado de Mexico, Paseo Tollocan y Jesus Carranza, Toluca 50120, Estado de Mexico (Mexico)], e-mail: leticia.rojas@inin.gob.mx

    2009-10-15

    The {sup 188}Re is a radionuclide of radiation gamma emitter, useful in obtaining of gamma-graphic images, but it is also emitter of beta radiations and Auger electrons. A bio-molecule directed to a specific receptor of a cancer cell labeled with a emitter radionuclide of beta particles and Auger electrons, as the {sup 188}Re-Tat-Bombesin, it has the potential to be used in radiotherapy of molecular targets for its capacity to penetrate to cellular nucleus. In this system, the radiation dose is distributed in way located at microscopic levels in sub cellular specific places, where Auger emissions contributes of significant way in absorbed dose. The cellular dosimetry is realized in most of cases, using analytic or semi analytical methods, for example the cellular MIRD methodology. However, it is required to complement these calculations simulating the electrons transport and considering experimental bio kinetics data. Therefore, in this work preliminary results are presented of dosimetric calculation to sub cellular level for {sup 188}Re-Tat-Bombesin by Monte Carlo simulation, using the 2008 version of PENELOPE: PENEASY code. The spatial distribution of absorbed dose in membrane, cytoplasm and nucleus, was calculated with geometry of a cell of 10 {mu}m of diameter, a nucleus of 2 {mu}m of ratio and membrane of 0.2 {mu}m of thickness, considering elementary constitution for each cellular compartment proposal in literature. The total number of disintegrations at sub cellular level was evaluated integrating the activity in function of time starting from experimental bio kinetics data in mamma cancer cells MDA-MB231. The preliminary results show that 46.4% of total disintegrations for unit of captured activity by cell occurs in nucleus, 38.4% in membrane and 15.2% in cytoplasm. The due absorbed dose to Auger electrons for 1 Bq of {sup 188}Re located in cellular membrane were respectively of 1.32E-1 and 1.43E-1 Gy in cytoplasm and nucleus. (Author)

  17. Differences in absorbed doses at risk organs and target tumoral of planning(PTV) in lung treatments using two algorithms of different calculations; Diferencias en las dosis absorbidas en organos de riesgo y volumen tumoral de planificacion (PTV) en tratamientos de pulmon usando dos algoritmos de calculo diferentes: pencil beam y collpased cone

    Energy Technology Data Exchange (ETDEWEB)

    Uruena Llinares, A.; Santos Rubio, A.; Luis Simon, F. J.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2006-07-01

    The objective of this paper is to compare, in thirty treatments for lung cancer,the absorbed doses at risk organs and target volumes obtained between the two used algorithms of calculation of our treatment planning system Oncentra Masterplan, that is, Pencil Beams vs Collapsed Cone. For it we use a set of measured indicators (D1 and D99 of tumor volume, V20 of lung, homogeneity index defined as (D5-D95)/D prescribed, and others). Analysing the dta, making a descriptor analysis of the results, and applying the non parametric test of the ranks with sign of Wilcoxon we find that the use of Pencil Beam algorithm underestimates the dose in the zone of the PTV including regions of low density as well as the values of maximum dose in spine cord. So, we conclude that in those treatments in which the spine dose is near the maximum permissible limit or those in which the PTV it includes a zone with pulmonary tissue must be used the Collapse Cone algorithm systematically and in any case an analysis must become to choose between time and precision in the calculation for both algorithms. (Authors)

  18. A Perfect Terahertz Metamaterial Absorber

    OpenAIRE

    Bagheri, Alireza; Moradi, Gholamreza

    2015-01-01

    In this paper the design for an absorbing metamaterial with near unity absorbance in terahertz region is presented. The absorber's unit cell structure consists of two metamaterial resonators that couple to electric and magnetic fields separately. The structure allows us to maximize absorption by varying dielectric material and thickness and, hence the effective electrical permittivity and magnetic permeability.

  19. Astronaut John Glenn Enters Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  20. Astronaut Glenn in the Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn in the Friendship 7 capsule during the first manned orbital flight, the MA-6 mission. Boosted by the Mercury-Atlas vehicle, a modified Atlas (intercontinental ballistic missile), the MA-6 mission lasted for 5 hours and orbited the Earth three times.

  1. Astronautics and aeronautics, 1978: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  2. Astronautics and aeronautics, 1976. A chronology

    Science.gov (United States)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  3. Astronautics and aeronautics, 1985: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  4. Astronaut Scott Carpenter tests balance mechanism performance

    Science.gov (United States)

    1961-01-01

    Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).

  5. Astronaut Gordon Cooper during flight tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, relaxes while waiting for weight and balance tests to begin (03974); Cooper prior to entering the Mercury Spacecraft for a series of simulated flight tests. During these tests NASA doctors, engineers and technicians monitor Cooper's performance (03975); Cooper undergoing suit pressurization tests (03976).

  6. Astronaut Gordon Cooper in centrifuge for tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  7. Absorbed dose in the fetus of a pregnant patient when I{sup 131} (iodide/Tc{sup 99m} (pertechnetate) is administered during thyroid studies; Dosis absorbida en el feto de una paciente embarazada cuando se administra I{sup 131} (yoduro)/Tc{sup 99m} (pertecnetato) durante estudios tiroideos

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez A, M.; Murillo C, V.; Arbayza F, J.; Sanchez S, P.; Cabrera S, C., E-mail: marvva@hotmail.com [Universidad Nacional de Trujillo, Laboratorio de Fisica Nuclear, Trujillo (Peru)

    2016-10-15

    The radiation absorbed dose in the fetus of a pregnant woman during thyroid studies is estimated through the analysis of the bio-kinetics of radiopharmaceuticals containing I{sup 131} (iodide) or Tc{sup 99m} (pertechnetate). MIRD formalism and its representation Cristy-Eckerman are used. The results indicate that the absorbed dose by the fetus of a woman of 3, 6 and 9 months of gestation due to Tc{sup 99m} emissions is lower than that obtained by I{sup 131}; represent 34.7%, 6% and 3.5% of the dose generate by the iodide. The auto-dose in the fetus of a pregnant woman is mainly due to the local energy deposition of the beta and gamma emissions of I{sup 131}, being greater than the one reported by the gamma emissions and conversion electrons of the Tc{sup 99m}, for fetuses of 6 and 9 months. The dose incorporated to the fetus due to the organs of the maternal tissues, which are part of the bio-kinetics, are basically due to the emission of its gamma photons and correspond to 38.50% /60.52% in fetuses of 3 months, 64.71% /12.43% in fetuses of 6 months and 69.79% /10.97% in fetuses of 9 months for the radiopharmaceuticals Tc{sup 99m} (pertechnetate) / I{sup 131} (iodide). The organs of bio-kinetics that contribute to the fetus dose are mainly due to the bladder, followed by the rest, and small intestine (fetuses of 3 months); of the rest, followed by the small intestine and bladder (fetuses of 6 months); of the bladder, followed by the small intestine and stomach (fetuses of 9 months) when using I{sup 131}; while for the Tc{sup 99m} the bladder and rest contribute (fetuses of 3 months); of the placenta, followed by the rest and bladder (fetuses of 6 and 9 months). (Author)

  8. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  9. Mission X: Train Like an Astronaut Challenge

    Science.gov (United States)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  10. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    Science.gov (United States)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  11. Metamaterial saturable absorber mirror.

    Science.gov (United States)

    Dayal, Govind; Ramakrishna, S Anantha

    2013-02-01

    We propose a metamaterial saturable absorber mirror at midinfrared wavelengths that can show a saturation of absorption with intensity of incident light and switch to a reflecting state. The design consists of an array of circular metallic disks separated by a thin film of vanadium dioxide (VO(2)) from a continuous metallic film. The heating due to the absorption in the absorptive state causes the VO(2) to transit to a metallic phase from the low temperature insulating phase. The metamaterial switches from an absorptive state (R≃0.1%) to a reflective state (R>95%) for a specific threshold intensity of the incident radiation corresponding to the phase transition of VO(2), resulting in the saturation of absorption in the metamaterial. The computer simulations show over 99.9% peak absorbance, a resonant bandwidth of about 0.8 μm at 10.22 μm wavelengths, and saturation intensity of 140 mW cm(-2) for undoped VO(2) at room temperature. We also carried out numerical simulations to investigate the effects of localized heating and temperature distribution by solving the heat diffusion problem.

  12. A modular wideband sound absorber

    Science.gov (United States)

    Plumb, G. D.

    The absorption coefficients were measured of various depths of RW2 grade Rockwool laid directly on the floor of the ISO-Standard reverberation room at BBC Research Department. The Rockwool was very effective as a wideband sound absorber. A new absorber was designed and tested, having the dimensions of the existing BBC type A modular absorbers and containing RW2 Rockwool. The new absorber has a smoother absorption coefficient curve, a less complicated construction, and weighs less than the existing BBC wideband absorber (type A8/A9). It has been named type A11 and has an equivalent performance to that of BBC type A2 and A3 absorbers combined. It complements, very well, the performance of the A10 very low frequency absorber, described in a companion Report (BBC RD No. 1992/10).

  13. Astronaut Demographic Database: Everything You Want to Know About Astronauts and More

    Science.gov (United States)

    Keeton, Kathryn; Patterson, Holly

    2011-01-01

    A wealth of information regarding the astronaut population is available that could be especially useful to researchers. However, until now, it has been difficult to obtain that information in a systematic way. Therefore, this "astronaut database" began as a way for researchers within the Behavioral Health and Performance Group to keep track of the ever growing astronaut corps population. Before our effort, compilation of such data could be found, but not in a way that was easily acquired or accessible. One would have to use internet search engines, read through lengthy and potentially inaccurate informational sites, or read through astronaut biographies compiled by NASA. Astronauts are a unique class of individuals and, by examining such information, which we dubbed "Demographics," we hoped to find some commonalities that may be useful for other research areas and future research topics. By organizing the information pertaining to astronauts1 in a formal, unified catalog, we believe we have made the information more easily accessible, readily useable, and user friendly. Our end goal is to provide this database to others as a highly functional resource within the research community. Perhaps the database can eventually be an official, published document for researchers to gain full access.

  14. Periodontal wound healing/regeneration following implantation of recombinant human growth/differentiation factor-5 (rhGDF-5) in an absorbable collagen sponge carrier into one-wall intrabony defects in dogs: a dose-range study.

    Science.gov (United States)

    Kim, Tae-Gyun; Wikesjö, Ulf M E; Cho, Kyoo-Sung; Chai, Jung-Kiu; Pippig, Susanne D; Siedler, Michael; Kim, Chong-Kwan

    2009-07-01

    Recombinant human growth/differentiation factor-5 (rhGDF-5) is being evaluated as a candidate therapy in support of periodontal regeneration. The objective of this study was to evaluate cementum and alveolar bone formation, and aberrant healing events following surgical implantation of rhGDF-5 in an absorbable collagen sponge (ACS) carrier using an established periodontal defect model. Bilateral 4 x 5 mm (width x depth), one-wall, critical-size, intrabony periodontal defects were surgically created at the mandibular second and fourth pre-molar teeth in 15 Beagle dogs. Five animals received 1 microg/defect and five animals 20 microg/defect rhGDF-5 in unilateral defect sites. Contralateral sites received treatments reported elsewhere. Five animals received rhGDF-5/ACS with 0 (buffer control) and 100 microg/defect rhGDF-5 in contralateral defect sites. The animals were euthanized at 8 weeks post-surgery for histologic and histometric evaluation. Surgical implantation of rhGDF-5 stimulated significant periodontal regeneration. Cementum formation was significantly enhanced in sites implanted with rhGDF-5 (1 and 100 microg) compared with control (pperiodontal wound healing/regeneration in intrabony periodontal defects without complications.

  15. Astronauts Armstrong and Scott arrive at Hickam Field, Hawaii

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott, pilot, arrive at Hickam Field, Hawaii on their way from Naha, Okinawa, to Cape Kennedy, Florida. Astronaut Walter M. Schirra Jr. is at extreme left.

  16. Astronaut-Deployable Geophysical and Environmental Monitoring Stations

    Science.gov (United States)

    Guzewich, S. D.; Bleacher, J. E.; Smith, M. D.; Khayat, A.; Conrad, P.

    2017-06-01

    Geophysical and environmental monitoring stations could be deployed by astronauts exploring Mars to create a broad network that would collect high-value scientific information while also enhancing astronaut safety.

  17. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dual broadband metamaterial absorber.

    Science.gov (United States)

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  19. Colonoscopy Screening in the US Astronaut Corps

    Science.gov (United States)

    Masterova, K.; Van Baalen, M.; Wear, M. L.; Murray, J.; Schaefer, C.

    2016-01-01

    BACKGROUND: Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. Recently this historical data has been identified as being useful for developing an occupational surveillance requirement. It can be used to assess overall colon health and to have a point of reference for future tests in current and former astronauts, as well as to follow-up and track rates of colorectal cancer and polyps. These rates can be compared to military and other terrestrial populations. In 2003, the active astronaut colonoscopy requirements changed to require less frequent colonoscopies. Since polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer, the procedure decreases the individual's risk for colon cancer. The objective of this study is to evaluate the possible effect of increased follow-up times between colonoscopies on the number and severity of polyps identified during the procedures among both current and former NASA astronauts. Initial results and forward work regarding astronaut colonoscopy screenings will be presented. METHODS: A retrospective study of all colonoscopy procedures performed on NASA astronauts between 1962 and 2015 (both during active career and retirement) was conducted by review of the JSC Clinic Electronic Medical Record and Lifetime Surveillance of Astronaut Health (LSAH) database for colonoscopy screening procedures and pathology reports. The timeframe of interest was from the time of selection into the Astronaut Corps through May 2015 or death. For each colonoscopy report, the following data were captured: date of procedure, age at time of procedure, reason for procedure, quality of bowel prep, completion of procedure and/or reason for termination of procedure, findings of procedure, subsequent treatment (if any), recommended follow-up interval, actual follow up interval, family history of polyps or colon cancer

  20. Automation of the monitoring in real time of the absorbed dose rate in air due to the environmental gamma radiation in Cuba; Automatizacion del monitoreo en tiempo real de la tasa de dosis absorbida en aire debido a la radiacion gamma ambiental en Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez L, O.; Capote F, E.; Carrazana G, J.A.; Manzano de Armas, J.F.; Alonso A, D.; Prendes A, M.; Zerquera, J.T.; Caveda R, C.A. [CPHR, Calle 20, No. 4113 e/41 y 47, Playa, La Habana, 11300, A.P. 6195 C.P. 10600 (Cuba); Kalberg, O. [Swedish Radiation Protection Institute (SSI) (Sweden); Fabelo B, O.; Montalvan E, A. [CIAC, Camaguey (Cuba); Cartas A, H. [CEAC, Cienfuegos (Cuba); Leyva F, J.C. [CISAT (Cuba)]. e-mail: orlando@cphr.edu.cu

    2006-07-01

    The Center of Protection and Hygiene of the Radiations (CPHR) like center rector of the National Net of Environmental Radiological Surveillance (RNVRA), it has strengthened their detection capacity and of answer before a situation of radiological emergency. The measurements of the absorbed dose rate in air due to the environmental gamma radiation in the main stations of the Net are obtained in real time and the CPHR receives the data coming from these posts at one time relatively short. To improve the operability of the RNVRA it was necessary to complete the facilities of existent monitoring using 4 automatic measurement stations with probes of gamma detection, implementing in this way a measurement system on real time. On the other hand the software were developed: GenironProbeFech, to obtain the data of the probes, DataMail for the shipment of the same ones by electronic mail and GammaRed that receives and processes the data in the rector center. (Author)

  1. Train Like an Astronaut Educational Outreach

    Science.gov (United States)

    Garcia, Yamil L.; Lloyd, Charles; Reeves, Katherine M.; Abadie, Laurie J.

    2012-01-01

    In an effort to reduce the incidence of childhood obesity, the National Aeronautics and Space Administration (NASA), capitalizing on the theme of human spaceflight developed two educational outreach programs for children ages 8-12. To motivate young "fit explorers," the Train Like an Astronaut National (TLA) program and the Mission X: Train Like an Astronaut International Fitness Challenge (MX) were created. Based on the astronauts' physical training, these programs consist of activities developed by educators and experts in the areas of space life sciences and fitness. These Activities address components of physical fitness. The educational content hopes to promote students to pursue careers in science, technology, engineering, and math (STEM) fields. At the national level, in partnership with First Lady Michelle Obama's Let?s Move! Initiative, the TLA program consists of 10 physical and 2 educational activities. The program encourages families, schools, and communities to work collaboratively in order to reinforce in children and their families the importance of healthy lifestyle habits In contrast, the MX challenge is a cooperative outreach program involving numerous space agencies and other international partner institutions. During the six-week period, teams of students from around the world are challenged to improve their physical fitness and collectively accumulate points by completing 18 core activities. During the 2011 pilot year, a t otal of 137 teams and more than 4,000 students from 12 countries participated in the event. MX will be implemented within 24 countries during the 2012 challenge. It is projected that 7,000 children will "train like an astronaut".

  2. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  3. Aperiodic-metamaterial-based absorber

    Science.gov (United States)

    Yang, Quanlong; Chen, Xieyu; Li, Yanfeng; Zhang, Xueqian; Xu, Yuehong; Tian, Zhen; Ouyang, Chunmei; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2017-09-01

    The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber), how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  4. Art concept of Astronaut in Maneuvering Unit during EVA

    Science.gov (United States)

    1966-01-01

    This artist concept of a Gemini astronaut, wearing an Astronaut Maneuvering Unit, during extravehicular activity. An umbilical tether secures the astronaut to the Gemini spacecraft (upper left). The Agena Target Vehicle (lower right) is used for Gemini rendezvous and docking maneuvers.

  5. Enhancing Astronaut Performance using Sensorimotor Adaptability Training

    Directory of Open Access Journals (Sweden)

    Jacob J Bloomberg

    2015-09-01

    Full Text Available Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments - enhancing their ability to learn to learn. We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  6. Former Astronaut Neil A. Armstrong Visits MSFC

    Science.gov (United States)

    2007-01-01

    Among several other NASA dignitaries, former astronaut Neil A. Armstrong visited the Marshall Space Flight Center (MSFC) in attendance of the annual NASA Advisory Council Meeting. While here, Mr. Armstrong was gracious enough to allow the casting of his footprint. This casting will join those of other astronauts on display at the center. Armstrong was first assigned to astronaut status in 1962. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971. Pictured with Armstrong is MSFC employee Daniel McFall, who assisted with the casting procedure.

  7. End effector with astronaut foot restraint

    Science.gov (United States)

    Monford, Leo G., Jr. (Inventor)

    1991-01-01

    The combination of a foot restraint platform designed primarily for use by an astronaut being rigidly and permanently attached to an end effector which is suitable for attachment to the manipulator arm of a remote manipulating system is described. The foot restraint platform is attached by a brace to the end effector at a location away from the grappling interface of the end effector. The platform comprises a support plate provided with a pair of stirrups for receiving the toe portion of an astronaut's boots when standing on the platform and a pair of heel retainers in the form of raised members which are fixed to the surface of the platform and located to provide abutment surfaces for abutting engagement with the heels of the astronaut's boots when his toes are in the stirrups. The heel retainers preclude a backward sliding movement of the feet on the platform and instead require a lifting of the heels in order to extract the feet. The brace for attaching the foot restraint platform to the end effector may include a pivot or swivel joint to permit various orientations of the platform with respect to the end effector.

  8. The Application of Leap Motion in Astronaut Virtual Training

    Science.gov (United States)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  9. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  10. Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2009-01-01

    During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.

  11. Determination of the Risk of Radiation-Associated Circulatory and Cancer Disease Mortality in a NASA Early Astronaut Cohort

    Science.gov (United States)

    Elgart, S. R.; Chappell, L.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Little, M.; Patel, Z. S.

    2017-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to determine if there was sufficient evidence for excess risk of cardiovascular disease and cancer in early NASA astronaut cohorts. NASA astronauts in selection groups 1-7 were chosen; this relatively homogeneous cohort consists of 73 white males, who unlike today's astronauts, maintained similar smoking and drinking habits to the general US population, and have published radiation doses. The participants flew in space on missions Mercury through Shuttle and received space radiation doses between 0-74.1 milligrays. Cause of death information was obtained from the Lifetime Surveillance of Astronaut Health (LSAH) program at NASA Johnson Space Center. Mortality was compared with the US male population. Trends of mortality with dose were assessed using a logistic model, fitted by maximum likelihood. Only 32 (43.84 percent) of the 73 early astronauts have died. Standard mortality ratios (SMRs) for cancer (n=7, SMR=43.4, 95 percent CI 17.8, 84.9), all circulatory disease (n=7, SMR=33.2, 95 percent CI 13.7, 65.0), and ischemic heart disease (IHD) (n=5, SMR=40.1, 95 percent CI 13.2, 89.4) were significantly lower than for the US white male population. For cerebrovascular disease, the upper confidence interval for SMR included 100, indicating it was not significantly different from the US population (n=2, SMR = 77.0, 95 percent CI 9.4, 268.2). The power of the study is low and remains below 10 percent even when risks 10 times those reported in the literature are assumed. Due to small sample size, there is currently insufficient statistical power to evaluate space

  12. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  13. Evaluation of Space Food for Commercial Astronauts

    Science.gov (United States)

    Ahlstrom, Britt Karin

    As commercial aerospace companies advance toward manned spaceflight, they must overcome many hurdles - not only technical, but also human. One of the greatest human challenges they face is food. Throughout the history of human spaceflight, astronauts have primarily eaten food developed by government space agencies. Now, with manned commercial flights on the horizon, astronauts will be provided with an entirely new diet - one comprised of commercially available, ready-to-eat food. Yet will this diet keep astronauts nourished, satisfied with their diet, and both psychologically and physically healthy? The purpose of this parallel crossover design study was to evaluate (a) nutrient intake, (b) food satisfaction, (c) psychological health, and (d) physical health in commercial aerospace employees (N = 7) as they ate a diet of commercial, ready-to-eat food for four days, as compared to eating as normal for four days. Findings from this study showed that the ready-to-eat diet did not lead to any significant changes in caloric intake, psychological health, or physical health, aside from weight loss. It is not clear whether this weight loss was due to the loss of body fat, muscle, or water. When eating the ready-to-eat food, participants reported being slightly less satisfied with the variety, reported lower cravings for sweets, and reported the food was slightly less hedonically rewarding. In post-study interviews, participants reported they wanted to see more meats, fruits, vegetables, and desserts added to the ready-to-eat diet, so as to provide more meal-like structure. Overall, these findings show the diet could be used in commercial spaceflight after making simple changes. The diet could also be used by individuals in remote areas on Earth and to provide food assistance to individuals in disaster or emergency situations. Due to the increasing popularity of ready-to-eat food around the world, these findings also provide knowledge about the potential consequences of

  14. Latent Herpes Viruses Reactivation in Astronauts

    Science.gov (United States)

    Mehta, Satish K.; Pierson, Duane L.

    2008-01-01

    Space flight has many adverse effects on human physiology. Changes in multiple systems, including the cardiovascular, musculoskeletal, neurovestibular, endocrine, and immune systems have occurred (12, 32, 38, 39). Alterations in drug pharmacokinetics and pharmacodynamics (12), nutritional needs (31), renal stone formation (40), and microbial flora (2) have also been reported. Evidence suggests that the magnitude of some changes may increase with time in space. A variety of changes in immunity have been reported during both short (.16 days) and long (>30 days) space missions. However, it is difficult to determine the medical significance of these immunological changes in astronauts. Astronauts are in excellent health and in superb physical condition. Illnesses in astronauts during space flight are not common, are generally mild, and rarely affect mission objectives. In an attempt to clarify this issue, we identified the latent herpes viruses as medically important indicators of the effects of space flight on immunity. This chapter demonstrates that space flight leads to asymptomatic reactivation of latent herpes viruses, and proposes that this results from marked changes in neuroendocrine function and immunity caused by the inherent stressfullness of human space flight. Astronauts experience uniquely stressful environments during space flight. Potential stressors include confinement in an unfamiliar, crowded environment, isolation, separation from family, anxiety, fear, sleep deprivation, psychosocial issues, physical exertion, noise, variable acceleration forces, increased radiation, and others. Many of these are intermittent and variable in duration and intensity, but variable gravity forces (including transitions from launch acceleration to microgravity and from microgravity to planetary gravity) and variable radiation levels are part of each mission and contribute to a stressful environment that cannot be duplicated on Earth. Radiation outside the Earth

  15. A micronutrient powder with low doses of highly absorbable iron and zinc reduces iron and zinc deficiency and improves weight-for-age Z-scores in South African children.

    Science.gov (United States)

    Troesch, Barbara; van Stuijvenberg, Martha E; van Stujivenberg, Martha E; Smuts, Cornelius M; Kruger, H Salomè; Biebinger, Ralf; Hurrell, Richard F; Baumgartner, Jeannine; Zimmermann, Michael B

    2011-02-01

    Micronutrient powders (MNP) are often added to complementary foods high in inhibitors of iron and zinc absorption. Most MNP therefore include high amounts of iron and zinc, but it is no longer recommended in malarial areas to use untargeted MNP that contain the Reference Nutrient Intake for iron in a single serving. The aim was to test the efficacy of a low-iron and -zinc (each 2.5 mg) MNP containing iron as NaFeEDTA, ascorbic acid (AA), and an exogenous phytase active at gut pH. In a double-blind controlled trial, South African school children with low iron status (n = 200) were randomized to receive either the MNP or the unfortified carrier added just before consumption to a high-phytate maize porridge 5 d/wk for 23 wk; primary outcomes were iron and zinc status and a secondary outcome was somatic growth. Compared with the control, the MNP increased serum ferritin (P < 0.05), body iron stores (P < 0.01) and weight-for-age Z-scores (P < 0.05) and decreased transferrin receptor (P < 0.05). The prevalence of iron deficiency fell by 30.6% (P < 0.01) and the prevalence of zinc deficiency decreased by 11.8% (P < 0.05). Absorption of iron from the MNP was estimated to be 7-8%. Inclusion of an exogenous phytase combined with NaFeEDTA and AA may allow a substantial reduction in the iron dose from existing MNP while still delivering adequate iron and zinc. In addition, the MNP is likely to enhance absorption of the high native iron content of complementary foods based on cereals and/or legumes.

  16. Getting to the Heart of Cardiovascular Risk Assessment in Astronauts for Exploration Class Missions

    Science.gov (United States)

    Elgart, S. R.; Shavers, M. R.; Chappell, L.; Milder, C. M.; Huff, J. L.; Semones, E. J.; Simonsen, L. C.; Patel, Z. S.

    2017-01-01

    Since the beginning of manned spaceflight, NASA has recognized the potential risk of cardiovascular decrements due to stressors in the space environment. Of particular concern is the effect of space radiation on cardiovascular disease since astronauts will be exposed to higher levels of galactic cosmic rays outside the Earth's protective magnetosphere. To date, only a few studies have examined the effects of heavy ion radiation on cardiovascular disease, and at lower, space-relevant doses, the association between radiation exposure and cardiovascular pathology is more varied and unclear. Furthermore, other spaceflight conditions such as microgravity, circadian shifts, and confinement stress pose unique challenges in estimating the health risks that can be attributed to exposure to ionizing radiations. In this work, we review age, cause of mortality, and radiation exposure amongst early NASA astronauts in selection groups and discuss the limitations of assessing such a cohort when attempting to characterize the risk of space flight, including stressors such as space radiation and microgravity exposure, on cardiovascular health. METHODS: NASA astronauts in selection groups 1-7 were chosen and the comparison population was white men of the same birth cohort as drawn from data from the CDC Wonder Database and CDC National Center for Health Statistics Life Tables. Cause of death information was obtained from the Lifetime Surveillance of Astronaut Health program and deceased astronauts were classified based on ICD-10 codes: ischemic heart disease (IHD), stroke, cancer, acute occupational events, non-NASA accidents, and other/unknown. Expected years of life left and expected age at death were calculated for the cohort. RESULTS AND CONCLUSIONS: There were 32 deaths in this early astronaut population, 12 of which were due to accidents or acute occupational events that impacted lifespan considerably. The average age at death from these causes is 30 years lower than the

  17. Absorbed radiation by various tissues during simulated endodontic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.

  18. Astronaut Edwin Aldrin on Lunar Surface

    Science.gov (United States)

    1969-01-01

    Carrying astronauts Neil A. Armstrong and Edwin E. Aldrin, Jr., the Lunar Module (LM) 'Eagle' was the first crewed vehicle to land on the Moon. The LM landed on the moon's surface on July 20, 1969 in the region known as Mare Tranquilitatis (the Sea of Tranquility). Meanwhile, astronaut Michael Collins piloted the command module in a parking orbit around the moon. This photo is of Edwin Aldrin walking on the lunar surface. Neil Armstrong, who took the photograph, can be seen reflected in Aldrin's helmet visor. Armstrong was the first human to ever stand on the lunar surface. As he stepped off the LM, Armstrong proclaimed, 'That's one small step for man, one giant leap for mankind'. He was followed by Edwin (Buzz) Aldrin, describing the lunar surface as magnificent desolation. The Apollo 11 mission launched from the Kennedy Space Center, Florida on July 16, 1969 via a Saturn V launch vehicle, and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. Official Portrait of Astronaut Edwin E. Aldrin

    Science.gov (United States)

    1967-01-01

    This is the official NASA portrait of astronaut Edwin E. (Buzz) Aldrin. Prior to joining NASA, Aldrin flew 66 combat missions in F-86s while on duty in Korea. At Nellis Air Force Base, Nevada, he served as an aerial gunnery instructor. Following his assignment as aide to the dean of faculty at the Air Force Academy, Aldrin flew F-100s as a flight commander at Bitburg, Germany. Aldrin was one of the third group of astronauts named by NASA in October 1963 and has logged 289 hours and 53 minutes in space, of which, 7 hours and 52 minutes were spent in Extra Vehicular Activity (EVA). On November 11, 1966, he launched into space aboard the Gemini 12 spacecraft on a 4-day flight, which brought the Gemini program to a successful close. During that mission, Aldrin established a new record for EVA, spending 5-1/2 hours outside the spacecraft. July 16-24, 1969, Aldrin served as lunar module pilot for Apollo 11, the first manned lunar landing mission. Aldrin followed Neil Armstrong onto the lunar surface on July 20, 1969, completing a 2-hour and 15 minute lunar EVA. Aldrin resigned from NASA in July 1971.

  20. Astronaut Edwin Aldrin Egresses From Lunar Module

    Science.gov (United States)

    1969-01-01

    Carrying astronauts Neil A. Armstrong and Edwin E. Aldrin, Jr., the Lunar Module (LM) 'Eagle' was the first crewed vehicle to land on the Moon. The LM landed on the moon's surface on July 20, 1969 in the region known as Mare Tranquilitatis (the Sea of Tranquility). Shown here is Aldrin Jr. making his exit from the LM to the lunar surface. Armstrong, who was already on the surface, took this photograph. The Apollo 11 mission launched from the Kennedy Space Center, Florida via a Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. Armstrong was the first human to ever stand on the lunar surface. As he stepped off the LM, Armstrong proclaimed, 'That's one small step for man, one giant leap for mankind'. He was followed by Edwin (Buzz) Aldrin, describing the lunar surface as magnificent desolation. During a 2½ hour surface exploration the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional radiolo- gists, radiographers and nurses ...

  2. Astronaut EVA exposure estimates from CAD model spacesuit geometry.

    Science.gov (United States)

    De Angelis, Giovanni; Anderson, Brooke M; Atwell, William; Nealy, John E; Qualls, Garry D; Wilson, John W

    2004-03-01

    Ongoing assembly and maintenance activities at the International Space Station (ISS) require much more extravehicular activity (EVA) than did the earlier U.S. Space Shuttle missions. It is thus desirable to determine and analyze, and possibly foresee, as accurately as possible what radiation exposures crew members involved in EVAs will experience in order to minimize risks and to establish exposure limits that must not to be exceeded. A detailed CAD model of the U.S. Space Shuttle EVA Spacesuit, developed at NASA Langley Research Center (LaRC), is used to represent the directional shielding of an astronaut; it has detailed helmet and backpack structures, hard upper torso, and multilayer space suit fabric material. The NASA Computerized Anatomical Male and Female (CAM and CAF) models are used in conjunction with the space suit CAD model for dose evaluation within the human body. The particle environments are taken from the orbit-averaged NASA AP8 and AE8 models at solar cycle maxima and minima. The transport of energetic particles through space suit materials and body tissue is calculated by using the NASA LaRC HZETRN code for hadrons and a recently developed deterministic transport code, ELTRN, for electrons. The doses within the CAM and CAF models are determined from energy deposition at given target points along 968 directional rays convergent on the points and are evaluated for several points on the skin and within the body. Dosimetric quantities include contributions from primary protons, light ions, and electrons, as well as from secondary brehmsstrahlung and target fragments. Directional dose patterns are displayed as rays and on spherical surfaces by the use of a color relative intensity representation.

  3. Reusable collapsible impact energy absorber

    Energy Technology Data Exchange (ETDEWEB)

    Alghamdi, A.A.A. [Dept. of Mechanical Engineering, King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2003-07-01

    In this paper experimental study of plastic deformation of aluminum frusta when reinverted is presented. Effects of changing the angle of frustum as well as frustum wall thickness on the absorbed energy are investigated. The details of the experimental plastic inversion and reinversion are given. Obtained results show that it is possible to use the inverted aluminum frusta several times, thus they are reusable collapsible absorbers. (orig.)

  4. Apollo 11 astronaut Buzz Aldrin appears relaxed before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 astronaut Edwin E. Aldrin Jr. appears to be relaxed during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  5. Measurement of dose speed absorbed in depth imparted by sources external secondary patterns of beta radiation. Part 1 Measurement of dose speed absorbed in the surface of soft fabric for isotopes of {sup 90}Sr/{sup 90}Y, {sup 147}Pm and {sup 204}TI; Medicion de rapidez de dosis absorbida en profundidad impartida por fuentes patrones secundarios de radiacion beta externos. Parte 1. Medicion de rapidez de dosis absorbida en la superficie de tejido blando para isotopos de {sup 90}Sr/{sup 90}Y, {sup 147}Pm y {sup 204}TI

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1993-01-15

    The dose speed was measured absorbed for depth zero, (superficial) in soft equivalent fabric, for the secondary pattern{sup s} four sources of beta radiation, (Nr. 86): {sup 90}Sr/{sup 90}Y, (1850 MBq and 74 MBq respectively); {sup 147}Pm, (518 MBq) and {sup 204}TI, (18.5 MBq). The measurement is carried out to different distances of source-detecting separation, (11.0, 30.0 and 50.0 cm for the source of 1850 MBq, 30.0 cm for that of 74 MBq; 11.00 cm for the source of {sup 147}Pmand to contact for all the sources); maintaining the radiation sheaf aligned the one axis of symmetry of the detector, ({alpha} 0 degrees). The detector employed was a extrapolation chambers of variable electrodes and electrode fixed collector, (30 mm of diameter). In accordance with the principle of Bragg-Gray the volume of the chambers is varied and they register the variations of the current of collected ionization, correcting until for a maximum of thirteen correction factors that take into account the deviation to the suppositions that it establishes this principle. The certain values of the speed of superficial absorbed dose are in the following intervals: {sup 90}Sr/{sup 90}Y, (1850 MBq, 0.0, 11.0, 30.0 and 50.0 cm): 43.164 mGy S-t, 0.544 mGy s-1 ,0.075 mGy s{sup -1} and 0.027 mGy s{sup -1}, respectively, with a Global Analysis of the order of 1.17%, 1.17%, 1.14% and 1.66%, K J; {sup 90}Sr / {sup 90}Y, (74 MBq, 0.0 and 30 cm): 1.536 mGy s{sup -1} and 0.002 mGy s{sup -1}, with Global Analysis of 1.19.0% and 5.22%, (K = 1) respectively, for the {sup 147}Pm, (0.0 and 11.0 in the interval of: 0.36 {mu}Gy s{sup -1} and 0.43 {mu}Gy s{sup -1}, with one Global Analysis of 1 .42% and 4.28%, (K = 1), respectively; and finally for the {sup 204}TI, (0.0 cm) in the interval of 0.10 {mu}Gy s{sup -1} with a Global Analysis of 1.27%. He calculates of the Global Analysis one carries out of agreement with those recommendations of the BIPM. In all the cases of source-detecting arrangement with

  6. Perfect selective metamaterial solar absorbers.

    Science.gov (United States)

    Wang, Hao; Wang, Liping

    2013-11-04

    In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

  7. Locomotor problems of supersonic aviation and astronautics.

    Science.gov (United States)

    Remes, P

    1989-04-01

    Modern high-speed aviation and space flight are fraught with many problems and require a high standard of health and fitness. Those responsible for the health of pilots must appreciate the importance of early diagnosis even before symptoms appear. This is particularly true in terms of preventing spinal injuries where even a single Schmorl's node may make a pilot unfit for high-speed flying. Spinal fractures are frequent during emergency ejection and landing. Helicopter crews are particularly prone to spinal disc degeneration due to vibration. By effective lowering of vibration by changes in the seats, a reduction in such lesions is possible. The osteoporosis and muscle atrophy occurring among astronauts subjected to prolonged weightlessness can be prevented by regular physical exercises.

  8. Changes in Neutrophil Functions in Astronauts

    Science.gov (United States)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  9. Did Vertigo Kill America's Forgotten Astronaut?

    Science.gov (United States)

    Bendrick, Gregg A.; Merlin, Peter W.

    2007-01-01

    On November 15, 1967, U.S. Air Force test pilot Major Michael J. Adams was killed while flying the X-15 rocket-propelled research vehicle in a parabolic spaceflight profile. This flight was part of a joint effort with NASA. An electrical short in one of the experiments aboard the vehicle caused electrical transients, resulting in excessive workload by the pilot. At altitude Major Adams inappropriately initiated a flat spin that led to a series of unusual aircraft attitudes upon atmospheric re-entry, ultimately causing structural failure of the airframe. Major Adams was known to experience vertigo (i.e. spatial disorientation) while flying the X-15, but all X-15 pilots most likely experienced vertigo (i.e. somatogravic, or "Pitch-Up", illusion) as a normal physiologic response to the accelerative forces involved. Major Adams probably experienced vertigo to a greater degree than did others, since prior aeromedical testing for astronaut selection at Brooks AFB revealed that he had an unusually high degree of labyrinthine sensitivity. Subsequent analysis reveals that after engine burnout, and through the zenith of the flight profile, he likely experienced the oculoagravic ("Elevator") illusion. Nonetheless, painstaking investigation after the mishap revealed that spatial disorientation (Type II, Recognized) was NOT the cause, but rather, a contributing factor. The cause was in fact the misinterpretation of a dual-use flight instrument (i.e. Loss of Mode Awareness), resulting in confusion between yaw and roll indications, with subsequent flight control input that was inappropriate. Because of the altitude achieved on this flight, Major Adams was awarded Astronaut wings posthumously. Understanding the potential for spatial disorientation, particularly the oculoagravic illusion, associated with parabolic spaceflight profiles, and understanding the importance of maintaining mode awareness in the context of automated cockpit design, are two lessons that have direct

  10. Improvements to the Ionizing Radiation Risk Assessment Program for NASA Astronauts

    Science.gov (United States)

    Semones, E. J.; Bahadori, A. A.; Picco, C. E.; Shavers, M. R.; Flores-McLaughlin, J.

    2011-01-01

    To perform dosimetry and risk assessment, NASA collects astronaut ionizing radiation exposure data from space flight, medical imaging and therapy, aviation training activities and prior occupational exposure histories. Career risk of exposure induced death (REID) from radiation is limited to 3 percent at a 95 percent confidence level. The Radiation Health Office at Johnson Space Center (JSC) is implementing a program to integrate the gathering, storage, analysis and reporting of astronaut ionizing radiation dose and risk data and records. This work has several motivations, including more efficient analyses and greater flexibility in testing and adopting new methods for evaluating risks. The foundation for these improvements is a set of software tools called the Astronaut Radiation Exposure Analysis System (AREAS). AREAS is a series of MATLAB(Registered TradeMark)-based dose and risk analysis modules that interface with an enterprise level SQL Server database by means of a secure web service. It communicates with other JSC medical and space weather databases to maintain data integrity and consistency across systems. AREAS is part of a larger NASA Space Medicine effort, the Mission Medical Integration Strategy, with the goal of collecting accurate, high-quality and detailed astronaut health data, and then securely, timely and reliably presenting it to medical support personnel. The modular approach to the AREAS design accommodates past, current, and future sources of data from active and passive detectors, space radiation transport algorithms, computational phantoms and cancer risk models. Revisions of the cancer risk model, new radiation detection equipment and improved anthropomorphic computational phantoms can be incorporated. Notable hardware updates include the Radiation Environment Monitor (which uses Medipix technology to report real-time, on-board dosimetry measurements), an updated Tissue-Equivalent Proportional Counter, and the Southwest Research Institute

  11. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  12. Electronically Switchable Broadband Metamaterial Absorber.

    Science.gov (United States)

    Lee, Dongju; Jeong, Heijun; Lim, Sungjoon

    2017-07-07

    In this study, the novel electronically switchable broadband metamaterial absorber, using a PIN diode, is proposed. The unit cell of the absorber was designed with a Jerusalem-cross resonator and an additive ring structure, based on the FR-4 dielectric substrate. Chip resistors and PIN diodes were used to provide both a broadband characteristic and a switching capability. To satisfy the polarization insensitivity, the unit cell was designed as a symmetrical structure, including the DC bias network, electronic devices, and conductor patterns. The performance of the proposed absorber was verified using full-wave simulation and measurements. When the PIN diode was in the ON state, the proposed absorber had a 90% absorption bandwidth from 8.45-9.3 GHz. Moreover, when the PIN diode was in the OFF state, the 90% absorption bandwidth was 9.2-10.45 GHz. Therefore, the absorption band was successfully switched between the low-frequency band and the high-frequency band as the PIN diode was switched between the ON and OFF states. Furthermore, the unit cell of the proposed absorber was designed as a symmetrical structure, and its performance showed insensitivity with respect to the polarization angle.

  13. Carbon Absorber Retrofit Equipment (CARE)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Eric [Neumann Systems Group, Incorporated, Colorado Springs, CO (United States)

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  14. Effect of Bilirubin concentration on radiation absorbed dose ...

    African Journals Online (AJOL)

    The possible applications of this property of bilirubin as a modifier at high concentrations--- to enhance radiation effect on diseased tissue during radiotherapy, and the danger inherent presenting neonates for radiodiagnostic examinations are discussed. Global Journal of Pure and Applied Sciences Volume , No 1 January ...

  15. Compiling a Comprehensive EVA Training Dataset for NASA Astronauts

    Science.gov (United States)

    Laughlin, M. S.; Murry, J. D.; Lee, L. R.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    Training for a spacewalk or extravehicular activity (EVA) is considered hazardous duty for NASA astronauts. This activity places astronauts at risk for decompression sickness as well as various musculoskeletal disorders from working in the spacesuit. As a result, the operational and research communities over the years have requested access to EVA training data to supplement their studies.

  16. Astronaut Eugene Cernan and Edwin Aldrin during Apollo 10 debriefing

    Science.gov (United States)

    1969-01-01

    Astronaut Eugene A. Cernan (left), lunar module pilot of the Apollo 10 lunar orbit mission, confers with Astronaut Edwin E. Aldrin Jr. during an Apollo 10 postflight debriefing session. Aldrin is the lunar module pilot of the Apollo 11 lunar landing mission.

  17. Astronaut Edwin Aldrin deploying Solar Wind Composition experiment

    Science.gov (United States)

    1969-01-01

    Astronaut Edwin E. Aldrin Jr., lunar module pilot, is photographed during the Apollo 11 extravehicular activity on the Moon. Astronaut Neil A. Armstrong, commander, took this picture with a 70mm lunar surface camera. Aldrin has just deployed the Solar Wind Composition experiment, a component of the Early Apollo Scientific Experiments Package (EASEP).

  18. Astronaut Edwin Aldrin egresses lunar module on lunar surface

    Science.gov (United States)

    1969-01-01

    Astronaut Edwin E. Aldrin Jr., lunar module pilot, is photographed egressing the lunar module during the Apollo 11 extravehicular activity on the lunar surface. This picture was taken by Astronaut Neil A. Armstrong, commander, with a 70mm lunar surface camera.

  19. Astronaut Harrison Schmitt retrieving lunar samples during EVA

    Science.gov (United States)

    1972-01-01

    Scientist-Astronaut Harrison Schmitt, Apollo 17 lunar module pilot, with his adjustable sampling scoop, heads for a selected rock on the lunar surface to retrieve the sample for study. The action was photographed by Apollo 17 crew commander, Astronaut Eugene A. Cernan on the mission's second extravehicular activity (EVA-2), at Station 5 (Camelot Crater) at the Taurus-Littrow landing site.

  20. Astronauts Armstrong and Aldrin study rock samples during field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, and Astronaut Edwin Aldrin, Lunar module pilot for Apollo 11, study rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  1. Undergraduate Astronautics at the United States Naval Academy.

    Science.gov (United States)

    Bagaria, William J.

    1991-01-01

    The aerospace engineering curriculum at the U.S. Naval Academy which includes an astronautical and an aeronautical track is described. The objective of the program is to give students the necessary astronautical engineering background to perform a preliminary spacecraft design during the last semester of the program. (KR)

  2. Astronauts Cooper and Conrad prepare cameras during visual acuity tests

    Science.gov (United States)

    1965-01-01

    Astronauts L. Gordon Cooper Jr. (left), command pilot, and Charles Conrad Jr., pilot, the prime crew of the Gemini 5 space flight, prepare their cameras while aboard a C-130 aircraft flying near Laredo. The two astronauts are taking part in a series of visual acuity experiments to aid them in learning to identify known terrestrial features under controlled conditions.

  3. Robonaut: a telepresence-based astronaut assistant

    Science.gov (United States)

    Diftler, Myron; Jenks, Kenneth C.; Williams, Lorraine E. P.

    2002-02-01

    Robonaut, NASA's latest anthropomorphic robot, is designed to work in the hazards of the space environment as both an astronaut assistant and, in certain situations, an astronaut surrogate. This highly dexterous robot is now performing complex tasks under telepresence control in the Dexterous Robotics Laboratory at the Johnson Space Center that could previously only be carried out directly by humans. With 43 degrees of freedom (DOF), Robonaut is a state-of-the-art human size telemanipulator system. It has a three-DOF articulated waist and two seven-DOF arms, giving it an impressive work space for interacting with its environment. Its two five-fingered hands allow manipulation of a wide range of common tools. A pan/tilt head with multiple stereo camera systems provides data for both teleoperators and computer vision systems. Telepresence control is the main mode of operation for Robonaut. The teleoperator dons a variety of sensors to map hand, head, arm and body motions to control the robot. A distributed object-oriented network architecture links the various computers used to gather posture and joint angle data from the human operator, to control the robot, to generate video displays for the human operator and to recognize and generate human voice inputs and outputs. Distributed object-oriented software allows the same telepresence gear to be used on different robots and allows interchangable telepresence gear in the laboratory environment. New telepresence gear and new robots only need to implement a standard software interface. The Robonaut implementation is a two-tiered system using Java/Jini for distributed commands and a commercial-off-the-shelf data sharing protocol for high-speed data transmission. Experimental telepresence gear is being developed and evaluated. Force feedback devices and techniques are a focus, and their efforts on teleoperator performance of typical space operations tasks is being measured. Particularly, the augmentation of baseline

  4. Polarization insensitive terahertz metamaterial absorber.

    Science.gov (United States)

    Grant, J; Ma, Y; Saha, S; Lok, L B; Khalid, A; Cumming, D R S

    2011-04-15

    We present the simulation, implementation, and measurement of a polarization insensitive resonant metamaterial absorber in the terahertz region. The device consists of a metal/dielectric-spacer/metal structure allowing us to maximize absorption by varying the dielectric material and thickness and, hence, the effective electrical permittivity and magnetic permeability. Experimental absorption of 77% and 65% at 2.12 THz (in the operating frequency range of terahertz quantum cascade lasers) is observed for a spacer of polyimide or silicon dioxide respectively. These metamaterials are promising candidates as absorbing elements for thermally based terahertz imaging.

  5. Apollo astronaut supports return to the Moon

    Science.gov (United States)

    Showstack, Randy

    2012-12-01

    Nearly 40 years after the Apollo 17 Moon launch on 7 December 1972, former NASA astronaut Harrison Schmitt said there is "no question" that the Moon is still worth going to, "whether you think about the science of the Moon or the resources of the Moon, or its relationship to accelerating our progress toward Mars." Schmitt, a geologist and the lunar module pilot for that final Apollo mission, was speaking at a 6 December news briefing about lunar science at the AGU Fall Meeting. "By going back to the Moon, you accelerate your ability to go anywhere else," Schmitt said, because of the ability to gain experience on a solar system body just a 3-day journey from Earth; test new hardware and navigation and communication techniques; and utilize lunar resources such as water, hydrogen, methane, and helium-3. He said lunar missions also would be a way "to develop new generations of people who know how to work in deep space. The people who know how to work [there] are my age, if not older, and we need young people to get that kind of experience." Schmitt, 77, said that a particularly interesting single location to explore would be the Aitken Basin at the Moon's south pole, where a crater may have reached into the Moon's upper mantle. He also said a longer duration exploration program might be able to explore multiple sites.

  6. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  7. Official Portrait of Astronaut Neil Armstrong

    Science.gov (United States)

    1969-01-01

    Neil Armstrong, donned in his space suit, poses for his official Apollo 11 portrait. Armstrong began his flight career as a naval aviator. He flew 78 combat missions during the Korean War. Armstrong joined the NASA predecessor, NACA (National Advisory Committee for Aeronautics), as a research pilot at the Lewis Laboratory in Cleveland and later transferred to the NACA High Speed Flight Station at Edwards AFB, California. He was a project pilot on many pioneering high speed aircraft, including the 4,000 mph X-15. He has flown over 200 different models of aircraft, including jets, rockets, helicopters, and gliders. In 1962, Armstrong was transferred to astronaut status. He served as command pilot for the Gemini 8 mission, launched March 16, 1966, and performed the first successful docking of two vehicles in space. In 1969, Armstrong was commander of Apollo 11, the first manned lunar landing mission, and gained the distinction of being the first man to land a craft on the Moon and the first man to step on its surface. Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters Office of Advanced Research and Technology, from 1970 to 1971. He resigned from NASA in 1971.

  8. Radiation doses in low-dose pelvimetry using rare-earth screens.

    Science.gov (United States)

    Axelsson, B; Ohlsén, H

    1979-01-01

    A 'low-dose technique' of obstetric pelvimetry, using rare-earth screens and a reduced ambition level of image quality, yields an estimated absorbed dose to the maternal and foetal gonads of 0.9 and 0.01 mGy, respectively. The resulting risk for 'hereditary ill health' and the risk for induction of leukemia from the absorbed dose to the foetal red bone marrow, have been calculated to be at a very low level.

  9. Cancer Risk in Astronauts: A Constellation of Uncommon Consequences

    Science.gov (United States)

    Milder, Caitlin M.; Elgart, S. Robin; Chappell, Lori; Charvat, Jaqueline M.; Van Baalen, Mary; Huff, Janice L.; Semones, Edward J.

    2017-01-01

    Excess cancers resulting from external radiation exposures have been noted since the early 1950s, when a rise in leukemia rates was first reported in young atomic bomb survivors [1]. Further studies in atomic bomb survivors, cancer patients treated with radiotherapy, and nuclear power plant workers have confirmed that radiation exposure increases the risk of not only leukemia, but also a wide array of solid cancers [2,3]. NASA has long been aware of this risk and limits astronauts' risk of exposure-induced death (REID) from cancer by specifying permissible mission durations (PMD) for astronauts on an individual basis. While cancer is present among astronauts, current data does not suggest any excess of known radiation-induced cancers relative to a comparable population of U.S. adults; however, very uncommon cancers have been diagnosed in astronauts including nasopharyngeal cancer, lymphoma of the brain, and acral myxoinflammatory fibroblastic sarcoma. In order to study cancer risk in astronauts, a number of obstacles must be overcome. Firstly, several factors make the astronaut cohort considerably different from the cohorts that have previously been studied for effects resulting from radiation exposure. The high rate of accidents and the much healthier lifestyle of astronauts compared to the U.S. population make finding a suitable comparison population a problematic task. Space radiation differs substantially from terrestrial radiation exposures studied in the past; therefore, analyses of galactic cosmic radiation (GCR) in animal models must be conducted and correctly applied to the human experience. Secondly, a large enough population of exposed astronauts must exist in order to obtain the data necessary to see any potential statistically significant differences between the astronauts and the control population. Thirdly, confounders and effect modifiers, such as smoking, diet, and other space stressors, must be correctly identified and controlled for in those

  10. Absorber for microwave investigation in the open space

    Science.gov (United States)

    Kubacki, Roman; Smólski, Bogusław; Głuszewski, Wojciech; Przesmycki, Rafał; Rudyk, Karol

    2017-04-01

    In some circumstances there is a need to realize the Electromagnetic Compatibility (EMC) investigation not in the specialized anechoic chamber but in the open space. Typical absorbers used in anechoic chamber to reduce the reflected rays from walls and floor, such as ferrite plates and graphite cones, are not suitable in the open space. In the work the investigation of the flexible absorbing material intended to the liquidation of the radiation reflected from the ground has been presented. As an absorbing material the metallic-glass with graphite was elaborated. This material was additionally exposed to the ionizing radiation in the dose of 100 kGy in the radioactive gamma source. The permittivity, permeability as well as the shielding properties have been analyzed.

  11. Thin wideband absorber with optimal thickness

    OpenAIRE

    Kazemzadeh, Alireza

    2010-01-01

    The known methods for designing nonmagnetic absorbers usually aim for either the reduction of total thickness or increase of absorption bandwidth by sacrificing the other parameter. The conventional circuit analog absorbers aim for large bandwidths whereas the newly proposed meta-material or optimized geometry designs try to reduce the thickness of the absorber. By the aid of the capacitive circuit absorber approach, an optimal method for designing thin absorbers with practical bandwidths is...

  12. Oil and fat absorbing polymers

    Science.gov (United States)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  13. Absorbing-and-diffusing coating

    OpenAIRE

    Tkalich, N. V.; Mokeev, Yu. G.; Onipko, A. F.; Vashchenko, V. F.; Topchev, M. D.; Glebov, V. V.; Ivanchenko, Dmitrij D.; Kolchigin, Nikolay N.; Yevdokimov, V. V.

    2003-01-01

    The paper presents the results of complex experimental research of the absorbing-and-diffusing material "Contrast". It is shown to be an efficient wideband-camouflage material in the radiolocation and the video bands. Ways for improving the material characteristics are outlined.

  14. Characterization of Ca So{sub 4}:Dy thermoluminescent dosimeters with graphite for absorbed doses evaluation of X-radiation and gamma radiation; Caracterizacao de dosimetros termoluminescentes de CaSo{sub 4}:Dy com grafite para avaliacao de dose absorvida de radiacao X e gama

    Energy Technology Data Exchange (ETDEWEB)

    Daros, Kellen Adriana Curci; Rodrigues, Leticia Lucente Campos; Medeiros, Regina Bitelli [Universidade Federal de Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem

    1996-12-31

    Dosimeters of Ca So{sub 4}:Dy are investigated in pellets with different thickness (0.2 to 0.8 mm) and with graphite contents between 0 and 20% by weight (0; 0.5; 3; 5; 10 and 20%). It is reported that these dosimeters can be used in dose measurements in mixed beta-photons fields. Previous TL results, for these pellets in beta fields are shown. The best results of sensitivity and energy dependence for photons are presented 3 refs., 2 figs.

  15. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    Science.gov (United States)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  16. Performance evaluation of the QC-6PLUS quality control system in terms of photons and electrons absorbed doses to water; Avaliacao do desempenho do sistema de controle da qualidade QC-6Plus em termos de dose absorvida na agua para fotons e eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Flavia Cristina da Silva

    2004-06-15

    The quality of the treatment in radiotherapy depends on the necessary knowledge of the liberated dose in the tumor and of several other physical parameters and dosimetric that characterize the profile of the radiation field. Worrying about the reliability of some commercial equipment that aim at determining the main parameters of a radiation field in a practical way for daily checks in an institution with radiotherapy service, in this work a study of the performance of the quality assurance system, QC6-Plus manufactured by PTW-Freiburg for daily checks, was developed, in order to assure the use of this equipment with larger reliability level in the routine of quality assurance of the hospitals as well as to make possible its use in the Program of Regulatory Inspections of the Services of Radiotherapy of the Country accomplished by IRD/CNEN. The found results indicate that the system QC6-Plus is perfectly adapted and practical for relative measures of daily and weekly control of the main parameters of clinical beans in agreement with reference values recommended in TECDOC 1151. However for measurements of absolute dose it should not be used because, for beams of electrons the system does not present the necessary characteristics to execute this measure type in agreement with the reference protocol, TRS 398, and for photons of energy 15 MV presented a deviation in relation to the conventional method of absolute dosimetry of 7,7%, that it is a lot above the expected in agreement with TRS 398. (author)

  17. Comparative study of the parameters associated with quality control and absorbed dose in linear accelerators with (FF) and without (FFF) flattening filter; Estudo comparativo dos parametros associados a dose absorvida e controle de qualidade em aceleradores lineares com filtro aplainador (FF) e sem filtro aplainador (FFF)

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Anderson Sorgatti de

    2017-11-01

    Teletherapy, radiation therapy with linear accelerators, for cancer treatment has being used for years with good clinical results.Since the 90's the removal of the flattening filter, item placed at the gantry of the machine, has shown better results for the treatment of some cancers thus being extensively studied. Treatments with Intensity Modulated Radiotherapy (IMRT) and Stereotaxic Radiotherapy (SRT) were more efficient without the flattening filter. Varian Oncology released the TrueBeam in 2012, a accelerator capable of operating with or without the flattening filter. The aim of this work is to access homogeneity of the percentage depth dose (PDP) and beam quality index (TPR20/10), two important parameters used in patient dose calculations. The data used for analysis were obtained with the Israelita Albert Einstein Hospital (HIAE), Real Portugues Hospital (RHP) and 3 more institutions located in the United States. The statistical data analysis allowed to observe the parameters behaviors. In general, they were very homogeneous, with errors smaller than 1% confirming the conformance of the TrueBeam accelerators. (author)

  18. Cardiovascular Disease Outcomes Among the NASA Astronaut Corps

    Science.gov (United States)

    Charvat, Jacqueline M.; Lee, Stuart M. C.; Wear, Mary L.; Stenger, Michael B.; Van Baalen, Mary

    2018-01-01

    BACKGROUND: Acute effects of spaceflight on the cardiovascular system have been studied extensively, but the combined chronic effects of spaceflight and aging are not well understood. Preparation for and participation in spaceflight activities are associated with changes in the cardiovascular system such as decreased carotid artery distensibility and decreased ventricular mass which may lead to an increased risk of cardiovascular disease. Additionally, astronauts who travel into space multiple times or for longer durations may be at an increased risk across their lifespan. To that end, the purpose of this study was to determine the incidence of common cardiovascular disease (CVD) outcomes among the NASA astronaut corps during their active career and through retirement. METHODS: Cardiovascular disease outcomes were defined as reports of any of the following: myocardial infarction (MI), revascularization procedures (coronary artery bypass graft surgery [CABG] or percutaneous coronary intervention [PCI]), hypertension, stroke or transient ischemic attack [TIA], heart failure, or total CVD (as defined by the AHA - combined outcome of MI, Angina Pectoris, heart failure, stroke, and hypertension). Each outcome was identified individually from review of NASA's Electronic Medical Record (EMR), EKG reports, and death certificates using ICD-9 codes as well as string searches of physician notes of astronaut exams that occurred between 1959 and 2016. RESULTS: Of 338 NASA astronauts selected as of 2016, 9 reported an MI, 12 reported a revascularization procedure, (7 PCI and 5 CABG), 4 reported Angina (without MI), 5 reported heart failure, 9 reported stroke/TIA, and 96 reported hypertension. Total CVD was reported in 105 astronauts. No astronaut who had an MI or revascularization procedure flew a spaceflight mission following the event. All MI, revascularization, and stroke events occurred in male astronauts. When reviewing astronaut ECG reports, abnormal ECG reports were found

  19. Radiopharmaceuticals: introduction to drug evaluation and dose estimation

    National Research Council Canada - National Science Library

    Williams, Lawrence E

    2011-01-01

    ...), absorbed dose method for imaging agents, vivo methods for obtaining activity data, errors of activity estimation techniques, phantom-based and patient-based dose estimates and their associated...

  20. HAMLET -Human Model MATROSHKA for Radiation Exposure Determination of Astronauts -Current status and results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit

    The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements

  1. Memoirs of an armchair astronaut (retired)

    Science.gov (United States)

    Clarke, Arthur C.

    1993-11-01

    According to my biographer Neil McAleer, who now knows far more about me than I have any wish to, I joined the British Interplanetary Society (BIS) in the summer of 1934, when it was one year old and I was approaching seventeen. Much of the next two years was spent bombarding the Society's patient secretary, Leslie Johnson, with technical queries which he did his best to answer, and which I am sure would make embarrassing reading today. During this period I also made contact with another active BIS member, the science-fiction writer Eric Frank Russell, to whom I owe a great debt of gratitude for early encouragement. I wish I still possessed his amusing and often bawdy letters, written in the most beautiful script I have ever encountered. In 1936, escaping from the uncharted wilds of rural Somerset to the genteel environs of Whitehall (literally - my office was next door to Downing Street) I made contact with the London members of the BIS, as well as the local s.f. fans. There was a 90% overlap between the two groups, and until the outbreak of war rocketry and science fiction dominated my life, with H.M. Civil Service a very poor third. A quarter of a century later, I looked back on those days in an essay which appeared in Holiday Magazine (May, 1963) and which has since been reprinted in Voices from the Sky (1965), Astounding Days (1989) and By Space Possessed (1993). Any attempt to update it would now be both impossible and absurd: it preserves the spirit of the early Space Age like a fly in amber. Here, exactly as originally published, are 'Memoirs of an Armchair Astronaut (Retired)'.

  2. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  3. Digital Alloy Absorber for Photodetectors

    Science.gov (United States)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  4. Slow light in saturable absorbers

    OpenAIRE

    Macke, Bruno; Ségard, Bernard

    2008-01-01

    International audience; In connection with the experiments recently achieved on doped crystals, biological samples, doped optical fibers and semiconductor heterostructures, we revisit the theory of the propagation of a pulse-modulated light in a saturable absorber. Explicit analytical expressions of the transmitted pulse are obtained, enabling us to determine the parameters optimizing the time-delay of the transmitted pulse with respect to the incident pulse. We finally compare the maximum fr...

  5. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  6. Efficient Wearable Antennas for Astronaut EVA Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR Subtopic O1.02 (Antenna Technology), Pharad proposes to create a new class of highly efficient body wearable antennas suitable for astronaut...

  7. Apollo 11 astronaut Buzz Aldrin takes photos during training

    Science.gov (United States)

    1969-01-01

    Flying in a KC-135 aircraft, Apollo 11 Lunar Module Pilot Edwin E. Aldrin Jr. takes pictures during training for the upcoming first manned lunar landing with astronauts Neil A. Armstrong Jr. and Michael Collins.

  8. STS-61 art concept of astronauts during HST servicing

    Science.gov (United States)

    1993-01-01

    This artist's rendition of the 1993 Hubble Space Telescope (HST) servicing mission shows astronauts installing the new Wide Field/Planetary Camera (WF/PC2). The artwork was done for JPL by Paul Hudson.

  9. Astronaut Neil Armstrong studies rock samples during geological field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, studies rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  10. Astronauts Armstrong and Scott during photo session outside KSC

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. They are standing in front of a radar dish.

  11. Astronaut Neil Armstrong participates in simulation of moon's surface

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit, deploys a lunar surface television camera during lunar surface simulation training in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission.

  12. Astronaut Neil A. Armstrong during water egress training

    Science.gov (United States)

    1965-01-01

    Astronaut Neil A. Armstrong, Gemini 5 backup crew command pilot, sits in the Gemini Static Article 5 spacecraft and prepares to be lowered from the deck of the NASA Motor Vessel Retriever for water egress training in the Gulf.

  13. Astronautics and Aeronautics, 1979-1984: A chronology

    Science.gov (United States)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  14. Christer Fuglesang, a former CERN physicist-turned-astronaut

    CERN Multimedia

    NASA

    2006-01-01

    European Space Agency (ESA) astronaut Christer Fuglesang, STS-116 mission specialist, participates in the mission's second extravehicular activity (EVA) as construction resumes on the International Space Station. Image: NASA.

  15. Low urinary albumin excretion in astronauts during space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2003-01-01

    BACKGROUND: Physiological changes occur in man during space missions also at the renal level. Proteinuria was hypothesized for space missions but research data are missing. METHODS: Urinary albumin, as an index of proteinuria, and other variables were analyzed in 4 astronauts during space missions...... and on the ground. CONCLUSIONS: Urinary albumin excretion is low during space mission compared to data on the ground before or after mission. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....... onboard the MIR station and on the ground (control). Mission duration before first urine collection in the four astronauts was 4, 26, 26, and 106 days, respectively. On the ground, data were collected 2 months before mission in two astronauts, 6 months after in the other astronauts. A total of twenty...

  16. CERN News - Esa astronaut brings neutralino back from space

    CERN Multimedia

    CERN Visual Media Office

    2012-01-01

    ESA astronaut and former physicist at CERN Christer Fuglesang returns a symbolic neutralino particle to CERN after flying it to the International Space Station on the occasion of his STS128 mission in 2009.

  17. Astronauts Sega and Krikalev work on metabolic experiment on middeck

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega (left) and Russian cosmonaut Sergei K. Krikalev work on a joint U.S./Russian metabolic experiment (DSO 202) on the Space Shuttle Discovery's middeck. Note the electrodes on Krikalev's face.

  18. Official portrait of Astronaut Ronald E. McNair

    Science.gov (United States)

    1985-01-01

    Official portrait of Astronaut Ronald E. McNair. McNair is in the blue shuttle flight suit, standing in front of a table which holds a model of the Space Shuttle. An American flag is visible behind him.

  19. Astronaut Gerald Carr floats in forward dome area

    Science.gov (United States)

    1974-01-01

    Astronaut Gerald P. Carr, commander for the Skylab 4 mission, demonstrates the effects of zero-gravity as he floats in the forward dome area of the Orbital Workshop of the Skylab space station while in Earth orbit.

  20. Astronaut Gerald Carr sits on the bicycle ergometer during prelaunch

    Science.gov (United States)

    1973-01-01

    Astronaut Gerald P. Carr, Skylab 4 mission commander, sits on the bicycle ergometer as he takes part in the body mass measurement experiment during a prelaunch physical examination for the crew of the third manned mission.

  1. Astronaut Gerald Carr trains with Earth Resources Experiments Package

    Science.gov (United States)

    1973-01-01

    Astronaut Gerald P. Carr, Skylab 4 commander, changes a dial on the control and display panel for the Earth Resources Experiments package (EREP) during a training exercise in the Multiple Docking Adapter (MDA) one-G trainer at JSC.

  2. Astronauts Culbertson and Bursch brush their teeth on Discovery's middeck

    Science.gov (United States)

    1993-01-01

    Astronauts Frank L. Culbertson (right), mission commander, and Daniel W. Bursch, mission specialist, brush their teeth on Discovery's middeck. Two sleep restraints form part of the backdrop for the photograph.

  3. Apollo 11 astronaut Neil Armstrong suits up before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  4. Apollo 11 astronaut Neil Armstrong looks over flight plans

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong is looking over flight plans while being assisted by a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  5. NASA astronaut dosimetry: Implementation of scalable human phantoms and benchmark comparisons of deterministic versus Monte Carlo radiation transport

    Science.gov (United States)

    Bahadori, Amir Alexander

    Astronauts are exposed to a unique radiation environment in space. United States terrestrial radiation worker limits, derived from guidelines produced by scientific panels, do not apply to astronauts. Limits for astronauts have changed throughout the Space Age, eventually reaching the current National Aeronautics and Space Administration limit of 3% risk of exposure induced death, with an administrative stipulation that the risk be assured to the upper 95% confidence limit. Much effort has been spent on reducing the uncertainty associated with evaluating astronaut risk for radiogenic cancer mortality, while tools that affect the accuracy of the calculations have largely remained unchanged. In the present study, the impacts of using more realistic computational phantoms with size variability to represent astronauts with simplified deterministic radiation transport were evaluated. Next, the impacts of microgravity-induced body changes on space radiation dosimetry using the same transport method were investigated. Finally, dosimetry and risk calculations resulting from Monte Carlo radiation transport were compared with results obtained using simplified deterministic radiation transport. The results of the present study indicated that the use of phantoms that more accurately represent human anatomy can substantially improve space radiation dose estimates, most notably for exposures from solar particle events under light shielding conditions. Microgravity-induced changes were less important, but results showed that flexible phantoms could assist in optimizing astronaut body position for reducing exposures during solar particle events. Finally, little overall differences in risk calculations using simplified deterministic radiation transport and 3D Monte Carlo radiation transport were found; however, for the galactic cosmic ray ion spectra, compensating errors were observed for the constituent ions, thus exhibiting the need to perform evaluations on a particle

  6. Filter materials for dose reduction in screen-film radiography

    NARCIS (Netherlands)

    Koedooder, K.; Venema, H. W.

    1986-01-01

    A computer program was developed to calculate both integral absorbed dose in a water phantom and entrance exposure, for the imaging of iodine contrast with x-ray intensifying screens. The effect of filtration of the x-ray beam on integral absorbed dose and entrance exposure was studied for 27

  7. Moon bound choosing and preparing NASA's lunar astronauts

    CERN Document Server

    Burgess, Colin

    2013-01-01

    Often lost in the shadow of the first group of astronauts for the Mercury missions, the second and third groups included the leading figures for NASA's activities for the following two decades. “Moon Bound” complements the author’s recently published work, “Selecting the Mercury Seven” (2011), extending the story of the men who helped to launch human spaceflight and broaden the American space program. Although the initial 1959 group became known as the legendary pioneering Mercury astronauts, the astronauts of Groups 2 and 3 gave us many household names. Sixteen astronauts from both groups traveled to the Moon in Project Apollo, with several actually walking on the Moon, one of them being Neil Armstrong. This book draws on interviews to tell the astronauts' personal stories and recreate the drama of that time. It describes the process by which they were selected as astronauts and explains how the criteria had changed since the first group. “Moon Bound” is divided into two parts, recounting the b...

  8. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  9. Sustainable composite super absorbents made from polysaccharides

    OpenAIRE

    Ye, Zhuoliang; Tang, Mi; Hong, Xiaoting; K. S. Hui

    2016-01-01

    Compared to traditional super absorbent polymers using raw materials from petrochemical industry, natural polymer absorbents are more favorable because they are sustainable and biodegradable. In this study, composite absorbents were developed by crosslinking carrageenan with sodium alginate using calcium chloride. Effect of composition on absorption was tested. Absorption was improved by increasing carrageenan content. The super absorbent exhibited the maximal swelling ratio of 13.1 g/g in 0....

  10. Assessment of a new p-Mosfet usable as a dose rate insensitive gamma dose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Vettese, F.; Donichak, C.; Bourgeault, P. [DGA/Centre d`etudes du Bouchet/DPN, 31 - Toulouse (France)

    1995-12-31

    Dosimetric response of unbiased MOS devices has been assessed at dose rates greater than 2000 cGy/h. Application have been made to a personal dosemeter / dose rate meter to measure the absorbed tissue dose received in the case of acute external irradiation. (D.L.). 10 refs.

  11. Radiation equivalent dose simulations for long-term interplanetary flights

    Science.gov (United States)

    Dobynde, M. I.; Drozdov, A.; Shprits, Y. Y.

    2016-12-01

    Cosmic particle radiation is a limiting factor for the human interplanetary flights. The unmanned flights inside heliosphere and human flights inside of magnetosphere tend to become a routine procedure, whereas there have been only few shot term human flights out of it (Apollo missions 1969-1972) with maximum duration less than a month. Long-term human flights set much higher requirements to the radiation shielding, primarily because of long exposition to cosmic radiation. Inside the helosphere there are two main sources of cosmic radiation: galactic cosmic rays (GCR) and soalr particle events (SPE). GCR come from the outside of heliosphere forming a background of overall radiation that affects the spacecraft. The intensity of GCR is varied according to solar activity, increasing with solar activity decrease and backward, with the modulation time (time between nearest maxima) of 11 yeas. SPE are shot term events, comparing to GCR modulation time, but particle fluxes are much more higher. The probability of SPE increases with the increase of solar activity. Time dependences of the intensity of these two components encourage looking for a time window of flight, when intensity and effect of GCR and SPE would be minimized. Combining GEANT4 Monte Carlo simulations with time dependent model of GCR spectra and data on SPE spectra we show the time dependence of the radiation dose in an anthropomorphic human phantom inside the shielding capsule. Different types of particles affect differently on the human providing more or less harm to the tissues. We use quality factors to recalculate absorbed dose into biological equivalent dose, which give more information about risks for astronaut's health. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We try to find an optimal combination of shielding material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow

  12. Design of metamaterial surfaces with broadband absorbance.

    Science.gov (United States)

    Wu, Chihhui; Shvets, Gennady

    2012-02-01

    A simple design paradigm for making broadband ultrathin plasmonic absorbers is introduced. The absorber's unit cell is composed of subunits of various sizes, resulting in nearly 100% absorbance at multiple adjacent frequencies and high absorbance over a broad frequency range. A simple theoretical model for designing broadband absorbers is presented. It uses a single-resonance model to describe the optical response of each subunit and employs the series circuit model to predict the overall response. Validity of the circuit model relies on short propagation lengths of the surface plasmons.

  13. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  14. Graphene based salisbury screen for terahertz absorber

    Science.gov (United States)

    Min Woo, Jeong; Kim, Min-Sik; Woong Kim, Hyun; Jang, Jae-Hyung

    2014-02-01

    A graphene-based, multiband absorber operating in terahertz (THz) frequency range was demonstrated. Graphene film was transferred onto the top of a flexible polymer substrate backed with a gold reflector. The graphene acts as a resistive film that partially attenuates and reflects THz waves. The destructive interference between THz waves reflected from graphene and backside reflector gives rise to perfect absorbance at multiple frequencies. To enhance the absorbance on/off ratio (AR), the conductivity of graphene was varied using a chemical doping method. The resulting p-doped, graphene-based THz absorber exhibited absorbance at maxima and AR higher than 0.95 and 25 dB, respectively.

  15. Toroidal-dipole induced plasmonic perfect absorber

    Science.gov (United States)

    Li, Jie; Wang, Ying-hua; Jin, Ren-chao; Li, Jia-qi; Dong, Zheng-gao

    2017-12-01

    We present a new kind of perfect absorber which roots in a toroidal dipole resonance. The toroidal metastructure consists of a metallic circular groove with a depth asymmetry, which couples to the toroidal dipole field in the near-infrared region and thus realizes nearly unit absorbance, acting as a perfect absorber. Moreover, this absorber owns a high sensitivity of 609.6 nm/RIU to the dielectric surroundings. Furthermore, by tuning the geometric parameters, both the toroidal dipole resonance and perfect absorbance characteristics are insensitive to the circular groove width, providing profound fabrication tolerance in future experiments.

  16. NASA study of cataract in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity.

    Science.gov (United States)

    Chylack, Leo T; Peterson, Leif E; Feiveson, Alan H; Wear, Mary L; Manuel, F Keith; Tung, William H; Hardy, Dale S; Marak, Lisa J; Cucinotta, Francis A

    2009-07-01

    The NASA Study of Cataract in Astronauts (NASCA) is a 5-year longitudinal study of the effect of space radiation exposure on the severity/progression of nuclear, cortical and posterior subcapsular (PSC) lens opacities. Here we report on baseline data that will be used over the course of the longitudinal study. Participants include 171 consenting astronauts who flew at least one mission in space and a comparison group made up of three components: (a) 53 astronauts who had not flown in space, (b) 95 military aircrew personnel, and (c) 99 non-aircrew ground-based comparison subjects. Continuous measures of nuclear, cortical and PSC lens opacities were derived from Nidek EAS 1000 digitized images. Age, demographics, general health, nutritional intake and solar ocular exposure were measured at baseline. Astronauts who flew at least one mission were matched to comparison subjects using propensity scores based on demographic characteristics and medical history stratified by gender and smoking (ever/never). The cross-sectional data for matched subjects were analyzed by fitting customized non-normal regression models to examine the effect of space radiation on each measure of opacity. The variability and median of cortical cataracts were significantly higher for exposed astronauts than for nonexposed astronauts and comparison subjects with similar ages (P=0.015). Galactic cosmic space radiation (GCR) may be linked to increased PSC area (P=0.056) and the number of PSC centers (P=0.095). Within the astronaut group, PSC size was greater in subjects with higher space radiation doses (P=0.016). No association was found between space radiation and nuclear cataracts. Cross-sectional data analysis revealed a small deleterious effect of space radiation for cortical cataracts and possibly for PSC cataracts. These results suggest increased cataract risks at smaller radiation doses than have been reported previously.

  17. Animal Studies of Residual Hematopoietic and Immune System Injury from Low Dose/Low Dose Rate Radiation and Heavy Metals.

    Science.gov (United States)

    1998-09-01

    fission products were released, workers involved in reactor or weapons construction, and perhaps astronauts/cosmonauts exposed to space irradiation. It is...dose rates [5,6]. long-term animal experiments. Such data could be extrap - The long-term consequences of low dose irradiation may olated to human

  18. Psychometric Personality Differences Between Candidates in Astronaut Selection.

    Science.gov (United States)

    Mittelstädt, Justin M; Pecena, Yvonne; Oubaid, Viktor; Maschke, Peter

    This paper investigates personality traits as potential factors for success in an astronaut selection by comparing personality profiles of unsuccessful and successful astronaut candidates in different phases of the ESA selection procedure. It is further addressed whether personality traits could predict an overall assessment rating at the end of the selection. In 2008/2009, ESA performed an astronaut selection with 902 candidates who were either psychologically recommended for mission training (N = 46) or failed in basic aptitude (N = 710) or Assessment Center and interview testing (N = 146). Candidates completed the Temperament Structure Scales (TSS) and the NEO Personality Inventory Revised (NEO-PI-R). Those candidates who failed in basic aptitude testing showed higher levels of Neuroticism (M = 49.8) than the candidates who passed that phase (M = 45.4 and M = 41.6). Additionally, candidates who failed in basic testing had lower levels of Agreeableness (M = 132.9) than recommended candidates (M = 138.1). TSS scales for Achievement (r = 0.19) and Vitality (r = 0.18) showed a significant correlation with the overall assessment rating given by a panel board after a final interview. Results indicate that a personality profile similar to Helmreich's "Right Stuff" is beneficial in astronaut selection. Influences of test anxiety on performance are discussed. Mittelstädt JM, Pecena Y, Oubaid V, Maschke P. Psychometric personality differences between candidates in astronaut selection. Aerosp Med Hum Perform. 2016; 87(11):933-939.

  19. Latent Virus Reactivation in Astronauts and Shingles Patients

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  20. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  1. Astronauts and Cosmonauts sightseeing at Red Square in Moscow

    Science.gov (United States)

    1974-01-01

    A group of Astronauts and their Cosmonaut hosts are photographed sightseeing on Red Square in the heart of Moscow during a tour of the Soviet capital. The Americans were in the USSR to participate in Apollo Soyuz Test Project (ASTP) familiarization training on the Soyuz systems at the Cosmonaut Training Center (Star City) near Moscow. Astronaut Thomas P. Stafford (light coat, black cap), commander of the American ASTP crew, was head of the U.S. delegation to Star City. Astronaut Eugene A. Cernan (on Stafford's left, light coat) is the Special Assistant to the American Technical Director of ASTP. The sightseeing group is walking in the direction of Lenin's Mausoleum. The structure in the background is the Cathedral of the Intercession (St. Basil's) Museum. The historic Kremlin complex is to the right.

  2. Logistical Consideration in Computer-Based Screening of Astronaut Applicants

    Science.gov (United States)

    Galarza, Laura

    2000-01-01

    This presentation reviews the logistical, ergonomic, and psychometric issues and data related to the development and operational use of a computer-based system for the psychological screening of astronaut applicants. The Behavioral Health and Performance Group (BHPG) at the Johnson Space Center upgraded its astronaut psychological screening and selection procedures for the 1999 astronaut applicants and subsequent astronaut selection cycles. The questionnaires, tests, and inventories were upgraded from a paper-and-pencil system to a computer-based system. Members of the BHPG and a computer programmer designed and developed needed interfaces (screens, buttons, etc.) and programs for the astronaut psychological assessment system. This intranet-based system included the user-friendly computer-based administration of tests, test scoring, generation of reports, the integration of test administration and test output to a single system, and a complete database for past, present, and future selection data. Upon completion of the system development phase, four beta and usability tests were conducted with the newly developed system. The first three tests included 1 to 3 participants each. The final system test was conducted with 23 participants tested simultaneously. Usability and ergonomic data were collected from the system (beta) test participants and from 1999 astronaut applicants who volunteered the information in exchange for anonymity. Beta and usability test data were analyzed to examine operational, ergonomic, programming, test administration and scoring issues related to computer-based testing. Results showed a preference for computer-based testing over paper-and -pencil procedures. The data also reflected specific ergonomic, usability, psychometric, and logistical concerns that should be taken into account in future selection cycles. Conclusion. Psychological, psychometric, human and logistical factors must be examined and considered carefully when developing and

  3. Energy-Absorbing Beam Member

    Science.gov (United States)

    Littell, Justin D. (Inventor)

    2017-01-01

    An energy-absorbing (EA) beam member and having a cell core structure is positioned in an aircraft fuselage proximate to the floor of the aircraft. The cell core structure has a length oriented along a width of the fuselage, a width oriented along a length of the fuselage, and a depth extending away from the floor. The cell core structure also includes cell walls that collectively define a repeating conusoidal pattern of alternating respective larger and smaller first and second radii along the length of the cell core structure. The cell walls slope away from a direction of flight of the aircraft at a calibrated lean angle. An EA beam member may include the cell core structure and first and second plates along the length of the cell core structure on opposite edges of the cell material.

  4. Liquid crystal tunable metamaterial absorber.

    Science.gov (United States)

    Shrekenhamer, David; Chen, Wen-Chen; Padilla, Willie J

    2013-04-26

    We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

  5. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    Science.gov (United States)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  6. Astronaut Edwin Aldrin deploying the EASEP on surface of moon

    Science.gov (United States)

    1969-01-01

    Astronaut Edwin E. Aldrin Jr., lunar module pilot, is photographed deploying the Early Apollo Scientific Experiments Package (EASEP) during the Apollo 11 extravehicular activity on the Moon. Here, he is deploying the Passive Seismic Experiments Package (PSEP). Already deployed is the Laser Ranging Retro-Reflector (LR-3), which can be seen to the left and further in the background. In the center background is the Lunar Module (LM). A flag of the United States is deployed near the LM. In the far left background is the deployed black and white lunar surface television camera. Astronaut Neil A. Armstrong, commander, took this picture with the 70mm lunar surface camera.

  7. Telecast of Astronauts Armstrong and Aldrin by the Lunar Module

    Science.gov (United States)

    1969-01-01

    Astronauts Neil A. Armstrong (in center) commander; and Edwin E. Aldrin Jr. (on right), lunar module pilot, are seen standing near their Lunar Module in this black and white reproduction taken from a telecast by the Apollo 11 lunar surface television camera during the Apollo 11 extravehicular activity. This picture was made from a televised image received at the Deep Space Network tracking station at Goldstone, California. President Richard M. Nixon had just spoken to the two astronauts by radio and Aldrin, a colonel in the U.S. Air Force, is saluting the president.

  8. Conceptual design of an astronaut hand anthropometry device

    Science.gov (United States)

    Mcmahan, Robert

    1993-01-01

    In a microgravity environment, fluid equalizes throughout the body, causing the upper body to swell. This causes the hands to swell which can cause problems for astronauts trying to do work in pressurized EVA (extravehicular activity) gloves. To better design these gloves, accurate measurements of the astronauts swollen hands are needed. Five concepts were developed in this report from an original field of 972 possible concepts. These five concepts were based on mold impression, ultrasound, laser topography, white light photography, and video imaging. From a decision matrix based on nine weighted criteria, the video imaging technique was found to be the best design to pursue.

  9. Astronautics and Aeronautics: A Chronology, 2001-2005

    Science.gov (United States)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  10. Astronautics and Aeronautics: A Chronology, 1996-2000

    Science.gov (United States)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  11. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    Science.gov (United States)

    George, Kerry; Cucinotta, Francis A.

    2008-01-01

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after exposure, at least in the case of space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts blood lymphocytes assessed by FISH painting and collected a various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provides limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  12. Prevalence of Sleep Deficiency and Hypnotic Use Among Astronauts Before, During and After Spaceflight: An Observational Study

    Science.gov (United States)

    Barger, Laura K.; Flynn-Evans, Erin E.; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M.; Wang, Wei; Wright, Kenneth P.; Czeisler, Charles A.

    2014-01-01

    Background Sleep deprivation and fatigue are common subjective complaints among astronauts. We conducted the first large-scale evaluation of objectively-estimated sleep of astronauts on both short- and long-duration spaceflight missions. Methods Allnon-Russian crewmembers assigned to space shuttle flights with inflight experiments from July 2001 until July 2011 or ISS Expeditions from 2006 –2011 were eligible to participate. We objectively assessed, via wrist actigraphy and daily logs, sleep-wake timing of 64 astronauts on 80 Space Shuttle missions, encompassing 26 Space Transportation System flights (1,063 inflight days), and 21 astronauts on the International Space Station (ISS) (3,248 inflight days) and, for each astronaut, during two Earth-based data-collection intervals prior to and one following spaceflight (4,013 ground-based days). Findings Astronauts attempted and obtained significantly less actigraphically-estimated sleep per night on space shuttle missions (7·35 ± 0·47 and 5·96 ± 0·56 hours, respectively), in the 11-days before spaceflight (7·35 ± 0·51 and 6·04 ± 0·72 hours, respectively) and even three months before spaceflight (7·40 ± 0·59 and 6·29 ± 0·67 hours, respectively) than they did upon their return to Earth (8·01 ± 0·78 and 6·74 ± 0·91 hours, respectively) (p sleep three months prior (6.41 ± 0.65), in the 11 days prior (5.86 ± 0.94) and during spaceflight (6.09 ± 0.67 hours), as compared to the first week post-mission (6.95 ± 1.04 hours; p sleep-promoting medications on 52% of nights (500/963) and 2 doses on 17% of nights during flight (87/500); 75% of ISS crewmembers (12/16) reported using sleep-promoting medications. Interpretation Sleep deficiency in astronauts was prevalent not only during space shuttle and ISS missions, but also throughout a 3-month pre-flight training interval. Despite chronic sleep curtailment, sleeping pill use was pervasive during spaceflight. As chronic sleep loss produces performance

  13. A Six-Fold Symmetric Metamaterial Absorber

    OpenAIRE

    Álvarez, Humberto Fernández; Gómez, María de Cos; Las-Heras, Fernando

    2015-01-01

    A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner an...

  14. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  15. A Multilayer Rubber Board Radar Absorbing Material

    OpenAIRE

    He, Shan; LI Yehua; Zhou, Chun

    2016-01-01

    Based on the theory of impedance matching, a multilayer absorbing material with the "pitfall" structure was designed. The multilayer absorbing material with 5 layers was obtained by optimization of the schemes, and the material shows 2 absorbing peaks in the broadband of 2~18 GHz frequencies. The peak in high frequencies can be adjusted with no effect on the peak in low frequencies through changing the thickness of the fifth layer. The changes of input impedances were displayed by analyzing t...

  16. A Six-Fold Symmetric Metamaterial Absorber.

    Science.gov (United States)

    Fernández Álvarez, Humberto; de Cos Gómez, María Elena; Las-Heras, Fernando

    2015-04-03

    A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  17. A Six-Fold Symmetric Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Humberto Fernández Álvarez

    2015-04-01

    Full Text Available A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  18. Astronaut Linda Godwin uses Shuttle Amateur Radio Experiment

    Science.gov (United States)

    1994-01-01

    Onboard the Space Shuttle Endeavour, Astronaut Linda M. Godwin uses the Shuttle Amateur Radio Experiment (SAREX). The payload commander, as well as several other STS-59 crew members, spent some off-duty time using the amateur radio experiment to communicate with 'Hams' and students on Earth.

  19. Astronaut Linda Godwin during contingency EVA training in WETF

    Science.gov (United States)

    1993-01-01

    Astronaut Linda M. Godwin, payload commander, prepares to donn her helmet before being submerged in a 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF). STS-59 crewmembers are using the WETF to train for contingency space walks for the shuttle Endeavour mission. Godwin is wearing the extravehicular mobility unit (EMU), communication carrier assembly (CCA) but no helmet.

  20. Astronaut Linda Godwin poses with spacesuit she wore for launch

    Science.gov (United States)

    1994-01-01

    Astronaut Linda M. Godwin, STS-59 payload commander, poses with the spacesuit she wore for launch. She will eventually wear the partial pressure suit for the entry phase of the Space Shuttle Endeavour's week and a half mission in Earth orbit.

  1. Astronaut Charles Conrad during visual acuity experiments over Laredo

    Science.gov (United States)

    1965-01-01

    Astronaut Charles Conrad Jr., pilot for the prime crew on the Gemini 5 space flight, takes pictures of predetermined land areas during visual acuity experiments over Laredo, Texas. The experiments will aid in learning to identify known terrestrial features under controlled conditions.

  2. Astronaut Harrison Schmitt participates in simulation aboard KC-135

    Science.gov (United States)

    1972-01-01

    Scientist-Astronaut Harrison H. Schmitt, lunar module pilot of the Apollo 17 lunar landing mission, simulates preparing to deploy the Surface Electrical Properties Experiment during lunar surface extravehicular activity (EVA) simulation training under one-sixth gravity conditions aboard a U.S. Air Force KC-135 aircraft.

  3. President Nixon at Hickam AFB congratulates Astronaut James Lovell

    Science.gov (United States)

    1970-01-01

    President Richard M. Nixon and Astronaut James A. Lovell Jr., Apollo 13 commander, shake hands at special ceremonies at Hickam Air Force Base, Hawaii. President Nixon was in Hawaii to present the Apollo 13 crew with the Presidential Medal of Freedom, the nation's highest civilian honor.

  4. Fitness variables and the lipid profile in United States astronauts

    Science.gov (United States)

    Berry, M. A.; Squires, W. G.; Jackson, A. S.

    1980-01-01

    The study examines the relationship between several measures of fitness and the lipid profile in United States astronauts. Data were collected on 89 astronauts, previously selected (PSA) and newly selected (NSA), during their annual physical examinations. Several similarities were seen in the two groups. The PSA (mean age of 46.1) had a lower maximum oxygen capacity (41.7 ml kg/min vs. 47.5 ml kg/min); when adjusted for age, it was no different from the NSA (mean age 33.5). The PSA had similar body composition with 15.7% - lower than expected for age. The lipid profiles of the two groups were basically the same with the differences being a function of age. Compared to a normative population, the astronauts had similar cholesterols, lower triglycerides, and higher HDLs. The astronaut profiles were generally more favorable than the age-matched controls, which is felt to be a result of the self-supervised conditioning program and annual preventive medicine consultation and education.

  5. Astronaut Donald Slayton in hatchway between Apollo and Soyuz spacecraft

    Science.gov (United States)

    1975-01-01

    Astronaut Donald K. Slayton, docking module pilot of the American Apollos Soyuz Test Project (ASTP) crew, is seen in the hatchway leading between the Apollo Docking Module (DM) and the Soyuz Orbital Module during the joint U.S.-USSR ASTP docking in Earth orbit mission. The 35mm camera is looking from the the Soyuz into the Docking Module.

  6. Astronaut Donald Slayton participates in ASTP crew training at JSC

    Science.gov (United States)

    1975-01-01

    Astronaut Donald K. Slayton, docking module pilot on the American Apollo Soyuz Test Project (ASTP) prime crew, participates in ASTP joint crew training in bldg 35 at JSC. He is in the Docking Module mock-up. The training simulated activities on the first day in Earth orbit.

  7. Astronaut Neil Armstrong participates in lunar surface siumlation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface siumlation training on April 18, 1969 in bldg 9, Manned Spacecraft Center (MSC). Armstrong is prime crew commander of the Apollo 11 lunar landing mission. Here, he is opening a sample return container. At the right is the Modular Equipment Stowage Assembly (MESA) and the Lunar Module Mockup.

  8. Astronauts Scott and Armstrong undergoe water egress training

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini 8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise.

  9. Astronaut Neil Armstrong participates in lunar surface simulation training

    Science.gov (United States)

    1969-01-01

    Astronaut Neil A. Armstrong, wearing an Extravehicular Mobility Unit (EMU), participates in lunar surface simulation training on April 18, 1969 in bldg 9, Manned Spacecraft Center. Armstrong is the prime crew commander of the Apollo 11 lunar landing mission. Here, he is standing on Lunar Module mockup foot pad preparing to ascend steps.

  10. A survey of Rocketry and astronautics in Spain

    Science.gov (United States)

    Maluquer, J. J.

    1977-01-01

    The entire field of rocketry and astronautics in Spain was studied. Congreve war rockets in military actions were emphasized in the African war, the Cuban campaign and the Spanish Civil War. Rockets in space travel were also summarized along with space science fiction.

  11. Astronautics and aeronautics, 1972. [a chronology of events

    Science.gov (United States)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  12. Advanced degrees in astronautical engineering for the space industry

    Science.gov (United States)

    Gruntman, Mike

    2014-10-01

    Ten years ago in the summer of 2004, the University of Southern California established a new unique academic unit focused on space engineering. Initially known as the Astronautics and Space Technology Division, the unit operated from day one as an independent academic department, successfully introduced the full set of degrees in Astronautical Engineering, and was formally renamed the Department of Astronautical Engineering in 2010. The largest component of Department's educational programs has been and continues to be its flagship Master of Science program, specifically focused on meeting engineering workforce development needs of the space industry and government space research and development centers. The program successfully grew from a specialization in astronautics developed in mid-1990s and expanded into a large nationally-visible program. In addition to on-campus full-time students, it reaches many working students on-line through distance education. This article reviews the origins of the Master's degree program and its current status and accomplishments; outlines the program structure, academic focus, student composition, and enrollment dynamics; and discusses lessons learned and future challenges.

  13. Astronauts McNair and Stewart prepare for reentry

    Science.gov (United States)

    1984-01-01

    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  14. Astronaut James Lovell undergoes weight and balance tests

    Science.gov (United States)

    1965-01-01

    Astronaut James A. Lovell Jr., pilot of the Gemini 7 space flight, undergoes weight and balance tests in the Pyrotechnic installation Building, Merritt Island. Talking with Lovell are (left to right) Charlie Beaty, McDonnell Aircraft Corporation; Karl Stoien, McDonnell Aircraft; NASA suit technician Al Rochford; and Norm Batterson, Weber Aircraft Corporation.

  15. The selection of commercial astronauts for suborbital spaceflight

    Science.gov (United States)

    Kozak, Brian J.

    With the launch of Dennis Tito aboard a Russian Soyuz rocket in 2001 and SpaceShipOne winning the Ansari X-Prize in 2004, the commercial space tourism industry is on the verge of lifting off. In 2007 Burt Rutan spoke about the future of space tourism, "We think that 100,000 people will fly by 2020" (Rutan, 2007). With such a high frequency of suborbital spaceflights, there is a need for qualified crews to operate the spacecraft. The purpose of this qualitative, exploratory study was to investigate the possible selection criteria for suborbital commercial astronauts within the space tourism industry. Data was collected in the form of telephone and email interviews with 4 of the 5 U.S.-based suborbital space tourism companies participating. Purdue University's extensive astronaut alumni network was used to augment data gathered with five astronauts who have flown in space. In addition, Brian Binnie, the pilot who flew SpaceShipOne on its award winning Ansari X-Prize flight, participated. Grounded Theory and Truth and Reality Testing were used as the theoretical framework for data analysis. The data gathered suggests that the commercial astronaut should have at least a Bachelor's degree in engineering, have a test pilot background with thousands of hours of pilot-in-command time in high performance jet aircraft, be confident yet humble in personality, and have a fundamental understanding of their spacecraft, including spacecraft trajectories, and emergency procedures.

  16. Who is an astronaut? The inadequacy of current international law

    Science.gov (United States)

    Lyall, F.

    2010-06-01

    The concept of 'astronaut' as found in law in the 'space treaties' and elsewhere does not fit well with the modern proposals for commercial space tourism. Will the 'rescue and return' provisions apply to commercial flights? Many national laws will apply to space tourism but for the future the international legal regime should be reconsidered. Finally what may happen in a crisis in space?

  17. Radiation dose estimates for radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E. [Oak Ridge Inst. of Science and Education, TN (United States). Radiation Internal Dose Information Center

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  18. Cytokine and chemokine responses after exposure to ionizing radiation: Implications for the astronauts

    Science.gov (United States)

    Laiakis, Evagelia C.; Baulch, Janet E.; Morgan, William F.

    For individuals traveling in space, exposure to space radiation is unavoidable. Since adequate shielding against radiation exposure is not practical, other strategies for protecting the astronauts must be developed. Radiation is also an important therapeutic and diagnostic tool, and evidence from the clinical and experimental settings now shows a firm connection between radiation exposure and changes in cytokine and chemokine levels. These small proteins can be pro- or anti-inflammatory in nature and the balance between those two effects can be altered easily because of exogenous stresses such as radiation. The challenge to identify a common perpetrator, however, lies in the fact that the cytokines that are produced vary based on radiation dose, type of radiation, and the cell types that are exposed. Based on current knowledge, special treatments have successfully been designed by implementing administration of proteins, antibodies, and drugs that counteract some of the harmful effects of radiation. Although these treatments show promising results in animal studies, it has been difficult to transfer those practices to the human situation. Further understanding of the mechanisms by which cytokines are triggered through radiation exposure and how those proteins interact with one another may permit the generation of novel strategies for radiation protection from the damaging effects of radiation. Here, we review evidence for the connection between cytokines and the radiation response and speculate on strategies by which modulating cytokine responses may protect astronauts against the detrimental effects of ionizing radiations.

  19. Device for absorbing mechanical shock

    Science.gov (United States)

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  20. Conformal radiotherapy made easy through gravity oriented absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Proimos, B.S. [Patras Univ. (Greece). Dept. of Medical Physics

    1995-12-01

    In the 50`s and the 60`s simple techniques modulating the beam intensity in synchronism with the rotation, either of the vertical patient or of the machine around the horizontal patient were developed. An absorber, which is similar in shape to a vital organ, intercepts the beam, casting its protective `shade` over the organ, for all positions of rotation. In this way, the organ is protected during the irradiation time. On any transverse cross, any point outside of the organ`s cross-section is protected for only a fraction of T, which is decreasing with the distance of that point from the organ. Consequently, the dose to the protected organ is smaller than (a) the dose it would absorb without protection (b) the dose to the surrounding (less vital) healthy tissue and (c), the dose to the neighbouring tumour. Consider a plane perpendicular to the principal plane and passing through the source. It cuts the organ and its protector in two cross-sections, which remain always homiotheta, with centre of homiothesis the source. In this way, the protector`s cross-section is projected by the beam on the organ`s cross-section for all positions of rotation. The larger the cross-section of the organ and the smaller the required protection, the smaller must be the attenuation coefficient of the material the protector is made of. The dose distributions in a series of actual cases, such as head tumours with eyes protection, neck or chest tumours with spinal cord protection, cervix tumours with rectum and bladder protection, are discussed. In most cases, if the vital organs are not overprotected, the 90% or 80% isodose surface fits to or conforms with the surface of the Planning Target Volume (PTV) no matter how irregular (convex and concave) it is.

  1. Cancer Risk Estimates from Space Flight Estimated Using Yields of Chromosome Damage in Astronaut's Blood Lymphocytes

    Science.gov (United States)

    George, Kerry A.; Rhone, J.; Chappell, L. J.; Cucinotta, F. A.

    2011-01-01

    To date, cytogenetic damage has been assessed in blood lymphocytes from more than 30 astronauts before and after they participated in long-duration space missions of three months or more on board the International Space Station. Chromosome damage was assessed using fluorescence in situ hybridization whole chromosome analysis techniques. For all individuals, the frequency of chromosome damage measured within a month of return from space was higher than their preflight yield, and biodosimetry estimates were within the range expected from physical dosimetry. Follow up analyses have been performed on most of the astronauts at intervals ranging from around 6 months to many years after flight, and the cytogenetic effects of repeat long-duration missions have so far been assessed in four individuals. Chromosomal aberrations in peripheral blood lymphocytes have been validated as biomarkers of cancer risk and cytogenetic damage can therefore be used to characterize excess health risk incurred by individual crewmembers after their respective missions. Traditional risk assessment models are based on epidemiological data obtained on Earth in cohorts exposed predominantly to acute doses of gamma-rays, and the extrapolation to the space environment is highly problematic, involving very large uncertainties. Cytogenetic damage could play a key role in reducing uncertainty in risk estimation because it is incurred directly in the space environment, using specimens from the astronauts themselves. Relative cancer risks were estimated from the biodosimetry data using the quantitative approach derived from the European Study Group on Cytogenetic Biomarkers and Health database. Astronauts were categorized into low, medium, or high tertiles according to their yield of chromosome damage. Age adjusted tertile rankings were used to estimate cancer risk and results were compared with values obtained using traditional modeling approaches. Individual tertile rankings increased after space

  2. Radiation Dose Optimization For Critical Organs

    Science.gov (United States)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical

  3. Dose integration and dose rate characteristics of a NiPAM polymer gel MRI dosimeter system

    Science.gov (United States)

    Waldenberg, C.; Karlsson Hauer, A.; Gustafsson, C.; Ceberg, S.

    2017-05-01

    The normoxic polymer gel dosimeter based on N-isopropyl acrylamide (NiPAM) is a promising full 3D-dosimeter with high spatial resolution and near tissue equivalency. NiPAM gel samples were irradiated to different doses using a linear accelerator. The absorbed dose was evaluated using MRI and statistical significance of the analysed data was calculated. The analysis was carried out using an in-house developed software. It was found that the gel dosimeter responded linearly to the absorbed dose. The gel exhibited a dose rate dependence, as well as a dependence on the sequential beam irradiation scheme. A higher dose rate, as well as a higher dose per sequential beam, resulted in a lower dose response.

  4. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2017-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  5. A Flexible Metamaterial Terahertz Perfect Absorber

    Science.gov (United States)

    Chen, X. R.; Zheng, Y. W.; Qin, L. M.; Wei, G. C.; Qin, Z. P.; Zhang, N. G.; Liu, K.; Li, S. Z.; Wang, S. X.

    2017-12-01

    We designed a THz matematerial absorber using metallic wires (MWs) and split resonant rings (SRRs). This matematerial absorber exhibits perfect absorption which up to 96% at 4.03 THz and is capable of wrapped around objects because of flexible polyimide dielectric substrate.

  6. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping of a...

  7. An ultrathin dual-band metamaterial absorber

    Science.gov (United States)

    Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun; Zhang, Binzhen

    2016-10-01

    The design and preparation of an ultrathin dual-band metamaterial absorber whose resonant frequency located at radar wave (20 GHz-60 GHz) is presented in this paper. The absorber is composed of a 2-D periodic sandwich featured with two concentric annuluses. The influence on the absorber's performance produced by resonant cell's structure size and material parameters was numerically simulated and analyzed based on the standard full wave finite integration technology in CST. Laser ablation process was adopted to prepare the designed absorber on epoxy resin board coated with on double plane of copper with a thickness that is 1/30 and 1/50 of the resonant wavelength at a resonant frequency of 30.51 GHz and 48.15 GHz. The full width at half maximum (FWHM) reached 2.2 GHz and 2.35 GHz and the peak of the absorptance reached 99.977%. The ultrathin absorber is nearly omnidirectional for all polarizations. The test results of prepared sample testify the designed absorber's excellent absorbing performance forcefully. The absorber expands inspirations of radar stealth in military domain due to its flexible design, cost-effective and other outstanding properties.

  8. 21 CFR 872.6050 - Saliva absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A saliva...

  9. Absorbable Meshes in Inguinal Hernia Surgery

    DEFF Research Database (Denmark)

    Öberg, Stina; Andresen, Kristoffer; Rosenberg, Jacob

    2017-01-01

    PURPOSE: Absorbable meshes used in inguinal hernia repair are believed to result in less chronic pain than permanent meshes, but concerns remain whether absorbable meshes result in an increased risk of recurrence. The aim of this study was to present an overview of the advantages and limitations...... of fully absorbable meshes for the repair of inguinal hernias, focusing mainly on postoperative pain and recurrence. METHODS: This systematic review with meta-analyses is based on searches in PubMed, Embase, Cochrane, and Psychinfo. Included study designs were case series, cohort studies, randomized...... controlled trials (RCTs), and non-RCTs. Studies had to include adult patients undergoing an inguinal hernia repair with a fully absorbable mesh. RESULTS: The meta-analyses showed no difference in recurrence rates (median 18 months follow-up) and chronic pain rates (1 year follow-up) between absorbable...

  10. A Multilayer Rubber Board Radar Absorbing Material

    Directory of Open Access Journals (Sweden)

    HE Shan

    2016-08-01

    Full Text Available Based on the theory of impedance matching, a multilayer absorbing material with the "pitfall" structure was designed. The multilayer absorbing material with 5 layers was obtained by optimization of the schemes, and the material shows 2 absorbing peaks in the broadband of 2~18 GHz frequencies. The peak in high frequencies can be adjusted with no effect on the peak in low frequencies through changing the thickness of the fifth layer. The changes of input impedances were displayed by analyzing the impedance chart. The prepared multilayer absorbing material was named JB-5, which processes the reflectivity no more than -12 dB in 6~17 GHz with the thickness no more than 5 mm and a good performance of standing the environment. The absorbing material can be produced in laboratory and pasted on surfaces of target with special adhesive by trimmed into required shapes so as to reduce the reflection of electromagnetic waves effectively.

  11. The influence of feature sidewall tolerance on minimum absorber thickness for LIGA x-ray masks

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Griffiths; J. M. Hruby; A. Ting

    1999-02-01

    Minimizing mask absorber thickness is an important practical concern in producing very small features by the LIGA process. To assist in this minimization, the authors have developed coupled numerical models describing both the exposure and development of a thick PMMA resist. The exposure model addresses multi-wavelength, one-dimensional x-ray transmission through multiple beam filters, through the mask substrate and absorber, and the subsequent attenuation and photon absorption in the PMMA resist. The development model describes one-dimensional dissolution of a feature and its sidewalls, taking into account the variation in absorbed dose through the PMMA thickness. These exposure and development models are coupled in a single interactive code, permitting the automated adjustment of mask absorber thickness to yield a prescribed sidewall taper or dissolution distance. They have used this tool to compute the minimum required absorber thickness yielding a prescribed sidewall tolerance for exposures performed at the ALS, SSRL and NSLS synchrotron sources. Results are presented as a function of the absorbed dose for a range of the prescribed sidewall tolerance, feature size, PMMA thickness, mask substrate thickness and the development temperature.

  12. Pharmacokinetics and dose proportionality of ceftibuten in men.

    OpenAIRE

    Lin, C; Lim, J; Radwanski, E; Marco, A; Affrime, M

    1995-01-01

    The pharmacokinetics and dose proportionality of ceftibuten were evaluated in healthy male volunteers receiving single oral doses of 200, 400, and 800 mg of ceftibuten. The drug was absorbed with similar times to the maximum concentration of drug in plasma for all three doses. Concentrations of ceftibuten in plasma increased with increasing dose. Analysis of variance was carried out on the dose-adjusted values for the maximum concentration of drug in plasma and the area under the plasma conce...