WorldWideScience

Sample records for astrogeology

  1. The U.S. Geological Survey Astrogeology Science Center

    Science.gov (United States)

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  2. The fourth Arab Impact Cratering and Astrogeology Conference (AICAC IV), April 9-12, 2017, Algiers (Algeria)

    Science.gov (United States)

    Belhaï, D.; Chennaoui-Aoudjehane, H.; Baratoux, D.; Ferrière, L.; Lamali, A.; Sahoui, R.; Lambert, P.; Ayadi, A.

    2017-09-01

    We present a report about the fourth Arab Impact Cratering and Astrogeology Conference (AICAC IV) that took place in Algiers at the USTHB (Université des Sciences et Technologie Houari Boumedienne, Algiers, Algeria) in the presence of the presidents of the USTHB and Boumerdès Universities, the Director of CRAAG (Centre de Recherche en Astronomie, Astrophysique et Géophysique), and the General Director of the National Administration for Scientific Research (NASR/DGRSDT). This series of conferences aims to promote research interest for impact cratering in the Arab world and beyond, including for instance in African countries. In spite of persistently restraining travel measures to Algeria, the fourth edition held in Algiers was marked by continuous international participation, with participants from seven different countries. This conference focused on presentations of scientific results in the research fields related to planetology, meteorites, and impact craters. In particular, the Algerian impact structures were under the spotlights during both oral and poster sessions. During this conference, the presence of freshly graduated Ph.D. students and new Ph.D. projects related to impact cratering or meteoritic science was a positive sign for the consolidation of research groups in this domain in the Arab world and Africa. Therefore, international cooperation or external support and funding are still needed to ensure the development of this scientific discipline in this part of the world.

  3. The Second Arab Impact Cratering and Astrogeology Conference, Casablanca, 14-20 November 2011—A bridge between geoscientists and astronomers

    Science.gov (United States)

    Baratoux, David; Reimold, Wolf Uwe; Chennaoui-Aoudjehane, Hassna

    2012-06-01

    We present here a report following the Second Arab Impact Cratering and Astrogeology Conference that took place in Casablanca in November 2011. It includes a summary of the main results presented at this meeting and recent developments in impact science in the Arab world. Known and potential impact structures in this region of the world are presented on a map. The conference ended with a synopsis and a list of recommendations that are reported here. We conclude with some remarkable aspects of the postconference field trip.

  4. The User Experience: Developing an Integrated Photogrammetric Control Environment (IPCE) for Planetary Mapping

    Science.gov (United States)

    Edmundson, K. L.; Archinal, B. A.; Backer, J. C.; Barrett, J. M.; Becker, K. J.; Becker, T. L.; Bonn, J. P.; Cook, D. A.; Hahn, M. A.; Humphrey, I. R.; Lambright, S.; Lee, E. M.; Mapel, J. A.; Oyama, K. A.; Paquette, A. C.; Shepherd, M. R.; Sides, S. C.; Sucharski, T. L.; Weller, L. A.

    2017-06-01

    The USGS Astrogeology Science Center is developing in ISIS3 an interactive user interface that integrates all aspects of the photogrammetric control process in a single environment. Here we provide a progress update on this work.

  5. Special Issue on Earth Science: The View From '76

    Science.gov (United States)

    Geotimes, 1976

    1976-01-01

    Presents the latest developments concerning the following topics: astrogeology, coal, deep sea drilling project, engineering geology; environmental geology, exploration geophysics, geochemistry, geodynamics project, hydrology, industrial minerals, international geology, mapping, mathematical geology, metals, mineralogy, oil and gas, invertebrate…

  6. An online planetary exploration tool: ;Country Movers;

    Science.gov (United States)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  7. Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts

    Science.gov (United States)

    Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In

  8. Photogrammetric Processing of Apollo 15 Metric Camera Oblique Images

    Science.gov (United States)

    Edmundson, K. L.; Alexandrov, O.; Archinal, B. A.; Becker, K. J.; Becker, T. L.; Kirk, R. L.; Moratto, Z. M.; Nefian, A. V.; Richie, J. O.; Robinson, M. S.

    2016-06-01

    The integrated photogrammetric mapping system flown on the last three Apollo lunar missions (15, 16, and 17) in the early 1970s incorporated a Metric (mapping) Camera, a high-resolution Panoramic Camera, and a star camera and laser altimeter to provide support data. In an ongoing collaboration, the U.S. Geological Survey's Astrogeology Science Center, the Intelligent Robotics Group of the NASA Ames Research Center, and Arizona State University are working to achieve the most complete cartographic development of Apollo mapping system data into versatile digital map products. These will enable a variety of scientific/engineering uses of the data including mission planning, geologic mapping, geophysical process modelling, slope dependent correction of spectral data, and change detection. Here we describe efforts to control the oblique images acquired from the Apollo 15 Metric Camera.

  9. What Do Informal Educators Need To Be Successful In Teaching Planetary Science And Engineering?: Results From The PLANETS Out-Of-School Time Educator Needs Assessment (NASA NNX16AC53A)

    Science.gov (United States)

    Clark, J.; Bloom, N.

    2016-12-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is five-year interdisciplinary and cross-institutional partnership to develop and disseminate out-of-school time curricular and professional development modules that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU), the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Museum of Science (MOS) Boston are partners in developing, piloting, and researching the impact of three out of school time planetary science and engineering curriculum and related professional development units over the life of the project. Critical to the success of out-of-school time curriculum implementation is to consider the needs of the informal education leaders. The CSTL at NAU is conducting a needs-assessment of OST educators nationwide to identify the gaps between current knowledge and abilities of OST educators and the knowledge and abilities necessary in order to facilitate effective STEM educational experiences for youth. The research questions are: a. What are current conditions of OST programs and professional development for OST educators? b. What do OST educators and program coordinators already know and think about facilitating meaningful and high quality STEM instruction? c. What are perceived needs of OST educators and program coordinators in order to implement meaningful and high quality STEM instruction? d. What design decisions will make professional development experiences more accessible, acceptable and useful to OST educators and program coordinators? In this presentation we will share the preliminary results of the national survey. The information about the needs of informal STEM educators can inform other NASA Science Mission Directorate educational partners in their program development in addition to AGU members designing informal education outreach.

  10. Gazetteer of planetary nomenclature 1994

    Science.gov (United States)

    Batson, Raymond M.; Russell, Joel F.

    1995-01-01

    Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.

  11. Testing geoscience data visualization systems for geological mapping and training

    Science.gov (United States)

    Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.

    2008-09-01

    Traditional methods of planetary geological mapping have relied on photographic hard copy and light-table tracing and mapping. In the last several decades this has given way to the availability and analysis of multiple digital data sets, and programs and platforms that permit the viewing and manipulation of multiple annotated layers of relevant information. This has revolutionized the ability to incorporate important new data into the planetary mapping process at all scales. Information on these developments and approaches can be obtained at http://astrogeology.usgs. gov/ Technology/. The processes is aided by Geographic Information Systems (GIS) (see http://astrogeology. usgs.gov/Technology/) and excellent analysis packages (such as ArcGIS) that permit co-registration, rapid viewing, and analysis of multiple data sets on desktop displays (see http://astrogeology.usgs.gov/Projects/ webgis/). We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional

  12. Crater studies: Part A: lunar crater morphometry

    Science.gov (United States)

    Pike, Richard J.

    1973-01-01

    Morphometry, the quantitative study of shape, complements the visual observation and photointerpretation in analyzing the most outstanding landforms of the Moon, its craters (refs. 32-1 and 32-2). All three of these interpretative tools, which were developed throughout the long history of telescopic lunar study preceding the Apollo Program, will continue to be applicable to crater analysis until detailed field work becomes possible. Although no large (>17.5 km diameter) craters were examined in situ on any of the Apollo landings, the photographs acquired from the command modules will markedly strengthen results of less direct investigations of the craters. For morphometry, the most useful materials are the orbital metric and panoramic photographs from the final three Apollo missions. These photographs permit preparation of contour maps, topographic profiles, and other numerical data that accurately portray for the first time the surface geometry of lunar craters of all sizes. Interpretations of craters no longer need be compromised by inadequate topographic data. In the pre-Apollo era, hypotheses for the genesis of lunar craters usually were constructed without any numerical descriptive data. Such speculations will have little credibility unless supported by accurate, quantitative data, especially those generated from Apollo orbital photographs. This paper presents a general study of the surface geometry of 25 far-side craters and a more detailed study of rim-crest evenness for 15 near-side and far-side craters. Analysis of this preliminary sample of Apollo 15 and 17 data, which includes craters between 1.5 and 275 km in diameter, suggests that most genetic interpretations of craters made from pre-Apollo topographic measurements may require no drastic revision. All measurements were made from topographic profiles generated on a stereoplotter at the Photogrammetric Unit of the U.S. Geological Survey, Center of Astrogeology, Flagstaff, Arizona.

  13. Desert Research and Technology Study 2003 Trip Report/ICES Paper

    Science.gov (United States)

    Ross, Amy; Kosmo, Joseph J.; Janoiko, Barbara; Eppler, Dean

    2004-01-01

    The Advanced Extra-vehicular Activity (EVA) team of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) participated in the Desert Research and Technology Study (RATS) in September 2003, at Meteor Crater, AZ. The Desert RATS is an integrated remote field site te t with team members from several NASA centers (Johnson Space Center; Glenn and Ames Research Centers) and universities (Bowling Green State University, University of Cincinnati, Massachusetts Institute of Technology) participating. Each week of the two-week field test had a primary focus. The primary test hardware for the first week was the I-Gravity Lunar Rover Training Vehicle, or Grover, which was on loan to NASA from the United States Geological Survey (USGS) Astrogeology Research Program. The 2003 Grover driving test results serve as a rover performance characterization baseline for the Science, Crew, Operation and Utility Testbed (SCOUT) project team, which will be designing and fabricating a next generation roving vehicle prototype in Fiscal Year (FY) 2004. The second week of testing focused on EVA geologic traverses that utilized a geologic sample field analysis science trailer and also focused on human-robotic interaction between the suited subjects and the EVA Robotic Assistant (ERA). This paper will review the Advanced EVA team's role in the context of the overall Desert RATS, as well as the EVA team results and lessons learned. For information regarding other test participants' results, the authors can refer interested parties to the test reports produced by those Desert RATS teams.

  14. Map of the Pluto System - Children's Edition

    Science.gov (United States)

    Hargitai, H. I.

    2016-12-01

    Cartography is a powerful tool in the scientific visualization and communication of spatial data. Cartographic visualization for children requires special methods. Although almost all known solid surface bodies in the Solar System have been mapped in detail during the last more than 5 decades, books and publications that target children, tweens and teens never include any of the cartographic results of these missions. We have developed a series of large size planetary maps with the collaboration of planetary scientists, cartographers and graphic artists. The maps are based on photomosaics and DTMs that were redrawn as artwork. This process necessarily involved generalization, interpretation and transformation into the visual language that can be understood by children. In the first project we selected six planetary bodies (Venus, the Moon, Mars, Io, Europa and Titan) and invited six illustrators of childrens'books. Although the overall structure of the maps look similar, the visual approach was significantly different. An important addition was that the maps contained a narrative: different characters - astronauts or "alien-like lifeforms" - interacted with the surface. The map contents were translated into 11 languages and published online at https://childrensmaps.wordpress.com.We report here on the new map of the series. Following the New Horizons' Pluto flyby we have started working on a map that, unlike the others, depicts a planetary system, not only one body. Since only one hemisphere was imaged in high resolution, this map is showing the encounter hemispheres of Pluto and Charon. Projected high resolution image mosaics with informal nomenclature were provided by the New Horizons Team. The graphic artist is Adrienn Gyöngyösi. Our future plan is to produce a book format Children's Atlas of Solar System bodies that makes planetary cartographic and astrogeologic results more accessible for children, and the next generation of planetary scientists among them.

  15. Planetary Nomenclature: An Overview and Update for 2017

    Science.gov (United States)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    database and the naming process can be sent to Rosalyn Hayward, USGS Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, or by email to rhayward@usgs.gov.

  16. Summary and abstracts of the Planetary Data Workshop, June 2012

    Science.gov (United States)

    Gaddis, Lisa R.; Hare, Trent; Beyer, Ross

    2014-01-01

    and missions were represented. Presentations (some in video format) and tutorials are posted on the meeting site (http://astrogeology.usgs.gov/groups/Planetary-Data-Workshop).

  17. Estimating the spectral slope of the lunar Reiner Gamma swirl feature using measurements made by the SMART-1 near-infrared spectrometer SIR

    Science.gov (United States)

    Kaydash, V.; Mall, U.; Vilenius, E.; SIR Collaboration

    ]. References. [1] U. Mall, A. Nathues, H.U. Keller. in Sensors, Systems, and Next- Generation Satellites VII, Proc. SPIE, Vol. 5234, doi: 10.1117/12.511063 (2004). [2] E. Vilenius et al., This volume (2006). [3] P. Pinet et al, J.Geophys. Res., 105, 9457. (2000). [4] http://astrogeology.usgs.gov/Projects/ClementineNIR/ [5] Y. Shkuratov et al., Icarus, 137, 2. pp. 235-246. (1999). [6] S. D. Chevrel et al., LPSC XXXVII, Abstract #1173. (2006).

  18. Planetary Science Educational Materials for Out-of-School Time Educators

    Science.gov (United States)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices

  19. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Nampa, Idaho 2006

    Science.gov (United States)

    Gregg, Tracy K. P.; Tanaka, Kenneth L.; Saunders, R. Stephen

    2006-01-01

    Approximately 18 people attended this year's mappers meeting, and many more submitted abstracts and maps in absentia. The meeting was held on the campus of Northwest Nazarene University (NNU), and was graciously hosted by NNU's School of Health and Science. Planetary mapper Dr. Jim Zimbelman is an alumnus of NNU, and he was pivotal in organizing the meeting at this location. Oral and poster presentations were given on Friday, June 30. Drs. Bill Bonnichsen and Marty Godchaux led field excursions on July 1 and 2. USGS Astrogeology Team Chief Scientist Lisa Gaddis led the meeting with a brief discussion of the status of the planetary mapping program at USGS, and a more detailed description of the Lunar Mapping Program. She indicated that there is now a functioning website (http://astrogeology.usgs.gov/Projects/PlanetaryMapping/Lunar/) which shows which lunar quadrangles are available to be mapped. Like other USGS-published maps, proposals to complete a lunar geologic map must be submitted to the regular Planetary Geology & Geophysics (PGG) program for peer review. Jim Skinner (USGS) later presented the progress of the 1:2.5M-scale map of the lunar Copernicus quadrangle, and demonstrated the wide range of data that are available to support these maps. Gaddis and Skinner encouraged the community to submit proposals for generating lunar geologic maps, and reminded us that, as for all planetary maps, the project must be science-driven. Venus mapper Jim Zimbelman of the Smithsonian Institution (SI) presented the progress for his V-15 and V-16 quadrangles; Vicki Hansen (University of Minnesota Duluth) showed her preliminary work on V-45. Zimbelman addressed an issue that has been plaguing the community: 'delinquent Venus mappers'. In short, there were a number of Venus maps funded in the early 1990s under the Venus Data Analysis Program (VDAP). Unfortunately, funding for this program was cut before many Venus maps could be completed, resulting in about 10 Venus maps that

  20. Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces

    Science.gov (United States)

    Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent

    2017-04-01

    Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary

  1. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    Science.gov (United States)

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    Science Institute, 2009. [15] K. L. Tanaka,et al. North polar region of mars: Advances in stratigraphy, structure, and erosional modification, AUG 2008. Icarus. [16] USGS. Planetary image processing software: ISIS3. http://isis.astrogeology.usgs.gov/

  2. Topomapping of Mars with HRSC images, ISIS, and a commercial stereo workstation

    Science.gov (United States)

    Kirk, R. L.; Howington-Kraus, E.; Galuszka, D.; Redding, B.; Hare, T. M.

    detail at the limit of image resolution while retaining consistency with the stereo and MOLA data over longer distances. Because photoclinometry serves merely as a form of "smart interpolation" to fill in local details in the stereo DTM, the complications that can arise in the general case [10] do not occur, and this processing can be carried out unsupervised. We note in conclusion that orthorectification of the images, photometric normalization and modeling, and photoclinometry are all performed with the free software system ISIS. At the moment, the commercial software SOCET SET is required for both bundle adjustment and stereo DTM production. The USGS is currently developing its own bundle adjustment software for HRSC and other line scanners, which, when available, will make it possible for ISIS users to control HRSC images to MOLA and therefore to use the altimetric topography in subsequent processing and analysis steps similar to those described here. Acknowledgement: For this study, the HRSC Experiment Team of the German Aerospace Center (DLR) in Berlin has provided HRSC Preliminary 200m DTM(s). References: [1] Neukum, G., et al. (2004) Nature, 432, 971. [2] Scholten, F., et al. (2005) PE&RS, 71, 1143. [3] Gwinner, K., et al. (2005) PFG, 5, 387. [4] Albertz, J., et al. (2005) PE&RS, 71, 1153. [5] Heipke, C., et al. (2006) IAPRS, submitted. [6] Kirk, R.L., et al. (2003) JGR, 108, 8088. [7] Eliason, E. (1997) LPS XXVIII, 331; Gaddis et al. (1997) LPS XXVIII, 387; Torson, J., and K. Becker, (1997) LPS XXVIII, 1443. [8] Miller, S.B., and A.S. Walker (1993) ACSM/ASPRS Annual Conv., 3, 256; S.B., and A.S. Walker (1995) Z. Phot. Fern. 63, 4. [9] Kirk, R.L. (1987) Ph.D. Thesis, Caltech, Part III. [10] Kirk, R.L., et al. (2003) ISPRS-ET Workshop, http://astrogeology.usgs.gov/Projects/ISPRS/Meetings/Houston2003/abstracts/ Kirk_isprs_mar03.pdf. 4