WorldWideScience

Sample records for asteroid multi-band imaging

  1. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  2. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  3. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  4. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera

    Science.gov (United States)

    Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert

    2018-03-01

    Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.

  5. Pattern-based compression of multi-band image data for landscape analysis

    CERN Document Server

    Myers, Wayne L; Patil, Ganapati P

    2006-01-01

    This book describes an integrated approach to using remotely sensed data in conjunction with geographic information systems for landscape analysis. Remotely sensed data are compressed into an analytical image-map that is compatible with the most popular geographic information systems as well as freeware viewers. The approach is most effective for landscapes that exhibit a pronounced mosaic pattern of land cover. The image maps are much more compact than the original remotely sensed data, which enhances utility on the internet. As value-added products, distribution of image-maps is not affected by copyrights on original multi-band image data.

  6. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    Science.gov (United States)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  7. INVESTIGATION OF PARALLAX ISSUES FOR MULTI-LENS MULTISPECTRAL CAMERA BAND CO-REGISTRATION

    Directory of Open Access Journals (Sweden)

    J. P. Jhan

    2017-08-01

    Full Text Available The multi-lens multispectral cameras (MSCs, such as Micasense Rededge and Parrot Sequoia, can record multispectral information by each separated lenses. With their lightweight and small size, which making they are more suitable for mounting on an Unmanned Aerial System (UAS to collect high spatial images for vegetation investigation. However, due to the multi-sensor geometry of multi-lens structure induces significant band misregistration effects in original image, performing band co-registration is necessary in order to obtain accurate spectral information. A robust and adaptive band-to-band image transform (RABBIT is proposed to perform band co-registration of multi-lens MSCs. First is to obtain the camera rig information from camera system calibration, and utilizes the calibrated results for performing image transformation and lens distortion correction. Since the calibration uncertainty leads to different amount of systematic errors, the last step is to optimize the results in order to acquire a better co-registration accuracy. Due to the potential issues of parallax that will cause significant band misregistration effects when images are closer to the targets, four datasets thus acquired from Rededge and Sequoia were applied to evaluate the performance of RABBIT, including aerial and close-range imagery. From the results of aerial images, it shows that RABBIT can achieve sub-pixel accuracy level that is suitable for the band co-registration purpose of any multi-lens MSC. In addition, the results of close-range images also has same performance, if we focus on the band co-registration on specific target for 3D modelling, or when the target has equal distance to the camera.

  8. The TRICLOBS Dynamic Multi-Band Image Data Set for the Development and Evaluation of Image Fusion Methods.

    Directory of Open Access Journals (Sweden)

    Alexander Toet

    Full Text Available The fusion and enhancement of multiband nighttime imagery for surveillance and navigation has been the subject of extensive research for over two decades. Despite the ongoing efforts in this area there is still only a small number of static multiband test images available for the development and evaluation of new image fusion and enhancement methods. Moreover, dynamic multiband imagery is also currently lacking. To fill this gap we present the TRICLOBS dynamic multi-band image data set containing sixteen registered visual (0.4-0.7μm, near-infrared (NIR, 0.7-1.0μm and long-wave infrared (LWIR, 8-14μm motion sequences. They represent different military and civilian surveillance scenarios registered in three different scenes. Scenes include (military and civilian people that are stationary, walking or running, or carrying various objects. Vehicles, foliage, and buildings or other man-made structures are also included in the scenes. This data set is primarily intended for the development and evaluation of image fusion, enhancement and color mapping algorithms for short-range surveillance applications. The imagery was collected during several field trials with our newly developed TRICLOBS (TRI-band Color Low-light OBServation all-day all-weather surveillance system. This system registers a scene in the Visual, NIR and LWIR part of the electromagnetic spectrum using three optically aligned sensors (two digital image intensifiers and an uncooled long-wave infrared microbolometer. The three sensor signals are mapped to three individual RGB color channels, digitized, and stored as uncompressed RGB (false color frames. The TRICLOBS data set enables the development and evaluation of (both static and dynamic image fusion, enhancement and color mapping algorithms. To allow the development of realistic color remapping procedures, the data set also contains color photographs of each of the three scenes. The color statistics derived from these photographs

  9. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    Science.gov (United States)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding

  10. Deep Interior: Radio Reflection Tomographic Imaging of Earth-Crossing Asteroids

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Safaeinili, A.; Klaasen, K.; Ostro, S.; Yeomans, D.; Plaut, J.

    2004-12-01

    Near-Earth Objects (NEOs) present an important scientific question and an intriguing space hazard. They are scrutinized by a number of large, dedicated groundbased telescopes, and their diverse compositions are represented by thousands of well-studied meteorites. A successful program of NEO spacecraft exploration has begun, and we are proposing Deep Interior as the next logical step. Our mission objective is to image the deep interior structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Asteroid Interiors. Our mission's RRT technique is like a CAT scan from orbit. Closely sampled radar echoes yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. Exteriors. We use color imaging to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Diversity. We first visit a common, primitive, S-type asteroid. We next visit an asteroid that was perhaps blasted from the surface of a differentiated asteroid. We attain an up-close and inside look at two taxonomic archetypes spanning an important range of NEO mass and spin rate. Scientific focus is achieved by keeping our payload simple: Radar. A 30-m (tip-to-tip) cross-dipole antenna system operates at 5 and 15-MHz, with electronics heritage from JPL's MARSIS contribution to Mars Express, and antenna heritage from IMAGE and LACE. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few 100 m or more. They bracket the diversity of solar system materials that we are likely to

  11. Developing methods of determining unknown roational periods of asteroids via observations of (3122) Florence by the Harvard Observing Project

    Science.gov (United States)

    Abrams, Natasha Sarah; Bieryla, Allyson; Gomez, Sebastian; Huang, Jane; Lewis, John; Todd, Zoe; Alam, Munazza; Carmichael, Theron; Garrison, Lehman H.; Weaver, Ian; Chen, Chen; McGruder, Chima; Medina, Amber

    2018-06-01

    (3122) Florence is an asteroid that made the headlines with its close approach to Earth in late 2017. It is one of the biggest and brightest near-Earth asteroids that has been discovered and it has recently been found to have two moons. By observing the light reflected off an asteroid, we can measure its brightness over time and determine the rotational period of the asteroid. An asteroid’s rotational period can reveal information about its physical characteristics, such as its shape, and further our knowledge about processes that contribute to asteroid rotation in general. The Harvard Observing Project (HOP) is an initiative that allows undergraduates to learn about observational astronomy and take part in formal data collection and analysis. Over the course of the fall 2017 semester, HOP obtained four multi-hour, continuous observations in the R-band of the asteroid using the Harvard University 16-inch Clay Telescope. In our analysis, we reduced the images and performed astrometry and photometry on the data. The asteroid’s light curve was produced using AstroImageJ and we used the Python package gatspy to determine its rotational period. We found the rotational period to be 2.22 hours +/- 0.25, which agrees with the known rotational period of 2.3580 hours +/- 0.0002. This spring 2018 semester we are applying our methods to data collected on asteroids with unknown rotational periods and plan to present our findings.

  12. Multi-color lightcurve observation of the asteroid (163249) 2002 GT

    Science.gov (United States)

    Oshima, M.; Abe, S.

    2014-07-01

    NASA's Deep Impact/EPOXI spacecraft plans to encounter the asteroid (163249) 2002 GT, classified as a PHA (Potentially Hazardous Asteroid), on January 4, 2020. However, the taxonomic type and spin state of 2002 GT remain to be determined. We have carried out ground-based multi-color (B-V-R-I) lightcurve observations taking advantage of the 2002 GT Characterization Campaign by NASA. Multi-color lightcurve measurements allow us to estimate the rotation period and obtain strong constraints on the shape and pole orientation. Here we found that the rotation period of 2002 GT is estimated to be 3.7248 ± 0.1664 h. In mid-2013, 2002 GT passed at 0.015 au from the Earth, resulting an exceptional opportunity for ground-based characterization. Using the 0.81-m telescope of the Tenagra Observatory (110°52'44.8''W, +31°27'44.4''N, 1312 m) in Arizona, USA, and the Johnson-Cousins BVRI filters, we have found lightcurves of 2002 GT (Figure). The Tenagra II 0.81-m telescope is used for research of the Hayabusa2 target Asteroid (162173) 1999 JU_3. The lightcurves (relative magnitude) show that the rotation period of 2002 GT, the target of NASA's Deep Impact/EPOXI spacecraft, is estimated to be 3.7248 ± 0.1664 hr. On June 9, 2013, we had 7 hours of ground-based observations on 2002 GT from 4:00 to 11:00 UTC. The number of comparison stars for differential photometry was 34. Because of tracking the fast-moving asteroid, it was necessary to have the same comparison star among the fields of vision. We have also obtained absolute photometry of 2002 GT on June 13, 2013.

  13. Precise Multi-Spectral Dermatological Imaging

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2004-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...

  14. DETECTION OF ROTATIONAL SPECTRAL VARIATION ON THE M-TYPE ASTEROID (16) PSYCHE

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Juan A.; Thomas, Cristina [Planetary Science Institute, Tucson, AZ 85719 (United States); Reddy, Vishnu [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Shepard, Michael K. [Bloomsburg University, Bloomsburg, PA 17815 (United States); Cloutis, Edward A.; Kiddell, Cain; Applin, Daniel [Department of Geography, University of Winnipeg, Winnipeg, Manitoba (Canada); Takir, Driss [Astrogeology Science Center, U.S. Geological Survey, Flagstaff, AZ 86001 (United States); Conrad, Albert, E-mail: jsanchez@psi.edu [LBT Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-01-01

    The asteroid (16) Psyche is of scientific interest because it contains ∼1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7–2.5 μ m) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ∼0.92 to 0.94 μ m. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs{sub 30}En{sub 65}Wo{sub 5}. Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.

  15. DETECTION OF ROTATIONAL SPECTRAL VARIATION ON THE M-TYPE ASTEROID (16) PSYCHE

    International Nuclear Information System (INIS)

    Sanchez, Juan A.; Thomas, Cristina; Reddy, Vishnu; Shepard, Michael K.; Cloutis, Edward A.; Kiddell, Cain; Applin, Daniel; Takir, Driss; Conrad, Albert

    2017-01-01

    The asteroid (16) Psyche is of scientific interest because it contains ∼1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7–2.5 μ m) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ∼0.92 to 0.94 μ m. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs 30 En 65 Wo 5 . Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.

  16. Detection of Rotational Spectral Variation on the M-type Asteroid (16) Psyche

    Science.gov (United States)

    Sanchez, Juan A.; Reddy, Vishnu; Shepard, Michael K.; Thomas, Cristina; Cloutis, Edward A.; Takir, Driss; Conrad, Albert; Kiddell, Cain; Applin, Daniel

    2017-01-01

    The asteroid (16) Psyche is of scientific interest because it contains ˜1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7-2.5 μm) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ˜0.92 to 0.94 μm. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs30En65Wo5. Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.

  17. Near-Earth Asteroid Rendezvous: mission overview

    Science.gov (United States)

    Cheng, A. F.; Santo, A. G.; Heeres, K. J.; Landshof, J. A.; Farquhar, R. W.; Gold, R. E.; Lee, S. C.

    1997-10-01

    The Near-Earth Asteroid Rendezvous (NEAR) mission, the first launch of NASA's Discovery Program, will be the first mission to orbit an asteroid. NEAR will make the first comprehensive scientific measurements of an asteroid's surface composition, geology, physical properties, and internal structure. NEAR launched successfully on February 17, 1996, aboard a Delta II-7925. It will orbit the 20-km-diameter near-Earth asteroid 433 Eros for about 1 year, at a minimum orbit radius of about 35 km from the center of the asteroid. The NEAR is a solar-powered, three-axis stabilized spacecraft with a launch mass including propellant of 805 kg. NEAR uses X band telemetry to the NASA Deep Space Network, with the data rates at Eros up to 8.8 kbits/s using a 34-m High Efficiency (HEF) dish, and up to 26.5 kbits/s using a 70-m dish. A solid-state recorder is accommodated with a memory capacity of 1.8 Gbytes. Attitude control is to 1.7 mrad, line-of-sight pointing stability is within 50 μrad over 1 s, and post processing attitude knowledge is within 50 μrad. NEAR accommodates 56 kg of instruments and provides them with 84 W. The instruments are a multispectral imager (MSI), a near-infrared spectrograph (NIS), an X ray/gamma ray spectrometer (XRS/GRS), a magnetometer (MAG), and a laser rangefinder (NLR), while a radio science (RS) investigation uses the coherent X band transponder. NEAR will make a flyby of the C-type asteroid 253 Mathilde in June 1997 and will rendezvous with 433 Eros in February 1999. It will execute an initial slow flyby of Eros, with a flyby speed of 5 m/s and a closest approach distance of 500 km. Subsequently, its orbit will be lowered to 35 km. The NEAR Mission Operations Center and the Science Data Center are at the Johns Hopkins Applied Physics Laboratory. The Science Data Center will maintain the entire NEAR data set on-line, and data from all instruments can be accessed by every member of the NEAR Science Team. Data, including images, are released over

  18. PHYSICAL PARAMETERS OF ASTEROIDS ESTIMATED FROM THE WISE 3-BAND DATA AND NEOWISE POST-CRYOGENIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, A.; Masiero, J.; Bauer, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); McMillan, R. S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Nugent, C. R. [Department of Earth and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567, Los Angeles, CA 90095-1567 (United States); Tholen, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Walker, R. [Monterey Institute for Research in Astronomy, Monterey, CA 93933 (United States); Wright, E. L., E-mail: amainzer@jpl.nasa.gov [Department of Physics and Astronomy, UCLA, P.O. Box 91547, Los Angeles, CA 90095-1547 (United States)

    2012-11-20

    Enhancements to the science data processing pipeline of NASA's Wide-field Infrared Survey Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of >158,000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASA's Planetary Science Directorate funded a four-month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of {approx}6500 large Main Belt asteroids and 86 NEOs in its 3.4 and 4.6 {mu}m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.

  19. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  20. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    Science.gov (United States)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  1. Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results

    Science.gov (United States)

    Clark, Beth Ellen; Shepard, M.; Bus, S. J.; Vilas, F.; Rivkin, A. S.; Lim, L.; Lederer, S.; Jarvis, K.; Shah, S.; McConnochie, T.

    2004-01-01

    The August 2003 apparition of asteroid 2100 Ra-Shalom brought together a collaboration of observers with the goal of obtaining rotationally resolved multiwavelength spectra at each of 5 facilities: infrared spectra at the NASA Infrared Telescope Facility (Clark and Shepard), radar images at Arecibo (Shepard and Clark), thermal infrared spectra at Palomar (Lim, McConnochie and Bell), visible spectra at McDonald Observatory (Vilas, Lederer and Jarvis), and visible lightcurves at Ondrojev Observatory (Pravec). The radar data was to be used to develop a high spatial resolution physical model to be used in conjunction with spectral data to investigate compositional and textural properties on the near surface of Ra Shalom as a function of rotation phase. This was the first coordinated multi-wavelength investigation of any Aten asteroid. There are many reasons to study near-Earth asteroid (NEA) 2100 Ra-Shalom: 1) It has a controversial classification (is it a C- or K-type object)? 2) There would be interesting dynamical ramifications if Ra-Shalom is a K-type because most K-types come from the Eos family and there are no known dynamical pathways from Eos to the Aten population. 3) The best available spectra obtained previously may indicate a heterogeneous surface (most asteroids appear to be fairly homogeneous). 4) Ra-Shalom thermal observations obtained previously indicated a lack of regolith, minimizing the worry of space weathering effects in the spectra. 5) Radar observations obtained previously hinted at interesting surface structures. 6) Ra-Shalom is one of the largest Aten objects. And 7) Ra-Shalom is on a short list of proposed NEAs for spacecraft encounters and possible sample returns. Preliminary results from the visible, infrared, and thermal spectroscopy measurements will be presented here.

  2. Hungaria asteroid region telescopic spectral survey (HARTSS) I: Stony asteroids abundant in the Hungaria background population

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2017-07-01

    The Hungaria asteroids remain as survivors of late giant planet migration that destabilized a now extinct inner portion of the primordial asteroid belt and left in its wake the current resonance structure of the Main Belt. In this scenario, the Hungaria region represents a ;purgatory; for the closest, preserved samples of the asteroidal material from which the terrestrial planets accreted. Deciphering the surface composition of these unique samples may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) reflectance spectra in order to characterize their taxonomy, surface mineralogy, and potential meteorite analogs. The overall objective of HARTSS is to evaluate the compositional diversity of asteroids located throughout the Hungaria region. This region harbors a collisional family of Xe-type asteroids, which are situated among a background (i.e., non-family) of predominantly S-complex asteroids. In order to assess the compositional diversity of the Hungaria region, we have targeted background objects during Phase I of HARTSS. Collisional family members likely reflect the composition of one original homogeneous parent body, so we have largely avoided them in this phase. We have employed NIR instruments at two ground-based telescope facilities: the NASA Infrared Telescope Facility (IRTF), and the Telescopio Nazionale Galileo (TNG). Our data set includes the NIR spectra of 42 Hungaria asteroids (36 background; 6 family). We find that stony S-complex asteroids dominate the Hungaria background population (29/36 objects; ∼80%). C-complex asteroids are uncommon (2/42; ∼5%) within the Hungaria region. Background S-complex objects exhibit considerable spectral diversity as band parameter measurements of diagnostic absorption features near 1- and 2-μm indicate that several

  3. 3-µm Spectroscopy of Asteroid 16 Psyche

    Science.gov (United States)

    Takir, Driss; Reddy, Vishnu; Sanchez, Juan; Shepard, Michael K.

    2016-10-01

    Asteroid 16 Psyche, an M-type asteroid, is thought to be one of the most massive exposed iron metal object in the asteroid belt. The high radar albedos of Psyche suggest that this differentiated asteroid is dominantly composed of metal. Psyche was previously found to be featureless in the 3-µm spectral region. However, in our study we found that this asteroid exhibits a 3-µm absorption feature, possibly indicating the presence of hydrated silicates.We have observed Psyche in the 3-µm spectral region, using the long-wavelength cross-dispersed (LXD:1.9-4.2 µm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). For data reduction, we used the IDL (Interactive Data Language)-based spectral reduction tool Spextool (v4.1). Psyche was observed over the course of three nights with an apparent visual magnitude of ~9.50: 8 December 2015 (3 sets), 9 December 2015 (1 set), and 10 March 2016 (1 set). These observations have revealed that Psyche may exhibit a 3-µm absorption feature, similar to the sharp group in the 2.9-3.3-µm spectral range. Psyche also exhibits an absorption feature similar to the one in Ceres and Ceres-like group in the spectral 3.3-4.0-µm range. These 3-µm observational results revealed that Psyche may not be as featureless as once thought in the 3-µm spectral region.Evidence for the 3-µm band was found on the surfaces of many M-type asteroids and a number of plausible alternative interpretations for the presence of this 3-µm band were previously suggested. These interpretations include the presence of anhydrous silicates containing structural OH, the presence of fluid inclusions, the presence of xenolithic hydrous meteorite components on asteroid surfaces from impacts, solar wind-implanted H, or the presence of troilite. The detection of the Ceres-like feature in the 3.3-4.0-µm spectral range, however, would rule out some of these alternative interpretations, especially the solar wind-implanted H.

  4. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  5. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  6. Arecibo and Goldstone radar images of near-Earth Asteroid (469896) 2005 WC1

    Science.gov (United States)

    Lawrence, Kenneth J.; Benner, Lance A. M.; Brozovic, Marina; Ostro, Steven J.; Jao, Joseph S.; Giorgini, Jon D.; Slade, Martin A.; Jurgens, Raymond F.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A.

    2018-01-01

    We report radar observations of near-Earth asteroid (469896) 2005 WC1 that were obtained at Arecibo (2380 MHz, 13 cm) and Goldstone (8560 MHz, 3.5 cm) on 2005 December 14-15 during the asteroid's approach within 0.020 au The asteroid was a strong radar target. Delay-Doppler images with resolutions as fine as 15 m/pixel were obtained with 2 samples per baud giving a correlated pixel resolution of 7.5 m. The radar images reveal an angular object with 100 m-scale surface facets, radar-dark regions, and an estimated diameter of 400 ± 50 m. The rotation of the facets in the images gives a rotation period of ∼2.6 h that is consistent with the estimated period of 2.582 h ± 0.002 h from optical lightcurves reported by Miles (private communication). 2005 WC1 has a circular polarization ratio of 1.12 ± 0.05 that is one of the highest values known, suggesting a structurally-complex near-surface at centimeter to decimeter spatial scales. It is the first asteroid known with an extremely high circular polarization ratio, relatively low optical albedo, and high radar albedo.

  7. Imaging Asteroid 4 Vesta Using the Framing Camera

    Science.gov (United States)

    Keller, H. Uwe; Nathues, Andreas; Coradini, Angioletta; Jaumann, Ralf; Jorda, Laurent; Li, Jian-Yang; Mittlefehldt, David W.; Mottola, Stefano; Raymond, C. A.; Schroeder, Stefan E.

    2011-01-01

    The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters. Vesta will be observed from 3 orbit stages with image scales of 227, 63, and 17 m/px, respectively. The mapping of Vesta s surface with medium resolution will be only completed during the exit phase when the north pole will be illuminated. A detailed pointing strategy will cover the surface at least twice at similar phase angles to provide stereo views for reconstruction of the topography. During approach the phase function of Vesta was determined over a range of angles not accessible from earth. This is the first step in deriving the photometric function of the surface. Combining the topography based on stereo tie points with the photometry in an iterative procedure will disclose details of the surface morphology at considerably smaller scales than the pixel scale. The 7 color filters are well positioned to provide information on the spectral slope in the visible, the depth of the strong pyroxene absorption band, and their variability over the surface. Cross calibration with the VIR spectrometer that extends into the near IR will provide detailed maps of Vesta s surface mineralogy and physical properties. Georeferencing all these observation will result in a coherent and unique data set. During Dawn s approach and capture FC has already demonstrated its performance. The strong variation observed by the Hubble Space Telescope can now be correlated with surface units and features. We will report on results obtained from images taken during survey mode covering the whole illuminated surface. Vesta is a planet-like differentiated body, but its surface

  8. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  9. Asteroid 16 Psyche: Radar Observations and Shape Model

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James E.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine R.; Males, Jared; Morzinski, Kathleen M.; Miller Close, Laird; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Warner, Brian D.; Harris, Alan W.

    2016-10-01

    We observed 16 Psyche, the largest M-class asteroid in the main belt, using the S-band radar at Arecibo Observatory. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image [Hanus et al. Icarus 226, 1045-1057, 2013] and three multi-chord occultations. Our shape model has dimensions 279 x 232 x 189 km (±10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves [Hanus et al., 2013]. Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ~50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kg m-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ~40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  10. Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects

    Science.gov (United States)

    Joseph, R.; Courbin, F.; Starck, J.-L.

    2016-05-01

    We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html

  11. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  12. Multi sensor satellite imagers for commercial remote sensing

    Science.gov (United States)

    Cronje, T.; Burger, H.; Du Plessis, J.; Du Toit, J. F.; Marais, L.; Strumpfer, F.

    2005-10-01

    This paper will discuss and compare recent refractive and catodioptric imager designs developed and manufactured at SunSpace for Multi Sensor Satellite Imagers with Panchromatic, Multi-spectral, Area and Hyperspectral sensors on a single Focal Plane Array (FPA). These satellite optical systems were designed with applications to monitor food supplies, crop yield and disaster monitoring in mind. The aim of these imagers is to achieve medium to high resolution (2.5m to 15m) spatial sampling, wide swaths (up to 45km) and noise equivalent reflectance (NER) values of less than 0.5%. State-of-the-art FPA designs are discussed and address the choice of detectors to achieve these performances. Special attention is given to thermal robustness and compactness, the use of folding prisms to place multiple detectors in a large FPA and a specially developed process to customize the spectral selection with the need to minimize mass, power and cost. A refractive imager with up to 6 spectral bands (6.25m GSD) and a catodioptric imager with panchromatic (2.7m GSD), multi-spectral (6 bands, 4.6m GSD), hyperspectral (400nm to 2.35μm, 200 bands, 15m GSD) sensors on the same FPA will be discussed. Both of these imagers are also equipped with real time video view finding capabilities. The electronic units could be subdivided into the Front-End Electronics and Control Electronics with analogue and digital signal processing. A dedicated Analogue Front-End is used for Correlated Double Sampling (CDS), black level correction, variable gain and up to 12-bit digitizing and high speed LVDS data link to a mass memory unit.

  13. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  14. Multi-band transmission color filters for multi-color white LEDs based visible light communication

    Science.gov (United States)

    Wang, Qixia; Zhu, Zhendong; Gu, Huarong; Chen, Mengzhu; Tan, Qiaofeng

    2017-11-01

    Light-emitting diodes (LEDs) based visible light communication (VLC) can provide license-free bands, high data rates, and high security levels, which is a promising technique that will be extensively applied in future. Multi-band transmission color filters with enough peak transmittance and suitable bandwidth play a pivotal role for boosting signal-noise-ratio in VLC systems. In this paper, multi-band transmission color filters with bandwidth of dozens nanometers are designed by a simple analytical method. Experiment results of one-dimensional (1D) and two-dimensional (2D) tri-band color filters demonstrate the effectiveness of the multi-band transmission color filters and the corresponding analytical method.

  15. Mutual information registration of multi-spectral and multi-resolution images of DigitalGlobe's WorldView-3 imaging satellite

    Science.gov (United States)

    Miecznik, Grzegorz; Shafer, Jeff; Baugh, William M.; Bader, Brett; Karspeck, Milan; Pacifici, Fabio

    2017-05-01

    WorldView-3 (WV-3) is a DigitalGlobe commercial, high resolution, push-broom imaging satellite with three instruments: visible and near-infrared VNIR consisting of panchromatic (0.3m nadir GSD) plus multi-spectral (1.2m), short-wave infrared SWIR (3.7m), and multi-spectral CAVIS (30m). Nine VNIR bands, which are on one instrument, are nearly perfectly registered to each other, whereas eight SWIR bands, belonging to the second instrument, are misaligned with respect to VNIR and to each other. Geometric calibration and ortho-rectification results in a VNIR/SWIR alignment which is accurate to approximately 0.75 SWIR pixel at 3.7m GSD, whereas inter-SWIR, band to band registration is 0.3 SWIR pixel. Numerous high resolution, spectral applications, such as object classification and material identification, require more accurate registration, which can be achieved by utilizing image processing algorithms, for example Mutual Information (MI). Although MI-based co-registration algorithms are highly accurate, implementation details for automated processing can be challenging. One particular challenge is how to compute bin widths of intensity histograms, which are fundamental building blocks of MI. We solve this problem by making the bin widths proportional to instrument shot noise. Next, we show how to take advantage of multiple VNIR bands, and improve registration sensitivity to image alignment. To meet this goal, we employ Canonical Correlation Analysis, which maximizes VNIR/SWIR correlation through an optimal linear combination of VNIR bands. Finally we explore how to register images corresponding to different spatial resolutions. We show that MI computed at a low-resolution grid is more sensitive to alignment parameters than MI computed at a high-resolution grid. The proposed modifications allow us to improve VNIR/SWIR registration to better than ¼ of a SWIR pixel, as long as terrain elevation is properly accounted for, and clouds and water are masked out.

  16. Multi-Temporal vs. Hyper-Spectral Imaging for Future Land Imaging at 30 m

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to determine the information content of multi-temporal land imaging in discrete Landsat-like spectral bands at 30 m with a 360 km swath width and compare...

  17. DETECTION OF WATER AND/OR HYDROXYL ON ASTEROID (16) Psyche

    International Nuclear Information System (INIS)

    Takir, Driss; Reddy, Vishnu; Sanchez, Juan A.; Shepard, Michael K.; Emery, Joshua P.

    2017-01-01

    In order to search for evidence of hydration on M-type asteroid (16) Psyche, we observed this object in the 3 μ m spectral region using the long-wavelength cross-dispersed (LXD: 1.9–4.2 μ m) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Our observations show that Psyche exhibits a 3 μ m absorption feature, attributed to water or hydroxyl. The 3 μ m absorption feature is consistent with the hydration features found on the surfaces of water-rich asteroids, attributed to OH- and/or H 2 O-bearing phases (phyllosilicates). The detection of a 3 μ m hydration absorption band on Psyche suggests that this asteroid may not be a metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr. Our results also indicate rotational spectral variations, which we suggest reflect heterogeneity in the metal/silicate ratio on the surface of Psyche.

  18. DETECTION OF WATER AND/OR HYDROXYL ON ASTEROID (16) Psyche

    Energy Technology Data Exchange (ETDEWEB)

    Takir, Driss [U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ 86001 (United States); Reddy, Vishnu [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Sanchez, Juan A. [Planetary Science Institute, 1700 E Fort Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Shepard, Michael K. [Department of Geography and Geosciences, Bloomsburg University of Pennsylvania, 400 E. Second Street, Bloomsburg, PA 17815 (United States); Emery, Joshua P., E-mail: dtakir@usgs.gov [Earth and Planetary Science Department, Planetary Geosciences Institute, University of Tennessee, Knoxville, TN 37996 (United States)

    2017-01-01

    In order to search for evidence of hydration on M-type asteroid (16) Psyche, we observed this object in the 3 μ m spectral region using the long-wavelength cross-dispersed (LXD: 1.9–4.2 μ m) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Our observations show that Psyche exhibits a 3 μ m absorption feature, attributed to water or hydroxyl. The 3 μ m absorption feature is consistent with the hydration features found on the surfaces of water-rich asteroids, attributed to OH- and/or H{sub 2}O-bearing phases (phyllosilicates). The detection of a 3 μ m hydration absorption band on Psyche suggests that this asteroid may not be a metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr. Our results also indicate rotational spectral variations, which we suggest reflect heterogeneity in the metal/silicate ratio on the surface of Psyche.

  19. Detection of Water and/or Hydroxyl on Asteroid (16) Psyche

    Science.gov (United States)

    Takir, Driss; Reddy, Vishnu; Sanchez, Juan A.; Shepard, Michael K.; Emery, Joshua P.

    2017-01-01

    In order to search for evidence of hydration on M-type asteroid (16) Psyche, we observed this object in the 3 μm spectral region using the long-wavelength cross-dispersed (LXD: 1.9-4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Our observations show that Psyche exhibits a 3 μm absorption feature, attributed to water or hydroxyl. The 3 μm absorption feature is consistent with the hydration features found on the surfaces of water-rich asteroids, attributed to OH- and/or H2O-bearing phases (phyllosilicates). The detection of a 3 μm hydration absorption band on Psyche suggests that this asteroid may not be a metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr. Our results also indicate rotational spectral variations, which we suggest reflect heterogeneity in the metal/silicate ratio on the surface of Psyche.

  20. The Dimensions and Pole of Asteroid (21) Lutetia from Adaptive Optics Images

    Science.gov (United States)

    Drummond, Jack D.; Conrad, A.; Merline, W.; Carry, B.

    2009-09-01

    In a campaign to study the Rosetta mission target, asteroid (21) Lutetia, we obtained 81 images on December 2, 2008, at 2.12 microns with adaptive optics (AO) on the Keck-II 10 m telescope. From these nearly consecutive images obtained over a quarter of rotation, we have determined the asteroid's triaxial ellipsoid diameters to be 132x101x76 km, with formal uncertainties of 1 km for the equatorial dimensions, and 31 km for the shortest axis. This latter uncertainty occurs because the observations were made at the relatively high sub-Earth latitude of -69 degrees. From these observations we determine that Lutetia's pole lies at 2000.0 coordinates of RA=48, Dec=+9, or Ecliptic coordinates of [49;-8], with a formal uncertainty radius of 3 deg. (The other possible pole is eliminated by considering its lightcurve history.) The rotational pole derived for the lightcurve inversion model (available at http://astro.troja.mff.cuni.cz/ projects/asteroids3D/web.php), is only 5 deg from ours, but comparing our images to the lightcurve inversion model we find that Lutetia is more pointed than the model. Our technique of deriving the dimensions of asteroids from AO images has been calibrated against Pluto and 4 satellites of Saturn with precise diameters, and we find that any systematic errors can be no more than 1-3%. We acknowledge the assistance of other team members Christophe Dumas (ESO), Peter Tamblyn (SwRI), and Clark Chapman (SwRI). We also thank Hal Weaver (JHU/APL) as the lead for our collaboration with the Rosetta mission. We are grateful for telescope time made available to us by S. Kulkarni and M. Busch (Cal Tech) for a portion of our overall Lutetia effort. We also thank our collaborators on Team Keck, the Keck science staff, for making possible some of the Lutetia observations and for their participation. Additional Lutetia observations were acquired at Gemini North under NOAO time allocation.

  1. Infrared spectral reflectances of asteroid surfaces

    Science.gov (United States)

    Larson, H. P.; Veeder, G. J.

    1979-01-01

    This review compares the types of compositional information produced by three complementary techniques used in infrared observations of asteroid surfaces: broadband JHKL photometry, narrow band photometry, and multiplex spectroscopy. The high information content of these infrared observations permits definitive interpretations of asteroid surface compositions in terms of the major meteoritic minerals (olivine, pyroxene, plagioclase feldspar, hydrous silicates, and metallic Ni-Fe). These studies emphasize the individuality of asteroid surface compositions, the inadequacy of simple comparisons with spectra of meteorites, and the need to coordinate spectral measurements of all types to optimize diagnostic capabilities.

  2. Goldstone radar imaging of near-Earth asteroids (469896) 2007 WV4, 2014 JO25, 2017 BQ6, and 2017 CS

    Science.gov (United States)

    Naidu, S.; Benner, L.; Brozovic, M.; Giorgini, J. D.; Busch, M.; Jao, J. S.; Lee, C. G.; Snedeker, L. G.; Silva, M. A.; Slade, M. A.; Lawrence, K. J.

    2017-12-01

    We present Goldstone radar imaging of four near-Earth asteroids during Feb-Jun 2017. The signal-to-noise ratios were very strong for each object and we obtained detailed images with range resolutions as fine as 3.75 m/pixel. 2017 BQ6 was discovered on Jan 26 and approached Earth within 6.5 lunar distances on Feb 7. Radar images show that it is a strikingly angular object roughly 200 m in diameter with a rotation period of 3 h. Its multi-faceted shape challenges the expectation that it is a rubble pile. 2017 CS was discovered on Feb 2 and approached within 8 lunar distances on May 29. It appears rounded on large scales but has considerable fine-scale topography evident along its leading edges. The images suggest a diameter of 1 km and a spin period consistent with the 40 h period obtained from photometry by P. Pravec (pers. comm.). The highest resolution images show evidence for meter-size boulders, ridges, and broad concavities. 2007 WV4 was imaged in late May and early June, has a diameter of 900 meters, and appears distinctly angular with at least three large facets > 100 m in extent. Tracking of features in the images gives a rotation period of about 12 hours. 2014 JO25 approached within 4.6 lunar distances on April 19. This was the closest encounter by an asteroid with an absolute magnitude brighter than 18 known in advance until 2027, when 1999 AN10 will approach within one lunar distance. Radar imaging shows that 2014 JO25 is an irregular object, consisting of two components connected by a narrow neck. The asteroid has pole on dimensions of roughly 1 x 0.6 km in the images. Imaging with 3.75 m/pixel resolution places thousands of pixels on the object and reveals ridges, concavities, flat regions up to 200 meters long, and radar-bright spots suggestive of boulders. Tracking of features in the images yields a rotation period of about 4.5 hours that is among the fastest of the 50 known contact binaries in the near-Earth population.

  3. Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4

    Czech Academy of Sciences Publication Activity Database

    Ostro, S. J.; Margot, J. L.; Benner, L. A. M.; Giorgini, J. D.; Scheeres, D.J.; Fahnestock, E.G.; Broschart, S.B.; Bellerose, J.; Nolan, M. C.; Magri, C.; Pravec, Petr; Scheirich, Peter; Rose, R.; Jurgens, R. F.; De Jong, E. M.; Suzuki, S.

    2006-01-01

    Roč. 314, č. 5803 (2006), s. 1276-1280 ISSN 0036-8075 R&D Projects: GA ČR GA205/05/0604 Institutional research plan: CEZ:AV0Z10030501 Keywords : binary asteroid * radar imaging Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 30.028, year: 2006

  4. Asteroids mass determination

    International Nuclear Information System (INIS)

    Hoffmann, M.

    1989-01-01

    Basic methods for asteroid mass determinations and their errors are discussed. New results and some current developments in the astrometric method are reviewed. New methods and techniques, such as electronic imaging, radar ranging and space probes are becoming important for asteroid mass determinations. Mass and density estimations on rotational properties and possible satelites are also discussed

  5. Wide-band IR imaging in the NIR-MIR-FIR regions for in situ analysis of frescoes

    Science.gov (United States)

    Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C.

    2011-06-01

    Imaging methods offer several advantages in the field of conservation allowing to perform non-invasive inspection of works of art. In particular, non-invasive techniques based on imaging in different infrared (IR) regions are widely used for the investigation of paintings. Using radiation beyond the visible range, different characteristics of the inspected artwork may be revealed according to the bandwidth acquired. In this paper we present the recent results of a joint project among the two research institutes DIMEG and CNR-INO, and the restoration facility Opificio delle Pietre Dure, concerning the wide-band integration of IR imaging techniques, in the spectral ranges NIR 0.8-2.5 μm, MIR 3-5 μm, and FIR 8-12 μm, for in situ analysis of artworks. A joint, multi-mode use of reflection and thermal bands is proposed for the diagnostics of mural paintings, and it is demonstrated to be an effective tool in inspecting the layered structure. High resolution IR reflectography and, to a greater extent, IR imaging in the 3-5 μm band, are effectively used to characterize the superficial layer of the fresco and to analyze the stratigraphy of different pictorial layers. IR thermography in the 8-12 μm band is used to characterize the support deep structure. The integration of all the data provides a multi- layered and multi-spectral representation of the fresco that yields a comprehensive analysis.

  6. The Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS)

    Science.gov (United States)

    Rivkin, A.; Cohen, B. A.; Barnouin, O. S.; Chabot, N. L.; Ernst, C. M.; Klima, R. L.; Helbert, J.; Sternovsky, Z.

    2015-12-01

    The asteroids preserve information from the earliest times in solar system history, with compositions in the population reflecting the material in the solar nebula and experiencing a wide range of temperatures. Today they experience ongoing processes, some of which are shared with larger bodies but some of which are unique to their size regime. They are critical to humanity's future as potential threats, resource sites, and targets for human visitation. However, over twenty years since the first spacecraft encounters with asteroids, they remain poorly understood. The mission we propose here, the Main-belt Asteroid and NEO Tour with Imaging and Spectroscopy (MANTIS), explores the diversity of asteroids to understand our solar system's past history, its present processes, and future opportunities and hazards. MANTIS addresses many of NASA's highest priorities as laid out in its 2014 Science Plan and provides additional benefit to the Planetary Defense and Human Exploration communities via a low-risk, cost-effective tour of the near-Earth and inner asteroid belt. MANTIS visits the materials that witnessed solar system formation and its earliest history, addressing the NASA goal of exploring and observing the objects in the solar system to understand how they formed and evolve. MANTIS measures OH, water, and organic materials via several complementary techniques, visiting and sampling objects known to have hydrated minerals and addressing the NASA goal of improving our understanding of the origin and evolution of life on Earth. MANTIS studies the geology and geophysics of nine diverse asteroids, with compositions ranging from water-rich to metallic, representatives of both binary and non-binary asteroids, and sizes covering over two orders of magnitude, providing unique information about the chemical and physical processes shaping the asteroids, addressing the NASA goal of advancing the understanding of how the chemical and physical processes in our solar system

  7. Do asteroids have satellites

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.; Paolicchi, P.; Zappala, V.

    1989-01-01

    A substantial body of indirect evidence suggests that some asteroids have satelities, although none has been detected unambiguously. Collisions between asteroids provide physically plausible mechanisms for the production of binaries, but these operate with low probability; only a small minority of asteroids are likely to have satellites. The abundance of binary asteroids can constrain the collisional history of the entire belt population. The allowed angular momentum of binaries and their rate of tidal evolution limit separations to no more than a few tens of the primary's radii. Their expected properties are consistent with failure to detect them by current imaging techniques

  8. Multi-dimensional medical images compressed and filtered with wavelets

    International Nuclear Information System (INIS)

    Boyen, H.; Reeth, F. van; Flerackers, E.

    2002-01-01

    Full text: Using the standard wavelet decomposition methods, multi-dimensional medical images can be compressed and filtered by repeating the wavelet-algorithm on 1D-signals in an extra loop per extra dimension. In the non-standard decomposition for multi-dimensional images the areas that must be zero-filled in case of band- or notch-filters are more complex than geometric areas such as rectangles or cubes. Adding an additional dimension in this algorithm until 4D (e.g. a 3D beating heart) increases the geometric complexity of those areas even more. The aim of our study was to calculate the boundaries of the formed complex geometric areas, so we can use the faster non-standard decomposition to compress and filter multi-dimensional medical images. Because a lot of 3D medical images taken by PET- or SPECT-cameras have only a few layers in the Z-dimension and compressing images in a dimension with a few voxels is usually not worthwhile, we provided a solution in which one can choose which dimensions will be compressed or filtered. With the proposal of non-standard decomposition on Daubechies' wavelets D2 to D20 by Steven Gollmer in 1992, 1D data can be compressed and filtered. Each additional level works only on the smoothed data, so the transformation-time halves per extra level. Zero-filling a well-defined area alter the wavelet-transform and then performing the inverse transform will do the filtering. To be capable to compress and filter up to 4D-Images with the faster non-standard wavelet decomposition method, we have investigated a new method for calculating the boundaries of the areas which must be zero-filled in case of filtering. This is especially true for band- and notch filtering. Contrary to the standard decomposition method, the areas are no longer rectangles in 2D or cubes in 3D or a row of cubes in 4D: they are rectangles expanded with a half-sized rectangle in the other direction for 2D, cubes expanded with half cubes in one and quarter cubes in the

  9. Solar-phase-angle effects on the taxonomic classification of asteroids

    Science.gov (United States)

    Carvano, J.; Davallos, J.

    2014-07-01

    Asteroid taxonomy is the effort of grouping asteroids into classes based on similarities of a number of their observational properties. The most used properties include measurements of their spectral reflectance (by means of low-resolution spectra, spectro-photometry, or colors), and geometric albedo. The usefulness of asteroid taxonomic classes derived in this way relies on the assumption that the classes bear some correspondence to the mineralogy of the asteroids, and on the fact that such classification can be made using types of observations that presently are available to a large number of asteroids. Therefore, asteroid taxonomy can be used to infer trends in the distribution of compositions in the main belt and other populations, as an additional parameter in defining asteroid families, and as a selection tool to identify candidates for more detailed observations. However, the fact that the correspondence between taxonomic class and composition is far from perfect is still sometimes overlooked in the literature. Indeed, although a taxonomic classification narrows down the possible mineralogies of a given asteroid, it will seldom point univocally to one particular mineralogy. This happens for a number of reasons, some linked to the intrinsic difficulty involved in the remote characterization of the mineralogy of an asteroid, since it depends on the presence of absorption bands in its reflectance spectrum which may be absent or not completely sampled by the observations used to derive taxonomy. Other problem here is the exposure of the material on the surface of the asteroid to space-weathering effects, such as solar wind implantation and micro-meteorite bombardment, which can change the optical properties of the material. Finally, the overall shape of the reflectance spectrum of an asteroid is also affected by the geometry of the observation, as well as by its shape. In this work, we analyze how the classification of asteroids observed by the Sloan Digital Sky

  10. Goldstone radar images of near-Earth asteroids (469896) 2007 WV4, 2014 JO25, 2017 BQ6, and 2017 CS

    Science.gov (United States)

    Brozovic, Marina; Benner, Lance A. M.; Naidu, Shantanu P.; Giorgini, Jon D.; Busch, Michael; Jao, Joseph; Lee, Clement; Snedeker, Lawrence; Silva, Marc; Slade, Martin A.; Lawrence, Kenneth J.

    2017-10-01

    We report Goldstone delay-Doppler radar imaging of four NEAs obtained during February-June 2017. The signal-to-noise ratios were very strong for each object and we obtained detailed images with range resolutions as fine as 3.75 m/pixel. Delay-Doppler imaging revealed that 2017 BQ6 is a strikingly angular object roughly ~200 m in diameter with a rotation period of ~3 h. The multi-faceted shape is puzzling assuming a rubble-pile structure of this asteroid. 2017 CS was discovered by Pan-STARRS 1 on February 2 and approached within 8 lunar distances on May 29. 2017 CS appears rounded on large scales but has considerable fine-scale topography evident along its leading edges. The images suggest a diameter of ~1 km and rotation visible in the images is consistent with the 40 h rotation period obtained independently by from photometry by P. Pravec (pers. comm.). The highest resolution images show evidence for meter-size boulders, ridges, and broad concavities. 2007 WV4 was imaged in late May and early June. 2007 WV4 appears distinctly angular, with a diameter in the realm of 900 meters, and with at least three large facets more than 100 m in extent. Tracking of features in the images gives a rotation period of about 12 hours. The echoes show a persistent, small topographic feature that extends out from the surface. The nature of this feature is unknown, but it may be a large boulder similar to Yoshinodai seen on 25143 Itokawa. 2014 JO25 approached within 4.6 lunar distances on April 19. This was the closest encounter by an asteroid with an absolute magnitude brighter than 18 known in advance until 2027, when 1999 AN10 will approach within one lunar distance. Radar imaging shows that 2014 JO25 is an irregular object, which consists of two components connected by a narrow neck. The asteroid has a long axis of about 1 km and a short axis of roughly 600 m. The 3.75 m range resolution imaging placed thousands of pixels on the object and reveals ridges, hills, concavities, flat

  11. Hyperspectral band selection and classification of Hyperion image of Bhitarkanika mangrove ecosystem, eastern India

    Science.gov (United States)

    Ashokkumar, L.; Shanmugam, S.

    2014-10-01

    identified and the health status of these species are assessed by the selected band. Further, the performance of this band selection approaches are evaluated in multi-sensor image fusion for better mapping of mangrove ecosystems, wherein spatial resolution is enhanced while retaining the optimal number of hyperspectral bands.

  12. A multi-band, multi-level, multi-electron model for efficient FDTD simulations of electromagnetic interactions with semiconductor quantum wells

    Science.gov (United States)

    Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2015-08-01

    We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite-difference time-domain method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two-dimensional (2-D) and three-dimensional (3-D) simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome iterative procedures. This significantly augments computational efficiency. (4) Explicit update terms to account for carrier leakage to unconfined states are derived, which thermalize the bulk and SQW populations to a common quasi-equilibrium Fermi-Dirac distribution. (5) Auger recombination and intervalence band absorption are included. The model is validated by comparisons to analytic band-filling calculations, simulations of SQW optical gain spectra, and photonic crystal lasers.

  13. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Crijns, S; Stemkens, B; Sbrizzi, A; Lagendijk, J; Berg, C van den; Andreychenko, A [UMC Utrecht, Utrecht, Utrecht (Netherlands)

    2014-06-15

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to that in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.

  14. Microscopic mechanism of identical multi-quasiparticle bands

    International Nuclear Information System (INIS)

    Lei Yian; Zhao Enguang; Zeng Jinyan

    1997-01-01

    Identical one-quasiparticle and two-quasiparticle bands in neighboring odd-and even-mass nuclei are recognized; The intrinsic structure of identical bands is demonstrated by using the particle-number-conserving (PNC) treatment. The occurrence of almost identical moments of inertia is the result of competition among the shell effect (including shape variation), pairing (anti-alignment) effect and blocking (anti-pairing) effect. The observed moments of inertia of identical multi-quasiparticle bands are reproduced quite well by the PNC calculation

  15. Speckle interferometry of asteroids

    International Nuclear Information System (INIS)

    Drummond, J.

    1988-01-01

    By studying the image two-dimensional power spectra or autocorrelations projected by an asteroid as it rotates, it is possible to locate its rotational pole and derive its three axes dimensions through speckle interferometry under certain assumptions of uniform, geometric scattering, and triaxial ellipsoid shape. However, in cases where images can be reconstructed, the need for making the assumptions is obviated. Furthermore, the ultimate goal for speckle interferometry of image reconstruction will lead to mapping albedo features (if they exist) as impact areas or geological units. The first glimpses of the surface of an asteroid were obtained from images of 4 Vesta reconstructed from speckle interferometric observations. These images reveal that Vesta is quite Moon-like in having large hemispheric-scale albedo features. All of its lightcurves can be produced from a simple model developed from the images. Although undoubtedly more intricate than the model, Vesta's lightcurves can be matched by a model with three dark and four bright spots. The dark areas so dominate one hemisphere that a lightcurve minimum occurs when the maximum cross-section area is visible. The triaxial ellipsoid shape derived for Vesta is not consistent with the notion that the asteroid has an equilibrium shape in spite of its having apparently been differentiated

  16. Multi-color pyrometry imaging system and method of operating the same

    Science.gov (United States)

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  17. Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters

    Science.gov (United States)

    1989-01-01

    Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.

  18. AsteroidFinder - the space-borne telescope to search for NEO Asteroids

    Science.gov (United States)

    Hartl, M.; Mosebach, H.; Schubert, J.; Michaelis, H.; Mottola, S.; Kührt, E.; Schindler, K.

    2017-11-01

    This paper presents the mission profile as well as the optical configuration of the space-borne AsteroidFinder telescope. Its main objective is to retrieve asteroids with orbits interior to the earth's orbit. The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5mag (V-Band) and astrometric accuracy of 1arcsec (1σ). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak > 90%) and very low noise, which is only limited by zodiacal background. The telescope will observe the sky between 30° and 60° in solar elongation. The telescope optics is based on a Cook type TMA. An effective 2°×2° field of view (FOV) is achieved by a fast F/3.4 telescope with near diffraction-limited performance. The absence of centre obscuration or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. Design drivers for the telescope are the required point spread function (PSF) values, an extremely efficient stray light suppression (due to the magnitude requirement mentioned above), the detector performance, and the overall optical and mechanical stability for all orientations of the satellite. To accommodate the passive thermal stabilization scheme and the necessary structural stability, the materials selection for the telescope main structure and the mirrors are of vital importance. A focal plane with four EMCCD detectors is envisaged. The EMCCD technology features shorter integration times, which is in favor regarding the pointing performance of the satellite. The launch of the mission is foreseen for the year 2013 with a subsequent mission lifetime of at least 1 year.

  19. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes

    Science.gov (United States)

    Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio

    2017-12-01

    A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of

  20. Comet or Asteroid?

    Science.gov (United States)

    1997-11-01

    . Thus such asteroids are known as the Trojans and the mentioned programme is referred to as the Uppsala-DLR Trojan Survey . In September and October/November 1996, the ESO Schmidt telescope was used to cover about 900 square degrees twice centered on the sky field in the direction of the Jovian L4 point. The observations were made by ESO night-assistants Guido and Oscar Pizarro . By inspection of those from September, Claes-Ingvar Lagerkvist found a total of about 400 Trojan asteroids, most of which were hitherto unknown. Their accurate positions were measured on a two-coordinate measuring machine at the ESO Headquarters in Garching (Germany). During the same period, the 0.6-m Bochum telescope at La Silla was used for additional observations of positions and magnitudes. An asteroid with a tail? ESO Press Photo 31a/97 ESO Press Photo 31a/97 [JPG, 120k] Caption: Discovery image of P/1997 T3 , obtained on October 1, 1997, with the 1-metre ESO Schmidt telescope at the La Silla observatory in the Chilean Atacama desert. The object is seen as a small straight and sharp `asteroidal' trail (in 4 o'clock orientation) on the lower right side of the strong white line in the middle of the field, directly opposite the white dot (these marks were placed in order to mark the position of the new object on the film). A new object was found by Claes-Ingvar Lagerkvist on a film obtained with the ESO 1-metre Schmidt telescope on October 1, 1997. The appearance was that of a point light source, i.e. it was presumably of asteroidal nature , cf. ESO Press Photo 31a/97. ESO Press Photo 31b/97 ESO Press Photo 31b/97 [JPG, 45k] Caption: P/1997 T3 on October 6, 1997 at 05:13:54 UT. This image of the new object (slightly above and to the left of the centre of the field) was obtained with the 0.6-m Bochum telescope at La Silla; the observer was Andreas Nathues . The tail is faintly visible to the lower left of the point-like object (in the 7 o'clock direction). However, when Andreas Nathues (DLR

  1. Deep Interior Mission: Imaging the Interior of Near-Earth Asteroids Using Radio Reflection Tomography

    Science.gov (United States)

    Safaeinili, A.; Asphaug, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.

    2004-12-01

    Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth in the future. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Our mission's RRT technique is analogous to doing a ``CAT scan" of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use a redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Deep interior has two targets (S-type 1999 ND43 and V-type Nyx ) whose composition bracket the diversity of solar system materials that we are likely to encounter, and are richly complementary.

  2. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  3. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    Science.gov (United States)

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  4. The Main Asteroid Belt: The Crossroads of the Solar System

    Science.gov (United States)

    Michel, Patrick

    2015-08-01

    Orbiting the Sun between Mars and Jupiter, main belt asteroids are leftover planetary building blocks that never accreted enough material to become planets. They are therefore keys to understanding how the Solar System formed and evolved. They may also provide clues to the origin of life, as similar bodies may have delivered organics and water to the early Earth.Strong associations between asteroids and meteorites emerged thanks to multi-technique observations, modeling, in situ and sample return analyses. Spacecraft images revolutionized our knowledge of these small worlds. Asteroids are stunning in their diversity in terms of physical properties. Their gravity varies by more orders of magnitude than its variation among the terrestrial planets, including the Moon. Each rendezvous with an asteroid thus turned our geological understanding on its head as each asteroid is affected in different ways by a variety of processes such as landslides, faulting, and impact cratering. Composition also varies, from ice-rich to lunar-like to chondritic.Nearly every asteroid we see today, whether of primitive or evolved compositions, is the product of a complex history involving accretion and one or more episodes of catastrophic disruption that sometimes resulted in families of smaller asteroids that have distinct and indicative petrogenic relationships. These families provide the best data to study the impact disruption process at scales far larger than those accessible in laboratory. Tens, perhaps hundreds, of early asteroids grew large enough to thermally differentiate. Their traces are scattered pieces of their metal-rich cores and, more rarely, their mantles and crusts.Asteroids represent stages on the rocky road to planet formation. They have great stories to tell about the formation and evolution of our Solar System as well as other planetary systems: asteroid belts seem common around Sun-like stars. We will review our current knowledge on their properties, their link to

  5. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    Science.gov (United States)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  6. Cloud information content analysis of multi-angular measurements in the oxygen A-band: application to 3MI and MSPI

    Science.gov (United States)

    Merlin, G.; Riedi, J.; Labonnote, L. C.; Cornet, C.; Davis, A. B.; Dubuisson, P.; Desmons, M.; Ferlay, N.; Parol, F.

    2015-12-01

    The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere-surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1-2 km.

  7. Asteroid (16) Psyche: Triaxial Ellipsoid Dimensions and Rotational Pole from Keck II NIRC2 AO Images and Keck I OSIRIS Images

    Science.gov (United States)

    Drummond, Jack D.; Conrad, Al; Reddy, Vishnu; de Kleer, Katherine R.; Adamkovics, Mate; de Pater, Imke; Merline, William J.; Tamblyn, Peter

    2016-10-01

    Adaptive optics (AO) images of asteroid (16) Psyche obtained at 4 epochs with the NIRC2 camera at the 10m W. M. Keck Observatory (Keck II) on UT 2015 December 25 lead to triaxial ellipsoid diameters of 279±4 x 230±2 x 195±14 km, and a rotational pole at RA=29° and Dec=-2°. Adding 6 more epochs obtained nearly simultaneously with the OSIRIS system at Keck I, as well as two more epochs from Keck II in 2009, yields diameters of 273±2 x 232±2 x 165±3 km, and a pole at RA=37° and Dec=+1°. (Errors are formal fit parameter uncertainties; an additional 4% uncertainty is possible from systematic biases.) The differing perspectives between 2015 (sub-Earth latitude Θ=-50°) and 2009 (Θ=-6°) improves primarily the c dimension and the location of the rotational pole, but illustrates how well images from even a single night can determine the size, shape, and pole of an asteroid. The 2015 observations were obtained as part of a campaign to study Psyche with many techniques over a few months, including radar from Arecibo and images from Magellan.These handful of images show the same rugged outline as the radius vector model available on the DAMIT website, constructed from many lightcurves and scaled by previous Keck AO images. In fact Psyche has rotated some 125,350 times between the first lightcurve in 1955 and our 2015 AO images, exactly 60 years apart to the day. Since the asteroid has such a high obliquity, these lightcurves have scanned well into both northern and southern hemispheres. The difference between the pole derived from our images and the radius vector model pole is only 7°, and the mean diameters of Psyche are 219 and 211 km, respectively.

  8. Alien Asteroid Belt Compared to our Own

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.

  9. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors

    International Nuclear Information System (INIS)

    Grigorishin, Konstantin V.

    2016-01-01

    Highlights: • The intergradient coupling of order parameters in a two-band superconductor plays important role and cannot be neglected. • A two-band superconductor must be characterized with a single coherence length and a single Ginzburg–Landau parameter. • Type-1.5 superconductors are impossible. • The free energy functional for a multi-band superconductor can be reduced to the effective single-band Ginzburg–Landau functional. - Abstract: It has been shown that interband mixing of gradients of two order parameters (drag effect) in an isotropic bulk two-band superconductor plays important role – such a quantity of the intergradients coupling exists that the two-band superconductor is characterized with a single coherence length and a single Ginzburg–Landau (GL) parameter. Other quantities or neglecting of the drag effect lead to existence of two coherence lengths and dynamical instability due to violation of the phase relations between the order parameters. Thus so-called type-1.5 superconductors are impossible. An approximate method for solving of set of GL equations for a multi-band superconductor has been developed: using the result about the drag effect it has been shown that the free-energy functional for a multi-band superconductor can be reduced to the GL functional for an effective single-band superconductor.

  10. Compositional characterization of asteroid (16) Psyche

    Science.gov (United States)

    Sanchez, Juan; Reddy, Vishnu; Shepard, Michael K.; Thomas, Cristina; Cloutis, Edward

    2016-10-01

    We present near-infrared spectra (0.7-2.5 microns) of asteroid (16) Psyche obtained with the NASA Infrared Telescope Facility. Rotationally-resolved spectra were obtained during three nights between December 2015 and February 2016. These data have been combined with three-dimensional shape models of Psyche generated with the SHAPE software package (Magri et al. 2007). From each spectrum, the band center, band depth and spectral slope were measured. We found that the band center varies from 0.92 to 0.94 microns with rotation phase, with an average value of 0.932±0.006 microns. The band depth was found to vary from 1.0 to 1.5±0.1%. Spectral slope values range from 0.25 to 0.35±0.01 microns-1, with rotation phase. We observed a possible anti-correlation between band depth and radar albedo. Using the band depth along with a new laboratory spectral calibration we estimated that Psyche has an average orthopyroxene abundance of 6±1%. The mass-deficit region of Psyche (longitudes ~ 0°-40°), characterized by having the highest radar albedo of the asteroid, also shows the highest value for the spectral slope and the minimum band depth, while the antipode of this region (longitudes ~ 180°-230°), where the radar albedo reaches its lowest value, shows a maximum in band depth and less steep spectral slopes. These results could suggest that the metal-poor antipode region has thicker regolith rich in pyroxene compared to the mass-deficit region.

  11. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: Identifying Regional Elemental Enrichment on Asteroids

    OpenAIRE

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-01-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT an...

  12. Asteroid Moon Micro-imager Experiment (amie) For Smart-1 Mission, Science Objectives and Devel- Opment Status.

    Science.gov (United States)

    Josset, J.-L.; Heather, D.; Dunkin, S.; Roussel, F.; Beauvivre, S.; Kraenhenbuehl, D.; Plancke, P.; Lange-Vin, Y.; Pinet, P.; Chevrel, S.; Cerroni, P.; de Sanctis, M.-C.; Dillelis, A.; Sodnik, Z.; Koschny, D.; Barucci, A.; Hofmann, B.; Josset, M.; Muinonen, K.; Pironnen, J.; Ehrenfreud, P.; Shkuratov, Y.; Shevchenko, V.

    The Asteroid Moon micro-Imager Experiment (AMIE), which will be on board the first ESA SMART-1 mission to the Moon (launch foreseen late 2002), is an imaging sys- tem with scientific, technical and public outreach oriented objectives. The science objectives are to imagine the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non- mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (Fig. 1). The technical objectives are to perform a laser-link experiment (detection of laser beam emitted by ESA Tenerife ground station), flight demonstration of new technologies, navigation aid (feasi- bility study), and on-board autonomy investigations. Figure 3: AMIE camera (light source and a photodiode to verify the stability of the incident flux. The optical system is com- posed of a lens to insure good focusing on the samples (focus with the camera is at distance > 100m) and a mirror to image downwards. The samples used were anorthosite from northern Finland, basalt from Antarctis, meteorites and other lunar analog materials. A spectralon panel has also been used to have flat fields references. The samples were imaged with dif- Figure 1: SMART-1 camera imaging the Moon (simulated view) ferent phase angles. Figure 4 shows images obtained with In order to have spectral information of the surface of the basalt and olivine samples, with different integration times Moon, the camera is equipped with a set of filters (Fig. 2), in order to have information in all areas. introduced between the CCD and the teleobjective. Bandpass-filter No Filter, 750 nm (1) AR coating (3) Bandpass-filter 915 nm (2) Longpass-filter 960 nm (4) Band- Band- Figure 4: Basalt and Olivine sample ­ entire image (left) and passfilter passfilter 915 nm 750 nm visible part () (6) (7) Bandpass- More than 150 images were acquired during this validation filter 847

  13. SELECTION OF BURST-LIKE TRANSIENTS AND STOCHASTIC VARIABLES USING MULTI-BAND IMAGE DIFFERENCING IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY

    International Nuclear Information System (INIS)

    Kumar, S.; Gezari, S.; Heinis, S.; Chornock, R.; Berger, E.; Soderberg, A.; Stubbs, C. W.; Kirshner, R. P.; Rest, A.; Huber, M. E.; Narayan, G.; Marion, G. H.; Burgett, W. S.; Foley, R. J.; Scolnic, D.; Riess, A. G.; Lawrence, A.; Smartt, S. J.; Smith, K.; Wood-Vasey, W. M.

    2015-01-01

    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g P1 , r P1 , i P1 , and z P1 . We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to

  14. Matched Filter Processing for Asteroid Detection

    Science.gov (United States)

    Gural, Peter S.; Larsen, Jeffrey A.; Gleason, Arianna E.

    2005-10-01

    Matched filter (MF) processing has been shown to provide significant performance gains when processing stellar imagery used for asteroid detection, recovery, and tracking. This includes extending detection ranges to fainter magnitudes at the noise limit of the imagery and operating in dense cluttered star fields as encountered at low Galactic latitudes. The MF software has been shown to detect 40% more asteroids in high-quality Spacewatch imagery relative to the currently implemented approaches, which are based on moving target indicator (MTI) algorithms. In addition, MF detections were made in dense star fields and in situations in which the asteroid was collocated with a star in an image frame, cases in which the MTI algorithms failed. Thus, using legacy sensors and optics, improved detection sensitivity is achievable by simply upgrading the image-processing stream. This in turn permits surveys of the near-Earth asteroid (NEA) population farther from opposition, for smaller sizes, and in directions previously inaccessible to current NEA search programs. A software package has been developed and made available on the NASA data services Web site that can be used for asteroid detection and recovery operations utilizing the enhanced performance capabilities of MF processing.

  15. DEEP KECK u-BAND IMAGING OF THE HUBBLE ULTRA DEEP FIELD: A CATALOG OF z ∼ 3 LYMAN BREAK GALAXIES

    International Nuclear Information System (INIS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, H.-W.; Armandroff, Taft E.; Wirth, Gregory D.

    2009-01-01

    We present a sample of 407 z ∼ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec -2 , making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ∼50% of the z ∼ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ∼ 3 and z ∼ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ∼ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  16. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    International Nuclear Information System (INIS)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M.; Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty; Barve, Indrajit V.

    2013-01-01

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  17. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M. [Raman Research Institute, Bangalore (India); Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV (United States); Barve, Indrajit V. [Indian Institute of Astrophysics, Bangalore (India); and others

    2013-01-15

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  18. Initial inflight calibration for Hayabusa2 optical navigation camera (ONC) for science observations of asteroid Ryugu

    Science.gov (United States)

    Suzuki, H.; Yamada, M.; Kouyama, T.; Tatsumi, E.; Kameda, S.; Honda, R.; Sawada, H.; Ogawa, N.; Morota, T.; Honda, C.; Sakatani, N.; Hayakawa, M.; Yokota, Y.; Yamamoto, Y.; Sugita, S.

    2018-01-01

    Hayabusa2, the first sample return mission to a C-type asteroid was launched by the Japan Aerospace Exploration Agency (JAXA) on December 3, 2014 and will arrive at the asteroid in the middle of 2018 to collect samples from its surface, which may contain both hydrated minerals and organics. The optical navigation camera (ONC) system on board the Hayabusa2 consists of three individual framing CCD cameras, ONC-T for a telescopic nadir view, ONC-W1 for a wide-angle nadir view, and ONC-W2 for a wide-angle slant view will be used to observe the surface of Ryugu. The cameras will be used to measure the global asteroid shape, local morphologies, and visible spectroscopic properties. Thus, image data obtained by ONC will provide essential information to select landing (sampling) sites on the asteroid. This study reports the results of initial inflight calibration based on observations of Earth, Mars, Moon, and stars to verify and characterize the optical performance of the ONC, such as flat-field sensitivity, spectral sensitivity, point-spread function (PSF), distortion, and stray light of ONC-T, and distortion for ONC-W1 and W2. We found some potential problems that may influence our science observations. This includes changes in sensitivity of flat fields for all bands from those that were measured in the pre-flight calibration and existence of a stray light that arises under certain conditions of spacecraft attitude with respect to the sun. The countermeasures for these problems were evaluated by using data obtained during initial in-flight calibration. The results of our inflight calibration indicate that the error of spectroscopic measurements around 0.7 μm using 0.55, 0.70, and 0.86 μm bands of the ONC-T can be lower than 0.7% after these countermeasures and pixel binning. This result suggests that our ONC-T would be able to detect typical strength (∼3%) of the serpentine absorption band often found on CM chondrites and low albedo asteroids with ≥ 4

  19. A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Changhui; Zhu, Lei; Gu, Naiting; Rao, Xuejun; Zhang, Lanqiang; Bao, Hua; Kong, Lin; Guo, Youming; Zhong, Libo; Ma, Xue’an; Li, Mei; Wang, Cheng; Zhang, Xiaojun; Fan, Xinlong; Chen, Donghong; Feng, Zhongyi; Wang, Xiaoyun; Wang, Zhiyong, E-mail: gunaiting@ioe.ac.cn [The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, P.O. Box 350, Shuangliu, Chengdu 610209, Sichuan (China)

    2017-10-01

    A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system was demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.

  20. Spectral properties of eight near-Earth asteroids

    Science.gov (United States)

    Popescu, M.; Birlan, M.; Binzel, R.; Vernazza, P.; Barucci, A.; Nedelcu, D. A.; DeMeo, F.; Fulchignoni, M.

    2011-11-01

    Context. Near-Earth objects are among the most accessible bodies in the solar system in terms of the spacecraft propulsion requirements to reach them. The choice of targets and the planning of space missions are based on high quality ground-based science. Aims: The knowledge of the ensemble of physical parameters for these objects, including their composition, is a critical point in defining any mission scientific objectives. Determining the physical properties of near-Earth asteroids (NEAs) is also possible from the ground by analyzing spectroscopy at both visible and infrared wavelengths. Methods: We present spectra of eight NEAs (1917, 8567, 16960, 164400, 188452, 2001 SG286, and 2010 TD54) obtained using the NASA telescope IRTF equipped with the spectro-imager SpeX. The observations were performed in the 0.8-2.5 μm spectral region using the low resolution mode of the spectrograph. We completed the taxonomic classification using the Bus-DeMeo taxonomy. We analyzed the spectra by comparing them to meteorite spectra from the Relab database using a χ2 approach. For the S-type asteroids of our sample, the band centers and BAR were calculated. We also attempted to interpret our data using a space-weathering model. Results: The taxonomic classification of five objects was reviewed and we assigned a corresponding type to the other three asteroids that were not classified before. We found that (1917) Cuyo, (8567) 1996 HW1, (16960) 1998 QS52, (188452) 2004 HE62, and 2010 TD54 are in the S-complex. We achieved a good matching of our S-type asteroids with the spectra of ordinary chondrites meteorites. The asteroid (5620) Jasonwheeler was found to have a NIR spectrum similar to carbonaceous chondrite meteorites. Thus, our results confirm its primitive properties obtained in several other spectral intervals. Appendices A and B are available in electronic form at http://www.aanda.org

  1. Adaptive Optics Imaging of Pluto-Charon and the Discovery of a Moon aroun d the Asteroid 45 Eugenia: The Potential of Adaptive Optics in Planetary Astrono my

    Science.gov (United States)

    Close, L. M.; Merline, W. J.; Tholen, D.; Owen, T.; Roddier, F.; Dumas, C.

    1999-12-01

    We outline two separate projects which highlight the power of adaptive optics (AO) to aid planetary research. The first project utilized AO to resolve the Pluto-Charon system by producing 0.15" FWHM images. We used the University of Hawaii AO system (Roddier et al. PASP 103, 131,1991) at CFHT to obtain deep (20 min) narrow band images in/out the molecular bands of water and methane ices. Our images confirm that the variation of Pluto's albedo is mainly governed by the presence of methane ice over its surface, resulting in a lower albedo at 2.26 um than at 2.02 um. Our observations confirm also that Charon is mostly covered with water-ice (Buie et al. NATURE 329, 522,1987). See Tholen et al. (ICARUS submitted) for more details on these AO results. In another application of AO, we discovered a moon around asteroid 45 Eugenia by use of the PUEO AO facility at CFHT (Rigaut et al. PASP 110, 152, 1998). With PUEO we preformed a search for asteroidal satellites among two dozen asteroids, achieving moderate Strehl ratios (35%) and FWHM of about 0.12" at H band. During this survey, we detected a faint close companion to 45 Eugenia. The satellite was 6.14 magnitudes (at 1.65 um) fainter and located at most 0.75" from Eugenia. Without the ability of AO (to sharpen the contrast and increase the resolution to 0.1"), the detection of this companion would have been impossible with ground based-telescopes. The companion was found to be in a 1200 km circular orbit with a period of 4.7 days. A more detailed discussion of this new satellite is given by Merline et al. in this volume. Adaptive optics is entering a powerful new age as all the major ground based large telescopes are developing facility AO systems. Planetary astronomy is particularly well posed to take advantage of the diffraction-limited, near-IR images (0.050" FWHM) that will become commonplace at all 8 m facilities in the near future (It is already occurring on the KECK and GEMINI-North telescopes). In particular, we

  2. Demosaicking for full motion video 9-band SWIR sensor

    Science.gov (United States)

    Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.

    2014-05-01

    Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.

  3. Reverse Asteroids: Searching for an Effective Tool to Combat Asteroid Belt Misconceptions

    Science.gov (United States)

    Summers, F.; Eisenhamer, B.

    2014-12-01

    The public 'knows' that asteroid belts are densely packed and dangerous for spaceships to cross. Visuals from "Star Wars" to, unfortunately, the recent "Cosmos" TV series have firmly established this astronomical misconception. However, even scientifically correct graphics, such as the Minor Planet Center's plot of the inner solar system, reinforces that view. Each pixel in the image is more than a million kilometers in width, making an accurate representation of the object density impossible.To address this widespread misconception, we are investigating an educational exercise built around a computer interactive that we call "Reverse Asteroids". In the arcade classic video game, the asteroids came to the player's spaceship. For our reverse implementation, we consider an inquiry-based activity in which the spaceship must go hunting for the asteroids, using a database of real objects in our solar system. Both 3D data visualization and basic statistical analysis play crucial roles in bringing out the true space density within the asteroid belt, and perhaps a reconciliation between imagination and reality. We also emphasize that a partnership of scientists and educators is fundamental to the success of such projects.

  4. An Application of Multi-band Forced Photometry to One Square Degree of SERVS: Accurate Photometric Redshifts and Implications for Future Science

    Energy Technology Data Exchange (ETDEWEB)

    Nyland, Kristina; Lacy, Mark [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Sajina, Anna [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Pforr, Janine [ESA/ESTEC SCI-S, Keplerlaan 1, 2201 AZ, Noordwijk (Netherlands); Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Wilson, Gillian [Department of Physics and Astronomy, University of California-Riverside, 900 University Avenue, Riverside, CA, 92521 (United States); Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Häußler, Boris [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Vaccari, Mattia [Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, 7535 Bellville, Cape Town (South Africa); Jarvis, Matt, E-mail: knyland@nrao.edu [Department of Physics, Oxford Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2017-05-01

    We apply The Tractor image modeling code to improve upon existing multi-band photometry for the Spitzer Extragalactic Representative Volume Survey (SERVS). SERVS consists of post-cryogenic Spitzer observations at 3.6 and 4.5 μ m over five well-studied deep fields spanning 18 deg{sup 2}. In concert with data from ground-based near-infrared (NIR) and optical surveys, SERVS aims to provide a census of the properties of massive galaxies out to z  ≈ 5. To accomplish this, we are using The Tractor to perform “forced photometry.” This technique employs prior measurements of source positions and surface brightness profiles from a high-resolution fiducial band from the VISTA Deep Extragalactic Observations survey to model and fit the fluxes at lower-resolution bands. We discuss our implementation of The Tractor over a square-degree test region within the XMM Large Scale Structure field with deep imaging in 12 NIR/optical bands. Our new multi-band source catalogs offer a number of advantages over traditional position-matched catalogs, including (1) consistent source cross-identification between bands, (2) de-blending of sources that are clearly resolved in the fiducial band but blended in the lower resolution SERVS data, (3) a higher source detection fraction in each band, (4) a larger number of candidate galaxies in the redshift range 5 <  z  < 6, and (5) a statistically significant improvement in the photometric redshift accuracy as evidenced by the significant decrease in the fraction of outliers compared to spectroscopic redshifts. Thus, forced photometry using The Tractor offers a means of improving the accuracy of multi-band extragalactic surveys designed for galaxy evolution studies. We will extend our application of this technique to the full SERVS footprint in the future.

  5. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng; Xie, Qing; Zhu, Yonghua; Liu, Xingyi; Zhang, Shichao

    2015-01-01

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple

  6. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite

  7. SAFARI: Searching Asteroids For Activity Revealing Indicators

    Science.gov (United States)

    Curtis, Anthony; Chandler, Colin Orion; Mommert, Michael; Sheppard, Scott; Trujillo, Chadwick A.

    2018-06-01

    We present results on one of the deepest and widest systematic searches for active asteroids, objects in the main-belt which behave dynamically like asteroids but display comet-like comae. This activity comes from a variety of sources, such as the sublimation of ices or rotational breakup, the former of which offers an opportunity to study a family of protoplanetary ices different than those seen in comets and Kuiper Belt objects. Indications of activity may be detected through visual or spectroscopic evidence of gas or dust emissions. However, these objects are still poorly understood, with only about 25 identified to date. We looked for activity indicators with a pipeline that examined ~35,000 deep images taken with the Dark Energy Camera (DECam) mounted on the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. Our pipeline was configured to perform astrometry on DECam images and produce thumbnail images of known asteroids in the field to be examined by eye for signs of activity. We detected three previously identified active asteroids, one of which has shown repeated signs of activity in these data. Our proof of concept demonstrates 1) our novel informatics approach can locate active asteroids 2) DECam data are well suited to search for active asteroids. We will discuss the design structure of our pipeline, adjustments that had to be made for the specific dataset to improve performance, and the the significance of detecting activity in the main-belt. The authors acknowledge funding for this project through NSF grant number AST-1461200.

  8. Resurfacing asteroids from YORP spin-up and failure

    Science.gov (United States)

    Graves, Kevin J.; Minton, David A.; Hirabayashi, Masatoshi; DeMeo, Francesca E.; Carry, Benoit

    2018-04-01

    The spectral properties of S and Q-type asteroids can change over time due to interaction with the solar wind and micrometeorite impacts in a process known as 'space weathering.' Space weathering raises the spectral slope and decreases the 1 μm absorption band depth in the spectra of S and Q-type asteroids. Over time, Q-type asteroids, which have very similar spectra to ordinary chondrite meteorites, will change into S-type asteroids. Because there are a significant number of Q-type asteroids, there must be some process which is resurfacing S-type asteroids into Q-types. In this study, we use asteroid data from the Sloan Digital Sky Survey to show a trend between the slope through the g‧, r‧, and i‧ filters, called the gri-slope, and size that holds for all populations of S and Q-type asteroids in the inner solar system, regardless of orbit. We model the evolution of a suite of asteroids in a Monte Carlo YORP rotational evolution and space weathering model. We show that spin-up and failure from YORP is one of the key resurfacing mechanisms that creates the observed weathering trends with size. By varying the non-dimensional YORP coefficient and running time of the present model over the range 475-1425 Myr, we find a range of values for the space weathering timescale, τSW ≈ 19-80 Myr at 2.2 AU. We also estimate the time to weather a newly resurfaced Q-type asteroid into an S-complex asteroid at 1 AU, τQ → S(1AU) ≈ 2-7 Myr.

  9. SHARPENDING OF THE VNIR AND SWIR BANDS OF THE WIDE BAND SPECTRAL IMAGER ONBOARD TIANGONG-II IMAGERY USING THE SELECTED BANDS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI onboard the Tiangong-II has 14 visible and near-infrared (VNIR spectral bands covering the range from 403–990 nm and two shortwave infrared (SWIR bands covering the range from 1230–1250 nm and 1628–1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  10. Multi-band microwave photonic satellite repeater scheme employing intensity Mach-Zehnder modulators

    Institute of Scientific and Technical Information of China (English)

    Yin Jie; Dong Tao; Zhang Bin; Hao Yan; Cao Guixing; Cheng Zijing; Xu Kun; Zhou Yue; Dai Jian

    2017-01-01

    To solve the satellite repeater's flexible and wideband frequency conversion problem,we propose a novel microwave photonic repeater system,which can convert the upload signal's carrier to six different frequencies.The scheme employs one 20 GHz bandwidth dual-drive Mach-Zehnder modulator (MZM) and two 10 GHz bandwidth MZMs.The basic principle of this scheme is filtering out two optical sidebands after the optical carrier suppression (OCS) modulation and combining two sidebands modulated by the input radio frequency (RF) signal.This structure can realize simultaneous multi-band frequency conversion with only one frequency-fixed microwave source and prevent generating harmful interference sidebands by using two corresponding optical filters after optical modulation.In the simulation,one C-band signal of 6 GHz carrier can be successfully converted to 12 GHz (Ku-band),28 GHz,34 GHz,40 GHz,46 GHz (Ka-band) and 52 GHz (V-band),which can be an attractive method to realize multi-band microwave photonic satellite repeater.Alternatively,the scheme can be configured to generate multi-band local oscillators (LOs) for widely satellite onboard clock distribution when the input RF signal is replaced by the internal clock source.

  11. SELECTION OF BURST-LIKE TRANSIENTS AND STOCHASTIC VARIABLES USING MULTI-BAND IMAGE DIFFERENCING IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Gezari, S.; Heinis, S. [Department of Astronomy, University of Maryland, Stadium Drive, College Park, MD 21224 (United States); Chornock, R.; Berger, E.; Soderberg, A.; Stubbs, C. W.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Huber, M. E.; Narayan, G.; Marion, G. H.; Burgett, W. S. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Foley, R. J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Scolnic, D.; Riess, A. G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Lawrence, A. [Institute for Astronomy, University of Edinburgh Scottish Universities Physics Alliance, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Smartt, S. J.; Smith, K. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Wood-Vasey, W. M. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); and others

    2015-03-20

    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g {sub P1}, r {sub P1}, i {sub P1}, and z {sub P1}. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host

  12. PROPERTIES OF NEAR-SUN ASTEROIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jewitt, David, E-mail: jewitt@ucla.edu [Department of Earth and Space Sciences and Department of Physics and Astronomy, University of California at Los Angeles, 595 Charles Young Drive East, Los Angeles, CA 90095-1567 (United States)

    2013-05-15

    Asteroids near the Sun can attain equilibrium temperatures sufficient to induce surface modification from thermal fracture, desiccation, and decomposition of hydrated silicates. We present optical observations of nine asteroids with perihelia <0.25 AU (sub-solar temperatures {>=}800 K) taken to search for evidence of thermal modification. We find that the broadband colors of these objects are diverse but statistically indistinguishable from those of planet-crossing asteroids having perihelia near 1 AU. Furthermore, images of these bodies taken away from perihelion show no evidence for on-going mass-loss (model-dependent limits {approx}<1 kg s{sup -1}) that might result from thermal disintegration of the surface. We conclude that, while thermal modification may be an important process in the decay of near-Sun asteroids and in the production of debris, our new data provide no evidence for it.

  13. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    International Nuclear Information System (INIS)

    Vollmer, B.; Bonnarel, F.; Louys, M.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; Van Driel, W.; Sabatini, S.; MacArthur, L. A.

    2013-01-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg 2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ∼20% more mock LSB galaxies and ∼40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is

  14. Independent polarization and multi-band THz absorber base on Jerusalem cross

    Science.gov (United States)

    Arezoomand, Afsaneh Saee; Zarrabi, Ferdows B.; Heydari, Samaneh; Gandji, Navid P.

    2015-10-01

    In this paper, we present the design and simulation of a single and multi-band perfect metamaterial absorber (MA) in the THz region base on Jerusalem cross (JC) and metamaterial load in unit cells. The structures consist of dual metallic layers for allowing near-perfect absorption with absorption peak of more than 99%. In this novel design, four-different shape of Jerusalem cross is presented and by adding L, U and W shape loaded to first structure, we tried to achieve a dual-band absorber. In addition, by good implementation of these loaded, we are able to control the absorption resonance at second resonance at 0.9, 0.7 and 0.85 THz respectively. In the other hand, we achieved a semi stable designing at first resonance between 0.53 and 0.58 THz. The proposed absorber has broadband polarization angle. The surface current modeled and proved the broadband polarization angle at prototype MA. The LC resonance of the metamaterial for Jerusalem cross and modified structures are extracting from equivalent circuit. As a result, proposed MA is useful for THz medical imaging and communication systems and the dual-band absorber has applications in many scientific and technological areas.

  15. New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images

    Science.gov (United States)

    Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas

    2016-10-01

    Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay

  16. Study of multi-quasiparticle band structures in 197Tl using α beam

    International Nuclear Information System (INIS)

    Mukherjee, G.; Nandi, S.; Pai, H.

    2016-01-01

    Study of the multi-quasiparticle (qp) states and the band structures built on them in the neutron deficient Tl nuclei in A ∼ 190 mass region provides useful information on particle-hole interaction in the heavy nuclei. In order to investigate the multi-qp band structures we have studied the excited states in 197 Tl by gamma ray spectroscopy

  17. Improved techniques to utilize remotely sensed data from multi-frequency imaging radar polarimeter; Tashuha tahenha SAR data no riyoho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Okada, K [Sumitomo Metal Mining Co. Ltd., Osaka (Japan); Maruyama, Y [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Tapley, I

    1997-05-27

    It was intended to serve for establishing specifications for a next generation SAR such as PALSAR through studying methods for evaluating and utilizing the multi-frequency, multi-polarized wave SAR data. Placing an emphasis on utilization of the NASA`s AIRSAR, identification was made on backscatter amount recorded on the SAR data, terrestrial constitutional substances, patterns of the ground surface, micro-topography and such terrestrial conditions as vegetation and land utilization. Their mutual relationships were also analyzed. A noise reduction method usable on multi-band data can be applied to the AIRSAR data, and can reduce noise effectively. Images with more volume of information can be acquired from multi-band images with the same polarization wave than from multi-polarization wave images with the same band. As a result of estimating terrestrial permitivity by using the method invented by Dubois and van Zyl, most of the subject area is judged to have terrestrial substances dried at the time of having acquired the images. A colluvium rich with exposed rock regions and gravels was identified as an area having higher permitivity than the former area. Images of terrestrial roughness were divided largely into smooth flat lands, sand and gravel distributed regions, exposed rock regions, and plant distributed regions along river basins. 3 refs., 2 figs., 1 tab.

  18. An enhanced narrow-band imaging method for the microvessel detection

    Science.gov (United States)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  19. Multi-wavelength observations of Asteroid 2100 Ra-Shalom

    Czech Academy of Sciences Publication Activity Database

    Shepard, M.K.; Clark, B. E.; Nolan, M. C.; Benner, L. A. M.; Ostro, S. J.; Giorgini, J. D.; Vilas, F.; Jarvis, K.; Lederer, S.; Lim, L.F.; McConnochie, T.; Bell, J.; Margot, J. L.; Rivkin, A. S.; Magrik, C.; Scheeres, D.J.; Pravec, Petr

    2008-01-01

    Roč. 193, č. 1 (2008), s. 20-38 ISSN 0019-1035 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids composition * radar observations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.268, year: 2008

  20. Autonomous vision-based navigation for proximity operations around binary asteroids

    Science.gov (United States)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  1. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.

  2. Asteroids IV

    Science.gov (United States)

    Michel, Patrick; DeMeo, Francesca E.; Bottke, William F.

    . Asteroids, like planets, are driven by a great variety of both dynamical and physical mechanisms. In fact, images sent back by space missions show a collection of small worlds whose characteristics seem designed to overthrow our preconceived notions. Given their wide range of sizes and surface compositions, it is clear that many formed in very different places and at different times within the solar nebula. These characteristics make them an exciting challenge for researchers who crave complex problems. The return of samples from these bodies may ultimately be needed to provide us with solutions. In the book Asteroids IV, the editors and authors have taken major strides in the long journey toward a much deeper understanding of our fascinating planetary ancestors. This book reviews major advances in 43 chapters that have been written and reviewed by a team of more than 200 international authorities in asteroids. It is aimed to be as comprehensive as possible while also remaining accessible to students and researchers who are interested in learning about these small but nonetheless important worlds. We hope this volume will serve as a leading reference on the topic of asteroids for the decade to come. We are deeply indebted to the many authors and referees for their tremendous efforts in helping us create Asteroids IV. We also thank the members of the Asteroids IV scientific organizing committee for helping us shape the structure and content of the book. The conference associated with the book, "Asteroids Comets Meteors 2014" held June 30-July 4, 2014, in Helsinki, Finland, did an outstanding job of demonstrating how much progress we have made in the field over the last decade. We are extremely grateful to our host Karri Muinonnen and his team. The editors are also grateful to the Asteroids IV production staff, namely Renée Dotson and her colleagues at the Lunar and Planetary Institute, for their efforts, their invaluable assistance, and their enthusiasm; they made life as

  3. Image registration for a UV-Visible dual-band imaging system

    Science.gov (United States)

    Chen, Tao; Yuan, Shuang; Li, Jianping; Xing, Sheng; Zhang, Honglong; Dong, Yuming; Chen, Liangpei; Liu, Peng; Jiao, Guohua

    2018-06-01

    The detection of corona discharge is an effective way for early fault diagnosis of power equipment. UV-Visible dual-band imaging can detect and locate corona discharge spot at all-weather condition. In this study, we introduce an image registration protocol for this dual-band imaging system. The protocol consists of UV image denoising and affine transformation model establishment. We report the algorithm details of UV image preprocessing, affine transformation model establishment and relevant experiments for verification of their feasibility. The denoising algorithm was based on a correlation operation between raw UV images, a continuous mask and the transformation model was established by using corner feature and a statistical method. Finally, an image fusion test was carried out to verify the accuracy of affine transformation model. It has proved the average position displacement error between corona discharge and equipment fault at different distances in a 2.5m-20 m range are 1.34 mm and 1.92 mm in the horizontal and vertical directions, respectively, which are precise enough for most industrial applications. The resultant protocol is not only expected to improve the efficiency and accuracy of such imaging system for locating corona discharge spot, but also supposed to provide a more generalized reference for the calibration of various dual-band imaging systems in practice.

  4. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  5. Orbit Refinement of Asteroids and Comets Using a Robotic Telescope Network

    Science.gov (United States)

    Lantz Caughey, Austin; Brown, Johnny; Puckett, Andrew W.; Hoette, Vivian L.; Johnson, Michael; McCarty, Cameron B.; Whitmore, Kevin; UNC-Chapel Hill SKYNET Team

    2016-01-01

    We report on a multi-semester project to refine the orbits of asteroids and comets in our Solar System. One of the newest fields of research for undergraduate Astrophysics students at Columbus State University is that of asteroid astrometry. By measuring the positions of an asteroid in a set of images, we can reduce the overall uncertainty in the accepted orbital parameters of that object. These measurements, using our WestRock Observatory (WRO) and several other telescopes around the world, are being published through the Minor Planet Center (MPC) and benefit the global community.Three different methods are used to obtain these observations. First, we use our own 24-inch telescope at WRO, located in at CSU's Coca-Cola Space Science Center in downtown Columbus, Georgia . Second, we have access to data from the 20-inch telescope at Stone Edge Observatory in El Verano, California. Finally, we may request images remotely using Skynet, an online worldwide network of robotic telescopes. Our primary and long-time collaborator on Skynet has been the "41-inch" reflecting telescope at Yerkes Observatory in Williams Bay, Wisconsin. Thus far, we have used these various telescopes to refine the orbits of more than 15 asteroids and comets. We have also confirmed the resulting reduction in orbit-model uncertainties using Monte Carlo simulations and orbit visualizations, using Find_Orb and OrbitMaster software, respectively.Before any observatory site can be used for official orbit refinement projects, it must first become a trusted source of astrometry data for the MPC. We have therefore obtained Observatory Codes not only for our own WestRock Observatory (W22), but also for 3 Skynet telescopes that we may use in the future: Dark Sky Observatory in Boone, North Carolina (W38) Hume Observatory in Santa Rosa, California (U54) and Athabasca University Geophysical Observatory in Athabasca, Alberta, Canada (U96).

  6. Autonomous determination of orbit for probe around asteroids using unscented Kalman filter

    Institute of Scientific and Technical Information of China (English)

    崔平远; 崔祜涛; 黄翔宇; 栾恩杰

    2003-01-01

    The observed images of the asteroid and the asteroid reference images are used to obtain the probe-to-asteroid direction and the location of the limb features of the asteroid in the inertial coordinate. These informa-tion in combination with the shape model of the asteroid and attitude information of the probe are utilized to ob-tain the position of the probe. The position information is then input to the UKF which determines the real-timeorbit of the probe. Finally, the autonomous orbit determination algorithm is validated using digital simulation.The determination of orbit using UKF is compared with that using extended Kalman filter (EKF), and the resultshows that UKF is superior to EKF.

  7. Asteroid team

    International Nuclear Information System (INIS)

    Matson, D.L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue

  8. Asteroid team

    Science.gov (United States)

    Matson, D. L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue.

  9. Asteroid models from photometry and complementary data sources

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Mikko [Department of Mathematics, Tampere University of Technology (Finland)

    2016-05-10

    I discuss inversion methods for asteroid shape and spin reconstruction with photometry (lightcurves) and complementary data sources such as adaptive optics or other images, occultation timings, interferometry, and range-Doppler radar data. These are essentially different sampling modes (generalized projections) of plane-of-sky images. An important concept in this approach is the optimal weighting of the various data modes. The maximum compatibility estimate, a multi-modal generalization of the maximum likelihood estimate, can be used for this purpose. I discuss the fundamental properties of lightcurve inversion by examining the two-dimensional case that, though not usable in our three-dimensional world, is simple to analyze, and it shares essentially the same uniqueness and stability properties as the 3-D case. After this, I review the main aspects of 3-D shape representations, lightcurve inversion, and the inclusion of complementary data.

  10. Asteroid models from photometry and complementary data sources

    International Nuclear Information System (INIS)

    Kaasalainen, Mikko

    2016-01-01

    I discuss inversion methods for asteroid shape and spin reconstruction with photometry (lightcurves) and complementary data sources such as adaptive optics or other images, occultation timings, interferometry, and range-Doppler radar data. These are essentially different sampling modes (generalized projections) of plane-of-sky images. An important concept in this approach is the optimal weighting of the various data modes. The maximum compatibility estimate, a multi-modal generalization of the maximum likelihood estimate, can be used for this purpose. I discuss the fundamental properties of lightcurve inversion by examining the two-dimensional case that, though not usable in our three-dimensional world, is simple to analyze, and it shares essentially the same uniqueness and stability properties as the 3-D case. After this, I review the main aspects of 3-D shape representations, lightcurve inversion, and the inclusion of complementary data.

  11. Iron oxide bands in the visible and near-infrared reflectance spectra of primitive asteroids

    Science.gov (United States)

    Jarvis, Kandy S.; Vilas, Faith; Gaffey, Michael J.

    1993-01-01

    High resolution reflectance spectra of primitive asteroids (C, P, and D class and associated subclasses) have commonly revealed an absorption feature centered at 0.7 microns attributed to an Fe(2+)-Fe(3+) charge transfer transition in iron oxides and/or oxidized iron in phyllosilicates. A smaller feature identified at 0.43 microns has been attributed to an Fe(3+) spin-forbidden transition in iron oxides. In the spectra of the two main-belt primitive asteroids 368 Haidea (D) and 877 Walkure (F), weak absorption features which were centered near the location of 0.60-0.65 microns and 0.80-0.90 microns prompted a search for features at these wavelengths and an attempt to identify their origin(s). The CCD reflectance spectra obtained between 1982-1992 were reviewed for similar absorption features located near these wavelengths. The spectra of asteroids in which these absorption features have been identified are shown. These spectra are plotted in order of increasing heliocentric distance. No division of the asteroids by class has been attempted here (although the absence of these features in the anhydrous S-class asteroids, many of which have presumably undergone full heating and differentiation should be noted). For this study, each spectrum was treated as a continuum with discrete absorption features superimposed on it. For each object, a linear least squares fit to the data points defined a simple linear continuum. The linear continuum was then divided into each spectrum, thus removing the sloped continuum and permitting the intercomparison of residual spectral features.

  12. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  13. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng

    2015-05-28

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple visual features, the MMKR first maps them into a high-dimensional space, e.g., a reproducing kernel Hilbert space (RKHS), where test images are then linearly reconstructed by some representative training images, rather than all of them. Furthermore a classification rule is proposed to classify test images. Experimental results on real datasets show the effectiveness of the proposed MMKR while comparing to state-of-the-art algorithms.

  14. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  15. SIMULTANEOUS MULTI-BAND DETECTION OF LOW SURFACE BRIGHTNESS GALAXIES WITH MARKOVIAN MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, B.; Bonnarel, F.; Louys, M. [CDS, Observatoire Astronomique, UMR 7550, 11 rue de l' universite, F-67000 Strasbourg (France); Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch. [LSIIT, Universite de Strasbourg, 7, Rue Rene Descartes, F-67084 Strasbourg (France); Van Driel, W. [GEPI, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 place Jules Janssen, F-92190 Meudon (France); Sabatini, S. [INAF/IASF-Roma, via Fosso de Cavaliere 100, I-00133 Roma (Italy); MacArthur, L. A., E-mail: Bernd.Vollmer@astro.unistra.fr [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada)

    2013-02-01

    We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings-typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg{sup 2} in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered {approx}20% more mock LSB galaxies and {approx}40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of

  16. Teletraffic performance Analysis of Multi-band Overlaid WCDMA Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Iversen, Villy Bæk

    2007-01-01

    Wide-band Code Division Multiple Access (WCDMA) systems are considered to be among the best alternatives for Universal Mobile Telecommunication System (UMTS). In future deployment of WCDMA systems, spectrum overlay among sub-bands with different bandwidth is necessary to support various kinds of ...... of virtual channel so that classical teletraffic theory can be applied. A service class is modelled as a BPP (Binomial-Poisson-Pascal) multi-rate traffic stream....

  17. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    Science.gov (United States)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep

  18. UV Spectroscopy of Metallic Asteroid (16) Psyche

    Science.gov (United States)

    Cunningham, N. J.; Becker, T. M.; Retherford, K. D.; Roth, L.; Feaga, L. M.; Wahlund, J.-E.; Elkins-Tanton, L. T.

    2017-09-01

    Asteroid (16) Psyche is the largest M-type asteroid, and the planned destination of the NASA Discovery mission Psyche and the proposed ESA M5 mission Heavy Metal. Psyche is considered to be the exposed core of a differentiated asteroid, whose mantle has been stripped by collisions; but other histories have been proposed. We observed Psyche with the Space Telescope Imaging Spectrograph (STIS) and Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope, to obtain a full ultraviolet (UV) spectrum of both of Psyche's hemispheres. We seek to test three possible scenarios for Psyche's origin: Is Psyche the exposed core of a differentiated asteroid? Is it an asteroid with high olivine content that has been space-weathered? Or did Psyche accrete as-is in a highly-reducing environment early in the history of the solar system? We will present the UV spectra and their implications for Psyche's history.

  19. Dual-band infrared camera

    Science.gov (United States)

    Vogel, H.; Schlemmer, H.

    2005-10-01

    Every year, numerous accidents happen on European roads due to bad visibility (fog, night, heavy rain). Similarly, the dramatic aviation accidents of year 2001 in Milan and Zurich have reminded us that aviation safety is equally affected by reduced visibility. A dual-band thermal imager was developed in order to raise human situation awareness under conditions of reduced visibility especially in the automotive and aeronautical context but also for all transportation or surveillance tasks. The chosen wavelength bands are the Short Wave Infrared SWIR and the Long Wave Infrared LWIR band which are less obscured by reduced visibility conditions than the visible band. Furthermore, our field tests clearly show that the two different spectral bands very often contain complementary information. Pyramidal fusion is used to integrate complementary and redundant features of the multi-spectral images into a fused image which can be displayed on a monitor to provide more and better information for the driver or pilot.

  20. Narrow-Band Imaging: Clinical Application in Gastrointestinal Endoscopy

    Directory of Open Access Journals (Sweden)

    Sandra Barbeiro

    2018-03-01

    Full Text Available Narrow-band imaging is an advanced imaging system that applies optic digital methods to enhance endoscopic images and improves visualization of the mucosal surface architecture and microvascular pattern. Narrow-band imaging use has been suggested to be an important adjunctive tool to white-light endoscopy to improve the detection of lesions in the digestive tract. Importantly, it also allows the distinction between benign and malignant lesions, targeting biopsies, prediction of the risk of invasive cancer, delimitation of resection margins, and identification of residual neoplasia in a scar. Thus, in expert hands it is a useful tool that enables the physician to decide on the best treatment (endoscopic or surgical and management. Current evidence suggests that it should be used routinely for patients at increased risk for digestive neoplastic lesions and could become the standard of care in the near future, at least in referral centers. However, adequate training programs to promote the implementation of narrow-band imaging in daily clinical practice are needed. In this review, we summarize the current scientific evidence on the clinical usefulness of narrow-band imaging in the diagnosis and characterization of digestive tract lesions/cancers and describe the available classification systems.

  1. Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting, E-mail: WT323@mail.nwpu.edu.cn [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia); Sheng, Mei-Ping [School of Marine Science and Technology, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072 (China); Qin, Qing-Hua [College of Engineering and Computer Science, The Australian National University, ACT, 2600 (Australia)

    2016-02-05

    Flexural vibration suppression in an Euler–Bernoulli beam with attached lateral local resonators (LLR) is studied theoretically and numerically. Hamilton's principle and Bloch's theorem are employed to derive the dispersion relation which reveals that two band gaps are generated. Within both band gaps, the flexural waves are partially transformed into longitudinal waves through a four-link-mechanism and totally blocked. The band gaps can be flexibly tuned by changing the geometry parameter of the four-link-mechanism and the spring constants of the resonators. Frequency response function (FRF) from finite element analysis via commercial software of ANSYS shows large flexural wave attenuation within the band gaps and the effect of damping from the LLR substructures which helps smooth and lower the response peaks at the sacrifice of the band gap effect. The existence of the multi-flexural band gaps can be exploited for the design of flexural vibration control of beams. - Highlights: • A metamaterial beam with lateral local resonance is proposed. • The metamaterial beam can generate multi-band gaps for flexural wave suppression. • The substructure can transform the flexural wave into longitudinal wave and absorb the waves. • Damping from different part has different influence on the band gaps. • The design of the metamaterial beam can be used for multi-flexural vibration control.

  2. Multi-dimensional imaging

    CERN Document Server

    Javidi, Bahram; Andres, Pedro

    2014-01-01

    Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and

  3. Discrimination of coastal wetland environments in the Amazon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery

    Science.gov (United States)

    Souza-Filho, Pedro Walfir M.; Paradella, Waldir R.; Rodrigues, Suzan W. P.; Costa, Francisco R.; Mura, José C.; Gonçalves, Fabrício D.

    2011-11-01

    This study assessed the use of multi-polarized L-band images for the identification of coastal wetland environments in the Amazon coast region of northern Brazil. Data were acquired with a SAR R99B sensor from the Amazon Surveillance System (SIVAM) on board a Brazilian Air Force jet. Flights took place in the framework of the 2005 MAPSAR simulation campaign, a German-Brazilian feasibility study focusing on a L-band SAR satellite. Information retrieval was based on the recognition of the interaction between a radar signal and shallow-water morphology in intertidal areas, coastal dunes, mangroves, marshes and the coastal plateau. Regarding the performance of polarizations, VV was superior for recognizing intertidal area morphology under low spring tide conditions; HH for mapping coastal environments covered with forest and scrub vegetation such as mangrove and vegetated dunes, and HV was suitable for distinguishing transition zones between mangroves and coastal plateau. The statistical results for the classification maps expressed by kappa index and general accuracy were 83.3% and 0.734 for the multi-polarized color composition (R-HH, G-HV, B-VV), 80.7% and 0.694% for HH, 79.7% and 0.673% for VV, and 77.9% and 0.645% for HV amplitude image. The results indicate that use of multi-polarized L-band SAR is a valuable source of information aiming at the identification and discrimination of distinct geomorphic targets in tropical wetlands.

  4. Three dimensional modelling for the target asteroid of HAYABUSA

    Science.gov (United States)

    Demura, H.; Kobayashi, S.; Asada, N.; Hashimoto, T.; Saito, J.

    Hayabusa program is the first sample return mission of Japan. This was launched at May 9 2003, and will arrive at the target asteroid 25143 Itokawa on June 2005. The spacecraft has three optical navigation cameras, which are two wide angle ones and a telescopic one. The telescope with a filter wheel was named AMICA (Asteroid Multiband Imaging CAmera). We are going to model a shape of the target asteroid by this telescope; expected resolution: 1m/pixel at 10 km in distanc, field of view: 5.7 squared degrees, MPP-type CCD with 1024 x 1000 pixels. Because size of the Hayabusa is about 1x1x1 m, our goal is shape modeling with about 1m in precision on the basis of a camera system with scanning by rotation of the asteroid. This image-based modeling requires sequential images via AMICA and a history of distance between the asteroid and Hayabusa provided by a Laser Range Finder. We established a system of hierarchically recursive search with sub-pixel matching of Ground Control Points, which are picked up with Susan Operator. The matched dataset is restored with a restriction of epipolar geometry, and the obtained a group of three dimensional points are converted to a polygon model with Delaunay Triangulation. The current status of our development for the shape modeling is displayed.

  5. Asteroid Spectroscopy: A Declaration of Independence

    Science.gov (United States)

    Bell, J. F.

    1995-09-01

    One of the shibboleths of asteroid spectroscopy for the past 25 years has been that a detailed knowledge of meteoritics is essential for proper interpretation of asteroid spectra. In fact, several recent spectroscopic discoveries have overturned long-standing models based on popular interpretations of meteorite data. A case can be made that spectroscopists could have made much faster progress if they had worked in total isolation from meteoritics. Consider the first three spectral classes identified in the 1970s: Vesta: The very first asteroid spectrum was unambigously basaltic, yet some meteoriticists have persistently resisted the obvious conclusion that the HED clan comes from Vesta, because A) Vesta is "impossibly" far from the known dynamical escape hatches; and B) the HED O-isotope data "establishes" a lirlk with pallasites and IIIAB irons, suggesting that their parent was some other completely disrupted asteroid. The discovery of a "dynamically impossible" extended family of basaltic fragments extending from Vesta to the 3:1 resonance [1] makes it clear that HEDs must originate on Vesta, and that dynamical, physical and isotopic arguments all led in the wrong direction. Stony: In the early 1970s meteorite fall statistics led to an expectation that many of the larger asteroids would be ordinary chondrites. When the most common class of asteroids proved to have silicate absorption bands, many concluded that these objects were the expected ordinary chondrite parent asteroids. The later discovery that S-type spectra do not actually resemble OCs was rationalized with imaginary "space weathering" processes (which have never been observed or simulated despite 20 years of wasted effort). Now that the real weathering trends in S asteroids have been resolved [2] and asteroids which actually do look like OCs discovered [3], it is clear that the eDhre controversy over S asteroid composition was a blind alley that could have been avoided by taking the spectra at face

  6. Near-Earth Asteroid 2005 CR37: Radar Images and Photometry of a Candidate Contact Binary

    Science.gov (United States)

    Benner, Lance A. M.; Nolan, Michael C.; Ostro, Steven J.; Giorgini, Jon D.; Pray, Donald P.; Harris, Alan W.; Magri, Christopher; Margot, Jean-Luc

    2006-01-01

    Arecibo (2380 MHz, 13 cm) radar observations of 2005 CR37 provide detailed images of a candidate contact binary: a 1.8-km-long, extremely bifurcated object. Although the asteroid's two lobes are round, there are regions of modest topographic relief, such as an elevated, 200-m-wide facet, that suggest that the lobes are geologically more complex than either coherent fragments or homogeneous rubble piles. Since January 1999, about 9% of NEAs larger than approx.200 m imaged by radar can be described as candidate contact binaries.

  7. Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LiaoYa-li; Yangyan; CaoYang

    2003-01-01

    Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.

  8. Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites

    Science.gov (United States)

    Zolensky, M. E.; Lee, R.; Le, L.

    2004-01-01

    One of the many unexpected observations of asteroid 433 Eros by the Near Earth Asteroid Rendezvous (NEAR) mission was the many ponds of fine-grained materials [1-3]. The ponds have smooth surfaces, and define equipotential surfaces up to 10's of meters in diameter [4]. The ponds have a uniformly sub-cm grain size and appear to be cohesive or indurated to some degree, as revealed by slumping. The ponds appear to be concentrated within 30 degrees of the equator of Eros, where gravity is lowest. There is some insight into the mineralogy and composition of the ponds surfaces from NEAR spectroscopy [2,4,5,6]. Compared to the bulk asteroid, ponds: (1) are distinctly bluer (high 550/760 nm ratio), (2) have a deeper 1um mafic band, (3) have reflectance elevated by 5%.

  9. Multi-band, multi-epoch observations of the transiting warm Jupiter WASP-80b

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Akihiko; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Kawashima, Yui; Ikoma, Masahiro; Kurosaki, Kenji [Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033 (Japan); Narita, Norio; Nishiyama, Shogo; Takahashi, Yasuhiro H.; Nagayama, Shogo [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Onitsuka, Masahiro; Baba, Haruka; Ryu, Tsuguru [The Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ita, Yoshifusa; Onozato, Hiroki [Astronomical Institute, Graduate School of Science, Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Hirano, Teruyuki; Kawauchi, Kiyoe [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Hori, Yasunori [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Nagayama, Takahiro [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, and National Astronomical Observatory of Japan (Japan); Kawai, Nobuyuki, E-mail: afukui@oao.nao.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1, Oookayama, Meguro, Tokyo 152-8551 (Japan); and others

    2014-08-01

    WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b by using three ground-based telescopes covering from optical (g', R{sub c}, and I{sub c} bands) to near-infrared (NIR; J, H, and K{sub s} bands) wavelengths. We observe 5 primary transits, each in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solar abundance and thick cloud atmospheric models at a 1.7σ discrepancy level. On the other hand, we find a marginal spectral rise in the optical region compared to the NIR region at the 2.9σ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0σ. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.

  10. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    Science.gov (United States)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  11. Asteroid thermal modeling in the presence of reflected sunlight

    Science.gov (United States)

    Myhrvold, Nathan

    2018-03-01

    A new derivation of simple asteroid thermal models is presented, investigating the need to account correctly for Kirchhoff's law of thermal radiation when IR observations contain substantial reflected sunlight. The framework applies to both the NEATM and related thermal models. A new parameterization of these models eliminates the dependence of thermal modeling on visible absolute magnitude H, which is not always available. Monte Carlo simulations are used to assess the potential impact of violating Kirchhoff's law on estimates of physical parameters such as diameter and IR albedo, with an emphasis on NEOWISE results. The NEOWISE papers use ten different models, applied to 12 different combinations of WISE data bands, in 47 different combinations. The most prevalent combinations are simulated and the accuracy of diameter estimates is found to be depend critically on the model and data band combination. In the best case of full thermal modeling of all four band the errors in an idealized model the 1σ (68.27%) confidence interval is -5% to +6%, but this combination is just 1.9% of NEOWISE results. Other combinations representing 42% of the NEOWISE results have about twice the CI at -10% to +12%, before accounting for errors due to irregular shape or other real world effects that are not simulated. The model and data band combinations found for the majority of NEOWISE results have much larger systematic and random errors. Kirchhoff's law violation by NEOWISE models leads to errors in estimation accuracy that are strongest for asteroids with W1, W2 band emissivity ɛ12 in both the lowest (0.605 ≤ɛ12 ≤ 0 . 780), and highest decile (0.969 ≤ɛ12 ≤ 0 . 988), corresponding to the highest and lowest deciles of near-IR albedo pIR. Systematic accuracy error between deciles ranges from a low of 5% to as much as 45%, and there are also differences in the random errors. Kirchhoff's law effects also produce large errors in NEOWISE estimates of pIR, particularly for high

  12. The REgolith X-Ray Imaging Spectrometer (REXIS) for OSIRIS-REx: identifying regional elemental enrichment on asteroids

    Science.gov (United States)

    Allen, Branden; Grindlay, Jonathan; Hong, Jaesub; Binzel, Richard P.; Masterson, Rebecca; Inamdar, Niraj K.; Chodas, Mark; Smith, Matthew W.; Bautz, Marshall W.; Kissel, Steven E.; Villasenor, Joel; Oprescu, Miruna; Induni, Nicholas

    2013-09-01

    The OSIRIS-REx Mission was selected under the NASA New Frontiers program and is scheduled for launch in September of 2016 for a rendezvous with, and collection of a sample from the surface of asteroid Bennu in 2019. 101955 Bennu (previously 1999 RQ36) is an Apollo (near-Earth) asteroid originally discovered by the LINEAR project in 1999 which has since been classified as a potentially hazardous near-Earth object. The REgolith X-Ray Imaging Spectrometer (REXIS) was proposed jointly by MIT and Harvard and was subsequently accepted as a student led instrument for the determination of the elemental composition of the asteroid's surface as well as the surface distribution of select elements through solar induced X-ray fluorescence. REXIS consists of a detector plane that contains 4 X-ray CCDs integrated into a wide field coded aperture telescope with a focal length of 20 em for the detection of regions with enhanced abundance in key elements at 50 m scales. Elemental surface distributions of approximately 50-200 m scales can be detected using the instrument as a simple collimator. An overview of the observation strategy of the REXIS instrument and expected performance are presented here.

  13. The TNO Multiband Image Data Collection

    NARCIS (Netherlands)

    Toet, A.

    2017-01-01

    Despite of the ongoing interest in the fusion of multi-band images for surveillance applications and a steady stream of publications in this area, there is only a very small number of static registered multi-band test images (and a total lack of dynamic image sequences) publicly available for the

  14. Radar Observations of Main-Belt M-class Asteroids

    NARCIS (Netherlands)

    Shepard, Michael K.; Clark, B. E.; Ockert-Bell, M.; Nolan, M. C.; Howell, E. S.; Magri, C.; Giorgini, J. D.; Benner, L. A. M.; Ostro, S. J.; Harris, A. W.; Warner, B. D.; Stephens, R. D.; Mueller, M.

    2009-01-01

    Using the S-band radar at Arecibo Observatory, we have observed 19 Tholen M-class asteroids. The mean radar albedo for all our targets is 0.28 ± 0.13, considerably higher than the mean radar albedo of every other class (Magri et al. 2007, Icarus 186, 126-151). We find approximately one-third (six)

  15. Band Subset Selection for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Chunyan Yu

    2018-01-01

    Full Text Available This paper develops a new approach to band subset selection (BSS for hyperspectral image classification (HSIC which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS, rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS, as most traditional band selection methods do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is a linearly constrained minimum variance (LCMV derived from adaptive beamforming in array signal processing which can be used to model misclassification errors as the minimum variance. To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as sequential (SQ and successive (SC algorithms are also developed for LCMV-based SMMBS, called SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has advantages over SQMBS.

  16. Dynamical properties of the Watsonia asteroid family

    Science.gov (United States)

    Tsirvoulis, G.; Novakovic, B.; Knezevic, Z.; Cellino, A.

    2014-07-01

    Introduction: In recent years, a rare class of asteroids has been discovered [1], with its distinguishing characteristic being the anomalous polarimetric properties of its members. Named Barbarians, after (234) Barbara, the prototype of the class, these asteroids show negative polarization at unusually high phase-angles compared to normal asteroids. Motivated by the fact that some of the few discovered Barbarians seemed to be related to the Watsonia asteroid family, Cellino et al. [2] performed a search for more Barbarians among its members. A positive result of this search led to the conclusion that Watsonia is indeed an important repository of Barbarian asteroids. Based on these findings, we decided to analyze this family in detail. Basic information: According to available data, Watsonia is an L-type asteroid family, located in the middle of the main asteroid belt (2.68 < a_{p} < 2.82 au), with low to moderate orbital eccentricities (0.1 < e_{p} < 0.15) and relatively high inclinations (16.5^{o} < i_{p} < 18^{o}). Methodology: The first step in our study is to derive a reliable list of Watsonia family members. To that purpose, we first calculate the synthetic proper elements [3] of an extended catalogue including numbered, as well as multi and single opposition asteroids, in a wide region around the family. To this catalogue we apply the Hierarchical Clustering Method (HCM)[4] to determine the membership of the family, coinciding with the requirement that all confirmed neighboring Barbarians are included (see figure). To detect potential interlopers and refine the membership list, additional data such as the SDSS colors and WISE albedos are used. Moreover, we identify all relevant resonances and analyze the dynamical characteristics of the region occupied by the family. Then we estimate the age of the family, and finally, we perform numerical integrations of test particles to investigate possible dynamical links to other known Barbarians and to the near

  17. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    Science.gov (United States)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  18. Simultaneous multi-band channel sounding at mm-Wave frequencies

    DEFF Research Database (Denmark)

    Müller, Robert; Häfner, Stephan; Dupleich, Diego

    2016-01-01

    The vision of multi Gbit/s data rates in future mobile networks requires the change to millimeter wave (mm-Wave) frequencies for increasing bandwidth. As a consequence, new technologies have to be deployed to tackle the drawbacks of higher frequency bands, e.g. increased path loss. Development an...

  19. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  20. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  1. THE PHYSICAL CHARACTERIZATION OF THE POTENTIALLY HAZARDOUS ASTEROID 2004 BL86: A FRAGMENT OF A DIFFERENTIATED ASTEROID

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Vishnu; Sanchez, Juan A.; Takir, Driss; Corre, Lucille Le [Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719 (United States); Gary, Bruce L. [Hereford Arizona Observatory, Hereford, AZ 85615 (United States); Thomas, Cristina A. [NASA Goddard Spaceflight Center, Greenbelt, MD 20771 (United States); Hardersen, Paul S. [Department of Space Studies, University of North Dakota, Grand Forks, ND 58202 (United States); Ogmen, Yenal [Green Island Observatory, Geçitkale, Maǧusa, via Mersin 10  North Cyprus (Turkey); Benni, Paul [Acton Sky Portal, 3 Concetta Circle, Acton, MA 01720 (United States); Kaye, Thomas G. [Raemor Vista Observatory, Sierra Vista, AZ 85650 (United States); Gregorio, Joao [Atalaia Group, Crow Observatory (Portalegre) Travessa da Cidreira, 2 rc D, 2645-039 Alcabideche (Portugal); Garlitz, Joe [1155 Hartford Street, Elgin, OR 97827 (United States); Polishook, David [Weizmann Institute of Science, Herzl Street 234, Rehovot, 7610001 (Israel); Nathues, Andreas, E-mail: reddy@psi.edu [Max-Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2015-09-20

    The physical characterization of potentially hazardous asteroids (PHAs) is important for impact hazard assessment and evaluating mitigation options. Close flybys of PHAs provide an opportunity to study their surface photometric and spectral properties that enable the identification of their source regions in the main asteroid belt. We observed PHA (357439) 2004 BL86 during a close flyby of the Earth at a distance of 1.2 million km (0.0080 AU) on 2015 January 26, with an array of ground-based telescopes to constrain its photometric and spectral properties. Lightcurve observations showed that the asteroid was a binary and subsequent radar observations confirmed the binary nature and gave a primary diameter of 300 m and a secondary diameter of 50–100 m. Our photometric observations were used to derive the phase curve of 2004 BL86 in the V-band. Two different photometric functions were fitted to this phase curve, the IAU H–G model and the Shevchenko model. From the fit of the H–G function we obtained an absolute magnitude of H = 19.51 ± 0.02 and a slope parameter of G = 0.34 ± 0.02. The Shevchenko function yielded an absolute magnitude of H = 19.03 ± 0.07 and a phase coefficient b = 0.0225 ± 0.0006. The phase coefficient was used to calculate the geometric albedo (Ag) using the relationship found by Belskaya and Schevchenko, obtaining a value of Ag = 40% ± 8% in the V-band. With the geometric albedo and the absolute magnitudes derived from the H–G and the Shevchenko functions we calculated the diameter (D) of 2004 BL86, obtaining D = 263 ± 26 and D = 328 ± 35 m, respectively. 2004 BL86 spectral band parameters and pyroxene chemistry are consistent with non-cumulate eucrite meteorites. A majority of these meteorites are derived from Vesta and are analogous with surface lava flows on a differentiated parent body. A non-diagnostic spectral curve match using the Modeling for Asteroids tool yielded a best-match with non-cumulate eucrite Bereba. Three other

  2. MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing

    DEFF Research Database (Denmark)

    2014-01-01

    MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing......MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing...

  3. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system

    NARCIS (Netherlands)

    Curvers, W. L.; Singh, R.; Song, L.-M. Wong-Kee; Wolfsen, H. C.; Ragunath, K.; Wang, K.; Wallace, M. B.; Fockens, P.; Bergman, J. J. G. H. M.

    2008-01-01

    OBJECTIVE: To investigate the diagnostic potential of endoscopic tri-modal imaging and the relative contribution of each imaging modality (i.e. high-resolution endoscopy (HRE), autofluorescence imaging (AFI) and narrow-band imaging (NBI)) for the detection of early neoplasia in Barrett's oesophagus.

  4. Tracing meteorite source regions through asteroid spectroscopy

    Science.gov (United States)

    Thomas, Cristina Ana

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives the best representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original solar system formation locations for different meteorite classes. To forge the first link between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-micron and 2-micron geometric band centers and their band area ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in the H, L, LL and HED meteorite classes. For each NEO spectrum, we assign a set of probabilities for it being related to each of these meteorite classes. Our NEO- meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. An apparent (significant at the 2.1-sigma level) source region signature is found for the H chondrites to be preferentially delivered to the inner solar system through the 3:1 mean motion resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites. The spectroscopy of asteroids is subject to several sources of inherent error. The source region model used a variety of S-type spectra without

  5. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features

    Science.gov (United States)

    Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei

    2018-06-01

    Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.

  6. Asteroids Dynamic Site-AstDyS

    Science.gov (United States)

    Knezevic, Zoran; Milani, Andrea

    2012-08-01

    The AstDyS online information service (http://hamilton.dm.unipi.it/astdys/) contains data on numbered and multi - opposition asteroids, including orbital elements, their uncertainty, proper elements, ephemerides with uncertainty, and more. AstDyS also provides additional scientific output computed from the raw observational data. This value added currently includes: more accurate orbits computed with advanced dynamical and observational error model s; their uncertainty, as expressed by the covariance matrix formalism; ephemerides computed on request for each observer, with uncertainty; mean and proper orbital elements (for this output, AstDyS is the primary source worldwide); statistical quality control, providing a rigorous observational error model. All this is available with a sophisticated web interface, providing multiple search functions and online computations as well as complete orbital and residual files. There are several ways in which the A stDyS service could be expanded and improved in the next future, like the explicit classification of asteroids into asteroid families, the classification of resonant asteroids, and an updated self - consistent population model (to be used, e.g., for survey simulations). The IAU Division I endorsed the proposal for AstDyS to become an IAU (permanent) service, which would include the IAU supervision of the AstDyS system, keeping under control the quality of the work and the continuous update under conditions of scientific competition.

  7. ASTROMETRIC MASSES OF 26 ASTEROIDS AND OBSERVATIONS ON ASTEROID POROSITY

    International Nuclear Information System (INIS)

    Baer, James; Chesley, Steven R.; Matson, Robert D.

    2011-01-01

    As an application of our recent observational error model, we present the astrometric masses of 26 main-belt asteroids. We also present an integrated ephemeris of 300 large asteroids, which was used in the mass determination algorithm to model significant perturbations from the rest of the main belt. After combining our mass estimates with those of other authors, we study the bulk porosities of over 50 main-belt asteroids and observe that asteroids as large as 300 km in diameter may be loose aggregates. This finding may place specific constraints on models of main-belt collisional evolution. Additionally, we observe that C-group asteroids tend to have significantly higher macroporosity than S-group asteroids.

  8. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  9. Tissues segmentation based on multi spectral medical images

    Science.gov (United States)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  10. M-BAND IMAGING OF THE HR 8799 PLANETARY SYSTEM USING AN INNOVATIVE LOCI-BASED BACKGROUND SUBTRACTION TECHNIQUE

    International Nuclear Information System (INIS)

    Galicher, Raphael; Marois, Christian; Macintosh, Bruce; Konopacky, Quinn; Barman, Travis

    2011-01-01

    Multi-wavelength observations/spectroscopy of exoplanetary atmospheres are the basis of the emerging exciting field of comparative exoplanetology. The HR 8799 planetary system is an ideal laboratory to study our current knowledge gap between massive field brown dwarfs and the cold 5 Gyr old solar system planets. The HR 8799 planets have so far been imaged at J- to L-band, with only upper limits available at M-band. We present here deep high-contrast Keck II adaptive optics M-band observations that show the imaging detection of three of the four currently known HR 8799 planets. Such detections were made possible due to the development of an innovative LOCI-based background subtraction scheme that is three times more efficient than a classical median background subtraction for Keck II AO data, representing a gain in telescope time of up to a factor of nine. These M-band detections extend the broadband photometric coverage out to ∼5 μm and provide access to the strong CO fundamental absorption band at 4.5 μm. The new M-band photometry shows that the HR 8799 planets are located near the L/T-type dwarf transition, similar to what was found by other studies. We also confirm that the best atmospheric fits are consistent with low surface gravity, dusty, and non-equilibrium CO/CH 4 chemistry models.

  11. A comparison of dimension reduction methods with application to multi-spectral images of sand used in concrete

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Hansen, M. E.; Ersbøll, Bjarne Kjær

    2010-01-01

    This paper presents a comparison of dimension reduction methods based on a novel machine vision application for estimating moisture content in sand used to make concrete. For the application in question it is very important to know the moisture content of the sand so as to ensure good-quality...... sand types were examined with 20-60 images for each type. To reduce the amount of data, features were extracted from the multi-spectral images; the features were summary statistics on single bands and pairs of bands as well as morphological summaries. The number of features (2,016) is high in relation...

  12. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  13. Multi-band Microwave Antennas and Devices based on Generalized Negative-Refractive-Index Transmission Lines

    Science.gov (United States)

    Ryan, Colan Graeme Matthew

    Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates

  14. M-class Asteroids: Soft Rock, Heavy Metal, Or None Of That Jazz?

    Science.gov (United States)

    Rivkin, Andrew S.

    2008-09-01

    M-class asteroids in the Tholen taxonomy have featureless spectra in the 0.3-1.0 micrometer region and moderate albedos. Taxonomic studies using reflectance spectra have long associated M-class asteroids with iron meteorites. Dozens of parent bodies are required by cosmochemists in order to generate the diversity seen in the iron meteorite population, representing both the disrupted cores of differentiated parent bodies as well as objects with more exotic histories. Unfortunately, the featureless spectrum of iron-nickel metal in the visible and near-IR can be matched by other mineralogies unrelated to iron meteorites. For instance, the primitive enstatite chondrites are also matches to M asteroids (Burbine et al. 2002). The past 20 years have led to increased recognition that the M asteroid class includes a diverse set of objects. Polarimetric, spectral, and radar observations in the 1980s and 1990s showed that at least some M asteroids were not iron-meteorite-like. In particular, observations by Jones et al. (1990), Rivkin et al. (1995), and Rivkin et al. (2000) found several M asteroids with absorptions near 3 micrometers, interpreted as hydrated minerals. This led to the proposal to separate those asteroids with bands into a new W class. Since 2000, new observations have been made by various workers in the near and mid-IR from the ground and with Spitzer. An increase in the sample size of radar-detected asteroids has provided additional insight into M and W asteroids. New meteorite classes have been delimited and characterized, some of which are of direct relevance to the M asteroid population. Discoveries of binary M-class asteroids have allowed densities to be measured Finally, the Rosetta spacecraft will fly by the M (W) asteroid 21 Lutetia in 2010. I will discuss the M/W asteroid class in the context of all of these new data. Thanks to the NASA PAST and PGG programs.

  15. Update on an Interstellar Asteroid

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    Lowell Observatorys 4.3-m Discovery Channel Telescope. The data indicate that the asteroids period is at least 3 hours in length,and most likely more than 5 hours. Assuming the light curves variation is caused by the tumbling asteroids changing cross-section, Oumuamuamust be a minimum of3 times as long as it is wide. Knight and collaborators seeno signs in their images of a coma or tail emitted from Oumuamua, suggesting there isno volatile material sublimating from its surface under the heat of the Sun.No coma is visible around Oumuamua. [Knight et al. 2017]A study of the asteroids photometry, led by Michele Bannister (Queens University Belfast, UK), usedthe Gemini-North telescope in Hawaii and the William Herschel Telescope in Spainto explore the asteroids shape and color. Bannister and collaborators refined the estimate of the asteroids shape to be at least 5.3 times as long as it is wide, which requiresthis body to have significant internal cohesion to hold together as it tumbles. Their measured color for Oumuamua is largely neutral.What Does This Visitor Imply?Masses and semimajor axes of known exoplanets. Colors correspond to the ratio of escape velocity to circular velocity. The presence of Oumuamua implies a vast and cool, stillundetected population of planets. [Laughlin Batygin, 2017]Gregory Laughlinof Yale University and Konstantin Batyginof Caltech(andPlanet Nine fame) explore some of the consequences of Oumuamuas parameters. They arguethat its current passage, if its not a fluke, suggests the presence ofan enormous number (1027) ofsuch objects in our galaxy alone enough to account for two Earth-masses of material for every star in the galaxy. Flinging asteroids like Oumuamuaout into interstellar space isnteasy, though; the necessary multi-body interaction requires the system to containa giant and long-period planet like our Neptune or Jupiter. Taken together, this information suggests that every star in the galaxy may host a Neptune-like planet at a Neptune

  16. Anisotropy and multi-band effects in weak-coupling superconductors

    International Nuclear Information System (INIS)

    Berger, T.L.

    1977-01-01

    The techniques of second quantization and thermodynamic Green functions are used to investigate energy gap anisotropy and multi-band effects in pure, single-crystal, weak-coupling superconductors. A generalized version of the standard Gorkov factorization is used to linearize the Green functions equations of motion. The effects of lattice periodicity and band structure are taken into account by means of Bloch wave expansions and Bloch transforms. A pairing selection rule is derived which indicates the possibility of pairing between single particle states belonging to different bands, as well as the usual Cooper pairing. It is shown that the interband gap parameter, which is coupled to the usual gap parameter by the Green functions equations of motion, can only contribute indirectly to the tunneling electric current and the thermodynamic potential. In the absence of interband pairing, the equations of motion lead to the usual BCS gap equation. Also, in the absence of interband pairing, the gap parameter is found to be equal to the diagonal matrix element of the superconductor pair potential between electronic Bloch states. An essentially temperature independent anisotropy function which contains all angular dependence of the gap is shown to evolve naturally from this formalism. The overall temperature dependence of the gap is investigated and it is found that with a change of temperature, the magnitude of the gap in different directions changes in the same ration. The ordinary Markowitz-Kadanoff model is shown to be inappropriate for the case of a multi-band superconductor and a generalized version of this model is introduced and discussed. A special case of this model is considered which leads to gap discontinuities at Brillouin zone boundaries

  17. Contextual Student Learning through Authentic Asteroid Research Projects using a Robotic Telescope Network

    Science.gov (United States)

    Hoette, Vivian L.; Puckett, Andrew W.; Linder, Tyler R.; Heatherly, Sue Ann; Rector, Travis A.; Haislip, Joshua B.; Meredith, Kate; Caughey, Austin L.; Brown, Johnny E.; McCarty, Cameron B.; Whitmore, Kevin T.

    2015-11-01

    Skynet is a worldwide robotic telescope network operated by the University of North Carolina at Chapel Hill with active observing sites on 3 continents. The queue-based observation request system is simple enough to be used by middle school students, but powerful enough to supply data for research scientists. The Skynet Junior Scholars program, funded by the NSF, has teamed up with professional astronomers to engage students from middle school to undergraduates in authentic research projects, from target selection through image analysis and publication of results. Asteroid research is a particularly fruitful area for youth collaboration that reinforces STEM education standards and can allow students to make real contributions to scientific knowledge, e.g., orbit refinement through astrometric submissions to the Minor Planet Center. We have created a set of projects for youth to: 1. Image an asteroid, make a movie, and post it to a gallery; 2. Measure the asteroid’s apparent motion using the Afterglow online image processor; and 3. Image asteroids from two or more telescopes simultaneously to demonstrate parallax. The apparent motion and parallax projects allow students to estimate the distance to their asteroid, as if they were the discoverer of a brand new object in the solar system. Older students may take on advanced projects, such as analyzing uncertainties in asteroid orbital parameters; studying impact probabilities of known objects; observing time-sensitive targets such as Near Earth Asteroids; and even discovering brand new objects in the solar system.Images are acquired from among seven Skynet telescopes in North Carolina, California, Wisconsin, Canada, Australia, and Chile, as well as collaborating observatories such as WestRock in Columbus, Georgia; Stone Edge in El Verano, California; and Astronomical Research Institute in Westfield, Illinois.

  18. Asteroid size distributions for the main belt and for asteroid families

    Science.gov (United States)

    Kazantzev, A.; Kazantzeva, L.

    2017-12-01

    The asteroid-size distribution for he Eos family was constructed. The WISE database containing the albedo p and the size D of over 80,000 asteroids was used. The b parameter of the power-law dependence has a minimum at some average values of the asteroid size of the family. A similar dependence b(D) exists for the whole asteroid belt. An assumption on the possible similarity of the formation mechanisms of the asteroid belt as a whole and separate families is made.

  19. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    Science.gov (United States)

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  20. Observations of Near-Earth Asteroids in Polarized Light

    Science.gov (United States)

    Afanasiev, V. L.; Ipatov, A. V.

    2018-04-01

    We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2-3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420-800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

  1. Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample

    Science.gov (United States)

    Sesar, Branimir; Hernitschek, Nina; Mitrović, Sandra; Ivezić, Željko; Rix, Hans-Walter; Cohen, Judith G.; Bernard, Edouard J.; Grebel, Eva K.; Martin, Nicolas F.; Schlafly, Edward F.; Burgett, William S.; Draper, Peter W.; Flewelling, Heather; Kaiser, Nick; Kudritzki, Rolf P.; Magnier, Eugene A.; Metcalfe, Nigel; Tonry, John L.; Waters, Christopher

    2017-05-01

    RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) 3π survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves (≲ 12 epochs in each of five bands, taken over a 4.5 year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2 s in > 80 % of cases. We augment these light-curve fits with other features from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models, we are able to select the widest (three-fourths of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of ˜45,000 RRab stars is pure (90%) and complete (80% at 80 kpc) at high galactic latitudes. It also provides distances that are precise to 3%, measured with newly derived period-luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from Gaia and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey.

  2. Quasiclassical description of multi-band superconductors with two order parameters

    Energy Technology Data Exchange (ETDEWEB)

    Moor, Andreas

    2014-05-19

    This Thesis deals with multi-band superconductors with two order parameters, i.e., the superconductivity and the spin-density wave, also touching on one-band superconductors with a charge-density wave, as well as with only the superconducting order parameter. Quasiclassical description of suchlike structures is developed and applied to investigation of various effects, inter alia, the Josephson and the proximity effects, the Knight shift, the Larkin-Ovchinnikov-Fulde-Ferrell-like state, and the interplay of the order parameters in coexistence regime. The applicability of the developed approach to pnictides is discussed.

  3. Multi-band Monopole Antennas Loaded with Metamaterial TL

    Science.gov (United States)

    Song, Zhi-jie; Liang, Jian-gang

    2015-05-01

    A novel metamaterial transmission line (TL) by loading complementary single Archimedean spiral resonator pair (CSASRP) is investigated and used to design a set of multi-frequency monopole antennas. The particularity is that the CSASRP which features dual-shunt branches in the equivalent circuit model is directly etched in the signal strip. By smartly controlling the element parameters, three antennas are designed and one of them covering UMTS and Bluetooth bands is fabricated and measured. The antenna exhibits impedance matching better than -10 dB and normal monopolar radiation patterns at working bands of 1.9-2.22 and 2.38-2.5 GHz. Moreover, the loaded element also contributes to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. The proposed antenna is also more compact over previous designs.

  4. Asteroids@Home

    Science.gov (United States)

    Durech, Josef; Hanus, J.; Vanco, R.

    2012-10-01

    We present a new project called Asteroids@home (http://asteroidsathome.net/boinc). It is a volunteer-computing project that uses an open-source BOINC (Berkeley Open Infrastructure for Network Computing) software to distribute tasks to volunteers, who provide their computing resources. The project was created at the Astronomical Institute, Charles University in Prague, in cooperation with the Czech National Team. The scientific aim of the project is to solve a time-consuming inverse problem of shape reconstruction of asteroids from sparse-in-time photometry. The time-demanding nature of the problem comes from the fact that with sparse-in-time photometry the rotation period of an asteroid is not apriori known and a huge parameter space must be densely scanned for the best solution. The nature of the problem makes it an ideal task to be solved by distributed computing - the period parameter space can be divided into small bins that can be scanned separately and then joined together to give the globally best solution. In the framework of the the project, we process asteroid photometric data from surveys together with asteroid lightcurves and we derive asteroid shapes and spin states. The algorithm is based on the lightcurve inversion method developed by Kaasalainen et al. (Icarus 153, 37, 2001). The enormous potential of distributed computing will enable us to effectively process also the data from future surveys (Large Synoptic Survey Telescope, Gaia mission, etc.). We also plan to process data of a synthetic asteroid population to reveal biases of the method. In our presentation, we will describe the project, show the first results (new models of asteroids), and discuss the possibilities of its further development. This work has been supported by the grant GACR P209/10/0537 of the Czech Science Foundation and by the Research Program MSM0021620860 of the Ministry of Education of the Czech Republic.

  5. Genetic Algorithm-Based Optimization to Match Asteroid Energy Deposition Curves

    Science.gov (United States)

    Tarano, Ana; Mathias, Donovan; Wheeler, Lorien; Close, Sigrid

    2018-01-01

    An asteroid entering Earth's atmosphere deposits energy along its path due to thermal ablation and dissipative forces that can be measured by ground-based and spaceborne instruments. Inference of pre-entry asteroid properties and characterization of the atmospheric breakup is facilitated by using an analytic fragment-cloud model (FCM) in conjunction with a Genetic Algorithm (GA). This optimization technique is used to inversely solve for the asteroid's entry properties, such as diameter, density, strength, velocity, entry angle, and strength scaling, from simulations using FCM. The previous parameters' fitness evaluation involves minimizing error to ascertain the best match between the physics-based calculated energy deposition and the observed meteors. This steady-state GA provided sets of solutions agreeing with literature, such as the meteor from Chelyabinsk, Russia in 2013 and Tagish Lake, Canada in 2000, which were used as case studies in order to validate the optimization routine. The assisted exploration and exploitation of this multi-dimensional search space enables inference and uncertainty analysis that can inform studies of near-Earth asteroids and consequently improve risk assessment.

  6. Nonequilibrium Green's function formulation of quantum transport theory for multi-band semiconductors

    International Nuclear Information System (INIS)

    Zhao, Peiji; Horing, Norman J.M.; Woolard, Dwight L.; Cui, H.L.

    2003-01-01

    We present a nonequilibrium Green's function formulation of many-body quantum transport theory for multi-band semiconductor systems with a phonon bath. The equations are expressed exactly in terms of single particle nonequilibrium Green's functions and self-energies, treating the open electron-hole system in weak interaction with the bath. A decoupling technique is employed to separate the individual band Green's function equations of motion from one another, with the band-band interaction effects embedded in ''cross-band'' self-energies. This nonequilibrium Green's function formulation of quantum transport theory is amenable to solution by parallel computing because of its formal decoupling with respect to inter-band interactions. Moreover, this formulation also permits coding the simulator of an n-band semiconductor in terms of that for an (n-1)-band system, in step with the current tendency and development of programming technology. Finally, the focus of these equations on individual bands provides a relatively direct route for the determination of carrier motion in energy bands, and to delineate the influence of intra- and inter-band interactions. A detailed description is provided for three-band semiconductor systems

  7. Reducing contrast contamination in radial turbo-spin-echo acquisitions by combining a narrow-band KWIC filter with parallel imaging.

    Science.gov (United States)

    Neumann, Daniel; Breuer, Felix A; Völker, Michael; Brandt, Tobias; Griswold, Mark A; Jakob, Peter M; Blaimer, Martin

    2014-12-01

    Cartesian turbo spin-echo (TSE) and radial TSE images are usually reconstructed by assembling data containing different contrast information into a single k-space. This approach results in mixed contrast contributions in the images, which may reduce their diagnostic value. The goal of this work is to improve the image contrast from radial TSE acquisitions by reducing the contribution of signals with undesired contrast information. Radial TSE acquisitions allow the reconstruction of multiple images with different T2 contrasts using the k-space weighted image contrast (KWIC) filter. In this work, the image contrast is improved by reducing the band-width of the KWIC filter. Data for the reconstruction of a single image are selected from within a small temporal range around the desired echo time. The resulting dataset is undersampled and, therefore, an iterative parallel imaging algorithm is applied to remove aliasing artifacts. Radial TSE images of the human brain reconstructed with the proposed method show an improved contrast when compared with Cartesian TSE images or radial TSE images with conventional KWIC reconstructions. The proposed method provides multi-contrast images from radial TSE data with contrasts similar to multi spin-echo images. Contaminations from unwanted contrast weightings are strongly reduced. © 2014 Wiley Periodicals, Inc.

  8. OBJECT-SPACE MULTI-IMAGE MATCHING OF MOBILE-MAPPING-SYSTEM IMAGE SEQUENCES

    Directory of Open Access Journals (Sweden)

    Y. C. Chen

    2012-07-01

    Full Text Available This paper proposes an object-space multi-image matching procedure of terrestrial MMS (Mobile Mapping System image sequences to determine the coordinates of an object point automatically and reliably. This image matching procedure can be applied to find conjugate points of MMS image sequences efficiently. Conventional area-based image matching methods are not reliable to deliver accurate matching results for this application due to image scale variations, viewing angle variations, and object occlusions. In order to deal with these three matching problems, an object space multi-image matching is proposed. A modified NCC (Normalized Cross Correlation coefficient is proposed to measure the similarity of image patches. A modified multi-window matching procedure will also be introduced to solve the problem of object occlusion. A coarse-to-fine procedure with a combination of object-space multi-image matching and multi-window matching is adopted. The proposed procedure has been implemented for the purpose of matching terrestrial MMS image sequences. The ratio of correct matches of this experiment was about 80 %. By providing an approximate conjugate point in an overlapping image manually, most of the incorrect matches could be fixed properly and the ratio of correct matches was improved up to 98 %.

  9. The EURONEAR Lightcurve Survey of Near Earth Asteroids

    Science.gov (United States)

    Vaduvescu, O.; Macias, A. Aznar; Tudor, V.; Predatu, M.; Galád, A.; Gajdoš, Š.; Világi, J.; Stevance, H. F.; Errmann, R.; Unda-Sanzana, E.; Char, F.; Peixinho, N.; Popescu, M.; Sonka, A.; Cornea, R.; Suciu, O.; Toma, R.; Santos-Sanz, P.; Sota, A.; Licandro, J.; Serra-Ricart, M.; Morate, D.; Mocnik, T.; Diaz Alfaro, M.; Lopez-Martinez, F.; McCormac, J.; Humphries, N.

    2017-08-01

    This data paper presents lightcurves of 101 near Earth asteroids (NEAs) observed mostly between 2014 and 2017 as part of the EURONEAR photometric survey using 11 telescopes with diameters between 0.4 and 4.2 m located in Spain, Chile, Slovakia and Romania. Most targets had no published data at the time of observing, but some objects were observed in the same period mainly by B. Warner, allowing us to confirm or improve the existing results. To plan the runs and select the targets, we developed the public Long Planning tool in PHP. For preliminary data reduction and rapid follow-up planning we developed the LiDAS pipeline in Python and IRAF. For final data reduction, flux calibration, night linkage and Fourier fitting, we used mainly MPO Canopus. Periods of 18 targets are presented for the first time, and we could solve or constrain rotation for 16 of them. We secured periods for 45 targets (U˜ 3), found candidate periods for other 16 targets (U˜ 2), and we propose tentative periods for other 32 targets (U˜ 1). We observed 7 known or candidate binary NEAs, fiting 3 of them (2102 Tantalus, 5143 Heracles and 68348). We observed 8 known or candidate tumbling NEAs, deriving primary periods for 3 objects (9400, 242708 and 470510). We evidenced rapid oscillations (few minutes) and could fit fast tentative periods TP2 for 5 large newly suggested tumbling or binary candidates (27346, 112985, 285625, 377732, 408980), probably discovering at least one new binary NEA (2011 WO41). We resolved periods of 4 special objects which include two proposed space mission targets (163249 and 101955 Bennu), one very fast rotator NEA discovered by EURONEAR (2014 NL52) and the "Halloween asteroid" (2015 TB145). Using Mercator in simultaneous 3 band MAIA imaging, we could evidence for the first time clear variation in the color lightcurves of 10 NEAs. The periods derived from the g- r color lightcurves are found to match individual band period fits for 4 NEAs (27346, 86067, 112985 and

  10. Playback system designed for X-Band SAR

    International Nuclear Information System (INIS)

    Yuquan, Liu; Changyong, Dou

    2014-01-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement

  11. Playback system designed for X-Band SAR

    Science.gov (United States)

    Yuquan, Liu; Changyong, Dou

    2014-03-01

    SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.

  12. 3D high-resolution radar imaging of small body interiors

    Science.gov (United States)

    Sava, Paul; Asphaug, Erik

    2017-10-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5

  13. The kilometer-sized Main Belt asteroid population revealed by Spitzer

    Science.gov (United States)

    Ryan, E. L.; Mizuno, D. R.; Shenoy, S. S.; Woodward, C. E.; Carey, S. J.; Noriega-Crespo, A.; Kraemer, K. E.; Price, S. D.

    2015-06-01

    Aims: Multi-epoch Spitzer Space Telescope 24 μm data is utilized from the MIPSGAL and Taurus Legacy surveys to detect asteroids based on their relative motion. Methods: Infrared detections are matched to known asteroids and average diameters and albedos are derived using the near Earth asteroid thermal model (NEATM) for 1865 asteroids ranging in size from 0.2 to 169 km. A small subsample of these objects was also detected by IRAS or MSX and the single wavelength albedo and diameter fits derived from these data are within the uncertainties of the IRAS and/or MSX derived albedos and diameters and available occultation diameters, which demonstrates the robustness of our technique. Results: The mean geometric albedo of the small Main Belt asteroids in this sample is pV = 0.134 with a sample standard deviation of 0.106. The albedo distribution of this sample is far more diverse than the IRAS or MSX samples. The cumulative size-frequency distribution of asteroids in the Main Belt at small diameters is directly derived and a 3σ deviation from the fitted size-frequency distribution slope is found near 8 km. Completeness limits of the optical and infrared surveys are discussed. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A42

  14. DATA QUALITY EVALUATION AND APPLICATION POTENTIAL ANALYSIS OF TIANGONG-2 WIDE-BAND IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    B. Qin

    2018-04-01

    Full Text Available Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  15. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    Science.gov (United States)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  16. Spectral reflectance "deconstruction" of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids

    Science.gov (United States)

    Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu

    2018-05-01

    Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope

  17. Classification of IRAS asteroids

    International Nuclear Information System (INIS)

    Tedesco, E.F.; Matson, D.L.; Veeder, G.J.

    1989-01-01

    Albedos and spectral reflectances are essential for classifying asteroids. For example, classes E, M and P are indistinguishable without albedo data. Colorometric data are available for about 1000 asteroids but, prior to IRAS, albedo data was available for only about 200. IRAS broke this bottleneck by providing albedo data on nearly 2000 asteroids. Hence, excepting absolute magnitudes, the albedo and size are now the most common asteroid physical parameters known. In this chapter the authors present the results of analyses of IRAS-derived asteroid albedos, discuss their application to asteroid classification, and mention several studies which might be done to exploit further this data set

  18. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2

    Science.gov (United States)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.

    2017-07-01

    The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales (103-10^{-3} m) and sample scales (10^{-3}-10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital observations

  19. A Martian origin for the Mars Trojan asteroids

    Science.gov (United States)

    Polishook, D.; Jacobson, S. A.; Morbidelli, A.; Aharonson, O.

    2017-08-01

    Seven of the nine known Mars Trojan asteroids belong to an orbital cluster1,2 named after its largest member, (5261) Eureka. Eureka is probably the progenitor of the whole cluster, which formed at least 1 Gyr ago3. It has been suggested3 that the thermal YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect spun up Eureka, resulting in fragments being ejected by the rotational-fission mechanism. Eureka's spectrum exhibits a broad and deep absorption band around 1 μm, indicating an olivine-rich composition4. Here we show evidence that the Trojan Eureka cluster progenitor could have originated as impact debris excavated from the Martian mantle. We present new near-infrared observations of two Trojans ((311999) 2007 NS2 and (385250) 2001 DH47) and find that both exhibit an olivine-rich reflectance spectrum similar to Eureka's. These measurements confirm that the progenitor of the cluster has an achondritic composition4. Olivine-rich reflectance spectra are rare amongst asteroids5 but are seen around the largest basins on Mars6. They are also consistent with some Martian meteorites (for example, Chassigny7) and with the material comprising much of the Martian mantle8,9. Using numerical simulations, we show that the Mars Trojans are more likely to be impact ejecta from Mars than captured olivine-rich asteroids transported from the main belt. This result directly links specific asteroids to debris from the forming planets.

  20. Asteroid Lightcurve Analysis at CS3-Palmer Divide Station: 2017 October-December

    Science.gov (United States)

    Warner, Brian D.

    2018-04-01

    Lightcurves for 18 main-belt asteroids were obtained at the Center for Solar System Studies-Palmer Divide Station (CS3-PDS) from 2017 October-December. All but one of the asteroids were targets of opportunity, i.e., in the field of planned targets, which demonstrates a good reason for data mining images.

  1. NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies

    Science.gov (United States)

    Wooden, Diane H.; Lederer, Susan M.; Bus, Schlete; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David; hide

    2015-01-01

    We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the

  2. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  3. Clustering of Multi-Temporal Fully Polarimetric L-Band SAR Data for Agricultural Land Cover Mapping

    Science.gov (United States)

    Tamiminia, H.; Homayouni, S.; Safari, A.

    2015-12-01

    Recently, the unique capabilities of Polarimetric Synthetic Aperture Radar (PolSAR) sensors make them an important and efficient tool for natural resources and environmental applications, such as land cover and crop classification. The aim of this paper is to classify multi-temporal full polarimetric SAR data using kernel-based fuzzy C-means clustering method, over an agricultural region. This method starts with transforming input data into the higher dimensional space using kernel functions and then clustering them in the feature space. Feature space, due to its inherent properties, has the ability to take in account the nonlinear and complex nature of polarimetric data. Several SAR polarimetric features extracted using target decomposition algorithms. Features from Cloude-Pottier, Freeman-Durden and Yamaguchi algorithms used as inputs for the clustering. This method was applied to multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Canada, during June and July in 2012. The results demonstrate the efficiency of this approach with respect to the classical methods. In addition, using multi-temporal data in the clustering process helped to investigate the phenological cycle of plants and significantly improved the performance of agricultural land cover mapping.

  4. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    Science.gov (United States)

    DeMeo, F. E.; Carry, B.

    2013-09-01

    The distribution of asteroids across the main belt has been studied for decades to understand the current compositional distribution and what that tells us about the formation and evolution of our Solar System. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Binzel (Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 146-177) and Bus-DeMeo et al. (DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J. [2009]. Icarus 202(July), 160-180) systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous work such as by Mothé-Diniz et al. (Mothé-Diniz, T., Carvano, J.M.Á., Lazzaro, D. [2003]. Icarus 162(March), 10-21). Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. We find evidence for D-types in the inner main belt where they are unexpected according to dynamical models of implantation of bodies from the outer Solar System into the inner Solar System during planetary migration (Levison, H.F., Bottke, W.F., Gounelle, M., Morbidelli, A., Nesvorný, D., Tsiganis, K. [2009]. Nature 460(July), 364-366). We find no evidence of S-types or other unexpected classes among Trojans and Hildas, albeit a bias favoring such a detection. Finally, we estimate for the first time the total amount of material of each class in the inner Solar System. The main belt’s most massive classes are C, B, P, V and S in decreasing order. Excluding the four most massive

  5. The asteroid 2014 JO25

    Science.gov (United States)

    Vodniza, Alberto; Pereira, Mario

    2017-10-01

    The asteroid 2014 JO25 was discovered by A. D. Grauer at the Mt. Lemmon Survey on May 2014, and Joe Masiero used observations from the NEOWISE in 2014 to estimate a diameter of 650 meters [1]. However, using the radio telescope at Arecibo-Puerto Rico, astronomers obtained radar images on April 17-2017 and Edgar Rivera Valentín (scientist at Arecibo) said: “We found 2014 JO25 is a contact binary asteroid, two space rocks that were originally separate bodies, and each segment is about 640 meters and 670 meters, for a total of about 1.3 km long. Its rotation is of 3.5 hours” [2]. This asteroid flew past Earth on April 19 at a distance of about 4.6 lunar distances from the Earth. This was the closest approach by an asteroid since 4179 Toutatis. Toutatis flew past Earth on September 2004 at a distance of about 4 lunar distances from the Earth [3]. In April 12-2020 the asteroid will be at a minimum possible distance of 0.1617280 A.U from Earth [4]. From our observatory, located in Pasto-Colombia, we obtained a lot of pictures. Our data was published by the Minor Planet Center [5] and also appears at the web page of NEODyS [6]. Astrometry and photometry were carried out, and we calculated the orbital elements. We obtained the following orbital parameters: eccentricity=0.88454+/-0.00152, semi-major axis= 2.0573+/- 0.0216 A.U, orbital inclination=25.22+/-0.10 deg, longitude of the ascending node =30.6530+/-0.0032 deg, argument of perihelion=49.586+/-0.012 deg, mean motion = 0.33402+/-0.00527 deg/d, perihelion distance=0.237524+/-0.000644 A.U, aphelion distance=3.8770+/-0.0449 A.U, absolute magnitude =18.1. The parameters were calculated based on 164 observations. Dates: 2017 April: 22 to 24 with mean residual=0.22 arcseconds.The asteroid has an orbital period of 2.95 years.[1] https://echo.jpl.nasa.gov/asteroids/2014JO25/2014JO25_planning.html[2] http://earthsky.org/astronomy-essentials/large-asteroid-2014-jo25-close-april-19-2017-how-to-see[3] https

  6. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  7. Constraints on Spin Axis and Thermal Properties of Asteroids in the WISE Catalog

    Science.gov (United States)

    MacLennan, Eric M.; Emery, J. P.

    2013-10-01

    It has widely been accepted that dynamical state of asteroids can strongly be influenced by radiation forces (e.g., Yarkovsky and YORP). Determination of an object’s thermal properties and spin state are a critical step towards understanding the effects of these forces. In this respect, observations of thermal flux emitted from the surfaces of asteroids are a powerful tool. The emission of flux is determined by the temperature distribution which is controlled by the thermal inertia, rotation rate, and spin axis orientation. By gathering data at multiple viewing geometries, the temperature distribution can be modeled accurately enough to separate the effects attributed to (some of) these parameters. Over the length of its mission, the Wide-Field Infrared Survey Explorer (WISE) observed many asteroids in two epochs (i.e., on either side of opposition) such that data for both morning and afternoon times were gathered. We have begun a project that employs a Thermophysical Model (TPM) in order to analyze these multi-epoch thermal observations with the goal of deriving the thermal properties and spin axis of a large number of asteroids. Here, we first investigate the validity and limits of our method on objects with a previously determined spin axis. Asteroid (413) Edburga has a published spin axis of λ = 202o, β = - 45o (ecliptic longitude and latitude, respectively) using the lightcurve inversion method. With our technique, we estimate a solution consistent with the previous estimate. Applying our TPM to WISE multi-epoch thermal observations of (155) Scylla (no known spin axis estimate), we also place estimates for the ecliptic longitude and latitude of its spin axis. Analysis of multi-epoch thermal data enables determination of spin axis orientation without knowing the rotation period, in contrast to the lightcurve inversion method. This is due to the coupling of thermal inertia and rotation rate in determining the longitudinal distribution of temperature. Their

  8. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  9. Asteroid Redirect Robotic Mission: Robotic Boulder Capture Option Overview

    Science.gov (United States)

    Mazanek, Daniel D.; Merrill, Raymond G.; Belbin, Scott P.; Reeves, David M.; Earle, Kevin D.; Naasz, Bo J.; Abell, Paul A.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying an option for the Asteroid Redirect Robotic Mission (ARRM) that would capture a multi-ton boulder (typically 2-4 meters in size) from the surface of a large (is approximately 100+ meter) Near-Earth Asteroid (NEA) and return it to cislunar space for subsequent human and robotic exploration. This alternative mission approach, designated the Robotic Boulder Capture Option (Option B), has been investigated to determine the mission feasibility and identify potential differences from the initial ARRM concept of capturing an entire small NEA (4-10 meters in size), which has been designated the Small Asteroid Capture Option (Option A). Compared to the initial ARRM concept, Option B allows for centimeter-level characterization over an entire large NEA, the certainty of target NEA composition type, the ability to select the boulder that is captured, numerous opportunities for mission enhancements to support science objectives, additional experience operating at a low-gravity planetary body including extended surface contact, and the ability to demonstrate future planetary defense strategies on a hazardous-size NEA. Option B can leverage precursor missions and existing Agency capabilities to help ensure mission success by targeting wellcharacterized asteroids and can accommodate uncertain programmatic schedules by tailoring the return mass.

  10. Asteroid taxonomy

    International Nuclear Information System (INIS)

    Tholen, D.J.

    1989-01-01

    The spectral reflectivity of asteroid surfaces over the wavelength range of 0.3 to 1.1 μm can be used to classify these objects onto several broad groups with similar spectral characteristics. The three most recently developed taxonomies group the asteroids into 9, 11 or 14 different classes, depending on the technique used to perform the analysis. The distribution of the taxonomic classes shows that darker and redder objects become more dominant at larger heliocentric distances, while the rare asteroid types are found more frequently among the small objects of the planet-crossing population

  11. Multi-scale and multi-orientation medical image analysis

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Deserno, T.M.

    2011-01-01

    Inspired by multi-scale and multi-orientation mechanisms recognized in the first stages of our visual system, this chapter gives a tutorial overview of the basic principles. Images are discrete, measured data. The optimal aperture for an observation with as little artefacts as possible, is derived

  12. Cratering statistics on asteroids: Methods and perspectives

    Science.gov (United States)

    Chapman, C.

    2014-07-01

    Crater size-frequency distributions (SFDs) on the surfaces of solid-surfaced bodies in the solar system have provided valuable insights about planetary surface processes and about impactor populations since the first spacecraft images were obtained in the 1960s. They can be used to determine relative age differences between surficial units, to obtain absolute model ages if the impactor flux and scaling laws are understood, to assess various endogenic planetary or asteroidal processes that degrade craters or resurface units, as well as assess changes in impactor populations across the solar system and/or with time. The first asteroid SFDs were measured from Galileo images of Gaspra and Ida (cf., Chapman 2002). Despite the superficial simplicity of these studies, they are fraught with many difficulties, including confusion by secondary and/or endogenic cratering and poorly understood aspects of varying target properties (including regoliths, ejecta blankets, and nearly-zero-g rubble piles), widely varying attributes of impactors, and a host of methodological problems including recognizability of degraded craters, which is affected by illumination angle and by the ''personal equations'' of analysts. Indeed, controlled studies (Robbins et al. 2014) demonstrate crater-density differences of a factor of two or more between experienced crater counters. These inherent difficulties have been especially apparent in divergent results for Vesta from different members of the Dawn Science Team (cf. Russell et al. 2013). Indeed, they have been exacerbated by misuse of a widely available tool (Craterstats: hrscview.fu- berlin.de/craterstats.html), which incorrectly computes error bars for proper interpretation of cumulative SFDs, resulting in derived model ages specified to three significant figures and interpretations of statistically insignificant kinks. They are further exacerbated, and for other small-body crater SFDs analyzed by the Berlin group, by stubbornly adopting

  13. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    Science.gov (United States)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  14. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    Science.gov (United States)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    The kinetic impactor deflection approach is likely to be the optimal deflection strategy in most real-world cases, given the likelihood of decades of warning time provided by asteroid search programs and the probable small size of the next confirmed asteroid impact that would require deflection. However, despite its straightforward implementation, the kinetic impactor approach can have its effectiveness limited by the astrodynamics that govern the impactor spacecraft trajectory. First, the deflection from an impact is maximized when the asteroid is at perihelion, while an impact near perihelion can in some cases be energetically difficult to implement. Additionally, the asteroid change in velocity Δ V should aligned with the target's heliocentric velocity vector in order to maximize the deflection at a potential impact some years in the future. Thus the relative velocity should be aligned with or against the heliocentric velocity, which implies that the impactor and asteroid orbits should be tangent at the point of impact. However, for natural bodies such as meteorites colliding with the Earth, the relative velocity vectors tend to cluster near the sunward or anti- sunward directions, far from the desired direction. This is because there is generally a significant crossing angle between the orbits of the impactor and target and an impact at tangency is unusual. The point is that hitting the asteroid is not enough, but rather we desire to hit the asteroid at a point when the asteroid and spacecraft orbits are nearly tangent and when the asteroid is near perihelion. However, complicating the analysis is the fact that the impact of a spacecraft on an asteroid would create an ejecta plume that is roughly normal to the surface at the point of impact. This escaping ejecta provides additional momentum transfer that generally adds to the effectiveness of a kinetic deflection. The ratio β between the ejecta momentum and the total momentum (ejecta plus spacecraft) can

  15. Asteroid clusters similar to asteroid pairs

    Science.gov (United States)

    Pravec, P.; Fatka, P.; Vokrouhlický, D.; Scheeres, D. J.; Kušnirák, P.; Hornoch, K.; Galád, A.; Vraštil, J.; Pray, D. P.; Krugly, Yu. N.; Gaftonyuk, N. M.; Inasaridze, R. Ya.; Ayvazian, V. R.; Kvaratskhelia, O. I.; Zhuzhunadze, V. T.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Világi, J.; Kornoš, L.; Gajdoš, Š.; Burkhonov, O.; Ehgamberdiev, Sh. A.; Donchev, Z.; Borisov, G.; Bonev, T.; Rumyantsev, V. V.; Molotov, I. E.

    2018-04-01

    We studied the membership, size ratio and rotational properties of 13 asteroid clusters consisting of between 3 and 19 known members that are on similar heliocentric orbits. By backward integrations of their orbits, we confirmed their cluster membership and estimated times elapsed since separation of the secondaries (the smaller cluster members) from the primary (i.e., cluster age) that are between 105 and a few 106 years. We ran photometric observations for all the cluster primaries and a sample of secondaries and we derived their accurate absolute magnitudes and rotation periods. We found that 11 of the 13 clusters follow the same trend of primary rotation period vs mass ratio as asteroid pairs that was revealed by Pravec et al. (2010). We generalized the model of the post-fission system for asteroid pairs by Pravec et al. (2010) to a system of N components formed by rotational fission and we found excellent agreement between the data for the 11 asteroid clusters and the prediction from the theory of their formation by rotational fission. The two exceptions are the high-mass ratio (q > 0.7) clusters of (18777) Hobson and (22280) Mandragora for which a different formation mechanism is needed. Two candidate mechanisms for formation of more than one secondary by rotational fission were published: the secondary fission process proposed by Jacobson and Scheeres (2011) and a cratering collision event onto a nearly critically rotating primary proposed by Vokrouhlický et al. (2017). It will have to be revealed from future studies which of the clusters were formed by one or the other process. To that point, we found certain further interesting properties and features of the asteroid clusters that place constraints on the theories of their formation, among them the most intriguing being the possibility of a cascade disruption for some of the clusters.

  16. HIGH ECLIPTIC LATITUDE SURVEY FOR SMALL MAIN-BELT ASTEROIDS

    International Nuclear Information System (INIS)

    Terai, Tsuyoshi; Takahashi, Jun; Itoh, Yoichi

    2013-01-01

    Main-belt asteroids have been continuously colliding with one another since they were formed. Their size distribution is primarily determined by the size dependence of asteroid strength against catastrophic impacts. The strength scaling law as a function of body size could depend on collision velocity, but the relationship remains unknown, especially under hypervelocity collisions comparable to 10 km s –1 . We present a wide-field imaging survey at an ecliptic latitude of about 25° for investigating the size distribution of small main-belt asteroids that have highly inclined orbits. The analysis technique allowing for efficient asteroid detections and high-accuracy photometric measurements provides sufficient sample data to estimate the size distribution of sub-kilometer asteroids with inclinations larger than 14°. The best-fit power-law slopes of the cumulative size distribution are 1.25 ± 0.03 in the diameter range of 0.6-1.0 km and 1.84 ± 0.27 in 1.0-3.0 km. We provide a simple size distribution model that takes into consideration the oscillations of the power-law slope due to the transition from the gravity-scaled regime to the strength-scaled regime. We find that the high-inclination population has a shallow slope of the primary components of the size distribution compared to the low-inclination populations. The asteroid population exposed to hypervelocity impacts undergoes collisional processes where large bodies have a higher disruptive strength and longer lifespan relative to tiny bodies than the ecliptic asteroids

  17. Software Development for Asteroid and Variable Star Research

    Science.gov (United States)

    Sweckard, Teaghen; Clason, Timothy; Kenney, Jessica; Wuerker, Wolfgang; Palser, Sage; Giles, Tucker; Linder, Tyler; Sanchez, Richard

    2018-01-01

    The process of collecting and analyzing light curves from variable stars and asteroids is almost identical. In 2016 a collaboration was created to develop a simple fundamental way to study both asteroids and variable stars using methods that would allow the process to be repeated by middle school and high school students.Using robotic telescopes at Cerro Tololo (Chile), Yerkes Observatory (US), and Stone Edge Observatory (US) data were collected on RV Del and three asteroids. It was discovered that the only available software program which could be easily installed on lab computers was MPO Canopus. However, after six months it was determined that MPO Canopus was not an acceptable option because of the steep learning curve, lack of documentation and technical support.Therefore, the project decided that the best option was to design our own python based software. Using python and python libraries we developed code that can be used for photometry and can be easily changed to the user's needs. We accomplished this by meeting with our mentor astronomer, Tyler Linder, and in the beginning wrote two different programs, one for asteroids and one for variable stars. In the end, though, we chose to combine codes so that the program would be capable of performing photometry for both moving and static objects.The software performs differential photometry by comparing the magnitude of known reference stars to the object being studied. For asteroids, the image timestamps are used to obtain ephemeris of the asteroid from JPL Horizons automatically.

  18. SU-E-I-100: Heterogeneity Studying for Primary and Lymphoma Tumors by Using Multi-Scale Image Texture Analysis with PET-CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dengwang [Shandong Normal University, Jinan, Shandong Province (China); Wang, Qinfen [Shandong Normal University, Jinan, Shandong (China); Li, H; Chen, J [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2014-06-01

    Purpose: The purpose of this research is studying tumor heterogeneity of the primary and lymphoma by using multi-scale texture analysis with PET-CT images, where the tumor heterogeneity is expressed by texture features. Methods: Datasets were collected from 12 lung cancer patients, and both of primary and lymphoma tumors were detected with all these patients. All patients underwent whole-body 18F-FDG PET/CT scan before treatment.The regions of interest (ROI) of primary and lymphoma tumor were contoured by experienced clinical doctors. Then the ROI of primary and lymphoma tumor is extracted automatically by using Matlab software. According to the geometry size of contour structure, the images of tumor are decomposed by multi-scale method.Wavelet transform was performed on ROI structures within images by L layers sampling, and then wavelet sub-bands which have the same size of the original image are obtained. The number of sub-bands is 3L+1.The gray level co-occurrence matrix (GLCM) is calculated within different sub-bands, thenenergy, inertia, correlation and gray in-homogeneity were extracted from GLCM.Finally, heterogeneity statistical analysis was studied for primary and lymphoma tumor using the texture features. Results: Energy, inertia, correlation and gray in-homogeneity are calculated with our experiments for heterogeneity statistical analysis.Energy for primary and lymphomatumor is equal with the same patient, while gray in-homogeneity and inertia of primaryare 2.59595±0.00855, 0.6439±0.0007 respectively. Gray in-homogeneity and inertia of lymphoma are 2.60115±0.00635, 0.64435±0.00055 respectively. The experiments showed that the volume of lymphoma is smaller than primary tumor, but thegray in-homogeneity and inertia were higher than primary tumor with the same patient, and the correlation with lymphoma tumors is zero, while the correlation with primary tumor isslightly strong. Conclusion: This studying showed that there were effective heterogeneity

  19. Deep Interior: The first comprehensive geophysical investigation of an asteroid

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Klaasen, K.; McFadden, L.; Ostro, S.; Safaeinili, A.; Scheeres, D.; Sunshine, J.; Yeomans, D.

    Near-Earth Objects (NEOs) come closer to Earth than any other celestial body, and their compositions are represented on Earth by thousands of well-studied meteorites. Yet we understand neither their origin, evolution, nor their geophysical behavior. These secrets are locked up in their unexplored interiors. Goal 1 of the NASA Strategic Plan emphasizes the requirement to catalogue and understand NEOs down to 1 km diameter. Goal 4 urges us to understand natural processes at work in the low gravity environment. Goal 5 expresses the need to explore the solar system and to learn how planets originated and evolved. In response to the NASA Strategic Plan we are proposing a NASA Discovery mission whose primary science objective is to greatly advance the realization of these Goals by conducting the first investigation of the global geophysics of an asteroid. Radio reflection data from 5 km orbit about a 1 km NEO will provide a tomographic 3D image of electromagnetic properties. Mechanical properties will be examined in the simplest possible way, using explosions to initiate seismic cratering events and to expose diverse interior units for spectroscopic analysis. Deep Interior is the lowest-risk, lowest cost path towards attaining the required characterization of NEOs. It breaks new ground for future missions to asteroids and comets and facilitates the design of reliable NEO technologies. Our science goals are as follows, and the techniques (radio science, imaging, IR spectroscopy, active surface science) will be described at this meeting: Asteroid Interiors. Radio, gravity, and seismology experiments give a complete first picture of an asteroid's deep interior, resolving inclusions, voids and unit boundaries at ˜ 30 m scales, and determining global and regional mechanical properties. Surface Geophysics. Blast experiments explore the structure and mechanics of the upper meters, demonstrate microgravity cratering, trigger natural geomorphic events, and expose subsurface

  20. Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.

    Science.gov (United States)

    Liu, Min; Wang, Xueping; Zhang, Hongzhong

    2018-03-01

    In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. AIDA: Asteroid Impact & Deflection Assessment

    Science.gov (United States)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  2. Secure Multi-Gigabit Ultra-Wide Band Communications for Personal Area Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Puerta Ramírez, Rafael; Tafur Monroy, Idelfonso

    2016-01-01

    scenarios where the user may be located in public spaces. We propose to use Ultra-Wideband communications, which can be seamlessly transported over fiber or wireless, and show different transmission experiments ranging from 2 Gbit/s to 35 Gbit/s. To achieve these record bit rates, the multi-band approach...

  3. Tuning characteristic of band gap and waveguide in a multi-stub locally resonant phononic crystal plate

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Wang

    2015-10-01

    Full Text Available In this paper, the tuning characteristics of band gaps and waveguides in a locally resonant phononic crystal structure, consisting of multiple square stubs deposited on a thin homogeneous plate, are investigated. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of those structures are calculated. In contrast to a system of one square stub, systems of multiple square stubs show wide band gaps at lower frequencies and an increased quantity of band gaps at higher frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the lowest band gap. Additionally, the influence of the stubs arrangement on the band gaps in multi-stub systems is investigated. The arrangements of the stubs were found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a novel method to form defect scatterers by changing the arrangement of square stubs in a multi-stub perfect phononic crystal plate was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the defect scatterers’ stub arrangement. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.

  4. Description of multi-quasiparticle bands by the tilted axis cranking model

    International Nuclear Information System (INIS)

    Frauendorf, S.

    2000-01-01

    The selfconsistent cranking approach is extended to the case of rotation about an axis which is tilted with respect to the principal axes of the deformed potential (Tilted Axis Cranking). Expressions for the energies and the intra bands electro-magnetic transition probabilities are given. The mean field solutions are interpreted in terms of quantal rotational states. The construction of the quasiparticle configurations and the elimination of spurious states is discussed. The application of the theory to high spin data is demonstrated by analyzing the multi-quasiparticle bands in the nuclides with N=102,103 and Z=71,72,73

  5. UV Reflectance of Jupiter's Moon Europa and Asteroid (16) Psyche

    Science.gov (United States)

    Becker, T. M.; Retherford, K. D.; Roth, L.; Hendrix, A.; McGrath, M. A.; Cunningham, N.; Feaga, L. M.; Saur, J.; Elkins-Tanton, L. T.; Walhund, J. E.; Molyneux, P.

    2017-12-01

    Surface reflectance observations of solar system objects in the UV are not only complimentary to longer wavelength observations for identifying surface composition, but can also reveal new and meaningful information about the surfaces of those bodies. On Europa, far-UV (FUV) spectral observations made by the Hubble Space Telescope (HST) show that the surface lacks a strong water ice absorption edge near 165 nm, which is intriguing because such a band has been detected on most icy satellites. This may suggest that radiolytic processing by Jupiter's magnetosphere has altered the surface, causing absorption at wavelengths longward of the H2O edge, masking this feature. Additionally, the FUV spectra are blue (increasing albedo with shorter wavelengths), and regions that are observed to be dark in the visible appear bright in the FUV. This spectral inversion, also observed on the Moon and some asteroids, may provide insight into the properties of the surface material and how they are processed.We also explore the UV reflectance spectra of the main belt asteroid (16) Psyche. This asteroid is believed to be the metallic remnant core of a differentiated asteroid, stripped of its mantle through collisions. However, there is speculation that the asteroid could have formed as-is from highly reduced metal-rich material near the Sun early in the formation of the solar system. Further, spectral observations in the infrared have revealed pyroxene and hydroxyl on the asteroid's surface, complicating the interpretation that (16) Psyche is a pure metallic object. Laboratory studies indicate that there are diagnostic spectral features in the UV that could be useful for determining the surface composition. We obtained HST observations of Psyche from 160 - 300 nm. Preliminary results show a featureless, red-sloped spectrum, inconsistent with significant amounts of pyroxene on the surface. We will present the spectra of Europa and the asteroid (16) Psyche and discuss the unique details

  6. More chips off of Asteroid (4) Vesta: Characterization of eight Vestoids and their HED meteorite analogs

    Science.gov (United States)

    Hardersen, Paul S.; Reddy, Vishnu; Roberts, Rachel; Mainzer, Amy

    2014-11-01

    Vestoids are generally considered to be fragments from Asteroid (4) Vesta that were ejected by past collisions that document Vesta's collisional history. Dynamical Vestoids are defined by their spatial proximity with Vesta (Zappala, V., Bendjoya, Ph., Cellino, A., Farinella, P., Froeschle', C. [1995]. Icarus 116, 291-314; Nesvorny, D. [2012]. Nesvorny HCM Asteroid Families V2.0. EAR-A-VARGBDET-5-NESVORNYFAM-V2.0. NASA Planetary Data System.). Taxonomic Vestoids are defined as V-type asteroids that have a photometric, visible-wavelength spectral, or other observational relationship with Vesta (Tholen, D.J., 1984. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Thesis, University of Arizona, Tucson; Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 106-145; Carvano, J., Hasselmann, P.H., Lazzaro, D., Mothe'-Diniz, T. [2010]. Astron. Astrophys. 510, A43). We define 'genetic Vestoids' as V-type asteroids that are probable fragments ejected from (4) Vesta based on the supporting combination of dynamical, near-infrared (NIR) spectral, and taxonomic evidence. NIR reflectance spectroscopy is one of the primary ground-based techniques to constrain an asteroid's major surface mineralogy (Burns, R.G. [1993a]. Mineralogical Applications of Crystal Field Theory. Cambridge University Press, Cambridge, UK, 551 p). Despite the reasonable likelihood that many dynamical and taxonomic Vestoids likely originate from Vesta, ambiguity exists concerning the fraction of these populations that are from Vesta as compared to the fraction of asteroids that might not be related to Vesta. Currently, one of the most robust techniques to identify the genetic Vestoid population is through NIR reflectance spectroscopy from ∼0.7 to 2.5 μm. The derivation of spectral band parameters, and the comparison of those band parameters with those from representative samples from the Howardite-Eucrite-Diogenite (HED) meteorite types, allows a direct comparison of their primary mineralogies

  7. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  8. Science Experiments of a Jupiter Trojan asteroid in the Solar Power Sail Mission

    Science.gov (United States)

    Okada, T.; Kebukawa, Y.; Aoki, J.; Kawai, Y.; Ito, M.; Yano, H.; Okamoto, C.; Matsumoto, J.; Bibring, J. P.; Ulamec, S.; Jaumann, R.; Iwata, T.; Mori, O.; Kawaguchi, J.

    2017-12-01

    A Jupiter Trojan asteroid mission using a large area solar power sail (SPS) is under study in JAXA in collaboration with DLR and CNES. The asteroid will be investigated through remote sensing, followed by in situ in-depth observations on the asteroid with a lander. A sample-return is also studied as an option. LUCY has been selected as the NASA's future Discovery class mission which aims at understanding the diversity of Jupiter Trojans by multiple flybys, complementally to the SPS mission. The SPS is a candidate of the next medium class space science mission in Japan. The 1.4-ton spacecraft will carry a 100-kg class lander and 20-kg mission payloads on it. Its launch is expected in mid 2020s, and will take at least 11 years to visit a Jupiter Trojan asteroid. During the cruise phase, science experiments will be performed such as an infrared astronomy, a very long baseline gamma ray interferometry, and dust and magnetic field measurements. A classical static model of solar system suggests that the Jupiter Trojans were formed around the Jupiter region, while a dynamical model such as Nice model indicates that they formed at the far end of the solar system and then scattered inward due to a dynamical migration of giant planets. The physical, mineralogical, organics and isotopic distribution in the heliocentric distance could solve their origin and evolution of the solar system. A global mapping of the asteroid from the mothership will be conducted such as high-resolved imaging, NIR and TIR imaging spectrometry, and radar soundings. The lander will characterize the asteroid with geological, mineralogical, and geophysical observations using a panoramic camera, an infrared hyperspectral imager, a magnetometer, and a thermal radiometer. These samples will be measured by a high resolved mass spectrometer (HRMS) to investigate isotopic ratios of hydrogen, nitrogen, oxygen, as well as organic species.

  9. Multi-target molecular imaging and its progress in research and application

    International Nuclear Information System (INIS)

    Tang Ganghua

    2011-01-01

    Multi-target molecular imaging (MMI) is an important field of research in molecular imaging. It includes multi-tracer multi-target molecular imaging(MTMI), fusion-molecule multi-target imaging (FMMI), coupling-molecule multi-target imaging (CMMI), and multi-target multifunctional molecular imaging(MMMI). In this paper,imaging modes of MMI are reviewed, and potential applications of positron emission tomography MMI in near future are discussed. (author)

  10. Sensitivity of Asteroid Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters

    Science.gov (United States)

    Wheeler, Lorien; Mathias, Donovan; Dotson, Jessie L.; NASA Asteroid Threat Assessment Project

    2017-10-01

    A central challenge in assessing the threat posed by asteroids striking Earth is the large amount of uncertainty inherent throughout all aspects of the problem. Many asteroid properties are not well characterized and can range widely from strong, dense, monolithic irons to loosely bound, highly porous rubble piles. Even for an object of known properties, the specific entry velocity, angle, and impact location can swing the potential consequence from no damage to causing millions of casualties. Due to the extreme rarity of large asteroid strikes, there are also large uncertainties in how different types of asteroids will interact with the atmosphere during entry, how readily they may break up or ablate, and how much surface damage will be caused by the resulting airbursts or impacts.In this work, we use our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to uncertainties in key asteroid properties, entry parameters, or modeling assumptions. The PAIR model combines physics-based analytic models of asteroid entry and damage in a probabilistic Monte Carlo framework to assess the risk posed by a wide range of potential impacts. The model samples from uncertainty distributions of asteroid properties and entry parameters to generate millions of specific impact cases, and models the atmospheric entry and damage for each case, including blast overpressure, thermal radiation, tsunami inundation, and global effects. To assess the risk sensitivity, we alternately fix and vary the different input parameters and compare the effect on the resulting range of damage produced. The goal of these studies is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk.

  11. Band-to-Band Misregistration of the Images of MODIS On-Board Calibrators and Its Impact to Calibration

    Science.gov (United States)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The MODIS instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBC) including a solar diffuser (SD), a blackbody (BB) and a space view (SV) port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPA). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are co-registered on board by delaying appropriate band dependent amount of time depending on the band locations on the FPA. While this co-registration mechanism is functioning well for the "far field" remote targets such as Earth view (EV) scenes or the Moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, in particular the OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistration is proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration to the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1 of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  12. Physical studies of asteroids. XXXII. Rotation periods and UBVRI-colours for selected asteroids

    Science.gov (United States)

    Piironen, J.; Lagerkvist, C.-I.; Erikson, A.; Oja, T.; Magnusson, P.; Festin, L.; Nathues, A.; Gaul, M.; Velichko, F.

    1998-03-01

    We present lightcurves of selected asteroids. Most of the asteroids were included to obtain refined spin periods. Enhanced periods were determined for 11 Parthenope, 306 Unitas and 372 Palma. We confirmed the spin periods of 8 Flora, 13 Egeria, 71 Niobe, 233 Asterope, 291 Alice, 409 Aspasia, 435 Ella and 512 Taurinensis. We determined also BV-colours for most of the included asteroids and UBVRI-colours for a total of 22 asteroids.

  13. Alignments of multi-quasiparticle bands and seniority-dependent reduced pairing

    International Nuclear Information System (INIS)

    Dracoulis, G.D.

    1994-09-01

    Pairing correlations in multi-quasiparticle states in deformed nuclei are expected to be reduced because of blocking. New intrinsic states and their associated rotational bands have been identified allowing comparisons to be made as a function of seniority and between nuclei. The possible effects of the reduced pairing on the collective rotation, and its manifestation in terms of alignment, are discussed. 13 refs., 2 figs

  14. Digital radiography: optimization of image quality and dose using multi-frequency software.

    Science.gov (United States)

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  15. Spaceborne Applications of P Band Imaging Radars for Measuring Forest Biomass

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; vanZyl, Jakob J.

    1995-01-01

    In three sites of boreal and temperate forests, P band HH, HV, and VV polarization data combined estimate total aboveground dry woody biomass within 12 to 27% of the values derived from allometric equations, depending on forest complexity. Biomass estimates derived from HV-polarization data only are 2 to 14% less accurate. When the radar operates at circular polarization, the errors exceed 100% over flooded forests, wet or damaged trees and sparse open tall forests because double-bounce reflections of the radar signals yield radar signatures similar to that of tall and massive forests. Circular polarizations, which minimize the effect of Faraday rotation in spaceborne applications, are therefore of limited use for measuring forest biomass. In the tropical rain forest of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 50 kg/sq m in old, undisturbed floodplain stands, the P band horizontal and vertical polarization data combined separate biomass classes in good agreement with forest inventory estimates. The worldwide need for large scale, updated, biomass estimates, achieved with a uniformly applied method, justifies a more in-depth exploration of multi-polarization long wavelength imaging radar applications for tropical forests inventories.

  16. Performance of Hayabusa2 DCAM3-D Camera for Short-Range Imaging of SCI and Ejecta Curtain Generated from the Artificial Impact Crater Formed on Asteroid 162137 Ryugu (1999 JU3)

    Science.gov (United States)

    Ishibashi, K.; Shirai, K.; Ogawa, K.; Wada, K.; Honda, R.; Arakawa, M.; Sakatani, N.; Ikeda, Y.

    2017-07-01

    Deployable Camera 3-D (DCAM3-D) is a small high-resolution camera equipped on Deployable Camera 3 (DCAM3), one of the Hayabusa2 instruments. Hayabusa2 will explore asteroid 162137 Ryugu (1999 JU3) and conduct an impact experiment using a liner shooting device called Small Carry-on Impactor (SCI). DCAM3 will be detached from the Hayabusa2 spacecraft and observe the impact experiment. The purposes of the observation are to know the impact conditions, to estimate the surface structure of asteroid Ryugu, and to understand the physics of impact phenomena on low-gravity bodies. DCAM3-D requires high imaging performance because it has to image and detect multiple targets of different scale and radiance, i.e., the faint SCI before the shot from 1-km distance, the bright ejecta generated by the impact, and the asteroid. In this paper we report the evaluation of the performance of the CMOS imaging sensor and the optical system of DCAM3-D. We also describe the calibration of DCAM3-D. We confirmed that the imaging performance of DCAM3-D satisfies the required values to achieve the purposes of the observation.

  17. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  18. Bands, Chords, Tendons, and Membranes in the Heart: An Imaging Overview.

    Science.gov (United States)

    Baxi, Ameya Jagdish; Tavakoli, Sina; Vargas, Daniel; Restrepo, Carlos S

    Crests, bands, chords, and membranes can be seen within the different cardiac chambers, with variable clinical significance. They can be incidental or can have clinical implications by causing hemodynamic disturbance. It is crucial to know the morphology and orientation of normal structures, aberrant or accessory muscles, and abnormal membranes to diagnose the hemodynamic disturbance associated with them. Newer generation computed tomographic scanners and faster magnetic resonance imaging sequences offer high spatial and temporal resolution allowing for acquisition of high resolution images of the cardiac chambers improving identification of small internal structures, such as papillary muscles, muscular bands, chords, and membranes. They also help in identification of other associated complications, malformations, and provide a road map for treatment. In this article, we review cross-sectional cardiac imaging findings of normal anatomical variants and distinctive imaging features of pathologic bands, chords, or membranes, which may produce significant hemodynamic changes and clinical symptomatology. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Asteroid Composite Tape

    Science.gov (United States)

    1998-07-01

    This is a composite tape showing 10 short segments primarily about asteroids. The segments have short introductory slides, which include brief descriptions about the shots. The segments are: (1) Radar movie of asteroid 1620 Geographos; (2) Animation of the trajectories of Toutatis and Earth (3) Animation of a landing on Toutatis; (4) Simulated encounter of an asteroid with Earth, includes a simulated impact trajectory; (5) An animated overview of the Manrover vehicle; (6) The Near Earth Asteroid Tracking project, includes a photograph of USAF Station in Hawaii, and animation of Earth approaching 4179 Toutatis and the asteroid Gaspara; (7) live video of the anchor tests of the Champoleon anchoring apparatus; (8) a second live video of the Champoleon anchor tests showing anchoring spikes, and collision rings; (9) An animated segment with narration about the Stardust mission with sound, which describes the mission to fly close to a comet, and capture cometary material for return to Earth; (10) live video of the drop test of a Stardust replica from a hot air balloon; this includes sound but is not narrated.

  20. Capacity Enhancement for Hybrid Fiber-Wireless Channels with 46.8Gbit/sWireless Multi-CAP Transmission over 50m at W-Band

    DEFF Research Database (Denmark)

    Rommel, Simon; Puerta Ramírez, Rafael; Vegas Olmos, Juan José

    2017-01-01

    Transmission of a 46.8 Gbit/s multi-band CAP signal is experimentally demonstrated over a 50 m W-band radio-over-fiber link. Bit error rates below 3.8×10-3 are achieved, employing nine CAP bands with bit and power loading.......Transmission of a 46.8 Gbit/s multi-band CAP signal is experimentally demonstrated over a 50 m W-band radio-over-fiber link. Bit error rates below 3.8×10-3 are achieved, employing nine CAP bands with bit and power loading....

  1. Radar investigations of near-Earth asteroids at Arecibo and Goldstone

    Science.gov (United States)

    Brozovic, M.; Nolan, M.; Benner, L.; Busch, M.; Howell, E.; Taylor, P.; Springmann, A.; Giorgini, J.; Margot, J.; Magri, C.; Sheppard, M.; Naidu, S.

    2014-07-01

    Radar observations are a powerful technique to study near-Earth asteroids (NEAs). The Arecibo and Goldstone planetary radars can provide delay-Doppler images that can directly resolve surface features such as concavities, hills, ridges, and boulders. Goldstone's 3.75-m resolution capability is invaluable when attempting to image NEAs with diameters smaller than 50 m. To date, over 430 near-Earth asteroids and 136 main-belt asteroids have been observed with radar. 80 % of the radar-detected NEAs have been observed within the last 10 years. The radar detection rate in the last three years has tripled relative to the average in the previous decade due to an increase in funding and greater scheduling flexibility. Currently, ˜400 observing hours per year at Goldstone and ˜600 observing hours per year at Arecibo are devoted to observing asteroids. We strive to observe all strong and moderately strong imaging targets, Yarkovsky drift candidates, NEOWISE targets, asteroids with very low perihelia that can be used to measure solar oblateness, and as many other detectable asteroids as resources allow. We also regularly attempt to observe any asteroid that is flagged by the Near-Earth Object Human Spaceflight Accessible Targets Study (NHATS) list (http://neo.jpl.nasa.gov/nhats/). To date, we have observed more than 60 NHATS objects at Arecibo and Goldstone. In the past three years, ˜1/3 of the detected asteroids were targets of opportunity (TOOs), some of which we observed within 24 h from when the discoveries were announced. Many TOOs are small, rapidly moving objects that are detectable by radar only within few lunar distances. Radar astrometry is particularly important for these asteroids because they are too faint to be followed for long with optical telescopes. A radar-range measurement often secures their orbit for decades or centuries, where otherwise the object would be lost and require rediscovery. In one of the extreme cases, two delay and two Doppler

  2. Asteroid results from the IRAS survey

    International Nuclear Information System (INIS)

    Veeder, G.J.; Tedesco, E.F.; Matson, D.L.

    1989-01-01

    This paper reports that the IRAS Asteroid and Comet Survey yield a data base of infrared flux densities for 1811 individual asteroids. Albedos and diameters for these have been derived via a standard thermal model. IRAS sampled a large number of small asteroids and detected many dark asteroids in the outer belt. High-albedo asteroids remain rare. Observations of the brighter asteroids at multiple wavelengths shows the expected range of color temperatures through the main belt

  3. A Multi-Band Photonic Phased Array Antenna for High-Data Rate Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  4. A Multi-band Photonic Phased Array Antenna for High-Date Rate Communication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Multi-band phased array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. In order to steer...

  5. Ka-Band, Multi-Gigabit-Per-Second Transceiver

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.; Smith, Francis J.; Harris, Johnny M.; Landon, David G.; Haddadin, Osama S.; McIntire, William K.; Sun, June Y.

    2011-01-01

    A document discusses a multi-Gigabit-per-second, Ka-band transceiver with a software-defined modem (SDM) capable of digitally encoding/decoding data and compensating for linear and nonlinear distortions in the end-to-end system, including the traveling-wave tube amplifier (TWTA). This innovation can increase data rates of space-to-ground communication links, and has potential application to NASA s future spacebased Earth observation system. The SDM incorporates an extended version of the industry-standard DVB-S2, and LDPC rate 9/10 FEC codec. The SDM supports a suite of waveforms, including QPSK, 8-PSK, 16-APSK, 32- APSK, 64-APSK, and 128-QAM. The Ka-band and TWTA deliver an output power on the order of 200 W with efficiency greater than 60%, and a passband of at least 3 GHz. The modem and the TWTA together enable a data rate of 20 Gbps with a low bit error rate (BER). The payload data rates for spacecraft in NASA s integrated space communications network can be increased by an order of magnitude (>10 ) over current state-of-practice. This innovation enhances the data rate by using bandwidth-efficient modulation techniques, which transmit a higher number of bits per Hertz of bandwidth than the currently used quadrature phase shift keying (QPSK) waveforms.

  6. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    Science.gov (United States)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  7. The stability of some asteroids

    International Nuclear Information System (INIS)

    Vicente, R.O.

    1983-01-01

    The utilization of two different stability criteria, namely, Hill's modified stability criterium and the method of surface of section, has been employed for asteroid orbits. The idea is to compute different criteria of stability for the same asteroids in order to compare the results and see the practical interest of the computations for researches about evolutionary trends of individual asteroids, groups and families of asteroids. (Auth.)

  8. Multi-spectral quantitative phase imaging based on filtration of light via ultrasonic wave

    Science.gov (United States)

    Machikhin, A. S.; Polschikova, O. V.; Ramazanova, A. G.; Pozhar, V. E.

    2017-07-01

    A new digital holographic microscopy scheme for multi-spectral quantitative phase imaging is proposed and implemented. It is based on acousto-optic filtration of wide-band low-coherence light at the entrance of a Mach-Zehnder interferometer, recording and digital processing of interferograms. The key requirements for the acousto-optic filter are discussed. The effectiveness of the technique is demonstrated by calculating the phase maps of human red blood cells at multiple wavelengths in the range 770-810 nm. The scheme can be used for the measurement of dispersion of thin films and biological samples.

  9. Introduction to the Asteroids II data base

    International Nuclear Information System (INIS)

    Tedesco, E.F.

    1989-01-01

    The Asteroids II data base presented is a compilation of asteroid data. Included are asteroid names and discovery circumstances, proper elements and family identifications, asteroid lightcurve parameters, asteroid pole determinations, taxonomic classes, absolute magnitudes and slope parameters, UBV color indices, and albedos and diameters from the IRAS Asteroid and Comet Survey

  10. Multi - band Persistent Scatterer Interferometry data integration for landslide analysis

    Science.gov (United States)

    Bianchini, Silvia; Mateos, Rosa; Mora, Oscar; García, Inma; Sánchez, Ciscu; Sanabria, Margarita; López, Maite; Mulas, Joaquin; Hernández, Mario; Herrera, Gerardo

    2013-04-01

    We present a methodology to perform a geomorphological assessment of ground movements over wide areas, by improving Persistent Scatterer Interferometry (PSI) analysis for landslide studies. The procedure relies on the integrated use of multi-band EO data acquired by different satellite sensors in different time intervals, to provide a detailed investigation of ground displacements. The methodology, throughout the cross-comparison and integration of PS data in different microwave bands (ALOS in L-band, ERS1/2 and ENVISAT in C-band, COSMOSKY-MED in X-band), is applied on the Tramontana Range in the northwestern part of Mallorca island (Spain), extensively affected by mass movements across time, especially during the last years. We increase the confidence degree of the available interferometric data and we homogenize all PS targets by implementing and classifying them through common criteria. Therefore, PSI results are combined with geo-thematic data and pre-existing landslide inventories of the study area, in order to improve the landslide database, providing additional information on the detected ground displacements. The results of this methodology are used to elaborate landslide activity maps, permitting to jointly exploit heterogeneous PS data for analyzing landslides at regional scale. Moreover, from a geomorphological perspective, the proposed approach exploits the implemented PS data to achieve a reliable spatial analysis of movement rates, whatever referred to certain landslide phenomena or to other natural processes, in order to perform ground motion activity maps within a wide area.

  11. Asteroid Rendezvous Mission Design Using Multiobjective Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ya-zhong Luo

    2014-01-01

    Full Text Available A new preliminary trajectory design method for asteroid rendezvous mission using multiobjective optimization techniques is proposed. This method can overcome the disadvantages of the widely employed Pork-Chop method. The multiobjective integrated launch window and multi-impulse transfer trajectory design model is formulated, which employes minimum-fuel cost and minimum-time transfer as two objective functions. The multiobjective particle swarm optimization (MOPSO is employed to locate the Pareto solution. The optimization results of two different asteroid mission designs show that the proposed approach can effectively and efficiently demonstrate the relations among the mission characteristic parameters such as launch time, transfer time, propellant cost, and number of maneuvers, which will provide very useful reference for practical asteroid mission design. Compared with the PCP method, the proposed approach is demonstrated to be able to provide much more easily used results, obtain better propellant-optimal solutions, and have much better efficiency. The MOPSO shows a very competitive performance with respect to the NSGA-II and the SPEA-II; besides a proposed boundary constraint optimization strategy is testified to be able to improve its performance.

  12. Origin of the asteroid belt

    International Nuclear Information System (INIS)

    Wetherill, G.W.

    1989-01-01

    Earlier work and concepts relevant to the origin of the asteroid belt are reviewed and considered in the context of the more general question of solar system origin. Several aspects of asteroidal origin by accumulation of smaller bodies have been addressed by new dynamic studies. Numerical and analytical solutions of the dynamical theory of planetesimal accumulation are characterized by a bifurcation into runaway and nonrunaway solutions. The differences in time scales resulting from runaway and nonrunaway growth can be more important than conventional time scale differences determined by heliocentric distances. This introduces new possibilities, e.g., planetary accumulation may be more rapid at the distance of Jupiter than in the asteroid belt, thus permitting Jupiter to control asteroidal growth. Although alternatives must be seriously considered, the most promising approach to asteroidal origin is one in which the initial surface density of the solar nebula varied smoothly between the terrestrial and giant-planet region. In the absence of external perturbations, it is found that runaway growth of excessively large asteroids would then occur on <1 Myr, but fairly modest external perturbations by Jupiter, Saturn or other perturbers, resulting in eccentricities ∼0.01 may quench runaways, truncate asteroidal growth at their present size, and then initiate the necessary loss of asteroidal material by mutual fragmentation

  13. Compositional studies of primitive asteroids

    International Nuclear Information System (INIS)

    Vilas, F.

    1988-01-01

    The composition of primitive asteroids and their relationship to satellites in the solar system will be studied by analyzing existing narrowband charge coupled device (CCD) reflectance spectra, acquiring additional spectra of asteroids and small satellites in the 0.5 to 1.0 micrometer spectral range, and exploring possibilities for obtaining compositional information in the blue-UV spectral region. Comparison with laboratory spectra of terrestrial chlorites and serpentines (phyllosilicates) and the clay minerals found in carbonaceous chondrite meteorites will continue. During 1987, narrowband CCD reflectance spectra of 17 additional asteroids were acquired. These spectra and spectra of 34 other asteroids have been used primarily for two studies: weak absorption features similar to those due to Fe2(+) and Fe2(+) - Fe3(+) transitions in iron oxides f ound in terrestrial chlorites and serpentines and carbonaceous chondrites have been identified in some primitive asteroid spectra. There is a first indication that asteroids grouped by heliocentric distance show similar weak absorption features. Nonparametric statistics are being applied to test the hypothesis of discrete remnants of a gradation in composition of outer-belt asteroids

  14. The Asteroid Impact and Deflection Assessment Mission and its Potential Contributions to Human Exploration of Asteroids

    Science.gov (United States)

    Abell, Paul A.; Rivkin, Andy S.

    2014-01-01

    The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.

  15. Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa

    Science.gov (United States)

    Jarvis, K. S.; Vilas, F.; Kelley, M. S.; Abell, P. A.

    2004-01-01

    The Japanese MUSES C mission launched the Hayabusa spacecraft last May 15, 2003, to encounter and study the near-Earth asteroid 25143 Itokawa. The spacecraft will obtain visible images through broadband filters similar to the ECAS filters, and near-infrared spectra from 0.85 - 2.1 microns. In preparation for this encounter, opportunities to study the asteroid with Earth-based telescopes have been fully leveraged. Visible and near-infrared spectral observations were made of asteroid 25143 Itokawa during several nights of March, 2001, around the last apparition. We report here on the results of extensive spectral observations made to address the questions of compositional variations across the surface of the asteroid (as determined by the rotational period and shape model); variations in phase angle (Sun-Itokawa-Earth angle) on spectral characteristics; and predictions of Itokawa observations by Hayabusa based on the spectral resolution and responsivity of the NIRS and AMICA instruments.

  16. Asteroids

    International Nuclear Information System (INIS)

    Bell, J.F.; Gaffey, M.J.

    1989-01-01

    During the past 15 yr much progress has been made in the study of the asteroids with optical, infrared, and radar telescopes. Simultaneously a vast body of petrologic, chemical and isotopic data has been acquired for meteorites, which are actual samples of asteroids. This work has demonstrated that asteroids vary widely in composition and thermal history in a systematic but complex way with orbital position and size. The authors report that it appears that these variations can be explained to first order by a simple model invoking three principal mechanisms: condensation of various known and unknown classes of chondritic material at radial locations in the nebula controlled by the temperature and composition; intense metamorphic heating after accretion which declined rapidly with both increasing solar distance and smaller planetesimal size, producing complete differentiation in some inner belt objects, incomplete differentiation in many more, and extensive metamorphism and aqueous alteration in middle-belt objects; and complex collisional fragmentation often controlled by internal strength gradients due to irregular distribution of metal

  17. Multi-band Modelling of Appearance

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Larsen, Rasmus

    2003-01-01

    the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...

  18. Multi-band Modelling of Appearance

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Larsen, Rasmus

    2002-01-01

    the appearance of both derived feature bands and an intensity band. As a special case of feature-band augmented appearance modelling we propose a dedicated representation with applications to face segmentation. The representation addresses a major problem within face recognition by lowering the sensitivity...

  19. Photometry of faint asteroids and satellites

    International Nuclear Information System (INIS)

    Degewij, J.

    1978-01-01

    The smaller asteroids, having diameters of about 1 km, appear to rotate faster than do the larger asteroids (approximately 200 km diameter). Most of the bodies may be nearly spherical, probably due to a collisional erosion process in the Main Belt of asteroids. The distributions of diameter versus number were studied for low albedo (C, for carbonaceous) and high albedo (S, for silicaceous) type asteroids in the main belt, down to diameters of 25 km. Among the smaller bodies the S type asteroids are relatively more abundant, probably due to greater crushing strength for S type asteroids. This indicates that both optical types have also different properties in the interior of the body. Areas with slightly different reflectivity over the surface of an asteroid were detected; the rotational light variation of asteroid 4 (Vesta) was found to be caused by spots on its surface. Colorimetry and infrared radiometry of some Hilda asteroids, Trojans and the fainter satellites of Jupiter and Saturn, all having diameters between 100 and 200 km, show that a mixture of types exist. If some asteroids are nearly expended nuclei of comets that lost most of their volatile gaseous material, then their cometary activity is expected to be extinct or at least weak. (Auth.)

  20. Discriminative Multi-View Interactive Image Re-Ranking.

    Science.gov (United States)

    Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng

    2017-07-01

    Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.

  1. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    International Nuclear Information System (INIS)

    Everett, Mark E.; Silva, David R.; Barclay, Thomas; Howell, Steve B.; Ciardi, David R.; Horch, Elliott P.; Crepp, Justin R.

    2015-01-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.

  2. Rice status and microwave characteristics: Analysis of rice paddy fields at Kojima Bay [Okayama, Japan] using multi-frequency and polarimetric Pi-SAR radar data images

    International Nuclear Information System (INIS)

    Ishitsuka, N.; Saito, G.; Ouchi, K.; Davidson, G.; Mohri, K.; Uratsuka, S.

    2003-01-01

    Abstract South-east Asia has a rainy-season at the crop growing period, and it is difficult to observe agricultural land in this season using optical remote sensing. Synthetic Aperture Radar (SAR) can observe the earth's surface without being influenced by of clouds. However, it is less useful for observing agricultural land, because satellite SAR has only one data band. Recently, SAR is able to provide multi band and multi polarimetric data. Pi-SAR, an airborne SAR developed by NASDA and CRL, can provide L and X bands and fully polarimetric data. Rice is the main crop in Asia, and we studied the characteristic microwave scatter on rice paddy fields using Pi-SAR data. Our study area was the rice paddy fields in Kojima reclaimed land in Japan. We had two fully polarimetric data sets from 13 July 1999 and 4 October 2000. First, we processed the color polarimetric composite image. Next we calibrated the phase of each polarimetric data using river area by the Kimura method. After that we performed decomposition analysis and drew polarimetric signatures for understanding the status of rice paddy fields. At the rice planting period, rice paddy fields are filled with water and rice plants are very small. The SAR microwave scatters on water surfaces like a mirror, called 'mirror (or specular) reflection'. This phenomenon makes backscatter a small value at the water-covered area. The image from July is about one month after trans-planting and rice plants are 20-40 cm in height. X-band microwave scatters on the rice surface, but L-band microwave passes through rice bodies and shows mirror refraction on water surfaces. Some strong backscatter occur on rice paddy fields especially VV polarization because of bragg scattering. The fields where bragg scattering returns strong VV scatter because the space between rice stems cause resonation in the L-band wavelength. We can easily understand bragg scatter by using polarimetric data. Using the image from October at

  3. 2015 Barcelona Asteroid Day

    CERN Document Server

    Gritsevich, Maria; Palme, Herbert

    2017-01-01

    This volume is a compilation of the research presented at the International Asteroid Day workshop which was celebrated at Barcelona on June 30th, 2015. The proceedings discuss the beginning of a new era in the study and exploration of the solar system’s minor bodies. International Asteroid Day commemorates the Tunguska event of June 30th, 1908. The workshop’s goal was to promote the importance of dealing proactively with impact hazards from space. Multidisciplinary experts contributed to this discussion by describing the nature of comets and asteroids along with their offspring, meteoroids. New missions to return material samples of asteroids back to Earth such as Osiris-REx and Hayabusa 2, as well as projects like AIM and DART which will test impact deflection techniques for Potentially Hazardous Asteroids encounters were also covered. The proceedings include both an outreach level to popularize impact hazards and a scientific character which covers the latest knowledge on these topics, as well as offeri...

  4. Oriented Edge-Based Feature Descriptor for Multi-Sensor Image Alignment and Enhancement

    Directory of Open Access Journals (Sweden)

    Myung-Ho Ju

    2013-10-01

    Full Text Available In this paper, we present an efficient image alignment and enhancement method for multi-sensor images. The shape of the object captured in a multi-sensor images can be determined by comparing variability of contrast using corresponding edges across multi-sensor image. Using this cue, we construct a robust feature descriptor based on the magnitudes of the oriented edges. Our proposed method enables fast image alignment by identifying matching features in multi-sensor images. We enhance the aligned multi-sensor images through the fusion of the salient regions from each image. The results of stitching the multi-sensor images and their enhancement demonstrate that our proposed method can align and enhance multi-sensor images more efficiently than previous methods.

  5. Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

    Science.gov (United States)

    Bos, B. J.; Ravine, M. A.; Caplinger, M.; Schaffner, J. A.; Ladewig, J. V.; Olds, R. D.; Norman, C. D.; Huish, D.; Hughes, M.; Anderson, S. K.; Lorenz, D. A.; May, A.; Jackman, C. D.; Nelson, D.; Moreau, M.; Kubitschek, D.; Getzandanner, K.; Gordon, K. E.; Eberhardt, A.; Lauretta, D. S.

    2018-02-01

    NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400-700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a 2592 × 1944 pixel complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly 44° × 32° with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

  6. Mine Planning for Asteroid Orebodies

    Science.gov (United States)

    Gertsch, L. S.; Gertsch, R. E.

    2000-01-01

    Given that an asteroid (or comet) has been determined to contain sufficient material of value to be potentially economic to exploit, a mining method must be selected and implemented. This paper discusses the engineering necessary to bring a mine online, and the opportunities and challenges inherent in asteroid mineral prospects. The very important step of orebody characterization is discussed elsewhere. The mining methods discussed here are based on enclosing the asteroid within a bag in some fashion, whether completely or partially. In general, asteroid mining methods based on bags will consist of the following steps. Not all will be required in every case, nor necessarily in this particular sequence. Some steps will be performed simultaneously. Their purpose is to extract the valuable material from the body of the asteroid in the most efficient, cost-effective manner possible. In approximate order of initiation, if not of conclusion, the steps are: 1. Tether anchoring to the asteroid. 2. Asteroid motion control. 3. Body/fragment restraint system placement. 4. Operations platform construction. 5. Bag construction. 6. Auxiliary and support equipment placement. 7. Mining operations. 8. Processing operations. 9. Product transport to markets.

  7. A Practical Guide to Multi-image Alignment

    OpenAIRE

    Aguerrebere, Cecilia; Delbracio, Mauricio; Bartesaghi, Alberto; Sapiro, Guillermo

    2018-01-01

    Multi-image alignment, bringing a group of images into common register, is an ubiquitous problem and the first step of many applications in a wide variety of domains. As a result, a great amount of effort is being invested in developing efficient multi-image alignment algorithms. Little has been done, however, to answer fundamental practical questions such as: what is the comparative performance of existing methods? is there still room for improvement? under which conditions should one techni...

  8. Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow

    Science.gov (United States)

    Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.

    1988-01-01

    A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.

  9. A natural-color mapping for single-band night-time image based on FPGA

    Science.gov (United States)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  10. Spitzer IRS (8-30 micron) Spectra of Basaltic Asteroids 1459 Magnya and 956 Elisa: Mineralogy and Thermal Properties

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.

    2009-01-01

    We report preliminary results from Spitzer IRS (Infrared Spectrograph) spectroscopy of 956 Elisa, 1459 Magnya, and other small basaltic asteroids with the Spitzer IRS. Program targets include members of the dynamical family of the unique large differentiated asteroid 4 Vesta ("Vestoids"), several outer-main-belt basaltic asteroids whose orbits exclude them from originating on 4 Vesta, and the basaltic near-Earth asteroid 4055 Magellan. The preliminary thermal model (STM) fit to the 5--35 micron spectrum of 956 Elisa gives a radius of 5.4 +/- 0.3 km and a subsolar- point temperature of 282.2 +/- 0.5 K. This temperature corresponds to eta approximately equals 1.06 +/- 0.02, which is substantially higher than the eta approximately equals 0.756 characteristic of large main-belt asteroids. Unlike 4 Vesta and other large asteroids, therefore, 956 Elisa has significant thermal inertia in its surface layer. The wavelength of the Christiansen feature (emissivity maximum near 9 micron), the positions and shapes of the narrow maxima (10 micron, 11 micron) within the broad 9--14 micron silicate band, and the 19--20 micron minimum are consistent with features found in the laboratory spectra of diogenites and of low-Ca pyroxenes of similar composition (Wo<5, En50-En75).

  11. 3D Imaging Cubesat Lidar for Asteroid and Planetary Sciences, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is actively pursuing guidance and control light detection and ranging (lidar) systems for upcoming exploration missions including asteroid, comet, planet, and...

  12. Project RAMA: Reconstructing Asteroids Into Mechanical Automata

    Science.gov (United States)

    Dunn, Jason; Fagin, Max; Snyder, Michael; Joyce, Eric

    2017-01-01

    Many interesting ideas have been conceived for building space-based infrastructure in cislunar space. From O'Neill's space colonies, to solar power satellite farms, and even prospecting retrieved near earth asteroids. In all the scenarios, one thing remained fixed - the need for space resources at the outpost. To satisfy this need, O'Neill suggested an electromagnetic railgun to deliver resources from the lunar surface, while NASA's Asteroid Redirect Mission called for a solar electric tug to deliver asteroid materials from interplanetary space. At Made In Space, we propose an entirely new concept. One which is scalable, cost effective, and ensures that the abundant material wealth of the inner solar system becomes readily available to humankind in a nearly automated fashion. We propose the RAMA architecture, which turns asteroids into self-contained spacecraft capable of moving themselves back to cislunar space. The RAMA architecture is just as capable of transporting conventional-sized asteroids on the 10-meter length scale as transporting asteroids 100 meters or larger, making it the most versatile asteroid retrieval architecture in terms of retrieved-mass capability. This report describes the results of the Phase I study funded by the NASA NIAC program for Made In Space to establish the concept feasibility of using space manufacturing to convert asteroids into autonomous, mechanical spacecraft. Project RAMA, Reconstituting Asteroids into Mechanical Automata, is designed to leverage the future advances of additive manufacturing (AM), in-situ resource utilization (ISRU) and in-situ manufacturing (ISM) to realize enormous efficiencies in repeated asteroid redirect missions. A team of engineers at Made In Space performed the study work with consultation from the asteroid mining industry, academia, and NASA. Previous studies for asteroid retrieval have been constrained to studying only asteroids that are both large enough to be discovered, and small enough to be

  13. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  14. On the metal-rich surfaces of (16) Psyche and other M-type asteroids from interferometric observations in the thermal infrared

    Science.gov (United States)

    Delbo, Marco; Matter, A.; Gundlach, B.; Blum, J.

    2013-10-01

    Asteroids belonging to the spectroscopic M-type exhibit a quasi featureless and moderately red reflectance spectrum and a geometric visible albedo between 0.1 and 0.3. These asteroids were initially thought to be metallic cores of differentiated asteroids that were exposed to space by a catastrophic disruption by impacts. Later, this view has been challenged by the detection of silicates and hydration spectroscopic bands on these bodies. Unveiling the physical properties of the surfaces of these asteroids, and identifying their meteorite analogs is a challenge from remote-sensing observations. Nevertheless, these are crucial problems, important for estimating the number of asteroids that underwent differentiation in the early phases of the formation of our solar system. The thermal inertia is a sensitive indicator for the presence of metal in the regolith on the surfaces of asteroids. We developed a new thermophysical model that allow us to derive the value of the thermal inertia from interferometric observations in the thermal infrared. We report on our investigation of the thermal inertia of M-type asteroids, including the asteroids (16) Psyche, for which we obtained a thermal inertia value anomalously high compared to the thermal inertia values of other asteroids in the same size range. From the thermal inertia and model of heat conductivity that accounts for different values of the packing fraction (a measure of the degree of compaction of the regolith particles) the regolith grain size is derived.

  15. The Steward Observatory asteroid relational database

    Science.gov (United States)

    Sykes, Mark V.; Alvarezdelcastillo, Elizabeth M.

    1991-01-01

    The Steward Observatory Asteroid Relational Database (SOARD) was created as a flexible tool for undertaking studies of asteroid populations and sub-populations, to probe the biases intrinsic to asteroid databases, to ascertain the completeness of data pertaining to specific problems, to aid in the development of observational programs, and to develop pedagogical materials. To date, SOARD has compiled an extensive list of data available on asteroids and made it accessible through a single menu-driven database program. Users may obtain tailored lists of asteroid properties for any subset of asteroids or output files which are suitable for plotting spectral data on individual asteroids. The program has online help as well as user and programmer documentation manuals. The SOARD already has provided data to fulfill requests by members of the astronomical community. The SOARD continues to grow as data is added to the database and new features are added to the program.

  16. Asteroids. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Bucharest Polytechnic Univ. (Romania). Candida Oancea Institute

    2013-11-01

    Recent research on Prospective Energy and Material Resources on Asteroids. Carefully edited book dedicated to Asteroids prospective energy and material resources. Written by leading experts in the field. The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation.

  17. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    Directory of Open Access Journals (Sweden)

    Jiulong Jiang

    2016-11-01

    Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  18. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Science.gov (United States)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  19. Psyche's UV Reflectance Spectra: Exploring the origins of the largest exposed-core metallic asteroid

    Science.gov (United States)

    Becker, Tracy

    2016-10-01

    (16) Psyche is the largest of the M-class asteroids, and is presumed to be the exposed core of a differentiated asteroid stripped of its mantle through hit-and-run collisions. However, other origins for Psyche have been proposed, including that it formed from a highly-reduced, metal rich material in the inner solar system or that its surface is olivine that has been space weathered. If (16) Psyche is an exposed core, then studying its properties enhances our understanding of the cores of all terrestrial planets, including the Earth's. If it accreted in the inner part of the solar system and was later injected into the asteroid belt, then Psyche sheds light on the conditions and subsequent evolution of the early solar system. Lastly, if Psyche is weathered olivine, then olivine may be more abundant in the solar system than currently measured, rectifying the so-called Great Dunite Shortage. Our program to obtain high-resolution UV spectra of Psyche with the COS G140L mode and the STIS NUV MAMA G230L mode to measure spectral signatures between 90 - 315 nm is designed to distinguish between the 3 hypothesized cases. These observations will enable identification of absorption bands, especially Fe-O charge transfer bands and will be sensitive to spectral blueing that occurs at UV wavelengths for space-weathered objects. When combined, the presence of these UV features, or not, provides a novel test of Psyche formation theories.

  20. Applications of granular-dynamics numerical simulations to asteroid surfaces

    Science.gov (United States)

    Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.

    2014-07-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters

  1. Automated Registration of Images from Multiple Bands of Resourcesat-2 Liss-4 camera

    Science.gov (United States)

    Radhadevi, P. V.; Solanki, S. S.; Jyothi, M. V.; Varadan, G.

    2014-11-01

    Continuous and automated co-registration and geo-tagging of images from multiple bands of Liss-4 camera is one of the interesting challenges of Resourcesat-2 data processing. Three arrays of the Liss-4 camera are physically separated in the focal plane in alongtrack direction. Thus, same line on the ground will be imaged by extreme bands with a time interval of as much as 2.1 seconds. During this time, the satellite would have covered a distance of about 14 km on the ground and the earth would have rotated through an angle of 30". A yaw steering is done to compensate the earth rotation effects, thus ensuring a first level registration between the bands. But this will not do a perfect co-registration because of the attitude fluctuations, satellite movement, terrain topography, PSM steering and small variations in the angular placement of the CCD lines (from the pre-launch values) in the focal plane. This paper describes an algorithm based on the viewing geometry of the satellite to do an automatic band to band registration of Liss-4 MX image of Resourcesat-2 in Level 1A. The algorithm is using the principles of photogrammetric collinearity equations. The model employs an orbit trajectory and attitude fitting with polynomials. Then, a direct geo-referencing with a global DEM with which every pixel in the middle band is mapped to a particular position on the surface of the earth with the given attitude. Attitude is estimated by interpolating measurement data obtained from star sensors and gyros, which are sampled at low frequency. When the sampling rate of attitude information is low compared to the frequency of jitter or micro-vibration, images processed by geometric correction suffer from distortion. Therefore, a set of conjugate points are identified between the bands to perform a relative attitude error estimation and correction which will ensure the internal accuracy and co-registration of bands. Accurate calculation of the exterior orientation parameters with

  2. Distant asteroids and Chiron

    International Nuclear Information System (INIS)

    French, L.M.; Vilas, F.; Hartmann, W.K.; Tholen, D.J.

    1989-01-01

    Knowledge of the physical properties of distant asteroids (a>3.3 AU) has grown dramatically over the past five years, due to systematic compositional and lightcurve studies. Most of these objects have red, dark surfaces, and their spectra show a reddening in spectral slope with heliocentric distance implying a change in surface composition. Trojans for which near-opposition phase curve information is available appear to show little or no opposition effect, unlike any dark solar system objects. The lightcurve amplitudes of Trojan and Hilda asteroids imply significantly more elongated shapes for these groups than for main-belt asteroids of comparable size. These recent observations are reviewed in the context of their implications for the formation and subsequent evolution of the distant asteroids, and their interrelations with the main belt, Chiron and comets

  3. Asteroid mass estimation using Markov-chain Monte Carlo

    Science.gov (United States)

    Siltala, Lauri; Granvik, Mikael

    2017-11-01

    Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to an inverse problem in at least 13 dimensions where the aim is to derive the mass of the perturbing asteroid(s) and six orbital elements for both the perturbing asteroid(s) and the test asteroid(s) based on astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations: the very rough 'marching' approximation, in which the asteroids' orbital elements are not fitted, thereby reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-chain Monte Carlo (MCMC) approach. We describe each of these algorithms with particular focus on the MCMC algorithm, and present example results using both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans.

  4. Asteroids - NeoWs API

    Data.gov (United States)

    National Aeronautics and Space Administration — NeoWs (Near Earth Object Web Service) is a RESTful web service for near earth Asteroid information. With NeoWs a user can: search for Asteroids based on their...

  5. Geotechnical Tests on Asteroid Simulant Orgueil

    Science.gov (United States)

    Garcia, Alexander D'marco

    2017-01-01

    In the last 100 years, the global population has more than quadrupled to over seven billion people. At the same time, the demand for food and standard of living has been increasing which has amplified the global water use by nearly eight times from approximately 500 to 4000 cu km per yr from 1900 to 2010. With the increasing concern to sustain the growing population on Earth it is necessary to seek other approaches to ensure that our planet will have resources for generations to come. In recent years, the advancement of space travel and technology has allowed the idea of mining asteroids with resources closer to becoming a reality. During the duration of the internship at NASA Kennedy Space Center, several geotechnical tests were conducted on BP-1 lunar simulant and asteroid simulant Orgueil. The tests that were conducted on BP-1 was to practice utilizing the equipment that will be used on the asteroid simulant and the data from those tests will be omitted from report. Understanding the soil mechanics of asteroid simulant Orgueil will help provide basis for future technological advances and prepare scientists for the conditions they may encounter when mining asteroids becomes reality in the distant future. Distinct tests were conducted to determine grain size distribution, unconsolidated density, and maximum density. Once the basic properties are known, the asteroid simulant will be altered to different levels of compaction using a vibrator table to see how compaction affects the density. After different intervals of vibration compaction, a miniature vane shear test will be conducted. Laboratory vane shear testing is a reliable tool to investigate strength anisotropy in the vertical and horizontal directions of a very soft to stiff saturated fine-grained clayey soil. This test will provide us with a rapid determination of the shear strength on the undisturbed compacted regolith. The results of these tests will shed light on how much torque is necessary to drill

  6. Intensity correction method customized for multi-animal abdominal MR imaging with 3 T clinical scanner and multi-array coil

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Nakagami, Ryutaro; Furuta, Toshihiro; Fujii, Hirofumi; Sekine, Norio; Niitsu, Mamoru; Moriyama, Noriyuki

    2013-01-01

    Simultaneous magnetic resonance (MR) imaging of multiple small animals in a single session increases throughput of preclinical imaging experiments. Such imaging using a 3-tesla clinical scanner with multi-array coil requires correction of intensity variation caused by the inhomogeneous sensitivity profile of the coil. We explored a method for correcting intensity that we customized for multi-animal MR imaging, especially abdominal imaging. Our institutional committee for animal experimentation approved the protocol. We acquired high resolution T 1 -, T 2 -, and T 2 * -weighted images and low resolution proton density-weighted images (PDWIs) of 4 rat abdomens simultaneously using a 3T clinical scanner and custom-made multi-array coil. For comparison, we also acquired T 1 -, T 2 -, and T 2 * -weighted volume coil images in the same rats in 4 separate sessions. We used software created in-house to correct intensity variation. We applied thresholding to the PDWIs to produce binary images that displayed only a signal-producing area, calculated multi-array coil sensitivity maps by dividing low-pass filtered PDWIs by low-pass filtered binary images pixel by pixel, and divided uncorrected T 1 -, T 2 -, or T 2 * -weighted images by those maps to obtain intensity-corrected images. We compared tissue contrast among the liver, spinal canal, and muscle between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method performed well for all pulse sequences studied and corrected variation in original multi-array coil images without deteriorating the throughput of animal experiments. Tissue contrasts were comparable between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method customized for multi-animal abdominal MR imaging using a 3T clinical scanner and dedicated multi-array coil could facilitate image interpretation. (author)

  7. The first retrograde Trojan asteroid

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2018-04-01

    There are about six thousand asteroids which share Jupiter's orbit around the Sun. Called the 'Trojan asteroids', they co-exist easily with this giant planet because they travel in the same direction as it ('direct' or 'prograde' motion), and remain roughly 60 degrees ahead of or behind it in its orbit. Newly discovered asteroid 2015 BZ509 is on a retrograde orbit, but is nonetheless in a state dynamically analogous to that of the prograde Trojans. The discovery circumstances and the nature of the motion of this curious asteroid -the first of its kind- will be outlined.

  8. Absence of satellites of asteroids

    International Nuclear Information System (INIS)

    Gehrels, T.; Drummond, J.D.; Levenson, N.A.

    1987-01-01

    The absence of satellites within 0.1-7.0 arcmin of minor planets noted in the present CCD imaging survey is judged consistent with previous theoretical studies of collisions in which it is held that satellites would have to be larger than about 30 km in order to be collisionally stable. In view of tidal stability, the only main belt asteroid satellites which could conceivably possess stability over eons are near-contact binaries. Any recent collisional debris would be chaotic and collisionally unstable. 15 references

  9. An initial perspective of S-asteroid subtypes within asteroid families

    Science.gov (United States)

    Kelley, M. S.; Gaffey, M. J.

    1993-01-01

    Many main belt asteroids cluster around certain values of semi-major axis (a), inclination (i), and eccentricity (e). Hirayama was the first to notice these concentrations which he interpreted as evidence of disruptions of larger parent bodies. He called these clusters 'asteroid families'. The term 'families' is increasingly reserved for genetic associations to distinguish them from clusters of unknown or purely dynamical origin (e.g. the Phocaea cluster). Members of a genetic asteroid family represent fragments derived from various depths within the original parent planetesimal. Thus, family members offer the potential for direct examination of the interiors of parent bodies which have undergone metamorphism and differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The differentiation similar to that occurring in the inaccessible interiors of terrestrial planets. The condition that genetic family members represent the fragments of a parent object provides a critical test of whether an association (cluster in proper element space) is a genetic family. Compositions (types and relative abundances of materials) of family members must permit the reconstruction of a compositionally plausible parent body. The compositions of proposed family members can be utilized to test the genetic reality of the family and to determine the type and degree of internal differentiation within the parent planetesimal. The interpretation of the S-class mineralogy provides a preliminary evaluation of family memberships. Detailed mineralogical and petrological analysis was done based on the reflectance spectra of 39 S-type asteroids. The result is a division of the S-asteroid class into seven subtypes based on compositional differences. These subtypes, designated S(I) to S(VII), correspond to surface silicate assemblages ranging from monomineralic olivine (dunites) through olivine-pyroxene mixtures to pure pyroxene or pyroxene-feldspar mixtures

  10. Extended depth of field integral imaging using multi-focus fusion

    Science.gov (United States)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  11. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  12. Evolution of comets into asteroids

    International Nuclear Information System (INIS)

    Weissman, P.R.; A'hearn, M.F.; Rickman, H.; Mcfadden, L.A.

    1989-01-01

    This paper presents observational evidence, together with recent theoretical developments, supporting the hypothesis that at least some asteroids might be extinct or dormant cometary nuclei. The observations include the discovery of a number of apparent asteroids in chaotic Jupiter-crossing orbits; the IRAS discovery of 1983 TB, an asteroid in the same orbit as the Geminid meteor shower; the apparent low activity levels determined for several short-period comet nuclei including Comet Halley; and observations of possible cometary activity in some earth-crossing asteroids. Theoretical developments include explorations of dynamical mechanisms capable of delivering main-belt asteroids into earth-crossing orbits, and an understanding of possible processes which may affect comets during their long residence in the Oort cloud and lead to the formation of nonvolatile crusts before and after they enter the planetary system. 143 refs

  13. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ota, Yukihiro [CCSE, Japan Atomic Energy Agency, Kashiwa, Chiba 277-8587 (Japan); Kawabata, Shiro [Electronics and Photonics Research Institute (ESPRIT), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Nori, Franco [CEMS, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2014-09-15

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate.

  14. Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions

    International Nuclear Information System (INIS)

    Asai, Hidehiro; Ota, Yukihiro; Kawabata, Shiro; Nori, Franco

    2014-01-01

    Highlights: • We study MQT in Josephson junctions composed of multi-gap superconductors. • We derive a formula of the MQT escape rate for multiple phase differences. • We investigate the effect of inter-band phase fluctuation on MQT. • The MQT escape rate is significantly enhanced by the inter-band phase fluctuation. - Abstract: We theoretically investigate macroscopic quantum tunneling (MQT) in a hetero Josephson junction formed by a conventional single-gap superconductor and a multi-gap superconductor. In such Josephson junctions, phase differences for each tunneling channel are defined, and the fluctuation of the relative phase differences appear which is referred to as Josephson–Leggett’s mode. We take into account the effect of the fluctuation in the tunneling process and calculate the MQT escape rate for various junction parameters. We show that the fluctuation of relative phase differences drastically enhances the escape rate

  15. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    Science.gov (United States)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  16. Observations of Multi-band Structures in Double Star TC-1 PEACE Electron and HIA Ion Data

    Science.gov (United States)

    Mohan Narasimhan, K.; Fazakerley, A. N.; Grimald, S.; Dandouras, I. S.; Mihaljcic, B.; Kistler, L. M.; Owen, C. J.

    2015-12-01

    Several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range 1 - 25 keV (Smith and Hoffman (1974), etc). These structures have been described as "nose structures", with reference to their appearance in energy-time spectrograms and are also known as "bands" if they occur for extended periods of time. Multi-nose structures have been observed if 2 or more noses appear at the same time (Vallat et al., 2007). Gaps between "noses" (or "bands") have been explained in terms of the competing corotation, convection and magnetic gradient drifts. Charge exchange losses in slow drift paths for steady state scenarios and the role of substorm injections have also been considered (Li et al., 2000; Ebihara et al., 2004). We analyse observations of electron and ion multi-band structures frequently seen in Double-Star TC1 PEACE and HIA data. We present results from statistical surveys conducted using data from the duration of the mission. Furthermore, using a combination of both statistics and simulations, we test previous theories as to possible formation mechanisms and explore other possible explanations.

  17. A NEXT GENERATION MULTI-BEAM FOCAL PLANE ARRAY RECEIVER OF TRAO FOR 86-115 GHZ BAND

    Directory of Open Access Journals (Sweden)

    Moon-Hee Chung

    2006-03-01

    Full Text Available The noise temperature of existing millimeter-wave receivers is already within two or three times quantum noise limit. One of practical ways to increase the observation speed of single dish radio telescope without longer integration time is use of multi-beam focal plane array receiver as demonstrated in several large single dish radio telescopes. In this context the TRAO (Taeduk Radio Astronomy Observatory, which operates a 143n Cassegrain radio telescope, is planning to develop a 4 x 4 beams focal plane array SIS receiver system for 86-115 GHz band. Even though millimeter-wave HEMT LNA-based receivers approach the noise temperature comparable to the SIS receiver at W-band, it is believed that the receiver based on SIS mixer seems to offer a bit more advantages. The critical part of the multi-beam array receiver will be sideband separating SIS mixers. Employing such a type of SIS mixer makes it possible to simplify the quasi-optics of receiver. Otherwise, an SSB filter should be used in front of the mixer or some sophisticated post-processing of observation data is needed. In this paper we will present a preliminary design concept and components needed for the development of a new 3 mm band multi-beam focal plane array receiver.

  18. Prospects for asteroid mass determination from close encounters between asteroids: ESA's Gaia space mission and beyond

    Science.gov (United States)

    Ivantsov, Anatoliy; Hestroffer, Daniel; Eggl, Siegfried

    2018-04-01

    We present a catalog of potential candidates for asteroid mass determination based on mutual close encounters of numbered asteroids with massive perturbers (D>20 km). Using a novel geometric approach tuned to optimize observability, we predict optimal epochs for mass determination observations. In contrast to previous studies that often used simplified dynamical models, we have numerically propagated the trajectories of all numbered asteroids over the time interval from 2013 to 2023 using relativistic equations of motion including planetary perturbations, J2 of the Sun, the 16 major asteroid perturbers and the perturbations due to non-sphericities of the planets. We compiled a catalog of close encounters between asteroids where the observable perturbation of the sky plane trajectory is greater than 0.5 mas so that astrometric measurements of the perturbed asteroids in the Gaia data can be leveraged. The catalog v1.0 is available at ftp://dosya.akdeniz.edu.tr/ivantsov.

  19. Online Multi-Spectral Meat Inspection

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...... work is threefold as we 1) investigate the color distributions and construct a model to describe pork loins, 2) classify the different components in pork loins (meat, fat, membrane), and 3) detect foreign objects on the surface of pork loins. Our investigation shows that the color distributions can...

  20. Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses

    Science.gov (United States)

    Wang, Guo-Dong; Liu, Ming-Hai; Hu, Xi-Wei; Kong, Ling-Hua; Cheng, Li-Li; Chen, Zhao-Quan

    2014-01-01

    The influence of the gap on the absorption performance of the conventional split ring resonator (SRR) absorber is investigated at microwave frequencies. Our simulated results reveal that the geometry of the square SRR can be equivalent to a Jerusalem cross (JC) resonator and its corresponding metamaterial absorber (MA) is changed to a JC absorber. The JC MA exhibits an experimental absorption peak of 99.1% at 8.72 GHz, which shows an excellent agreement with our simulated results. By simply assembling several JCs with slightly different geometric parameters next to each other into a unit cell, a perfect multi-band absorption can be effectively obtained. The experimental results show that the MA has four distinct and strong absorption peaks at 8.32 GHz, 9.8 GHz, 11.52 GHz and 13.24 GHz. Finally, the multi-reflection interference theory is introduced to interpret the absorption mechanism.

  1. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  2. High Resolution Radar Imaging using Coherent MultiBand Processing Techniques

    NARCIS (Netherlands)

    Dorp, Ph. van; Ebeling, R.P.; Huizing, A.G.

    2010-01-01

    High resolution radar imaging techniques can be used in ballistic missile defence systems to determine the type of ballistic missile during the boost phase (threat typing) and to discriminate different parts of a ballistic missile after the boost phase. The applied radar imaging technique is 2D

  3. Asteroids: up close and personal

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Clark R. [Southwest Research Institute (United States)

    2001-06-01

    Think of our solar system. The Sun, the Moon and the nine planets come to mind first, followed by the moons of other planets and other small bodies like asteroids. In 1991, almost 30 years after planetary exploration began, an asteroid was visited by a passing spacecraft for the first time. Nearly another decade elapsed before the first dedicated asteroid mission went into orbit around Eros, a city-sized object some 34 km long. And earlier this year, the NEAR, Shoemaker spacecraft daringly descended to the surface of Eros and landed safely. Asteroids have been pushed to the tail-end of the itinerary of solar-system exploration because of their diminutive sizes. Indeed, the wealth of low-gravity phenomena associated with asteroids has captured the imagination of both researchers and the public alike. In the June issue of Physics World Clark R Chapman of the Southwest Research Institute, US, explains how the landing of a spacecraft on the asteroid Eros earlier this year has given space scientists the best view yet of small planetary bodies and has opened a new window on the solar system. (U.K.)

  4. Special issue on asteroids - Introduction

    Science.gov (United States)

    Novaković, Bojan; Hsieh, Henry H.; Gronchi, Giovanni F.

    2018-04-01

    The articles in this special issue are devoted to asteroids, small solar system bodies that primarily populate a region between the orbits of Mars and Jupiter, known as the asteroid belt, but can also be found throughout the Solar System. Asteroids are considered to be a key to understanding the formation and evolution of our planetary system. Their properties allow us to test current theoretical models and develop new theoretical concepts pertaining to evolutionary processes in the Solar System. There have been major advances in asteroid science in the last decade, and that trend continues. Eighteen papers accepted for this special issue cover a wide range of asteroid-related subjects, pushing the boundaries of our understanding of these intriguing objects even further. Here we provide the reader with a brief overview of these thrilling papers, with an invitation for interested scientists to read each work in detail for a better understanding of these recent cutting edge results. As many topics in asteroid science remain open challenges, we hope that this special issue will be an important reference point for future research on this compelling topic.

  5. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    Energy Technology Data Exchange (ETDEWEB)

    Baer, James [Private address, 3210 Apache Road, Pittsburgh, PA 15241 (United States); Chesley, Steven R., E-mail: jimbaer1@earthlink.net [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-08-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia ) should conduct a thorough search for possible gravitational couplings and account for their effects.

  6. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    Science.gov (United States)

    Baer, James; Chesley, Steven R.

    2017-08-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia) should conduct a thorough search for possible gravitational couplings and account for their effects.

  7. Simultaneous Mass Determination for Gravitationally Coupled Asteroids

    International Nuclear Information System (INIS)

    Baer, James; Chesley, Steven R.

    2017-01-01

    The conventional least-squares asteroid mass determination algorithm allows us to solve for the mass of a large subject asteroid that is perturbing the trajectory of a smaller test asteroid. However, this algorithm is necessarily a first approximation, ignoring the possibility that the subject asteroid may itself be perturbed by the test asteroid, or that the encounter’s precise geometry may be entangled with encounters involving other asteroids. After reviewing the conventional algorithm, we use it to calculate the masses of 30 main-belt asteroids. Compared to our previous results, we find new mass estimates for eight asteroids (11 Parthenope, 27 Euterpe, 51 Neimausa, 76 Freia, 121 Hermione, 324 Bamberga, 476 Hedwig, and 532 Herculina) and significantly more precise estimates for six others (2 Pallas, 3 Juno, 4 Vesta, 9 Metis, 16 Psyche, and 88 Thisbe). However, we also find that the conventional algorithm yields questionable results in several gravitationally coupled cases. To address such cases, we describe a new algorithm that allows the epoch state vectors of the subject asteroids to be included as solve-for parameters, allowing for the simultaneous solution of the masses and epoch state vectors of multiple subject and test asteroids. We then apply this algorithm to the same 30 main-belt asteroids and conclude that mass determinations resulting from current and future high-precision astrometric sources (such as Gaia ) should conduct a thorough search for possible gravitational couplings and account for their effects.

  8. Geologic and Mineralogic Mapping of Av-6 (Gegania) and Av-7 (Lucaria) Quadrangles of Asteroid 4 Vesta

    Science.gov (United States)

    Nathues, A.; Le Corre, L.; Reddy, V.; De Sanctis, M. C.; Williams, D. A.; Garry, W. B.; Yingst, R. A.; Jaumann, R.; Ammannito, E.; Capaccioni, F.; Preusker, F.; Palomba, E.; Roatsch, T.; Tosi, F.; Zambon, F.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.

    2012-04-01

    NASA's Dawn spacecraft arrived at the asteroid 4 Vesta in July 2011 and is now collecting imaging and spectroscopic data during its one-year orbital mission. The maps we present are based on information obtained by the Visible and Infrared Mapping Spectrometer VIR-MS and the multi-color Framing Camera FC. VIR covers the wavelength range between 0.25 to 5.1 µm while FC covers the range 0.4 to 1.0 µm. The VIR instrument has a significant higher spectral resolution than FC but the latter achieves higher spatial resolution data. As part of the geological and mineralogical analysis of the surface, a series of 15 quadrangles have been defined covering the entire surface of Vesta. We report about the mapping results of quadrangle Av-6 (Gegania) and Av-7 (Lucaria). The Gegania quadrangle is dominated by old craters showing no ejecta blankets and rays while several small fresh craters do. The most obvious geologic features are a set of equatorial troughs, a group of three ghost craters of similar diameter (~57 km), an ejecta mantling of the Gegania crater and three smaller craters showing bright and dark ejecta rays. The quadrangle contains two main geologic units: 1) the northern cratered trough terrain and 2) the equatorial ridge and trough terrain. The quadrangle shows moderate variation in Band II center wavelength and Band II depth. FC color ratio variations of some recent craters and their ejecta are linked to the bright and dark material. The bright material is possibly excavated eucritic material while the dark material could be remnants of a CM2 impator(s) or an excavated subsurface layer of endogenic origin. The most prominent geologic features in the Lucaria quadrangle are the 40 km long hill Lucaria Tholus, a set of equatorial troughs, some relatively fresh craters with bright and dark material and mass wasting. The quadrangle contains three main geologic units: 1) the northern cratered trough terrain, 2) the equatorial ridge and trough terrain, and 3) the

  9. Geography of the asteroid belt

    Science.gov (United States)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  10. US images encoding envelope amplitude following narrow band filtering

    International Nuclear Information System (INIS)

    Sommer, F.G.; Stern, R.A.; Chen, H.S.

    1986-01-01

    Ultrasonic waveform data from phantoms having differing scattering characteristics and from normal and cirrhotic human liver in vivo were recorded within a standardized dynamic range and filtered with narrow band filters either above or below the mean recorded ultrasonic center frequency. Images created by mapping the amplitudes of received ultrasound following such filtration permitted dramatic differentiation, not discernible in conventional US images, of phantoms having differing scattering characteristics, and of normal and cirrhotic human livers

  11. Asteroid exploration and utilization: The Hawking explorer

    Science.gov (United States)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  12. Clinical multi-colour fluorescence imaging of malignant tumours - initial experience

    International Nuclear Information System (INIS)

    Svanberg, K.; Wang, I.; Montan, S.; Andersson-Engels, S.; Svanberg, S.; Lund Inst. of Technology

    1998-01-01

    The purpose of this study was to present a new technique for non-invasive tumour detection based on tissue fluorescence imaging. A clinically adapted multi-colour fluorescence system was employed in the real-time imaging of malignant tumours of the skin, breast, head and neck region, and urinary bladder. Tumour detection was based on the contrast displayed in fluorescence between normal and malignant tissue, related to the selective uptake of tumour-marking agents and natural chromophore differences between various tissues. In order to demarcate basal cell carcinomas of the skin, ALA was applied topically 4-6 h before the fluorescence investigation. For urinary bladder tumour visualisation, ALA was instilled into the bladder 1-2 h prior to the study. Malignant and premalignant lesions in the head and neck region were imaged after i.v. injection of HPD (Photofrin). The tumour imaging system was coupled to an endoscope. Fluorescence light emission from the tissue surface was induced with 100-ns-long optical pulses at 390 nm, generated from a frequency-doubled alexandrite laser. With the use of special image-splitting optics, the tumour fluorescence, intensified in a micro-channel plate, was imaged in 3 selected wavelength bands. These 3 images were processed together to form a new optimised-contrast image of the tumour. This image, updated at a rate of about 3 frames/s was mixed with a normal colour video image of the tissue. A clear demarcation from normal surrounding tissue was found during in vivo measurements of superficial bladder carcinoma, basal cell carcinoma of the skin, and leukoplakia with dysplasia of the lip, and in vitro investigations of resected breast cancer. (orig./MG)

  13. Ka-band InSAR Imaging and Analysis Based on IMU Data

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2014-02-01

    Full Text Available Compared with other bands, the millimeter wave Interferometric Synthetic Aperture Radar (InSAR has high accuracy and small size, which is a hot topic in InSAR research. On the other hand, shorter wavelength causes difficulties in 2D imaging and interferometric phase extraction. In this study, the imaging and phase performance of the streaming Back Projection (BP method combined with IMU data are analyzed and discussed on the basis of actual Ka-band InSAR data. It is found that because the wavelength of the Ka-band is short, it is more sensitive to the antenna phase-center history. To ensure the phase-preserving capacity, the IMU data must be used with accurate motion error compensation. Furthermore, during data processing, we verify the flat-earth-removing capacity of the BP algorithm that calculates and compensates the master and slave antenna phase centers individually.

  14. Polarimetric survey of main-belt asteroids. IV. New results from the first epoch of the CASLEO survey

    Science.gov (United States)

    Gil-Hutton, R.; Cellino, A.; Bendjoya, Ph.

    2014-09-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 1995, and until 2012 data on a large sample of asteroids were obtained. We here present and analyze the unpublished results for 129 asteroids of different taxonomic types, 56 which were polarimetrically observed for the first time. We find that the asteroids (402) Chloe and (729) Watsonia are Barbarians, and asteroid (269) Justitia shows a phase - polarization curve that seems to have a small inversion angle. Data obtained in UBVRI colors allow us to sketch an analysis of the wavelength dependence of the degree of linear polarization for 31 asteroids, in spite of some large error bars in some cases. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A122

  15. Asteroids prospective energy and material resources

    CERN Document Server

    2013-01-01

    The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power.   Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth.   Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space.   This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions t...

  16. EMIR, the GTC NIR multi-object imager-spectrograph

    Science.gov (United States)

    Garzón, F.; Abreu, D.; Barrera, S.; Becerril, S.; Cairós, L. M.; Díaz, J. J.; Fragoso, A. B.; Gago, F.; Grange, R.; González, C.; López, P.; Patrón, J.; Pérez, J.; Rasilla, J. L.; Redondo, P.; Restrepo, R.; Saavedra, P.; Sánchez, V.; Tenegi, F.; Vallbé, M.

    2007-06-01

    EMIR, currently entering into its fabrication and AIV phase, will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish and French institutes led by the Instituto de Astrofísica de Canarias (IAC). EMIR is designed to realize one of the central goals of 10m class telescopes, allowing observers to obtain spectra for large numbers of faint sources in a time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band, but offers a wide range of observing modes, including imaging and spectroscopy, both long slit and multi-object, in the wavelength range 0.9 to 2.5 μm. It is equipped with two innovative subsystems: a robotic reconfigurable multi-slit mask and dispersive elements formed by the combination of high quality diffraction grating and conventional prisms, both at the heart of the instrument. The present status of development, expected performances, schedule and plans for scientific exploitation are described and discussed. The development and fabrication of EMIR is funded by GRANTECAN and the Plan Nacional de Astronomía y Astrofísica (National Plan for Astronomy and Astrophysics, Spain).

  17. MULTI-TEMPORAL AND MULTI-SENSOR IMAGE MATCHING BASED ON LOCAL FREQUENCY INFORMATION

    Directory of Open Access Journals (Sweden)

    X. Liu

    2012-08-01

    Full Text Available Image Matching is often one of the first tasks in many Photogrammetry and Remote Sensing applications. This paper presents an efficient approach to automated multi-temporal and multi-sensor image matching based on local frequency information. Two new independent image representations, Local Average Phase (LAP and Local Weighted Amplitude (LWA, are presented to emphasize the common scene information, while suppressing the non-common illumination and sensor-dependent information. In order to get the two representations, local frequency information is firstly obtained from Log-Gabor wavelet transformation, which is similar to that of the human visual system; then the outputs of odd and even symmetric filters are used to construct the LAP and LWA. The LAP and LWA emphasize on the phase and amplitude information respectively. As these two representations are both derivative-free and threshold-free, they are robust to noise and can keep as much of the image details as possible. A new Compositional Similarity Measure (CSM is also presented to combine the LAP and LWA with the same weight for measuring the similarity of multi-temporal and multi-sensor images. The CSM can make the LAP and LWA compensate for each other and can make full use of the amplitude and phase of local frequency information. In many image matching applications, the template is usually selected without consideration of its matching robustness and accuracy. In order to overcome this problem, a local best matching point detection is presented to detect the best matching template. In the detection method, we employ self-similarity analysis to identify the template with the highest matching robustness and accuracy. Experimental results using some real images and simulation images demonstrate that the presented approach is effective for matching image pairs with significant scene and illumination changes and that it has advantages over other state-of-the-art approaches, which include: the

  18. Navigation of Chang'E-2 asteroid exploration mission and the minimum distance estimation during its fly-by of Toutatis

    Science.gov (United States)

    Cao, Jianfeng; Liu, Yong; Hu, Songjie; Liu, Lei; Tang, Geshi; Huang, Yong; Li, Peijia

    2015-01-01

    China's space probe Chang'E-2 began its asteroid exploration mission on April 15, 2012 and had been in space for 243 days before its encounter with Toutatis. With no onboard navigation equipment available, the navigation of CE-2 during its fly-by of the asteroid relied totally on ground-based Unified S-Band (USB) and Very Long Baseline Interferometry (VLBI) tracking data. The orbit determination of Toutatis was achieved by using a combination of optical measurements and radar ranging. On November 30, 2012, CE-2 was targeted at a destination that was 15 km away from the asteroid as it performed its third trajectory correction maneuver. Later orbit determination analysis showed that a correction residual was still present, which necessitated another maneuver on December 12. During the two maneuvers, ground-based navigation faced a challenge in terms of the orbit determination accuracy. With the optimization of our strategy, an accuracy of better than 15 km was finally achieved for the post-maneuver orbit solution. On December 13, CE-2 successfully passed by Toutatis and conducted continuous photographing of Toutatis during the entire process. An analysis of the images that were taken from the solar panel monitoring camera and the satellite attitude information demonstrates that the closest distance obtained between CE-2 and Toutatis (Toutatis's surface) was 1.9 km, which is considerably better than the 30 km fly-by distance that we originally hoped based on the accuracies that we can obtain on the satellite and Toutatis' orbits.

  19. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  20. Semiconductor laser multi-spectral sensing and imaging.

    Science.gov (United States)

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  1. Shape and spin of asteroid 967 Helionape

    Science.gov (United States)

    Apostolovska, G.; Kostov, A.; Donchev, Z.; Bebekovska, E. Vchkova; Kuzmanovska, O.

    2018-04-01

    Knowledge of the spin and shape parameters of the asteroids is very important for understanding of the conditions during the creation of our planetary system and formation of asteroid populations. The main belt asteroid and Flora family member 967 Helionape was observed during five apparitions. The observations were made at the Bulgarian National Astronomical Observatory (BNAO) Rozhen, since March 2006 to March 2016. Lihtcurve inversion method (Kaasalainen et al. (2001)), applied on 12 relative lightcurves obtained at various geometric conditions of the asteroid, reveals the spin vector, the sense of rotation and the preliminary shape model of the asteroid. Our aim is to contribute in increasing the set of asteroids with known spin and shape parameters. This could be done with dense lightcurves, obtained during small number of apparitions, in combination with sparse data produced by photometric asteroid surveys such as the Gaia satellite (Hanush (2011)).

  2. Working Group Reports and Presentations: Asteroids

    Science.gov (United States)

    Lewis, John

    2006-01-01

    The study and utilization of asteroids will be an economical way to enable exploration of the solar system and extend human presence in space. There are thousands of near-earth objects (NEOs) that we will be able to reach. They offer resources, transportation, and exploration platforms, but also present a potential threat to civilization. Asteroids play a catastrophic role in the history of the Earth. Geological records indicate a regular history of massive impacts, which astronomical observations confirm is likely to continue with potentially devastating consequences. However, study and exploration of near earth asteroids can significantly increase advanced warning of an Earth impact, and potentially lead to the technology necessary to avert such a collision. Efforts to detect and prevent cataclysmic events would tend to foster and likely require international cooperation toward a unified goal of self-preservation. Exploration of asteroids will help us to understand our history and perhaps save our future. Besides the obvious and compelling scientific and security drivers for asteroid research and exploration, there are numerous engineering and industrial applications for near-term asteroid exploration. We have strong evidence that some asteroids are metal rich. Some are water and organic rich. They can be reached with a very low fuel cost compared to other solar system destinations. Once we reach them, there are efficient, simple extraction technologies available that would facilitate utilization. In addition, the costs of returning extracted resources from asteroids will be a fraction of the cost to return similar resources from the moon to Low Earth Orbit (LEO). These raw materials, extracted and shipped at relatively low cost, can be used to manufacture structures, fuel, and products which could be used to foster mankind s further exploration of the solar system. Asteroids also have the potential to offer transport to several destinations in the solar system

  3. Capturing asteroids into bound orbits around the earth: Massive early return on an asteroid terminal defense system

    International Nuclear Information System (INIS)

    Hills, J.G.

    1992-01-01

    Nuclear explosives may be used to capture small asteroids (e.g., 20--50 meters in diameter) into bound orbits around the earth. The captured objects could be used for construction material for manned and unmanned activity in Earth orbit. Asteroids with small approach velocities, which are the ones most likely to have close approaches to the Earth, require the least energy for capture. They are particularly easy to capture if they pass within one Earth radius of the surface of the Earth. They could be intercepted with intercontinental missiles if the latter were retrofit with a more flexible guiding and homing capability. This asteroid capture-defense system could be implemented in a few years at low cost by using decommissioned ICMs. The economic value of even one captured asteroid is many times the initial investment. The asteroid capture system would be an essential part of the learning curve for dealing with larger asteroids that can hit the earth

  4. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, C.; Ma, Y. H.; Zhao, H. B.; Lu, X. P.

    2016-09-01

    With the increasing asteroid spectral and photometric data, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations of Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. With the training data derived from the taxonomies of Tholen, Bus, Lazzaro, DeMeo, and Principal Component Analysis, we classify 48642 asteroids according to g, r, i, and z SDSS magnitudes. In this way, asteroids are divided into 8 spectral classes (C, X, S, B, D, K, L, and V).

  5. Development of L-band, 10MW multi beam klystron

    International Nuclear Information System (INIS)

    Irikura, M.; Miyake, S.; Yano, A.; Kazakov, S.; Larionov, A.; Teryaev, V.; Chin, Y.H.

    2004-01-01

    A 10-MW, L-band multi beam klystron (MBK) for TESLA linear collider and TESLA XFEL has been under development at Toshiba Electron Tubes and Devices Co., Ltd. (TETD) in collaboration with KEK. The TESLA requires pulsed klystrons capable of 10 MW output power at 1300 MHz with 1.5 ms pulse length and a repetition rate of 10 pps. The MBK with 6 low-perveance beams in parallel enables us to operate at lower cathode voltage with higher efficiency. The design work has been accomplished and the fabrication is under way. We are going to start conditioning and testing of prototype no.0 in the middle of July 2004. The design overview will be presented. (author)

  6. Multi-Label Classification Based on Low Rank Representation for Image Annotation

    Directory of Open Access Journals (Sweden)

    Qiaoyu Tan

    2017-01-01

    Full Text Available Annotating remote sensing images is a challenging task for its labor demanding annotation process and requirement of expert knowledge, especially when images can be annotated with multiple semantic concepts (or labels. To automatically annotate these multi-label images, we introduce an approach called Multi-Label Classification based on Low Rank Representation (MLC-LRR. MLC-LRR firstly utilizes low rank representation in the feature space of images to compute the low rank constrained coefficient matrix, then it adapts the coefficient matrix to define a feature-based graph and to capture the global relationships between images. Next, it utilizes low rank representation in the label space of labeled images to construct a semantic graph. Finally, these two graphs are exploited to train a graph-based multi-label classifier. To validate the performance of MLC-LRR against other related graph-based multi-label methods in annotating images, we conduct experiments on a public available multi-label remote sensing images (Land Cover. We perform additional experiments on five real-world multi-label image datasets to further investigate the performance of MLC-LRR. Empirical study demonstrates that MLC-LRR achieves better performance on annotating images than these comparing methods across various evaluation criteria; it also can effectively exploit global structure and label correlations of multi-label images.

  7. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  8. Spectral properties of binary asteroids

    Science.gov (United States)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  9. Machine learning and next-generation asteroid surveys

    Science.gov (United States)

    Nugent, Carrie R.; Dailey, John; Cutri, Roc M.; Masci, Frank J.; Mainzer, Amy K.

    2017-10-01

    Next-generation surveys such as NEOCam (Mainzer et al., 2016) will sift through tens of millions of point source detections daily to detect and discover asteroids. This requires new, more efficient techniques to distinguish between solar system objects, background stars and galaxies, and artifacts such as cosmic rays, scattered light and diffraction spikes.Supervised machine learning is a set of algorithms that allows computers to classify data on a training set, and then apply that classification to make predictions on new datasets. It has been employed by a broad range of fields, including computer vision, medical diagnoses, economics, and natural language processing. It has also been applied to astronomical datasets, including transient identification in the Palomar Transient Factory pipeline (Masci et al., 2016), and in the Pan-STARRS1 difference imaging (D. E. Wright et al., 2015).As part of the NEOCam extended phase A work we apply machine learning techniques to the problem of asteroid detection. Asteroid detection is an ideal application of supervised learning, as there is a wealth of metrics associated with each extracted source, and suitable training sets are easily created. Using the vetted NEOWISE dataset (E. L. Wright et al., 2010, Mainzer et al., 2011) as a proof-of-concept of this technique, we applied the python package sklearn. We report on reliability, feature set selection, and the suitability of various algorithms.

  10. Asteroids in the High Cadence Transient Survey

    Science.gov (United States)

    Peña, J.; Fuentes, C.; Förster, F.; Maureira, J. C.; San Martín, J.; Littín, J.; Huijse, P.; Cabrera-Vives, G.; Estévez, P. A.; Galbany, L.; González-Gaitán, S.; Martínez, J.; de Jaeger, Th.; Hamuy, M.

    2018-03-01

    We report on the serendipitous observations of solar system objects imaged during the High cadence Transient Survey 2014 observation campaign. Data from this high-cadence wide-field survey was originally analyzed for finding variable static sources using machine learning to select the most-likely candidates. In this work, we search for moving transients consistent with solar system objects and derive their orbital parameters. We use a simple, custom motion detection algorithm to link trajectories and assume Keplerian motion to derive the asteroid’s orbital parameters. We use known asteroids from the Minor Planet Center database to assess the detection efficiency of the survey and our search algorithm. Trajectories have an average of nine detections spread over two days, and our fit yields typical errors of {σ }a∼ 0.07 {au}, σ e ∼ 0.07 and σ i ∼ 0.°5 in semimajor axis, eccentricity, and inclination, respectively, for known asteroids in our sample. We extract 7700 orbits from our trajectories, identifying 19 near-Earth objects, 6687 asteroids, 14 Centaurs, and 15 trans-Neptunian objects. This highlights the complementarity of supernova wide-field surveys for solar system research and the significance of machine learning to clean data of false detections. It is a good example of the data-driven science that Large Synoptic Survey Telescope will deliver.

  11. Reflectance spectroscopy and asteroid surface mineralogy

    International Nuclear Information System (INIS)

    Gaffey, M.J.; Bell, J.F.; Cruikshank, D.P.

    1989-01-01

    Information available from reflectance spectroscopy on the surface mineralogy of asteroids is discussed. Current spectral interpretive procedures used in the investigations of asteroid mineralogy are described. Present understanding of the nature and history of asteroids is discussed together with some still unresolved issues such as the source of ordinary chondrites. 100 refs

  12. The Double Asteroid Redirection Test (DART)

    Science.gov (United States)

    Rivkin, A.; Cheng, A. F.; Stickle, A. M.; Richardson, D. C.; Barnouin, O. S.; Thomas, C.; Fahnestock, E.

    2017-12-01

    The Double Asteroid Redirection Test (DART) will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. DART is currently in Preliminary Design Phase ("Phase B"), and is part of the Asteroid Impact and Deflection Assessment (AIDA), a joint ESA-NASA cooperative project. The AIDA target is the near-Earth binary asteroid 65803 Didymos, an S-class system that will make a close approach to Earth in fall 2022. The DART spacecraft is designed to impact the Didymos secondary at 6 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts. The DART impact on the Didymos secondary will change the orbital period of the binary by several minutes, which can be measured by Earth-based optical and radar observations. The baseline DART mission launches in late 2020 to impact the Didymos secondary in 2022 near the time of its close pass of Earth, which enables an array of ground- and space-based observatories to participate in gathering data. The AIDA project will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are characterized or constrained. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a

  13. Probing Xylan-Specific Raman Bands for Label-Free Imaging Xylan in Plant Cell Wall

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; Tucker, Melvin P.; Vinzant, Todd; Himmel, Michael E.

    2015-06-15

    Xylan constitutes a significant portion of biomass (e.g. 22% in corn stover used in this study). Xylan is also an important source of carbohydrates, besides cellulose, for renewable and sustainable energy applications. Currently used method for the localization of xylan in biomass is to use fluorescence confocal microscope to image the fluorescent dye labeled monoclonal antibody that specifically binds to xylan. With the rapid adoption of the Raman-based label-free chemical imaging techniques in biology, identifying Raman bands that are unique to xylan would be critical for the implementation of the above label-free techniques for in situ xylan imaging. Unlike lignin and cellulose that have long be assigned fingerprint Raman bands, specific Raman bands for xylan remain unclear. The major challenge is the cellulose in plant cell wall, which has chemical units highly similar to that of xylan. Here we report using xylanase to specifically remove xylan from feedstock. Under various degree of xylan removal, with minimum impact to other major cell wall components, i.e. lignin and cellulose, we have identified Raman bands that could be further tested for chemical imaging of xylan in biomass in situ.

  14. DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS ,

    International Nuclear Information System (INIS)

    Nonino, M.; Cristiani, S.; Vanzella, E.; Dickinson, M.; Reddy, N.; Rosati, P.; Grazian, A.; Giavalisco, M.; Kuntschner, H.; Fosbury, R. A. E.; Daddi, E.; Cesarsky, C.

    2009-01-01

    We present deep imaging in the U band covering an area of 630 arcmin 2 centered on the southern field of the Great Observatories Origins Deep Survey (GOODS). The data were obtained with the VIMOS instrument at the European Southern Observatory (ESO) Very Large Telescope. The final images reach a magnitude limit U lim ∼ 29.8 (AB, 1σ, in a 1'' radius aperture), and have good image quality, with full width at half-maximum ∼0.''8. They are significantly deeper than previous U-band images available for the GOODS fields, and better match the sensitivity of other multiwavelength GOODS photometry. The deeper U-band data yield significantly improved photometric redshifts, especially in key redshift ranges such as 2 lim ∼ 29 (AB, 1σ, 1'' radius aperture), and image quality ∼0.''75. We discuss the strategies for the observations and data reduction, and present the first results from the analysis of the co-added images.

  15. A multi-mode multi-band RF receiver front-end for a TD-SCDMA/LTE/LTE-advanced in 0.18-μm CMOS process

    International Nuclear Information System (INIS)

    Guo Rui; Zhang Haiying

    2012-01-01

    A fully integrated multi-mode multi-band directed-conversion radio frequency (RF) receiver front-end for a TD-SCDMA/LTE/LTE-advanced is presented. The front-end employs direct-conversion design, and consists of two differential tunable low noise amplifiers (LNA), a quadrature mixer, and two intermediate frequency (IF) amplifiers. The two independent tunable LNAs are used to cover all the four frequency bands, achieving sufficient low noise and high gain performance with low power consumption. Switched capacitor arrays perform a resonant frequency point calibration for the LNAs. The two LNAs are combined at the driver stage of the mixer, which employs a folded double balanced Gilbert structure, and utilizes PMOS transistors as local oscillator (LO) switches to reduce flicker noise. The front-end has three gain modes to obtain a higher dynamic range. Frequency band selection and mode of configuration is realized by an on-chip serial peripheral interface (SPI) module. The front-end is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.3 mm 2 . The measured double-sideband (DSB) noise figure is below 3.5 dB and the conversion gain is over 43 dB at all of the frequency bands. The total current consumption is 31 mA from a 1.8-V supply. (semiconductor integrated circuits)

  16. Developing an Asteroid Rotational Theory

    Science.gov (United States)

    Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald

    2018-01-01

    The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.

  17. New Variable Stars Discovered by Data Mining Images Taken during Recent Asteroid Photometric Observations. II. Results from July 2015 through December 2016

    Science.gov (United States)

    Papini, R.; Marchini, A.; Salvaggio, F.; Agnetti, D.; Bacci, P.; Banfi, M.; Bianciardi, G.; Collina, M.; Franco, L.; Galli, G.; Milani, M. G. A.; Lopresti, C.; Marino, G.; Rizzuti, L.; Ruocco, N.; Quadri, U.

    2017-12-01

    This paper follows the previous publication of new variables discovered at Astronomical Observatory, DSFTA, University of Siena, while observing asteroids in order to determine their rotational periods. Usually, this task requires time series images acquisition on a single field for as long as possible on a few nights not necessarily consecutive. Checking continually this "goldmine" allowed us to discover 57 variable stars not yet listed in catalogues or databases. While most of the new variables are eclipsing binaries, a few belong to the RR Lyrae or delta Scuti class. Since asteroid work is definitely a time-consuming activity, coordinated campaigns of follow-up with other observatories have been fundamental in order to determine the elements of the ephemeris and sometimes the right subclass of variability. Further observations of these new variables are therefore strongly encouraged in order to better characterize these stars, especially pulsating ones whose data combined with those taken during professional surveys seem to suggest the presence of light curve amplitude and period variations.

  18. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, Chao; Ma, Yue-hua; Zhao, Hai-bin; Lu, Xiao-ping

    2017-10-01

    With the increasing spectral and photometric data of asteroids, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations in the Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. In combination with the present taxonomies of Tholen, Bus, Lazzaro, and DeMeo, and the principal component analysis, we have classified 48642 asteroids according to their SDSS magnitudes at the g, r, i, and z wavebands. In this way, these asteroids are divided into 8 (C, X, S, B, D, K, L, and V) classes.

  19. Multi-spectral band selection for satellite-based systems

    International Nuclear Information System (INIS)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-01-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed

  20. A MULTI-CORE PARALLEL MOSAIC ALORITHM FOR MULTI-VIEW UAV IMAGES

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-09-01

    Full Text Available As the spread of the error and accumulation often lead to distortion or failure of image mosaic during the multi-view UAV (Unmanned Aerial Vehicle images stitching. In this paper, to solve the problem we propose a mosaic strategy to construct a mosaic ring and multi-level grouping parallel acceleration as an auxiliary. First, the input images will be divided into several groups, each group in the ring way to stitch. Then, use SIFT for matching, RANSAC to remove the wrong matching points. And then, calculate the perspective transformation matrix. Finally weaken the error by using the adjustment equation. All these steps run between different groups at the same time. By using real UAV images, the experiment results show that this method can effectively reduce the influence of accumulative error, improve the precision of mosaic and reduce the mosaic time by 60 %. The proposed method can be used as one of the effective ways to minimize the accumulative error.

  1. Multi-spectral imager

    CSIR Research Space (South Africa)

    Stolper, R

    2006-02-01

    Full Text Available channel are boresighted with two beamsplitter windows; and • The IR system is boresighted. APPLICATION High-voltage environment • Detecting loose strands, bolts and nuts; • Detecting Corona discharges on insulator discs; • Detecting... and locating spark gaps; • Detecting and locating RIV sources; • Audit sub-stations and transmission lines for audio noise and Corona activities. RECORDINGS / APPLICATIONS REPORTING TOOL: MultiSOFT • Image handling software for grabbing, processing...

  2. EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.

    Science.gov (United States)

    Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos

    2015-01-01

    Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.

  3. An overview of the asteroids

    International Nuclear Information System (INIS)

    Binzel, R.P.

    1989-01-01

    An introduction and overview of the field of asteroid science is presented, highlighting the accomplishments of the 1980s. The development and application of many observational techniques and data from the Infrared Astronomical Satellite have greatly increased our knowledge of asteroid physical properties. New scenarios for understanding the chemical diversity and dynamical structure of asteroids have emerged. New insights have been gained toward understanding their origin and interrelations with meteorites and comets. Suggestions and speculations are offered on future research directions

  4. Searching for a Differentiated Asteroid Family: A Spectral Survey of the Massalia, Merxia, and Agnia Families

    Science.gov (United States)

    Thomas, Cristina A.; Moskovitz, Nicholas; Lim, Lucy F.; Trilling, David E.

    2017-10-01

    Asteroid families were formed by catastrophic collisions or large cratering events that caused fragmentation of the parent body and ejection of asteroidal fragments with velocities sufficient to prevent re-accretion. Due to these formation processes, asteroid families provide us with the opportunity to probe the interiors of the former parent bodies. Differentiation of a large initially chondritic parent body is expected to result in an “onion shell" object with an iron-nickel core, a thick olivine-dominated mantle, and a thin plagioclase/pyroxene crust. However, most asteroid families tend to show similar spectra (and therefore composition) among the members. Spectroscopic studies have observed a paucity of metal-like materials and olivine-dominated assemblages within Main Belt asteroid families.The deficit of olivine-rich mantle material in the meteorite record and in asteroid observations is known as the “Missing Mantle" problem. For years the best explanation has been the “battered to bits" hypothesis: differentiated parent bodies (aside from Vesta) were disrupted very early in the Solar System and the olivine-rich material was collisionally broken down over time. Alternatively, Elkins-Tanton et al. (2013) have suggested that previous work has overestimated the amount of olivine produced by the differentiation of a chondritic parent body.We have completed a visible and near-infrared wavelength spectral survey of asteroids in the Massalia, Merxia, and Agnia S-type Main Belt asteroid families. These families were carefully chosen for the spectroscopic survey because they have compositions most closely associated with a history of thermal metamorphism and because they represent a range of collisional formation scenarios. Additionally, members of the Merxia and Agnia families were identified as products of differentiation by Sunshine et al. (2004).Our spectral analyses suggest that the observed families contain products of partial differentiation. We will

  5. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Biao Wang

    2017-08-01

    Full Text Available Change detection is usually treated as a problem of explicitly detecting land cover transitions in satellite images obtained at different times, and helps with emergency response and government management. This study presents an unsupervised change detection method based on the image fusion of multi-temporal images. The main objective of this study is to improve the accuracy of unsupervised change detection from high-resolution multi-temporal images. Our method effectively reduces change detection errors, since spatial displacement and spectral differences between multi-temporal images are evaluated. To this end, a total of four cross-fused images are generated with multi-temporal images, and the iteratively reweighted multivariate alteration detection (IR-MAD method—a measure for the spectral distortion of change information—is applied to the fused images. In this experiment, the land cover change maps were extracted using multi-temporal IKONOS-2, WorldView-3, and GF-1 satellite images. The effectiveness of the proposed method compared with other unsupervised change detection methods is demonstrated through experimentation. The proposed method achieved an overall accuracy of 80.51% and 97.87% for cases 1 and 2, respectively. Moreover, the proposed method performed better when differentiating the water area from the vegetation area compared to the existing change detection methods. Although the water area beneath moderate and sparse vegetation canopy was captured, vegetation cover and paved regions of the water body were the main sources of omission error, and commission errors occurred primarily in pixels of mixed land use and along the water body edge. Nevertheless, the proposed method, in conjunction with high-resolution satellite imagery, offers a robust and flexible approach to land cover change mapping that requires no ancillary data for rapid implementation.

  6. A REGION-BASED MULTI-SCALE APPROACH FOR OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    T. Kavzoglu

    2016-06-01

    Full Text Available Within the last two decades, object-based image analysis (OBIA considering objects (i.e. groups of pixels instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient. Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.

  7. Evaluation of Hyperspectral Multi-Band Indices to Estimate Chlorophyll-A Concentration Using Field Spectral Measurements and Satellite Data in Dianshan Lake, China

    Directory of Open Access Journals (Sweden)

    Linna Li

    2013-04-01

    Full Text Available Chlorophyll-a (Chl-a concentration is considered as a key indicator of the eutrophic status of inland water bodies. Various algorithms have been developed for estimating Chl-a in order to improve the accuracy of predictive models. The objective of this study is to assess the potential of hyperspectral multi-band indices to estimate the Chl-a concentration in Dianshan Lake, which is the largest lake in Shanghai, an international metropolis of China. Based on field spectral measurements and in-situ Chl-a concentration collected on 7–8 September 2010, hyperspectral multi-band indices were calibrated to estimate the Chl-a concentration with optimal wavelengths selected by model tuning. A three-band index accounts for 87.36% (R2 = 0.8736 of the Chl-a variation. A four-band index, which adds a wavelength in the near infrared (NIR region, results in a higher R2 (0.8997 by removing the absorption and backscattering effects of suspended solids. To test the applicability of the proposed indices for routinely monitoring of Chl-a in inland lakes, simulated Hyperion and real HJ-1A satellite data were selected to estimate the Chl-a concentration. The results show that the explanatory powers of these satellite hyperspectral multi-band indices are relatively high with R2 = 0.8559, 0.8945, 0.7969, and 0.8241 for simulated Hyperion and real HJ-1A satellite data, respectively. All of the results provide strong evidence that hyperspectral multi-band indices are promising and applicable to estimate Chl-a in eutrophic inland lakes.

  8. 10Gb/s Ultra-Wideband Wireless Transmission Based on Multi-Band Carrierless Amplitude Phase Modulation

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    In this paper, for the first time, a record UWB transmission of 10Gb/s is experimentally demonstrated employing a multi-band approach of carrierless amplitude phase modulation (MultiCAP). The proposed solution complies with the restrictions on the effective radiated power established by both...... the United States Federal Communications Commission and the European Electronic Communications Committee, achieving a BER below the limit for a 7% overhead FEC of 3.8 · 10−3 up to respective wireless distances of 3.5m and 2m....

  9. Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network.

    Science.gov (United States)

    Du, Xiaofeng; Qu, Xiaobo; He, Yifan; Guo, Di

    2018-03-06

    Deep convolutional neural networks (CNNs) are successful in single-image super-resolution. Traditional CNNs are limited to exploit multi-scale contextual information for image reconstruction due to the fixed convolutional kernel in their building modules. To restore various scales of image details, we enhance the multi-scale inference capability of CNNs by introducing competition among multi-scale convolutional filters, and build up a shallow network under limited computational resources. The proposed network has the following two advantages: (1) the multi-scale convolutional kernel provides the multi-context for image super-resolution, and (2) the maximum competitive strategy adaptively chooses the optimal scale of information for image reconstruction. Our experimental results on image super-resolution show that the performance of the proposed network outperforms the state-of-the-art methods.

  10. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    Science.gov (United States)

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. A Possible Massive Asteroid Belt Around $\\zeta$ Lep

    CERN Document Server

    Chen Chuan Hung

    2001-01-01

    We have used the Keck I telescope to image at 11.7 microns and 17.9 microns the dust emission around zeta Lep, a main sequence A-type star at 21.5 pc from the Sun with an infrared excess. The excess is at most marginally resolved at 17.9 microns. The dust distance from the star is probably less than or equal to 6 AU, although some dust may extend to 9 AU. The mass of observed dust is \\~10^22 g. Since the lifetime of dust particles is about 10,000 years because of the Poytning-Robertson effect, we robustly estimate at least 4 10^26 g must reside in parent bodies which may be asteroids if the system is in a steady state and has an age of ~300 Myr. This mass is approximately 200 times that contained within the main asteroid belt in our solar system.

  12. Improving parallel imaging by jointly reconstructing multi-contrast data.

    Science.gov (United States)

    Bilgic, Berkin; Kim, Tae Hyung; Liao, Congyu; Manhard, Mary Kate; Wald, Lawrence L; Haldar, Justin P; Setsompop, Kawin

    2018-08-01

    To develop parallel imaging techniques that simultaneously exploit coil sensitivity encoding, image phase prior information, similarities across multiple images, and complementary k-space sampling for highly accelerated data acquisition. We introduce joint virtual coil (JVC)-generalized autocalibrating partially parallel acquisitions (GRAPPA) to jointly reconstruct data acquired with different contrast preparations, and show its application in 2D, 3D, and simultaneous multi-slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint parallel imaging from limited autocalibration signal region, as well as permitting partial Fourier sampling and calibrationless reconstruction. We demonstrate highly accelerated 2D balanced steady-state free precession with phase cycling, SMS multi-echo spin echo, 3D multi-echo magnetization-prepared rapid gradient echo, and multi-echo gradient recalled echo acquisitions in vivo. Compared to conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-fold reduction in reconstruction error. JVC-GRAPPA takes advantage of additional spatial encoding from phase information and image similarity, and employs different sampling patterns across acquisitions. J-LORAKS achieves a more parsimonious low-rank representation of local k-space by considering multiple images as additional coils. Both approaches provide dramatic improvement in artifact and noise mitigation over conventional single-contrast parallel imaging reconstruction. Magn Reson Med 80:619-632, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  13. Surface Composition of Trojan Asteroids from Thermal-Infrared Spectroscopy

    Science.gov (United States)

    Martin, A.; Emery, J. P.; Lindsay, S. S.

    2017-12-01

    Asteroid origins provide an effective means of constraining the events that dynamically shaped the solar system. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the extent of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and fall into two distinct spectral groups the near infrared (NIR). Though, featureless in this spectral region, NIR spectra of Trojans either exhibit a red or less-red slope. Typically, red-sloped spectra are associated with organics, but it has been shown that Trojans are not host to much, if any, organic material. Instead, the red slope is likely due to anhydrous silicates. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 µm region exhibits strong features due to the Si-O fundamental molecular vibrations. We hypothesize that the two Trojan spectral groups have different compositions (silicate mineralogy). With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids, five red and six less-red. Preliminary results from analysis of the 10 µm region indicate red-sloped Trojans have a higher spectral contrast compared to less-red-sloped Trojans. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 µm feature with sharp cutoffs between about 9 µm and 12 µm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Further spectral analysis in the 10 µm, 18 µm, and 30 µm band region will be performed for a more robust analysis. If all Trojans come from the same region, it is expected that they share spectral and compositional characteristics. Therefore, if spectral analysis in the TIR reinforce the NIR spectral slope dichotomy, it is likely that Trojans were sourced from

  14. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    Science.gov (United States)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  15. Image matrix processor for fast multi-dimensional computations

    Science.gov (United States)

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  16. Investigating the Source of Water and/or Hydroxyl on Asteroid (16) Psyche

    Science.gov (United States)

    Takir, D.; Reddy, V.; Sanchez, J. A.; Shepard, M. K.; Emery, J. P.

    2017-12-01

    Asteroid (16) Psyche will be visited by the Psyche mission, which was selected by NASA and will be launched in 2022 as the 14th Discovery mission. Psyche is thought to be one of the most massive exposed metallic core in the asteroid belt. The high radar albedos, thermal inertia, and density of Psyche revealed that this asteroid is composed of almost entirely of Fe-Ni metal. Psyche is also characterized by moderately red spectra and the presence of weak features (attributed to silicates) in the visible and near-infrared (NIR) region (0.3-2.5 µm). Recent NIR observations also showed rotational spectral variations indicating a possible change in the metal/silicate ratio on the surface of this asteroid. Additionally, we observed Psyche in the 3-µm spectral region using the long-wavelength cross-dispersed (LXD: 1.9-4.2 µm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). Our observations revealed that Psyche exhibits a 3-µm feature, more likely attributed to water- and/or hydroxyl molecules. While the source of water and/or hydroxyl on Psyche remains unclear, we proposed a few possible mechanisms for their formation: (1) the water/hydroxyl-rich materials detected on Psyche might have been delivered to its surface by carbonaceous impactors (like on Vesta), (2) Psyche may not be entirely exposed metallic, instead, its surface has a core-mantle boundary of a differentiated body that was disrupted by impacts (e.g., Pallasite-like), or (3) the water/hydroxyl-rich materials detected on Psyche is produced by Solar wind implantation (like on the Moon). In this talk we will discuss these three possible mechanisms and hypotheses and how they can be tested prior to the launch of the Psyche spacecraft using predictive laboratory measurements and modeling, and during the spacecraft encounter with the asteroid using the mission main instruments that will include the multispectral imagers, the gamma-ray and neutron spectrometer, and the dual

  17. A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator

    Science.gov (United States)

    Kumar, N.; Lamba, R. P.; Hossain, A. M.; Pal, U. N.; Phelps, A. D. R.; Prakash, R.

    2017-11-01

    The experimental study of a tapered, multi-gap, multi-aperture pseudospark-sourced electron gun based X-band plasma assisted slow wave oscillator is presented. The designed electron gun is based on the pseudospark discharge concept and has been used to generate a high current density and high energy electron beam simultaneously. The distribution of apertures has been arranged such that the field penetration potency inside the backspace of the hollow-cathode is different while passing through the tapered gap region. This leads to non-concurrent ignition of the discharge through all the channels which is, in general, quite challenging in the case of multi-aperture plasma cathode electron gun geometries. Multiple and successive hollow cathode phases are reported from this electron gun geometry, which have been confirmed using simulations. This geometry also has led to the achievement of ˜71% fill factor inside the slow wave oscillator for an electron beam of energy of 20 keV and a beam current density in the range of 115-190 A/cm2 at a working argon gas pressure of 18 Pa. The oscillator has generated broadband microwave output in the frequency range of 10-11.7 GHz with a peak power of ˜10 kW for ˜50 ns.

  18. Asteroid Redirection Mission Evaluation Using Multiple Landers

    Science.gov (United States)

    Bazzocchi, Michael C. F.; Emami, M. Reza

    2018-01-01

    In this paper, a low-thrust tugboat redirection method is assessed using multiple spacecraft for a target range of small near-Earth asteroids. The benefits of a landed configuration of tugboat spacecraft in formation are examined for the redirection of a near-Earth asteroid. The tugboat method uses a gimballed thruster with a highly collimated ion beam to generate a thrust on the asteroid. The target asteroid range focuses on near-Earth asteroids smaller than 150 m in diameter, and carbonaceous (C-type) asteroids, due to the volatiles available for in-situ utilization. The assessment focuses primarily on the three key parameters, i.e., the asteroid mass redirected, the timeframe for redirection, and the overall system cost. An evaluation methodology for each parameter is discussed in detail, and the parameters are employed to determine the expected return and feasibility of the redirection mission. The number of spacecraft employed is optimized along with the electrical power needed for each spacecraft to ensure the highest possible return on investment. A discussion of the optimization results and the benefits of spacecraft formation for the tugboat method are presented.

  19. Multi-Wavelength Photomagnetic Imaging for Oral Cancer

    Science.gov (United States)

    Marks, Michael

    In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.

  20. Development of multi-dimensional body image scale for malaysian female adolescents.

    Science.gov (United States)

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.

  1. THE ORIGIN OF ASTEROID 162173 (1999 JU3)

    International Nuclear Information System (INIS)

    Campins, Humberto; De León, Julia; Morbidelli, Alessandro; Gayon-Markt, Julie; Delbo, Marco; Michel, Patrick; Licandro, Javier

    2013-01-01

    Near-Earth asteroid (162173) 1999 JU 3 (henceforth JU 3 ) is a potentially hazardous asteroid and the target of the Japanese Aerospace Exploration Agency's Hayabusa-2 sample return mission. JU 3 is also a backup target for two other sample return missions: NASA's OSIRIS-REx and the European Space Agency's Marco Polo-R. We use dynamical information to identify an inner-belt, low-inclination origin through the ν 6 resonance, more specifically, the region with 2.15 AU 3 is 0.07 ± 0.01, and this inner-belt region contains four well-defined low-albedo asteroid families (Clarissa, Erigone, Polana, and Sulamitis), plus a recently identified background population of low-albedo asteroids outside these families. Only two of these five groups, the background and the Polana family, deliver JU 3 -sized asteroids to the ν 6 resonance, and the background delivers significantly more JU 3 -sized asteroids. The available spectral evidence is also diagnostic; the visible and near-infrared spectra of JU 3 indicate it is a C-type asteroid, which is compatible with members of the background, but not with the Polana family because it contains primarily B-type asteroids. Hence, this background population of low-albedo asteroids is the most likely source of JU 3

  2. Multi-band algorithms for the estimation of chlorophyll concentration in the Chesapeake Bay

    KAUST Repository

    Gilerson, Alexander

    2015-10-14

    Standard blue-green ratio algorithms do not usually work well in turbid productive waters because of the contamination of the blue and green bands by CDOM absorption and scattering by non-algal particles. One of the alternative approaches is based on the two- or three band ratio algorithms in the red/NIR part of the spectrum, which require 665, 708, 753 nm bands (or similar) and which work well in various waters all over the world. The critical 708 nm band for these algorithms is not available on MODIS and VIIRS sensors, which limits applications of this approach. We report on another approach where a combination of the 745nm band with blue-green-red bands was the basis for the new algorithms. A multi-band algorithm which includes ratios Rrs(488)/Rrs(551)and Rrs(671)/Rrs(745) and two band algorithm based on Rrs671/Rrs745 ratio were developed with the main focus on the Chesapeake Bay (USA) waters. These algorithms were tested on the specially developed synthetic datasets, well representing the main relationships between water parameters in the Bay taken from the NASA NOMAD database and available literature, on the field data collected by our group during a 2013 campaign in the Bay, as well as NASA SeaBASS data from the other group and on matchups between satellite imagery and water parameters measured by the Chesapeake Bay program. Our results demonstrate that the coefficient of determination can be as high as R2 > 0.90 for the new algorithms in comparison with R2 = 0.6 for the standard OC3V algorithm on the same field dataset. Substantial improvement was also achieved by applying a similar approach (inclusion of Rrs(667)/Rrs(753) ratio) for MODIS matchups. Results for VIIRS are not yet conclusive. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Volcanism on differentiated asteroids (Invited)

    Science.gov (United States)

    Wilson, L.

    2013-12-01

    The Dawn spacecraft's investigation of 4 Vesta, best-preserved of the early-forming differentiated asteroids, prompts a reappraisal of factors controlling igneous activity on such bodies. Analogy with melt transfer in zones of partial melting on Earth implies that silicate melts moved efficiently within asteroid mantles in complex networks of veins and dikes, so that only a few percent of the mantle consisted of melt at any one time. Thus even in cases where large amounts of mantle melting occurred, the melts did not remain in the mantle to form "magma oceans", but instead migrated to shallow depths. The link between magma flow rate and the stresses needed to keep fractures open and allow flow fast enough to avoid excessive cooling implies that only within asteroids with radii more than ~190-250 km would continuous magma flow from mantle to surface be possible. In all smaller asteroids (including Vesta) magma must have accumulated in sills at the base of the lithosphere (the conductively controlled ~10 km thick thermal boundary layer) or in crustal magma reservoirs near its base. Magma would then have erupted intermittently to the surface from these steadily replenished reservoirs. The average rates of eruption to the surface (or shallow intrusion) should balance the magma production rate, but since magma could accumulate and erupt intermittently from these reservoirs, the instantaneous eruption rates could be hundreds to thousands of cubic m/s, comparable to historic basaltic eruption rates on Earth and very much greater than the average mantle melting rate. The absence of asteroid atmospheres makes explosive eruptions likely even if magmas are volatile-poor. On asteroids with radii less than ~100 km, gases and sub-mm pyroclastic melt droplets would have had speeds exceeding the escape speed assuming a few hundred ppm volatiles, and only cm sized or larger clasts would have been retained. On larger bodies almost all pyroclasts will have returned to the surface

  4. Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information.

    Science.gov (United States)

    Lian, Jian; Zheng, Yuanjie; Jiao, Wanzhen; Yan, Fang; Zhao, Bojun

    2018-06-01

    Multi-spectral imaging (MSI) produces a sequence of spectral images to capture the inner structure of different species, which was recently introduced into ocular disease diagnosis. However, the quality of MSI images can be significantly degraded by motion blur caused by the inevitable saccades and exposure time required for maintaining a sufficiently high signal-to-noise ratio. This degradation may confuse an ophthalmologist, reduce the examination quality, or defeat various image analysis algorithms. We propose an early work specially on deblurring sequential MSI images, which is distinguished from many of the current image deblurring techniques by resolving the blur kernel simultaneously for all the images in an MSI sequence. It is accomplished by incorporating several a priori constraints including the sharpness of the latent clear image, the spatial and temporal smoothness of the blur kernel and the similarity between temporally-neighboring images in MSI sequence. Specifically, we model the similarity between MSI images with mutual information considering the different wavelengths used for capturing different images in MSI sequence. The optimization of the proposed approach is based on a multi-scale framework and stepwise optimization strategy. Experimental results from 22 MSI sequences validate that our approach outperforms several state-of-the-art techniques in natural image deblurring.

  5. Detection of a faint fast-moving near-Earth asteroid using the synthetic tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Chengxing; Shao, Michael; Nemati, Bijan; Werne, Thomas; Zhou, Hanying; Turyshev, Slava G.; Sandhu, Jagmit [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Hallinan, Gregg; Harding, Leon K., E-mail: chengxing.zhai@jpl.nasa.gov [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-09-01

    We report a detection of a faint near-Earth asteroid (NEA) using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200 inch telescope. With an apparent magnitude of 23 (H = 29, assuming detection at 20 lunar distances), the asteroid was moving at 6.°32 day{sup –1} and was detected at a signal-to-noise ratio (S/N) of 15 using 30 s of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation 77 minutes later at the same S/N. Because of its high proper motion, the NEA moved 7 arcsec over the 30 s of observation. Synthetic tracking avoided image degradation due to trailing loss that affects conventional techniques relying on 30 s exposures; the trailing loss would have degraded the surface brightness of the NEA image on the CCD down to an approximate magnitude of 25 making the object undetectable. This detection was a result of our 12 hr blind search conducted on the Palomar 200 inch telescope over two nights, scanning twice over six (5.°3 × 0.°046) fields. Detecting only one asteroid is consistent with Harris's estimates for the distribution of the asteroid population, which was used to predict a detection of 1.2 NEAs in the H-magnitude range 28-31 for the two nights. The experimental design, data analysis methods, and algorithms are presented. We also demonstrate milliarcsecond-level astrometry using observations of two known bright asteroids on the same system with synthetic tracking. We conclude by discussing strategies for scheduling observations to detect and characterize small and fast-moving NEAs using the new technique.

  6. An ISU study of asteroid mining

    Science.gov (United States)

    Burke, J. D.

    During the 1990 summer session of the International Space University, 59 graduate students from 16 countries carried out a design project on using the resources of near-earth asteroids. The results of the project, whose full report is now available from ISU, are summarized. The student team included people in these fields: architecture, business and management, engineering, life sciences, physical sciences, policy and law, resources and manufacturing, and satellite applications. They designed a project for transporting equipment and personnel to a near-earth asteroid, setting up a mining base there, and hauling products back for use in cislunar space. In addition, they outlined the needed precursor steps, beginning with expansion of present ground-based programs for finding and characterizing near-earth asteroids and continuing with automated flight missions to candidate bodies. (To limit the summer project's scope the actual design of these flight-mission precursors was excluded.) The main conclusions were that asteroid mining may provide an important complement to the future use of lunar resources, with the potential to provide large amounts of water and carbonaceous materials for use off earth. However, the recovery of such materials from presently known asteroids did not show an economic gain under the study assumptions; therefore, asteroid mining cannot yet be considered a prospective business.

  7. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    Science.gov (United States)

    Blonski, Slawomir; Glasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2003-01-01

    Spectral band synthesis is a key step in the process of creating a simulated multispectral image from hyperspectral data. In this step, narrow hyperspectral bands are combined into broader multispectral bands. Such an approach has been used quite often, but to the best of our knowledge accuracy of the band synthesis simulations has not been evaluated thus far. Therefore, the main goal of this paper is to provide validation of the spectral band synthesis algorithm used in the ART software. The next section contains a description of the algorithm and an example of its application. Using spectral responses of AVIRIS, Hyperion, ALI, and ETM+, the following section shows how the synthesized spectral bands compare with actual bands, and it presents an evaluation of the simulation accuracy based on results of MODTRAN modeling. In the final sections of the paper, simulated images are compared with data acquired by actual satellite sensors. First, a Landsat 7 ETM+ image is simulated using an AVIRIS hyperspectral data cube. Then, two datasets collected with the Hyperion instrument from the EO-1 satellite are used to simulate multispectral images from the ALI and ETM+ sensors.

  8. Compact multi-band frequency reconfigurable planar monopole antenna for several wireless communication applications

    Directory of Open Access Journals (Sweden)

    M. Abou Al-Alaa

    2014-05-01

    Full Text Available A compact reconfigurable multi-band monopole antenna is presented. To achieve frequency reconfigurability, a PIN diode is used. There are two states of switch. State 1: when the switch is OFF, the antenna operates at four bands: 2.45, 3, 3.69, and 5.5 GHz with impedance bandwidth of 9.95, 5.96, 12.57, and 10.76%, respectively. State 2: when a switch is ON, the antenna operates at 2.64, 3.67, 4.94, and 5.3 GHz with impedance bandwidth of 21.15, 11.76, 5.79, and 4.12%, respectively. Folded and meandered techniques are used for miniaturize antenna size. Antenna size is 15 mm × 37 mm × 0.8 mm and the radiator part is 15 mm × 9 mm × 0.8 mm. The proposed antenna is used in several applications such as Bluetooth (2400–2484 MHz, WLAN [802.11b/g/n (2.4–2.48 GHz, 802.11y (3.657–3.69 GHz, 802.11y (4.9 GHz, 802.11a/h/j/n (5.2 GHz], Wi-MAX (2.5–2.69 GHz, LTE (band 7, band 38, band 41, and band 43 and S-DMB (2605–2655 MHz. The antenna is analyzed using the transient solver of CST Microwave Studio. The proposed antenna was fabricated and tested. Measurements and simulations show good agreement.

  9. Multi-energy spectral CT: adding value in emergency body imaging.

    Science.gov (United States)

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  10. A multi-object spectral imaging instrument

    OpenAIRE

    Gibson, G.M.; Dienerowitz, M.; Kelleher, P.A.; Harvey, A.R.; Padgett, M.J.

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the ...

  11. Asteroid mass estimation with Markov-chain Monte Carlo

    Science.gov (United States)

    Siltala, Lauri; Granvik, Mikael

    2017-10-01

    Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to a 13-dimensional inverse problem at minimum where the aim is to derive the mass of the perturbing asteroid and six orbital elements for both the perturbing asteroid and the test asteroid by fitting their trajectories to their observed positions. The fitting has typically been carried out with linearized methods such as the least-squares method. These methods need to make certain assumptions regarding the shape of the probability distributions of the model parameters. This is problematic as these assumptions have not been validated. We have developed a new Markov-chain Monte Carlo method for mass estimation which does not require an assumption regarding the shape of the parameter distribution. Recently, we have implemented several upgrades to our MCMC method including improved schemes for handling observational errors and outlier data alongside the option to consider multiple perturbers and/or test asteroids simultaneously. These upgrades promise significantly improved results: based on two separate results for (19) Fortuna with different test asteroids we previously hypothesized that simultaneous use of both test asteroids would lead to an improved result similar to the average literature value for (19) Fortuna with substantially reduced uncertainties. Our upgraded algorithm indeed finds a result essentially equal to the literature value for this asteroid, confirming our previous hypothesis. Here we show these new results for (19) Fortuna and other example cases, and compare our results to previous estimates. Finally, we discuss our plans to improve our algorithm further, particularly in connection with Gaia.

  12. BAOBAB (Big And Outrageously Bold Asteroid Belt) Project

    Science.gov (United States)

    Mcfadden, L. A.; Thomas, C. A; Englander, J. A.; Ruesch, O.; Hosseini, S.; Goossens, S. J.; Mazarico, E. M.; Schmerr, N.

    2017-01-01

    One of the intriguing results of NASA's Dawn mission is the composition and structure of the Main Asteroid Belt's only known dwarf planet, Ceres [1]. It has a top layer of dehydrated clays and salts [2] and an icy-rocky mantle [3,4]. It is widely known that the asteroid belt failed to accrete as a planet by resonances between the Sun and Jupiter. About 20-30 asteroids >100 km diameter are probably differentiated protoplanets [5]. 1) how many more and which ones are fragments of protoplanets? 2) How many and which ones are primordial rubble piles left over from condensation of the solar nebula? 3) How would we go about gaining better and more complete characterization of the mass, interior structure and composition of the Main Belt asteroid population? 4) What is the relationship between asteroids and ocean worlds? Bulk parameters such as the mass, density, and porosity, are important to characterize the structure of any celestial body, and for asteroids in particular, they can shed light on the conditions in the early solar system. Asteroid density estimates exist but currently they are often based on assumed properties of taxonomic classes, or through astronomical survey data where interactions with asteroids are weak at best resulting in large measurement uncertainty. We only have direct density estimates from spacecraft encounters for a few asteroids at this time. Knowledge of the asteroids is significant not only to understand their role in solar system workings, but also to assess their potential as space resources, as impact hazards on Earth, or even as harboring life forms. And for the distant future, we want to know if the idea put forth in a contest sponsored by Physics Today, to surface the asteroids into highly reflecting, polished surfaces and use them as a massively segmented mirror for astrophysical exploration [6], is feasible.

  13. ASTEROID PHOTOMETRIC CATALOG V1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Photometric Catalog (3rd update), Lagerkvist, et.al., 1993 [LAGERKVISTETAL1993], is a compilation of all asteroid lightcurve photometry published up to...

  14. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  15. Binaries and triples among asteroid pairs

    Science.gov (United States)

    Pravec, Petr; Scheirich, Peter; Kušnirák, Peter; Hornoch, Kamil; Galád, Adrián

    2015-08-01

    Despite major achievements obtained during the past two decades, our knowledge of the population and properties of small binary and multiple asteroid systems is still far from advanced. There is a numerous indirect evidence for that most small asteroid systems were formed by rotational fission of cohesionless parent asteroids that were spun up to the critical frequency presumably by YORP, but details of the process are lacking. Furthermore, as we proceed with observations of more and more binary and paired asteroids, we reveal new facts that substantially refine and sometimes change our understanding of the asteroid systems. One significant new finding we have recently obtained is that primaries of many asteroid pairs are actually binary or triple systems. The first such case found is (3749) Balam (Vokrouhlický, ApJL 706, L37, 2009). We have found 9 more binary systems among asteroid pairs within our ongoing NEOSource photometric project since October 2012. They are (6369) 1983 UC, (8306) Shoko, (9783) Tensho-kan, (10123) Fideoja, (21436) Chaoyichi, (43008) 1999 UD31, (44620) 1999 RS43, (46829) 1998 OS14 and (80218) 1999 VO123. We will review their characteristics. These paired binaries as we call them are mostly similar to binaries in the general ("background") population (of unpaired asteroids), but there are a few trends. The paired binaries tend to have larger secondaries with D_2/D_1 = 0.3 to 0.5 and they also tend to be wider systems with 8 of the 10 having orbital periods between 30 and 81 hours, than average among binaries in the general population. There may be also a larger fraction of triples; (3749) Balam is a confirmed triple, having a larger close and a smaller distant satellite, and (8306) Shoko and (10123) Fideoja are suspect triples as they show additional rotational lightcurve components with periods of 61 and 38.8 h that differ from the orbital period of 36.2 and 56.5 h, respectively. The unbound secondaries tend to be of the same size or

  16. Twenty-one Asteroid Lightcurves at Asteroids Observers (OBAS) - MPPD: Nov 2016 - May 2017

    Science.gov (United States)

    Mas, Vicente; Fornas, G.; Lozano, Juan; Rodrigo, Onofre; Fornas, A.; Carreño, A.; Arce, Enrique; Brines, Pedro; Herrero, David

    2018-01-01

    We report on the analysis of photometric observations of 21 main-belt asteroids (MBA) done by Asteroids Observers (OBAS). This work is part of the Minor Planet Photometric Database task that was initiated by a group of Spanish amateur astronomers. We have managed to obtain a number of accurate and complete lightcurves as well as some additional incomplete lightcurves to help analysis at future oppositions.

  17. ASTEROID SIZING BY RADIOGALAXY OCCULTATION AT 5 GHZ

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.; Muinonen, K.; Poutanen, M. [Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430 Masala (Finland); Bach, U. [Max-Planck-Institut für Radioastronomie, Radioobservatorium Effelsberg, Max-Planck-Str. 28, D-53902 Bad Münstereifel-Effelsberg (Germany); Petrov, L., E-mail: kimmo.lehtinen@nls.fi [Astrogeo Center, Falls Church, VA 22043 (United States)

    2016-05-10

    Stellar occultations by asteroids observed at visual wavelengths have been an important tool for studying the size and shape of asteroids and for revising the orbital parameters of asteroids. At radio frequencies, a shadow of an asteroid on the Earth is dominated by diffraction effects. Here, we show, for the first time, that a single observation of an occultation of a compact radio source at a frequency of 5 GHz can be used to derive the effective size of the occulting object and to derive the distance between the observer and the center of the occultation path on the Earth. The derived diameter of the occulting object, asteroid (115) Thyra, is 75 ± 6 km. The observed occultation profile shows features that cannot be explained by diffraction of a single asteroid.

  18. Multi-focus Image Fusion Using Epifluorescence Microscopy for Robust Vascular Segmentation

    OpenAIRE

    Pelapur, Rengarajan; Prasath, Surya; Palaniappan, Kannappan

    2014-01-01

    We are building a computerized image analysis system for Dura Mater vascular network from fluorescence microscopy images. We propose a system that couples a multi-focus image fusion module with a robust adaptive filtering based segmentation. The robust adaptive filtering scheme handles noise without destroying small structures, and the multi focal image fusion considerably improves the overall segmentation quality by integrating information from multiple images. Based on the segmenta...

  19. ASTEROID POLARIMETRIC DATABASE V6.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Asteroid Polarimetric Database (APD) is a collection of asteroid polarimetry results compiled by D.F. Lupishko and S.V. Vasiliev of Karazin Kharkiv National...

  20. EXTREME AO OBSERVATIONS OF TWO TRIPLE ASTEROID SYSTEMS WITH SPHERE

    International Nuclear Information System (INIS)

    Yang, B.; Wahhaj, Z.; Dumas, C.; Marsset, M.; Beauvalet, L.; Marchis, F.; Nielsen, E. L.; Vachier, F.

    2016-01-01

    We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured

  1. EXTREME AO OBSERVATIONS OF TWO TRIPLE ASTEROID SYSTEMS WITH SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Wahhaj, Z.; Dumas, C.; Marsset, M. [European Southern Observatory, Santiago (Chile); Beauvalet, L. [National Observatory, Rio de Janeiro (Brazil); Marchis, F.; Nielsen, E. L. [Carl Sagan Center at the SETI Institute, Mountain View, CA (United States); Vachier, F., E-mail: byang@eso.org [Institut de Mécanique Céleste et de Calcul des Éphémérides, Paris (France)

    2016-04-01

    We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured.

  2. Asteroid 'Bites the Dust' Around Dead Star

    Science.gov (United States)

    2009-01-01

    NASA's Spitzer Space Telescope set its infrared eyes upon the dusty remains of shredded asteroids around several dead stars. This artist's concept illustrates one such dead star, or 'white dwarf,' surrounded by the bits and pieces of a disintegrating asteroid. These observations help astronomers better understand what rocky planets are made of around other stars. Asteroids are leftover scraps of planetary material. They form early on in a star's history when planets are forming out of collisions between rocky bodies. When a star like our sun dies, shrinking down to a skeleton of its former self called a white dwarf, its asteroids get jostled about. If one of these asteroids gets too close to the white dwarf, the white dwarf's gravity will chew the asteroid up, leaving a cloud of dust. Spitzer's infrared detectors can see these dusty clouds and their various constituents. So far, the telescope has identified silicate minerals in the clouds polluting eight white dwarfs. Because silicates are common in our Earth's crust, the results suggest that planets similar to ours might be common around other stars.

  3. Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor

    Science.gov (United States)

    Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.

    2018-05-01

    The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.

  4. The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2

    Science.gov (United States)

    Huang, Jiangchuan; Ji, Jianghui; Ye, Peijian; Wang, Xiaolei; Yan, Jun; Meng, Linzhi; Wang, Su; Li, Chunlai; Li, Yuan; Qiao, Dong; Zhao, Wei; Zhao, Yuhui; Zhang, Tingxin; Liu, Peng; Jiang, Yun; Rao, Wei; Li, Sheng; Huang, Changning; Ip, Wing-Huen; Hu, Shoucun; Zhu, Menghua; Yu, Liangliang; Zou, Yongliao; Tang, Xianglong; Li, Jianyang; Zhao, Haibin; Huang, Hao; Jiang, Xiaojun; Bai, Jinming

    2013-12-01

    On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 +/- 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 × 1.95 km) +/-10%, respectively, and the direction of the +z axis is estimated to be (250 +/- 5°, 63 +/- 5°) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.

  5. Polarimetric survey of main-belt asteroids. V. The unusual polarimetric behavior of V-type asteroids

    Science.gov (United States)

    Gil-Hutton, R.; López-Sisterna, C.; Calandra, M. F.

    2017-03-01

    Aims: We present the results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the CASPROF and CASPOL polarimeters at the 2.15 m telescope. The CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation and CASPOL is a polarimeter based on a CCD detector, which allows us to observe fainter objects with better signal-to-noise ratio. Results: The survey began in 1995 and data on a large sample of asteroids were obtained until 2012. A second period began in 2013 using a polarimeter with a more sensitive detector in order to study small asteroids, families, and special taxonomic groups. We obtained 55 polarimetric measurements for 28 V-type main belt asteroids, all of them polarimetrically observed for the first time. The data obtained in this survey let us find polarimetric parameters for (1459) Magnya and for a group of 11 small V-type objects with similar polarimetric behavior. These polarization curves are unusual since they show a shallow minimum and a small inversion angle in comparison with (4) Vesta, although they have a steeper slope at α0. This polarimetric behavior could be explained by differences in the regoliths of these asteroids. The observations of (2579) Spartacus, and perhaps also (3944) Halliday, indicate a inversion angle larger than 24-25°. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  6. Study of the Asteroid Florence

    Science.gov (United States)

    Vodniza, Alberto; Pereira, Mario

    2018-06-01

    Asteroid Florence was discovered at Siding Spring Observatory in Australia (March 1981). Paul Chodas, manager of CNEOS-JPL said: “Florence is the largest asteroid to pass by our planet this close since the NASA program to detect and track near-Earth asteroids began” [1]. The asteroid passed 7.1 million kilometers away from the earth [2]. The GDSCC-NASA discovered that the asteroid has two small moons. The diameter of Florence is 4.5 kilometers, and the sizes of the two moons are probably between 100 – 300 meters across. The inner moon has a rotation period around Florence of about 8 hours, and the outer moon has a period of about 25 hours [3]. From our Observatory, located in Pasto-Colombia, we captured several pictures, videos and astrometry data during several hours during three days. Our data was published by the Minor Planet Center (MPC) and also appears at the web page of NEODyS [4]. The pictures were captured with the following equipment: CGE PRO 1400 CELESTRON and STL-1001 SBIG camera. Astrometry and photometry was carried out, and we calculated the orbital elements and the rotation period. Summary and conclusions: We obtained the following orbital parameters: eccentricity = 0.422548 +/- 0.000994, semi-major axis = 1.76675 +/- 0.00313 A.U, orbital inclination = 22.128 +/- 0.029 deg, longitude of the ascending node = 336.0960 +/- 0.0013 deg, argument of perihelion = 27.861 +/- 0.016, mean motion = 0.41970 +/- 0.00112 deg/d, perihelion distance = 1.0202151 +/- 5.27e-5 A.U, aphelion distance = 2.51329 +/- 0.00625 A.U, absolute magnitude = 14.4. The parameters were calculated based on 281 observations. Dates: 2017 September 01 to 05 with mean residual = 0.19 arcseconds. The asteroid has an orbital period of 2.35 years (857.74 days). The rotation period of the asteroid is 2.3 hours. Note: Spaceweather published our video on September 1-2017 [5].[1] https://www.nasa.gov/feature/jpl/large-asteroid-to-safely-pass-earth-on-sept-1[2] http

  7. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NARCIS (Netherlands)

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate

  8. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  9. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    Science.gov (United States)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  10. Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP)

    Energy Technology Data Exchange (ETDEWEB)

    Benkert, Thomas; Blaimer, Martin; Breuer, Felix A. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Ehses, Philipp [Tuebingen Univ. (Germany). Dept. of Neuroimaging; Max Planck Institute for Biological Cybernetics, Tuebingen (Germany). High-Field MR Center; Jakob, Peter M. [Research Center Magnetic Resonance Bavaria (MRB), Wuerzburg (Germany); Wuerzburg Univ. (Germany). Dept. of Experimental Physics 5

    2016-05-01

    Aims: Dynamically phase-cycled radial balanced steady-state free precession (DYPR-SSFP) is a method for efficient banding artifact removal in bSSFP imaging. Based on a varying radiofrequency (RF) phase-increment in combination with a radial trajectory, DYPR-SSFP allows obtaining a banding-free image out of a single acquired k-space. The purpose of this work is to present an extension of this technique, enabling fast three-dimensional isotropic banding-free bSSFP imaging. Methods: While banding artifact removal with DYPR-SSFP relies on the applied dynamic phase-cycle, this aspect can lead to artifacts, at least when the number of acquired projections lies below a certain limit. However, by using a 3D radial trajectory with quasi-random view ordering for image acquisition, this problem is intrinsically solved, enabling 3D DYPR-SSFP imaging at or even below the Nyquist criterion. The approach is validated for brain and knee imaging at 3 Tesla. Results: Volumetric, banding-free images were obtained in clinically acceptable scan times with an isotropic resolution up to 0.56 mm. Conclusion: The combination of DYPR-SSFP with a 3D radial trajectory allows banding-free isotropic volumetric bSSFP imaging with no expense of scan time. Therefore, this is a promising candidate for clinical applications such as imaging of cranial nerves or articular cartilage.

  11. Robust rooftop extraction from visible band images using higher order CRF

    KAUST Repository

    Li, Er; Femiani, John; Xu, Shibiao; Zhang, Xiaopeng; Wonka, Peter

    2015-01-01

    In this paper, we propose a robust framework for building extraction in visible band images. We first get an initial classification of the pixels based on an unsupervised presegmentation. Then, we develop a novel conditional random field (CRF

  12. Opportunistic tri-band carrier aggregation in licensed spectrum for multi-operator 5G hetnet

    Science.gov (United States)

    Maksymuk, Taras; Kyryk, Maryan; Klymash, Mykhailo; Jo, Minho; Romaniuk, Ryszard; Kotyra, Andrzej; Zhanpeisova, Aizhan; Kozbekova, Ainur

    2017-08-01

    Increasing capacity of mobile networks is a real challenge due to rapid increasing of traffic demands and spectrum scarcity. Carrier aggregation technology is aimed to increase the user data rate by combining the throughput of few spectrum bands, even if they are not physically collocated. Utilization of unlicensed Wi-Fi 5 GHz band for mobile transmission opens new perspectives for carrier aggregation due to vast amount of spectrum range, which can be available for aggregation to supplement data rates for end users. There are many solutions proposed to enable mobile data transmission in unlicensed band without disturbing interference for the existing Wi-Fi users. The paper presents a new approach for opportunistic carrier aggregation in licensed and unlicensed band for multi-operator 5G network. It allows multiple network operators to utilize unlicensed spectrum opportunistically if it is not currently used by Wi-Fi or other mobile network operators. Performance of the proposed approach has been simulated in case of two competing operators. Simulation results reveal that applying the proposed method ensures achieving satisfactory performance of carrier aggregation for the case of two network operators.

  13. Multi-image Matching of Airborne SAR Imagery by SANCC

    Directory of Open Access Journals (Sweden)

    DING Hao

    2015-03-01

    Full Text Available In order to improve accuracy of SAR matching, a multi-image matching method based on sum of adaptive normalized cross-correlation (SANCC is proposed. It utilizes geometrical and radiometric information of multi-baselinesynthetic aperture radar (SARimages effectively. Firstly, imaging parameters, platform parameters and approximate digital surface model (DSM are used to predict matching line. Secondly, similarity and proximity in Gestalt theory are introduced to SANCC, and SANCC measures of potential matching points along the matching line are calculated. Thirdly, multi-image matching results and object coordinates of matching points are obtained by winner-take-all (WTA optimization strategy. The approach has been demonstrated with airborne SAR images acquired by a Chinese airborne SAR system (CASMSAR system. The experimental results indicate that the proposed algorithm is effective for providing dense and accuracy matching points, reducing the number of mismatches caused by repeated textures, and offering a better solution to match in poor textured areas.

  14. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  15. Feature-based Alignment of Volumetric Multi-modal Images

    Science.gov (United States)

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  16. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    International Nuclear Information System (INIS)

    Simpson, D.R.

    1981-01-01

    Recently, multi-pinhole gamma camera collimation has been introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. This study has investigated a possible method for improving the images obtained by this technique by two multi-pinhole views taken 90 0 apart. During the course of this work, multi-pinhole collimation was also applied to in vivo imaging of the disintegration of tablets. Collimmators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 mm 2 , while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration. Further experiments are planned using this technique to measure gastric emptying times disintegration times of various tablet formulations. Limitations of multi-pinhole technique included problems such as limited ranges of viewing and artifacts introduced due to incomplete sampling

  17. [Application of single-band brightness variance ratio to the interference dissociation of cloud for satellite data].

    Science.gov (United States)

    Qu, Wei-ping; Liu, Wen-qing; Liu, Jian-guo; Lu, Yi-huai; Zhu, Jun; Qin, Min; Liu, Cheng

    2006-11-01

    In satellite remote-sensing detection, cloud as an interference plays a negative role in data retrieval. How to discern the cloud fields with high fidelity thus comes as a need to the following research. A new method rooting in atmospheric radiation characteristics of cloud layer, in the present paper, presents a sort of solution where single-band brightness variance ratio is used to detect the relative intensity of cloud clutter so as to delineate cloud field rapidly and exactly, and the formulae of brightness variance ratio of satellite image, image reflectance variance ratio, and brightness temperature variance ratio of thermal infrared image are also given to enable cloud elimination to produce data free from cloud interference. According to the variance of the penetrating capability for different spectra bands, an objective evaluation is done on cloud penetration of them with the factors that influence penetration effect. Finally, a multi-band data fusion task is completed using the image data of infrared penetration from cirrus nothus. Image data reconstruction is of good quality and exactitude to show the real data of visible band covered by cloud fields. Statistics indicates the consistency of waveband relativity with image data after the data fusion.

  18. Reanalysis of Asteroid Families Structure Through Visible Spectroscopy

    Science.gov (United States)

    Mothé-Diniz, T.; Carvano, J.; Roig, F.; Lazzaro, D.

    In this work we re-analyse the presence of interlopers in asteroid families based on a larger spectral database and on a family determination which makes use of a larger set of proper elements. The asteroid families were defined using the HCM method (Zappalà et al. 1995) on the set of proper elements for 110,000 asteroids available at the Asteroid Dynamic Site (AstDyS http://hamilton.dm.unipi.it/astdys )). The spectroscopic analysis is performed using spectra on the 0.44-0.92 μ m range observed by the SMASS Xu et al. 1995, SMASSII (Bus and Binzel, 2002) and 3OS2 (Lazzaro et al. 2002) surveys, which together total around 2140 asteroids with observed spectra. The asteroid taxonomy used is the Bus taxonomy (Bus et al. 2000). A total of 22 two families were analysed . The families of Vesta, Eunomia, Hoffmeister, Dora, Merxia, Agnia, and Koronis were found to be spectrally homogeneous, which confirms previous studies. The Veritas family, on the other hand, which is quoted in the literature as an heterogeneous family was found to be quite homogeneous in the present work. The Eos family is noteworthy for being at one time spectrally heterogeneous and quite different from the background population. References Bus, S. J., and R. P. Binzel 2002. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey - The Observations. Icarus 158, 106-145. Bus, S. J., R. P. Binzel, and T. H. Burbine 2000. A New Generation of Asteroid Taxonomy. Meteoritics and Planetary Science, vol. 35, Supplement, p.A36 35, 36 +. Lazzaro, D., C. A. Angeli, T. Mothe-Diniz, J. M. Carvano, R. Duffard, and M. Florczak 2002. The superficial characterization of a large sample of asteroids: the S3OS2. Bulletin of the American Astronomical Society 34, 859 +. Xu, S., R. P. Binzel, T. H. Burbine, and S. J. Bus 1995. Small main-belt asteroid spectroscopic survey: Initial results. Icarus 115, 1-35. Zappala, V., P. Bendjoya, A. Cellino, P. Farinella, and C. Froeschle 1995. Asteroid families: Search of a 12

  19. Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging

    International Nuclear Information System (INIS)

    Crum, W R; Tanner, C; Hawkes, D J

    2005-01-01

    Registration using models of compressible viscous fluids has not found the general application of some other techniques (e.g., free-form-deformation (FFD)) despite its ability to model large diffeomorphic deformations. We report on a multi-resolution fluid registration algorithm which improves on previous work by (a) directly solving the Navier-Stokes equation at the resolution of the images (b) accommodating image sampling anisotropy using semi-coarsening and implicit smoothing in a full multi-grid (FMG) solver and (c) exploiting the inherent multi-resolution nature of FMG to implement a multi-scale approach. Evaluation is on five magnetic resonance (MR) breast images subject to six biomechanical deformation fields over 11 multi-resolution schemes. Quantitative assessment is by tissue overlaps and target registration errors and by registering using the known correspondences rather than image features to validate the fluid model. Context is given by comparison with a validated FFD algorithm and by application to images of volunteers subjected to large applied deformation. The results show that fluid registration of 3D breast MR images to sub-voxel accuracy is possible in minutes on a 1.6 GHz Linux-based Athlon processor with coarse solutions obtainable in a few tens of seconds. Accuracy and computation time are comparable to FFD techniques validated for this application

  20. Comparison of HMM experts with MLP experts in the Full Combination Multi-Band Approach to Robust ASR

    OpenAIRE

    Hagen, Astrid; Morris, Andrew

    2000-01-01

    In this paper we apply the Full Combination (FC) multi-band approach, which has originally been introduced in the framework of posterior-based HMM/ANN (Hidden Markov Model/Artificial Neural Network) hybrid systems, to systems in which the ANN (or Multilayer Perceptron (MLP)) is itself replaced by a Multi Gaussian HMM (MGM). Both systems represent the most widely used statistical models for robust ASR (automatic speech recognition). It is shown how the FC formula for the likelihood--based MGMs...

  1. Multi Spectral Fluorescence Imager (MSFI)

    Science.gov (United States)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  2. International CJMT-1 Workshop on Asteroidal Science

    Science.gov (United States)

    Ip, Wing-Huen

    2014-03-01

    An international workshop on asteroidal science was held between October 16 and 17, 2012, at the Macau University of Science and Technology gathering together experts on asteroidal study in China, Japan, Macao and Taiwan. For this reason, we have called it CJMT-1 Workshop. Though small in sizes, the asteroids orbiting mainly between the orbit of Mars and of Jupiter have important influence on the evolution of the planetary bodies. Topics ranging from killer asteroids to space resources are frequently mentioned in news reports with prominence similar to the search for water on Mars. This also means that the study of asteroids is very useful in exciting the imagination and interest in science of the general public. Several Asian countries have therefore developed long-term programs integrating ground-based observations and space exploration with Japan being the most advanced and ambitious as demonstrated by the very successful Hayabusa mission to asteroid 25143 Itokawa. In this volume we will find descriptions of the mission planning of Hayabusa II to the C-type near-Earth asteroid, 1999 JU3. Not to be outdone, China's Chang-E 2 spacecraft was re-routed to a flyby encounter with asteroid 4179 Toutatis in December 2012. It is planned that in the next CJMT workshop, we will have the opportunity to learn more about the in-depth data analysis of the Toutatis observations and the progress reports on the Hayabusa II mission which launch date is set to be July 2014. Last but not least, the presentations on the ground-based facilities as described in this volume will pave the way for coordinated observations of asteroidal families and Trojan asteroids - across Asia from Taiwan to Uzbekistan. Such international projects will serve as an important symbol of good will and peaceful cooperation among the key members of this group. Finally, I want to thank the Space Science Institute, Macao University of Science and Technology, for generous support, and its staff members

  3. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    Science.gov (United States)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  4. Delivery of asteroids and meteorites to the inner solar system

    International Nuclear Information System (INIS)

    Greenberg, R.; Nolan, M.C.

    1989-01-01

    This paper discusses how critical observational constraints on the delivery of asteroids (including the very small ones, called meteorites, that land on the Earth) include orbital distributions, exposure ages and mineralogy. Orbital maturity in the inner solar system is indicated by the AM/PM distribution of meteorite falls and fireballs: orbits with perihelia at 1 AU are less mature and arrive preferentially in the PM. Ordinary chondrites have short exposure ages, but their AM/PM fall statistics indicate significant orbital maturity. Hence, many may be collisional offspring of slightly larger parents that emigrated from the main belt. The required size distribution, extrapolated up to multi-km-size bodies, would also yield numbers of planet-crossing asteroids comparable to those astronomically observed. However, such a distribution requires launch on Earth-bound trajectories by catastrophic disruption events, which probably cannot launch sufficient material at high enough velocities Cratering events offer higher ejecta velocities, and if dominant would explain the abundance of basaltic meteorites relative to olivine, which should constitute the bulk of a differentiated parent body's volume

  5. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  6. Primordial environment of supermassive black holes. II. Deep Y- and J-band images around the z 6.3 quasar SDSS J1030+0524

    Science.gov (United States)

    Balmaverde, B.; Gilli, R.; Mignoli, M.; Bolzonella, M.; Brusa, M.; Cappelluti, N.; Comastri, A.; Sani, E.; Vanzella, E.; Vignali, C.; Vito, F.; Zamorani, G.

    2017-10-01

    Many cosmological studies predict that early supermassive black holes (SMBHs) can only form in the most massive dark matter halos embedded within large-scale structures marked by galaxy overdensities that may extend up to 10 physical Mpc. This scenario, however, has not been confirmed observationally, as the search for galaxy overdensities around high-z quasars has returned conflicting results. The field around the z = 6.31 quasar SDSSJ1030+0524 (J1030) is unique for multi-band coverage and represents an excellent data legacy for studying the environment around a primordial SMBH. In this paper we present wide-area ( 25' × 25') Y- and J-band imaging of the J1030 field obtained with the near infrared camera WIRCam at the Canada-France-Hawaii Telescope (CFHT). We built source catalogs in the Y- and J-band, and matched those with our photometric catalog in the r, z, and I bands presented in our previous paper and based on sources with zAB4σ. The overdensity value and its significance are higher than those found in our previous paper and we interpret this as evidence of an improved LBG selection.

  7. Multi-Purpose X-ray System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Multi-Purpose X-ray Source and System (MPXS) can be used on flight missions, space stations, planetary excursions and planetary or asteroid bases, to...

  8. Abodes for life in carbonaceous asteroids?

    Science.gov (United States)

    Abramov, Oleg; Mojzsis, Stephen J.

    2011-05-01

    Thermal evolution models for carbonaceous asteroids that use new data for permeability, pore volume, and water circulation as input parameters provide a window into what are arguably the earliest habitable environments in the Solar System. Plausible models of the Murchison meteorite (CM) parent body show that to first-order, conditions suitable for the stability of liquid water, and thus pre- or post-biotic chemistry, could have persisted within these asteroids for tens of Myr. In particular, our modeling results indicate that a 200-km carbonaceous asteroid with a 40% initial ice content takes almost 60 Myr to cool completely, with habitable temperatures being maintained for ˜24 Myr in the center. Yet, there are a number of indications that even with the requisite liquid water, thermal energy sources to drive chemical gradients, and abundant organic "building blocks" deemed necessary criteria for life, carbonaceous asteroids were intrinsically unfavorable sites for biopoesis. These controls include different degrees of exothermal mineral hydration reactions that boost internal warming but effectively remove liquid water from the system, rapid (1-10 mm yr -1) inward migration of internal habitable volumes in most models, and limitations imposed by low permeabilities and small pore sizes in primitive undifferentiated carbonaceous asteroids. Our results do not preclude the existence of habitable conditions on larger, possibly differentiated objects such as Ceres and the Themis family asteroids due to presumed longer, more intense heating and possible long-lived water reservoirs.

  9. DTPA: Bis benzimidazole as multi model imaging agent

    International Nuclear Information System (INIS)

    Srivastava, Vikas; Tiwari, A.K.; Sharma, H.; Sharma, R.; Mishra, A.K.

    2010-01-01

    Full text: The DTPA bis benzimidazole analogue has been tested for radiopharmaceutical efficacy. The radiolabelling was found more then 98% after 8 hrs and blood kinetics was fast. The compound was also tested for optical imaging agent. The Eu 3+ ion has an absorption band in the visible spectrum (578-582 nm) whose wavelength is very sensitive to even small changes in the coordination environment. Although the intensity of this 7F0 → 5D0 transition is low, the bands are relatively narrow, which allows distinguishing different coordination states of the metal. For Eu 3+ complexes which have two differently hydrated forms in aqueous solution, one observes two absorption bands belonging to the two species. High-resolution UV-visible spectra were recorded in aqueous solutions which show a temperature invariant absorption with two distinct, temperature-dependent absorption bands. The intensity ratio of these two bands changes with temperature: the band at shorter wavelengths is decreasing very slightly, while that at longer wavelengths is increasing with the temperature. The ratio of the integrals of the two bands is related to the equilibrium constant, and its temperature dependence yields the reaction enthalpy and entropy

  10. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  11. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.

    Science.gov (United States)

    Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J

    2017-03-03

    We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  12. ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Waszczak, Adam [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Chang, Chan-Kao; Cheng, Yu-Chi; Ip, Wing-Huen; Kinoshita, Daisuke [Institute of Astronomy, National Central University, Jhongli, Taiwan (China); Ofek, Eran O. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot (Israel); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Masci, Frank; Helou, George [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Levitan, David; Prince, Thomas A.; Kulkarni, Shrinivas, E-mail: waszczak@caltech.edu [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-09-15

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we find that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm{sup −3}, while C types have a lower limit of between 1 and 2 g cm{sup −3}. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms

  13. Color sensitivity of the multi-exposure HDR imaging process

    Science.gov (United States)

    Lenseigne, Boris; Jacobs, Valéry Ann; Withouck, Martijn; Hanselaer, Peter; Jonker, Pieter P.

    2013-04-01

    Multi-exposure high dynamic range(HDR) imaging builds HDR radiance maps by stitching together different views of a same scene with varying exposures. Practically, this process involves converting raw sensor data into low dynamic range (LDR) images, estimate the camera response curves, and use them in order to recover the irradiance for every pixel. During the export, applying white balance settings and image stitching, which both have an influence on the color balance in the final image. In this paper, we use a calibrated quasi-monochromatic light source, an integrating sphere, and a spectrograph in order to evaluate and compare the average spectral response of the image sensor. We finally draw some conclusion about the color consistency of HDR imaging and the additional steps necessary to use multi-exposure HDR imaging as a tool to measure the physical quantities such as radiance and luminance.

  14. Spectroscopy of near-Earth asteroids

    DEFF Research Database (Denmark)

    Michelsen, René; Nathues, Andreas; Lagerkvist, Claes-Ingvar

    2006-01-01

    We present spectra and taxonomic classifications of 12 Near-Earth Asteroids (NEAs) and 2 inner Main Belt asteroids. The observations were carried out with the ESO 3.5 m NTT and the Danish 1.54 m telescope at La Silla, Chile. Eleven of the investigated NEAs belong to the S class while only one C-t...

  15. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  16. Analysis of the Electronic Crosstalk Effect in Terra MODIS Long-Wave Infrared Photovoltaic Bands Using Lunar Images

    Science.gov (United States)

    Wilson, Truman; Wu, Aisheng; Wang, Zhipeng; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the key sensors among the suite of remote sensing instruments on board the Earth Observing System Terra and Aqua spacecrafts. For each MODIS spectral band, the sensor degradation has been measured using a set of on-board calibrators. MODIS also uses lunar observations from nearly monthly spacecraft maneuvers, which bring the Moon into view through the space-view port, helping to characterize the scan mirror degradation at a different angles of incidence. Throughout the Terra mission, contamination of the long-wave infrared photovoltaic band (LWIR PV, bands 27-30) signals has been observed in the form of electronic crosstalk, where signal from each of the detectors among the LWIR PV bands can leak to the other detectors, producing a false signal contribution. This contamination has had a noticeable effect on the MODIS science products since 2010 for band 27, and since 2012 for bands 28 and 29. Images of the Moon have been used effectively for determining the contaminating bands, and have also been used to derive correction coefficients for the crosstalk contamination. In this paper, we introduce an updated technique for characterizing the crosstalk contamination among the LWIR PV bands using data from lunar calibration events. This approach takes into account both the in-band and out-of-band contribution to the signal contamination for each detector in bands 27-30, which is not considered in previous works. The crosstalk coefficients can be derived for each lunar calibration event, providing the time dependence of the crosstalk contamination. Application of these coefficients to Earth-view image data results in a significant reduction in image contamination and a correction of the scene radiance for bands 27- 30. Also, this correction shows a significant improvement to certain threshold tests in the MODIS Level-2 Cloud Mask. In this paper, we will detail the methodology used to identify and correct

  17. Discovery of a Satellite around a Near-Earth Asteroid

    Science.gov (United States)

    1997-07-01

    In the course of the major observational programme of asteroids by the Institute of Planetary Exploration of the German Aerospace Research Establishment (DLR) [1] in Berlin, two of the staff astronomers, Stefano Mottola and Gerhard Hahn , have discovered a small satellite (moon) orbiting the asteroid (3671) Dionysus. The new measurements were obtained with the DLR CCD Camera attached at the 60-cm Bochum telescope at the ESO La Silla Observatory in Chile. This is only the second known case of an asteroid with a moon. Moons and planets Until recently, natural satellites were only known around the major planets . The Moon orbits the Earth, there are two tiny moons around Mars, each of the giant planets Jupiter, Saturn, Uranus and Neptune has many more, and even the smallest and outermost, Pluto, is accompanied by one [2]. However, the new discovery now strengthens the belief of many astronomers that some, perhaps even a substantial number of the many thousands of minor planets (asteroids) in the solar system may also possess their own moons. The first discovery of a satellite orbiting an asteroid was made by the NASA Galileo spacecraft, whose imagery, obtained during a fly-by of asteroid (253) Ida in August 1993, unveiled a small moon that has since been given the name Dactyl. (3671) Dionysus: an Earth-crossing asteroid In the framework of the DLR asteroid monitoring programme, image sequences are acquired to measure an asteroid's brightness variations caused by the changing amount of sunlight reflected from the asteroid's illuminated surface as it spins, due to its irregular shape. The brightness variations may be used to derive the asteroid's rotational properties, such as speed of rotation and spin axis orientation. Asteroid Dionysus [3] was put on the observing list because it belongs to a special class of asteroids, the members of which occasionally come very close to the Earth and have a small, but non-negligible chance of colliding with our planet. Most of

  18. Bayesian modeling of the mass and density of asteroids

    Science.gov (United States)

    Dotson, Jessie L.; Mathias, Donovan

    2017-10-01

    Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.

  19. Photometry of the bright and dark terrains of Vesta and Lutetia with comparison to other asteroids

    Science.gov (United States)

    Longobardo, A.; Palomba, E.; Capaccioni, F.; De Sanctis, M.; Tosi, F.; Schroder, S.; Li, J.; Capria, M.; Ammannito, E.; Raymond, C.; Russell, C.

    2014-07-01

    The reflectance of a planetary surface as measured at different phase angles can provide useful information about several properties, both optical (importance of multiple and single scattering, regolith shadowing) and physical (roughness and regolith grain size). In particular, disk-resolved observations allow one to monitor photometric properties variations across a planetary surface. In this work, we retrieved disk-resolved phase functions of asteroids Vesta and Lutetia, by means of hyperspectral images returned by the Visible and InfraRed (VIR) mapping spectrometer onboard NASA's Dawn spacecraft, and the Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS), onboard ESA's Rosetta spacecraft, respectively. Then we compared their photometric properties with those obtained of other asteroids closely explored by space missions (Gaspra, Ida, Eros, Annefrank, Steins, Mathilde). The trend of reflectance as a function of phase angle has been obtained by undertaking a statistical analysis, based on the empirical definition of reflectance families. For each family, the relation between reflectance and phase has been then calculated. On Vesta, we find steeper phase functions in dark material units, which become flatter with increasing albedo. This has been ascribed to a relevant role of multiple scattering in bright regions. As opposed to Vesta, Lutetia is a more homogeneous body. Hence we can consider a unique phase function for the whole asteroid surface. We chose two parameters useful to describe the photometric behavior of these asteroids: the reflectance which would be observed at a 30° phase, tagged R30, and the ''phase slope'' or the reflectance percent decrease between 20° and 60° phase, tagged PS. These two parameters have been calculated also on disk-resolved phase functions of other asteroids available in literature. We find that all S-type asteroids place in the same region of the R30-PS scatterplot, due to their similar photometric properties. C

  20. Investigating the origin of the asteroids and early findings on Vesta historical studies in asteroid research

    CERN Document Server

    Cunningham, Clifford J

    2017-01-01

    This book assesses the origin of asteroids by analyzing the discovery of Vesta in 1807. Wilhelm Olbers, who discovered Vesta, suggested that the asteroids were the result of a primordial planet’s explosion. Cunningham studies that idea in detail through the writings of Sir David Brewster in Scotland, the era's most prolific writer about the asteroids. He also examines the link between meteorites and asteroids, revealing a synergy between Ernst Chladni, Romantic symbolism, and the music of the spheres. Vesta was a lightning rod for controversy throughout the nineteenth century with observers arguing over its size and color, and the astounding notion that it was self-luminous. It was also a major force for change, as new methods in the field of celestial mechanics were developed to study the orbital perturbations it is subject to. A large selection of private correspondence and scientific papers complete the first comprehensive historical study of Vesta ever published. With a synoptic look at the four astero...

  1. The optimal algorithm for Multi-source RS image fusion.

    Science.gov (United States)

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  2. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager

    Science.gov (United States)

    Nagayama, T.; Mancini, R. C.; Mayes, D.; Tommasini, R.; Florido, R.

    2015-11-01

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ˜6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ˜10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.

  3. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager

    International Nuclear Information System (INIS)

    Nagayama, T.; Mancini, R. C.; Mayes, D.; Tommasini, R.; Florido, R.

    2015-01-01

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ∼6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ∼10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application

  4. Understanding reliability and some limitations of the images and spectra reconstructed from a multi-monochromatic x-ray imager.

    Science.gov (United States)

    Nagayama, T; Mancini, R C; Mayes, D; Tommasini, R; Florido, R

    2015-11-01

    Temperature and density asymmetry diagnosis is critical to advance inertial confinement fusion (ICF) science. A multi-monochromatic x-ray imager (MMI) is an attractive diagnostic for this purpose. The MMI records the spectral signature from an ICF implosion core with time resolution, 2-D space resolution, and spectral resolution. While narrow-band images and 2-D space-resolved spectra from the MMI data constrain temperature and density spatial structure of the core, the accuracy of the images and spectra depends not only on the quality of the MMI data but also on the reliability of the post-processing tools. Here, we synthetically quantify the accuracy of images and spectra reconstructed from MMI data. Errors in the reconstructed images are less than a few percent when the space-resolution effect is applied to the modeled images. The errors in the reconstructed 2-D space-resolved spectra are also less than a few percent except those for the peripheral regions. Spectra reconstructed for the peripheral regions have slightly but systematically lower intensities by ∼6% due to the instrumental spatial-resolution effects. However, this does not alter the relative line ratios and widths and thus does not affect the temperature and density diagnostics. We also investigate the impact of the pinhole size variation on the extracted images and spectra. A 10% pinhole size variation could introduce spatial bias to the images and spectra of ∼10%. A correction algorithm is developed, and it successfully reduces the errors to a few percent. It is desirable to perform similar synthetic investigations to fully understand the reliability and limitations of each MMI application.

  5. A retrograde co-orbital asteroid of Jupiter.

    Science.gov (United States)

    Wiegert, Paul; Connors, Martin; Veillet, Christian

    2017-03-29

    Recent theoretical work in celestial mechanics has revealed that an asteroid may orbit stably in the same region as a planet, despite revolving around the Sun in the sense opposite to that of the planet itself. Asteroid 2015 BZ 509 was discovered in 2015, but with too much uncertainty in its measured orbit to establish whether it was such a retrograde co-orbital body. Here we report observations and analysis that demonstrates that asteroid 2015 BZ 509 is indeed a retrograde co-orbital asteroid of the planet Jupiter. We find that 2015 BZ 509 has long-term stability, having been in its current, resonant state for around a million years. This is long enough to preclude precise calculation of the time or mechanism of its injection to its present state, but it may be a Halley-family comet that entered the resonance through an interaction with Saturn. Retrograde co-orbital asteroids of Jupiter and other planets may be more common than previously expected.

  6. UV Spectrophotometry of the Galilean Satellites, Saturnian Satellites & Selected Asteroids

    Science.gov (United States)

    Nelson, Robert M.

    We propose a series of ultraviolet spectral observations of solid surfaces of selected solar system objects, specifically the Galilean satellites of Jupiter, several atmosphereless satellites of Saturn, and the asteroids, 5 Astraea, 18 Melpomene, 532 Herculina, 68 Leto, 31 Euphmsyne, 80 Sappho, 3 Juno, and 39 Laetitia. Historically such spectral observations have allowed for the Identification of spectrally active solid state materials on planetary surfaces. Furthermore, because the rotational properties are known for all the objects proposed for study, this technique will provide a longitude map of such materials on the objects' surfaces. The study of asteroid surface mineralogy is an important method of constraining solar system formation models. The asteroid spectra we have previously acquired with IUE have created unique subdivisions within the existent asteroid types. The new spectra will provide more sophisticated mineralogical characterizations of asteroid surface materials. Our other accomplishments with IUE include mapping of the distribution of condensed S02 on Io, identification of a longitudinal asymmetry on Europa associated with magnetospheric particle bombardment of the surface, and establishing the ultraviolet geometric albedo variation as a function of longitude for all the Galilean satellites. Because Io is the most volcanically active body In the solar system, and short tern variations in selected regions of the Jovian magnetosphere are known to occur, it is important to periodically check for temporal variations in the spectra of the Galilean satellites that may be due to variations n Io tectonic/volcanic activity, or magnetosphere changes. These proposed UV observations are critical to the design and operation of several instruments on Project Galileo, NASA's Jupiter Orbiter and Probe Mission. Spectra of Iapetus, Rhea and Dione have been acquired during the previous year; however, only at orbital locations near elongation. In addition, the dark

  7. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    Science.gov (United States)

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets

  8. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  9. BILLIARDS: Baseline Instrumented Lithology Lander, Inspector and Asteroid Redirection Demonstration System

    Science.gov (United States)

    Marcus, Matthew; Sloane, Joshua; Ortiz, Oliver; Barbee, Brent

    2015-01-01

    BILLIARDS Baseline Instrumented Lithology Lander, Inspector, and Asteroid Redirection Demonstration System Proposed demonstration mission for Billiard-Ball concept Select asteroid pair with natural close approach to minimize cost and complexity Primary Objectives Rendezvous with a small (10m), near Earth (alpha) asteroid Maneuver the alpha asteroid to a collision with a 100m (beta) asteroid Produce a detectable deflection or disruption of the beta asteroid Secondary objectives Contribute knowledge of asteroid composition and characteristics Contribute knowledge of small-body formation Opportunity for international collaboration

  10. Multi-sensor image fusion and its applications

    CERN Document Server

    Blum, Rick S

    2005-01-01

    Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies.After a review of state-of-the-art image fusion techniques,

  11. Evaluation of cardiac function using multi-shot echo planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Tadashi; Tanitame, Nobuko; Hata, Ryoichiro; Hirai, Nobuhiko; Ikeda, Midori; Ono, Chiaki; Fukuoka, Haruhito; Ito, Katsuhide [Hiroshima Univ. (Japan). School of Medicine

    1998-01-01

    In this study, we performed multi-shot echo planar imaging (8 shot, TR/TE/FL=55 ms/18 ms/60 degrees) and k-space segmented fast gradient echo sequence (8 views per segment, TR/TE/FL=9.9 ms/1.8 ms/30 degrees) to assess cardiac function in healthy volunteers. Transaxial sections of the entire heart were obtained with both sequences in ECG triggered, breath hold, and with a 256 x 128 matrix. Resulting temporal resolution was 55 ms for echo planar imaging, and 71 ms for k-space segmented fast gradient echo sequence, respectively. Ventricular volume and ejection fraction of both ventricles and left ventricular mass obtained with multi-shot echo planar imaging were assessed in comparison with k-space segmented fast gradient echo sequence. Measurements of left ventricular volume, ejection fraction and mass obtained with multi-shot echo planar imaging demonstrated close correlation with those obtained with k-space segmented fast gradient echo sequence. Right ventricular volumes obtained with echo planar imaging were significantly higher than those obtained with k-space segmented fast gradient echo sequence. This tendency is considered to be due to differing contrast between right ventricular myocardium and fat tissue observed with echo planar imaging relative to that observed with fast gradient echo sequence, because fat suppression is always performed in echo planar images. Multi-shot echo planar imaging can be a reliable tool for measurement of cardiac functional parameters, although wall motion analysis of the left ventricle requires higher temporal resolution and a short axial section. (K.H.)

  12. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

    Directory of Open Access Journals (Sweden)

    Anthony Hoak

    2017-03-01

    Full Text Available We develop an interactive likelihood (ILH for sequential Monte Carlo (SMC methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL and TUD-Stadtmitte using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA and classification of events, activities and relationships for multi-object trackers (CLEAR MOT. In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  13. Modeling human faces with multi-image photogrammetry

    Science.gov (United States)

    D'Apuzzo, Nicola

    2002-03-01

    Modeling and measurement of the human face have been increasing by importance for various purposes. Laser scanning, coded light range digitizers, image-based approaches and digital stereo photogrammetry are the used methods currently employed in medical applications, computer animation, video surveillance, teleconferencing and virtual reality to produce three dimensional computer models of the human face. Depending on the application, different are the requirements. Ours are primarily high accuracy of the measurement and automation in the process. The method presented in this paper is based on multi-image photogrammetry. The equipment, the method and results achieved with this technique are here depicted. The process is composed of five steps: acquisition of multi-images, calibration of the system, establishment of corresponding points in the images, computation of their 3-D coordinates and generation of a surface model. The images captured by five CCD cameras arranged in front of the subject are digitized by a frame grabber. The complete system is calibrated using a reference object with coded target points, which can be measured fully automatically. To facilitate the establishment of correspondences in the images, texture in the form of random patterns can be projected from two directions onto the face. The multi-image matching process, based on a geometrical constrained least squares matching algorithm, produces a dense set of corresponding points in the five images. Neighborhood filters are then applied on the matching results to remove the errors. After filtering the data, the three-dimensional coordinates of the matched points are computed by forward intersection using the results of the calibration process; the achieved mean accuracy is about 0.2 mm in the sagittal direction and about 0.1 mm in the lateral direction. The last step of data processing is the generation of a surface model from the point cloud and the application of smooth filters. Moreover, a

  14. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin; Zhang Qi; Zheng Futang

    2000-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  15. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin

    2003-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  16. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

    Science.gov (United States)

    Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2016-02-22

    In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.

  17. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites.

    Science.gov (United States)

    Che, Bien Dong; Nguyen, Bao Quoc; Nguyen, Le-Thu T; Nguyen, Ha Tran; Nguyen, Viet Quoc; Van Le, Thang; Nguyen, Nieu Huu

    2015-01-01

    Carbon nanotube (CNT) characteristics, besides the processing conditions, can change significantly the microwave absorption behavior of CNT/polymer composites. In this study, we investigated the influence of three commercial multi-walled CNT materials with various diameters and length-to-diameter aspect ratios on the X-band microwave absorption of epoxy nanocomposites with CNT contents from 0.125 to 2 wt%, prepared by two dispersion methods, i.e. in solution with surfactant-aiding and via ball-milling. The laser diffraction particle size and TEM analysis showed that both methods produced good dispersions at the microscopic level of CNTs. Both a high aspect ratio resulting in nanotube alignment trend and good infiltration of the matrix in the individual nanotubes, which was indicated by high Brookfield viscosities at low CNT contents of CNT/epoxy dispersions, are important factors to achieve composites with high microwave absorption characteristics. The multi-walled carbon nanotube (MWCNT) with the largest aspect ratio resulted in composites with the best X-band microwave absorption performance, which is considerably better than that of reported pristine CNT/polymer composites with similar or lower thicknesses and CNT loadings below 4 wt%. A high aspect ratio of CNTs resulting in microscopic alignment trend of nanotubes as well as a good level of micro-scale CNT dispersion resulting from good CNT-matrix interactions are crucial to obtain effective microwave absorption performance. This study demonstrated that effective radar absorbing MWCNT/epoxy nanocomposites having small matching thicknesses of 2-3 mm and very low filler contents of 0.25-0.5 wt%, with microwave energy absorption in the X-band region above 90% and maximum absorption peak values above 97%, could be obtained via simple processing methods, which is promising for mass production in industrial applications. Graphical AbstractComparison of the X-band microwave reflection loss of epoxy composites of

  18. A photometric search for activity among asteroids and Centaurs

    Science.gov (United States)

    Sosa Oyarzabal, A.; Mammana, L.; Fernández, J. A.

    2014-07-01

    We present the first results of a long-term observational campaign focused on the detection of activity in selected asteroids and centaurs. Our observational targets are near-Earth asteroids in cometary orbits (cf. [2]), the so called ''main-belt comets'' or ''active asteroids'' (well-known objects as well as potential candidates), and bright centaurs with good orbits, all close to their perihelion passages. In those objects with a former detection of activity, our aim is to contribute to a better physical knowledge of them, and determine, for instance, if the observed activity is transient or permanent. To achieve our goals, we analyzed CCD-filtered images of each observable target acquired with the 2.15-m telescope ''Jorge Sahade'' at CASLEO (San Juan, Argentina), during two runs of three consecutive nights each (during August 2013 and January 2014, respectively). Our study will be completed by future runs with the same instrumentation already assigned to our campaign. As preliminary results, we observed activity in the main-belt comets P/2013 P5 (PANSTARRS) and 133P/(7968) Elst-Pizarro. We also observed the main-belt comet (596) Scheila, which showed an unequivocally stellar appearance. We observed the main-belt comet candidate (3646) Aduatiques (cf. [1]), and noticed in this object a curious feature whose connection to some kind of activity is not well determined yet. We also observed the near-Earth asteroid in cometary orbit 2006 XL_5 (cf. [3]), and the centaurs (281371) 2008 FC_{76}, (332685) 2009 HH_{36}), (382004) 2010 RM_{64}, 2010 XZ_{78}, and 2011 UR_{402}. We have not detected activity in these objects, but an improved analysis is still in progress. %Corresponding author: Andrea Sosa (asosa@fisica.edu.uy)

  19. SPECTRUM AGGREGATION WITH OPTIMAL MULTI-BAND SCHEDULING

    DEFF Research Database (Denmark)

    Mihovska, Albena D.

    2010-01-01

    This paper seeks to explore the integration of spectrum and network resource management functionalities to the benefit of achieving higher performance and capacity gains in an International Mobile Telecommunications-Advanced (IMT-A) scenario. In particular, we investigate the allocation of users...... over two frequency bands (i.e., 2 GHz and 5 GHz) for a single operator scenario. The same type of Radio Access Technology (RAT) is considered for both frequency bands. It is assumed that the operator has gained access to a non-shared 2 GHz band and to part (or all) of the frequency pool band at 5 GHz....... The performance gain is analyzed in terms of higher data throughput. The performance is heavily dependent on the channel quality for each user in the considered bands which, in turn, is a function of the path loss and the distance from the Base Station (BS). The operator will have relevant improvements when...

  20. Asteroid families in the Cybele and Hungaria groups

    Science.gov (United States)

    Vinogradova, T.; Shor, V.

    2014-07-01

    families have been found in the most outer part of the main asteroid belt or the Cybele group: Sylvia and Ulla. And the Hungaria group in the most inner part of the belt has always been considered as one family. In this work, the proper elements were calculated by the empirical method for all multi-opposition asteroids in these two zones. As the source of the initial osculating elements, the MPC catalogue (version Feb. 2014) was used. Due to the large set of proper elements used in our work, the families are apparent more clearly. An approach similar to the hierarchical clustering method (HCM) was used for the identification of the families. As a result, five additional families have been found in the Cybele region, associated with (121) Hermione, (643) Scheherezade, (1028) Lydina, (3141) Buchar, and (522) Helga. The small Helga family, including 15 members, is the family in the main belt (3.6--3.7 au) most distant from the Sun. Due to the isolation of this family, its identification is very reliable. As to the Hungaria region, two low-density families have been found additionally: (1453) Fennia and (3854) George. They have inclinations slightly greater than that of the Hungaria family (from 24 to 26 degrees). In contradiction to the predominant C-type of the Hungaria family asteroids, the taxonomy of these families is represented mainly by the S and L types. Most likely, these families are two parts of a single ancient family.

  1. [Research progress of multi-model medical image fusion and recognition].

    Science.gov (United States)

    Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian

    2013-10-01

    Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.

  2. Tumbling asteroids

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Harris, A. W.; Scheirich, Peter; Kušnirák, Peter; Kotková, Lenka; Hergenrother, C.; Mottola, S.; Hicks, M. D.; Masi, G.; Krugly, Yu. N.; Shevchenko, V. G.; Nolan, M. C.; Howell, E. S.; Kaasalainen, M.; Galád, Adrián; Brown, P.; DeGraff, D. R.; Lambert, J.V.; Cooney, W.R.; Foglia, S.

    2005-01-01

    Roč. 1, č. 173 (2005), s. 108-131 ISSN 0019-1035 R&D Projects: GA AV ČR IAA3003204 Keywords : near-Earth objects * fast-rotating asteroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.244, year: 2005

  3. Multi-band tight-binding calculation of electronic transport in Fe/trans-polyacetylene/Fe tunnel junctions

    International Nuclear Information System (INIS)

    Abedi Ravan, B

    2012-01-01

    In this paper, the electronic transport characteristics of Fe/trans-polyacetylene/Fe magnetic tunnel junctions (MTJs) are investigated using multi-band tight-binding calculations within the framework of nonequilibrium Green function theory. A CH 2 radical is added to different positions on the polymer chain and its effects on the tunnelling magnetoresistance of the MTJ are studied. The ferromagnetic electrodes are assumed to be single-band and their tight-binding parameters are chosen in such a way as to simulate the ab initio density functional calculations of the band structure of bcc-Fe along its [001] crystallographic direction. In building the Hamiltonian of the trans-polyacetylene (t-PA) chain, we have assumed an s orbital on the H atoms and one s and three p(p x ,p y ,p z ) orbitals on the C atoms, and the dimerization effects are taken into account. It is found that moving the radical out of the centre of the polymer chain enhances the tunnelling magnetoresistance of the MTJ.

  4. Polarimetric survey of main-belt asteroids. II. Results for 58 B- and C-type objects

    Science.gov (United States)

    Gil-Hutton, R.; Cañada-Assandri, M.

    2012-03-01

    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico el Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data on a sample of more than 170 asteroids were obtained. In this paper the results for 58 B- and C-type objects are presented, most of them polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for these taxonomic classes. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A115

  5. Capture orbits around asteroids by hitting zero-velocity curves

    Science.gov (United States)

    Wang, Wei; Yang, Hongwei; Zhang, Wei; Ma, Guangfu

    2017-12-01

    The problem of capturing a spacecraft from a heliocentric orbit into a high parking orbit around binary asteroids is investigated in the current study. To reduce the braking Δ V, a new capture strategy takes advantage of the three-body gravity of the binary asteroid to lower the inertial energy before applying the Δ V. The framework of the circular restricted three-body problem (CR3BP) is employed for the binary asteroid system. The proposed capture strategy is based on the mechanism by which inertial energy can be decreased sharply near zero-velocity curves (ZVCs). The strategy has two steps, namely, hitting the target ZVC and raising the periapsis by a small Δ V at the apoapsis. By hitting the target ZVC, the positive inertial energy decreases and becomes negative. Using a small Δ V, the spacecraft inserts into a bounded orbit around the asteroid. In addition, a rotating mass dipole model is employed for elongated asteroids, which leads to dynamics similar to that of the CR3BP. With this approach, the proposed capture strategy can be applied to elongated asteroids. Numerical simulations validate that the proposed capture strategy is applicable for the binary asteroid 90 Antiope and the elongated asteroid 216 Kleopatra.

  6. Multi-Frequency Encoding for Rapid Color Flow and Quadroplex Imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels; Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    Ultrasonic color flow maps are made by estimating the velocities line by line over the region of interest. For each velocity estimate, multiple repetitions are needed. This sets a limit on the frame rate, which becomes increasingly severe when imaging deeper lying structures or when simultaneously...... acquiring spectrogram data for triplex imaging. This paper proposes a method for decreasing the data acquisition time by simultaneously sampling multiple lines at different spatial positions for the color flow map using narrow band signals with disjoint spectral support. The signals are separated...... in the receiver by filters matched to the emitted waveforms and the autocorrelation estimator is applied. Alternatively, one spectral band can be used for creating a color flow map, while data for a number of spectrograms are acquired simultaneously. Using three disjoint spectral bands, this will result...

  7. Size-dependent modification of asteroid family Yarkovsky V-shapes

    Science.gov (United States)

    Bolin, B. T.; Morbidelli, A.; Walsh, K. J.

    2018-04-01

    Context. The thermal properties of the surfaces of asteroids determine the magnitude of the drift rate cause by the Yarkovsky force. In the general case of Main Belt asteroids, the Yarkovsky force is indirectly proportional to the thermal inertia, Γ. Aim. Following the proposed relationship between Γ and asteroid diameter D, we find that asteroids' Yarkovsky drift rates might have a more complex size dependence than previous thought, leading to a curved family V-shape boundary in semi-major axis, a, vs. 1/D space. This implies that asteroids are drifting faster at larger sizes than previously considered decreasing on average the known ages of asteroid families. Methods: The V-Shape curvature is determined for >25 families located throughout the Main Belt to quantify the Yarkovsky size-dependent drift rate. Results: We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger heliocentric distances suggesting that the relationship between Γ and D is weaker in the outer MB possibly due to homogenous surface roughness among family members.

  8. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    International Nuclear Information System (INIS)

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research

  9. FWFusion: Fuzzy Whale Fusion model for MRI multimodal image ...

    Indian Academy of Sciences (India)

    Hanmant Venketrao Patil

    2018-03-14

    Mar 14, 2018 ... consider multi-modality medical images other than PET and MRI images. ... cipal component averaging based on DWT for fusing CT-. MRI and MRI ..... sub-band LH of the fused image, the distance measure is given based on the ...... sustainable integrated dynamic ship routing and scheduling optimization.

  10. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  11. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    Science.gov (United States)

    Simpson, D. R.

    1981-06-01

    Multi-pinhole gamma camera collimation was introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. A possible method for improving the images obtained by this technique by combining two multi-pinhole views taken 90 deg apart was investigated. Collimators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 sq mm, while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration.

  12. Cloud-based processing of multi-spectral imaging data

    Science.gov (United States)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  13. Prussian blue nanocubes: multi-functional nanoparticles for multimodal imaging and image-guided therapy (Conference Presentation)

    Science.gov (United States)

    Cook, Jason R.; Dumani, Diego S.; Kubelick, Kelsey P.; Luci, Jeffrey; Emelianov, Stanislav Y.

    2017-03-01

    Imaging modalities utilize contrast agents to improve morphological visualization and to assess functional and molecular/cellular information. Here we present a new type of nanometer scale multi-functional particle that can be used for multi-modal imaging and therapeutic applications. Specifically, we synthesized monodisperse 20 nm Prussian Blue Nanocubes (PBNCs) with desired optical absorption in the near-infrared region and superparamagnetic properties. PBNCs showed excellent contrast in photoacoustic (700 nm wavelength) and MR (3T) imaging. Furthermore, photostability was assessed by exposing the PBNCs to nearly 1,000 laser pulses (5 ns pulse width) with up to 30 mJ/cm2 laser fluences. The PBNCs exhibited insignificant changes in photoacoustic signal, demonstrating enhanced robustness compared to the commonly used gold nanorods (substantial photodegradation with fluences greater than 5 mJ/cm2). Furthermore, the PBNCs exhibited superparamagnetism with a magnetic saturation of 105 emu/g, a 5x improvement over superparamagnetic iron-oxide (SPIO) nanoparticles. PBNCs exhibited enhanced T2 contrast measured using 3T clinical MRI. Because of the excellent optical absorption and magnetism, PBNCs have potential uses in other imaging modalities including optical tomography, microscopy, magneto-motive OCT/ultrasound, etc. In addition to multi-modal imaging, the PBNCs are multi-functional and, for example, can be used to enhance magnetic delivery and as therapeutic agents. Our initial studies show that stem cells can be labeled with PBNCs to perform image-guided magnetic delivery. Overall, PBNCs can act as imaging/therapeutic agents in diverse applications including cancer, cardiovascular disease, ophthalmology, and tissue engineering. Furthermore, PBNCs are based on FDA approved Prussian Blue thus potentially easing clinical translation of PBNCs.

  14. Large-Scale Multi-Resolution Representations for Accurate Interactive Image and Volume Operations

    KAUST Repository

    Sicat, Ronell B.

    2015-11-25

    The resolutions of acquired image and volume data are ever increasing. However, the resolutions of commodity display devices remain limited. This leads to an increasing gap between data and display resolutions. To bridge this gap, the standard approach is to employ output-sensitive operations on multi-resolution data representations. Output-sensitive operations facilitate interactive applications since their required computations are proportional only to the size of the data that is visible, i.e., the output, and not the full size of the input. Multi-resolution representations, such as image mipmaps, and volume octrees, are crucial in providing these operations direct access to any subset of the data at any resolution corresponding to the output. Despite its widespread use, this standard approach has some shortcomings in three important application areas, namely non-linear image operations, multi-resolution volume rendering, and large-scale image exploration. This dissertation presents new multi-resolution representations for large-scale images and volumes that address these shortcomings. Standard multi-resolution representations require low-pass pre-filtering for anti- aliasing. However, linear pre-filters do not commute with non-linear operations. This becomes problematic when applying non-linear operations directly to any coarse resolution levels in standard representations. Particularly, this leads to inaccurate output when applying non-linear image operations, e.g., color mapping and detail-aware filters, to multi-resolution images. Similarly, in multi-resolution volume rendering, this leads to inconsistency artifacts which manifest as erroneous differences in rendering outputs across resolution levels. To address these issues, we introduce the sparse pdf maps and sparse pdf volumes representations for large-scale images and volumes, respectively. These representations sparsely encode continuous probability density functions (pdfs) of multi-resolution pixel

  15. MultiSpec—a tool for multispectral hyperspectral image data analysis

    Science.gov (United States)

    Biehl, Larry; Landgrebe, David

    2002-12-01

    MultiSpec is a multispectral image data analysis software application. It is intended to provide a fast, easy-to-use means for analysis of multispectral image data, such as that from the Landsat, SPOT, MODIS or IKONOS series of Earth observational satellites, hyperspectral data such as that from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion satellite system or the data that will be produced by the next generation of Earth observational sensors. The primary purpose for the system was to make new, otherwise complex analysis tools available to the general Earth science community. It has also found use in displaying and analyzing many other types of non-space related digital imagery, such as medical image data and in K-12 and university level educational activities. MultiSpec has been implemented for both the Apple Macintosh ® and Microsoft Windows ® operating systems (OS). The effort was first begun on the Macintosh OS in 1988. The GLOBE ( http://www.globe.gov) program supported the development of a subset of MultiSpec for the Windows OS in 1995. Since then most (but not all) of the features in the Macintosh OS version have been ported to the Windows OS version. Although copyrighted, MultiSpec with its documentation is distributed without charge. The Macintosh and Windows versions and documentation on its use are available from the World Wide Web at URL: http://dynamo.ecn.purdue.edu/˜biehl/MultiSpec/ MultiSpec is copyrighted (1991-2001) by Purdue Research Foundation, West Lafayette, Indiana 47907.

  16. The image evaluation of iterative motion correction reconstruction algorithm PROPELLER T2-weighted imaging compared with MultiVane T2-weighted imaging

    Science.gov (United States)

    Lee, Suk-Jun; Yu, Seung-Man

    2017-08-01

    The purpose of this study was to evaluate the usefulness and clinical applications of MultiVaneXD which was applying iterative motion correction reconstruction algorithm T2-weighted images compared with MultiVane images taken with a 3T MRI. A total of 20 patients with suspected pathologies of the liver and pancreatic-biliary system based on clinical and laboratory findings underwent upper abdominal MRI, acquired using the MultiVane and MultiVaneXD techniques. Two reviewers analyzed the MultiVane and MultiVaneXD T2-weighted images qualitatively and quantitatively. Each reviewer evaluated vessel conspicuity by observing motion artifacts and the sharpness of the portal vein, hepatic vein, and upper organs. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by one reviewer for quantitative analysis. The interclass correlation coefficient was evaluated to measure inter-observer reliability. There were significant differences between MultiVane and MultiVaneXD in motion artifact evaluation. Furthermore, MultiVane was given a better score than MultiVaneXD in abdominal organ sharpness and vessel conspicuity, but the difference was insignificant. The reliability coefficient values were over 0.8 in every evaluation. MultiVaneXD (2.12) showed a higher value than did MultiVane (1.98), but the difference was insignificant ( p = 0.135). MultiVaneXD is a motion correction method that is more advanced than MultiVane, and it produced an increased SNR, resulting in a greater ability to detect focal abdominal lesions.

  17. Asteroids II

    International Nuclear Information System (INIS)

    Binzel, R.P.; Gehrels, T.; Matthews, M.S.

    1989-01-01

    This book presents an introduction to asteroids. A description of exploration techniques, details on their physical properties, discussions of their origin and evolution, an examination of their interrelations with meteorites and comets followed by an attempt at a big picture framework are given

  18. Multi-layer imager design for mega-voltage spectral imaging

    Science.gov (United States)

    Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2018-05-01

    The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.

  19. Spectroscopy and Photometry of CAI-rich asteroids

    Science.gov (United States)

    Tanga, P.; Devogele, M.; Bendjoya, Ph.; Cellino, A.; Surdej, J.

    2017-09-01

    Asteroids with an anomalous amount of primitive elements, formed in ancient times in the solar nebula, exist. Our study confirms their nature and provides hints to the interpretation of the ancient evolution of asteroids.

  20. Multi-granularity synthesis segmentation for high spatial resolution Remote sensing images

    International Nuclear Information System (INIS)

    Yi, Lina; Liu, Pengfei; Qiao, Xiaojun; Zhang, Xiaoning; Gao, Yuan; Feng, Boyan

    2014-01-01

    Traditional segmentation method can only partition an image in a single granularity space, with segmentation accuracy limited to the single granularity space. This paper proposes a multi-granularity synthesis segmentation method for high spatial resolution remote sensing images based on a quotient space model. Firstly, we divide the whole image area into multiple granules (regions), each region is consisted of ground objects that have similar optimal segmentation scale, and then select and synthesize the sub-optimal segmentations of each region to get the final segmentation result. To validate this method, the land cover category map is used to guide the scale synthesis of multi-scale image segmentations for Quickbird image land use classification. Firstly, the image is coarsely divided into multiple regions, each region belongs to a certain land cover category. Then multi-scale segmentation results are generated by the Mumford-Shah function based region merging method. For each land cover category, the optimal segmentation scale is selected by the supervised segmentation accuracy assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land cover category. Experiments show that the multi-granularity synthesis segmentation can produce more accurate segmentation than that of a single granularity space and benefit the classification

  1. MULTIBAND OPTICAL OBSERVATION OF THE P/2010 A2 DUST TAIL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junhan [303-201, Mokdong Apartment, Mok-5-dong, Yangcheon-gu, Seoul 158-753 (Korea, Republic of); Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, San 56-1, Silim-dong, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, Ishigaki, Okinawa 907-0024 (Japan); Hasegawa, Sunao; Usui, Fumihiko; Sarugaku, Yuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yanagisawa, Kenshi [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asaguchi, Okayama 719-0232 (Japan); Watanabe, Jun-ichi [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Yoshida, Michitoshi, E-mail: ishiguro@astro.snu.ac.kr [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2012-02-10

    An inner main-belt asteroid, P/2010 A2, was discovered on 2010 January 6. Based on its orbital elements, it is considered that the asteroid belongs to the Flora collisional family, where S-type asteroids are common, while showing a comet-like dust tail. Although analysis of images taken by the Hubble Space Telescope and Rosetta spacecraft suggested that the dust tail resulted from a recent head-on collision between asteroids, an alternative idea of ice sublimation was suggested based on the morphological fitting of ground-based images. Here, we report a multiband observation of P/2010 A2 made on 2010 January with a 105 cm telescope at the Ishigakijima Astronomical Observatory. Three broadband filters, g', R{sub c} , and I{sub c} , were employed for the observation. The unique multiband data reveal that the reflectance spectrum of the P/2010 A2 dust tail resembles that of an Sq-type asteroid or that of ordinary chondrites rather than that of an S-type asteroid. Due to the large error of the measurement, the reflectance spectrum also resembles the spectra of C-type asteroids, even though C-type asteroids are uncommon in the Flora family. The reflectances relative to the g' band (470 nm) are 1.096 {+-} 0.046 at the R{sub c} band (650 nm) and 1.131 {+-} 0.061 at the I{sub c} band (800 nm). We hypothesize that the parent body of P/2010 A2 was originally S-type but was then shattered upon collision into scattering fresh chondritic particles from the interior, thus forming the dust tail.

  2. Segmentation of myocardial perfusion MR sequences with multi-band Active Appearance Models driven by spatial and temporal features

    NARCIS (Netherlands)

    Baka, N.; Milles, J.; Hendriks, E.A.; Suinesiaputra, A.; Jerosh Herold, M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2008-01-01

    This work investigates knowledge driven segmentation of cardiac MR perfusion sequences. We build upon previous work on multi-band AAMs to integrate into the segmentation both spatial priors about myocardial shape as well as temporal priors about characteristic perfusion patterns. Different temporal

  3. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    Science.gov (United States)

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  4. An Investigation of the Ranges of Validity of Asteroid Thermal Models for Near-Earth Asteroid Observations

    Science.gov (United States)

    Mommert, M.; Jedicke, R.; Trilling, D. E.

    2018-02-01

    The majority of known asteroid diameters are derived from thermal-infrared observations. Diameters are derived using asteroid thermal models that approximate their surface temperature distributions and compare the measured thermal-infrared flux with model-dependent predictions. The most commonly used thermal model is the Near-Earth Asteroid Thermal Model (NEATM), which is usually perceived as superior to other models like the Fast-Rotating Model (FRM). We investigate the applicability of the NEATM and the FRM to thermal-infrared observations of Near-Earth Objects using synthetic asteroids with properties based on the real Near-Earth Asteroid (NEA) population. We find the NEATM to provide more accurate diameters and albedos than the FRM in most cases, with a few exceptions. The modeling results are barely affected by the physical properties of the objects, but we find a large impact of the solar phase angle on the modeling results. We conclude that the NEATM provides statistically more robust diameter estimates for NEAs observed at solar phase angles less than ∼65°, while the FRM provides more robust diameter estimates for solar phase angles greater than ∼65°. We estimate that <5% of all NEA diameters and albedos derived up to date are affected by systematic effects that are of the same order of magnitude as the typical thermal model uncertainties. We provide statistical correction functions for diameters and albedos derived using the NEATM and FRM as a function of solar phase angle.

  5. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    Science.gov (United States)

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    In recent years, research attention has been devoted to the development of a new class of airborne radar systems using low frequency bands ranging from VHF/UHF to P and L ones. In this frame, the Italian Space Agency (ASI) has promoted the development of a new multi-mode and multi-band airborne radar system, which can be considered even a "proof-of-concept" for the next space-borne missions. In particular, in agreement with the ASI, the research consortium CO.RI.S.T.A. has in charge the design, development and flight validation of such a kind of system, which is the first airborne radar entirely built in Italy. The aim was to design and realize a radar system able to work in different modalities as: nadir-looking sounder at VHF band (163 MHz); side-looking imager (SAR) at P band with two channels at 450 MHz and 900 MHz. The P-band is a penetration radar. Exploiting penetration features of low frequency electromagnetic waves, dielectric discontinuities of observed scene due to inhomogeneous materials rise up and can be detected on the resulting image. Therefore buried objects or targets placed under vegetation may be detected. Penetration capabilities essentially depend on microwave frequency. Typically, penetration distance is inversely proportional to microwave frequency. The higher the frequency, the lower the penetration depth. Terrain characteristics affect penetration capabilities. Humidity acts as a shield to microwave penetration. Hence terrain with high water content are not good targets for P-band applicability. Science community, governments and space agencies have increased their interest about low frequency radar for their useful applicability in climatology, ecosystem monitoring, glaciology, archaeology. The combination of low frequency and high relative bandwidth of such a systems has a large applicability in both military and civilian applications, ranging from forestry applications, biomass measuring, archaeological and geological exploration

  6. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.

    2015-01-01

    An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values...... calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 µm (0.13λ) is achieved for a 4 mm depth...

  7. A High-Speed Power-Line Communication System with Band-Limited OQAM Based Multi-Carrier Transmission

    Science.gov (United States)

    Kawabata, Naohiro; Koga, Hisao; Muta, Osamu; Akaiwa, Yoshihiko

    As a method to realize a high-speed communication in the home network, the power-line communication (PLC) technique is known. A problem of PLC is that leakage radiation interferes with existing systems. When OFDM is used in a PLC system, the leakage radiation is not sufficiently reduced, even if the subcarriers corresponding to the frequency-band of the existing system are never used, because the signal is not strictly band-limited. To solve this problem, each subcarrier must be band-limited. In this paper, we apply the OQAM based multi-carrier transmission (OQAM-MCT) to a high-speed PLC system, where each subcarrier is individually band-limited. We also propose a pilot-symbol sequence suitable for frequency offset estimation, symbol-timing detection and channel estimation in the OQAM-MCT system. In this method, the pilot signal-sequence consists of a repeated series of the same data symbol. With this method, the pilot sequence approximately becomes equivalent to OFDM sequence and therefore existing pilot-assisted methods for OFDM are also applicable to OQAM-MCT system. Computer simulation results show that the OQAM-MCT system achieves both good transmission rate performance and low out-of-band radiation in PLC channels. It is also shown that the proposed pilot-sequence improves frequency offset estimation, symbol-timing detection and channel estimation performance as compared with the case of using pseudo-noise sequence.

  8. Multi-Scale Pattern Recognition for Image Classification and Segmentation

    NARCIS (Netherlands)

    Li, Y.

    2013-01-01

    Scale is an important parameter of images. Different objects or image structures (e.g. edges and corners) can appear at different scales and each is meaningful only over a limited range of scales. Multi-scale analysis has been widely used in image processing and computer vision, serving as the basis

  9. Size distributions of member asteroids in seven Hirayama families

    International Nuclear Information System (INIS)

    Mikami, Takao; Ishida, Keiichi.

    1990-01-01

    The size distributions of asteroids in the seven Hirayama families are studied for newly assigned member asteroids in the diameter range of about 10 to 100 km. The size distributions for the different families are expressed by the power-law functions with distinctly different power-law indices. The power-law indices for families with small mean orbital inclinations are about 2.5 to 3.0. On the other hand, the power-law indices for families with large mean orbital inclinations are significantly smaller than 2.5. This indicates that the smaller asteroids were removed preferentially from these families after their formation. It is thought that the smaller asteroids left behind the families were dispersed into the main belt. It is consistent with the fact that the power-law index for the size distribution of asteroids with diameters smaller than 25 km in the main belt is larger than the power-law indices for the size distributions of asteroids in the families. This segregation due to the asteroid size can be caused by a drag force caused by the ambient matter deposited on the invariable place of the solar system during the early evolutionary stage. (author)

  10. A Study Regarding the Possibility of True Polar Wander on the Asteroid Vesta

    Science.gov (United States)

    Karimi, M.; Dombard, A. J.

    2014-12-01

    The asteroid 4 Vesta, with an average diameter of ~525 km, is the second most massive asteroid in the solar system. Most of our knowledge about this differentiated asteroid comes from the Howardite-Eucrite-Diogenite class of meteorites that originated from Vesta, images provided by Hubble Space Telescope, and data from the Dawn spacecraft that orbited Vesta from July 2011 to September 2012. Notably, these close-range data confirmed what Hubble images suggested: a highly oblate shape in which the equatorial radius is ~60 km greater than the polar radius, a shape consistent with Vesta's short rotational period of ~5.3 hr. These images also revealed the presence of two large impact craters near the asteroid's south pole. Rheasilvia, the younger and larger crater at ~500 km in diameter, is superimposed over Veneneia, ~400 km in diameter. The occurrence of two large impacts near a pole, which possesses a relatively small area (less than 30% of the surface), is highly improbable. Thus, we investigate the possibility of True Polar Wander. We hypothesize that the integrated mass deficit of these two basins applied a torque to the lithosphere to reorient the surface relative to the spin axis and thereby placing these basins near the pole. In order for this phenomenon to occur, however, the lithosphere needs to be pliable enough to allow relaxation of the ancient rotational bulge and concurrent development of the current bulge. We have previously explored whether the lithosphere of Vesta could support the large-scale (~20 vertical km) topography of the basins (short answer: it can). Here, we explore whether this lithosphere could also permit True Polar Wander. We use the Finite Element Method and a viscoelastic rheology to simulate the relaxation of an oblate Vesta under a range of plausible thermal scenarios consistent with Vesta's expected budget of long-lived radiogenic nuclides. Our results indicate that under reasonable thermal conditions, the relaxation of the

  11. Using an Elastic Band Device After a Severe Obstetric Pubic Symphyseal Separation: Clinical and Imaging Evaluation.

    Science.gov (United States)

    Lasbleiz, Jeremy; Sevestre, François-Xavier; Moquet, Pierre-Yves

    2017-09-01

    Severe separation of the pubic symphysis is a rare delivery complication. Facing this pathology, we decided to study a new elastic band device. To evaluate the elastic band device, clinical (pain-rated) and imaging (magnetic resonance imaging and radiography) evaluations with and without the device were performed. The elastic band device is a European Conformity-certified medical device, which is made of neoprene straps, that reduces the mobility of the pelvis and the use of the internal rotator muscles. Once the elastic band device was in place, on postpartum day 1, radiography showed a decrease of the pubic width from 41 to 12 mm. Furthermore, pain decreased from 10 of 10 to 2 of 10 in 2 days, allowing the patient to ambulate and avoid surgery. After 1 month, the pubic width (6 mm) and anatomy were recovered but minor pain was still present with hip rotatory movements. The elastic band device was worn 24 hours a day from postpartum days 1-90 and 12 hours a day from postpartum days 90 to 150; afterward, the patient returned to normal life without the elastic band device. Use of an elastic band device was associated with a reduction of the pubic width and pain associated after obstetric pubic symphysis separation.

  12. Antibody Banding Patterns of the Enzyme-Linked Immunoelectrotransfer Blot and Brain Imaging Findings in Patients With Neurocysticercosis.

    Science.gov (United States)

    Arroyo, Gianfranco; Rodriguez, Silvia; Lescano, Andres G; Alroy, Karen A; Bustos, Javier A; Santivañez, Saul; Gonzales, Isidro; Saavedra, Herbert; Pretell, E Javier; Gonzalez, Armando E; Gilman, Robert H; Tsang, Victor C W; Garcia, Hector H

    2018-01-06

    The enzyme-linked immunoelectrotransfer blot (EITB) assay is the reference serological test for neurocysticercosis (NCC). A positive result on EITB does not always correlate with the presence of active infections in the central nervous system (CNS), and patients with a single viable brain cyst may be EITB negative. Nonetheless, EITB antibody banding patterns appears to be related with the expression of 3 protein families of Taenia solium, and in turn with the characteristics of NCC in the CNS (type, stage, and burden of viable cysts). We evaluated EITB antibody banding patterns and brain imaging findings of 548 NCC cases. Similar banding patterns were grouped into homogeneous classes using latent class analysis. The association between classes and brain imaging findings was assessed. Four classes were identified. Class 1 (patients negative or only positive to the GP50 band, related to the protein family of the same name) was associated with nonviable or single viable parenchymal cysticerci; class 2 (patients positive to bands GP42-39 and GP24, related to the T24-42 protein family, with or without anti-GP50 antibodies) was associated with intraparenchymal viable and nonviable infections; classes 3 and 4 (positive to GP50, GP42-39, and GP24 but also responding to low molecular weight bands GP21, GP18, GP14, and GP13, related to the 8 kDa protein family) were associated with extraparenchymal and intraparenchymal multiple viable cysticerci. EITB antibody banding patterns correlate with brain imaging findings and complement imaging information for the diagnosis of NCC and for staging NCC patients. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  13. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    Czech Academy of Sciences Publication Activity Database

    Cheng, A.F.; Michel, R.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, Petr; Richardson, D.C.

    2016-01-01

    Roč. 121, February (2016), s. 25-37 ISSN 0032-0633 Institutional support: RVO:67985815 Keywords : planetary defense * near- Earth asteroids * asteroid impact hazards Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.892, year: 2016

  14. On protecting the planet against cosmic attack: Ultrafast real-time estimate of the asteroid's radial velocity

    Science.gov (United States)

    Zakharchenko, V. D.; Kovalenko, I. G.

    2014-05-01

    A new method for the line-of-sight velocity estimation of a high-speed near-Earth object (asteroid, meteorite) is suggested. The method is based on the use of fractional, one-half order derivative of a Doppler signal. The algorithm suggested is much simpler and more economical than the classical one, and it appears preferable for use in orbital weapon systems of threat response. Application of fractional differentiation to quick evaluation of mean frequency location of the reflected Doppler signal is justified. The method allows an assessment of the mean frequency in the time domain without spectral analysis. An algorithm structure for the real-time estimation is presented. The velocity resolution estimates are made for typical asteroids in the X-band. It is shown that the wait time can be shortened by orders of magnitude compared with similar value in the case of a standard spectral processing.

  15. Broadband Photometry Of The Potentially Asteroid 277475 (2005 WK4) and Corrected 52762 (1998 MT24) Colors.

    Science.gov (United States)

    Hicks, M.; Buratt, B.; Carcione, A.; Borlase, R.

    2013-08-01

    The Near-Earth Object (NEO) 277475 (2005 WK4) was discovered by the Siding Spring Survey (MPEC 2005-W79) on November 27, 2005. With a Minimum Orbit Intersection Distance (MOID) of 0.004 AU and absolute magnitude H_V=20.1 mag, this object has been designated a Potentially Hazardous Asteroid (PHA) by the Minor Planet Center. The asteroid made an Earth close-approach of 0.021 AU on August 09.2, 2013 and was extensively imaged by the JPL Planetary Radar Team ( http://www.jpl.nasa.gov/news/news.php?release=2013-254 ).

  16. HURRICANE AND SEVERE STORM SENTINEL (HS3) HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Hurricane Imaging Radiometer (HIRAD) was collected by the Hurricane Imaging Radiometer (HIRAD), which was a multi-band...

  17. Shaping asteroid models using genetic evolution (SAGE)

    Science.gov (United States)

    Bartczak, P.; Dudziński, G.

    2018-02-01

    In this work, we present SAGE (shaping asteroid models using genetic evolution), an asteroid modelling algorithm based solely on photometric lightcurve data. It produces non-convex shapes, orientations of the rotation axes and rotational periods of asteroids. The main concept behind a genetic evolution algorithm is to produce random populations of shapes and spin-axis orientations by mutating a seed shape and iterating the process until it converges to a stable global minimum. We tested SAGE on five artificial shapes. We also modelled asteroids 433 Eros and 9 Metis, since ground truth observations for them exist, allowing us to validate the models. We compared the derived shape of Eros with the NEAR Shoemaker model and that of Metis with adaptive optics and stellar occultation observations since other models from various inversion methods were available for Metis.

  18. Contrast based band selection for optimized weathered oil detection in hyperspectral images

    Science.gov (United States)

    Levaux, Florian; Bostater, Charles R., Jr.; Neyt, Xavier

    2012-09-01

    Hyperspectral imagery offers unique benefits for detection of land and water features due to the information contained in reflectance signatures such as the bi-directional reflectance distribution function or BRDF. The reflectance signature directly shows the relative absorption and backscattering features of targets. These features can be very useful in shoreline monitoring or surveillance applications, for example to detect weathered oil. In real-time detection applications, processing of hyperspectral data can be an important tool and Optimal band selection is thus important in real time applications in order to select the essential bands using the absorption and backscatter information. In the present paper, band selection is based upon the optimization of target detection using contrast algorithms. The common definition of the contrast (using only one band out of all possible combinations available within a hyperspectral image) is generalized in order to consider all the possible combinations of wavelength dependent contrasts using hyperspectral images. The inflection (defined here as an approximation of the second derivative) is also used in order to enhance the variations in the reflectance spectra as well as in the contrast spectrua in order to assist in optimal band selection. The results of the selection in term of target detection (false alarms and missed detection) are also compared with a previous method to perform feature detection, namely the matched filter. In this paper, imagery is acquired using a pushbroom hyperspectral sensor mounted at the bow of a small vessel. The sensor is mechanically rotated using an optical rotation stage. This opto-mechanical scanning system produces hyperspectral images with pixel sizes on the order of mm to cm scales, depending upon the distance between the sensor and the shoreline being monitored. The motion of the platform during the acquisition induces distortions in the collected HSI imagery. It is therefore

  19. Multi-Modality Medical Image Fusion Based on Wavelet Analysis and Quality Evaluation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-modality medical image fusion has more and more important applications in medical image analysisand understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fusemedical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusionresults when applying different selection rules and obtain optimum combination of fusion parameters.

  20. Ultra-Thin Multi-Band Polarization-Insensitive Microwave Metamaterial Absorber Based on Multiple-Order Responses Using a Single Resonator Structure

    Directory of Open Access Journals (Sweden)

    Yong Zhi Cheng

    2017-10-01

    Full Text Available We design an ultra-thin multi-band polarization-insensitive metamaterial absorber (MMA using a single circular sector resonator (CSR structure in the microwave region. Simulated results show that the proposed MMA has three distinctive absorption peaks at 3.35 GHz, 8.65 GHz, and 12.44 GHz, with absorbance of 98.8%, 99.7%, and 98.3%, respectively, which agree well with an experiment. Simulated surface current distributions of the unit-cell structure reveal that the triple-band absorption mainly originates from multiple-harmonic magnetic resonance. The proposed triple-band MMA can remain at a high absorption level for all polarization of both transverse-electric (TE and transverse-magnetic (TM modes under normal incidence. Moreover, by further optimizing the geometric parameters of the CSRs, four-band and five-band MMAs can also be obtained. Thus, our design will have potential application in detection, sensing, and stealth technology.

  1. A SEARCH FOR ASTEROIDS, MOONS, AND RINGS ORBITING WHITE DWARFS

    International Nuclear Information System (INIS)

    Di Stefano, Rosanne; Howell, Steve B.; Kawaler, Steven D.

    2010-01-01

    Do white dwarfs host asteroid systems? Although several lines of argument suggest that white dwarfs may be orbited by large populations of asteroids, transits would provide the most direct evidence. We demonstrate that the Kepler mission has the capability to detect transits of white dwarfs by asteroids. Because white-dwarf asteroid systems, if they exist, are likely to contain many asteroids orbiting in a spatially extended distribution, discoveries of asteroid transits can be made by monitoring only a small number of white dwarfs, compatible with Kepler's primary mission, which is to monitor stars with potentially habitable planets. Possible future missions that survey 10 times as many stars with similar sensitivity and minute-cadence monitoring can establish the characteristics of asteroid systems around white dwarfs, such as the distribution of asteroid sizes and semimajor axes. Transits by planets would be more dramatic, but the probability that they will occur is lower. Ensembles of planetary moons and/or the presence of rings around planets can also produce transits detectable by Kepler. The presence of moons and rings can significantly increase the probability that Kepler will discover planets orbiting white dwarfs, even while monitoring only a small number of them.

  2. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    Science.gov (United States)

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  3. Hayabusa2 Sampler: Collection of Asteroidal Surface Material

    Science.gov (United States)

    Sawada, Hirotaka; Okazaki, Ryuji; Tachibana, Shogo; Sakamoto, Kanako; Takano, Yoshinori; Okamoto, Chisato; Yano, Hajime; Miura, Yayoi; Abe, Masanao; Hasegawa, Sunao; Noguchi, Takaaki

    2017-07-01

    Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples.

  4. Asteroid taxonomic classifications

    International Nuclear Information System (INIS)

    Tholen, D.J.

    1989-01-01

    This paper reports on three taxonomic classification schemes developed and applied to the body of available color and albedo data. Asteroid taxonomic classifications according to two of these schemes are reproduced

  5. Forging Asteroid-Meteorite Relationships Through Reflectance Spectroscopy

    Science.gov (United States)

    Burbine, T. H.; Binzel, R. P.; Bus, S. J.; Buchanan, P. C.; Hinrichs, J. L.; Meibom, A.; Hiroi, T.; Sunshine, J. M.

    2000-01-01

    Near-infrared spectra were obtained for 196 asteroids as part of SMASSIR. SMASSIR focused on observing asteroids assumed to be one of the following: (1) olivine-rich, (2) objects with "Vesta-like spectra" (the "Vestoids"), and (3) postulated meteorite parent bodies.

  6. Illumination Conditions at the Asteroid 4 Vesta: Implications for the Presence of Water Ice

    Science.gov (United States)

    Stubbs, Timothy J.; Wang, Yongli

    2011-01-01

    The mean illumination conditions and surface temperatures over one orbital period are calculated for the Asteroid 4 Vesta using a coarse digital elevation model produced from Hubble Space Telescope images. Even with the anticipated effects of finer-scale topography taken into account, it is unlikely that any significant permanently shadowed regions currently exist on Vesta due to its large axial tilt (approx. = 27deg). However, under present day conditions, it is predicted that about half of Vesta's surface has an average temperature of less than 145 K, which, based on previous thermal modeling of main belt asteroids, suggests that water ice could survive in the top few meters of the vestal regolith on billion-year timescales.

  7. Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region

    Science.gov (United States)

    Naderi, Ali; Ghodrati, Maryam

    2017-12-01

    In this paper, in order to improve the performance of a tunneling carbon nanotube field effect transistor (T-CNTFET) a new structure is proposed using multi-level impurity distribution along the drain region. The new T-CNTFET structure consists of six parts in the drain with stepwise doping distribution. The impurities on the drain side are n -type and the length of each region is 5nm. Electronic features of the proposed structure are simulated by the solution of Poisson and Schrödinger equations and the self-consistent method using Non-equilibrium Green's Function (NEGF). Simulation results show that the proposed structure reduces the band curvature near the drain-channel connection and widens the tunneling barrier. As a result, band-to-band tunneling and the OFF current are reduced and the ON/OFF current ratio increases in comparison with the conventional structure. In summary, by improving the subthreshold swing parameters, delay time, power delay product ( PDP and cut-off frequency compared to the conventional structure, the proposed structure can be considered as a proper candidate for digital applications with high speed and low power dissipation.

  8. The Nature of C Asteroid Regolith from Meteorite Observations

    Science.gov (United States)

    Zolensky, M.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Komatsu, M.; Jenniskens, P.; Le, L.; Yin, Q.-Z; Kebukawa, Y.; Fries, M.

    2013-01-01

    Regolith from C (and related) asteroid bodies are a focus of the current missions Dawn at Ceres, Hayabusa 2 and OSIRIS REx. An asteroid as large as Ceres is expected to be covered by a mature regolith, and as Hayabusa demonstrated, flat and therefore engineeringly-safe ponded deposits will probably be the sampling sites for both Hayabusa 2 and OSIRIS REx. Here we examine what we have learned about the mineralogy of fine-grained asteroid regolith from recent meteorite studies and the examination of the samples harvested from asteroid Itokawa by Hayabusa.

  9. Exposure assessment in front of a multi-band base station antenna.

    Science.gov (United States)

    Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter

    2011-04-01

    This study investigates occupational exposure to electromagnetic fields in front of a multi-band base station antenna for mobile communications at 900, 1800, and 2100 MHz. Finite-difference time-domain method was used to first validate the antenna model against measurement results published in the literature and then investigate the specific absorption rate (SAR) in two heterogeneous, anatomically correct human models (Virtual Family male and female) at distances from 10 to 1000 mm. Special attention was given to simultaneous exposure to fields of three different frequencies, their interaction and the additivity of SAR resulting from each frequency. The results show that the highest frequency--2100 MHz--results in the highest spatial-peak SAR averaged over 10 g of tissue, while the whole-body SAR is similar at all three frequencies. At distances > 200 mm from the antenna, the whole-body SAR is a more limiting factor for compliance to exposure guidelines, while at shorter distances the spatial-peak SAR may be more limiting. For the evaluation of combined exposure, a simple summation of spatial-peak SAR maxima at each frequency gives a good estimation for combined exposure, which was also found to depend on the distribution of transmitting power between the different frequency bands. Copyright © 2010 Wiley-Liss, Inc.

  10. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    Science.gov (United States)

    Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.

  11. The DLR AsteroidFinder for NEOs

    Science.gov (United States)

    Mottola, Stefano; Kuehrt, Ekkehard; Michaelis, Harald; Hoffmann, Harald; Spietz, Peter; Jansen, Frank; Thimo Grundmann, Jan; Hahn, Gerhard; Montenegro, Sergio; Findlay, Ross; Boerner, Anko; Messina, Gabriele; Behnke, Thomas; Tschentscher, Matthias; Scheibe, Karsten; Mertens, Volker; Heidecke, Ansgar

    Potential Earth-impacting asteroids that spend most of their time interior to Earth's orbit are extremely difficult to be observed from the ground and remain largely undetected. Firstly, they are mostly located at small solar elongations, where the sky brightness and their faintness due to the large phase angle prevents their discovery. Secondly, these objects tend to have very long synodic orbital periods, which makes observation opportunities rare and impact warning times short. Because of these limitations, even the advent of next generation ground-based asteroid surveys is not likely to radically improve the situation (Veres et al. Icarus 203, p472, 2009). On the other hand, a small satellite with a suitable design can observe close to the Sun and detect these objects efficiently against a dark sky background. For this reason, DLR, the German Aerospace Center, has selected AsteroidFinder as the first experiment to be launched under its new compact satellite national program. The primary goal of the mission is to detect and characterize Near Earth Objects (NEOs), with a particular focus on the population of objects completely contained within Earth's orbit (IEOs or Inner Earth Objects). Current dynamical models predict the existence of more than 1000 such objects down to a size of 100m, of which, due to the abovementioned observation difficulties, only 10 have been discovered to date. Benefitting from the vantage point of a Low Earth Orbit (LEO), AsteroidFinder makes use of a small optical telescope to scan those regions of the sky that are close to the Sun, and therefore beyond the reach of ground based observatories. By estimating the population, the size and the orbital distribution of IEOs, AsteroidFinder will contribute to our knowledge of the inner Solar System, and to the assessment of the impact hazard for the Earth. A secondary goal of the mission is to demonstrate techniques that enable the space-based detection of space debris in the cm size range

  12. Therapeutic efficacy of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome.

    Science.gov (United States)

    Kajiwara, Mitsuru; Inoue, Shougo; Kobayashi, Kanao; Ohara, Shinya; Teishima, Jun; Matsubara, Akio

    2014-04-01

    Narrow band imaging cystoscopy can increase the visualization and detection of Hunner's lesions. A single-center, prospective clinical trial was carried out aiming to show the effectiveness of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. A total of 23 patients (19 women and 4 men) diagnosed as having ulcer-type interstitial cystitis/painful bladder syndrome were included. All typical Hunner's lesions and suspected areas identified by narrow band imaging were electrocoagulated endoscopically after the biopsy of those lesions. Therapeutic efficacy was assessed prospectively by using visual analog scale score of pain, O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score. The mean follow-up period was 22 months. All patients (100%) experienced a substantial improvement in pain. The average visual analog scale pain scores significantly decreased from 7.3 preoperatively to 1.2 1 month postoperatively. A total of 21 patients (91.3%) who reported improvement had at least a 50% reduction in bladder pain, and five reported complete resolution. Daytime frequency was significantly decreased postoperatively. O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score were significantly decreased postoperatively. However, during the follow-up period, a total of six patients had recurrence, and repeat narrow band imaging-assisted transurethral electrocoagulation of the recurrent lesions was carried out for five of the six patients, with good response in relieving bladder pain. Our results showed that narrow band imaging-assisted transurethral electrocoagulation could be a valuable therapeutic alternative in patients with ulcer-type interstitial cystitis/painful bladder syndrome, with good efficacy and reduction of recurrence rate. © 2014 The Japanese Urological Association.

  13. El cuerpo asteroide de la esporotricosis. Especificad y diferenciación de otras formas de asteroides

    Directory of Open Access Journals (Sweden)

    Gerzaín Rodríguez Toro

    1985-06-01

    Full Text Available El análisis de 86 biopsias de esporotricosis y de biopsias de otras enfermedades granulomatosas, así como los conceptos de la literatura, permiten concluir que hay dos tipos de cuerpos asteroides: 1. lntracitoplasmáticos, situados dentro de una vacuola, en células gigantes multinucleadas de diversas enfermedades granulomatosas. Son eosinófilos y constan de radiaciones aciculares, estelares, que parten de un centro amorfo. Los ilustramos en casos de lepra lepromatosa, sarcoidosis, paracoccidioidomicosis, labomicosis y granulomas a cuerpos extraños. Son morfológicamente idénticos, inespecíficos, no ayudan a ningún diagnóstico y se originan por fagocitosis de colágeno (59 o por modificaciones del citocentro (60. 2. Cuerpos asteroides resultantes del fenómeno de Splendore-Hoeppli, que es una reacción antígeno-anticuerpo (38-40. 44 el más conspicuo de los cuales es el cuerpo asteroide esporotricósico (CAE, extracelular, situado en el centro del granuloma supurado y que consiste en una levadura central rodeada de espículas intensamente eosinófilas. Es pues específico, morfológicamente característico, permite el diagnóstico concluyente de la enfermedad y en nuestros casos lo observamos en el 20% de las biopsias. La referencia al CAE como una estructura inespecífica (47.58.61 no tiene en cuenta la morfología y la patogenia involucradas en la formación de los cuerpos asteroides. En algunas micosis como aspergilosis, candidiasis sistémica. paracoccidioidomicosis lobomicosis. granuloma tricofítico, se pueden ver imágenes asteroides alrededor de una levadura, pero la morfología general del cuadro histológico no guarda parecido alguno con la esporotricosis. Es posible ver en una biopsia cuerpos asteroides de ambos tipos y el patólogo debe ser capaz de darles el significado apropiado.

  14. Polarimetric survey of main-belt asteroids. I. Results for fifty seven S-, L-, and K-type objects

    Science.gov (United States)

    Gil-Hutton, R.; Cañada-Assandri, M.

    2011-05-01

    Aims: We present the first results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (Casleo), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties, similar to those shown by the asteroid (234) Barbara. Methods: The data were obtained with the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows the simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 2003, and up to 2009 data on a sample of more than 170 asteroids were obtained. In this paper the results of 57 S-, L-, and K-type objects are presented, most of them are being polarimetrically observed for the first time. Using these data we find phase-polarization curves and polarimetric parameters for these taxonomic classes. Furthermore, we also find two candidates, (397) Vienna and (458) Hercynia, that could have a phase-polarization curve with a large inversion angle. Based on observations carried out at the Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?j/A+A/529/A86

  15. Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission

    Czech Academy of Sciences Publication Activity Database

    Michel, P.; Cheng, A.; Kueppers, M.; Pravec, Petr; Blum, J.; Delbó, M.; Green, S.; Rosenblatt, P.; Tsiganis, K.; Vincent, J.B.; Biele, J.; Ciarletti, V.; Herique, A.; Ulamec, S.; Carnelli, I.; Galvez, A.; Benner, L. A. M.; Naidu, S.P.; Barnouin, O.; Richardson, D.C.; Rivkin, A. S.; Scheirich, Peter; Moskovitz, N.; Thirouin, A.; Schwartz, S.R.; Campo Bagatin, A.; Yu, Y.

    2016-01-01

    Roč. 57, č. 12 (2016), s. 2529-2547 ISSN 0273-1177 R&D Projects: GA ČR GA15-07193S Institutional support: RVO:67985815 Keywords : planetary defense * near- Earth asteroids * asteroid impact hazards Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  16. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  17. Asteroid Lightcurves from Xingming Observatory: 2017 - 2017 June

    Science.gov (United States)

    Tan, Hanjie; Yeh, Tingshuo; Li, Bin; Gao, Xing

    2018-01-01

    The lightcurves of main-belt asteroids 963, 1025, 2019, and 17814 and near-Earth asteroids (NEAs) 459872, 2014 JO25, and 2017 BS32 were obtained using Xingming Observatory (Code C42) from 2016 March to 2017 March. The absolute magnitudes of these asteroids range from H = 11.6 to 27.3, corresponding to a diameter range of 14 m to 14 km. The derived synodic rotation periods range between 0.1 to 10 h.

  18. Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations.

    Science.gov (United States)

    Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout

    2014-05-01

    In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.

  19. Asteroid spin-rate studies using large sky-field surveys

    Science.gov (United States)

    Chang, Chan-Kao; Lin, Hsing-Wen; Ip, Wing-Huen; Prince, Thomas A.; Kulkarni, Shrinivas R.; Levitan, David; Laher, Russ; Surace, Jason

    2017-12-01

    Eight campaigns to survey asteroid rotation periods have been carried out using the intermediate Palomar Transient Factory in the past 3 years. 2780 reliable rotation periods were obtained, from which we identified two new super-fast rotators (SFRs), (335433) 2005 UW163 and (40511) 1999 RE88, and 23 candidate SFRs. Along with other three known super-fast rotators, there are five known SFRs so far. Contrary to the case of rubble-pile asteroids (i.e., bounded aggregations by gravity only), an internal cohesion, ranging from 100 to 1000 Pa, is required to prevent these five SFRs from flying apart because of their super-fast rotations. This cohesion range is comparable with that of lunar regolith. However, some candidates of several kilometers in size require unusually high cohesion (i.e., a few thousands of Pa). Therefore, the confirmation of these kilometer-sized candidates can provide important information about asteroid interior structure. From the rotation periods we collected, we also found that the spin-rate limit of C-type asteroids, which has a lower bulk density, is lower than for S-type asteroids. This result is in agreement with the general picture of rubble-pile asteroids (i.e., lower bulk density, lower spin-rate limit). Moreover, the spin-rate distributions of asteroids of 3 5 rev/day, regardless of the location in the main belt. The YORP effect is indicated to be less efficient in altering asteroid spin rates from our results when compared with the flat distribution found by Pravec et al. (Icarus 197:497-504, 2008. doi: 10.1016/j.icarus.2008.05.012). We also found a significant number drop at f = 5 rev/day in the spin-rate distributions of asteroids of D < 3 km.

  20. An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids

    Science.gov (United States)

    Shang, Haibin; Wu, Xiaoyu; Ren, Yuan; Shan, Jinjun

    2017-07-01

    Periodic orbits (POs) play an important role in understanding dynamical behaviors around natural celestial bodies. In this study, an efficient algorithm was presented to generate the global POs around irregular-shaped uniformly rotating asteroids. The algorithm was performed in three steps, namely global search, local refinement, and model continuation. First, a mascon model with a low number of particles and optimized mass distribution was constructed to remodel the exterior gravitational potential of the asteroid. Using this model, a multi-start differential evolution enhanced with a deflection strategy with strong global exploration and bypassing abilities was adopted. This algorithm can be regarded as a search engine to find multiple globally optimal regions in which potential POs were located. This was followed by applying a differential correction to locally refine global search solutions and generate the accurate POs in the mascon model in which an analytical Jacobian matrix was derived to improve convergence. Finally, the concept of numerical model continuation was introduced and used to convert the POs from the mascon model into a high-fidelity polyhedron model by sequentially correcting the initial states. The efficiency of the proposed algorithm was substantiated by computing the global POs around an elongated shoe-shaped asteroid 433 Eros. Various global POs with different topological structures in the configuration space were successfully located. Specifically, the proposed algorithm was generic and could be conveniently extended to explore periodic motions in other gravitational systems.

  1. Multi-look polarimetric SAR image filtering using simulated annealing

    DEFF Research Database (Denmark)

    Schou, Jesper

    2000-01-01

    Based on a previously published algorithm capable of estimating the radar cross-section in synthetic aperture radar (SAR) intensity images, a new filter is presented utilizing multi-look polarimetric SAR images. The underlying mean covariance matrix is estimated from the observed sample covariance...

  2. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  3. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  4. Evaluation of multi-gated myocardial perfusion imaging in various heart diseases

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshitake; Kozuka, Takahiro

    1980-01-01

    Multi-gated myocardial perfusion imaging were studied in a hundred cases of various heart diseases. In normal cases, ED ES images showed thinning and thickening of wall motion respectively to compare with static images. In the myocardial infarction cases, the dynamic changes of wall motion was decreased at infarcted areas in all cases. In congestive cardiomyopathy, the change of wall motion is smaller than normal cases in all cases, while in hypertrophic cardiomyopathy, the change is not so hyperdynamic to compare with normal cases and by multi-gated images, asymmetric hypertrophy was clearly detected in HCM than static images. In conclusion, these methods were useful to detect the myocardial contraction stage in various heart diseases. (author)

  5. Coupled Retrieval of Aerosol Properties and Surface Reflection Using the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI)

    Science.gov (United States)

    Xu, F.; van Harten, G.; Kalashnikova, O. V.; Diner, D. J.; Seidel, F. C.; Garay, M. J.; Dubovik, O.

    2016-12-01

    The Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 10 km and is observed from 9 view angles between ±67° off of nadir. We have developed an efficient and flexible code that uses the information content of AirMSPI data for a coupled retrieval of aerosol properties and surface reflection. The retrieval was built based on the multi-pixel optimization concept [2], with the use of a hybrid radiative transfer model [3] that combines the Markov Chain [4] and adding/doubling methods [5]. The convergence and robustness of our algorithm is ensured by applying constraints on (a) the spectral variation of the Bidirectional Polarization Distribution Function (BPDF) and angular shape of the Bidirectional Reflectance Distribution Function (BRDF); (b) the spectral variation of aerosol optical properties; and (c) the spatial variation of aerosol parameters across neighboring image pixels. Our retrieval approach has been tested using over 20 AirMSPI datasets having low to moderately high aerosol loadings ( 0.02550-nmSpace Sci. Rev. 16, 527 (1974).

  6. Physical characterization of asteroid surfaces from photometric analysis

    International Nuclear Information System (INIS)

    Helfenstein, P.; Veverka, J.

    1989-01-01

    Rigorous photometric models, like Hapke's equation, can be applied to the analysis of disk-integrated phase curves in order to estimate a variety of regolith physical properties (average particle single-scattering albedo, particle transparency, soil compaction and large-scale roughness). Unfortunately, unambiguous interpretation is difficult due to uncertainties introduced by the irregular shapes of many asteroids and because Earth-based observations are often restricted to small phase angles (<30 degrees). In this chapter, the authors explore in detail how incomplete phase-angle coverage and nonsphericity of asteroids limits the reliable determination of Hapke's photometric parameters from asteroid phase curves. From obtainable Earth-based observations, it is possible to derive useful relative comparisons of single-scattering albedos, opposition-surge amplitudes, and regolith compaction states for different asteroids

  7. [A preliminary research on multi-source medical image fusion].

    Science.gov (United States)

    Kang, Yuanyuan; Li, Bin; Tian, Lianfang; Mao, Zongyuan

    2009-04-01

    Multi-modal medical image fusion has important value in clinical diagnosis and treatment. In this paper, the multi-resolution analysis of Daubechies 9/7 Biorthogonal Wavelet Transform is introduced for anatomical and functional image fusion, then a new fusion algorithm with the combination of local standard deviation and energy as texture measurement is presented. At last, a set of quantitative evaluation criteria is given. Experiments show that both anatomical and metabolism information can be obtained effectively, and both the edge and texture features can be reserved successfully. The presented algorithm is more effective than the traditional algorithms.

  8. Fusion of infrared and visible images based on BEMD and NSDFB

    Science.gov (United States)

    Zhu, Pan; Huang, Zhanhua; Lei, Hai

    2016-07-01

    This paper presents a new fusion method based on the adaptive multi-scale decomposition of bidimensional empirical mode decomposition (BEMD) and the flexible directional expansion of nonsubsampled directional filter banks (NSDFB) for visible-infrared images. Compared with conventional multi-scale fusion methods, BEMD is non-parametric and completely data-driven, which is relatively more suitable for non-linear signals decomposition and fusion. NSDFB can provide direction filtering on the decomposition levels to capture more geometrical structure of the source images effectively. In our fusion framework, the entropies of the two patterns of source images are firstly calculated and the residue of the image whose entropy is larger is extracted to make it highly relevant with the other source image. Then, the residue and the other source image are decomposed into low-frequency sub-bands and a sequence of high-frequency directional sub-bands in different scales by using BEMD and NSDFB. In this fusion scheme, two relevant fusion rules are used in low-frequency sub-bands and high-frequency directional sub-bands, respectively. Finally, the fused image is obtained by applying corresponding inverse transform. Experimental results indicate that the proposed fusion algorithm can obtain state-of-the-art performance for visible-infrared images fusion in both aspects of objective assessment and subjective visual quality even for the source images obtained in different conditions. Furthermore, the fused results have high contrast, remarkable target information and rich details information that are more suitable for human visual characteristics or machine perception.

  9. Photometric geodesy of main-belt asteroids. III. Additional lightcurves

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.; Chapman, C.R.; Davis, D.R.; Greenberg, R.; Levy, D.H.

    1990-01-01

    A total of 107 complete or partial lightcurves are presented for 59 different asteroids over the 1982-1989 period. Unusual lightcurves with unequal minima and maxima at large amplitudes are preferentially seen for M-type asteroids. Some asteroids, such as 16 Psyche and 201 Penelope, exhibit lightcurves combining large amplitude with very unequal brightness for both maxima and both minima, even at small phase angles. An M-type asteroid is believed to consist of a metal core of a differentiated parent body that has had its rocky mantle completely removed by one or more large impacts. 39 refs

  10. Deep multi-scale convolutional neural network for hyperspectral image classification

    Science.gov (United States)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  11. Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging

    Directory of Open Access Journals (Sweden)

    Qian eLuo

    2014-02-01

    Full Text Available Neuronal oscillations in the theta and gamma bands have been shown to be important for cognition. Here we examined the temporal and spatial relationship between the two frequency bands in emotional processing using Magnetoencephalography and an advanced dynamic beamformer source imaging method called Synthetic Aperture Magnetometry. We found that areas including the amygdala, visual and frontal cortex showed significant event-related synchronization (ERS in both bands, suggesting a functional association of neuronal oscillations in the same areas in the two bands. However, while the temporal profile in both bands was similar in the amygdala, the peak in gamma band power was much earlier within both visual and frontal areas. Our results do not support a traditional view that the localizations of lower and higher frequencies are spatially distinct. Instead, they suggest that in emotional processing, neuronal oscillations in the gamma and theta bands may reflect, at least in visual and frontal cortex either different but related functional processes or, perhaps more probably, different computational components of the same functional process.

  12. Multi-compartment microscopic diffusion imaging

    OpenAIRE

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2016-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microsco...

  13. Automated Classification of Asteroids into Families at Work

    Science.gov (United States)

    Knežević, Zoran; Milani, Andrea; Cellino, Alberto; Novaković, Bojan; Spoto, Federica; Paolicchi, Paolo

    2014-07-01

    We have recently proposed a new approach to the asteroid family classification by combining the classical HCM method with an automated procedure to add newly discovered members to existing families. This approach is specifically intended to cope with ever increasing asteroid data sets, and consists of several steps to segment the problem and handle the very large amount of data in an efficient and accurate manner. We briefly present all these steps and show the results from three subsequent updates making use of only the automated step of attributing the newly numbered asteroids to the known families. We describe the changes of the individual families membership, as well as the evolution of the classification due to the newly added intersections between the families, resolved candidate family mergers, and emergence of the new candidates for the mergers. We thus demonstrate how by the new approach the asteroid family classification becomes stable in general terms (converging towards a permanent list of confirmed families), and in the same time evolving in details (to account for the newly discovered asteroids) at each update.

  14. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    International Nuclear Information System (INIS)

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-01-01

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that ∼0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for ∼0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  15. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  16. Trojan Asteroid Lightcurves: Probing Internal Structure and the Origins

    Science.gov (United States)

    Ryan, E. L.

    2017-12-01

    Studies of the small bodies of the solar system reveal important clues about the condensation and formation of planetesimal bodies, and ultimately planets in planetary systems. Dynamics of small bodies have been utilized to model giant planet migration within our solar system, colors have been used to explore compositional gradients within the protoplanetary disk, & studies of the size-frequency distribution of main belt asteroids may reveal compositional dependences on planetesimal strength limiting models of planetary growth from collisional aggregration. Studies of the optical lightcurves of asteroids also yield important information on shape and potential binarity of asteroidal bodies. The K2 mission has allowed for the unprecedented collection of Trojan asteroid lightcurves on a 30 minute cadence for baselines of 10 days, in both the L4 and L5 Trojan clouds. Preliminary results from the K2 mission suggest that Trojan asteroids have bulk densities of 1 g/cc and a binary fraction ≤ 33 percent (Ryan et al., 2017, Astronomical Journal, 153, 116), however Trojan lightcurve data is actively being collected via the continued K2 mission. We will present updated results of bulk density and binary fraction of the Trojan asteroids and compare these results to other small body populations, including Hilda asteroids, transNeptunian objects and comet nuclei to test dynamical models of the origins of these populations.

  17. The Establishment of the SAR images database System Based on Oracle and ArcSDE

    International Nuclear Information System (INIS)

    Zhou, Jijin; Li, Zhen; Chen, Quan; Tian, Bangsen

    2014-01-01

    Synthetic aperture radar is a kind of microwave imaging system, and has the advantages of multi-band, multi-polarization and multi-angle. At present, there is no SAR images database system based on typical features. For solving problems in interpretation and identification, a new SAR images database system of the typical features is urgent in the current development need. In this article, a SAR images database system based on Oracle and ArcSDE was constructed. The main works involving are as follows: (1) SAR image data was calibrated and corrected geometrically and geometrically. Besides, the fully polarimetric image was processed as the coherency matrix[T] to preserve the polarimetric information. (2) After analyzing multiple space borne SAR images, the metadata table was defined as: IMAGEID; Name of features; Latitude and Longitude; Sensor name; Range and Azimuth resolution etc. (3) Through the comparison between GeoRaster and ArcSDE, result showed ArcSDE is a more appropriate technology to store images in a central database. The System stores and manages multisource SAR image data well, reflects scattering, geometry, polarization, band and angle characteristics, and combines with analysis of the managed objects and service objects of the database as well as focuses on constructing SAR image system in the aspects of data browse and data retrieval. According the analysis of characteristics of SAR images such as scattering, polarization, incident angle and wave band information, different weights can be given to these characteristics. Then an interpreted tool is formed to provide an efficient platform for interpretation

  18. Spectral investigation of two asteroidal fireballs

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jiří

    2006-01-01

    Roč. 97, 3-4 (2006), s. 279-293 ISSN 0167-9295. [Asteroids, Comets, Meteors 2005. Búzios, 07.08.2005-12.08.2005] R&D Projects: GA ČR GA205/05/0543; GA ČR GA205/03/1404 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * meteors * spectroscopy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.252, year: 2006

  19. The Near-Earth Encounter of Asteroid 308635 (2005 YU55): Thermal IR Observations

    Science.gov (United States)

    Lim, Lucy F.; Emery, J. P.; Moskovitz, N. A.; Busch, M. W.; Yang, B.; Granvik, M.

    2012-10-01

    The near-Earth approach (0.00217 AU, or 0.845 lunar distances) of the C-type asteroid 308635 (2005 YU55) in November 2011 presented a rare opportunity for detailed observations of a low-albedo NEA in this size range. As part of a multi-telescope campaign to measure visible and infrared spectra and photometry, we obtained mid-infrared ( 8 to 22 micron) photometry and spectroscopy of 2005 YU55 using Michelle [1] on the Gemini North telescope on UT November 9 and 10, 2011. An extensive radar campaign [2] together with optical lightcurves [3,4] established the rotation state of YU55. In addition, the radar imaging resulted in a shape model for the asteroid, detection of numerous boulders on its surface, and a preliminary estimate of its equatorial diameter at 380 +/- 20 m. In a preliminary analysis, applying the radar and lightcurve-derived parameters to a rough-surface thermophysical model fit to the Gemini/Michelle thermal emission photometry results in a thermal inertia range of approximately 500 to 1500 J m-2 s-1/2 K-1, with the low-thermal-inertia solution corresponding to the small end of the radar size range and vice versa. Updates to these results will be presented and modeling of the thermal contribution to the measured near-infrared spectra from Palomar/Triplespec and IRTF/SpeX will also be discussed. The authors gratefully acknowledge the assistance of observatory staff and the support of the NASA NEOO program (LFL and JPE), the Carnegie fellowship (NAM), and NASA AES, NSF, and the NRAO Jansky Fellowship (MWB). [1] De Buizer, J. and R. Fisher, Proc. Hris (2005), pp. 84-87. [2] Busch, M.W. et al., ACM (2012), abstract #6179. [3] Warner, B., MPBull 39 (2), 84 [4] Pravec, P.

  20. Binary asteroid population. 1. Angular momentum content

    Czech Academy of Sciences Publication Activity Database

    Pravec, Petr; Harris, A. W.

    2007-01-01

    Roč. 190, č. 1 (2007), s. 250-259 ISSN 0019-1035 R&D Projects: GA ČR(CZ) GA205/05/0604 Institutional research plan: CEZ:AV0Z10030501 Keywords : asteroids * satellites of asteroids Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.869, year: 2007