WorldWideScience

Sample records for associating water-soluble copolymers

  1. Thermodynamic interactions of water-soluble homopolymers and double-hydrophilic diblock copolymer

    International Nuclear Information System (INIS)

    Yazici, D. Topaloglu; Askin, A.; Buetuen, V.

    2008-01-01

    Thermodynamic interaction parameters of water-soluble poly[2-(dimethylamino)ethyl methacrylate] (DMA) and poly[2-(N-morpholino)ethyl methacrylate] (MEMA) homopolymers and their diblock copolymer (DMA-MEMA) were investigated at the temperatures above their glass-transition temperatures (T g ) by inverse gas chromatography (IGC) method. Sorption thermodynamic parameters of some aliphatic, alicyclic and aromatic hydrocarbons, weight fraction activity coefficients, Flory-Huggins interaction parameters, and solubility parameters for hydrocarbons and polymers were calculated. It was observed that sorption thermodynamic parameters on (co)polymers depend on the molecular structures of hydrocarbons. Evaluating both the calculated values of the weight fraction activity coefficients and Flory-Huggins interaction parameters, the solving ability of the hydrocarbons for DMA, MEMA homopolymers, and DMA-MEMA diblock copolymer decreased in the following sequence: Aromatic > alicyclic > aliphatic hydrocarbons

  2. Radiation synthesis of a water-soluble temperature sensitive polymer, activated copolymer and applications in immobilization of proteins

    International Nuclear Information System (INIS)

    Zhai Maolin; Ha Hongfei; Wu Jilan

    1993-01-01

    In this work the radiation polymerization of N-isopropylacrylamide (NIPAAM) in aqueous solutions has been carried out and a water-soluble, temperature sensitive polymer and copolymer were obtained by using γ-rays from Co-60 source at room temperature. We have gained the optimum dose and dose-rate of radiation synthesis of linear polyNIPAAM through determining conversion yield and viscosity. In order to immobilize protein (BSA) and enzyme (HRP) into this water-soluble polymer, we prepared an activated copolymer, poly(N-isopropylacrylamide-co-N-acryloxysuccinimide). The BSA and HRP has been immobilized onto the activated copolymer. The BSA (HRP)/copolymer conjugates still kept the original thermally sensitive properties of the linear polyNIPAAM. The conjugation yield of BSA to the activated copolymer decreased with increasing dose. Immobilized HRP was stable at 0 o C for a long time and has, at least, 4 days stability at room temperature. Immobilized HRP activity was lowered when the temperature was raised. This phenomenon was reversible and the immobilized HRP regained activity. The optimum pH of the immobilized HRP shifted from ca.5 upward to ca. 7. (author)

  3. Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.

    Science.gov (United States)

    Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V

    2009-12-01

    To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.

  4. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  5. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  6. Biochemical synthesis of water soluble conducting polymers

    International Nuclear Information System (INIS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-01-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  7. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Science.gov (United States)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  8. An Electrochemical Study of Two Self-Dopable Water-Soluble Aniline Derivatives: Electrochemical Deposition of Copolymers

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2012-01-01

    Full Text Available An electrochemical study of two water-soluble aniline derivatives, N-(3-sulfopropyl aniline (AnPS and N-(3-sulfopropyl p-aminodiphenylamine (DAnPS, in aqueous acidic electrolytic solutions containing different kinds of doping anions (Cl −, SO4 2−, and ClO4 − was carried out. At sufficiently high anodic potential, the sulfonated aniline derivatives undergo oxidation processes yielding cation-radical and dimer intermediates, but no polymer deposition was observed on the working electrode surface. Experimental results showed that both aniline derivatives are electroactive compounds exhibiting redox behaviour in the range of potential of −0.2 V–1.6 V. Due to the self-doping effect induced by sulfonic groups, AnPS and DAnPS compounds have good electroactivity even in neat water solution. By adding a small amount of aniline into electrolytic system, thin layers of copolymers were deposited on the working electrode surface. The copolymer layers formed on the electrodes show a highly orientational and positional order, confirmed by AFM and XRD spectroscopic techniques. During the anodic oxidation processes some distinct colour changes were observed.

  9. Synthesis of water-soluble poly [acrylic acid-co-vinyl butyl ether] and its applications in cement admixtures

    International Nuclear Information System (INIS)

    Negim, S.M.; Mun, G.A.; Nurkeeva, Z.S.; Danveesh, H.H.M.

    2005-01-01

    Three composition ratios of poly[acrylic acid (AA)-co-vinyl butyl ether)] were prepared in alcoholic solution using azo-bis-isobutyro-nitrile as initiator (ABIN). The water-soluble copolymers were characterized through FT-IR, 1 H NMR, Mass spectra, ESEM as well as viscosity. The effect of water-soluble copolymers and their sodium salts on the physico-mechanical properties of Ordaniary Portland Cement (O.P.C) pastes was investigated. The results showed that the addition of aqueous solutions from the prepared copolymers and their sodium salts to the cement improve most of the specific characteristics of (O.P.C). As the concentration of the water-soluble copolymer increases, the setting time increases. The combined water content enhances the addition of copolymer to the mixing water. The compressive strength was she increased at all any hydration. The results of the solution of the prepared sodium salt copolymers are better than its copolymers. (author)

  10. Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuzhao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Miaomiao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); Zheng, Anna [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2014-10-01

    A water-soluble cationic diblock copolymer, CD-PAM-b-PMeDMA, was synthesized through atom transfer radical polymerization (ATRP) from a β-cyclodextrin (CD) macroinitiator with 10-active sites (10Br-β-CD). In order to reduce the cytotoxicity of the CD-PAM-b-PMeDMA, biocompatible polyacrylamide (PAM) was first introduced onto the surface of β-CD as a scaffold structure by ATRP using the 10Br-β-CD as a macroinitiator. The reaction conditions of AM were explored and optimized. The ATRP of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (MeDMA) was also performed to synthesize the second cationic block using the resulting CD-PAM as a macroinitiator. The resulting diblock copolymer shows an increased hydrodynamic radius in aqueous solution with a pretty low concentration compared with β-CD. In addition, it appears a near-uniform coniform after being deposited on mica ascribed to the presence of an asymmetric 10-arm structure. - Highlights: • A 10-arm diblock polymer was prepared by ATRP for the potential use as a non-viral gene delivery. • PAM was first synthesized in a controlled manner considering its biocompatibility. • The hydrodynamic radius of the copolymer in aqueous solution increase to 130 nm from 7.5 nm of CD. • The copolymer appears coniform after deposited on mica surface due to the charge attraction.

  11. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  12. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    Science.gov (United States)

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  13. Radiation synthesis of the water-soluble, temperature sensitive polymer, copolymer and study on their properties

    International Nuclear Information System (INIS)

    Zhai Maolin; Yin Min; Ha Hongfei

    1994-01-01

    In order to obtain the water-soluble, temperature sensitive polymer and activated copolymer, the radiation polymerization of N-isopropylacrylamide (NIPAAm), radiation copolymerization of NIPAAm and N-acryloxysuccide (NASI) in aqueous solution or in buffer solution (PBS pH = 7.4) have been carried out by γ-rays from 60 Co source at room temperature. The optimum dose range (1-7 kGy), dose rate (>40 Gy/min) and monomer concentration (1%) were chosen through determining the monomer conversion yield and molecular weight (M w = 6.8 x 10 5 ) of product. Synthesis of the reversible linear polymer was performed in tetrahydrofuran (THF) as well. In this way a white powder product could be obtained which possesses of thermally reversible property too, when it was dissolved in water or PBS. The only disadvantages of this method is that the molecular weight of the polymer produced in THF was much lower than that in aqueous solution

  14. Solution Properties of Water-Soluble “Smart” Poly(N-acryloyl-N′-ethyl piperazine-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    G. Roshan Deen

    2012-01-01

    Full Text Available Water-soluble copolymers of N-acryloyl-N′-ethylpiperazine (AcrNEP with methyl methacrylate (MMA were synthesized to high conversion by free-radical solution polymerization. The composition of the copolymers was determined using Fourier Transform Infra-red Spectroscopy (FTIR. Copolymers containing AcrNEP content above 44 mol% were readily soluble in water and exhibited the critical solution temperature behavior. The copolymers were strongly responsive to changes in pH of the external medium due to the presence of tertiary amine functions that could be protonated at low pH. The influence of various factors such as copolymer composition, pH, temperature, salt and surfactant concentration on the LCST of the copolymers were systematically studied. The intrinsic viscosity of the copolymers in dimethyl formamide decreased with increase in temperature due to a decrease in thermodynamic affinity between polymer chains and solvent molecules. The viscosity behavior of the copolymers in sodium chloride solution was similar to that of classical polyelectrolytes and hydrophobically modified polyacrylate systems.

  15. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer

    Directory of Open Access Journals (Sweden)

    Rui Liu

    2014-01-01

    Full Text Available A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC, is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, NH, but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance.

  16. Preparation of Water-Soluble Homo and Copolymers of Bithiophene with 3,4-Ethylene Dioxythiophene and 3-Dodecylthiophene in Presence of Polystyrene Sulfonic Acid: Structure, Morphology, Thermal Stability

    Directory of Open Access Journals (Sweden)

    Bakhshali Massoumi

    2015-04-01

    Full Text Available Conductive polymers based on water-soluble polythiophenes were prepared. In this respect, alkylation reaction was carried out to synthesize the monomer 3-dodecylthiophene using 3-bromothiophene, bromododecane and magnesium. The monomer 2,2′-bithiophene was also prepared from 2-bromothiophene. Then, poly(2,2′-bithiophene, poly(3,4-ethylenedioxythiophene and poly(3-dodecylthiophene homopolymers were prepared at room temperature by successive chemical oxidation in the presence of polystyrene sulfonic acid and ammonium persulfate and water, as dopant, oxidant and solvent, respectively, under vigorous stirring. Under similar conditions, 2,2′-bithiophene copolymers with 3-dodecylthiophene and 3,4-ethylenedioxythiophene, copolymers with 3-dodecylthiophene were prepared at different molar ratios. To purify and dry the prepared polymers, dialysis tubs and freezing dry processes were applied. Structure of homo and copolymers were investigated by Fourier transform infrared (FTIR. Conjugated and planar structures of polymers were studied by Ultravoilet (UV-vis spectroscopy. The electrical conductivity of synthesized polymers was measured by four probe technique. The morphology and thermal stability of the products were studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. Finally, solubility of homo and copolymers were tested in some organic solvents and water. Electro- activity of the prepared polymers was studied by cyclic voltammetry (CV on the glassy carbon (GC in LiClO4/CH3CN electrolyte solution and their electro-activity was confirmed. Electro-conductivity and electro-activity of homo and co polymers were low due topresence of polystyrene sulfonic acid which reduced the immobility of the polymers.

  17. Preparation of Water-soluble Polyion Complex (PIC Micelles Covered with Amphoteric Random Copolymer Shells with Pendant Sulfonate and Quaternary Amino Groups

    Directory of Open Access Journals (Sweden)

    Rina Nakahata

    2018-02-01

    Full Text Available An amphoteric random copolymer (P(SA91 composed of anionic sodium 2-acrylamido-2-methylpropanesulfonate (AMPS, S and cationic 3-acrylamidopropyl trimethylammonium chloride (APTAC, A was prepared via reversible addition-fragmentation chain transfer (RAFT radical polymerization. The subscripts in the abbreviations indicate the degree of polymerization (DP. Furthermore, AMPS and APTAC were polymerized using a P(SA91 macro-chain transfer agent to prepare an anionic diblock copolymer (P(SA91S67 and a cationic diblock copolymer (P(SA91A88, respectively. The DP was estimated from quantitative 13C NMR measurements. A stoichiometrically charge neutralized mixture of the aqueous P(SA91S67 and P(SA91A88 formed water-soluble polyion complex (PIC micelles comprising PIC cores and amphoteric random copolymer shells. The PIC micelles were in a dynamic equilibrium state between PIC micelles and charge neutralized small aggregates composed of a P(SA91S67/P(SA91A88 pair. Interactions between PIC micelles and fetal bovine serum (FBS in phosphate buffered saline (PBS were evaluated by changing the hydrodynamic radius (Rh and light scattering intensity (LSI. Increases in Rh and LSI were not observed for the mixture of PIC micelles and FBS in PBS for one day. This observation suggests that there is no interaction between PIC micelles and proteins, because the PIC micelle surfaces were covered with amphoteric random copolymer shells. However, with increasing time, the diblock copolymer chains that were dissociated from PIC micelles interacted with proteins.

  18. Water Soluble Polymers for Pharmaceutical Applications

    OpenAIRE

    Veeran Gowda Kadajji; Guru V. Betageri

    2011-01-01

    Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1) synthetic and (2) natural. Drug polymer conjugates, block copolymers, hydrogel...

  19. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    OpenAIRE

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2007-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymer...

  20. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  1. Responsive copolymers for enhanced petroleum recovery. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  2. Novel micellar systems for the formulation of poorly water soluble drugs : biocompatibility aspects and pharmaceutical applications

    OpenAIRE

    Dumontet Mondon, Karine

    2010-01-01

    Amongst the large number of novel drugs, 95% are lipophilic and poorly water soluble. Particularly, this renders their aqueous formulation very difficult. In this regard this thesis focused on polymeric micelles based on novel MPEG-hexPLA copolymers forming a hydrophilic shell and a very hydrophobic core that favors the incorporation of poorly water soluble drugs. Although the drug hydrophobicity and water solubility are the main parameters in respect to their incorporation efficiency, struct...

  3. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Nie Guangming; Qu Liangyan; Xu Jingkun; Zhang Shusheng

    2008-01-01

    The copolymerization of 5-cyanoindole (CNIn) and 3,4-ethylenedioxythiophene (EDOT) was successfully performed electrochemically in acetonitrile containing tetrabutylammonium tetrafluoroborate by direct oxidation of monomer mixtures. The electrochemical properties of the copolymers were studied by cyclic voltammetry. The influence of applied polymerization potential on the synthesis of copolymer was investigated. This novel copolymer owns the advantages of poly(5-cyanoindole) (PCNIn) and poly(3,4-ethylenedioxythiophene) (PEDOT), i.e., good redox activity, good thermal stability and high conductivity. The copolymer was soluble in dimethyl sulfoxide. The fluorescence spectra indicate that the copolymer is a good blue-light emitter. The structure and morphology of the copolymers were investigated by UV-vis, infrared spectroscopy, 1 H NMR spectra and scanning electron microscopy (SEM), respectively

  4. A Systematic Study of Molecular Interactions of Anionic Drugs with a Dimethylaminoethyl Methacrylate Copolymer Regarding Solubility Enhancement.

    Science.gov (United States)

    Saal, Wiebke; Ross, Alfred; Wyttenbach, Nicole; Alsenz, Jochem; Kuentz, Martin

    2017-04-03

    The methacrylate-copolymer Eudragit EPO (EPO) has raised interest in solubility enhancement of anionic drugs. Effects on aqueous drug solubility at rather low polymer concentrations are barely known despite their importance upon dissolution and dilution of oral dosage forms. We provide evidence for substantial enhancement (factor 4-230) of aqueous solubility of poorly water-soluble anionic drugs induced by low (0.1-5% (w/w)) concentration of EPO for a panel of seven acidic crystalline drugs. Diffusion data (determined by 1 H nuclear magnetic resonance spectroscopy) indicate that the solubility increasing effect monitored by quantitative ultraperformance liquid chromatography was caused primarily by molecular API polymer interactions in the bulk liquid phase. Residual solid API remained unaltered as tested by X-ray powder diffraction. The solubility enhancement (SE) revealed a significant rank correlation (r Spearman = -0.83) with rDiff API , where SE and rDiff API are defined ratios of solubility and diffusion coefficient in the presence and absence of EPO. SE decreased in the order of indomethacin, mefenamic acid, warfarin, piroxicam, furosemide, bezafibrate, and tolbutamide. The solubilizing effect was attributed to both ionic and hydrophobic interactions between drugs and EPO. The excellent solubilizing properties of EPO are highly promising for pharmaceutical development, and the data set provides first steps toward an understanding of drug-excipient interaction mechanisms.

  5. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, I.W.; Empey, R.A.; Racciato, J.S.

    1978-08-08

    A water-soluble anionic graft copolymer of xanthan gum and polyacrylamide is described in which at least part of the amide function of the acrylamide portion of the copolymer is sulfomethylated and the xanthan gum portion of the copolymer is unreacted with formaldehyde. The copolymer is sulfomethylated by reaction with formaldehyde and sodium metabisulfite. The formaldehyde does not cause any appreciable cross-linking between hydroxyl groups of the xanthan moieties. The sulfomethylation of the acrylamido group takes place at temperatures from 35 to 70 C. The pH is 10 or higher, typically from 12 to 13. The degree of anionic character may be varied by adjusting the molar ratio of formaldehyde and sodium metabisulfite with respect to the copolymer. 10 claims.

  6. RAFT Aqueous Dispersion Polymerization of N-(2-(Methacryloyloxy)ethyl)pyrrolidone: A Convenient Low Viscosity Route to High Molecular Weight Water-Soluble Copolymers.

    Science.gov (United States)

    Cunningham, Victoria J; Derry, Matthew J; Fielding, Lee A; Musa, Osama M; Armes, Steven P

    2016-06-28

    RAFT solution polymerization of N -(2-(methacryoyloxy)ethyl)pyrrolidone (NMEP) in ethanol at 70 °C was conducted to produce a series of PNMEP homopolymers with mean degrees of polymerization (DP) varying from 31 to 467. Turbidimetry was used to assess their inverse temperature solubility behavior in dilute aqueous solution, with an LCST of approximately 55 °C being observed in the high molecular weight limit. Then a poly(glycerol monomethacylate) (PGMA) macro-CTA with a mean DP of 63 was chain-extended with NMEP using a RAFT aqueous dispersion polymerization formulation at 70 °C. The target PNMEP DP was systematically varied from 100 up to 6000 to generate a series of PGMA 63 -PNMEP x diblock copolymers. High conversions (≥92%) could be achieved when targeting up to x = 5000. GPC analysis confirmed high blocking efficiencies and a linear evolution in M n with increasing PNMEP DP. A gradual increase in M w / M n was also observed when targeting higher DPs. However, this problem could be minimized ( M w / M n RAFT aqueous dispersion polymerization of NMEP was approximately four times faster than the RAFT solution polymerization of NMEP in ethanol when targeting the same DP in each case. This is perhaps surprising because both 1 H NMR and SAXS studies indicate that the core-forming PNMEP chains remain relatively solvated at 70 °C in the latter formulation. Moreover, dissolution of the initial PGMA 63 -PNMEP x particles occurs on cooling from 70 to 20 °C as the PNMEP block passes through its LCST. Hence this RAFT aqueous dispersion polymerization formulation offers an efficient route to a high molecular weight water-soluble polymer in a rather convenient low-viscosity form. Finally, the relatively expensive PGMA macro-CTA was replaced with a poly(methacrylic acid) (PMAA) macro-CTA. High conversions were also achieved for PMAA 85 -PNMEP x diblock copolymers prepared via RAFT aqueous dispersion polymerization for x ≤ 4000. Again, better control was achieved when

  7. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Nivia do N.; Balaban, Rosangela de C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Halila, Sami; Borsali, Redouane, E-mail: borsali@cermav.cnrs.fr, E-mail: halila@cermav.cnrs.fr [Centre de Recherche sur les Macromolecules Vegetales (CERMAV), Grenoble (France)

    2015-07-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by {sup 1}H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K{sub 2}CO{sub 3}) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K{sub 2}CO{sub 3} combined to the ability of CO{sub 3}{sup 2-} to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  8. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    International Nuclear Information System (INIS)

    Marques, Nivia do N.; Balaban, Rosangela de C.; Halila, Sami; Borsali, Redouane

    2015-01-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by "1H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K_2CO_3) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K_2CO_3 combined to the ability of CO_3"2"- to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  9. Water stale and structure analysis of Konjac irradiation copolymer

    International Nuclear Information System (INIS)

    Geng Shengrong; Xia Hezhou; Chen Xueling; Ye Lixiu; Hua Yuejin

    2011-01-01

    To study the absorption performance of Konjac-AA copolymer prepared by using irradiation, the water absorption capacity, sorbent speed and water keeping ability were determined, DSC and TEM analysis were used to investigate the water content and structure characters. The results showed that the largest water absorption speed was 16 g · -1 · min -1 at room temperature, and the largest water absorption was 400 times within 60 minutes. The water absorption was affected by granularity, temperature, ion content and ion type, especially the ion type. The water keeping ability was affected by temperature and time, which was up to 35% of absorbed water when the fully water absorbed copolymer was kept under room temperature for 15 d. The free and bounder water content which could be assimilated by the plants was 99.617%. The water stale copolymer has a three-dimensional spiral structure. (authors)

  10. Thermoresponsive behavior of chitosan-g-N-isopropylacrylamide copolymer solutions.

    Science.gov (United States)

    Recillas, Maricarmen; Silva, Luisa L; Peniche, Carlos; Goycoolea, Francisco M; Rinaudo, Marguerite; Argüelles-Monal, Waldo M

    2009-06-08

    Chitosan-g-N-isopropylacrylamide (NIPAm) water-soluble copolymers were synthesized and characterized by FTIR and (1)H NMR spectroscopies combined with conductometric and potentiometric titrations. Their thermoresponsive, fully reversible, behavior in aqueous solutions was characterized by means of microcalorimetry and rheology. During heating of copolymer solutions there is a well-known endothermic effect, which coincides with a marked increase in G' and a moderate decrement in G'' due to the formation of a hydrophobic network at the expense of the net amount of sol fraction. It was also found that a straight dependence between the values of G' above the LCST and the enthalpies associated with the transition reflecting that the connectivity in the gel network is governed by the net number of formed enthalpic-hydrophobic driven-junctions. Both the LCST and the enthalpy change vary with the ionic strength of copolymer solutions, but no dependence was found with the neutralization of the polyelectrolyte chain.

  11. Study of the synthesis and self-assembly of CO2-philic copolymers with complexing groups: application to decontamination in supercritical CO2 medium

    International Nuclear Information System (INIS)

    Ribaut, T.

    2009-10-01

    In the frame of sustainable development, a priority is to decrease the volume of nuclear wastes. The use of supercritical carbon dioxide (scCO 2 ) could allow to solve this problem. The aim of this study is to extract an ionic or particle cobalt contamination deposited on textile lab coats. The strategy uses CO 2 -philic/CO 2 -phobic copolymers soluble in scCO 2 and containing complexing groups. This approach combines the use of amphiphilic copolymers for steric stabilization of particles, of surfactants able to self-assemble to promote extraction and of ligands. Controlled radical polymerization is used to synthesize fluorinated gradient or block copolymers. Cloud point curves of the copolymers are determined experimentally in scCO 2 . Prediction of polymer/scCO 2 phase diagrams was assessed by Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) modeling. Gradient copolymers appear more advantageous than block copolymers due to their solubility in much milder conditions of pressure and temperature. Small-angle neutron scattering (SANS) allowed us to evidence the pressure-induced aggregation of the gradient copolymers in scCO 2 . Their interface properties were demonstrated: they allow to form water-in-CO 2 microemulsions and to stabilize cobalt hydroxide dispersions in scCO 2 . Lastly, in presence of a very low quantity of water, Co 2+ ions were removed with a rate of 37 % from a cotton/polyester matrix by a gradient copolymer. (author)

  12. Water-soluble dietary fibers and cardiovascular disease.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2008-05-23

    One well-established way to reduce the risk of developing cardiovascular disease (CVD) is to lower serum LDL cholesterol levels by reducing saturated fat intake. However, the importance of other dietary approaches, such as increasing the intake of water-soluble dietary fibers is increasingly recognized. Well-controlled intervention studies have now shown that four major water-soluble fiber types-beta-glucan, psyllium, pectin and guar gum-effectively lower serum LDL cholesterol concentrations, without affecting HDL cholesterol or triacylglycerol concentrations. It is estimated that for each additional gram of water-soluble fiber in the diet serum total and LDL cholesterol concentrations decrease by -0.028 mmol/L and -0.029 mmol/L, respectively. Despite large differences in molecular structure, no major differences existed between the different types of water-soluble fiber, suggesting a common underlying mechanism. In this respect, it is most likely that water-soluble fibers lower the (re)absorption of in particular bile acids. As a result hepatic conversion of cholesterol into bile acids increases, which will ultimately lead to increased LDL uptake by the liver. Additionally, epidemiological studies suggest that a diet high in water-soluble fiber is inversely associated with the risk of CVD. These findings underlie current dietary recommendations to increase water-soluble fiber intake.

  13. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation.

    Science.gov (United States)

    Tabujew, Ilja; Freidel, Christoph; Krieg, Bettina; Helm, Mark; Koynov, Kaloian; Müllen, Klaus; Peneva, Kalina

    2014-07-01

    Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Some physicochemical aspects of water-soluble mineral flotation.

    Science.gov (United States)

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Adsorption of non-ionic ABC triblock copolymers: Surface modification of TiO2 suspensions in aqueous and non-aqueous medium

    Science.gov (United States)

    Lerch, Jean-Philippe; Atanase, Leonard Ionut; Riess, Gérard

    2017-10-01

    A series of non-ionic ABC triblock copolymers, such as poly(butadiene)-b-poly(2-vinylpyrridine)-b-poly(ethylene oxide) (PB-P2VP-PEO) were synthesized by sequential anionic polymerizations. For these copolymers comprising an organo-soluble PB and a water-soluble PEO block, their P2VP middle block has been selected for its anchoring capacity on solid surfaces. The adsorption isotherms on TiO2 were obtained in heptane and in aqueous medium, as selective solvents. In both of these cases, the P2VP middle block provides the surface anchoring, whereas PB and PEO sequences are acting as stabilizing moieties in heptane and water respectively. By extension to ABC triblock copolymers of the scaling theory developed for diblock copolymers, the density of adsorbed chains could be correlated with the molecular characteristics of the PB-P2VP-PEO triblock copolymers. From a practical point a view, it could be demonstrated that these copolymers are efficient dispersing agents for the TiO2 pigments in both aqueous and non-aqueous medium.

  16. Poly(ethylene oxide)–Poly(propylene oxide)-Based Copolymers for ...

    African Journals Online (AJOL)

    Amphiphilic poly(ethylene oxide)–poly(propylene oxide) (PEO–PPO)-based copolymers are thermoresponsive materials having aggregation properties in aqueous medium. As hydrosolubilizers of poorly water-soluble drugs and improved stability of sensitive agents, these materials have been investigated for improvement ...

  17. Poly(methacrylic acid-ran-2-vinylpyridine Statistical Copolymer and Derived Dual pH-Temperature Responsive Block Copolymers by Nitroxide-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Milan Marić

    2017-02-01

    Full Text Available Nitroxide-mediated polymerization using the succinimidyl ester functional unimolecular alkoxyamine initiator (NHS-BlocBuilder was used to first copolymerize tert-butyl methacrylate/2-vinylpyridine (tBMA/2VP with low dispersity (Đ = 1.30–1.41 and controlled growth (linear number average molecular Mn versus conversion, Mn = 3.8–10.4 kg·mol−1 across a wide composition of ranges (initial mol fraction 2VP, f2VP,0 = 0.10–0.90. The resulting statistical copolymers were first de-protected to give statistical polyampholytic copolymers comprised of methacrylic acid/2VP (MAA/2VP units. These copolymers exhibited tunable water-solubility due to the different pKas of the acidic MAA and basic 2VP units; being soluble at very low pH < 3 and high pH > 8. One of the tBMA/2VP copolymers was used as a macroinitiator for a 4-acryloylmorpholine/4-acryloylpiperidine (4AM/4AP mixture, to provide a second block with thermo-responsive behavior with tunable cloud point temperature (CPT, depending on the ratio of 4AM:4AP. Dynamic light scattering of the block copolymer at various pHs (3, 7 and 10 as a function of temperature indicated a rapid increase in particle size >2000 nm at 22–27 °C, corresponding to the 4AM/4AP segment’s thermos-responsiveness followed by a leveling in particle size to about 500 nm at higher temperatures.

  18. Synthesis of Graft Copolymers Based on Poly(2‐Methoxyethyl Acrylate) and Investigation of the Associated Water Structure

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Tanaka, Masaru; Ogura, Keiko

    2012-01-01

    Graft copolymers composed of poly(2‐methoxyethyl acrylate) are prepared employing controlled radical polymerization techniques. Linear backbones bearing atom transfer radical polymerization (ATRP) initiating sites are obtained by reversible addition–fragmentation chain transfer copolymerization...... polydispersity indices (1.17–1.38) are attained. Thermal investigations of the graft copolymers indicate the presence of the freezing bound water, and imply that the materials may exhibit blood compatibility....

  19. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Filippo Palmieri

    2011-04-01

    Full Text Available Self-assembling block copolymers (poloxamers, PEG/PLA and PEG/PLGA diblock and triblock copolymers, PEG/polycaprolactone, polyether modified poly(Acrylic Acid with large solubility difference between hydrophilic and hydrophobic moieties have the property of forming temperature dependent micellar aggregates and, after a further temperature increase, of gellifying due to micelle aggregation or packing. This property enables drugs to be mixed in the sol state at room temperature then the solution can be injected into a target tissue, forming a gel depot in-situ at body temperature with the goal of providing drug release control. The presence of micellar structures that give rise to thermoreversible gels, characterized by low toxicity and mucomimetic properties, makes this delivery system capable of solubilizing water-insoluble or poorly soluble drugs and of protecting labile molecules such as proteins and peptide drugs.

  20. Copolymers for Drag Reduction in Marie Propulsion: New Molecular Structures with Enhanced Effectiveness

    Science.gov (United States)

    1991-05-31

    reduction in guar gum , sand, and water suspensions used in oil-well fracturing.6’ ,7 The research of Crawford’ and Savins’ spurred the Navy’s interest...Soluble Copolymers," C. L. McCormick, Eighteenth Annual Water-Borne, Higher-Solids, and Powder Coatings Symposium, New Orleans, LA, February 1991

  1. Water state and TEM analysis of Konjac irradiation copolymer

    International Nuclear Information System (INIS)

    Geng Shengrong; Xia Hezhou; Chen Xueling; Ye Lixiu; Hua Yuejin

    2012-01-01

    To study the absorption performance of Konjac-AA copolymer prepared by irradiation, the water absorbent capacity, sorbent speed and water keeping ability was determined and DSC and TEM analysis were used to explore the water content and structure characters. The results showed that on room temperature the largest water absorption speed was 16 g · g -1 · min -1 at, and the largest water absorption was 400 times at 60 min. The water absorption was affected by granularity, temperature, ion content and ion type, especially the ion type, the water keeping ability was affected by temperature and time, which was up to 35% while the fully water absorbed copolymer was kept under room temperature for 15 d. The free and bounder water content which was assimilated by the plants was 99.617%. The gel stale co polymer has a three-dimensional structure of spiral, which was constituted by spherical objects of varying sizes. (authors)

  2. In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles.

    Directory of Open Access Journals (Sweden)

    Qingxiang Guan

    Full Text Available Bletilla striata polysaccharides (BSPs have been used in pharmaceutical and biomedical industry, the aim of the present study was to explore a BSPs amphiphilic derivative to overcome its application limit as poorly water-soluble drug carriers due to water-soluble polymers. Stearic acid (SA was selected as a hydrophobic block to modify B. striata polysaccharides (SA-BSPs. Docetaxel (DTX-loaded SA-BSPs (DTX-SA-BSPs copolymer micelles were prepared and characterized. The DTX release percentage in vitro and DTX concentration in vivo was carried out by using high performance liquid chromatography. HepG2 and HeLa cells were subjected to MTT (3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazonium bromide assay to evaluate the cell viability. In vitro evaluation of copolymer micelles showed higher drug encapsulation and loading capacity. The release percentage of DTX from DTX-SA-BSPs copolymer micelles and docetaxel injection was 66.93 ± 1.79% and 97.06 ± 1.56% in 2 days, respectively. The DTX-SA-BSPs copolymer micelles exhibited a sustained release of DTX. A 50% increase in growth inhibition was observed for HepG2 cells treated with DTX-SA-BSPs copolymer micelles as compared to those treated with docetaxel injection for 72 h. DTX-SA-BSPs copolymer micelles presented a similar growth inhibition effect on Hela cells. Furthermore, absolute bioavailability of DTX-SA-BSPs copolymer micelles was shown to be 1.39-fold higher than that of docetaxel injection. Therefore, SA-BSPs copolymer micelles may be used as potential biocompatible polymers for cancer chemotherapy.

  3. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications.

    Science.gov (United States)

    Atanase, Leonard Ionut; Riess, Gérard

    2013-05-20

    Polyethylene glycol (PEG) 400/Miglyol 812 non-aqueous sub-micron emulsions were developed due to the fact that they are of interest for the design of drug-loaded biocompatible topical formulations. These types of emulsions were favourably stabilized by poly (2-vinylpyridine)-b-poly (butadiene) (P2VP-b-PBut) copolymer with DPBut>DP2VP, each of these sequences being well-adapted to the solubility parameters of PEG 400 and Miglyol 812, respectively. This type of block copolymers, which might limit the Ostwald ripening, appeared to be more efficient stabilizers than low molecular weight non-ionic surfactants. The emulsion characteristics, such as particle size, stability and viscosity at different shear rates were determined as a function of the phase ratio, the copolymer concentration and storage time. It was further shown that Acyclovir, as a model drug of low water solubility, could be incorporated into the PEG 400 dispersed phase, with no significant modification of the initial emulsion characteristics. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    Science.gov (United States)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  5. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2014-11-28

    A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Silk-collagen-like block copolymers with charged blocks : self-assembly into nanosized ribbons and macroscopic gels

    NARCIS (Netherlands)

    Martens, A.A.

    2008-01-01

    The research described in this thesis concerns the design, biotechnological production, and physiochemical study of large water-soluble (monodisperse) protein triblock-copolymers with sequential blocks, some of which are positively or negatively charged and self-assemble in response to a change in

  7. On nitrogen solubility in water

    International Nuclear Information System (INIS)

    Kalajda, Yu.A.; Katkov, Yu.D.; Kuznetsov, V.A.; Lastovtsev, A.Yu.; Lastochkin, A.P.; Susoev, V.S.

    1980-01-01

    Presented are the results of experimental investigations on nitrogen solubility in water under 0-15 MPa pressure, at the temperature of 100-340 deg C and nitrogen concentration of 0-5000 n.ml. N 2 /kg H 2 O. Empiric equations are derived and a diagram of nitrogen solubility in water is developed on the basis of the experimental data, as well as critically evaluated published data. The investigation results can be used in analyzing water-gas regime of a primary heat carrier in stream-generating plants with water-water reactors

  8. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  9. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  10. Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(N-isopropylacrylamide-co-vinylpyrrolidone) Excipients.

    Science.gov (United States)

    Widanapathirana, Lakmini; Tale, Swapnil; Reineke, Theresa M

    2015-07-06

    Excipients of natural or synthetic origin play an important role in pharmaceutical performance to enhance the solubility, bioavailability, release, and stability of insoluble drugs. Herein, a series of seven excipient models was prepared by both homopolymerization and copolymerization of 1-vinyl-2-pyrrolidone (VP) and N-isopropylacrylamide (NIPAAm) by free radical polymerization yielding two homopolymers poly(VP) and poly(NIPAAm) and five copolymers of poly(NIPAAm-co-VP) at difference compositions. While the VP monomer provided aqueous solubility at a variety of conditions to the excipient, the incorporation of NIPAAm into the copolymer offered additional hydrogen bond donating sites to optimize the drug-polymer interactions in the system. Due to the presence of NIPAAm, the copolymers were sensitive to temperature as well. It was found that as the proportion of VP was increased (from 0 to 100%), the lower critical solution temperature (LCST) and the water solubility of the polymer models increased. To examine the role of specific drug-polymer interactions during dissolution on drug solubility and bioavailability, the polymers were formulated with the anticonvulsant drug phenytoin, which is a poorly water-soluble BCS class II drug where oral absorption is limited by the drug solubility. Amorphous solid dispersions (ASD) were prepared via spray drying of phenytoin with the polymer excipient models to contain 10% and 25% by weight drug loading. Physical characterization of the ASDs by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) revealed that the polymers held the drug in a high-energy amorphous phase in all the formulations prepared. All ASDs exhibited improved in vitro dissolution rates compared to drug only and physical mixtures of the polymers and the drug. Drug solubility was the highest with the ASDs containing poly(NIPAAm-co-VP) 60:40 and 50:50, which showed a solubility enhancement of near 14-fold increase compared to pure drug

  11. Process of irradiating an ethylene-vinyl acetate copolymer to produce low melt index copolymers, and products of said process

    International Nuclear Information System (INIS)

    Potts, J.E.

    1976-01-01

    Application of ionizing radiation in a dose between 0.5 and 1.5 megareps to copolymers of ethylene and vinyl acetate lowers the melt index and increases the toughness and flexibility of the copolymers without substantially decreasing solubility or thermoplasticity. The increased toughness and flexibility carries over into blends with wax or polyethylene. (author)

  12. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  13. Thermodynamics of Surfactants, Block Copolymers and Their Mixtures in Water: The Role of the Isothermal Calorimetry

    Science.gov (United States)

    De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola

    2009-01-01

    The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173

  14. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution.

    Science.gov (United States)

    Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L

    2011-10-05

    Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.

  15. Tailoring magnetic properties of self-biased hexaferrites using an alternative copolymer of isobutylene and maleic anhydride

    Science.gov (United States)

    Wu, Chuanjian; Yu, Zhong; Sokolov, Alexander S.; Yu, Chengju; Sun, Ke; Jiang, Xiaona; Lan, Zhongwen; Harris, Vincent G.

    2018-05-01

    Discussed is a novel self-biased hexaferrite gelling system based on a nontoxic and water-soluble copolymer of isobutylene and maleic anhydride. This copolymer simultaneously acts as a dispersant and gelling agent, and recently received much attention from the ceramics community. Herein its effects on the rheological conditions throughout magnetic-field pressing, and consequently, orientation, density and magnetic properties of textured hexaferrites were investigated. Ka-band FMR linewidths were measured, and the crystalline anisotropy and porosity induced linewidth broadening were estimated according to Schlömann's theory. The copolymer allowed to reduce the friction between micron-sized magnetic particulates, resulting in higher density and degree of crystalline orientation, and lower FMR linewidth.

  16. Functional single-wall carbon nanotube nanohybrids--associating SWNTs with water-soluble enzyme model systems.

    Science.gov (United States)

    Guldi, Dirk M; Rahman, G M Aminur; Jux, Norbert; Balbinot, Domenico; Hartnagel, Uwe; Tagmatarchis, Nikos; Prato, Maurizio

    2005-07-13

    We succeeded in integrating single-wall carbon nanotubes (SWNTs), several water-soluble pyrene derivatives (pyrene(-)), which bear negatively charged ionic headgroups, and a series of water-soluble metalloporphyrins (MP(8+)) into functional nanohybrids through a combination of associative van der Waals and electrostatic interactions. The resulting SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8+) were characterized by spectroscopic and microscopic means and were found to form stable nanohybrid structures in aqueous media. A crucial feature of our SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8)(+) is that an efficient exfoliation of the initial bundles brings about isolated nanohybrid structures. When the nanohybrid systems are photoexcited with visible light, a rapid intrahybrid charge separation causes the reduction of the electron-accepting SWNT and, simultaneously, the oxidation of the electron-donating MP(8)(+). Transient absorption measurements confirm that the radical ion pairs are long-lived, with lifetimes in the microsecond range. Particularly beneficial are charge recombination dynamics that are located deep in the Marcus-inverted region. We include, for the first time, work devoted to exploring and testing FeP(8)(+) and CoP(8)(+) in donor-acceptor nanohybrids.

  17. OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS

    Science.gov (United States)

    Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...

  18. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  19. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    -selective electrodes and inductively coupled plasma (ICP)-atomic emission spectrometry (AES). The WSO found in produced water samples was primarily polar in nature and distributed between the low and midrange carbon ranges. Typical levels of total extractable material (TEM) was about 20 mg/L; that associated with the aromatic fraction was present at 0.2 mg/L and that in the saturated hydrocarbon fraction was present at less than 0.02 mg/L. Formic, acetic, and propionic acids were also found in the produced water, occurring at a total concentration of 30 mg/L. It was estimated that the presence of 30 mg/L organic acids would artificially overstate TEM content by 2 mg/L. Of the five tested parameters, the factor that most controlled the total WSO in produced water was that of aqueous phase pH. Beyond a value of pH7 significant quantities of C{sub 10}-C{sub 20} range material become markedly soluble as they deprotonate in a basic aqueous phase. Both the absolute and relative volumes of GOM brine and crude additionally affected total WSO. Produced water appeared to reach a saturation level of WSO at a.50% water/oil ratio. Pressure slightly enhanced WSO by increasing the relative quantity of C{sub 6}-C{sub 10} range material. Temperature primarily altered the relative ratio of carbon ranges within the WSO without significantly elevating the total WSO in the GOM brine. Salinity had the least affect on the chemical character or the carbon size of WSO in produced water.

  20. Novel soluble fluorene-thienothiadiazole and fluorene-carbazole copolymers for optoelectronics

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Kmínek, Ivan; Výprachtický, Drahomír

    2010-01-01

    Roč. 295, č. 1 (2010), s. 65-70 ISSN 1022-1360. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. Prague, 05.07.2009-09.07.2009] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA4050409 Institutional research plan: CEZ:AV0Z40500505 Keywords : fluorene – thienothiadiazole copolymers * photovoltaics * fluorene-carbazole copolymers Subject RIV: JA - Electronics ; Optoelectronics , Electrical Engineering

  1. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  2. A novel pH sensitive water soluble fluorescent nanomicellar sensor for potential biomedical applications.

    Science.gov (United States)

    Georgiev, Nikolai I; Bryaskova, Rayna; Tzoneva, Rumiana; Ugrinova, Iva; Detrembleur, Christophe; Miloshev, Stoyan; Asiri, Abdullah M; Qusti, Abdullah H; Bojinov, Vladimir B

    2013-11-01

    Herein we report on the synthesis and sensor activity of a novel pH sensitive probe designed as highly water-soluble fluorescent micelles by grafting of 1,8-naphthalimide-rhodamine bichromophoric FRET system (RNI) to the PMMA block of a well-defined amphiphilic diblock copolymer-poly(methyl methacrylate)-b-poly(methacrylic acid) (PMMA48-b-PMAA27). The RNI-PMMA48-b-PMAA27 adduct is capable of self-assembling into micelles with a hydrophobic PMMA core, containing the anchored fluorescent probe, and a hydrophilic shell composed of PMAA block. Novel fluorescent micelles are able to serve as a highly sensitive pH probe in water and to internalize successfully HeLa and HEK cells. Furthermore, they showed cell specificity and significantly higher photostability than that of a pure organic dye label such as BODIPY. The valuable properties of the newly prepared fluorescent micelles indicate the high potential of the probe for future biological and biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat.

    Science.gov (United States)

    Dong, Yan; Liu, Jindong; Zhang, Yan; Geng, Hongwei; Rasheed, Awais; Xiao, Yonggui; Cao, Shuanghe; Fu, Luping; Yan, Jun; Wen, Weie; Zhang, Yong; Jing, Ruilian; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Water soluble carbohydrates (WSC) in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS) using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs) distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs), and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content) and unfavorable alleles (decreasing WSC), indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.

  4. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat.

    Directory of Open Access Journals (Sweden)

    Yan Dong

    Full Text Available Water soluble carbohydrates (WSC in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs, and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content and unfavorable alleles (decreasing WSC, indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.

  5. Water-soluble resorcin[4]arene based cavitands

    NARCIS (Netherlands)

    Grote gansey, M.H.B.; Grote Gansey, Marcel H.B.; Bakker, Frank K.G.; Feiters, Martinus C.; Geurts, Hubertus P.M.; Verboom, Willem; Reinhoudt, David

    1998-01-01

    Water-soluble resorcin[4]arene based cavitands were obtained in good yields by reaction of bromomethylcavitands with pyridine. Their solubility was determined by conductometry. The behaviour in water depends on the alkyl chain length; the methylcavitand does not aggregate, whereas the pentyl- and

  6. Polyether-polyester graft copolymer

    Science.gov (United States)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  7. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  9. Bioremediation prospects of fungi isolated from water soluble ...

    African Journals Online (AJOL)

    The fungi associated with water soluble fraction (WSF) of crude oil from two different locations were investigated. The samples were collected from Ezibin oil well (Sample A), Okwagbe village in Ughelli South Local Government Area of Delta State and from NPDC laboratory (Sample B) in Benin City, Oredo Local ...

  10. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  11. Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    M Jacquin; P Muller; H Cottet; O Theodoly

    2011-12-31

    We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 C and 1 M.

  12. Solubilization of poorly water-soluble drugs using solid dispersions.

    Science.gov (United States)

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  13. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.

    Science.gov (United States)

    Qiao, Zeng-Ying; Ji, Ran; Huang, Xiao-Nan; Du, Fu-Sheng; Zhang, Rui; Liang, De-Hai; Li, Zi-Chen

    2013-05-13

    A series of well-defined thermoresponsive diblock copolymers (PEO45-b-PtNEAn, n=22, 44, 63, 91, 172) were prepared by the atom transfer radical polymerization of trans-N-(2-ethoxy-1,3-dioxan-5-yl) acrylamide (tNEA) using a poly(ethylene oxide) (PEO45) macroinitiator. All copolymers are water-soluble at low temperature, but upon quickly heating to 37 °C, laser light scattering (LLS) and transmission electron microscopy (TEM) characterizations indicate that these copolymers self-assemble into aggregates with different morphologies depending on the chain length of PtNEA and the polymer concentration; the morphologies gradually evolved from spherical solid nanoparticles to a polymersome as the degree of polymerization ("n") of PtNEA block increased from 22 to 172, with the formation of clusters with rod-like structure at the intermediate PtNEA length. Both the spherical nanoparticle and the polymersome are stable at physiological pH but susceptible to the mildly acidic medium. Acid-triggered hydrolysis behaviors of the aggregates were investigated by LLS, Nile red fluorescence, TEM, and (1)H NMR spectroscopy. The results revealed that the spherical nanoparticles formed from PEO45-b-PtNEA44 dissociated faster than the polymersomes of PEO45-b-PtNEA172, and both aggregates showed an enhanced hydrolysis under acidic conditions. Both the spherical nanoparticle and polymersome are able to efficiently load the hydrophobic doxorubicin (DOX), and water-soluble fluorescein isothiocyanate-lysozyme (FITC-Lys) can be conveniently encapsulated into the polymersome without using any organic solvent. Moreover, FITC-Lys and DOX could be coloaded in the polymersome. The drugs loaded either in the polymersome or in the spherical nanoparticle could be released by acid triggering. Finally, the DOX-loaded assemblies display concentration-dependent cytotoxicity to HepG2 cells, while the copolymers themselves are nontoxic.

  14. Solubility and physical properties of sugars in pressurized water

    International Nuclear Information System (INIS)

    Saldaña, Marleny D.A.; Alvarez, Víctor H.; Haldar, Anupam

    2012-01-01

    Highlights: ► Sugar solubility in pressurized water and density at high pressures were measured. ► Glucose solubility was higher than that of lactose as predicted by their σ-profiles. ► Sugar aqueous solubility decreased with an increase in pressure from 15 to 120 bar. ► Aqueous glucose molecular packing shows high sensitivity to pressure. ► The COSMO-SAC model qualitatively predicted the sugar solubility data. - Abstract: In this study, the solubility, density, and refractive index of glucose and lactose in water as a function of temperature were measured. For solubility of sugars in pressurized water, experimental data were obtained at pressures of (15 to 120) bar and temperatures of (373 to 433) K using a dynamic flow high pressure system. Density data for aqueous sugar solutions were obtained at pressures of (1 to 300) bar and temperatures of (298 to 343) K. The refractive index of aqueous sugar solutions was obtained at 293 K and atmospheric pressure. Activity coefficient models, Van Laar and the Conductor-like Screening Model-Segment Activity Coefficient (COSMO-SAC), were used to fit and predict the experimental solubility data, respectively. The results obtained showed that the solubility of both sugars in pressurized water increase with an increase in temperature. However, with the increase of pressure from 15 bar to 120 bar, the solubility of both sugars in pressurized water decreased. The Van Laar model fit the experimental aqueous solubility data with deviations lower than 13 and 53% for glucose and lactose, respectively. The COSMO-SAC model predicted qualitatively the aqueous solubility of these sugars.

  15. Structural and chemical aspects of HPMA copolymers as drug carriers.

    Science.gov (United States)

    Ulbrich, Karel; Subr, Vladimír

    2010-02-17

    Synthetic strategies and chemical and structural aspects of the synthesis of HPMA copolymer conjugates with various drugs and other biologically active molecules are described and discussed in this chapter. The discussion is held from the viewpoint of design and structure of the polymer backbone and biodegradable spacer between a polymer and drug, structure and methods of attachment of the employed drugs to the carrier and structure and methods of conjugation with targeting moieties. Physicochemical properties of the water-soluble polymer-drug conjugates and polymer micelles including mechanisms of drug release are also discussed. Detailed description of biological behavior of the polymer-drug conjugates as well as application of the copolymers for surface modification and targeting of gene delivery vectors are not included, they are presented and discussed in separate chapters of this issue. Copyright 2009 Elsevier B.V. All rights reserved.

  16. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Du Feipeng; Yang Yingkui; Xie Xiaolin; Wu Kangbing; Gan Tian; Liu Lang

    2008-01-01

    Water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes (MWNT-g-P(SSS-co-AA)) with core-shell nanostructure were successfully synthesized by in situ free radical copolymerization of sodium 4-strenesulfonate (SSS) and acrylic acid (AA) in the presence of MWNTs terminated with vinyl groups; their structure was characterized by FTIR, 1 H NMR, Raman, TGA and TEM. The results showed that the thickness and content of the copolymer layer grafted onto the MWNT surface are about 7-12 nm and 82.3%, respectively. The P(SSS-co-AA) covalently grafted on MWNTs provides MWNT-g-P(SSS-co-AA) with good hydrophilicity and solubility in water. Then a novel MWNT-g-P(SSS-co-AA)-modified glassy carbon electrode was fabricated by coating; its electrochemical properties were evaluated by electrochemical probe of K 3 [Fe(CN) 6 ], and its catalytic behaviors to the electrochemical oxidation processes of dopamine (DA) and serotonin (5-HT) were investigated. Since the MWNT-g-P(SSS-co-AA)-modified electrode possesses strong electron transfer capability, high electrochemical activity and catalytic ability, it can be used in sensitive, selective, rapid and simultaneous monitoring of biomolecules

  17. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    Science.gov (United States)

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    Science.gov (United States)

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  19. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  20. Effect of acid additives on graft copolymerization and water absorption of graft copolymers of cassava starch and acrylamide/acrylic acid

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2003-01-01

    Gelatinized cassava starch was radiation graft copolymerized with acrylamide or acrylic acid in the presence of sulfuric acid, nitric acid or maleic acid at a specific dose rate to a fixed total dose. Homopolymer or free copolymer was extracted by water to obtain the pure graft copolymer, which was subsequently saponified with 5% potassium hydroxide solution at room temperature for 90 min. The saponified graft copolymer was investigated for the effect of acid additives and water absorption. The addition of 2% maleic acid into the grafting reaction containing acrylamide-to-starch ratio of 2.5:1 can produce the superabsorbent copolymer having water absorption as high as 2,256 ± 25 g g -1 . The effect of acid additive was explained. (author)

  1. Biodegradation of starch–graft–polystyrene and starch–graft–poly(methacrylic acid copolymers in model river water

    Directory of Open Access Journals (Sweden)

    Nikolić Vladimir

    2013-01-01

    Full Text Available In this paper the biodegradation study of grafted copolymers of polystyrene (PS and corn starch and poly(methacrylic acid and corn starch in model river water is described. These copolymers were obtained in the presence of different amine activators. The synthesized copolymers and products of degradation were characterized by Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. Biodegradation was monitored by mass decrease and number of microorganisms by Koch’s method. Biodegradation of both copolymers advanced with time, poly(methacrylic acid-graft-starch copolymers completely degraded after 21 day, and polystyrene-graft-starch partially degraded (45.78-93.09 % of total mass after 27 days. Differences in the degree of biodegradation are consequences of different structure of the samples, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. The grafting degree of PS necessary to prevent biodegradation was 54 %. Based on experimental evidence, mechanisms of both biodegradation processes are proposed, and influence of degree of starch and synthetic component of copolymers on degradation were established. [Projekat Ministarstva nauke Republike Srbije, br. 172001 i br. 172062

  2. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol

    Science.gov (United States)

    Zhao, Qinfu; Wang, Tianyi; Wang, Jing; Zheng, Li; Jiang, Tongying; Cheng, Gang; Wang, Siling

    2011-09-01

    In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.

  3. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Qinfu [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Tianyi [Department of Clinical Pharmacy, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Jing [Department of Physical Chemistry, School of Basic Science, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Zheng Li; Jiang, Tongying; Cheng Gang [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China); Wang Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016 (China)

    2011-09-15

    In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N{sub 2} adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.

  4. Template-directed hydrothermal synthesis of hydroxyapatite as a drug delivery system for the poorly water-soluble drug carvedilol

    International Nuclear Information System (INIS)

    Zhao Qinfu; Wang Tianyi; Wang Jing; Zheng Li; Jiang, Tongying; Cheng Gang; Wang Siling

    2011-01-01

    In order to improve the dissolution rate and increase the bioavailability of a poorly water-soluble drug, intended to be administered orally, the biocompatible and bioactive mesoporous hydroxyapatite (HA) was successfully synthesized. In the present study, mesoporous HA nanoparticles were produced using Pluronic block co-polymer F127 and cetyltrimethylammonium bromide (CTAB) as templates by the hydrothermal method. The obtained mesoporous HA was employed as a drug delivery carrier to investigate the drug storage/release properties using carvedilol (CAR) as a model drug. Characterizations of the raw CAR powder, mesoporous HA and CAR-loaded HA were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, N 2 adsorption/desorption, thermogravimetric analysis (TGA), and UV-VIS spectrophotometry. The results demonstrated that CAR was successfully incorporated into the mesoporous HA host. In vitro drug release studies showed that mesoporous HA had a high drug load efficiency and provided immediate release of CAR compared with micronized raw drug in simulated gastric fluid (pH 1.2) and intestinal fluid (pH 6.8). Consequently, mesoporous HA is a good candidate as a drug carrier for the oral delivery of poorly water-soluble drugs.

  5. STUDIES ON POLY (ETHYLENE TEREPHTHALATE)- POLY ( TETRAMETHYLENE ETHER ) MULTIBLOCK COPOLYMER.Ⅰ. COM POSITIONAL HOMOGENEITY

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yongjian; YING Qicong; WU Meiyan; QIAN Renyuan

    1991-01-01

    The compositional homogeneity of a poly (ethylene terephthalate )-poly (tetramethylene ether)multiblock copolymer sample with low content of hard segment was examined by GPC, TLC, and solubility method. The copolymer sample was found to have a uniform composition as a function of elution volume over the major portion of sample from GPC method. However within one elution fraction, the copolymer chains, although having the same hydrodynamic volume, may have some difference in composition. Two fractions with different composition were obtained by precipitation in ethanol. Some low molar mass copolymers were also separated by a TLC technique from the copolymer sample.

  6. Study on REE bound water-soluble polysaccharides in plant

    International Nuclear Information System (INIS)

    Wang Yuqi; Guo Fanqing; Xu Lei; Chen Hongmin; Sun Jingxin; Cao Guoyin

    1999-01-01

    The binding of REE with water-soluble polysaccharides (PSs) in leaves of fern Dicranopteris Dichotoma (DD) has been studied by molecular activation analysis. The cold-water-soluble and hot-water-soluble PSs in leaves of DD were obtained by using biochemical separation techniques. The PSs of non-deproteinization and deproteinization, were separated on Sephadex G-200 gel permeation chromatography. The absorption curves of elution for the PSs were obtained by colorimetry, and the proteins were detected using Coomassic brilliant G-250. Eight REEs (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in these PSs were determined by instrumental neutron activation analysis. The results obtained show that the REEs are bound firmly with the water-soluble PSs in the plant. A measurement demonstrates that the PSs bound with REEs are mainly of smaller molecular weight (10,000 to 20,000 Dalton)

  7. Interactions of poly(tert-butyl acrylate)-poly(styrene) diblock copolymers with lipids at the air-water interface.

    Science.gov (United States)

    Mudgil, Poonam; Dennis, Gary R; Millar, Thomas J

    2006-08-29

    Diblock copolymers with hydrophilic poly(tert-butyl acrylate) (PtBA) and hydrophobic poly(styrene) (PS) blocks were synthesized with a view to use them as a surfactant in tear film for increasing the ocular comfort in dry eye syndrome. Interactions of six PtBA-PS copolymers with four important lipids found in the tear film, namely cholesterol, cholesteryl palmitate, dipalmitoyl phosphatidylcholine, and phosphatidylinositol, were studied at the air-water interface using a Langmuir trough. Thermodynamics of mixing of the copolymers and the lipids in the mixed monolayers was determined by calculating excess free energy of mixing. The diblock copolymers showed repulsive interactions with cholesteol and cholesteryl palmitate, near neutral interactions with dipalmitoyl phosphatidylcholine, and attractive interactions with phosphatidylinositol. The lipids interacted with the PS component of the copolymer. The results indicate that a copolymer with a small hydrophilic group and a big hydrophobic group can be a likely candidate for forming stable interactions with the lipids present in the tear film and hence increase the ocular comfort.

  8. Teratogenicity and metabolism of water-soluble forms of vitamin A in the pregnant rat

    International Nuclear Information System (INIS)

    Gunning, D.B.; Barua, A.B.; Olson, J.A.

    1990-01-01

    Retinoyl β-glucuronide, unlike retinoic acid, has been shown to be non-teratogenic when administered orally, even in large doses, to pregnant rats. The degree to which water-solubility is associated with low teratogenicity is not known. Other water-soluble forms of vitamin A have now been synthesized in our laboratory and are being evaluated for teratogenicity. New water-soluble forms of vitamin A were administered orally to pregnant Sprague-Dawley rats in a single dose of 0.35 mmole/kg bw on day 8 of gestation. On day 19, the dams were sacrificed and the litters were examined. Control animals received either vehicle only or an equivalent dose of all-trans retinoic acid. Maternal and fetal tissues were taken and analyzed by HPLC for vitamin A metabolites. In another experiment, a large single oral dose of the radiolabelled water-soluble compound was administered on day 10. At either 30 minutes or 1 hour after the dose, dams were sacrificed and the embryos analyzed both for radioactivity and for specific metabolites. In contrast to retinoyl β-glucuronide, retinoyl β-glucose is highly teratogenic under identical conditions. Thus, water-solubility does not seem to be the determining factor in the teratogenicity of retinoic acid conjugates

  9. Solubility of carbohydrates in heavy water.

    Science.gov (United States)

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  11. Water-Soluble Vitamin E-Tocopheryl Phosphate.

    Science.gov (United States)

    Zingg, Jean-Marc

    The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases. © 2018 Elsevier Inc. All rights reserved.

  12. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and

  13. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  14. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    Abstract A large part of the new drug candidates discovered by the pharmaceutical industry have poor solubility in aqueous media. The preferred route of drug administration is the oral route, but for these poorly water-soluble drug candidates the oral bioavailability can be low and variable. Often......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... products are important for the solubilization of poorly water-soluble drug substances and thus absorption. The second model used was the lipoprotein secreting Caco-2 cell model, which was used to simulate intestinal lymphatic transport in vitro. Various simulated intestinal fluids were composed...

  15. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  16. Core-shell-corona micelles by PS-b-P2VP-b-PEO copolymers: focus on the water-induced micellization process.

    Science.gov (United States)

    Willet, Nicolas; Gohy, Jean-François; Auvray, Loïc; Varshney, Sunil; Jérôme, Robert; Leyh, Bernard

    2008-04-01

    It is now well established that amphiphilic PS-b-P2VP-b-PEO linear triblock copolymers can form multilayered assemblies, thus core-shell-corona (CSC) micelles, in water. Micellization is triggered by addition of a small amount of water into a dilute solution of the PS-b-P2VP-b-PEO copolymer in a non-selective organic solvent. However, the phenomena that take place at the very beginning of this process are poorly documented. How these copolymer chains are perturbed by addition of water was investigated in this work by light and neutron scattering techniques and transmission electron microscopy. It was accordingly possible to determine the critical water concentration (CWC), the compactness of the nano-objects in solution, their number of aggregation, and their hydrodynamic diameter at each step of the micellization process.

  17. Leaching behavior of water-soluble carbohydrates from almond hulls

    Science.gov (United States)

    Over 58% of the dry matter content of the hulls from the commercial almond (Prunus dulcis (Miller) D.A. Webb) is soluble in warm water (50-70°C) extraction. The water-soluble extractables include useful amounts of fermentable sugars (glucose, fructose, sucrose), sugar alcohols (inositol and sorbito...

  18. Evaluation of Poly(2-Ethyl-2-Oxazoline) Containing Copolymer Networks of Varied Composition as Sustained Metoprolol Tartrate Delivery Systems

    OpenAIRE

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-01-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron ...

  19. Effect of surfactants on the fluorescence spectra of water-soluble ...

    Indian Academy of Sciences (India)

    TECS

    Effect of surfactants on the fluorescence spectra of water-soluble. MEHPPV ... polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhi- ..... in other words the variation of emission intensity.

  20. The effect of humidity on the CO2/N2 separation performance of copolymers based on hard polyimide segments and soft polyether chains: Experimental and modeling

    Directory of Open Access Journals (Sweden)

    Luca Olivieri

    2016-10-01

    Full Text Available In this work, we studied two copolymers formed by segments of a rubbery polyether (PPO or PEO and of a glassy polyimide (BPDA-ODA or BKDA-ODA suitable for gas separation and CO2 capture. Firstly, we assessed the absorption of water vapor in the materials, as a function of relative humidity (R.H., finding that the humidity uptake of the copolymers lies between that of the corresponding pure homopolymers values. Furthermore, we studied the effect of humidity on CO2 and N2 permeability, as well as on CO2/N2 selectivity, up to R.H. of 75%. The permeability decreases with increasing humidity, while the ideal selectivity remains approximately constant in the entire range of water activity investigated. The humidity-induced decrease of permeability in the copolymers is much smaller than the one observed in polyimides such as Matrimid® confirming the positive effect of the polyether phase on the membrane performance.Finally, we modeled the humidity-induced decrease of gas solubility, diffusivity and, consequently, permeability, using a suitable approach that considers the free volume theory for diffusion and LF model for solubility. Such model allows estimating the extent of competition that the gases undergo with water during sorption in the membranes, as a function of the relative humidity, as well as the expected reduction of free volume by means of water molecules occupation and consequent reduction of diffusivity. Keywords: CO2 capture, Humid gas permeation, Transport properties in polymeric membranes, Water vapor sorption, Modeling

  1. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  2. Fabrication of an open Au/nanoporous film by water-in-oil emulsion-induced block copolymer micelles.

    Science.gov (United States)

    Koh, Haeng-Deog; Kang, Nam-Goo; Lee, Jae-Suk

    2007-12-18

    Water-in-oil (W/O) emulsion-induced micelles with narrow size distributions of approximately 140 nm were prepared by sonicating the polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer in the toluene/water (50:1 vol %). The ordered nanoporous block copolymer films with the hydrophilic P2VP interior and the PS matrix were distinctly fabricated by casting the resultant solution on substrates, followed by evaporating the organic solvent and water. The porous diameter was estimated to be about 70 nm. Here, we successfully prepared the open nanoporous nanocomposites, the P2VP domain decorated by Au (5+/-0.4 nm) nanoparticles based on the methodology mentioned. We anticipate that this novelty enhances the specific function of nanoporous films.

  3. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  4. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  5. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    International Nuclear Information System (INIS)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-01-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in vitro.

  6. Micellar aggregates of amylose-block-polystyrene rod-coil block copolymers in water and THF

    NARCIS (Netherlands)

    Loos, Katja; Böker, Alexander; Zettl, Heiko; Zhang, Mingfu; Krausch, Georg; Müller, Axel H.E.; Boker, A.; Zhang, A.F.

    2005-01-01

    Amylose-block-polystyrenes with various block copolymer compositions were investigated in water and in THF solution. Fluorescence correlation spectroscopy, dynamic light, scattering (DLS), and asymmetric flow field-flow fractionation with multiangle light scattering detection indicate the presence

  7. Polymer-assisted synthesis of water-soluble PbSe quantum dots

    International Nuclear Information System (INIS)

    Melnig, V.; Apostu, M.-O.; Foca, N.

    2008-01-01

    Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

  8. Water-soluble light-emitting nanoparticles prepared by non-covalent bond self-assembly of a hydroxyl group functionalized oligo(p-phenyleneethynylene) with different water-soluble polymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Water-soluble light-emitting nanoparticles were prepared from hydroxyl group functionalized oligos(p-phenyleneethynylene) (OHOPEL) and water-soluble polymers(PEG,PAA,and PG) by non-covalent bond self-assembly.Their structure and optoelectronic properties were investigated through dynamic light scattering(DLS) ,UV and PL spectroscopy.The optical properties of OHOPEL-based water-soluble nanoparticles exhibited the same properties as that found in OHOPEL films,indicating the existence of interchain-aggregation of OHOPELs in the nanoparticles.OHOPEL-based nanoparticles prepared from conjugated oligomers show smaller size and lower dispersity than nanoparticles from conjugated polymers,which means that the structures of water-soluble nanoparticles are linked to the conjugated length.Furthermore,the OHOPEL/PG and OHOPEL/PAA systems produced smaller particles and lower polydispersity than the OHOPEL/PEG system,indicating that there may exist influence of the strength of non-covalent bonds on the size and degree of dispersity of the nanoparticles.

  9. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Etrych, Tomáš; Ulbrich, Karel

    2018-01-01

    Over the past few decades, numerous polymer drug carrier systems are designed and synthesized, and their properties are evaluated. Many of these systems are based on water-soluble polymer carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, or multidrug resistance inhibitors, all covalently bound to a carrier by a biodegradable spacer that enables controlled release of the active molecule to achieve the desired pharmacological effect. Among others, the synthetic polymer carriers based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are some of the most promising carriers for this purpose. This review focuses on advances in the development of HPMA copolymer carriers and their conjugates with anticancer drugs, with triggered drug activation in tumor tissue and especially in tumor cells. Specifically, this review highlights the improvements in polymer drug carrier design with respect to the structure of a spacer to influence controlled drug release and activation, and its impact on the drug pharmacokinetics, enhanced tumor uptake, cellular trafficking, and in vivo antitumor activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Poly(3`,4`-dibutyl-{alpha}-terthiophene-phenylene-vinylene): a new soluble and dopable phenylene-vinylene-based conjugated polymer

    Energy Technology Data Exchange (ETDEWEB)

    Chenggang, Wang [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry; Xusheng, Xie [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry; LeGoff, E [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry; Albritton-Thomas, J [Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208-3118 (United States); Kannewurf, C R [Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208-3118 (United States); Kanatzidis, M G [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry

    1995-09-01

    A new soluble and dopable copolymer consisting of 3`,4`-dibutyl-2,2`:5`,2``-terthiophene and phenylene-vinylene units has been designed and prepared via a Wittig reaction. This title copolymer is soluble in common organic solvents such as THF and CHCl{sub 3}, and can be doped with iodine achieving an electrical conductivity of about 3.2x10{sup -2} S/cm at room temperature. Films of this copolymer are electroactive and turn reversibly and rapidly from red to green-blue upon doping and undoping electrochemically. (orig.)

  11. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  12. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of water-soluble fenofibrate.

  13. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    Science.gov (United States)

    Teran, Alexander Andrew

    -like environment around the ion while the second mechanism of ion conduction is attributed to diffusion of the entire polymer chain with coordinated ions. Equilibrated block copolymer electrolytes exhibit a non-monotonic dependence on molecular weight, decreasing with increasing molecular weight in the small molecular weight limit before increasing when molecular weight exceeds about 10 kg mol-1. Conductivity in annealed electrolytes was shown to be affected by two competing factors: the glass transition temperature of the insulating polystyrene block and the width of the conducting poly(ethylene oxide) (PEO) channel. In the low molecular weight limit, all ions are in contact with both polystyrene (PS) and PEO segments. The intermixing between PS and PEO segments is restricted to an interfacial zone of width of about 5 nm. The fraction of ions affected by the interfacial zone decreases as the conducting channel width increases. Furthermore, the effect of thermal history on the conductivity of the block copolymer electrolytes was examined. Results suggest that long-range order impedes ion transport, and consequently decreases in conductivity of up to 80% were seen upon annealing. The effect of morphology on ion transport was studied by conducting simultaneous impedance and X-ray scattering experiments as the block copolymer electrolyte transitioned from an ordered lamellar structure to a disordered phase. The ionic conductivity increased discontinuously through the transition from order to disorder. A simple framework for quantifying the magnitude of the discontinuity was presented. Finally, block copolymer electrolytes were examined specifically for use in high energy density solid state lithium/sulfur batteries. Such materials have been shown to form a stable interface with lithium metal anodes, maintain intimate contact upon cycling, and have sufficiently high shear moduli to retard dendrite formation. Having previously satisfied the concerns associated with the lithium metal

  14. Solubility of corrosion products in high temperature water

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Narasimhan, S.V.

    1995-01-01

    A short review of solubility of corrosion products at high temperature in either neutral or alkaline water as encountered in BWR, PHWR and PWR primary coolant reactor circuits is presented in this report. Based on the available literature, various experimental techniques involved in the study of the solubility, theory for fitting the solubility data to the thermodynamic model and discussion of the published results with a scope for future work have been brought out. (author). 17 refs., 7 figs

  15. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  16. Simulated food effects on drug release from ethylcellulose: PVA-PEG graft copolymer-coated pellets.

    Science.gov (United States)

    Muschert, Susanne; Siepmann, Florence; Leclercq, Bruno; Carlin, Brian; Siepmann, Juergen

    2010-02-01

    Food effects might substantially alter drug release from oral controlled release dosage forms in vivo. The robustness of a novel type of controlled release film coating was investigated using various types of release media and two types of release apparatii. Importantly, none of the investigated conditions had a noteworthy impact on the release of freely water-soluble diltiazem HCl or slightly water-soluble theophylline from pellets coated with ethylcellulose containing small amounts of PVA-PEG graft copolymer. In particular, the presence of significant amounts of fats, carbohydrates, surfactants, bile salts, and calcium ions in the release medium did not alter drug release. Furthermore, changes in the pH and differences in the mechanical stress the dosage forms were exposed to did not affect drug release from the pellets. The investigated film coatings allowing for oral controlled drug delivery are highly robust in vitro and likely to be poorly sensitive to classical food effects in vivo.

  17. Solubility studies of Np(V) in simulated underground water

    International Nuclear Information System (INIS)

    Zhang Yingjie; Ren Lilong; Jiao Haiyang; Yao Jun; Su Xiguang; Fan Xianhua

    2004-01-01

    The solubility of Np(V) in simulated underground water has been measured with the variation of pH, storage time (0-100 days). All experiments were performed in an Ar glove box which contained high purity Ar, with an oxygen content of less than 5ppm. Experimental results show that the solubility of Np(V) in simulated underground water decreased with increasing pH value of solution; the solubility of Np(V) in simulated underground water determined at different pH is : pH=6.96, [Np(V)]=(3.52±0.37) x 10 -4 mol/L; pH=8.04, [Np(V)]=(8.24±0.32) x 10 -5 mol/L; pH=9.01, [Np(V)]=(3.04±0.48) x 10'- 5 mol/L, respectively. (author)

  18. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs.

    Science.gov (United States)

    Tian, Ye; Mao, Shirui

    2012-06-01

    Many amphiphilic copolymers have recently been synthesized as novel promising micellar carriers for the delivery of poorly water-soluble anticancer drugs. Studies on the formulation and oral delivery of such micelles have demonstrated their efficacy in enhancing drug uptake and absorption, and exhibit prolonged circulation time in vitro and in vivo. In this review, literature on hydrophobic modifications of several hydrophilic polymers, including polyethylene glycol, chitosan, hyaluronic acid, pluronic and tocopheryl polyethylene glycol succinate, is summarized. Parameters influencing the properties of polymeric micelles for oral chemotherapy are discussed and strategies to overcome main barriers for polymeric micelles peroral absorption are proposed. During the design of polymeric micelles for peroral chemotherapy, selecting or synthesizing copolymers with good compatibility with the drug is an effective strategy to increase drug loading and encapsulation efficiency. Stability of the micelles can be improved in different ways. It is recommended to take permeability, mucoadhesion, sustained release, and P-glycoprotein inhibition into consideration during copolymer preparation or to consider adding some excipients in the formulation. Furthermore, both the copolymer structure and drug loading methods should be controlled in order to get micelles with appropriate particle size for better absorption.

  19. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  20. Structural and Mechanical Hysteresis at the Order-Order Transition of Block Copolymer Micellar Crystals

    Directory of Open Access Journals (Sweden)

    Theresa A. LaFollette

    2011-01-01

    Full Text Available Concentrated solutions of a water-soluble block copolymer (PEO20-(PPO70-(PEO20 show a thermoreversible transition from a liquid to a gel. Over a range of concentration there also exists an order-order transition (OOT between cubically-packed spherical micelles and hexagonally-packed cylindrical micelles. This OOT displays a hysteresis between the heating and cooling transitions that is observed at both the macroscale through rheology and nanoscale through small angle neutron scattering (SANS. The hysteresis is caused by the persistence of the cubically-packed spherical micelle phase into the hexagonally-packed cylindrical micelle phase likely due to the hindered realignment of the spherical micelles into cylindrical micelles and then packing of the cylindrical micelles into a hexagonally-packed cylindrical micelle phase. This type of hysteresis must be fully characterized, and possibly avoided, for these block copolymer systems to be used as templates in nanocomposites.

  1. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  3. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  4. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    Science.gov (United States)

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers.

    Science.gov (United States)

    Gupta, Nivika R; Torris A T, Arun; Wadgaonkar, Prakash P; Rajamohanan, P R; Ducouret, Guylaine; Hourdet, Dominique; Creton, Costantino; Badiger, Manohar V

    2015-03-06

    New thermo associating polymers were designed and synthesized by grafting amino terminated poly(ethylene oxide-co-propylene oxide) (PEPO) onto carboxymethyl guar (CMG) and carboxymethyl tamarind (CMT). The grafting was performed by coupling reaction between NH2 groups of PEPO and COOH groups of CMG and CMT using water-soluble EDC/NHS as coupling agents. The grafting efficiency and the temperature of thermo-association, T(assoc) in the copolymer were studied by NMR spectroscopy. The graft copolymers, CMG-g-PEPO and CMT-g-PEPO exhibited interesting thermo-associating behavior which was evidenced by the detailed rheological and fluorescence measurements. The visco-elastic properties (storage modulus, G'; loss modulus, G") of the copolymer solutions were investigated using oscillatory shear experiments. The influence of salt and surfactant on the T(assoc) was also studied by rheology, where the phenomenon of "Salting out" and "Salting in" was observed for salt and surfactant, respectively, which can give an easy access to tunable properties of these copolymers. These thermo-associating polymers with biodegradable nature of CMG and CMT can have potential applications as smart injectables in controlled release technology and as thickeners in cosmetics and pharmaceutical formulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles.

    Science.gov (United States)

    Borke, Tina; Najberg, Mathie; Ilina, Polina; Bhattacharya, Madhushree; Urtti, Arto; Tenhu, Heikki; Hietala, Sami

    2018-01-01

    Treatment of retinal diseases currently demands frequent intravitreal injections due to rapid clearance of the therapeutics. The use of high molecular weight polymers can extend the residence time in the vitreous and prolong the injection intervals. This study reports a water soluble graft copolymer as a potential vehicle for sustained intravitreal drug delivery. The copolymer features a high molecular weight hyaluronic acid (HA) backbone and poly(glyceryl glycerol) (PGG) side chains attached via hydrolysable ester linkers. PGG, a polyether with 1,2-diol groups in every repeating unit available for conjugation, serves as a detachable carrier. The influence of synthesis conditions and incubation in physiological media on the molecular weight of HA is studied. The cleavage of the PGG grafts from the HA backbone is quantified and polymer-from-polymer release kinetics are determined. The biocompatibility of the materials is tested in different cell cultures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Study of the role of β-adrenoceptors in the mechanisms of hemodynamic action and radioprotective activity of 2-methyl-5-vinylpyridine copolymer with 2-methyl-5-vinylpyridinium-N-oxide

    International Nuclear Information System (INIS)

    Korovkina, Eh.P.; Mikhajlov, P.P.; Tsorin, I.B.

    2000-01-01

    The effect of the new water soluble copolymer 2-methyl-5-vinylpyridine with 2-methyl-5-vinylpyridinium-N-oxide on the arterial pressure in dogs and cats is studied; the possibility of modifying the polymer hemodynamical activity under the impact of the β-propranolol blocking is investigated; the effect of the latter one on the copolymer in dogs is evaluated. The therapeutic antiradiation efficiency of the copolymer was judged by the irradiated dogs survival during 45 days. The dogs were subjected to the 137 Cs γ-radiation impact with the dose rate of 153 cGy in the 330 cGy. It is shown that the copolymer causes depression reaction in the anesthetized dogs and cats characteristic for the β-adrenomimetics This effect is leveled by the nonselective β-adrenoblocking - propranolol. The preliminary introduction of propranolol in dogs decreased the therapeutic antiradiation-efficiency of the given copolymer from 68.4 up to 8.3 % [ru

  8. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  9. Radiculography with water-soluble contraste medium

    International Nuclear Information System (INIS)

    Araujo Pinheiro, R.S. de

    1987-01-01

    The etiologic diagnosis of the lumbar pain is discussed. The radiculography with water-soluble contrast medium is used and 250 cases are studied. Some practical criteria of indication executation and interpretation of the examination are reported. (M.A.C.) [pt

  10. Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

    Directory of Open Access Journals (Sweden)

    Yang Zhuoli

    2009-01-01

    Full Text Available Abstract A series of monomethoxy poly(ethylene glycol-poly(lactide (mPEG-PLA diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to 82 μg/mL before freeze-drying. The mean diameter of ethaselen-loaded micelles ranged from 51 to 98 nm with a narrow size distribution and depended on the length of PLA block. In vitro hemolysis study indicated that mPEG-PLA copolymers and ethaselen-loaded polymeric micelles had no hemolytic effect on the erythrocyte. The enhanced antitumor efficacy and reduced toxic effect of ethaselen-loaded polymeric micelle when compared with ethaselen-HP-β-CD inclusion were observed at the same dose in H22human liver cancer cell bearing mouse models. These suggested that mPEG-PLA polymeric micelle nanoparticles had great potential as nanocarriers for effective solubilization of poorly soluble ethaselen and further reducing side effects and toxicities of the drug.

  11. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  12. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels.

    Science.gov (United States)

    Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard

    2016-10-01

    The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol.

    Science.gov (United States)

    Zoghbi, Abdelmoumin; Geng, Tianjiao; Wang, Bo

    2017-11-01

    Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD). The action of different carriers separately and in combination on Carvedilol solubility was investigated in three series. CAR-carrier and KD-carrier solid dispersions were prepared by solvent evaporation method. In vitro dissolution test was conducted in three different media: double-distilled water (DDW), simulative gastric fluid (SGF), and PBS pH 6.8 (PBS). The interactions between CAR, HPβCD, and different carriers were explored by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), and differential scanning colorimetry (DSC). The results showed higher solubility of CAR in KD-PVP solid dispersions up to 70, 25, and 22 fold compared to pure CAR in DDW, SGF, and PBS, respectively. DSC and XRD analyses indicated an improved degree of transformation of CAR in KD-PVP solid dispersion from crystalline to amorphous state. This study provides a new successful combination of two polymers with the dual action of HPβCD and PLX/PVP on water solubility and bioavailability of CAR.

  14. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  15. Twenty-four-hour urinary water-soluble vitamin levels correlate with their intakes in free-living Japanese schoolchildren.

    Science.gov (United States)

    Tsuji, Tomiko; Fukuwatari, Tsutomu; Sasaki, Satoshi; Shibata, Katsumi

    2011-02-01

    To examine the association between 24 h urinary water-soluble vitamin levels and their intakes in free-living Japanese schoolchildren. All foods consumed for four consecutive days were recorded accurately by a weighed food record. A single 24 h urine sample was collected on the fourth day, and the urinary levels of water-soluble vitamins were measured. An elementary school in Inazawa City, Japan. A total of 114 healthy, free-living, Japanese elementary-school children aged 10-12 years. The urinary level of each water-soluble vitamin was correlated positively to its mean intake in the past 2-4 d (vitamin B1: r = 0·42, P vitamin B2: r = 0·43, P vitamin B6: r = 0·49, P vitamin C: r = 0·39, P vitamin B12 (r = 0·10, P = NS). Estimated mean intakes of water-soluble vitamins calculated using urinary levels and recovery rates were 97-102 % of their 3 d mean intake, except for vitamin B12 (79 %). The results show that urinary levels of water-soluble vitamins, except for vitamin B12, reflected their recent intakes in free-living Japanese schoolchildren and could be used as a potential biomarker to estimate mean vitamin intake.

  16. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    /mol and minimum polystyrene content of 50 w/w%, which by us is predicted as the limits for solubility of polystyrene-b-alkyl in polystyrene. DSC showed polystyrene was plasticized, as seen by a reduction in glass transition temperature, by block copolymers consisting of a polystyrene block with molecular weight...... of approximately 1 kg/mol and an alkyl block with a molecular weight of approximately of 0.3 kg/mol. The efficiency of the block copolymers as plasticizers increases with decreasing molecular weight and polystyrene content. In addition, polystyrene-b-alkyl is found to be an efficient plasticizer also...... for polystyrene-b-polyisoprene-b-polystyrene (SIS) block copolymers. The end use properties of SIS plasticized with polystyrene-b-alkyl, measured as tensile strength, is higher than for SIS plasticized with dioctyl adipate. The polystyrene-b-polybutadiene-b-polystyrene and polystyrene-bpoly(propylene glycol...

  17. Review: kinetics of water-soluble contrast media in the central nervous system

    International Nuclear Information System (INIS)

    Sage, M.R.

    1983-01-01

    In neuroradiology, intraarterial, intravenous, and intrathecal injections of water-soluble contrast media are made. With the growing importance of water-soluble myelography, interventional angiography, and enhanced computed tomography (CT), it is essential to have a clear understanding of the response of the nervous system to such procedures. The blood, cerebrospinal fluid (CSF), and extracellular fluid of the parenchyma form the fluid compartments of the brain with three interfaces between, namely, the blood-brain interface, the CSF-brain interface, and the blood-CSF interface. One of more of these interfaces are exposed to water-soluble contrast media after intraarterial, intravenous, or intrathecal administration. The behavior of water-soluble contrast media at these interfaces is discussed on the basis of local experience and a review of the literature

  18. Synthesis and characterization of novel organotin carboxylate maleimide monomers and copolymers

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Two novel tributyltin carboxylate maleimide monomers, tributyltin(maleimidoacetate and tributyltin(4-maleimidobenzoate, were synthesized by condensation reaction of maleimidoacetic acid or 4-maleimidobenzoic acid with bis(tributyltin oxide. Copolymerization of these monomers with styrene was carried in dioxane at 70°C using asobisisobutyronitrile as free radical initiator. The structures of monomers and copolymers were confirmed by FT-IR (Fourier Transform Infrared, 1H and 13C NMR (nuclear magnetic resonance spectroscopy and elemental analysis. The copolymers were characterized by solubility and thermal analysis.

  19. Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications.

    Science.gov (United States)

    Huang, Lihong; Zhuang, Xiuli; Hu, Jun; Lang, Le; Zhang, Peibiao; Wang, Yu; Chen, Xuesi; Wei, Yen; Jing, Xiabin

    2008-03-01

    To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly( l-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%. We systematically studied the compatibility of PLAAP copolymer in vitro and proved that the electroactive PLAAP copolymer was innocuous, biocompatible, and helpful for the adhesion and proliferation of rat C6 cells. Moreover, the PLAAP copolymer stimulated by electrical signals was demonstrated as accelerating the differentiation of rat neuronal pheochromocytoma PC-12 cells. This biodegradable and electroactive PLAAP copolymer thus possessed the properties in favor of the long-time application in vivo as nerve repair scaffold materials in tissue engineering.

  20. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  1. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  2. Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanapathipillai, Mathumai [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Self-assembly is a powerful tool in forming structures with nanoscale dimensions. Self-assembly of macromolecules provides an efficient and rapid pathway for the formation of structures from the nanometer to micrometer range that are difficult, if not impossible to obtain by conventional lithographic techniques [1]. Depending on the morphologies obtained (size, shape, periodicity, etc.) these self-assembled systems have already been applied or shown to be useful for a number of applications in nanotechnology [2], biomineralization [3, 4], drug delivery [5, 6] and gene therapy [7]. In this respect, amphiphilic block copolymers that self-organize in solution have been found to be very versatile [1]. In recent years, polymer-micellar systems have been designed that are adaptable to their environment and able to respond in a controlled manner to external stimuli. In short, synthesis of 'nanoscale objects' that exhibit 'stimulus-responsive' properties is a topic gathering momentum, because their behavior is reminiscent of that exhibited by proteins [8]. By integrating environmentally sensitive homopolymers into amphiphilic block copolymers, smart block copolymers with self assembled supramolecular structures that exhibit stimuli or environmentally responsive properties can be obtained [1]. Several synthetic polymers are known to have environmentally responsive properties. Changes in the physical, chemical or biochemical environment of these polymers results in modulation of the solubility or chain conformation of the polymer [9]. There are many common schemes of engineering stimuli responsive properties into materials [8, 9]. Polymers exhibiting lower critical solution temperature (LCST) are soluble in solvent below a specific temperature and phase separate from solvent above that temperature while polymers exhibiting upper critical solution temperatures (UCST) phase separate below a certain temperature. The solubility of polymers with ionizable

  3. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  4. Functionalized and graft copolymers of chitosan and its pharmaceutical applications.

    Science.gov (United States)

    Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab

    2017-10-01

    Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.

  5. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    International Nuclear Information System (INIS)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.; Prochnow, David Adrian; Schulte, Louis D.; DeBurgomaster, Paul Christopher; Fife, Keith William; Rubin, Jim; Worl, Laura Ann

    2016-01-01

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3 O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3 , and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate

  6. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  7. Thermoresponsive Interplay of Water Insoluble Poly(2-alkyl-2-oxazolines Composition and Supramolecular Host–Guest Interactions

    Directory of Open Access Journals (Sweden)

    Victor R. de la Rosa

    2015-04-01

    Full Text Available A series of water insoluble poly[(2-ethyl-2-oxazoline-ran-(2-nonyl-2-oxazoline] amphiphilic copolymers was synthesized and their solubility properties in the presence of different supramolecular host molecules were investigated. The resulting polymer-cavitand assemblies exhibited a thermoresponsive behavior that could be modulated by variation of the copolymer composition and length. Interestingly, the large number of hydrophobic nonyl units across the polymer chain induced the formation of kinetically-trapped nanoparticles in solution. These nanoparticles further agglomerate into larger aggregates at a temperature that is dependent on the polymer composition and the cavitand type and concentration. The present research expands the understanding on the supramolecular interactions between water insoluble copolymers and supramolecular host molecules.

  8. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  9. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  10. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods

    Science.gov (United States)

    Boaz, Segal M.; Champagne, Cory D.; Fowler, Melinda A.; Houser, Dorian H.; Crocker, Daniel E.

    2011-01-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to seven weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems. PMID:21983145

  11. Intestinal absorption of water-soluble vitamins in health and disease.

    Science.gov (United States)

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  12. Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results

    International Nuclear Information System (INIS)

    Freire, Mara G.; Carvalho, Pedro J.; Santos, Luis M.N.B.F.; Gomes, Ligia R.; Marrucho, Isabel M.; Coutinho, Joao A.P.

    2010-01-01

    This work aims at providing experimental and theoretical information about the water-perfluorocarbon molecular interactions. For that purpose, experimental solubility results for water in cyclic and aromatic perfluorocarbons (PFCs), over the temperature range between (288.15 and 318.15) K, and at atmospheric pressure, were obtained and are presented. From the experimental solubility dependence on temperature, the partial molar solution and solvation thermodynamic functions such as Gibbs free energy, enthalpy and entropy were determined and are discussed. The process of dissolution of water in PFCs is shown to be spontaneous for cyclic and aromatic compounds. It is demonstrated that the interactions between the non-aromatic PFCs and water are negligible while those between aromatic PFCs and water are favourable. The COSMO-RS predictive capability was explored for the description of the water solubility in PFCs and others substituted fluorocompounds. The COSMO-RS is shown to be a useful model to provide reasonable predictions of the solubility values, as well as to describe their temperature and structural modifications dependence. Moreover, the molar Gibbs free energy and molar enthalpy of solution of water are predicted remarkably well by COSMO-RS while the main deviations appear for the prediction of the molar entropy of solution.

  13. Nanonization strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  14. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    Science.gov (United States)

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.

  15. Solubility study of Tc(IV) in a granitic water

    International Nuclear Information System (INIS)

    Liu, D.J.; Yao, J.; Wang, B.; Bruggeman, C.; Maes, N.

    2007-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 .nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 .nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium(IV) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49 ∝ 1.86) x 10 -9 mol L -1 d -1 under aerobic conditions, while no Tc(IV) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  16. Polystyrene-block-Poly(ionic liquid) Copolymers as Work Function Modifiers in Inverted Organic Photovoltaic Cells.

    Science.gov (United States)

    Park, Jong Baek; Isik, Mehmet; Park, Hea Jung; Jung, In Hwan; Mecerreyes, David; Hwang, Do-Hoon

    2018-02-07

    Interfacial layers play a critical role in building up the Ohmic contact between electrodes and functional layers in organic photovoltaic (OPV) solar cells. These layers are based on either inorganic oxides (ZnO and TiO 2 ) or water-soluble organic polymers such as poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)] and polyethylenimine ethoxylated (PEIE). In this work, we have developed a series of novel poly(ionic liquid) nonconjugated block copolymers for improving the performance of inverted OPV cells by using them as work function modifiers of the indium tin oxide (ITO) cathode. Four nonconjugated polyelectrolytes (n-CPEs) based on polystyrene and imidazolium poly(ionic liquid) (PSImCl) were synthesized by reversible addition-fragmentation chain transfer polymerization. The ratio of hydrophobic/hydrophilic block copolymers was varied depending on the ratio of polystyrene to the PSImCl block. The ionic density, which controls the work function of the electrode by forming an interfacial dipole between the electrode and the block copolymers, was easily tuned by simply changing the PSImCl molar ratio. The inverted OPV device with the ITO/PS 29 -b-PSImCl 60 cathode achieved the best power conversion efficiency (PCE) of 7.55% among the synthesized block copolymers, exhibiting an even higher PCE than that of the reference OPV device with PEIE (7.30%). Furthermore, the surface properties of the block copolymers films were investigated by contact angle measurements to explore the influence of the controlled hydrophobic/hydrophilic characters on the device performances.

  17. Solubility study of Tc(Ⅳ) in a granitic water

    International Nuclear Information System (INIS)

    Liu Dejun; Yao Jun; Wang Bo

    2008-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 -nH 2 O. Hence, the mobility of Tc(Ⅳ) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium (Ⅳ) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(Ⅳ) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(Ⅳ) were studied. The concentration of total technetium and Tc(Ⅳ) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(Ⅳ) in simulated groundwater and redistilled water is about (1.49-1.86)x10 -9 mol·L -1 d -1 under aerobic conditions, while no Tc(Ⅳ) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(Ⅳ) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  18. Characterization of Gasolines, Diesel Fuels and Their Water Soluble Fractions

    Science.gov (United States)

    1983-09-01

    Hutchinson, et al.,1979 ) with the marine algae, Chlorella vulgaris and Chlamydomonas angulosa, suggests that the toxicity of hydrocarbons is a...water-soluble petroleum components on the growth of Chlorella vulgaris Beijernck. Environ. Poll. 9: 157. Morrow, J.E., et al. 1975. Effects of some...P.B., and T.C. Hutchison. 1975. The effects of water-soluble petroleum components on the growth of Chlorella vulqaris Beijerinck. Environ. Poll. 9

  19. The solubilities of benzene polycarboxylic acids in water

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Manzurola, Emanuel; Abo Balal, Nazmia

    2006-01-01

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities

  20. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  1. Electrostatic self-assembly in polyelectrolyte-neutral block copolymers and oppositely charged surfactant solutions

    International Nuclear Information System (INIS)

    Berret, J.-F.Jean-Francois; Oberdisse, Julian

    2004-01-01

    We report on small-angle neutron scattering (SANS) of colloidal complexes resulting from the electrostatic self-assembly of polyelectrolyte-neutral copolymers and oppositely charged surfactants. The polymers are double hydrophilic block copolymers of low molecular weight (between 5000 and 50 000 g/mol). One block is a polyelectrolyte chain, which can be either positively or negatively charged, whereas the second block is neutral and in good solvent conditions. In aqueous solutions, surfactants with an opposite charge to that of the polyelectrolyte interact strongly with these copolymers. The two species associate into stable 100 nm-colloidal complexes which exhibit a core-shell microstructure. For different polymer/surfactant couples, we have shown that the core is constituted from densely packed surfactant micelles connected by the polyelectrolyte chains. The outer part of the complex is a corona formed by the neutral soluble chains. Using a model of aggregation based on a Monte-Carlo algorithm, we have simulated the internal structure of the aggregates. The model assumes spherical cages containing one to several hundreds of micelles in a closely packed state. The agreement between the model and the data is remarkable

  2. Amino Acid Block Copolymers with Broad Antimicrobial Activity and Barrier Properties.

    Science.gov (United States)

    Bevilacqua, Michael P; Huang, Daniel J; Wall, Brian D; Lane, Shalyn J; Edwards, Carl K; Hanson, Jarrod A; Benitez, Diego; Solomkin, Joseph S; Deming, Timothy J

    2017-10-01

    Antimicrobial properties of a long-chain, synthetic, cationic, and hydrophobic amino acid block copolymer are reported. In 5 and 60 min time-kill assays, solutions of K 100 L 40 block copolymers (poly(l-lysine·hydrochloride) 100 -b-poly(l-leucine) 40 ) at concentrations of 10-100 µg mL -1 show multi-log reductions in colony forming units of Gram-positive and Gram-negative bacteria, as well as yeast, including multidrug-resistant strains. Driven by association of hydrophobic segments, K 100 L 40 copolymers form viscous solutions and self-supporting hydrogels in water at concentrations of 1 and 2 wt%, respectively. These K 100 L 40 preparations provide an effective barrier to microbial contamination of wounds, as measured by multi-log decreases of tissue-associated bacteria with deliberate inoculation of porcine skin explants, porcine open wounds, and rodent closed wounds with foreign body. Based on these findings, amino acid copolymers with the features of K 100 L 40 can combine potent, direct antimicrobial activity and barrier properties in one biopolymer for a new approach to prevention of wound infections. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. pH- and temperature-sensitive polymeric microspheres for drug delivery: the dissolution of copolymers modulates drug release.

    Science.gov (United States)

    Fundueanu, Gheorghe; Constantin, Marieta; Stanciu, Cristina; Theodoridis, Georgios; Ascenzi, Paolo

    2009-12-01

    Most pH-/temperature-responsive polymers for controlled release of drugs are used as cross-linked hydrogels. However, the solubility properties of the linear polymers below and above the lower critical solution temperature (LCST) are not exploited. Here, the preparation and characterization of poly (N-isopropylacrylamide-co-methacrylic acid-co-methyl methacrylate) (poly (NIPAAm-co-MA-co-MM)) and poly (N-isopropylacrylamide-co-acrylamide) (poly (NIPAAm-co-AAm)), known as "smart" polymers (SP), is reported. Both poly (NIPAAm-co-MA-co-MM) and poly (NIPAAm-co-AAm) display pH- and temperature-responsive properties. Poly (NIPAAm-co-MA-co-MM) was designed to be insoluble in the gastric fluid (pH = 1.2), but soluble in the intestinal fluid (pH = 6.8 and 7.4), at the body temperature (37 degrees C). Poly (NIPAAm-co-AAm) was designed to have a lower critical solution temperature (LCST) corresponding to 37 degrees C at pH = 7.4, therefore it is not soluble above the LCST. The solubility characteristics of these copolymers were exploited to modulate the rate of release of drugs by changing pH and/or temperature. These copolymers were solubilized with hydrophobic cellulose acetate butyrate (CAB) and vitamin B(12) (taken as a water soluble drug model system) in an acetone/methanol mixture and dispersed in mineral oil. By a progressive evaporation of the solvent, the liquid droplets were transformed into loaded CAB/SP microspheres. Differential scanning calorimetric studies and scanning electron microscopy analysis demonstrated that the polymeric components of the microspheres precipitated separately during solvent evaporation forming small microdomains. Moreover, vitamin B(12) was found to be molecularly dispersed in both microdomains with no specific affinity for any polymeric component of microspheres. The release of vitamin B(12) was investigated as a function of temperature, pH, and the CAB/SP ratio.

  4. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  5. Synergistic Effect of Binary Mixed-Pluronic Systems on Temperature Dependent Self-assembly Process and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Chin-Fen Lee

    2018-01-01

    Full Text Available Mixed Pluronic micelles from very hydrophobic and very hydrophilic copolymers were selected to scrutinize the synergistic effect on the self-assembly process as well as the solubilization capacity of ibuprofen. The tendency of mixing behavior between parent copolymers was systematically examined from two perspectives: different block chain lengths at same hydrophilicity (L92 + F108, +F98, +F88, and +F68, as well as various hydrophobicities at the same PPO moiety (L92 + F88, +F87, and +P84. Temperature-dependent micellization in these binary systems was clearly inspected by the combined use of high sensitivity differential scanning calorimeter (HSDSC and dynamic light scattering (DLS. Changes in heat capacity and size of aggregates at different temperatures during the whole micellization process were simultaneously observed and examined. While distinction of block chain length between parent copolymers increases, the monodispersity of the binary Pluronic systems decreases. However, parent copolymers with distinct PPO moieties do not affirmatively lead to non-cooperative binding, such as the L92 + P84 system. The addition of ibuprofen promotes micellization as well as stabilizes aggregates in the solution. The partial replacement of the hydrophilic Pluronic by a more hydrophobic Pluronic L92 would increase the total hydrophobicity of mixed Pluronics used in the system to substantially enhance the solubility of ibuprofen. The solubility of ibuprofen in the 0.5 wt % L92 + 0.368 wt % P84 system is as high as 4.29 mg/mL, which is 1.4 times more than that of the 0.868 wt % P84 system and 147 times more than that in pure water at 37 °C.

  6. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Directory of Open Access Journals (Sweden)

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  7. Intestinal absorption of water-soluble vitamins in health and disease

    OpenAIRE

    Said, Hamid M.

    2011-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth an...

  8. Structural effects of a light emitting copolymer having perylene moieties in the side chain on the electroluminescent characteristics

    International Nuclear Information System (INIS)

    Lee, Chang Ho; Ryu, Seung Hoon; Jang, Hee Dong; Oh, Se Young

    2004-01-01

    We have synthesized a novel side chain light emitting copolymer. The side chain light emitting copolymer has a perylene moiety as an emitting unit and methylmethacrylate (MMA) as a spacer to decrease the concentration quenching of light emitting site in the polymer intrachain. These polymers are very soluble in most organic solvents such as monochlorobenzene, tetrahydrofuran, chloroform and benzene. The single-layered electroluminescent (EL) device consisting of ITO/carrier transporting copolymer and light emitting copolymer/Al was manufactured. The carrier transporting copolymer has triphenylamine moiety as a hole transporting unit and triazine moiety as an electron transporting unit in the polymer side chain. This device exhibits maximum external quantum efficiency when the MMA contents of light emitting copolymer is 30 wt.%. In particular, the device emits more blue light as MMA contents increase

  9. Preparation, characterization, and in vitro activity evaluation of triblock copolymer-based polymersomes for drugs delivery

    Science.gov (United States)

    Besada, Lucas N.; Peruzzo, Pablo; Cortizo, Ana M.; Cortizo, M. Susana

    2018-03-01

    Polymersomes are polymer-based vesicles that form upon hydration of amphiphilic block copolymers and display high stability and durability, due to their mechanical and physical properties. They have hydrophilic reservoirs as well as thick hydrophobic membranes; allowing to encapsulate both water-soluble bioactive agent and hydrophobic drugs. In this study, poly ethylene glycol (PEG3350 and PEG6000) were used as hydrophilic part and poly(vinyl benzoate) (PVBz) as hydrophobic block to synthesize amphiphilic triblock copolymers (PVBz- b-PEG- b-PVBz). Different proportions of hydrophilic/hydrophobic part were assayed in order to obtain polymersomes by solvent injection method. For the synthesis of the copolymers, the initial block of PEG was derived to obtain a macroinitiator through a xanthate functional group (PEGX3 or PEGX6) and the polymerization of vinyl benzoate was carried out through reversible addition-fragmentation chain transfer polymerization (RAFT). The structure of PEGX and copolymers was confirmed by Infrared, 1H-NMR and UV-Vis spectrometry, while the average molecular weight (Mw) and polydispersity index (PI) were determined by size exclusion chromatography (SEC). The structures adopted by the copolymers in aqueous solution by self-assembly were investigated using transmission electron microscopy (TEM), dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Both techniques confirm that polymersomes were obtained for a fraction of hydrophilic block ( f) ≈ 35 ± 10%, with a diameter of 38.3 ± 0.3 nm or 22.5 ± 0.7 nm, as determined by TEM and according to the M w of the precursor block copolymer. In addition, we analyzed the possible cytotoxicity in view of its potential application as biomedical nanocarrier. The results suggest that polymersomes seem not induce cytotoxicity during the periods of time tested.

  10. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  11. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods.

    Science.gov (United States)

    Boaz, Segal M; Champagne, Cory D; Fowler, Melinda A; Houser, Dorian H; Crocker, Daniel E

    2012-02-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to 7 weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    International Nuclear Information System (INIS)

    Ha, Phuong Thu; Nguyen, Hoai Nam; Do, Hai Doan; Phan, Quoc Thong; Thi, Minh Nguyet Tran; Nguyen, Xuan Phuc; Thi, My Nhung Hoang; Le, Mai Huong; Nguyen, Linh Toan; Bui, Thuc Quang; Phan, Van Hieu

    2016-01-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50–100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment. (paper)

  13. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    Science.gov (United States)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  14. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  16. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    International Nuclear Information System (INIS)

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  17. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  18. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  19. Solubility of methane in water and in a medium for the cultivation of methanotrophs bacteria

    International Nuclear Information System (INIS)

    Serra, Maria Celeste C.; Pessoa, F.L.P.; Palavra, A.M.F.

    2006-01-01

    Solubility of methane in water and in an aqueous growth medium for the cultivation of methanotrophs bacteria was determined over the temperature range 293.15 to 323.15 K and at atmospheric pressure. The measurements were carried out in a Ben-Naim/Baer type apparatus with a precision of about ±0.3%. The experimental results were determined using accurate thermodynamic relations. The mole fractions of the dissolved gas at the gas partial pressure of 101.325 kPa, the Henry coefficients at the water vapour pressure and the Ostwald coefficients at infinite dilution were obtained. A comparison between the solubility of methane in water and those observed in fermentation medium over the temperature range of 298.15 to 308.15 K has shown that this gas is about ±2.3% more soluble in water. The temperature dependence of the mole fractions of methane was also determined using the Clarke-Glew-Weiss equation and the thermodynamic quantities, Gibbs energy, enthalpy and entropy changes, associated with the dissolution process were calculated. Furthermore, the experimental Henry coefficients for methane in water are compared with those calculated by the scaled particle theory. The estimated Henry coefficients are about ±4% lower than the experimental ones

  20. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Science.gov (United States)

    2010-07-01

    ... in water is a significant parameter because: (A) The spatial and temporal movement (mobility) of a... Solubility in Water of Slightly Soluble, Low Volatility Organic Substances ER15DE00.054 1 = Leveling vessel...

  1. Application To Bilayer System With Water-Soluble Contrast Enhancing Material

    Science.gov (United States)

    Yabuta, Mitsuo; Ito, Naoki; Yamazaki, Hiroyuki; Nakayama, Toshimasa

    1987-09-01

    We have developed ,a water-soluble contrast enhancing material, TAD-436 ( Tokyo Ohka. Anti-Defocus Material ) which is consisted of a water-soluble diazonium salt as bleaching compounds and a water-soluble anion type polymer as binder polymers. Needless to say that water is used as solvent in TAD; therefore, it can be spincoated directly on a positive photoresist layer of a quinonediazide-novolak resin type without causing intermixing and furtheremore the bilayer can be developed without stripping TAD immediately after exposure. TAD shows a satisfactory bleaching characteristics on g-line, increases r-value of underlying photoresist and reduces the thickness loss of photoresist layer in unexposed area. Application to bilayer system with TAD will raise the resolution of underlying photoresist and when the focus depth is changed it will make the change in the resist profile small. As the result of it, the notches in the resist patterns on steps is reduced, making the difference in the linewidth between the top and the bottom of steps small.

  2. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  3. The Effect of Chain Structures on the Crystallization Behavior and Membrane Formation of Poly(Vinylidene Fluoride Copolymers

    Directory of Open Access Journals (Sweden)

    Wenzhong Ma

    2014-05-01

    Full Text Available The crystallization behaviors of two copolymers of PVDF were studied, and the effect of copolymerized chains on the crystallization behavior was investigated. The results indicated that both copolymers had a lowered crystallization temperature and crystallinity. The crystallization rate was improved by the copolymer with symmetrical units in PVDF chains, but hindered by asymmetrical units, compared with the neat PVDF. The symmetrical units in PVDF chains favored the β-crystals with fiber-like structures. According to the solubility parameter rule, methyl salicylate (MS can be chosen as a diluent for PVDF copolymers. Both diluted systems had liquid-liquid (L-L regions in the phase diagrams, which was due to the lowered crystallization temperature.

  4. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  5. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery

    Directory of Open Access Journals (Sweden)

    Mitra Alami-Milani

    2017-04-01

    Full Text Available Many studies have focused on how drugs are formulated in the sol state at room temperature leading to the formation of in situ gel at eye temperature to provide a controlled drug release. Stimuli-responsive block copolymer hydrogels possess several advantages including uncomplicated drug formulation and ease of application, no organic solvent, protective environment for drugs, site-specificity, prolonged and localized drug delivery, lower systemic toxicity, and capability to deliver both hydrophobic and hydrophilic drugs. Self-assembling block copolymers (such as diblock, triblock, and pentablock copolymers with large solubility variation between hydrophilic and hydrophobic segments are capable of making temperature-dependent micellar assembles, and with further increase in the temperature, of jellifying due to micellar aggregation. In general, molecular weight, hydrophobicity, and block arrangement have a significant effect on polymer crystallinity, micelle size, and in vitro drug release profile. The limitations of creature triblock copolymers as initial burst release can be largely avoided using micelles made of pentablock copolymers. Moreover, formulations based on pentablock copolymers can sustain drug release for a longer time. The present study aims to provide a concise overview of the initial and recent progresses in the design of hydrogel-based ocular drug delivery systems.

  6. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  7. Water-soluble vitamins.

    Science.gov (United States)

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were based on, for example, LC. Koontz et al. showed results of total folate concentrations measured by microbiological assay in a variety of foods. Samples were submitted in a routine manner to experienced laboratories that regularly perform folate analysis fee-for-service basis in the United States. Each laboratory reported the use of a microbiological method similar to the AOAC Official Method for the determination of folic acid. Striking was, the use of 3 different pH extraction conditions by 4 laboratories. Only one laboratory reported using a tri-enzyme extraction. Results were evaluated. Results for folic acid fortified foods had considerably lower between-laboratory variation, 9-11%, versus >45% for other foods. Mean total folate ranged from 14 to 279 microg/100 g for a mixed vegetable reference material, from 5 to 70 microg/100 g for strawberries, and from 28 to 81 microg/100 g for wholemeal flour. One should realize a large variation in results, which might be caused by slight modifications in the microbiological analysis of total folate in foods or the analysis in various (unfortified) food matrixes. Furthermore, optimal

  8. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  9. Novel block, graft and random copolymers for biomedical applications

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Tanaka, Masaru

    Despite the simple structure, poly(2-methoxyethyl acrylate) (PMEA) shows excellent blood compatibility [1]. Both the freezing-bound water (intermediate water: preventing the biocomponents from directly contacting the polymer surface) and non-freezing water on the polymer surface play important...... copolymers with MMA [4] utilizing ATRP. Here we present other block, graft and random copolymers of MEA intended for biomedical applications. These macromolecular architectures have been constructed by employing controlled radical polymerization methods such as RAFT and ATRP....

  10. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.

    Science.gov (United States)

    Palencia, Manuel; Rivas, Bernabé L

    2011-11-15

    Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Solubility limit of methyl red and methylene blue in microemulsions and liquid crystals of water, sds and pentanol systems

    OpenAIRE

    Beri, D.; Pratami, A.; Gobah, P. L.; Dwimala, P.; Amran, A.

    2017-01-01

    Solubility of dyes in amphiphilic association structures of water, SDS and penthanol system (i.e. in the phases of microemulsions and liquid crystals) was attracted much interest due to its wide industrial and technological applications. This research was focused on understanding the solubility limitation of methyl red and methylene blue in microemulsion and liquid crystal phases. Experimental results showed that the highest solubility of methyl red was in LLC, followed by w/o microemulsion a...

  12. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    Science.gov (United States)

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  13. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  14. Effect of fasting on the urinary excretion of water-soluble vitamins in humans and rats.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Yoshida, Erina; Takahashi, Kei; Shibata, Katsumi

    2010-01-01

    Recent studies showed that the urinary excretion of the water-soluble vitamins can be useful as a nutritional index. To determine how fasting affects urinary excretion of water-soluble vitamins, a human study and an animal experiment were conducted. In the human study, the 24-h urinary excretion of water-soluble vitamins in 12 healthy Japanese adults fasting for a day was measured. One-day fasting drastically decreased urinary thiamin content to 30%, and increased urinary riboflavin content by 3-fold. Other water-soluble vitamin contents did not show significant change by fasting. To further investigate the alterations of water-soluble vitamin status by starvation, rats were starved for 3 d, and water-soluble vitamin contents in the liver, blood and urine were measured during starvation. Urinary excretion of thiamin, riboflavin, vitamin B(6) metabolite 4-pyridoxic acid, nicotinamide metabolites and folate decreased during starvation, but that of vitamin B(12), pantothenic acid and biotin did not. As for blood vitamin levels, only blood vitamin B(1), plasma PLP and plasma folate levels decreased with starvation. All water-soluble vitamin contents in the liver decreased during starvation, whereas vitamin concentrations in the liver did not decrease. Starvation decreased only concentrations of vitamin B(12) and folate in the skeletal muscle. These results suggest that water-soluble vitamins were released from the liver, and supplied to the peripheral tissues to maintain vitamin nutrition. Our human study also suggested that the effect of fasting should be taken into consideration for subjects showing low urinary thiamin and high urinary riboflavin.

  15. Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Yin, Changna; Cao, Yuhua; Ding, Shaodong; Wang, Yun

    2008-06-06

    A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.

  16. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin.

    Science.gov (United States)

    Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand

    2016-01-20

    Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Micelles and gels of oxyethylene-oxybutylene diblock copolymers in aqueous solution: The effect of oxyethylene-block length

    DEFF Research Database (Denmark)

    Derici, L.; Ledger, S.; Mai, S.M.

    1999-01-01

    and in aqueous 0.2 mol dm(-3) K(2)SO(4)), yielding the micellar association numbers, the hydrodynamic and thermodynamic radii, and related expansion factors. Micellar parameters were also obtained by small-angle neutron scattering (SANS) for solutions of a similar copolymer, E(86)B(10), in water, i......Block copolymer E(90)B(10) (E = oxyethylene, B = oxybutylene) was synthesised and characterised by gel permeation chromatography and (13)C NMR spectroscopy. Dynamic light scattering (DLS) and static light scattering (SLS) were used to characterise the micelles in solution (both in water...... of water in the micelle core. Moderately concentrated solutions of copolymer E(90)B(10) were studied in the gel state by small-angle X-ray scattering (SAXS) in tandem with rheology (oscillatory shear). Values for the dynamic elastic modulus (G') of the gels significantly exceeded 10(4) Pa across the range...

  18. Preparation and Characterization of Water-Soluble Chitosan Microparticles Loaded with Insulin Using the Polyelectrolyte Complexation Method

    International Nuclear Information System (INIS)

    Wu, S.; Tao, Y.; Zhang, H.; Su, Z.

    2011-01-01

    Polymeric delivery systems based on microparticles have emerged as a promising approach for peroral insulin delivery. The amount of insulin was quantified by the improved Bradford method. It was shown that water-soluble chitosan/insulin/tripolyphosphate (TPP) mass ratio played an important role in microparticles formation. Stable, uniform, and spherical water-soluble chitosan microparticles (WSC-MPs) with high insulin association efficiency were formed at or close to optimized WSC/insulin/TPP mass ratio. WSC-MPs had higher association efficiency in the ph 4.0 and ph 9.7 of TPP solution. The results showed that association efficiency and loading capacity of insulin-loaded WSC-MPs prepared in 0.01 mol/L HCl of insulin were 48.28 ± 0.90% and 9.52 ± 1.34%. The average size of insulin-loaded WSC-MPs was 292 nm. The presented WSC microparticulate system has promising properties towards the development of an oral delivery system for insulin

  19. Lyophilized silica lipid hybrid (SLH) carriers for poorly water-soluble drugs: physicochemical and in vitro pharmaceutical investigations.

    Science.gov (United States)

    Yasmin, Rokhsana; Tan, Angel; Bremmell, Kristen E; Prestidge, Clive A

    2014-09-01

    Lyophilization was investigated to produce a powdery silica-lipid hybrid (SLH) carrier for oral delivery of poorly water-soluble drugs. The silica to lipid ratio, incorporation of cryoprotectant, and lipid loading level were investigated as performance indicators for lyophilized SLH carriers. Celecoxib, a nonsteroidal anti-inflammatory drug, was used as the model poorly soluble moiety to attain desirable physicochemical and in vitro drug solubilization properties. Scanning electron microscopy and confocal fluorescence imaging verified a nanoporous, homogenous internal matrix structures of the lyophilized SLH particles, prepared from submicron triglyceride emulsions and stabilized by porous silica nanoparticles (Aerosil 380), similar to spray-dried SLH. 20-50 wt % of silica in the formulation have shown to produce nonoily SLH agglomerates with complete lipid encapsulation. The incorporation of a cryoprotectant prevented irreversible aggregation of the silica-stabilized droplets during lyophilization, thereby readily redispersing in water to form micrometre-sized particles (water-soluble therapeutics is confirmed. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Synthesis and characterization of waterborne polyurethane acrylate copolymers

    International Nuclear Information System (INIS)

    Sultan, Misbah; Bhatti, Haq Nawaz; Zuber, Mohammad; Barikani, Mehdi

    2013-01-01

    Polyurethane acrylate copolymers were synthesized by emulsion polymerization process. To reduce the environmental hazards, organic solvents were replaced by eco-friendly aqueous system. Concentration of polyurethane and acrylate monomer was varied to investigate the effect of chemical composition on performance properties of copolymers. FTIR spectroscopy was used as a key tool to record the chemical synthesis route. The synthesized copolymer emulsions were characterized by evaluating their particle size, viscosity, dry weight content, chemical and water resistance. Thermal decomposition was studied by thermogravimetric analysis. Scanning electron microscope was used to visualize the morphological structure of copolymers. The experimental results indicate better polyurethane acrylate compatibility till the ratio of 30/70. However, these copolymers exhibited synergistic effects between the two polymers and revealed a remarkable improvement in numerous coating properties

  1. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  2. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Barega, Esayas W.; Zondervan, Edwin; Haan, André B. de

    2013-01-01

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg −1 ) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg −1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  3. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.

  4. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    International Nuclear Information System (INIS)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S.

    2004-01-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  5. Aggregation and Photophysical Properties of Water-Soluble Sapphyrins

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Zelinger, Zdeněk; Král, V.

    2004-01-01

    Roč. 395, - (2004), s. 82-86 ISSN 0009-2614 R&D Projects: GA AV ČR KSK4040110 Keywords : water-soluble * sapphyrins * photophysical Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2004

  6. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  7. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  8. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    International Nuclear Information System (INIS)

    Çakır, Dilek; Göl, Cem; Çakır, Volkan; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya; Kantekin, Halit

    2015-01-01

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, 1 H NMR, 13 C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies

  9. Effect of side chain position on solar cell performance in cyclopentadithiophene-based copolymers

    International Nuclear Information System (INIS)

    Lee, Sang Kyu; Seo, Jung Hwa; Cho, Nam Sung; Cho, Shinuk

    2012-01-01

    The photovoltaic properties of a series of low band-gap conjugated copolymers, in which alkyl side chains were substituted at various positions, were investigated using donor–acceptor (D–A) conjugated copolymers consisting of a cyclopentadithiophene derivative and dithienyl-benzothiadiazole. The base polymer, which has no alkyl side chains, yielded promising power conversion efficiency of 3.8%. Polymers with alkyl side chains, however, exhibited significantly decreased performance. In addition, the effects of processing additive became negligible. The results indicate that substituted side chains, which were introduced to improve solubility, critically affected the optical and electronic properties of D–A conjugated copolymers. Furthermore, the position of the side chain was also very important for controlling the morphological properties of the D–A conjugated copolymers. - Highlights: ► Effect of side chain position on solar cell performance was investigated. ► Polymer without alkyl chains yielded promising power conversion efficiency of 3.8%. ► Position of side chains critically affected the optical and electronic properties.

  10. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  11. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    International Nuclear Information System (INIS)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw

    2008-01-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  12. SYNTHESIS AND PHYSICAL-CHEMICAL PROPERTIES OF WATER-SOLUBLE 3-BENZYLXANTHINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    K. V. Аleksandrova

    2015-04-01

    Full Text Available Introduction Nowadays, research of novel biological active compounds with low toxicity, are carried out among different classes of organic compounds of natural and synthetic genesis. One of the main ways of these studies is search of water-soluble compounds – convenient objects for pharmacological researches. In recent years researchers paid attention to xanthine derivatives, because of their high variativity of possible chemical modification and ability to form different salts with wide spectrum of biological action. Thus, among water-soluble xanthine derivatives were found compounds with pronounced antioxidant, diuretic and analeptic properties. Primary methods of obtaining water-soluble xanthine derivatives are direct interaction of bases with xanthine molecule or insertion basic or acidic residues in positions 7 or 8 of xanthine bicycle. According from the above, search of biologically active compounds among water-soluble substituted xanthines is prospective and actual. The aim of the study was development of synthetic ways of obtaining novel water-soluble derivatives of 3-benzyl-8-methylxanthine and studying their physical and chemical properties. Material and methods Melting points of obtained compounds were determined by capillary method on PTP (M device. ІR-spectra of synthesized compounds were recorded on the Bruker Alpha device (company «Bruker» – Germany on 4000-400 sm-1 with using console ATR (direct insertion of compound. 1Н NMR-spectra were recorded on the Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standart – ТМС. Elemental analysis was made on Elementar Vario L cube device. Chromatoraphic studies were made on the plates Sorbfil-AFV-UV (company «Sobrpolimer» –Russia. Systhems for chromatography: «acetone-propanol-2» in ratio 2:3, «propanol-2-benzene» in ratio 10:1 and exersized in UV-light in wave 200-300 nm. Results and discussion We developed methodic of synthesis

  13. Solubility of Aragonite in Subduction Water-Rich Fluids

    Science.gov (United States)

    Daniel, I.; Facq, S.; Petitgirard, S.; Cardon, H.; Sverjensky, D. A.

    2017-12-01

    Carbonate dissolution in subduction zone fluids is critical to the carbon budget in subduction zones. Depending on the solubility of carbonate minerals in aqueous fluids, the subducting lithosphere may be either strongly depleted and the mantle metasomatized if the solubility is high, as recently suggested by natural samples or transport carbon deeper into the Earth's mantle if the solubility is low enough [1, 2]. Dissolution of carbonate minerals strongly depends on pressure and temperature as well as on the chemistry of the fluid, leading to a highly variable speciation of aqueous carbon. Thanks to recent advances in theoretical aqueous geochemistry [3, 4], combined experimental and theoretical efforts now allow the investigation of speciation and solubility of carbonate minerals in aqueous fluids at PT conditions higher than previously feasible [4, 5]. In this study, we present new in situ X-ray fluorescence measurements of aragonite dissolution up to 5 GPa and 500°C and the subsequent thermodynamic model of aragonite solubility in aqueous fluids thanks to the Deep Earth Water model. The amount of dissolved aragonite in the fluid was calculated from challenging and unprecedented measurements of the Ca fluorescence K-lines at low-energy. Experiments were performed at the ESRF, beamline ID27 using a dedicated design of an externally-heated diamond anvil cell and an incident high-flux and highly focused monochromatic X-Ray beam at 20 keV. The results show a spectacularly high solubility of aragonite at HP-HT in water, further enhanced in presence of NaCl and silica in the solution. [1] Frezzotti, M. L. et al. (2011) doi:10.1038/ngeo1246. [2] Ague, J. J. and Nicolescu, S. (2014) doi:10.1038/ngeo2143. [3] Pan, D. et al. (2013) doi: 10.1073/pnas.1221581110. [4] Sverjensky, D. A et al. (2014) doi: 10.1016/j.gca.2013.12.019. [5] Facq, S. et al. (2014) doi: 10.1016/j.gca.2014.01.030.

  14. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  15. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  16. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  17. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.

    Science.gov (United States)

    Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio

    2017-09-01

    This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.

  18. Amphiphilic Copolymers Shuttle Drugs Across the Blood-Brain Barrier.

    Science.gov (United States)

    Clemens-Hemmelmann, Mirjam; Kuffner, Christiane; Metz, Verena; Kircher, Linda; Schmitt, Ulrich; Hiemke, Christoph; Postina, Rolf; Zentel, Rudolf

    2016-05-01

    Medical treatment of diseases of the central nervous system requires transport of drugs across the blood-brain barrier (BBB). Here, it is extended previously in vitro experiments with a model compound to show that the non-water-soluble and brain-impermeable drug domperidone (DOM) itself can be enriched in the brain by use of an amphiphilic copolymer as a carrier. This carrier consists of poly(N-(2-hydroxypropyl)-methacrylamide), statistically copolymerized with 10 mol% hydrophobic lauryl methacrylate, into whose micellar aggregates DOM is noncovalently absorbed. As tested in a BBB model efficient transport of DOM across, the BBB is achievable over a wide range of formulations, containing 0.8 to 35.5 wt% domperidone per copolymer. In neither case, the polymer itself is translocated across the BBB model. In vivo experiments in mice show that already 10 min after intraperitoneal injection of the polymer/domperidone (PolyDOM) formulation, domperidone can be detected in blood and in the brain. Highest serum and brain levels of domperidone are detected 40 min after injection. At that time point serum domperidone is increased 48-fold. Most importantly, domperidone is exclusively detectable in high amounts in the brain of PolyDOM injected mice and not in mice injected with bare domperidone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement. Copyright © 2015. Published by Elsevier Ltd.

  20. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  1. Renal excretion of water-soluble contrast media after enema in the neonatal period.

    Science.gov (United States)

    Kim, Hee Sun; Je, Bo-Kyung; Cha, Sang Hoon; Choi, Byung Min; Lee, Ki Yeol; Lee, Seung Hwa

    2014-08-01

    When abdominal distention occurs or bowel obstruction is suspected in the neonatal period, a water-soluble contrast enema is helpful for diagnostic and therapeutic purposes. The water-soluble contrast medium is evacuated through the anus as well as excreted via the kidneys in some babies. This study was designed to evaluate the incidence of renal excretion after enemas using water-soluble contrast media and presume the causes. Contrast enemas using diluted water-soluble contrast media were performed in 23 patients under 2 months of age. After the enema, patients were followed with simple abdominal radiographs to assess the improvement in bowel distention, and we could also detect the presence of renal excretion of contrast media on the radiographs. Reviewing the medical records and imaging studies, including enemas and consecutive abdominal radiographs, we evaluated the incidence of renal excretion of water-soluble contrast media and counted the stay duration of contrast media in urinary tract, bladder, and colon. Among 23 patients, 12 patients (52%) experienced the renal excretion of water-soluble contrast media. In these patients, stay-in-bladder durations of contrast media were 1-3 days and stay-in-colon durations of contrast media were 1-10 days, while stay-in-colon durations of contrast media were 1-3 days in the patients not showing renal excretion of contrast media. The Mann-Whitney test for stay-in-colon durations demonstrated the later evacuation of contrast media in the patients with renal excretion of contrast media (p = 0.07). The review of the medical records showed that 19 patients were finally diagnosed as intestinal diseases, including Hirschsprung's disease, meconium ileum, meconium plug syndrome, and small bowel atresia or stenosis. Fisher's exact test between the presence of urinary excretion and intestinal diseases indicated a statistically significant difference (p = 0.04). The intestinal diseases causing bowel obstruction may increase the

  2. Pyrolysis-gas chromatography-mass spectrometry for studying N-vinyl-2-pyrrolidone-co-vinyl acetate copolymers and their dissolution behaviour.

    Science.gov (United States)

    Chojnacka, Aleksandra; Ghaffar, Abdul; Feilden, Andrew; Treacher, Kevin; Janssen, Hans-Gerd; Schoenmakers, Peter

    2011-11-14

    Knowledge on the solubility behaviour and dissolution rate of speciality and commodity polymers is very important for the use of such materials in high-tech applications. We have developed methods for the quantification and characterization of dissolved copolymers of N-vinyl-2-pyrrolidone (VP) and vinyl acetate (VA) during dissolution in water. The methods are based on pyrolysis (Py) performed in a programmed-temperature vaporization injector with subsequent identification and quantification of the components in the pyrolysate using capillary gas chromatography-mass spectrometry (GC-MS). By injecting large volumes and applying cryo-focussing at the top of the column, low detection limits could be achieved. The monomer ratio was found to have the greatest effect on the dissolution rate of the PVP-co-VA copolymers. The material with the highest amount of VA (50%) dissolves significantly slower than the other grades. Size-exclusion chromatography (SEC) and Py-GC-MS were used to measure molecular weights and average chemical compositions, respectively. Combined off-line SEC//Py-GC-MS was used to determine the copolymer composition (VP/VA ratio), as a function of the molecular weight for the pure polymers. In the dissolution experiments, a constant VP/VA ratio across the dissolution curve was observed for all copolymers analysed. This suggests a random distribution of the two monomers over the molecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  4. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  5. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  6. Tuning of Block Copolymer Membrane Morphology through Water Induced Phase Inversion Technique

    KAUST Repository

    Madhavan, Poornima

    2016-06-01

    Isoporous membranes are attractive for the regulation and detection of transport at the molecular level. A well-defined asymmetric membranes from diblock copolymers with an ordered nanoporous membrane morphologies were fabricated by the combination of block copolymer self-assembly and non-solvent-induced phase separation (NIPS) technique. This is a straightforward and fast one step procedure to develop integrally anisotropic (“asymmetric”) membranes having isoporous top selective layer. Membranes prepared via this method exhibit an anisotropic cross section with a thin separation layer supported from underneath a macroporous support. These membrane poses cylindrical pore structure with ordered nanopores across the entire membrane surfaces with pore size in the range from 20 to 40 nm. Tuning the pore morphology of the block copolymer membranes before and after fabrication are of great interest. In this thesis, we first investigated the pore morphology tuning of asymmetric block copolymer membrane by complexing with small organic molecules. We found that the occurrence of hydrogen-bond formation between PS-b-P4VP block copolymer and –OH/ –COOH functionalized organic molecules significantly tunes the pore morphology of asymmetric nanoporous membranes. In addition, we studied the complexation behavior of ionic liquids with PS-b-P4VP block copolymer in solutions and investigated their effect on final membrane morphology during the non-solvent induced phase separation process. We found that non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ionic liquids led to a lamella-structured membrane. Secondly, we demonstrated the catalytic activity of the gold nanoparticle-enhanced hollow fiber membranes by the reduction of nitrophenol. Also, we systematically investigated the pore morphology of isoporous PS-b-P4VP using 3D imaging technique. Thirdly, we developed well-distributed silver nanoparticles on the

  7. Water solubility of synthetic pyrope at high temperature and pressure up to 12GPa

    Science.gov (United States)

    Huang, S.; Chen, J.

    2012-12-01

    Water can be incorporated into normally anhydrous minerals as OH- defects and transported into the mantle. Its existence in the mantle may affect property of minerals, such as elasticity, electrical conductivity and rheological properties. As the secondary mineral in the mantle, garnet has not been extensively studied for its water solubility and there is discrepancies among the existing experiments on the water solubility in the garnet change at pressures and temperatures. Geiger et al., 1991 investigated water content in synthetic pyrope and concluded 0.02wt% to 0.07wt% OH- substitution. Lu et al., 1997 found 198ppm water in the Dora Miara pyrope at 100Kbar and 1000°C. Withers et al., 1998 claimed that water solubility in pyrope reached 1000ppm at 5GPa and then decreased as pressure increasing; above 7GPa, no water was detected. Mookherjee et al., 2009 also explored pyrope-rich garnet, which contains water up to 0.1%wt at 5-9GPa and temperatures 1373K-1473K. Here we report a study of water solubility of synthetic single crystal pyrope at pressures 4-12GPa and temperature 1000°C. Single crystals of pyrope were synthesized using multi-anvil press and water contents in these samples were measured using FTIR. We have observed OH- peak at 3650 cm-1 along this pressure range, although Withers, 1998 reported water contents decrease to undetectable level above 7GPa. Water solubility in pyrope will be reported as a function of pressure up to 12 GPa at 1000°C.

  8. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.

    Science.gov (United States)

    Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês

    2017-01-01

    Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus ® ) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus ® at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus ® , when protected from moisture.

  9. Process for the production of furfural from pentoses and/or water soluble pentosans

    NARCIS (Netherlands)

    De Jong, W.; Marcotullio, G.

    2012-01-01

    The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution

  10. Development of lipid-shell and polymer core nanoparticles with water-soluble salidroside for anti-cancer therapy.

    Science.gov (United States)

    Fang, Dai-Long; Chen, Yan; Xu, Bei; Ren, Ke; He, Zhi-Yao; He, Li-Li; Lei, Yi; Fan, Chun-Mei; Song, Xiang-Rong

    2014-02-25

    Salidroside (Sal) is a potent antitumor drug with high water-solubility. The clinic application of Sal in cancer therapy has been significantly restricted by poor oral absorption and low tumor cell uptake. To solve this problem, lipid-shell and polymer-core nanoparticles (Sal-LPNPs) loaded with Sal were developed by a double emulsification method. The processing parameters including the polymer types, organic phase, PVA types and amount were systemically investigated. The obtained optimal Sal-LPNPs, composed of PLGA-PEG-PLGA triblock copolymers and lipids, had high entrapment efficiency (65%), submicron size (150 nm) and negatively charged surface (-23 mV). DSC analysis demonstrated the successful encapsulation of Sal into LPNPs. The core-shell structure of Sal-LPNPs was verified by TEM. Sal released slowly from the LPNPs without apparent burst release. MTT assay revealed that 4T1 and PANC-1 cancer cell lines were sensitive to Sal treatment. Sal-LPNPs had significantly higher antitumor activities than free Sal in 4T1 and PANC-1 cells. The data indicate that LPNPs are a promising Sal vehicle for anti-cancer therapy and worthy of further investigation.

  11. Development of Lipid-Shell and Polymer Core Nanoparticles with Water-Soluble Salidroside for Anti-Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Dai-Long Fang

    2014-02-01

    Full Text Available Salidroside (Sal is a potent antitumor drug with high water-solubility. The clinic application of Sal in cancer therapy has been significantly restricted by poor oral absorption and low tumor cell uptake. To solve this problem, lipid-shell and polymer-core nanoparticles (Sal-LPNPs loaded with Sal were developed by a double emulsification method. The processing parameters including the polymer types, organic phase, PVA types and amount were systemically investigated. The obtained optimal Sal-LPNPs, composed of PLGA-PEG-PLGA triblock copolymers and lipids, had high entrapment efficiency (65%, submicron size (150 nm and negatively charged surface (−23 mV. DSC analysis demonstrated the successful encapsulation of Sal into LPNPs. The core-shell structure of Sal-LPNPs was verified by TEM. Sal released slowly from the LPNPs without apparent burst release. MTT assay revealed that 4T1 and PANC-1 cancer cell lines were sensitive to Sal treatment. Sal-LPNPs had significantly higher antitumor activities than free Sal in 4T1 and PANC-1 cells. The data indicate that LPNPs are a promising Sal vehicle for anti-cancer therapy and worthy of further investigation.

  12. Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene.

    Science.gov (United States)

    Xia, Danyu; Wang, Pi; Shi, Bingbing

    2017-09-20

    Photochemistry plays an important role in our lives. It has also been a common tool in the laboratory to construct complicated systems from small molecules. Supramolecular chemistry provides an opportunity to solve some of the problems in controlling photochemical reactions via non-covalent interactions. By using confining media and weak interactions between the medium and the reactant molecule, the excited state behavior of molecules has been successfully manipulated. Pillararenes, a new class of macrocyclic hosts, have rarely been used in the field of photochemical investigations, such as the controlling of photo-induced reactions. Herein, we explore a synthetic macrocyclic host, a water-soluble pillar[6]arene, as a controlling tool to manipulate the photo-induced reactions (hydration) in water. A host-guest system in water based on a water-soluble pillar[6]arene and an azastilbene derivative, (E)-4,4'-dimethyl-4,4'-diazoniastilbene diiodide, has been constructed. Then this water-soluble pillar[6]arene was successfully employed to control the photohydration of the azastilbene derivative in water as a "protective agent".

  13. Temperature and sodium chloride effects on the solubility of anthracene in water

    International Nuclear Information System (INIS)

    Arias-Gonzalez, Israel; Reza, Joel; Trejo, Arturo

    2010-01-01

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg -1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10 -8 to 143 . 10 -8 ) mol . kg -1 . Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol -1 . The standard molar Gibbs free energies, Δ tr G o , enthalpies, Δ tr H o , and entropies, Δ tr S o , for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated Δ tr G o values were positive [(20 to 1230) J . mol -1 ]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  14. Selective Photooxidation Reactions using Water-Soluble Anthraquinone Photocatalysts

    NARCIS (Netherlands)

    Zhang, W.; Gacs, Jenő; Arends, I.W.C.E.; Hollmann, F.

    2017-01-01

    The aerobic organocatalytic oxidation of alcohols was achieved by using water-soluble sodium anthraquinone sulfonate. Under visible-light activation, this catalyst mediated the aerobic oxidation of alcohols to aldehydes and ketones. The photo-oxyfunctionalization of alkanes was also possible

  15. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  16. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  17. Comparison of water sorption and solubility of Acropars and Meliodent heat cure acrylic resins

    Directory of Open Access Journals (Sweden)

    Golbidi F

    2006-06-01

    Full Text Available Background and Aim: Water sorption and solubility are important properties of acrylic resins. Denture base acrylic resins have low solubility. This solubility results from the leaching out of unreacted monomer and water soluble additives into the oral fluids. The solubility of denture bases can cause oral soft tissue reactions. In addition, water absorbed into this material acts as a plasticizer and decreases the mechanical properties such as hardness, transverse strength, fatigue limit and also can change the color and dimensional stability. The aim of this study was to compare the water sorption and solubility of Acropars and Meliodent heat cure acrylic resins. Materials and Methods: This experimental study was performed on the basis of ADA specification No.12 and ISO No.1567 and standards NO: 2571 of Institute of Standards & Industrial Research of Iran. Six disc form samples of each acrylic resin were prepared, with the dimension of 50×0.5 mm. After desiccating, the samples were kept in an oven for 24 hours and weighed. Then they were immersed in water, kept in oven for 7 days and weighed again. After this phase, the samples were carried to a dessicator, for 24 hours and kept in an oven for drying and were weighed for the third time. Data were analyzed with Mann Whitney and one sample t-test. P<0.05 was considered as the limit of significance. Results: Water sorption mean values were 30.5±0.1 µg/mm3 or 0.76±0.01 mg/cm2 for Meliodent samples and 30.7±0.87 µg/mm3 or 0.77±0.009 mg/cm2 for Acropars samples. No significant difference was observed in water sorption of these two materials (P=0.9. Meliodent acrylic resin showed lower solubility (1.7±0.097 µg/mm3 or 0.042±0.001 mg/cm2 than Acropars acrylic resin (2.5±0.13 µg/mm3 or 0.062±0.001 mg/cm2 (P=0.002. Conclusion: Acropars heat cure acrylic resin matched well with the requirements of the international standards for water sorption, but its solubility was not favorable. This problem

  18. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2017-10-01

    Full Text Available Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from its bindings, the difficulty of free vitamin absorption, gastrointestinal problems, medication, and often alcoholism. Among water-soluble vitamins, B12 is the only one with a sufficient storage level in the body, capable of preventing deficiency symptoms for a long period of time in cases of vitamin-deficient nutrition. Each type of vitamin is dealt with separately in discussing the beneficial outcomes of their overconsumption regarding health, while the authors of the article also present cases with contradictory results. Daily requirements are set forth for every water-soluble vitamin and information is provided on the types of nutrients that help us to the water-soluble vitamins essential for the organism.

  19. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  20. Acrylamide-b-N-isopropylacrylamide block copolymers : Synthesis by atomic transfer radical polymerization in water and the effect of the hydrophilic-hydrophobic ratio on the solution properties

    NARCIS (Netherlands)

    Wever, Diego Armando Z.; Ramalho, Graham; Picchioni, Francesco; Broekhuis, Antonius Augustinus

    2014-01-01

    A series of block copolymers of acrylamide and N-isopropylacrylamide (NIPAM) characterized by different ratios between the length of the two blocks have been prepared through atomic transfer radical polymerization in water at room temperature. The solution properties of the block copolymers were

  1. Formation and Characterization of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  2. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    Science.gov (United States)

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID ® (AF), BFLUID ® (BF), PARESAFE ® (PS) and PAREPLUS ® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli , Serratia marcescens , Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans , they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  3. Acrylonitrile-methyl Methacrylate Copolymer Films Containing Microencapsulated n-Octadecane

    Institute of Scientific and Technical Information of China (English)

    LI Jun; HAN Na; ZHANG Xing-xiang

    2006-01-01

    Acrylonitrile-methyl methacrylate copolymer was synthesized in aqueous solution by Redox. The copolymer was mixed with 10 - 40 wt% of microencapsulated n-octadecane (MicroPCMs) in water. Copolymer films containing MicroPCMs were cast at room temperature in N, N-Dimethylformamide solution. The copolymer of acrylonitrile-methyl methacrylate and the copolymer films containing MicroPCMs were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analyzer (TG), X-ray Diffrac tion (XRD) and Scanning Electron Microscopy (SEM), etc.The microcapsules in the films are evenly distributed in the copolymer matrix. The heat-absorbing temperatures and heat-evolving temperatures of the films are almost the same as that of the MicroPCMs, respectively, and fluctuate in a slight range. In addition, the enthalpy efficiency of MicroPCMs rises with the contents of MicroPCMs increasing.The crystallinity of the film increases with the contents of MicroPCMs increasing.

  4. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  5. Femtosecond study of laser dyes soluble in water: coumarins

    International Nuclear Information System (INIS)

    Cassara, Laurence

    1996-01-01

    Coumarins build up one of the great families of laser dyes, and this research thesis addresses the study of four water-soluble coumarins (ATC, DMATC, DATC, and CHOS) which are analogue to conventional coumarins (C120, C311, C1, and C102). These molecules are made water-soluble by substitution of the methyl group in position 4 by a polyether group. Mechanisms of deactivation are studied by means of time-resolved fluorescence and transient adsorption methods which allow the reaction dynamics of coumarins after light excitation to be studied. Several time scales, from femto- to nano-second, have been reached and allowed various processes to be studied: relaxation, solvation dynamics, solute orientation diffusion, process of deactivation of radiative and non-radiative relaxation in various solvents [fr

  6. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    Science.gov (United States)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  7. Solution Construction of Multigeometry Nanoparticles and Multicompartment Superstructures from Block Copolymer Mixtures

    Science.gov (United States)

    Zhu, Jiahua; Zhang, Shiyi; Wooley, Karen; Pochan, Darrin

    2013-03-01

    Novel soft objects with both compositional and geometric complexity at nanoscale have been constructed through solution supramolecular assembly from block copolymer mixtures due to their non-ergodic character. The mixture is composed of two block copolymers with distinctive hydrophobic blocks but the same poly(acrylic acid) hydrophilic block. First, multigeometry nanoparticles, due to segregation of unlike block copolymer molecules into multiple subdomains trapped within the same micelle-like structures, have been assembled in tetrahydrofuran/water solution. Through carefully designed molecular architecture, mixing ratio and pathway kinetics, both size and shape of subdomains can be controlled to produce a novel class of multigeometry nanoparticles, including sphere-sphere, sphere-cylinder, cylinder-cylinder, cylinder-disk, and sphere-disk hybrid nanoparticles. Second, hierarchical multicompartment superstructures including particle chains, rings and other nano to micro cluster formations, have been built up from pre-formed multigeometry nanoparticles by taking advantage of their surface anisotropy and the controlled particle-particle association. The interparticle association can be achieved via either covalent or non-covalent bindings due to different post-polymerization chemical modifications with hydroxyethyl acrylate or crown ether functionalities, respectively.

  8. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol+water cosolvent mixtures at different temperatures.

    Science.gov (United States)

    Shakeel, Faiyaz; Haq, Nazrul; Siddiqui, Nasir A; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-12-01

    The solubilities of bioactive compound vanillin were measured in various propane-1,2-diol+water cosolvent mixtures at T=(298-318)K and p=0.1 MPa. The experimental solubility of crystalline vanillin was determined and correlated with calculated solubility. The results showed good correlation of experimental solubilities of crystalline vanillin with calculated ones. The mole fraction solubility of crystalline vanillin was recorded highest in pure propane-1,2-diol (7.06×10(-2) at 298 K) and lowest in pure water (1.25×10(-3) at 298 K) over the entire temperature range investigated. Thermodynamic behavior of vanillin in various propane-1,2-diol+water cosolvent mixtures was evaluated by Van't Hoff and Krug analysis. The results showed an endothermic, spontaneous and an entropy-driven dissolution of crystalline vanillin in all propane-1,2-diol+water cosolvent mixtures. Based on solubility data of this work, vanillin has been considered as soluble in water and freely soluble in propane-1,2-diol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Synthesis and Characterization of Water-soluble Conjugates of Cabazitaxel Hemiesters-Dextran.

    Science.gov (United States)

    Parhizkar, Elahehnaz; Ahmadi, Fatemeh; Daneshamouz, Saeid; Mohammadi-Samani, Soliman; Sakhteman, Amirhossein; Parhizkar, Golnaz

    2017-11-24

    Cabazitaxel (CTX) is a second- generation taxane derivative, a class of potent anticancer drugs with very low water solubility. CTX is used in patients with resistant prostate cancer unresponsive to the first generation taxane, docetaxel. Currently marketed formulations of CTX contain high concentrations of surfactant and ethanol, which cause severe hypersensitivity reactions in patients. In order to increase its solubility, two hemiester analogs; CTX-succinate and CTX-glutarate were synthesized and characterized. To improve the solubility of hemiesters even more, dextran as a biocompatible polymer was also conjugated to hemiester analogs. MTT assay was performed on MCF-7 cell line to evaluate the cytotoxicity effect of hemiesters and conjugates. Based on the results, hemiester analogs increased water solubility of the drug up to about 3 and 8 fold. Conjugation to dextran enhanced the CTX solubility to more than 1500 fold. These conjugates released the conjugated CTX in less than 24 hours in a pH dependent manner and showed proper hemocompatibility characteristics. The hemiesters had approximately similar cytotoxicity in comparison with CTX and the dextran conjugates showed higher cytotoxicity effect on MCF-7 cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Associative, thermodynamic and thermo-kinetics behavior of di- and triblock copolymers of oxyethylene and oxybutylene in aqueous media

    International Nuclear Information System (INIS)

    Khan, Abbas; Siddiq, Mohammad

    2014-01-01

    Highlights: • Associative, thermodynamic and thermo-kinetics behavior was investigated. • Micellization of these copolymer is spontaneous, endothermic and entropy driven. • Micelles are spherical in shape and their nature depends on temperature. • Fusion/fission mechanism dominates over unimer entry/expulsion for micellar dynamics. • Micellar parameters depend on temperature and on the delicate hydrophobic–hydrophilic balance of the blocks. - Abstract: The associative, thermodynamic and thermo-kinetics properties of a diblock E 90 B 10 and three triblock copolymers based on polyoxyethylene and polyoxybutylene of the type E m B 10 E m water have been studied by surface tensiometry, light scattering and temperature-jump stopped-flow techniques. The data from surface tension was helpful to detect the critical micelle concentration (CMC) as well as to calculate the thermodynamic parameters of micellization. Dynamic light scattering (DLS) was employed to obtain the values of hydrodynamic radii (R h ), volume (υ h ) and hydrodynamic expansion parameter (δ h ) of the micelle at different temperatures. Similarly, static light scattering (SLS) measurements made us enable to find out various micellar parameters such as; weight-average molar (M w ), association number (N w ), thermodynamic radius (R t ), thermodynamic volume (υ t ), anhydrous volume (υ a ) and thermodynamic expansion parameter (δ t ) of the micelles. Likewise, the kinetics of micellar aggregation/dynamic was also investigated by using temperature-jump stopped-flow technique in the temperature range of 20–50 °C

  11. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving....../dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  12. Water activity of aqueous solutions of ethylene oxide-propylene oxide block copolymers and maltodextrins

    Directory of Open Access Journals (Sweden)

    N. D. D. Carareto

    2010-03-01

    Full Text Available The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult's law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.

  13. Gamma radiation-induced preparation of some acrylamide polymers for treatment of waste water

    International Nuclear Information System (INIS)

    Siyam, T.; Hanna, E.

    1992-01-01

    Water-soluble acrylamide copolymers such as: poly (acrylamide-co-sodium) [P(AM-CO-AA Na)], (acrylamide-CO-diallylethylamine-hydrochloride) [P(AM-CO-DAEA-H Cl)] and poly (acrylamide-sodium acrylate-diallylethylamine-hydrochloride) [P(AM-AANa-DAEA-H Cl)] were prepared by gamma radiation-initiated polymerization of the corresponding co monomer or termonomer solutions. The prepared copolymers were used in the treatment of water (metal sulphate solutions). It was found that the polymer efficiency increases with increasing the PH-value and the polymer concentration. The efficiency of the different polymers compared in what concerns elimination of Cu++ and Mg++. The polymer dosage depends on the hydration sheath of the cation. The mechanism for interaction of each polymeric chains with the ions of waste water was also discussed. 3 figs, 1 tab

  14. One-step synthesis and antibacterial property of water-soluble silver nanoparticles by CGJ bio-template

    International Nuclear Information System (INIS)

    Zhu Zichun; Wu Qingsheng; Chen Ping; Yang Xiaohong

    2011-01-01

    In this article, a new synthetic method of nanoparticles with fresh Chinese gooseberry juice (CGJ) as bio-template was developed. One-step synthesis of highly water-soluble silver nanoparticles at room temperature without using any harmful reducing agents and special capping agent was fulfilled with this method. In the process, the products were obtained by adding AgNO 3 to CGJ, which was used as reducing agent, capping agent, and the bio-template. The products of silver nanoparticles with diameter of 10–30 nm have strong water solubility and excellent antibiotic function. With the same concentration 0.047 μg mL −1 , the antibacterial effect of water-soluble silver particles by fresh CGJ was 53%, whereas only 27% for silver nanoparticles synthesized using the template method of fresh onion inner squama coat (OISC). The excellent water solubility of the products would enable them have better applications in the bio-medical field. The synthetic method would also have potential application in preparing other highly water-soluble particles, because of its simple apparatus, high yield, mild conditions, and facile operation.

  15. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  16. The synthesis of poly(lactide)-vitamin E TPGS (PLA-TPGS) copolymer and its utilization to formulate a curcumin nanocarrier

    Science.gov (United States)

    Thu Ha, Phuong; Nguyet Tran, Thi Minh; Duong Pham, Hong; Huan Nguyen, Quang; Phuc Nguyen, Xuan

    2010-03-01

    Curcumin is a natural substance that exhibits the ability to inhibit and/or treat carcinogenesis in a variety of cell lines, but because of its poor solubility in water the treatment efficacy is limited. In this paper we report on the fabrication of self-assembled micelle nanoparticles loaded with a curcumin drug by use of a biocompatible copolymer of PLA-TPGS (d-a-tocopheryl polyethylene glycol 1000 succinate—vitamin E TPGS) conjugate. The polylactide (PLA)-TPGS copolymer synthesized by ring-opening polymerization was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) techniques. The surface morphology of PLA-TPGS and curcumin loaded PLA-TPGS was determined by field emission scanning electron microscopy (FE-SEM). The absorption and fluorescence examinations indicated that due to micellar capsulation the intensity of both types of spectra increased by about 4 times in comparison with those of the free curcumin sample.

  17. The synthesis of poly(lactide)-vitamin E TPGS (PLA-TPGS) copolymer and its utilization to formulate a curcumin nanocarrier

    International Nuclear Information System (INIS)

    Thu Ha, Phuong; Nguyet Tran, Thi Minh; Pham, Hong Duong; Nguyen, Quang Huan; Nguyen, Xuan Phuc

    2010-01-01

    Curcumin is a natural substance that exhibits the ability to inhibit and/or treat carcinogenesis in a variety of cell lines, but because of its poor solubility in water the treatment efficacy is limited. In this paper we report on the fabrication of self-assembled micelle nanoparticles loaded with a curcumin drug by use of a biocompatible copolymer of PLA-TPGS (d-a-tocopheryl polyethylene glycol 1000 succinate—vitamin E TPGS) conjugate. The polylactide (PLA)-TPGS copolymer synthesized by ring-opening polymerization was characterized by Fourier transform infrared spectroscopy (FTIR) and 1 H nuclear magnetic resonance ( 1 H NMR) techniques. The surface morphology of PLA-TPGS and curcumin loaded PLA-TPGS was determined by field emission scanning electron microscopy (FE-SEM). The absorption and fluorescence examinations indicated that due to micellar capsulation the intensity of both types of spectra increased by about 4 times in comparison with those of the free curcumin sample

  18. Temperature and sodium chloride effects on the solubility of anthracene in water

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Gonzalez, Israel [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Reza, Joel, E-mail: jreza@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico)

    2010-11-15

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg{sup -1} = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10{sup -8} to 143 . 10{sup -8}) mol . kg{sup -1}. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol{sup -1}. The standard molar Gibbs free energies, {Delta}{sub tr}G{sup o}, enthalpies, {Delta}{sub tr}H{sup o}, and entropies, {Delta}{sub tr}S{sup o}, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated {Delta}{sub tr}G{sup o} values were positive [(20 to 1230) J . mol{sup -1}]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  19. ORGANIC PERMSELECTIVE PERVAPORATION CHARACTERISTICS OF POLY(SILYLPROPYNE) AND COPOLYMER DENSE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    WANG Xinwei; SHI Yanqiao; CHEN Guanwen

    1997-01-01

    An investigation into the organic permselective separation through poly [1-trimethylsilyl1-propyne] (PTMSP) and (1-trimethylsily1)-1-(1-penta-methyl-disilyl)-l-propyne copolymer (TMSP-PMDSP) dense membranes was made to gain an insight into the effect of the chemical structure of membrane materials on pervaporation (PV) characteristics. The results show that the copolymer has a higher separation factor αorg/water but with a relatively Lower value of flux Jt(g/m2·h)than pure PTMSP.This phenomenon may be attributed to the introduction of side chain with large bulk volume in copolymer, which brought about a decrease of excess free volume and the improvement of diffusion selectivity to some extent. With the same molar concentration of organic liquids in feed, THF/water solutions have the highest value of αorg/water as well as Jt in comparison with ethanol/water,iso-propanol/water and THF/water mixtures.

  20. Short Communication Relationships between the water solubility of ...

    African Journals Online (AJOL)

    132. Short Communication. Relationships between the water solubility of roughage dry matter and certain chemical characteristics. J.W. Cilliers- and H.J. Cilliers. North West Agricultural Development lnstitute, Private. Bag X804, Potchefstroom, 2520 Republic of South Africa. Received 17 May 1995; accepted 8 August 1995.

  1. Self-assembling of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers in aqueous solution and at the silica-water interface

    International Nuclear Information System (INIS)

    Leyh, B.; Vangeyte, P.; Heinrich, M.; Auvray, L.; De Clercq, C.; Jerome, R.

    2004-01-01

    Small-angle neutron scattering is used to investigate the self-assembling behaviour of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers with various block lengths (i) in aqueous solution, (ii) in aqueous solution with the addition of sodium dodecyl sulphate (SDS) and (iii) at the silica-water interface. Micelles are observed under our experimental conditions due to the very small critical micellar concentration of these copolymers (0.01 g/l). The poly(ε-caprolactone) core is surrounded by a poly(ethylene oxide) corona. The micellar form factors have been measured at low copolymer concentrations (0.2 wt%) under selected contrast matching conditions. The data have been fitted to various analytical models to extract the micellar core and corona sizes. SDS is shown to induce partial micelle disruption together with an increase of the poly(ethylene oxide) corona extension from 25% (without SDS) to 70% (with SDS) of a completely extended PEO 114 chain. Our data at the silica-water interface are compatible with the adsorption of micelles

  2. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  3. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  4. Tadpole-Shaped POSS-Based Copolymers and the Aggregation Behavior at Air/Water Interface

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2018-01-01

    Full Text Available The aggregation behavior of three tadpole-shaped Polyhedral oligomeric silsesquioxane (POSS based block copolymers using different blocks poly(methyl methacrylate (PMMA and poly(trifluoroethyl methacrylate (PTFEMA with different block sequence and ratio (POSS-PTFEMA161-b-PMMA236, POSS-PMMA277-b-PTFEMA130, and POSS-PMMA466-b-PTFEMA172 was investigated on the air-water interface. The interfacial rheology of three block copolymers was studied by surface pressure isotherm, compression modulus measurements, and compression and expansion hysteresis analysis on the Langmuir trough. The block sequence and ratio play a great role in self-assembly behavior at the interface. Based on surface pressure isotherm analysis, a thin film with low elasticity was achieved for the POSS-PTFEMA161-b-PMMA236. Moreover, for the block copolymer with same segment sequence (POSS-PMMA2-b-PTFEMA, the thin film compression capability is increased with increasing the PMMA ratio. The morphology of the deposited LB thin film was illustrated by atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS. We observed that a thin film was composed by crater-shaped quasi-2D micelles for POSS-PTFEMA-b-PMMA, while it was proved that only flaky texture was observed for both POSS-PMMA277-b-PTFEMA130 and POSS-PMMA466-b-PTFEMA172. The thickness and area of flaky aggregates were greatly related to PMMA ratio. The different interface self-assembly structure evolution was proposed based on the interfacial rheology and thin film morphology studies.

  5. Water-soluble, triflate-based, pyrrolidinium ionic liquids

    International Nuclear Information System (INIS)

    Moreno, M.; Montanino, M.; Carewska, M.; Appetecchi, G.B.; Jeremias, S.; Passerini, S.

    2013-01-01

    Highlights: • Water-soluble, pyrrolidinium triflate ILs as solvents for extraction processes. • Electrolyte components for high safety, electrochemical devices. • Effect of the oxygen atom in the alkyl main side chain of pyrrolidinium cation. -- Abstract: The physicochemical and electrochemical properties of the water-soluble, N-methoxyethyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 1(2O1) OSO 2 CF 3 ) ionic liquid (IL) were investigated and compared with those of commercial N-butyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 14 OSO 2 CF 3 ). The results have shown that the transport properties are well correlated with the rheological and thermal behavior. The incorporation of an oxygen atom in the pyrrolidinium cation aliphatic side chain resulted in enhanced flexibility of the ether side chain, this supporting for the higher ionic conductivity, self-diffusion coefficient and density of PYR 1(2O1) OSO 2 CF 3 with respect to PYR 14 OSO 2 CF 3 , whereas no relevant effect on the crystallization of the ionic liquid was found. Finally, the presence of the ether side chain material in the pyrrolidinium cation led to a reduction in electrochemical stability, particularly on the cathodic verse

  6. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  7. The preparation of highly absorbing cellulosic copolymers -the cellulose acetate/propionate-g.co-acrylic acid system

    International Nuclear Information System (INIS)

    Bilgin, V.; Guthrie, J.T.

    1990-01-01

    A series of copolymers based on the cellulose acetate/propionate-g.co-acrylic acid system has been prepared under radiation-induced control. These copolymers have been assessed for their water-retention capacity both in an unmodified state and after ''decrystallization'' or ''neutralization'' treatments. The grafting of acrylic acid onto the cellulose acetate/propionate had little effect on the water retention power of the cellulose acetate/propionate. However, improvements to the water retentivity was obtained after ''decrystallization'' procedures had been carried out on the copolymers using selected alkali metal salts with methanol as the continuous medium. The water-retentivity of the copolymers increased with increase in the extent of grafting, though the effect is less pronounced at high graft levels. Neutralization of the functional groups of the grafted branches provided a route to obtaining a marked increase in the level of water retentivity. Excessive salt concentrations gave reduced levels of water retentivity. Cesium carbonate and sodium carbonate have been shown to be effective in providing marked improvements in the water-retaining capacity of the copolymers. Maxima in performance are shown with respect to the treatment conditions. (author)

  8. Synthesis and characterization of acrylate copolymer containing fluorescein functional group

    International Nuclear Information System (INIS)

    Hui, Guodong; Huang, Weiyun; Song, Yunzhao; Chen, Deben; Zhong, Anyong

    2013-01-01

    We report a novel method to fabricate fluorescent polymer (F-CPA) based on the esterification between acrylate copolymer (CPA) and fluorescein using N, N-dicyclohexylcarbodiimide (DCC)/4-dimethylaminopyridine (DMAP) as catalyst. The resulting copolymer was characterized by Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis) and fluorescence spectroscopy. In addition, the influences of concentration, solvents, pH and metal cations (Cu"2"+, Fe"3"+ and Zn"2"+) on the fluorescent behaviors of F-CPA are discussed in detail. All those observations suggest that the synthesized F-CPA is an excellent luminescent macromolecular material with simple synthesis method and excellent solubility. Moreover, its sensitive fluorescence response behaviors to solvents, pH and metal cations make it to become a polymer-based probe

  9. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Science.gov (United States)

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  10. Development and characterization of nifedipine-amino methacrylate copolymer solid dispersion powders with various adsorbents

    Directory of Open Access Journals (Sweden)

    Yotsanan Weerapol

    2017-07-01

    Full Text Available Solid dispersions of nifedipine (NDP, a poorly water-soluble drug, and amino methacrylate copolymer (AMCP with aid of adsorbent, that is, fumed silica, talcum, calcium carbonate, titanium dioxide, and mesoporous silica from rice husks (SRH, were prepared by solvent method. The physicochemical properties of solid dispersions, compared to their physical mixtures, were determined using powder X-ray diffractometry (PXRD and differential scanning calorimetry (DSC. The surface morphology of the prepared solid dispersions was examined by scanning electron microscopy (SEM. The dissolution of NDP from solid dispersions was compared to NDP powders. The effect of adsorbent type on NDP dissolution was also examined. The dissolution of NDP increased with the ratio of NDP:AMCP:adsorbent of 1:4:1 when compared to the other formulations. As indicated from PXRD patterns, DSC thermograms and SEM images, NDP was molecularly dispersed within polymer carrier or in an amorphous form, which confirmed the better dissolution of solid dispersions. Solid dispersions containing SRH provided the highest NDP dissolution, due to a porous nature of SRH, allowing dissolved drug to fill in the pores and consequently dissolve in the medium. The results suggested that solid dispersions containing adsorbents (SRH in particular demonstrated improved dissolution of poorly water-soluble drug when compared to NDP powder.

  11. Method of cross-linking polyvinyl alcohol and other water soluble resins

    Science.gov (United States)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  12. Associative, thermodynamic and thermo-kinetics behavior of di- and triblock copolymers of oxyethylene and oxybutylene in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abbas [Department of Chemistry, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan); Siddiq, Mohammad, E-mail: m_sidiq12@yahoo.com [Department of Chemistry, Quaid-I-Azam University, Islamabad 45320 (Pakistan)

    2014-11-10

    Highlights: • Associative, thermodynamic and thermo-kinetics behavior was investigated. • Micellization of these copolymer is spontaneous, endothermic and entropy driven. • Micelles are spherical in shape and their nature depends on temperature. • Fusion/fission mechanism dominates over unimer entry/expulsion for micellar dynamics. • Micellar parameters depend on temperature and on the delicate hydrophobic–hydrophilic balance of the blocks. - Abstract: The associative, thermodynamic and thermo-kinetics properties of a diblock E{sub 90}B{sub 10} and three triblock copolymers based on polyoxyethylene and polyoxybutylene of the type E{sub m}B{sub 10}E{sub m} water have been studied by surface tensiometry, light scattering and temperature-jump stopped-flow techniques. The data from surface tension was helpful to detect the critical micelle concentration (CMC) as well as to calculate the thermodynamic parameters of micellization. Dynamic light scattering (DLS) was employed to obtain the values of hydrodynamic radii (R{sub h}), volume (υ{sub h}) and hydrodynamic expansion parameter (δ{sub h}) of the micelle at different temperatures. Similarly, static light scattering (SLS) measurements made us enable to find out various micellar parameters such as; weight-average molar (M{sub w}), association number (N{sub w}), thermodynamic radius (R{sub t}), thermodynamic volume (υ{sub t}), anhydrous volume (υ{sub a}) and thermodynamic expansion parameter (δ{sub t}) of the micelles. Likewise, the kinetics of micellar aggregation/dynamic was also investigated by using temperature-jump stopped-flow technique in the temperature range of 20–50 °C.

  13. Ionization of amphiphilic acidic block copolymers.

    Science.gov (United States)

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  14. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Science.gov (United States)

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  15. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  16. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  17. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. SOLUBILITY AND BIOAVAILABILITY ENHANCEMENT STRATEGIES FOR EFFECTIVE DELIVERY OF POORLY WATER SOLUBLE DRUGS BY NANO FORMULATIONS AND SOLID DISPERSIONS

    OpenAIRE

    Rayapolu Ranga Goud*, Gunnala Krishnaveni, Girija Prasad Patro

    2018-01-01

    For the ancient few years, there has been a substantial research done on diverse methodologies for poorly water soluble and lipophilic drugs. More in modern times voluminous molecules cannot be distributed due to low solubility. Now a day frequently, particulate vesicle systems such as nanoparticles, liposomes, microspheres, niosomes, pronisomes, ethosomes, and proliposomes have been used as drug carriers. Drug delivery designates the technique and methodology to conveying medications or drug...

  19. Synthesis and evaluation of water-soluble poly(vinyl alcohol)-paclitaxel conjugate as a macromolecular prodrug

    International Nuclear Information System (INIS)

    Kakinoki, Atsufumi; Kaneo, Yoshiharu; Tanaka, Tetsuro; Hosokawa, Yoshitsugu

    2008-01-01

    Paclitaxel (PTX) is an antitumor agent for the treatment of various human cancers. Cremophor EL and ethanol are used to formulate PTX in commercial injection solutions, because of its poor solubility in water. However, these agents cause severe allergic reaction upon intravenous administration. The aim of this study is to synthesize water-soluble macromolecular prodrugs of PTX for enhancing the therapeutic efficacy. Poly (vinyl alcohol) (PVA, 80 kDa), water-soluble synthetic polymer, was used as a drug carrier which is safe and stable in the body. The 2'-hydroxyl group of PTX was reacted with succinic anhydride and then carboxylic group of the succinyl spacer was coupled to PVA via ethylene diamine spacer, resulting the water-soluble prodrug of poly (vinyl alcohol)-paclitaxel conjugate (PVA-SPTX). The solubility of PTX was greatly enhanced by the conjugation to PVA. The release of PTX from the conjugate was accelerated at the neutral to basic conditions in in vitro release experiment. [ 125 I]-labeled PVA-SPTX was retained in the blood circulation for several days and was gradually distributed into the tumorous tissue after intravenous injection to the tumor-bearing mice. PVA-SPTX inhibited the growth of sarcoma 180 cells subcutaneously inoculated in mice. It was suggested that the water-solubility of PTX was markedly enhanced by the conjugation to PVA, and PVA-SPTX effectively delivered PTX to the tumorous tissue due to the enhanced permeability and retention (EPR) effect. (author)

  20. Quantitative analysis of soluble elements in environmental waters by PIXE

    International Nuclear Information System (INIS)

    Niizeki, T.; Kawasaki, K.; Adachi, M.; Tsuji, M.; Hattori, T.

    1999-01-01

    We have started PIXE research for environmental science at Van de Graaff accelerator facility in Tokyo Institute of Technology. Quantitative measurements of soluble fractions in river waters have been carried out using the preconcentrate method developed in Tohoku University. We reveal that this PIXE target preparation can be also applied to waste water samples. (author)

  1. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging.

    Science.gov (United States)

    Chytil, Petr; Koziolová, Eva; Janoušková, Olga; Kostka, Libor; Ulbrich, Karel; Etrych, Tomáš

    2015-06-01

    High-molecular-weight star polymer drug nanocarriers intended for the treatment and/or visualisation of solid tumours were synthesised, and their physico-chemical and preliminary in vitro biological properties were determined. The water-soluble star polymer carriers were prepared by the grafting of poly(amido amine) (PAMAM) dendrimers by hetero-telechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, synthesised by the controlled radical Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation. The well-defined star copolymers with Mw values ranging from 2 · 10(5) to 6 · 10(5) showing a low dispersity (approximately 1.2) were prepared in a high yield. A model anticancer drug, doxorubicin, was bound to the star polymer through a hydrazone bond, enabling the pH-controlled drug release in the target tumour tissue. The activated polymer arm ends of the star copolymer carrier enable a one-point attachment for the targeting ligands and/or a labelling moiety. In this study, the model TAMRA fluorescent dye was used to prove the feasibility of the polymer carrier visualisation by optical imaging in vitro. The tailor-made structure of the star polymer carriers should facilitate the synthesis of targeted polymer-drug conjugates, even polymer theranostics, for simultaneous tumour drug delivery and imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  3. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    Science.gov (United States)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of water soluble carrier on dissolution profiles of diclofenac sodium.

    Science.gov (United States)

    Cwiertnia, Barbara

    2013-01-01

    Pharmaceutical aviailability of diclofenac sodium from solid dispersions of PEG 6000 have been studied in comparison to those of the corresponding physical mixtures and pure diclofenac sodium. The diclofenac sodium is poorly water soluble drug. The properties of diclofenac sodium-PEG 6000 solid dispersions have been determined by the methods of differential scanning calorimetry (DSC), X-ray diffraction and scanning electron microscopy (SEM). The effect of PEG 6000 on the solubility of selected diclofenac sodium dispersions has been studied. The solubility of diclofenac sodium from its solid dispersion has been found to increase in the presence of PEG 6000.

  5. Water-Soluble Dinitrosyl Iron Complex (DNIC): a Nitric Oxide Vehicle Triggering Cancer Cell Death via Apoptosis.

    Science.gov (United States)

    Wu, Shou-Cheng; Lu, Chung-Yen; Chen, Yi-Lin; Lo, Feng-Chun; Wang, Ting-Yin; Chen, Yu-Jen; Yuan, Shyng-Shiou; Liaw, Wen-Feng; Wang, Yun-Ming

    2016-09-19

    Nitric oxide (NO) is an important cellular signaling molecule that modulates various physiological activities. Angiogenesis-promoting activities of NO-donor drugs have been explored in both experimental and clinical studies. In this study, a structurally well characterized and water-soluble neutral {Fe(NO)2}(9) DNIC [(S(CH2)2OH)(S(CH2)2NH3)Fe(NO)2] (DNIC 2) was synthesized to serve as a NO-donor species. The antitumor activity of DNIC 2 was determined by MTT assay, confocal imaging, and Annexin-V/PI staining. The IC50 values of DNIC 2 were 18.8, 42.9, and 38.6 μM for PC-3, SKBR-3, and CRL5866 tumor cells, respectively. Moreover, DNIC 2 promoted apoptotic cell death via activation of apoptosis-associated proteins and inhibition of survival associated proteins. In particular, DNIC 2 treatment suppressed PC-3 tumor growth by 2.34- and 19.3-fold at 7 and 21 days, in comparison with the control group. These results indicate that water-soluble DNIC 2 may serve as a promising drug for cancer therapy.

  6. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males.

    Science.gov (United States)

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) for Japanese was given for the second week, three times the DRIs for the third week, and six times the DRIs for the fourth week. Twenty-four-hour urine samples were collected each week. Urinary excretion levels for seven of the nine water-soluble vitamin levels, excluding vitamin B12 and folate, increased linearly and sharply in a dose-dependent manner. These results suggest that measuring urinary water-soluble vitamins can be good nutritional markers for assessing vitamin intakes in humans.

  7. Relationship between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males

    Directory of Open Access Journals (Sweden)

    Katsumi Shibata

    2014-01-01

    Full Text Available Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs for Japanese was given for the second week, three times the DRIs for the third week, and six times the DRIs for the fourth week. Twenty-four-hour urine samples were collected each week. Urinary excretion levels for seven of the nine water-soluble vitamin levels, excluding vitamin B 12 and folate, increased linearly and sharply in a dose-dependent manner. These results suggest that measuring urinary water-soluble vitamins can be good nutritional markers for assessing vitamin intakes in humans.

  8. Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Carlé, Jon Eggert; Andreasen, Birgitta

    2012-01-01

    intensity pulsed light, delivered by a commercial photonic sintering system. Thermally labile ester groups are positioned on the DTZ unit of the copolymer that can be eliminated thermally for enhanced photochemical stability and advantages in terms of processing (solubility/insolubility switching...

  9. Respiratory carcinogenicity assessment of soluble nickel compounds.

    OpenAIRE

    Oller, Adriana R

    2002-01-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear...

  10. A facile synthesis of poly(aniline-co-o-bromoaniline) copolymer: Characterization and application as semiconducting material

    Science.gov (United States)

    Mahudeswaran, A.; Vivekanandan, J.; Vijayanand, P. S.; Kojima, T.; Kato, S.

    2016-01-01

    Poly(aniline-co-o-bromoaniline) (p(an-co-o-BrAn)) copolymer has been synthesized using chemical oxidation method in the hydrochloric acid medium. Copolymerization of aniline with o-bromoaniline of different compositions, such as 1:1, 1:2, 2:1, 1:3 and 3:1 molar ratios were prepared. The synthesized copolymer is soluble in polar solvents like dimethyl sulphoxide (DMSO), dimethyl formamide (DMF), Tetrahydrofuran (THF) and 1-methyl 2-pyrrolidone (NMP). The copolymer is analyzed by various characterization techniques, such as FTIR, UV-Visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), conductivity, Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR spectrum confirms the characteristic peaks of the copolymer containing benzenoid and quinoid ring stretching. UV spectrum reveals the formation of π-π∗ transition and n-π∗ transition between the energy levels. XRD peaks reveal that the copolymer possesses amorphous nature. Morphological study reveals that the agglomerated particles form globular structure and size of the each particle is about 100 nm. The electrical conductivity of the copolymers is found in the range of 10-5Scm-1. These organic semiconductor materials can be used to fabricate thinner and cheaper environmental friendly optoelectronic devices that will replace the conventional inorganic semiconductors.

  11. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  12. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    International Nuclear Information System (INIS)

    Qi Guozhen; Wang Jindi; Lin Yiqing

    1999-01-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed

  13. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Guozhen, Qi; Jindi, Wang; Yiqing, Lin [Inst. of Fine Chemicals ECUST, Shanghai (China)

    1999-07-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed.

  14. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM,

  15. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G J L; Leermakers, Frans A M; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the

  16. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G.J.L.; Leermakers, Frans A.M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with

  17. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    Science.gov (United States)

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Solubility of root-canal sealers in water and artificial saliva.

    Science.gov (United States)

    Schäfer, E; Zandbiglari, T

    2003-10-01

    To compare the weight loss of eight different root-canal sealers in water and in artificial saliva with different pH values. For standardized samples (n = 12 per group), ring moulds were filled with epoxy resin (AH 26, AH Plus)-, silicone (RSA RoekoSeal)-, calcium hydroxide (Apexit, Sealapex)-, zinc oxide-eugenol (Aptal-Harz)-, glass-ionomer (Ketac Endo)- and polyketone (Diaket)-based sealers. These samples were immersed in double-distilled water or artificial saliva with different pH values (7.0, 5.7 and 4.5) for 30 s, 1 min, 2 min, 5 min, 10 min, 20 min, 1 h, 2 h, 10 h, 24 h, 48 h, 72 h, 14 days and 28 days. Mean loss of weight was determined and analysed statistically using a one-way anova and Student-Newman-Keuls test for all pairwise comparisons. Most sealers were of low solubility, although Sealapex, Aptal-Harz and Ketac Endo showed a marked weight loss in all liquids. Even after 28 days of storage in water, AH 26, AH Plus, RSA RoekoSeal, and Diaket showed less than 3% weight loss. At exposure times greater than 14 days, Sealapex showed the significantly greatest weight loss of all sealers tested (P < 0.05). Aptal-Harz and Ketac Endo were significantly more soluble in saliva (pH 4.5) than in water (P < 0.05). Under the conditions of the present study, AH Plus showed the least weight loss of all sealers tested, independent of the solubility medium used. Sealapex, Aptal-Harz and Ketac Endo had a marked weight loss in all liquids.

  19. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  20. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  1. Tainting by short-term exposure of Atlantic salmon to water soluble petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Ackman, R.G.; Heras, H.

    1992-01-01

    Experiments were conducted to examine the extent of tainting of salmon by exposure to the soluble fraction of petroleum hydrocarbons. The experiments were conducted on Atlantic salmon in tanks containing seawater artificially contaminated at three different concentrations with the soluble fraction of a North Sea crude. The salmon flesh was analyzed by gas chromatography and taste tests were conducted on cooked salmon samples to determine the extent of tainting. Salmon in control tanks with uncontaminated seawater had muscle accumulations of total hydrocarbons of ca 1 ppM. The muscle accumulations of total hydrocarbons in the salmon were 13.5 ppM, 25.6 ppM, and 31.3 ppM for water soluble fraction concentrations of 0.45, 0.87, and 1.54 ppM respectively. The threshold for taint was clearly inferred to be less than 0.45 ppM of water soluble fraction. 18 refs., 2 figs

  2. Elucidation of the Structure Formation of Polymer-Conjugated Proteins in Solution and Block Copolymer Templates

    Science.gov (United States)

    Ferebee, Rachel L.

    The broader technical objective of this work is to contribute to the development of enzyme-functionalized nanoporous membranes that can function as autonomous and target selective dynamic separators. The scientific objective of the research performed within this thesis is to elucidate the parameters that control the mixing of proteins in organic host materials and in block copolymers templates in particular. A "biomimetic" membrane system that uses enzymes to selectively neutralize targets and trigger a change in permeability of nanopores lined with a pH-responsive polymer has been fabricated and characterized. Mechanical and functional stability, as well as scalability, have been demonstrated for this system. Additional research has focused on the role of polymeric ligands on the solubility characteristics of the model protein, Bovine Serum Albumin (BSA). For this purpose BSA was conjugated with poly(ethylene glycol) (PEG) ligands of varied degree of polymerization and grafting density. Combined static and dynamic light scattering was used (in conjunction with MALDI-TOF) to determine the second virial coefficient in PBS solutions. At a given mass fraction PEG or average number of grafts, the solubility of BSA-PEG conjugates is found to increase with the degree of polymerization of conjugated PEG. This result informs the synthesis of protein-conjugate systems that are optimized for the fabrication of block copolymer blend materials with maximum protein loading. Blends of BSA-PEG conjugates and block copolymer (BCP) matrices were fabricated to evaluate the dispersion morphology and solubility limits in a model system. Electron microscopy was used to evaluate the changes in lamellar spacing with increased filling fraction of BSA-PEG conjugates.

  3. Synthesis and characterization of acrylate copolymer containing fluorescein functional group

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Guodong; Huang, Weiyun; Song, Yunzhao; Chen, Deben; Zhong, Anyong [Sichuan University, Chengdu (China)

    2013-08-15

    We report a novel method to fabricate fluorescent polymer (F-CPA) based on the esterification between acrylate copolymer (CPA) and fluorescein using N, N-dicyclohexylcarbodiimide (DCC)/4-dimethylaminopyridine (DMAP) as catalyst. The resulting copolymer was characterized by Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis) and fluorescence spectroscopy. In addition, the influences of concentration, solvents, pH and metal cations (Cu{sup 2+}, Fe{sup 3+} and Zn{sup 2+}) on the fluorescent behaviors of F-CPA are discussed in detail. All those observations suggest that the synthesized F-CPA is an excellent luminescent macromolecular material with simple synthesis method and excellent solubility. Moreover, its sensitive fluorescence response behaviors to solvents, pH and metal cations make it to become a polymer-based probe.

  4. [HYGIENIC ASSESSMENT OF WATER-SOLUBLE VITAMINS CONTENT IN THE FOOD RATION OF ADOLESCENTS].

    Science.gov (United States)

    Kozubenko, O V; Turchaninov, D V; Boyarskaya, L A; Glagoleva, O N; Pogodin, I S; Luksha, E A

    2015-01-01

    Adequate, balanced nutrition is a precondition for the formation of health of the younger generation. The study of the dietary intake and peculiarities of the chemical composition offood is needed to substantiate measures aimed at the correction of the ration of adolescents. Hygienic evaluation of the content of water soluble vitamins in foods and the ration of teenage population of the Omsk region. TASKS OF THE STUDY: 1. To determine levels of water-soluble vitamins content in foods forming the basis of the ration of the population the Omsk region. 2. On the base of a study of the actual nutrition of adolescents to determine the levels of water-soluble vitamins consumption. 3. To give a hygienic assessment of adolescent nutrition in the Omsk region in terms of provision with water-soluble vitamins, and to identify priority directions of the alimentary correction of the revealed disorders. The analysis of 389 food samples for the content of water-soluble vitamins (B1, B2, B6, PP C, folic acid) was performed with the use of reversed-phase HPLC high pressure on the Shimadzu LC-20 Prominence detector. The hygienic assessment of the actual nutrition of adolescents aged 13-17 years (sample survey; n = 250; 2012-2014) in the Omsk region was performed by the method of the analysis of food consumption frequency. There were noted significantly lower concentrations of vitamin B1 and B2 in the studied samples of cereals, bread and vegetables in comparison with reference data. Consumption levels of vitamins B1, B2, PP folic acid in the diet of adolescents in the Omsk region are lower than recommended values. In the structure of nutrition there is not enough milk dairy products--in 82.4 ± 2.4%, fish and sea products in 90.8 ± 1.8% of adolescents. The actual nutrition of the adolescent population of the Omsk region is irrational, unbalanced in quantitative and qualitative terms, and does not provide the necessary level of consumption of most important water-soluble vitamins

  5. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  6. Self-assembled Block Copolymer Membranes with Bioinspired Artificial Channels

    KAUST Repository

    Sutisna, Burhannudin

    2018-04-01

    Nature is an excellent design that inspires scientists to develop smart systems. In the realm of separation technology, biological membranes have been an ideal model for synthetic membranes due to their ultrahigh permeability, sharp selectivity, and stimuliresponse. In this research, fabrications of bioinspired membranes from block copolymers were studied. Membranes with isoporous morphology were mainly prepared using selfassembly and non-solvent induced phase separation (SNIPS). An effective method that can dramatically shorten the path for designing new isoporous membranes from block copolymers via SNIPS was first proposed by predetermining a trend line computed from the solvent properties, interactions and copolymer block sizes of previously-obtained successful systems. Application of the method to new copolymer systems and fundamental studies on the block copolymer self-assembly were performed. Furthermore, the manufacture of bioinspired membranes was explored using (1) poly(styrene-b-4-hydroxystyrene-b-styrene) (PS-b-PHS-b-PS), (2) poly(styrene-bbutadiene- b-styrene) (PS-b-PB-b-PS) and (3) poly(styrene-b-γ-benzyl-L-glutamate) (PSb- PBLG) copolymers via SNIPS. The structure formation was investigated using smallangle X-ray scattering (SAXS) and time-resolved grazing-Incidence SAXS. The PS-b- PHS-b-PS membranes showed preferential transport for proteins, presumably due to the hydrogen bond interactions within the channels, electrostatic attraction, and suitable pore dimension. Well-defined nanochannels with pore sizes of around 4 nm based on PS-b- PB-b-PS copolymers could serve as an excellent platform to fabricate bioinspired channels due to the modifiable butadiene blocks. Photolytic addition of thioglycolic acid was demonstrated without sacrificing the self-assembled morphology, which led to a five-fold increase in water permeance compared to that of the unmodified. Membranes with a unique feather-like structure and a lamellar morphology for dialysis and

  7. Formulation of a Novel Nano emulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin

    International Nuclear Information System (INIS)

    Vatsraj, S.; Pathak, H.; Chauhan, K.

    2014-01-01

    The sparingly water soluble property of majority of medicinally significant drugs acts as a potential barrier towards its utilization for therapeutic purpose. The present study was thus aimed at development of a novel oil-in-water (o/w) nano emulsion (NE) system having ability to function as carrier for poorly soluble drugs with clarithromycin as a model antibiotic. The therapeutically effective concentration of clarithromycin, 5 mg/mL, was achieved using polysorbate 80 combined with olive oil as lipophilic counterion. A three-level three-factorial central composite experimental design was utilized to conduct the experiments. The effects of selected variables, polysorbate 80 and olive oil content and concentration of polyvinyl alcohol, were investigated. The particle size of clarithromycin for the optimized formulation was observed to be 30 nm. The morphology of the nano emulsion was explored using transmission electron microscopy (TEM). The emulsions prepared with the optimized formula demonstrated good physical stability during storage at room temperature. Antibacterial activity was conducted with the optimized nano emulsion NESH 01 and compared with free clarithromycin. Zone of inhibition was larger for NESH 01 as compared to that with free clarithromycin. This implies that the solubility and hence the bioavailability of clarithromycin has increased in the formulated nano emulsion system.

  8. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  9. Water-soluble chelating polymers for removal of actinides from wastewater

    International Nuclear Information System (INIS)

    Jarvinen, G.D.

    1997-01-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent

  10. Water-soluble chelating polymers for removal of actinides from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  11. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males

    OpenAIRE

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) ...

  12. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  13. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum

    Directory of Open Access Journals (Sweden)

    Maryam Khaksari

    2017-04-01

    Full Text Available Two separate liquid chromatography (LC-mass spectrometry (MS methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B1, B2, B3 (nicotinamide, B5, B6 (pyridoxine, B7, B9 and B12 while the fat-soluble vitamin method detected vitamins A, D3, 25(OHD3, E and K1. These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD and limits of quantification (LOQ are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  14. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-04-01

    Two separate liquid chromatography (LC)-mass spectrometry (MS) methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B 1 , B 2 , B 3 (nicotinamide), B 5 , B 6 (pyridoxine), B 7 , B 9 and B 12 while the fat-soluble vitamin method detected vitamins A, D 3 , 25(OH)D 3, E and K 1 . These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD) and limits of quantification (LOQ) are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  15. Amphiphilic block copolymers for biomedical applications

    Science.gov (United States)

    Zupancich, John Andrew

    Amphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale objects in solution. Control over aggregate shape is granted through manipulation of amphiphile composition and the synthesis of well-defined polymers offers the potential to produce micelles with geometries optimized for specific applications. Currently, polymer micelles are being investigated as vehicles for the delivery of therapeutics and attempts to increase efficacy has motivated efforts to incorporate bioactive ligands and stimuli-responsive character into these structures. This thesis reports the synthesis and self-assembly of biocompatible, degradable polymeric amphiphiles. Spherical, cylindrical, and bilayered vesicle structures were generated spontaneously by the direct dispersion of poly(ethylene oxide)-b-poly(gamma-methyl-ε-caprolactone) block copolymers in water and solutions were characterized with cryogenic transmission electron microscopy (cryo-TEM). The dependence of micelle structure on diblock copolymer composition was examined through the systematic variation of the hydrophobic block molecular weight. A continuous evolution of morphology was observed with coexistence of aggregate structures occurring in windows of composition intermediate to that of pure spheres, cylinders and vesicles. A number of heterobifunctional poly(ethylene oxide) polymers were synthesized for the preparation of ligand-functionalized amphiphilic diblock copolymers. The effect of ligand conjugation on block copolymer self-assembly and micelle morphology was also examined. An RGD-containing peptide sequence was efficiently conjugated to a set of well characterized poly(ethylene oxide)-b-poly(butadiene) copolymers. The reported aggregate morphologies of peptide-functionalized polymeric amphiphiles deviated from canonical structures and the micelle clustering, cylinder fragmentation, network formation, and multilayer vesicle generation documented with cryo-TEM was attributed to

  16. Non-surface activity and micellization behavior of cationic amphiphilic block copolymer synthesized by reversible addition-fragmentation chain transfer process.

    Science.gov (United States)

    Ghosh, Arjun; Yusa, Shin-ichi; Matsuoka, Hideki; Saruwatari, Yoshiyuki

    2011-08-02

    Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.

  17. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  18. Soluble organic nanotubes for catalytic systems

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  19. Soluble organic nanotubes for catalytic systems.

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-18

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  20. Association and Structure of Thermo Sensitive Comblike Block Copolymers in Aqueous Solutions

    International Nuclear Information System (INIS)

    Cheng, Gang

    2008-01-01

    The structures and association properties of thermo sensitive poly(methoxyoligo(ethylene glycol) norbornenyl esters) block copolymers in D2O were investigated by Small Angle Neutron Scattering (SANS). Each block is a comb-like polymer with a polynorbornene (PNB) backbone and oligo ethylene glycol (OEG) side chains (one side chain per NB monomer). The chemical formula of the block copolymer is (OEG3NB)79-(OEG6.6NB)67, where subscripts represent the degree of polymerization (DP) of OEG and NB in each block The polymer concentration was fixed at 2.0 wt % and the structural changes were investigated over a temperature range between 25 C and 68 C. It was found that at room temperature polymers associate to form micelles with a spherical core formed by the block (OEG3NB)79 and corona formed by the block (OEG6.6NB)67 and that the shape of the polymer in the corona could be described by the form factor of rigid cylinders. At elevated temperatures, the aggregation number increases and the micelles become more compact. At temperatures round the cloud point temperature (CPT) T = 60 C a correlation peak started to appear and became pronounced at 68 C due to the formation of a partially ordered structure with a correlation length ∼ 349

  1. Transpiration directly regulates the emissions of water-soluble short-chained OVOCs.

    Science.gov (United States)

    Rissanen, K; Hölttä, T; Bäck, J

    2018-04-20

    Most plant-based emissions of volatile organic compounds (VOCs) are considered mainly temperature dependent. However, certain oxygenated VOCs (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in xylem sap. Yet, further understanding on the role of transport has been lacking until present. We used shoot-scale long-term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of three water soluble OVOC: methanol, acetone and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the three OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in xylem sap from their sources in roots and stem to leaves and to ambient air. This article is protected by copyright. All rights reserved.

  2. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity.

    Science.gov (United States)

    Li, Qing; Sun, Xueqi; Gu, Guodong; Guo, Zhanyong

    2018-03-28

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating "click reaction" with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC 50 radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  3. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    Science.gov (United States)

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-02-20

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  4. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    Science.gov (United States)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  5. Water-based adhesives with tailored hydrophobic association: dilution resistance and improved setting behavior.

    Science.gov (United States)

    Dundua, Alexander; Landfester, Katharina; Taden, Andreas

    2014-11-01

    Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. TUNING OF THE LUMINESCENCE IN MULTIBLOCK ALTERNATING COPOLYMERS .1. SYNTHESIS AND SPECTROSCOPY OF POLY[(SILANYLENE)THIOPHENE]S

    NARCIS (Netherlands)

    Herrema, J.K; Hutten, P.F.van; Gill, R.E; Wildeman, J.; Wieringa, R.H; Hadziioannou, G

    1995-01-01

    Synthetic routes to alternating copolymers consisting of oligosilylene blocks and oligothiophene blocks (T-x; x = 1, 2, 3, 4, or 6 rings) are presented. Solubility requirements for obtaining acceptable molecular weights and, eventually, for film formation are met by the introduction of butyl groups

  7. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    Science.gov (United States)

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  8. pKa Determination of water-soluble calix[4]arenes

    NARCIS (Netherlands)

    Shinkai, Seiji; Araki, Koji; Grootenhuis, P.D.J.; Reinhoudt, David

    1991-01-01

    Neutral, water-soluble 5,11,17,23-tetrakis[bis-(2-hydroxyethyl)aminosulphonyl]calix[4]arene-25,26,27,28-tetraol and 5,11,17,23-tetranitrocalix[4]arene-25,26,27,28-tetraol have been synthesized and the pKa values of the OH groups determined in an aqueous system.

  9. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Modification of ethylene-norbornene copolymer by Gamma irradiation

    Directory of Open Access Journals (Sweden)

    Kačarević-Popović Zorica M.

    2006-01-01

    Full Text Available The possibility of modifying polyethylene and many other polymers with high energy radiation has led to many useful applications. Due to their new combination of properties and the shortage of experimental data, the radiolysis of a new class of materials, cyclo-olefin copolymers (COC, polymerised from norbornene and ethylene using metallocene catalysts, is of great interest to the study of radiation chemistry and the physics of polymeric systems. Ethylenenorbornene copolymer, pristine and containing an antioxidant were subjected to gamma irradiation in the presence of air and in water. The irradiated copolymer was studied using IR and UV-vis spectrophotometric analysis. The radiation-induced changes in the molecular structure were correlated to changes in the glass transition temperature measured by the DSC method.

  11. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower ... Journal Home > Vol 11, No 1 (2012) > ... The objective of the present work was to determine the mechanisms of tolerance of four ...

  12. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  14. IMPROVEMENT OF SOLUBILITY OF BADLY WATER SOLUBLE DRUG (IBUPROFEN) BY USING SURFACTANTS AND CARRIERS

    OpenAIRE

    Md. Zakaria Faruki*, Rishikesh, Elizabeth Razzaque, Mohiuddin Ahmed Bhuiyan

    2013-01-01

    ABSTRACT: Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of badly water-soluble drugs, their profitable use has been very limited, primarily because of manufacturing difficulties and stability problems. In this study solid solutions of drugs were generally produced by fusion method. The drug along with the excipients (surfactants and carriers) was heated first and then hardened by cooling to room te...

  15. SYNTHESIS AND CHARACTERIZATION OF NOVEL BIPOLAR PPV-BASED COPOLYMER CONTAINING TRIAZOLE AND CARBAZOLE UNITS

    Institute of Scientific and Technical Information of China (English)

    Ze Liu; Li-xiang Wang; Xia-bin Jing; Fo-song Wang

    2001-01-01

    Two new blue light-emitting PPV-based conjugated copolymers containing both an electron-withdrawing unit (triazole-TAZ) and electron-rich moieties (carbazole-CAR and bicarbazole-BCAR) were prepared by Wittig condensation polymerization between the triazole diphosphonium salt and the corresponding dialdehyde monomers. Their structures and properties were characterized by FT-IR, TGA, DSC, UV-Vis, PL spectroscopy and electrochemical measurements. The resulting copolymers are soluble in common organic solvents and thermally stable with a Ts of 147C for TAZ-CAR-PPV and of 157C for TAZ-BCAR-PPV. The maximum photoluminescence wavelengths of TAZ-CAR-PPV and TAZ-BCAR-PPV film appear at 460 nm and 480 nm, respectively. Cyclic voltammetry measurement demonstrates that TAZ-BCAR-PPV has good electrochemical reversibility, while TAZ-CAR-PPV exhibits the irreversible redox process. The triazole unit was found to be an effective π-conjugation interrupter and can play the rigid spacer role in determining the emission colour of the resulting copolymer.

  16. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  17. Immobilization of trichoderma REESEI (QM 9414) cells with paper covered with ionic copolymer by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin

    1992-01-01

    Cationic-hydrophobic copolymer and anionic-hydrophobic copolymer was covered onto surface of paper by radiation polymerization. The paper covered with ionic copolymer was used as carrier of immobilizing Trichoderma reesei cells. Results showed that the cells were immobilized firmly on the carriers and not dislocated from the carriers by shaking. All of FPA of the cells immobilized with the carriers covered with cationic copolymer were higher than that of un-immobilized free cells. The carriers covered with anionic copolymer showed good effect on immobilization of the cells. The weight of immobilized cells increase as increasing the component of DEAEMA in poly (DEAEMA-ATMPT) or decreasing the component of AA in poly (AA-ATMPT). It also increase with the increase of water absorption in poly (DEAEMA-ATMPT) or decrease of water absorption in poly (AA-ATMPT). It shows the static interaction play an important role in the immobilization of cells with ionic copolymer materials

  18. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  19. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jé rô me; Bricout, Hervé ; Tilloy, Sé bastien; Fihri, Aziz; Len, Christophe; Hapiot, Fré dé ric; Monflier, É ric

    2012-01-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  20. Determination of radionuclide solubility limits to be used in SR 97. Uncertainties associated to calculated solubilities

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Cera, E.; Duro, L.; Jordana, S. [QuantiSci S.L., Barcelona (Spain); Pablo, J. de [DEQ-UPC, Barcelona (Spain); Savage, D. [QuantiSci Ltd., Henley-on-Thames (United Kingdom)

    1997-12-01

    The thermochemical behaviour of 24 critical radionuclides for the forthcoming SR97 PA exercise is discussed. The available databases are reviewed and updated with new data and an extended database for aqueous and solid species of the radionuclides of interest is proposed. We have calculated solubility limits for the radionuclides of interest under different groundwater compositions. A sensitivity analysis of the calculated solubilities with the composition of the groundwater is presented. Besides selecting the most likely solubility limiting phases, in this work we have used coprecipitation approaches in order to calculate more realistic solubility limits for minor radionuclides, such as Ra, Am and Cm. The comparison between the calculated solubilities and the concentrations measured in relevant natural systems (NA) and in spent fuel leaching experiments helps to assess the validity of the methodology used and to derive source term concentrations for the radionuclides studied. The uncertainties associated to the solubilities of the main radionuclides involved in the spent nuclear fuel have also been discussed in this work. The variability of the groundwater chemistry; redox conditions and temperature of the system have been considered the main factors affecting the solubilities. In this case, a sensitivity analysis has been performed in order to study solubility changes as a function of these parameters. The uncertainties have been calculated by including the values found in a major extent in typical granitic groundwaters. The results obtained from this analysis indicate that there are some radionuclides which are not affected by these parameters, i.e. Ag, Cm, Ho, Nb, Ni, Np, Pu, Se, Sm, Sn, Sr, Tc and U

  1. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  2. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper; Tran, Tam H.

    2016-01-01

    70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product......In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than...... is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation...

  3. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    NARCIS (Netherlands)

    Baker, M.B.; Albertazzi, L.; Voets, Ilja K.; Leenders, C.M.A.; Palmans, A.R.A.; Pavan, G.M.; Meijer, E. W.

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers:

  4. Evaluation of ammonium nitrate phosphate (Suphala) having different water soluble phosphorus levels on black soils

    International Nuclear Information System (INIS)

    Deo Dutt; Mutatkar, V.K.; Chapke, V.G.

    1974-01-01

    Efficiency of the laboratory prepared 32 P tagged ammonium nitrate phosphate (Suphala) varying in water soluble P was studied both on calcareous and non-calcareous soils of Maharashtra for bajra and wheat crops under greenhouse conditions. The results revealed a significant increase in dry matter production and uptake of total and fertilizer P with Suphala containing 30-32% water-soluble phosphorus. (author)

  5. Spatial and temporal variability of water soluble carbon for a cropped field

    International Nuclear Information System (INIS)

    Liss, H.J.; Rolston, D.E.

    1983-01-01

    The water soluble carbon from soil extracts was taken from a two-hundred point grid established on a 1.2 ha field. The sampling was in the fall after the harvest of a sorghum crop. The concentrations ranged from 23.8 ppm to 274.2 ppm. Over 90 per cent of the concentrations were grouped around the mean of 40.3 ppm. The higher values caused the distribution to be greatly skewed such that neither normal nor log normal distributions characterized the data very well. The moisture content from the same samples followed normal distribution. Changes in the mean, the variance and the distribution of water soluble carbon were followed on 0.4 ha of the 1.2 ha in a grid of sixty points during a crop of wheat and a subsequent crop of sorghum. The mean increased in the spring, decreased in the summer and increased again in the fall. The spring and summer concentrations are well characterized by log normal distributions. The spatial dependence of water soluble carbon was examined on a fifty-five point transect across the field spaced every 1.37 m. The variogram indicated little or no dependence at this spacing. (author)

  6. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  8. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  9. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion.

    Science.gov (United States)

    Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki

    2012-11-01

    A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.

  10. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  11. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2011-01-01

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  12. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    OpenAIRE

    Csapó J.; Albert Cs.; Prokisch J.

    2017-01-01

    Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from ...

  13. Changes in the content of water-soluble sulphur in the soil after an application of straw and elemental sulphur

    Directory of Open Access Journals (Sweden)

    Pavel Ryant

    2007-01-01

    Full Text Available The changes in the content of water-soluble sulphur in the soil after the application of straw and elemental sulphur (ES were explored in a 2-year vegetation pot experiment. The following variants were included in the experiment: 1 unfertilised control; 2 wheat straw; 3 rape straw; 4 ES; 5 wheat straw + ES; 6 rape straw + ES. The two types of straw were applied in a dose of 32 g of dry matter and elemental sulphur was applied in a dose of 0.42 g per pot, i.e. 6 kg of soil. The unsatisfactory C:N ratio in the straw was optimised to 25:1 by adding nitrogen in urea. Soil samples were taken prior to sowing of the model plant (spring wheat in 2005 and white mustard in 2006 and then in regular monthly intervals until harvesting (5 times a year. The content of water-soluble sulphur in the soil was evaluated by multifactorial analysis of variance monitoring the effect of the crop, date of soil sampling, application of straw and elemental sulphur.The contents of water-soluble sulphur differed statistically significantly (P > 0.999 when growing the individual model plants. When growing white mustard in 2006 the amount of available sulphur was by 1/5 higher and could have been partly affected by the warm year 2006, as compared to 2005 when spring wheat was grown. Significant differences (P > 0.999 were also discovered among the dates of soil sampling; higher values were detected before the sowing of model plants, i.e. after incubation in the winter, during vegetation the content of water-soluble sulphur decreased and sulphur showed the significantly highest values at the harvest of model plants. When wheat straw was applied the sulphur content did not increase and this may be associated with the wide C:S ratio, whereas after the application of rape straw the content of water-soluble sulphur increased by one third more than in the unfertilised control. The application of elemental sulphur also significantly increased the amount of water-soluble sulphur in

  14. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  15. Spectrofluorimetric determination of some water-soluble vitamins.

    Science.gov (United States)

    Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Abdel-Latif, Niveen M; Mohamed, Marwa R

    2011-01-01

    Two simple and sensitive spectrofluorimetric methods were developed for determination of three water-soluble vitamins (B1, B2, and B6) in mixtures in the presence of cyanocobalamin. The first one was for thiamine determination, which depends on the oxidation of thiamine HCl to thiochrome by iodine in an alkaline medium. The method was applied accurately to determine thiamine in binary, ternary, and quaternary mixtures with pyridoxine HCl, riboflavin, and cyanocobalamin without interference. In the second method, riboflavin and pyridoxine HCl were determined fluorimetrically in acetate buffer, pH 6. The three water-soluble vitamins (B1, B2, and B6) were determined spectrofluorimetrically in binary, ternary, and quaternary mixtures in the presence of cyanocobalamin. All variables were studied in order to optimize the reaction conditions. Linear relationship was obeyed for all studied vitamins by the proposed methods at their corresponding lambda(exc) or lambda(em). The linear calibration curves were obtained from 10 to 500 ng/mL; the correlation ranged from 0.9991 to 0.9999. The suggested procedures were applied to the analysis of the investigated vitamins in their laboratory-prepared mixtures and pharmaceutical dosage forms from different manufacturers. The RSD range was 0.46-1.02%, which indicates good precision. No interference was observed from common pharmaceutical additives. Good recoveries (97.6 +/- 0.7-101.2 +/- 0.8%) were obtained. Statistical comparison of the results with reported methods shows excellent agreement and indicates no significant difference in accuracy and precision.

  16. Water-soluble resist for environmentally friendly lithography

    Science.gov (United States)

    Lin, Qinghuang; Simpson, Logan L.; Steinhaeusler, Thomas; Wilder, Michelle; Willson, C. Grant; Havard, Jennifer M.; Frechet, Jean M. J.

    1996-05-01

    This paper describes an 'environmentally friendly,' water castable, water developable photoresist system. The chemically amplified negative-tone resist system consists of three water-soluble components: a polymer, poly(methyl acrylamidoglycolate methyl ether), [poly(MAGME)]; a photoacid generator, dimethyl dihydroxyphenylsulfonium triflate and a crosslinker, butanediol. Poly(MAGME) was synthesized by solution free radical polymerization. In the three-component resist system, the acid generated by photolysis of the photoacid generator catalyzes the crosslinking of poly(MAGME) in the exposed regions during post-exposure baking, thus rendering the exposed regions insoluble in water. Negative tone relief images are obtained by developing with pure water. The resist is able to resolve 1 micrometer line/space features (1:1 aspect ratio) with an exposure dose of 100 mJ/cm2 at 248 nm. The resist can be used to generate etched copper relief images on printed circuit boards using aqueous sodium persulfate as the etchant. The crosslinking mechanism has been investigated by model compound studies using 13C NMR. These studies have revealed that the acid catalyzed reaction of the poly(MAGME) with butanediol proceeds via both transesterification and transacetalization (transaminalization) reactions at low temperatures, and also via transamidation at high temperatures.

  17. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  18. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  19. Follow-up barium study after a negative water-soluble contrast examination for suspected esophageal leak: is it necessary?

    Science.gov (United States)

    Sanchez, Thomas R; Holz, Grant S; Corwin, Michael T; Wood, Robert J; Wootton-Gorges, Sandra L

    2015-10-01

    The purpose of this study was to determine the value of follow-up barium esophogram in diagnosing esophageal injury or leak if the initial water-soluble contrast examination of the esophagus is normal. An institutional review board (IRB)-approved retrospective review of all pediatric patients less than 18 years old referred to the radiology department for evaluation of esophageal injury or leak was performed for a 9-year period from 2005 to 2014. The majority of patients had unexplained pneumomediastinum, chest trauma (gunshot or puncture wound), or foreign body ingestion as the reason for the referral. Forty-nine patients (age range 10 days to 17 years) underwent an initial water-soluble esophogram immediately followed by a barium esophogram. Forty-six studies were negative on both water-soluble contrast and barium studies. Two studies were both positive on the initial water-soluble contrast and subsequent barium studies. A single study showed the esophageal leak only in the water-soluble study, with the follow-up barium exam being normal. The result of this study indicates that a single-contrast water-soluble esophogram alone is sensitive in the diagnosis of esophageal injury or leak. It has a 100 % sensitivity and negative predictive value. A follow-up barium esophogram only increases the study time and radiation dose to the patient.

  20. Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator.

    Science.gov (United States)

    Richardson-Sanchez, Tomas; Tieu, William; Gotsbacher, Michael P; Telfer, Thomas J; Codd, Rachel

    2017-07-21

    The water solubility of a natural product-inspired octadentate hydroxamic acid chelator designed to coordinate Zr(iv)-89 has been improved by using a combined microbiological-chemical approach to engineer four ether oxygen atoms into the main-chain region of a methylene-containing analogue. First, an analogue of the trimeric hydroxamic acid desferrioxamine B (DFOB) that contained three main-chain ether oxygen atoms (DFOB-O 3 ) was generated from cultures of the native DFOB-producer Streptomyces pilosus supplemented with oxybis(ethanamine) (OBEA), which competed against the native 1,5-diaminopentane (DP) substrate during DFOB assembly. This precursor-directed biosynthesis (PDB) approach generated a suite of DFOB analogues containing one (DFOB-O 1 ), two (DFOB-O 2 ) or three (DFOB-O 3 ) ether oxygen atoms, with the latter produced as the major species. Log P measurements showed DFOB-O 3 was about 45 times more water soluble than DFOB. Second, a peptide coupling chain-extension reaction between DFOB-O 3 and the synthetic ether-containing endo-hydroxamic acid monomer 4-((2-(2-aminoethoxy)ethyl)(hydroxy)amino)-4-oxobutanoic acid (PBH-O 1 ) gave the water soluble tetrameric hydroxamic acid DFOB-O 3 -PBH-O 1 as an isostere of sparingly water soluble DFOB-PBH. The complex between DFOB-O 3 -PBH-O 1 and nat Zr(iv), examined as a surrogate measure of the radiolabelling procedure, analysed by LC-MS as the protonated adduct ([M + H] + , m/z obs = 855.2; m/z calc = 855.3), with supporting HRMS data. The use of a microbiological system to generate a water-soluble analogue of a natural product for downstream semi-synthetic chemistry is an attractive pathway for developing new drugs and imaging agents. The improved water solubility of DFOB-O 3 -PBH-O 1 could facilitate the synthesis and purification of downstream products, as part of the ongoing development of ligands optimised for Zr(iv)-89 immunological PET imaging.

  1. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    Science.gov (United States)

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  2. A New Approach on Estimation of Solubility and n-Octanol/ Water Partition Coefficient for Organohalogen Compounds

    Directory of Open Access Journals (Sweden)

    Chenzhong Cao

    2008-06-01

    Full Text Available The aqueous solubility (logW and n-octanol/water partition coefficient (logPOW are important properties for pharmacology, toxicology and medicinal chemistry. Based on an understanding of the dissolution process, the frontier orbital interaction model was suggested in the present paper to describe the solvent-solute interactions of organohalogen compounds and a general three-parameter model was proposed to predict the aqueous solubility and n-octanol/water partition coefficient for the organohalogen compounds containing nonhydrogen-binding interactions. The model has satisfactory prediction accuracy. Furthermore, every item in the model has a very explicit meaning, which should be helpful to understand the structure-solubility relationship and may be provide a new view on estimation of solubility.

  3. Highly CO2-Selective Gas Separation Membranes Based on Segmented Copolymers of Poly(Ethylene oxide) Reinforced with Pentiptycene-Containing Polyimide Hard Segments.

    Science.gov (United States)

    Luo, Shuangjiang; Stevens, Kevin A; Park, Jae Sung; Moon, Joshua D; Liu, Qiang; Freeman, Benny D; Guo, Ruilan

    2016-01-27

    Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.

  4. Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.

    Science.gov (United States)

    Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2018-06-01

    This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.

  5. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  6. Complexation of anionic copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide with aminoglycoside antibiotics

    Science.gov (United States)

    Solovskii, M. V.; Tarabukina, E. B.; Amirova, A. I.; Zakharova, N. V.; Smirnova, M. Yu.; Gavrilova, I. I.

    2014-03-01

    The complexation of aminoglycoside antibiotics neomycin, gentamicin, kanamycin, and amikacin in the form of free bases with carboxyl- and sulfo-containing copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide (HPMA) in water and water-salt solutions is studied by means of viscometry, equilibrium dialysis, potentiometric titration, and molecular hydrodynamics. Factors influencing the stability of formed copolymer-antibiotic complexes and determinations of their toxicity are established.

  7. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    International Nuclear Information System (INIS)

    Leuenberger, H.

    2002-01-01

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins

  8. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo, E-mail: zghu@htu.cn

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10{sup −4} mg/mL and 3.9 × 10{sup −5} mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability.

  9. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    International Nuclear Information System (INIS)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo

    2014-01-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by 1 H nuclear magnetic resonance ( 1 H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10 −4 mg/mL and 3.9 × 10 −5 mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability

  10. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Science.gov (United States)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  11. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    International Nuclear Information System (INIS)

    Jaapar, Syaripah Zaimah Syed; Iwai, Yoshio; Morad, Noor Azian

    2013-01-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  12. Study of structural morphologies of thermoresponsive diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene)

    Science.gov (United States)

    Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-03-01

    Structural morphologies of diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene) in aqueous environment have been investigated by dissipative particle dynamics (DPD). In triblock copolymers insoluble PS blocks contract while soluble pNIPAM blocks stay at the periphery forming looped chains as corona. As the temperature is increased there is a continuous morphological transition and micelles form ellipsoidal structures with segregated polymer zones. The phase transition of looped pNIPAM chains occurs at lower temperature than for linear chains and within broader temperature range. It is discussed how the chain topology of pNIPAM affects the phase transition.

  13. Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-02-01

    Tears serve as a viable diagnostic fluid with advantages including less invasive sample to collect and less complex to prepare for analysis. Several water-soluble and fat-soluble vitamins were detected and quantified in human tears and compared with blood serum levels. Samples from 15 family pairs, each pair consisting of a four-month-old infant and one parent were analyzed; vitamin concentrations were compared between tears and blood serum for individual subjects, between infants and parents, and against self-reported dietary intakes. Water-soluble vitamins B 1 , B 2 , B 3 (nicotinamide), B 5 , B 9 and fat-soluble vitamin E (α-tocopherol) were routinely detected in tears and blood serum while fat-soluble vitamin A (retinol) was detected only in blood serum. Water-soluble vitamin concentrations measured in tears and blood serum of single subjects were comparable, while higher concentrations were measured in infants compared to their parents. Fat-soluble vitamin E concentrations were lower in tears than blood serum with no significant difference between infants and parents. Serum vitamin A concentrations were higher in parents than infants. Population trends were compiled and quantified using a cross correlation factor. Strong positive correlations were found between tear and blood serum concentrations of vitamin E from infants and parents and vitamin B 3 concentrations from parents, while slight positive correlations were detected for infants B 3 and parents B 1 and B 2 concentrations. Correlations between infants and parents were found for the concentrations of B 1 , B 2 , B 3 , and E in tears, and the concentrations of B 2, A, and E in blood serum. Stronger vitamin concentration correlations were found between infants and parents for the breast-fed infants, while no significant difference was observed between breast-fed and bottle-fed infants. This work is the first to demonstrate simultaneous vitamin A, B, and E detection and to quantify correlations between

  14. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU

    Directory of Open Access Journals (Sweden)

    Tuğba MİSİLLİ

    2017-10-01

    Full Text Available Abstract The aim of this study was to compare the degree of water sorption and solubility in bulk-fills after curing with a polywave light source. A total of 120 disc-shaped specimens (8 mm diameter; 4 mm depth were prepared from three regular bulk-fill materials (X-tra Fil, Tetric N-Ceram Bulk Fill, SonicFill, and a control material (Filtek Z250, cured in 3 different modes (standard: 1000 mW/cm2-20 s; high power: 1400 mW/cm2-12 s; xtra power: 3200 mW/cm2-6 s using a third generation light-emitting diode light curing unit. Water sorption and solubility levels of the specimens were measured according to the ISO 4049:2009 specification after storing in distilled water for 30 days. Data were analyzed using two-way ANOVA and Tukey’s post-hoc test (p < 0.05. The Z250 sample exposed to high power presented a higher sorption compared to the X-tra Fil and SonicFill samples. In xtra power mode, the values of Z250 and SonicFill were similar to each other and higher compared to those of X-tra Fil. Only SonicFill exhibited significantly different sorption values depending on the curing mode, the highest of which was achieved when using the xtra power mode. The highest solubility values were obtained for SonicFill. No statistically significant differences were found among other groups. No significant correlation was detected between water sorption and solubility. The traditional composite group exhibited a higher water sorption values than the bulk-fills. The reduction in polymerization time significantly increased the sorption of SonicFill. SonicFill showed the highest water solubility value among the composites tested.

  15. Preservation of beech and spruce wood by allyl alcohol-based copolymers

    International Nuclear Information System (INIS)

    Solpan, Dilek; Gueven, Olgun

    1999-01-01

    Allyl alcohol (AA), acrylonitrile (AN), methyl methacrylate (MMA), monomers and monomer mixtures AA+AN, AA+MMA were used to conserve and consolidate Beech and Spruce. After impregnation, copolymerisation and polymerisation were accomplished by gamma irradiation. The fine structure of wood+polymer(copolymer) composites was investigated by Scanning Electron Microscopy (SEM). It was observed that copolymer obtained from AA+MMA monomer mixture showed the optimum compatibility. The compressional strength and Brinell Hardness Numbers determined for untreated and treated wood samples indicated that the mechanical strength of wood+copolymer composites was increased. It was found that the mechanical strength of the wood samples containing the AA+MMA copolymer was higher than the others. In the presence of P(AA/MMA), at highest conversion, the compressive strength perpendicular to the fibres in Beech and Spruce increased approximately 100 times. The water uptake capacity of wood+copolymer composites was observed to decrease by more than 50% relative to the original samples, and biodegradation did not take place

  16. Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaoshuai; Li, Yancai; Zhou, Fang; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-02-15

    Highlights: • A series of PDMS-b-QPDMAEMA block copolymers were synthesized via RAFT polymerization. • The composition and morphology of the copolymer films strongly depended on the content of QPDMAEMA. • Migration of QPDMAEMA blocks toward surface was promoted when contacting with water. • Heterogeneous film surfaces with higher N{sup +} content exhibited more obvious antimicrobial activity. - Abstract: Block copolymers PDMS-b-PDMAEMA were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization involving N,N-dimethylaminoethyl methacrylate (DMAEMA) by using poly(dimethylsiloxane) (PDMS) macro-chain transfer agent. And, the tertiary amino groups in PDMAEMA were quaternized with n-octyliodide to provide quaternary ammonium salts (QPDMAEMA). The well-defined copolymers generated composition variation and morphology evolvement on film surfaces, which were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. The results indicated that the enrichment of QPDMAEMA brought about lower elemental ratios of Si/N on the film surfaces. The surface morphologies evolved with the variations of QPDMAEMA content, and the variation trend of film roughness was exactly opposite to that of water contact angle hysteresis. With regard to structure-antimicrobial relationships, the copolymer films had more evident antimicrobial activity against Gram-positive, Bacillus subtilis, and the surfaces with heterogeneous morphology and higher N{sup +} content presented better antimicrobial activity. The functionalized copolymers based PDMS and quaternary ammonium salts materials have the potential applications as antimicrobial coatings.

  17. Solubility investigation of ether and ester essential oils in water using spectrometry and GC/MS

    Directory of Open Access Journals (Sweden)

    B. Khodabandeloo

    2017-11-01

    Full Text Available Background and objectives: Essential oils (volatiles are aromatic oily liquids prepared from different parts of plants and demonstrate various therapeutic and cosmetic properties. The dissolution of essential oils are not desirable in water, therefore the aim of this research was evaluation and selection the best co-solvents for increasing their solubility and bio availability. Methods:The solubility of six  plants essential oils were investigated in presence of propylene glycol (PG, polyethylene glycol 300 (PEG, glycerin and ethanol as solvent and tween 80 or lecithin as co-solvent by observation and spectrophotometric assay. Chemical composition of the essential oils and supersaturated 50% ethanol (SSE and 50% PG or PEG (SSP solutions were analyzed by GC/MS, too. Results: Ester (Lavandula dentata, Heracleum persicum and, Elettaria cardamomum essential oils showed the best solubility in ethanol and PG, respectively. Ether (Foeniculum vulgare, Pimpinella anisum and Petroselinum crispum essential oils had the best solubility in ethanol and PEG, respectively. In ester class, mixture of ethanol/water was the best solvent according to solubility and total amounts of major compounds of the essential oils. In ether class, all samples had better solubility in mixtures of ethanol/water than PEG, but the amounts of total phenols or ethers in SSP of some samples were higher than SSE. Therefore selecting the best solvent for these class need more experiments. Conclusion: Selecting the solvent for essential oils changes their chemical composition; therefore the best solvent was different for various purposes.

  18. Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat

    Science.gov (United States)

    Li, Runzhi; Chang, Xiaoping; Jing, Ruilian

    2015-01-01

    Drought is a major environmental constraint to crop distribution and productivity. Stem water-soluble carbohydrates (WSC) buffer wheat grain yield against conditions unfavorable for photosynthesis during the grain filling stage. In this study, 262 winter wheat accessions and 209 genome-wide SSR markers were collected and used to undertake association analysis based on a mixed linear model (MLM). The WSC in different internodes at three growth stages and 1000-grain weight (TGW) were investigated under four environmental regimes (well-watered, drought stress during the whole growth period, and two levels of terminal drought stress imposed by chemical desiccation under the well-watered and drought stress during the whole growth period conditions). Under diverse drought stress conditions, WSC in lower internodes showed significant positive correlations with TGW, especially at the flowering stage under well-watered conditions and at grain filling under drought stress. Sixteen novel WSC-favorable alleles were identified, and five of them contributed to significantly higher TGW. In addition, pyramiding WSC favorable alleles was not only effective for obtaining accessions with higher WSC, but also for enhancing TGW under different water regimes. During the past fifty years of wheat breeding, WSC was selected incidentally. The average number of favorable WSC alleles increased from 1.13 in the pre-1960 period to 4.41 in the post-2000 period. The results indicate a high potential for using marker-assisted selection to pyramid WSC favorable alleles in improving WSC and TGW in wheat. PMID:25768726

  19. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  20. Olefin–Styrene Copolymers

    OpenAIRE

    Nunzia Galdi; Antonio Buonerba; Leone Oliva

    2016-01-01

    In this review are reported some of the most relevant achievements in the chemistry of the ethylene–styrene copolymerization and in the characterization of the copolymer materials. Focus is put on the relationship between the structure of the catalyst and that of the obtained copolymer. On the other hand, the wide variety of copolymer architecture is related to the properties of the material and to the potential utility.

  1. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes.

    Science.gov (United States)

    Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2017-01-01

    Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.

  2. Responsive copolymers for enhanced petroleum recovery. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1994-08-01

    A coordinated research program involving synthesis, characterization, and rheology has been undertaken to develop advanced polymer system which should be significantly more efficient than polymers presently used for mobility control and conformance. Unlike the relatively inefficient, traditional EOR polymers, these advanced polymer systems possess microstructural features responsive to temperature, electrolyte concentration, and shear conditions. Contents of this report include the following chapters. (1) First annual report responsive copolymers for enhanced oil recovery. (2) Copolymers of acrylamide and sodium 3-acrylamido-3-methylbutanoate. (3) Terpolymers of NaAMB, Am, and n-decylacrylamide. (4) Synthesis and characterization of electrolyte responsive terpolymers of acrylamide, N-(4-butyl)phenylacrylamide, and sodium acrylate, sodium-2-acrylamido-2-methylpropanesulphonate or sodium-3-acrylamido-3-methylbutanoate. (5) Synthesis and solution properties of associative acrylamido copolymers with pyrensulfonamide fluorescence labels. (6) Photophysical studies of the solution behavior of associative pyrenesulfonamide-labeled polyacrylamides. (7) Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with [2-(acrylamido)-2-methypropyl]trimethylammonium chloride. (8) Ampholytic terpolymers of acrylamide with sodium 2-acrylamido-2-methylpropanesulphoante and 2-acrylamido-2-methylpropanetrimethyl-ammonium chloride and (9) Polymer solution extensional behavior in porous media.

  3. Extraction vitamins of group B water-soluble polymers

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available General lows of extraction of B vitamins in aquatic environments of the solution of polymers (poly-N-vinylpyrrolidone, poly-N-vinilkaprolaktam has been studied. The influence of polymer concentration and structure on the distribution coefficients and degree of extraction of vitamins has been established. As a result, the direct search of a stable two-phase systems based on water-soluble polymers has been developed effective systems for the extraction of vitamin B from aqueous salt solutions.

  4. Solubility improvement of an anthelmintic benzimidazole carbamate by association with dendrimers

    International Nuclear Information System (INIS)

    Fernandez, L.; Sigal, E.; Santo, M.; Otero, L.; Silber, J. J.

    2011-01-01

    The improvement of aqueous solubility of methyl (5-[propylthio]-1H-benzimidazole-2-yl) carbamate, albendazole (ABZ) using polyamidoamine (PAMAM) dendrimers as solubility enhancers was investigated. Full generation PAMAM dendrimers with amine terminal groups, (G3), with hydroxyl terminal groups (G3OH) and half generation PAMAM dendrimers with carboxylate terminal groups (G2.5 and G3.5), were chosen for this study. The nature of dendrimer-ABZ association was investigated by UV absorption, fluorescence emission measurements and by 1 H-NMR spectroscopy. The results obtained show that these polymeric structures have the capacity to enhance the solubility of ABZ, both lipophilic and specific hydrogen bond interactions contributing to the guest-host association. Although all studied dendrimers have hydrophobic internal nanoenvironments with similar dimensions, their surfaces differ significantly and the nature and the localization of the interactions involved in ABZ-dendrimer association depend on the type of terminal groups. (author)

  5. Biocompatibility of epoxidized styrene-butadiene-styrene block copolymer membrane

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Tsai, Shih Chang

    2010-01-01

    Styrene-butadiene-styrene block copolymer (SBS) membrane was prepared by solution casting method and then was epoxidized with peroxyformic acid generated in situ to yield the epoxidized styrene-butadiene-styrene block copolymer membrane (ESBS). The structure and properties of ESBS were characterized with infrared spectroscopy, Universal Testing Machine, differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA). The performances of contact angle, water content, protein adsorption, and water vapor transmission rate on ESBS membrane were determined. After epoxidation, the hydrophilicity of the membrane increased. The water vapor transmission rate of ESBS membrane is similar to human skin. The biocompatibility of ESBS membrane was evaluated with the cell culture of fibroblasts on the membrane. It revealed that the cells not only remained viable but also proliferated on the surface of the various ESBS membranes and the population doubling time for fibroblast culture decreased.

  6. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties

    OpenAIRE

    Salorinne, Kirsi; Man, Renee W.Y.; Li, Chien-Hung; Taki, Masayasu; Nambo, Masakazu; Crudden, Cathleen M.

    2017-01-01

    NHC-Au(I) complexes were used to prepare stable, water-soluble, NHC-protected gold nanoparticles. The water-soluble, charged nature of the nanoparticles permitted analysis by polyacrylamide gel electrophoresis (PAGE), which showed that the nanoparticles were highly monodisperse, with tunable core diameters between 2.0 and 3.3 nm depending on the synthesis conditions. Temporal, thermal, and chemical stability of the nanoparticles were determined to be high. Treatment with thiols caused etching...

  7. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  8. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    Science.gov (United States)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  9. Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2015-12-01

    Full Text Available Background: Quercetin, a flavonol contained in various vegetables and fruits, has various biological activities including anticancer, antiviral, anti-diabetic, and anti-oxidative. However, it has low oral bioavailability due to insolubility in water. Thus, the bioavailability of quercetin administered to human beings in a capsule form, was reported to be less than 1%, with only a small percentage of ingested quercetin getting absorbed in the blood. This leads to certain difficulties in creating highly effective medicines Methods: Quercetin-rubusoside and quercetin-rebaudioside were prepared. The antioxidant activities of quercetin and Q-rubusoside were evaluated by DPPH radical scavenging method. Inhibition activities of quercetin and Quercetin-rubusoside were determined by measuring the remaining activity of 3CLpro with 200 μM inhibitor. The inhibition activity of quercetin, rubusoside and quercetin-rubusoside were determined by measuring the activity of human maltase which remains at 100 μM rubusoside or quercetin-rubusoside. The mushroom tyrosinase inhibition was assayed with the reaction mixture contained 3.3 mM L-DOPA in 50 mM potassium phosphate buffer (pH 6.8, and 10 U mushroom tyrosinase/ml with or without quercetin or quercetin-rubusoside. Results: With 10% rubusoside treatment, quercetin showed solubility of 7.7 mg/ml in water, and its solubility increased as the concentration of rubusoside increased; the quercetin solubility in water increased to 0.83 mg/mlas rubusoside concentration increased to 1 mg/ml. Quercetin solubilized in rubusoside solution showed DPPH radical-scavenging activity and mushroom tyrosinase inhibition activity, similar to that of quercetin solubilized in dimethyl-sulfoxide. Quercetin-rubusoside also showed 1.2 and 1.9 folds higher inhibition activity against 3CLpro of SARS and human intestinal maltase, respectively, than those of quercetin in DMSO. Conclusions: Quercetin can be solubilized in water with

  10. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    Science.gov (United States)

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  11. Impact of fog processing on water soluble organic aerosols.

    Science.gov (United States)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics

  12. Survey on synthesis and reaction of environmentally benign water-soluble metal complex catalysts; Kankyo chowagata suiyosei sakutai shokubai no gosei hanno no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the research trend survey results on the synthesis and reaction of water-soluble metal complexes which are regarded as environmentally benign catalysts. For the synthesis and catalysis of water-soluble complexes, synthetic methods of water-soluble phosphines, such as sulfonated TPPMS and TPPTS, are described in detail. Synthesis and reactivity of hydroxymethylphosphines are introduced, and the application of electrospray mass spectroscopy is elucidated as a tool for the analysis of them. Changes of the application of transition metal complexes with water-soluble phosphines to catalysis are described. Dual catalysts which have both functions of phase transfer catalysts and homogeneous catalysts are introduced. Concept of counter phase transfer catalysts is also introduced, and some catalytic reactions are described. In addition, this report introduces catalysis of water-soluble polymer-supported metal complexes, immobilization of metal colloids with water-soluble ligands and their analysis, and water-soluble complexes as hybrid catalysts. 144 refs., 94 figs., 10 tabs.

  13. Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.

    Science.gov (United States)

    Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P

    2012-03-01

    The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Electrically and chemically tunable soft-solid block copolymer structural color (Conference Presentation)

    Science.gov (United States)

    Park, Cheolmin

    2016-09-01

    1D photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied due to their potential use in low-power reflective mode displays, e-books and sensors, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid swollen block copolymer films. Placement of a polymer/ionic liquid (IL) film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2vinyl pyridine) (PS-b-QP2VP) copolymer SC film allowed the development of R, G and B full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3V to +6V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.

  15. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer.

    Science.gov (United States)

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2010-04-12

    Two-, four-, and six-armed branched copolymers with electroactive and biodegradable properties were synthesized by coupling reactions between poly(l-lactides) (PLLAs) with different architecture and carboxyl-capped aniline trimer (CCAT). The aniline oligomer CCAT was prepared from amino-capped aniline trimer and succinic anhydride. FT-IR, NMR, and SEC analyses confirmed the structure of the branched copolymers. UV-vis spectra and cyclic voltammetry of CCAT and copolymer solution showed good electroactive properties, similar to those of polyaniline. The water contact angle of the PLLAs was the highest, followed by the undoped copolymer and the doped copolymers. The values of doped four-armed copolymers were 54-63 degrees . Thermal properties of the polymers were studied by DSC and TGA. The copolymers had better thermal stability than the pure PLLAs, and the T(g) between 48-58 degrees C and T(m) between 146-177 degrees C of the copolymers were lower than those of the pure PLLA counterparts. This kind of electroactive and biodegradable copolymer has a great potential for applications in cardiovascular or neuronal tissue engineering.

  16. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  17. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    Science.gov (United States)

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation

    Science.gov (United States)

    Wang, Sujuan; Peng, Xixi; Cui, Liangliang; Li, Tongtong; Yu, Bei; Ma, Gang; Ba, Xinwu

    2018-02-01

    The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-L-lysine. Benefiting from the enhanced solubility of 3.32 × 10- 2 g/mL for MLC and 4.66 × 10- 2 g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139 mM and 49.622 mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.

  19. Bioavailability assessment of the lipophilic benfotiamine as compared to a water-soluble thiamin derivative.

    Science.gov (United States)

    Bitsch, R; Wolf, M; Möller, J; Heuzeroth, L; Grüneklee, D

    1991-01-01

    The bioequivalence of thiamin in 2 therapeutically used preparations was tested in 10 healthy young men. Thiamin was orally administered either as lipophilic benfotiamine or as water-soluble thiamin mononitrate. Biokinetic data, measured as area under the curve and maximal concentration in plasma and hemolysate after ingestion, demonstrated a significantly improved bioavailability from the lipophilic derivative despite an ingested dose of only 40% as compared with the water-soluble salt. A superior cellular efficacy of benfotiamine was also concluded from the short-term stimulation of the thiamin-dependent transketolase activity in erythrocytes.

  20. Synthesis of water-soluble scaffolds for peptide cyclization, labeling, and ligation

    NARCIS (Netherlands)

    Smeenk, L.E.J.; Dailly, N.; Hiemstra, H.; van Maarseveen, J.H.; Timmerman, P.

    2012-01-01

    The synthesis and applications of water-soluble scaffolds that conformationally constrain side chain unprotected linear peptides containing two cysteines are described. These scaffolds contain a functionality with orthogonal reactivity to be used for labeling and ligation. This is illustrated by the

  1. Urinary water-soluble vitamins and their metabolite contents as nutritional markers for evaluating vitamin intakes in young Japanese women.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Shibata, Katsumi

    2008-06-01

    Little information is available to estimate water-soluble vitamin intakes from urinary vitamins and their metabolite contents as possible nutritional markers. Determination of the relationships between the oral dose and urinary excretion of water-soluble vitamins in human subjects contributes to finding valid nutrition markers of water-soluble vitamin intakes. Six female Japanese college students were given a standard Japanese diet in the first week, the same diet with a synthesized water-soluble vitamin mixture as a diet with approximately onefold vitamin mixture based on Dietary Reference Intakes (DRIs) for Japanese in the second week, with a threefold vitamin mixture in the third week, and a sixfold mixture in the fourth week. Water-soluble vitamins and their metabolites were measured in the 24-h urine collected each week. All urinary vitamins and their metabolite levels except vitamin B(12) increased linearly in a dose-dependent manner, and highly correlated with vitamin intake (r=0.959 for vitamin B(1), r=0.927 for vitamin B(2), r=0.965 for vitamin B(6), r=0.957 for niacin, r=0.934 for pantothenic acid, r=0.907 for folic acid, r=0.962 for biotin, and r=0.952 for vitamin C). These results suggest that measuring urinary water-soluble vitamins and their metabolite levels can be used as good nutritional markers for assessing vitamin intakes.

  2. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Behzad, Ali Reza; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2014-01-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene

  3. Study to evaluate the impact of heat treatment on water soluble vitamins in milk.

    Science.gov (United States)

    Asadullah; Khair-un-nisa; Tarar, Omer Mukhtar; Ali, Syed Abdul; Jamil, Khalid; Begum, Askari

    2010-11-01

    To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin 81 content in fresh milk decreased from 0.037 mg/100 g to 0.027 mg/100 g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100 g, vitamin B3 0.062 to 0.044 mg/100 g, vitamin B6 0.025 to 0.019 mg/100 g and folic acid 3.38 to 2.40 microg/100 g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk (JPMA 60:909; 2010).

  4. Study to evaluate the impact of heat treatment on water soluble vitamins in milk

    International Nuclear Information System (INIS)

    Khair-un-Nisa, A.; Tarar, O.M.; Ali, S.A.; Jamil, K.; Begum, A.

    2010-01-01

    Objectives: To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Methods: Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Results: Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin B1 content in fresh milk decreased from 0.037 mg/100g to 0.027 mg/100g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100g, vitamin B3 0.062 to 0.044 mg/100g, vitamin B6 0.025 to 0.019 mg/100g and folic acid 3.38 to 2.40 < g/100g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conclusion: Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk. (author)

  5. Solubility improvement of an anthelmintic benzimidazole carbamate by association with dendrimers

    Directory of Open Access Journals (Sweden)

    L. Fernández

    2011-12-01

    Full Text Available The improvement of aqueous solubility of methyl (5-[propylthio]-1H-benzimidazol-2-yl carbamate, albendazole (ABZ using polyamidoamine (PAMAM dendrimers as solubility enhancers was investigated. Full generation PAMAM dendrimers with amine terminal groups, (G3, with hydroxyl terminal groups (G3OH and half generation PAMAM dendrimers with carboxylate terminal groups (G2.5 and G3.5, were chosen for this study. The nature of dendrimer-ABZ association was investigated by UV absorption, fluorescence emission measurements and by ¹H-NMR spectroscopy. The results obtained show that these polymeric structures have the capacity to enhance the solubility of ABZ, both lipophilic and specific hydrogen bond interactions contributing to the guest-host association. Although all studied dendrimers have hydrophobic internal nanoenvironments with similar dimensions, their surfaces differ significantly and the nature and the localization of the interactions involved in ABZ-dendrimer association depend on the type of terminal groups.

  6. Solubility improvement of an anthelmintic benzimidazole carbamate by association with dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, L.; Sigal, E.; Santo, M., E-mail: msanto@exa.unrc.edu.ar [Departamento de Fisica, Facultad de Ciencias Exactas Fisicoquimicas y Naturales, Universidad Nacional de Rio Cuarto (Argentina); Otero, L.; Silber, J. J. [Departamento de Quimica. Facultad de Ciencias Exactas Fisicoquimicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto (Argentina)

    2011-10-15

    The improvement of aqueous solubility of methyl (5-[propylthio]-1H-benzimidazole-2-yl) carbamate, albendazole (ABZ) using polyamidoamine (PAMAM) dendrimers as solubility enhancers was investigated. Full generation PAMAM dendrimers with amine terminal groups, (G3), with hydroxyl terminal groups (G3OH) and half generation PAMAM dendrimers with carboxylate terminal groups (G2.5 and G3.5), were chosen for this study. The nature of dendrimer-ABZ association was investigated by UV absorption, fluorescence emission measurements and by {sup 1}H-NMR spectroscopy. The results obtained show that these polymeric structures have the capacity to enhance the solubility of ABZ, both lipophilic and specific hydrogen bond interactions contributing to the guest-host association. Although all studied dendrimers have hydrophobic internal nanoenvironments with similar dimensions, their surfaces differ significantly and the nature and the localization of the interactions involved in ABZ-dendrimer association depend on the type of terminal groups. (author)

  7. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86

  8. Influence of the content of hard segments on the properties of novel urethane-siloxane copolymers based on a poly(ε-caprolactone-b-poly(dimethylsiloxane-b-poly(ε- caprolactone triblock copolymer

    Directory of Open Access Journals (Sweden)

    Antić Vesna V.

    2011-01-01

    Full Text Available A series of novel thermoplastic urethane-siloxane copolymers (TPUSs based on a α,ω-dihydroxy-[poly(ε-caprolactone-bpoly( dimethylsiloxane-b-poly(ε-caprolactone] (α,ω-dihydroxy-PCLPDMS- PCL triblock copolymer, 4,4?-methylenediphenyl diisocyanate (MDI and 1,4-butanediol (BD was synthesized. The effects of the content (9-63 wt. % of hard urethane segments and their degree of polymerization on the properties of the segmented TPUSs were investigated. The structure, composition and hard segment degree of polymerization of the hard segments were examined using 1H- and quantitative 13C-NMR spectroscopy. The degree of crystallinity of the synthesized copolymers was determined using wide-angle X-ray scattering (WAXS. The surface properties were evaluated by measuring the water contact angle and water absorption. In the series of the TPUSs, the average degree of polymerization of the hard segments was varied from 1.2 to 14.4 MDI-BD units. It was found that average values from 3.8 to 14.4 MDI-BD units were effective segment lengths for crystallization of hard segments, which resulted in an increase in the degree of microphase separation of the copolymers. Spherulite-like superstructures were observed in copolymer films by scanning electron microscopy (SEM, which are believed to arise from the crystallization of the hard segments and/or PCL segments, depending on the content of the hard segments. The surface of the copolymers became more hydrophobic with increasing weight fraction of PDMS. The synthesized copolymers based on a PCL-PDMS-PCL segment showed good thermal stability, which increased with increasing content of soft PDMS segments, as was confirmed by the value of the starting temperature of thermal degradation.

  9. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity

    Directory of Open Access Journals (Sweden)

    Qing Li

    2018-03-01

    Full Text Available Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1 was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  10. Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test

    International Nuclear Information System (INIS)

    Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan

    2017-01-01

    Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test. - Highlights: • Microencapsulated ammonium polyphosphate is prepared by successive sol-gel process. • The higher irradiation dose induces the better dimensional stability for EVA system. • The higher irradiation, the more MCAPP immobilized in EVA crosslinked structure. • The higher irradiation dose enhances the flame retardancy of EVA composites. • The microencapsulated composites demonstrate stable flame retardancy in ageing test.

  11. High-concentration graphene dispersion stabilized by block copolymers in ethanol.

    Science.gov (United States)

    Perumal, Suguna; Lee, Hyang Moo; Cheong, In Woo

    2017-07-01

    This article describes a comprehensive study for the preparation of graphene dispersions by liquid-phase exfoliation using amphiphilic diblock copolymers; poly(ethylene oxide)-block-poly(styrene) (PEO-b-PS), poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO-b-PVP), and poly(ethylene oxide)-block-poly(pyrenemethyl methacrylate) (PEO-b-PPy) with similar block lengths. Block copolymers were prepared from PEO using the Steglich coupling reaction followed by reversible addition-fragmentation chain transfer (RAFT) polymerization. Graphite platelets (G) and reduced graphene oxide (rGO) were used as graphene sources. The dispersion stability of graphene in ethanol was comparatively investigated by on-line turbidity, and the graphene concentration in the dispersions was determined gravimetrically. Our results revealed that the graphene dispersions with PEO-b-PVP were much more stable and included graphene with fewer defects than that with PEO-b-PS or PEO-b-PPy, as confirmed by turbidity and Raman analyses. Gravimetry confirmed that graphene concentrations up to 1.7 and 1.8mg/mL could be obtained from G and rGO dispersions, respectively, using PEO-b-PVP after one week. Distinctions in adhesion forces of PS, VP, PPy block units with graphene surface and the variation in solubility of the block copolymers in ethanol medium significantly affected the stability of the graphene dispersion. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Kinetics of radiolysis of irradiated ligno celluloses into soluble products in water and rumen liquid

    International Nuclear Information System (INIS)

    Tukenmez, I.; Bakioglu, A.T.; Ersen, M.S.

    1997-01-01

    In order to increase the low bio hydrolysis of ligno celluloses in biotechnological and biological processes where these materials are used as raw materials and ruminant feed, the substrates were pretreated with irradiation to induce radiolytic depolymerisation and then kinetics of their radiolysis into soluble products in water and rumen liquid were analyzed. Wheat straw used as a representative lignocellulose substrate was irradiated at 0-2.5 MGy doses at 20''o''C with an optimum equilibrium humidity of 6.6% in Cs-137 gamma irradiator with a dose rate of 1.8 kGy/h, and soluablefractions in water and in situ rumen liquid were determined gravimetrically. Based on these data, a reaction mechanism was proposed for the radiolysis of ligno celluloses into soluble fractions. From the corresponding reaction rate equations with this mechanism a dose dependent kinetics was derived for the radiolysis of ligno celluloses into water/rumen liquid-soluble products. Defined by this kinetics, the threshold doses for the radiolysis of the substrate into water/rumen liquid-soluble products were respectively found 80.6 kGy and 186.0 kGy, and fractional radiolytic decomposition yields 0.193 MGy''-1''.It was emphasized that developed kinetic models may be used for the process design of irradiation pretreatments to improve the bio hydrolysis of ligno celluloses.(2figs. and 17 refs.)

  13. Physical and ionic characteristics in water soluble fraction (WSF) of ...

    African Journals Online (AJOL)

    The values of ionic and physical characteristics at 25, 50 and 100% water soluble fraction (WSF) of Olomoro well-head crude oil before and after exposure to Azolla africana were investigated. The WSF values before and after exposure to the plants showed that more ions were available after the introduction of the test plant.

  14. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Science.gov (United States)

    2010-07-01

    ... b, using a linear regression equation of C vs. R in the following form: Equation 4: ER15DE00.062... address in paragraph (e) of this section. (b) Introduction—(1) Purpose. (i) The water solubility of a... peak area to volume injected and, from the regression equation of the calibration line, determine the...

  15. A water-soluble, mucoadhesive quaternary ammonium chitosan-methyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone.

    Science.gov (United States)

    Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia

    2018-03-30

    The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.

  16. Determination and correlation of solubility and solution thermodynamics of oxiracetam in three (alcohol + water) binary solvents

    International Nuclear Information System (INIS)

    Li, Kangli; Du, Shichao; Wu, Songgu; Cai, Dongchen; Wang, Jinxu; Zhang, Dejiang; Zhao, Kaifei; Yang, Peng; Yu, Bo; Guo, Baisong; Li, Daixi; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of racemic oxiracetam in three binary solvents were determined. • The experimental solubility of racemic oxiracetam were correlated by four models. • The dissolution thermodynamic properties of racemic oxiracetam were calculated. - Abstract: In this paper, we proposed a static analysis method to experimentally determine the (solid + liquid) equilibrium of racemic oxiracetam in (methanol + water), (ethanol + water) and (isopropanol + water) binary solvents with alcohol mole fraction ranging from 0.30 to 0.90 at atmosphere pressure (p = 0.1 MPa). For the experiments, the temperatures range from (283.15 to 308.15) K. The results showed that the solubility of oxiracetam increased with the increasing temperature, while decreased with the increasing organic solvent fraction in all three tested binary solvent systems. The modified Apelblat model, the CNIBS/Redlich–Kister model, the combined version of Jouyban–Acree model and the NRTL model were employed to correlate the measured solubility values, respectively. Additionally, some of the thermodynamic properties which can help to evaluate its dissolution behavior were obtained based on the NRTL model.

  17. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Smith, B.F.

    1997-01-01

    'The first objective of this research is to develop rapid discovery and optimization approaches to new water-soluble chelating polymers. A byproduct of the development approach will be the new, selective, and efficient metal-binding agents. The second objective is to evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. The technology under development, Polymer Filtration (PF), is a technique to selectively remove or recover hazardous and valuable metal ions and radionuclides from various dilute aqueous streams. Not only can this technology be used to remediate contaminated soils and solid surfaces and treat aqueous wastes, it can also be incorporated into facilities as a pollution prevention and waste minimization technology. Polymer Filtration uses water-soluble metal-binding polymers to sequester metal ions in dilute solution. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using commercial ultrafiltration technology. Water, small organic molecules, and unbound metals pass freely through the ultrafiltration membrane while concentrating the metal-binding polymer. The polymers can then be reused by changing the solution conditions to release the metal ions. The metal-ions are recovered in concentrated form for recycle or disposal using a diafiltration process. The water-soluble polymer can be recycled for further aqueous-stream processing. To advance Polymer Filtration technology to the selectivity levels required for DOE needs. fixture directions in Polymer Filtration must include rapid development, testing, and characterization of new metal-binding polymers. The development of new chelating molecules can be equated to the process of new drugs or new materials discovery. Thus, the authors want to build upon and adapt the combinatorial chemistry approaches developed for rapid molecule generation for the drug industry to the rapid

  18. Synthesis of phthalocyanines-ALA conjugates: water-soluble compounds with low aggregation.

    Science.gov (United States)

    de Oliveira, Kleber T; de Assis, Francisco F; Ribeiro, Anderson O; Neri, Claudio R; Fernandes, Adjaci U; Baptista, Mauricio S; Lopes, Norberto P; Serra, Osvaldo A; Iamamoto, Yassuko

    2009-10-16

    Syntheses of two water-soluble phthalocyanines (Pc) containing 5-aminolevulinic acid (ALA) linked to the core structure are described. These compounds were prepared by using original functionalizations, and they present remarkable structural and photophysical features, indicating that they could be applied to photodynamic therapy (PDT).

  19. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  20. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  1. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2014-11-01

    Full Text Available A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  2. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1998 annual progress report

    International Nuclear Information System (INIS)

    Kurth, M.J.; Miller, R.B.; Sawan, S.; Smith, B.F.

    1998-01-01

    '(1) Develop rapid discovery and optimization approaches to new water-soluble chelating polymers for use in Polymer Filtration (PF) systems, and (2) evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. Polymer Filtration (PF), which uses water-soluble metal-binding polymers to sequester metal ions in dilute solution with ultrafiltration (UF) to separate the polymers, is a new technology to selectively remove or recover hazardous and valuable metal ions. Future directions in PF must include rapid development, testing, and characterization of new metal-binding polymers. Thus, the authors are building upon and adapting the combinatorial chemistry approach developed for rapid molecule generation for the drug industry to the rapid development of new chelating polymers. The authors have focused on four areas including the development of: (1) synthetic procedures, (2) small ultrafiltration equipment compatible with organic- and aqueous-based combinatorial synthesis, (3) rapid assay techniques, and (4) polymer characterization techniques.'

  3. Improved Bilayer Resist System Using Contrast-Enhanced Lithography With Water-Soluble Photopolymer

    Science.gov (United States)

    Sasago, Masaru; Endo, Masayuki; Hirai, Yoshihiko; Ogawa, Kazufurni; Ishihara, Takeshi

    1986-07-01

    A new water-soluble contract enhanced material, WSP (Water-soluble Photopolymer), has been developed. The WSP is composed of a mainpolymer and a photobleachable reagents. The mainpolymer is a water-soluble polymer mixed with pullulan (refined through biotechnological process) and polyvinyl-pyrolidone (PVP). The photo-bleachable reagent is of a diazonium compound gorup. The introduction of the mainpolymer and photobleach-able reagent mixture has improved filmity, gas transparency, photobleaching characteristics and solubility in alkaline which are essential to the device fabrication. Submicron photoresist patterns are successfully fabricated by a simple sequence of photolithography process. The WSP layer has been applied to the bilayer resist system--deep-UV portable conformable masking (PCM)--that is not affected by VLSI's topography, and is able to fabricate highly accurate pattern. The aqueous developable layer, PMGI, with high organic solvent resistance is used in the bottom layer. Therefore, no interfacial mixing with conventional positive resist top layer is observed. Furthermore, deep-UV exposure method has been used for the KrF excimer laser optical system in order to increase high throughput. From the experiments, it has been confirmed that good resist transfer profile can be realized by the use of WSP, and that the submicron resist patterns with high aspect-ratio can be developed on the nonplaner wafer with steps of up to 41m by the combination of the WSP with the PCM system. By this technology, has been improved the weak point: variation in the line width due to the thickness of contrast-enhanced layer when the CEL technology is applied, and dependency of both the finished resist profile and the line-width accuracy on the thickness of the top layer resist when the PCM system is adopted.

  4. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  5. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane-water.

    Science.gov (United States)

    Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A

    1998-12-01

    In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The

  6. Main-chain supramolecular block copolymers.

    Science.gov (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  7. Wettability and ζ potentials of a series of methacrylate polymers and copolymers

    OpenAIRE

    Hogt, A.H.; Gregonis, D.E.; Andrade, J.D.; Kim, S.W.; Dankert, J.; Feijen, Jan

    1985-01-01

    Polymers and copolymers of different methacrylates were synthesized and coated on glass slides. The surfaces of the polymer films were characterized by their water contact angles and potentials using the Wilhelmy plate technique and streaming potential measurements, respectively. From contact-angle measurements information was also obtained about mobility of surface polymer chains. Receding contact angles of methyl methacrylate (MMA) copolymers containing hydrophilic or charged units were dec...

  8. Aryl-derivatized, water-soluble functionalized carbon nanotubes for biomedical applications

    International Nuclear Information System (INIS)

    Karousis, N.; Ali-Boucetta, H.; Kostarelos, K.; Tagmatarchis, N.

    2008-01-01

    The functionalization of very-thin multi-walled carbon nanotubes (VT-MWNTs) with an aniline derivative, via the protocol of in situ generated aryl diazonium salts results, upon acidic deprotection of the terminal BOC group, on the formation of the water-soluble positively charged ammonium functionalized VT-MWNTs-NH 3 + material. The new materials have been structurally and morphologically characterized by infra-red (ATR-IR) spectroscopy and transmission electron microscopy (TEM). The quantitative calculation of the grafted aryl units onto the skeleton of VT-MWNTs has been estimated by thermogravimetric analysis (TGA), while the quantitative Kaiser test showed the amine group loaded onto VT-MWNTs-NH 3 + material. The aqueous solubility of this material has allowed the performance of some initial toxicological in vitro investigations

  9. Pure Phase Solubility Limits: LANL

    International Nuclear Information System (INIS)

    C. Stockman

    2001-01-01

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO 2 partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility products

  10. Pure Phase Solubility Limits: LANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  11. Water-soluble derivatives of 25-OCH3-PPD and their anti-proliferative activities.

    Science.gov (United States)

    Zhou, Wu-Xi; Sun, Yuan-Yuan; Yuan, Wei-Hui; Zhao, Yu-Qing

    2017-05-01

    (20R)-25-Methoxyl-dammarane-3β,12β,20-triol (25-OCH 3 -PPD, AD-1) is a dammarane-type sapogenin showing anti-tumor potential. In the search for new anti-tumor agents with higher potency than our previously identified compound 25-OCH 3 -PPD, 11 novel sulfamic acid and diacid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 25-OCH 3 -PPD, compounds 1, 4, and 5 exhibited higher cytotoxic activity on almost all cell lines, together with lower toxicity in the normal cell. In particular, compound 1 exhibited the best anti-tumor activity in the in vitro assays. The water solubility of 25-OCH 3 -PPD and its derivatives was tested and the results showed that the solubility of 25-OCH 3 -PPD sulfamic acid and diacid derivatives were better than that of 25-OCH 3 -PPD in water, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate

    Directory of Open Access Journals (Sweden)

    A.N. El-hoshoudy

    2017-09-01

    Full Text Available Crude oil is the most critical energy source in the world, especially for transportation, provision of heat and light as there has not been a sufficient energy source to replace crude oil has broadly integrated, so there is an urgent need to maximize the extraction of the original oil in-place for every reservoir, and accelerating the development of enhanced oil recovery (EOR technologies. Polymer flooding by hydrophobically associated polyacrylamides (HAPAM is a widely used technique through EOR technology. For successful application of these polymers, one should evaluate rheological and solution properties at simulated reservoir conditions as a function of polymer concentration, salinity, temperature and shear rate. The results showed that these copolymers exhibit favorable salt tolerance, temperature resistance, and recoverable viscosity after shearing, reasonable thickening behavior and improved viscosity enhancement properties due to presence of hydrophobic association in the copolymer main chains. Moreover, its capacity for oil production improvement was evaluated during flooding experiments through one dimensional sandstone model at simulated reservoir conditions.

  13. Studies on water soluble polysaccharides from Pithecellobium dulce (Roxb.) Benth. seeds.

    Science.gov (United States)

    Bagchi, S; Kumar, K Jayaram

    2016-03-15

    In this existing experimental work, water soluble PDP polysaccharides were secluded from Pithecellobium dulce (Roxb.) Benth. seeds. The physicochemical properties were analyzed in terms of swelling power, solubility, pH and water holding capacity. Micromeretic studies proved the polysaccharide may be used a potential pharmaceutical adjuvant. The polysaccharide was characterized by FT-IR, SEM, TGA and NMR techniques. Methylation analysis confirmed that the polysaccharide is composed of Arabinose (Araf) units. The chemical shifts of anomeric proton region were found in the region of 4.4-5.5ppm. Thermogravimetric analysis showed that PDP polysaccharide was thermally stable. The in vitro antioxidant capacities of the polysaccharide were investigated in terms of scavenging of hydroxyl radicals, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, hydrogen peroxide (H2O2) and reducing power assay. The polysaccharide fractions showed activity in a concentration dependent manner which was comparable to the standard, ascorbic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Steel corrosion products solubility under conditions simulating various water chemistry parameters in power plants

    International Nuclear Information System (INIS)

    Slobodov, A.A.; Kritskij, V.G.; Zarembo, V.I.; Puchkov, L.V.

    1988-01-01

    To simulate construction material corrosion product mass transfer model in power plant circuits calculation of iron oxide and hydroxide solubility, depending on water chemistry parameters: temperature, pH-value, content of dissolved in water hydrogen and oxygen, is carried out

  15. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L)

  16. Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters

    Directory of Open Access Journals (Sweden)

    Masoud Behrouz

    2015-07-01

    Full Text Available Solubility of hydrocarbons in water is important due to ecological concerns and new restrictions on the existence of organic pollutants in water streams. Also, the creation of a thermodynamic model has required an advanced study of the phase equilibrium between water (as a basis for the widest spread muds and amines and gas hydrocarbon phases in wide temperature and pressure ranges. Therefore, it is of great interest to develop semi-empirical correlations, charts, or thermodynamic models for estimating the solubility of hydrocarbons in liquid water. In this work, a thermodynamic model based on Mathias modification of Sova-Redlich-Kwong (SRK equation of state is suggested using classical mixing rules with new binary interaction parameters which were used for two-component systems of hydrocarbons and water. Finally, the model results and their deviations in comparison with the experimental data are presented; these deviations were equal to 5.27, 6.06, and 4.1% for methane, ethane, and propane respectively.

  17. Solubility studies of Np(IV)

    International Nuclear Information System (INIS)

    Zhang Yingjie; Yao Jun; Jiao Haiyang; Ren Lihong; Zhou Duo; Fan Xianhua

    2001-01-01

    The solubility of Np(IV) in simulated underground water and redistilled water has been measured with the variations of pH(6-12) and storage time (0-100 d) in the presence of reductant (Na 2 S 2 O 4 , metallic Fe). All experiments are performed in a low oxygen concentration glove box containing high purity Ar(99.99%), with an oxygen content of less than 5 x 10 -6 mol/mol. Experimental results show that the variation of pH in solution has little effect on the solubility of Np(IV) in the two kinds of water; the measured solubility of Np(IV) is affected by the composition of solution; with Na 2 S 2 O 4 as a reductant, the solubility of Np(IV) in simulated underground water is (9.23 +- 0.48) x 10 -10 mol/L, and that in redistilled water is (8.31 +- 0.35) x 10 -10 mol/L; with metallic Fe as a reductant, the solubility of Np(IV) in simulated underground water is (1.85 +- 0.56) x 10 -9 mol/L, and that in redistilled water is (1.48 +- 0.66) x 10 -9 mol/L

  18. Micellization of symmetric PEP-PEO block copolymers in water molecular weight dependence

    CERN Document Server

    Kaya, H; Allgaier, J; Stellbrink, J; Richter, D

    2002-01-01

    The micellar behaviour of the amphiphilic block copolymer poly-(ethylene-propylene)-poly-(ethylene oxide) (PEP-PEO) in aqueous solution has been studied with small-angle neutron scattering. The polymer was studied over a wide range of molecular weights, always keeping the volume of the blocks equal. The scattering behaviour of the solutions showed that a morphological transition takes place upon lowering the molecular weight. The high molecular weight block copolymers all build spherical, monodisperse micelles with large aggregation numbers. At low molecular weights, however, cylindrical micelles are formed. An interesting intermediate case is represented by the PEP2-PEO2 system, in which a morphological transition occurs upon dilution. (orig.)

  19. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui; Zhao, Yunhui [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Li, Hui [School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Yuan, Xiaoyan, E-mail: xyuan28@yahoo.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Highlights: • PMTFPS–b-polyacrylate copolymers in five different compositions were synthesized. • Enrichment of PMTFPS amounts at the surface made high F/Si value. • Icing delay time was related to the surface roughness. • Ice shear strength was decreased by the synergistic effect of silicone and fluorine. - Abstract: Five polymethyltrifluoropropylsiloxane (PMTFPS)–polyacrylate block copolymers (PMTFPS–b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10–50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at −15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS–b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  20. Investigation of Changes in Solubility Values of Some Non Impregnated Pine Species used in Water Cooling Towers

    Directory of Open Access Journals (Sweden)

    Murat ÖZALP

    2007-01-01

    Full Text Available Scotch pine (Pinus sylvestris L., Austrian black pine (Pinus nigra L. and Cyprus pine (Pinus brutia L. specimens were prepared and settled to water return system on water cooling tower. For every 3 months period’s specimens were tested solubility of hot and could water, 1% NaOH, alcohol-benzene and ethyl alcohol values were determined. For the control specimens significant color change, odour and surface softening was observed. For chemical analysis, all the solubility values were changed significantly.

  1. Validation of a screening method for the simultaneous identification of fat-soluble and water-soluble vitamins (A, E, B1, B2 and B6) in an aqueous micellar medium of hexadecyltrimethylammonium chloride.

    Science.gov (United States)

    León-Ruiz, V; Vera, S; San Andrés, M P

    2005-04-01

    Simultaneous determination of the fat-soluble vitamins A and E and the water-soluble vitamins B1, B2 and B6 has been carried using a screening method from fluorescence contour graphs. These graphs show different colour zones in relation to the fluorescence intensity measured for the pair of excitation/emission wavelengths. The identification of the corresponding excitation/emission wavelength zones allows the detection of different vitamins in an aqueous medium regardless of the fat or water solubility of each vitamin, owing to the presence of a surfactant which forms micelles in water at the used concentration (over the critical micelle concentration). The micelles dissolve very water insoluble compounds, such as fat-soluble vitamins, inside the aggregates. This approach avoids the use of organic solvents in determining these vitamins and offers the possibility of analysing fat- and water-soluble vitamins simultaneously. The method has been validated in terms of detection limit, cut-off limit, sensitivity, number of false positives, number of false negatives and uncertainty range. The detection limit is about microg L(-1). The screening method was applied to different samples such as pharmaceuticals, juices and isotonic drinks.

  2. Tuning the pore composition by two simultaneous interfacial self-assembly processes: breath figures and coffee stain.

    Science.gov (United States)

    de León, Alberto S; del Campo, Adolfo; Fernández-García, Marta; Rodríguez-Hernández, Juan; Muñoz-Bonilla, Alexandra

    2014-06-03

    In the current paper, we prepared microstructured porous films by the breath figures approach using polymer blends consisting of polystyrene as the major component and an amphiphilic additive, either a synthetic block copolymer {two different polystyrene-b-poly[poly(ethylene glycol) methyl ether methacrylate] copolymers} or a series of commercial surfactants. Tetrahydrofuran was employed as the solvent. Confocal micro-Raman spectroscopy demonstrated the preferential location of the amphiphilic additives in the cavities of the film as a consequence of the breath figures mechanism. However, the distribution of the copolymer within the cavities varies depending upon the structure and, more precisely, the surface properties of the additives, leading to three different situations. First of all, the copolymer with a larger polystyrene segment, insoluble in the condensed water droplets, is homogeneously distributed along the whole surface of the cavities. On the contrary, when the copolymer is soluble in water (shorter polystyrene segment), it migrates inside the droplet and a coffee-stain phenomenon takes place during the water droplet evaporation, conducting to a ring-like deposition on the top edge of the cavities. Finally, when a water-soluble surfactant with high surface activity is used, the surfactant is solubilized inside the water droplets, which provokes a decrease on the surface tension and the coffee-ring effect is modified. In this situation, the copolymer covers the bottom of the pore.

  3. Water deficit modifies the carbon isotopic composition of lipids, soluble sugars and leaves of Copaifera langsdorffii Desf. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Angelo Albano da Silva Bertholdi

    2017-11-01

    Full Text Available ABSTRACT Water deficit is most frequent in forest physiognomies subjected to climate change. As a consequence, several tree species alter tissue water potential, gas exchange and production of carbon compounds to overcome damage caused by water deficiency. The working hypothesis, that a reduction in gas exchange by plants experiencing water deficit will affect the composition of carbon compounds in soluble sugars, lipids and vegetative structures, was tested on Copaifera langsdorffii. Stomatal conductance, leaf water potential, and CO2 assimilation rate declined after a period of water deficit. After rehydration, leaf water potential and leaf gas exchange did not recover completely. Water deficit resulted in 13C enrichment in leaves, soluble sugars and root lipids. Furthermore, the amount of soluble sugars and root lipids decreased after water deficit. In rehydration, the carbon isotopic composition and amount of root lipids returned to levels similar to the control. Under water deficit, 13C-enriched in root lipids assists in the adjustment of cellular membrane turgidity and avoids damage to the process of water absorption by roots. These physiological adjustments permit a better understanding of the responses of Copaifera langsdorffi to water deficit.

  4. γ-Rays-induced synthesis of hydrogels of vinyl ethers with stimuli-sensitive behavior

    International Nuclear Information System (INIS)

    Nam, I.K.; Mun, G.A.; Urkimbaeva, P.I.; Nurkeeva, Z.S.

    2003-01-01

    γ-Radiation method was applied to synthesize novel water-soluble and water-swelling polymers. Vinyl ether of ethylene glycol (VEEG), vinyl butyl (VBE) and vinyl isobutyl (VIBE) ethers were used as monomers. The synthesis of VEEG-VBE and VEEG-VIBE copolymers was carried out in a wide range of feed composition and absorbed dose. It was found that the hydrophobic-hydrophilic balance of the copolymers could be delicately varied by the copolymer composition as well as by the chemical structure of the alkyl substitute in the hydrophobic moiety. The copolymers exhibit thermo-sensitive behavior in water solutions. The value of transition temperature is considerably decreased at a higher concentration of the hydrophobic component in the copolymer composition

  5. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Bohr, Adam; Boetker, Johan P; Rades, Thomas

    2014-01-01

    Solid dispersions have been widely studied as an attractive formulation strategy for the increasingly prevalent poorly water-soluble drug compounds, including herbal medicines, often leading to improvements in drug dissolution rate and bioavailability. However, several challenges are encountered...

  6. Prediction of the solubility of selected pharmaceuticals in water and alcohols with a group contribution method

    International Nuclear Information System (INIS)

    Pelczarska, Aleksandra; Ramjugernath, Deresh; Rarey, Jurgen; Domańska, Urszula

    2013-01-01

    Highlights: ► The prediction of solubility of pharmaceuticals in water and alcohols was presented. ► Improved group contribution method UNIFAC was proposed for 42 binary mixtures. ► Infinite activity coefficients were used in a model. ► A semi-predictive model with one experimental point was proposed. ► This model qualitatively describes the temperature dependency of Pharms. -- Abstract: An improved group contribution approach using activity coefficients at infinite dilution, which has been proposed by our group, was used for the prediction of the solubility of selected pharmaceuticals in water and alcohols [B. Moller, Activity of complex multifunctional organic compounds in common solvents, PhD Thesis, Chemical Engineering, University of KwaZulu-Natal, 2009]. The solubility of 16 different pharmaceuticals in water, ethanol and octan-1-ol was predicted over a fairly wide range of temperature with this group contribution model. The predicted values, along with values computed with the Schroeder-van Laar equation, are compared to experimental results published by us previously for 42 binary mixtures. The predicted solubility values were lower than those from the experiments for most of the mixtures. In order to improve the prediction method, a semi-predictive calculation using one experimental solubility value was implemented. This one point prediction has given acceptable results when comparison is made to experimental values

  7. Process for radiation cocrosslinking water soluble polymers and products thereof

    International Nuclear Information System (INIS)

    Assarsson, P.G.; King, P.A.

    1976-01-01

    Poly(ethylene oxide) and at least one other water soluble polymer are conveniently cocrosslinked by exposing aqueous systems of the polymers to high energy irradiation. The resulting products are insoluble hydrophilic gels which can contain or when dried absorb large quantities of aqueous fluids and hence are useful as absorbing media for disposable absorbent articles, agricultural applications and the like

  8. Metallo-supramolecular block copolymer micelles

    NARCIS (Netherlands)

    Gohy, J.M.W.

    2009-01-01

    Supramolecular copolymers have become of increasing interest in recent years in the search for new materials with tunable properties. In particular, metallo-supramolecular block copolymers in which metal-ligand complexes are introduced in block copolymer architectures, have known important progress,

  9. Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Cárdenas, Zaira J.; Jiménez, Daniel M.; Delgado, Daniel R.; Almanza, Ovidio A.; Jouyban, Abolghasem; Martínez, Fleming; Acree, William E.

    2017-01-01

    Highlights: • Parabens equilibrium solubility was determined in methanol + water binary mixtures at 298.15 K. • Solubility values were correlated with the Jouyban-Acree model. • Preferential solvation parameters were derived by using the IKBI method. • δx 1,3 values are negative in water-rich mixtures but positive in the other mixtures. - Abstract: Methyl, ethyl and propyl parabens equilibrium solubility was determined in (methanol + water) binary mixtures at 298.15 K. The mole fraction solubility of these compounds increased in 503 (from 2.40 × 10 −4 to 0.121), 1377 (from 9.86 × 10 −5 to 0.136) and 4597 (from 3.73 × 10 −5 to 0.171) times when passing from neat water to neat methanol, for methyl, ethyl and propyl parabens, respectively. All these solubility values were correlated with the Jouyban-Acree model. Preferential solvation parameters by methanol (δx 1,3 ) of these parabens were derived from their thermodynamic solution properties using the inverse Kirkwood-Buff integrals (IKBI) method. For all compounds δx 1,3 values are negative in water-rich mixtures but positive in mixtures with methanol mole fraction greater than 0.32. It is conjecturable that in the former case the hydrophobic hydration around non-polar groups of parabens plays a relevant role in the solvation. Besides, the preferential solvation of these solutes by methanol in mixtures of similar co-solvent compositions and in methanol-rich mixtures could be explained in terms of the higher basic behaviour of methanol.

  10. Studeis on the immobilization of water soluble phosphatic fertilizer in some soils with 32P

    International Nuclear Information System (INIS)

    Zhang Yumei; Li Rensheng; Xu Xinyu

    1985-01-01

    Using superphosphate lablled with 32 P, we studied immobilization of water-soluble phosphatic fertilizer on 12 typies of soil. The experimental result showed that major factors to govern immobilization of water-soluble phosphatic fertilizer are: quickly availible Fe that showed positive correlation with the immobilization when it was 4.64-65.72 ppm; and pH that showed negative correlation with the immobilization when it was between 5.35 and 8.88. CaCO 3 and organic matter showed a great effect on the immobilization though there wasn't obvious correlation among them

  11. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  12. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo

    2016-01-01

    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  13. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  14. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  15. An unusual feature of uranium ore from Domiasiat, Meghalaya: presence of water soluble uranium

    International Nuclear Information System (INIS)

    Singh, A.K.; Padmanabhan, N.P.H.; Sivaramakrishnan, K.; Krishna Rao, N.

    1993-01-01

    An unusual feature of the recently discovered sandstone-type uranium deposit in Domiasiat is the presence of appreciable amount of water soluble uranium. With normal tap water at its natural pH (7.5-7.8), upto 35% of the uranium in the ore was found to be soluble during agitation in the different samples. Presence of other ions in appreciable quantities particularly SO 4 -2 Cl - and Fe +3 appear to influence the dissolution. Percolation experiments give terminal solubilization of upto 58%, but the instantaneous uranium concentration in the percolating water attains its maximum within the first few minutes of contact. A detailed study on the chemistry of uranium dissolution may throw light on the physico-chemical controls of localization of uranium in the deposit. (author). 7 refs., 3 tabs., 4 tabs

  16. Crystalline Ethylene Oxide and Propylene Oxide Triblock Copolymer Solid Dispersion Enhance Solubility, Stability and Promoting Time- Controllable Release of Curcumin.

    Science.gov (United States)

    Alves, Thais F R; das Neves Lopes, Franciely C C; Rebelo, Marcia A; Souza, Juliana F; da Silva Pontes, Katiusca; Santos, Carolina; Severino, Patricia; Junior, Jose M O; Komatsu, Daniel; Chaud, Marco V

    2018-01-01

    The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Synthesis and properties of new cationic polymers on 2-[(methacryloyloxy)ethyl]trimethyl ammonium chloride and N-isopropylacrylamidet base

    International Nuclear Information System (INIS)

    Sergaziev, A.; Khutoryanskij, V.; Bajzhumanova, T.; Fefelova, N.; Nurkeeva, Z.

    2003-01-01

    New water-soluble cationic polyelectrolytes were synthesized by γ-radiation copolymerization of 2-[(methacryloyloxy)ethyl]trimethyl ammonium chloride and N-isopropylacrylamide. The phase transition of aqueous solutions of copolymers was studied with temperature increase in presence and absence of inorganic salts. The copolymers complexation with potassium hexacyano ferrates (II, III) was investigated. It was shown that the poly-complexes solubility depends on concentration of interacting reagents and temperature. (author)

  18. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    Science.gov (United States)

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The elevation effect on water-soluble polysaccharides and DPPH free radical scavenging activity of Ganoderma lucidum K

    Science.gov (United States)

    Darsih, C.; Apriyana, W.; Nur Hayati, S.; Taufika Rosyida, V.; Hernawan; Dewi Poeloengasih, C.

    2017-02-01

    Water soluble polysaccharide is one of the important phytochemical in Ganoderma lucidum K. Phytochemicals in the plants, microorganisms, and plants were affected by internal and external factors. The objective of the research was to evaluate the effect of elevation on the water-soluble polysaccharides and its DPPH radical scavenging activity. We found that the water-polysaccharides in mushroom from Godean (elevation Ganoderma lucidum K from Godean (IC50 11.5 ± 0.29 mg/mL) higher than Kaliurang (IC50 14.4 ± 0.27%).

  20. Studies on the antifungal activities of the novel synthesized chelating co-polymer emulsion lattices and their silver complexes

    Directory of Open Access Journals (Sweden)

    Abd-El-Ghaffar M.A.

    2008-01-01

    Full Text Available The novel binary chelating co-polymers of butyl acrylate with itaconic and maleic acids were prepared by emulsion polymerization process. The chelating co-polymers of butyl acrylate-co-itaconic acid (BuA/IA and butyl acrylate-co-maleic acid (BuA/MA and their silver complexes were characterized and identified using IR spectroscopy and differential scanning calorimetry (DSC measurements. The biological activities of these compounds were studied against various types of fungal species. The dose and the rate of leached silver ions were controlled by the type of the co-polymers used and the solubility in the medium. The results provided laboratory support for the concept that the polymers containing chemically bound biocide are useful for controlling microbial growth. The silver uptake by strains of different fungal species was studied to determine their difference in behavior to the antifungal activities of these compounds. The uptake strategy was examined by transmission electron microscopy (TEM.

  1. Solubility and thermodynamic function of a new anticancer drug ibrutinib in 2-(2-ethoxyethoxy)ethanol + water mixtures at different temperatures

    International Nuclear Information System (INIS)

    Shakeel, Faiyaz; Salem-Bekhit, Mounir M.; Iqbal, Muzaffar; Haq, Nazrul

    2015-01-01

    Ibrutinib is a recently approved anticancer drug recommended for the treatment of mantle cell lymphoma and chronic lymphocytic leukemia. It has been reported as practically insoluble in water and hence it is available in the market at higher doses. Poor solubility of ibrutinib limits its development to oral solid dosage forms only. In this work, the solubilities of ibrutinib were measured in various 2-(2-ethoxyethoxy)ethanol (Carbitol) + water mixtures at T = (298.15 to 323.15) and p = 0.1 MPa. The solubility of ibrutinib was measured using an isothermal method. The thermodynamics function of ibrutinib was also studied. The measured solubilities of ibrutinib were correlated and fitted with Van’t Hoff, the modified Apelblat and Yalkowsky models. The results of curve fitting of all three models showed good correlation of experimental solubilities of ibrutinib with calculated ones. The mole fraction solubility of ibrutinib was observed highest in pure 2-(2-ethoxyethoxy)ethanol (2.67 · 10 −2 at T = 298.15 K) and lowest in pure water (1.43 · 10 −7 at T = 298.15 K) at T = (298.15 to 323.15) K. Thermodynamics data of ibrutinib showed an endothermic, spontaneous and an entropy-driven dissolution behavior of ibrutinib in all 2-(2-ethoxyethoxy)ethanol + water mixtures. Based on these results, ibrutinib has been considered as practically insoluble in water and freely soluble in 2-(2-ethoxyethoxy)ethanol. Therefore, 2-(2-ethoxyethoxy)ethanol could be used as a physiologically compatible cosolvent for solubilization and stabilization of ibrutinib in an aqueous media. The solubility data of this work could be extremely useful in preformulation studies and formulation development of ibrutinib

  2. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers

    Science.gov (United States)

    Pisipati, Padmapriya

    Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly

  3. Distribution of short block copolymer chains in Binary Blends of Block Copolymers Having Hydrogen Bonding

    Science.gov (United States)

    Kwak, Jongheon; Han, Sunghyun; Kim, Jin Kon

    2014-03-01

    A binary mixture of two block copolymers whose blocks are capable of forming the hydrogen bonding allows one to obtain various microdomains that could not be expected for neat block copolymer. For instance, the binary blend of symmetric polystyrene-block-poly(2-vinylpyridine) copolymer (PS-b-P2VP) and polystyrene-block-polyhydroxystyrene copolymer (PS-b-PHS) blends where the hydrogen bonding occurred between P2VP and PHS showed hexagonally packed (HEX) cylindrical and body centered cubic (BCC) spherical microdomains. To know the exact location of short block copolymer chains at the interface, we synthesized deuterated polystyrene-block-polyhydroxystyrene copolymer (dPS-b-PHS) and prepared a binary mixture with PS-b-P2VP. We investigate, via small angle X-ray scattering (SAXS) and neutron reflectivity (NR), the exact location of shorter dPS block chain near the interface of the microdomains.

  4. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    International Nuclear Information System (INIS)

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  5. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique.

    Science.gov (United States)

    Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da

    2007-06-22

    A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.

  6. Liquid chromatography with isotope-dilution mass spectrometry for determination of water-soluble vitamins in foods.

    Science.gov (United States)

    Phillips, Melissa M

    2015-04-01

    Vitamins are essential for improving and maintaining human health, and the main source of vitamins is the diet. Measurement of the quantities of water-soluble vitamins in common food materials is important to understand the impact of vitamin intake on human health, and also to provide necessary information for regulators to determine adequate intakes. Liquid chromatography (LC) and mass spectrometry (MS) based methods for water-soluble vitamin analysis are abundant in the literature, but most focus on only fortified foods or dietary supplements or allow determination of only a single vitamin. In this work, a method based on LC/MS and LC/MS/MS has been developed to allow simultaneous quantitation of eight water-soluble vitamins, including multiple forms of vitamins B3 and B6, in a variety of fortified and unfortified food-matrix Standard Reference Materials (SRMs). Optimization of extraction of unbound vitamin forms and confirmation using data from external laboratories ensured accuracy in the assigned values, and addition of stable isotope labeled internal standards for each of the vitamins allowed for increased precision.

  7. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang

    2017-10-18

    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.

  8. On the solubility of plutonium in water

    International Nuclear Information System (INIS)

    Naegele, G.

    1977-12-01

    In a theoretical study, the chemical equilibrium state of saturated Pu solutions in water was determined and the effect of the addition of EDTA on the solubility of Pu estimated. Concentrations of Plutonium in true solution in the range of grams/litre seem to be achievable, at least in principle. The amount of EDTA necessary is not larger than the total amount of Pu. It is however questionable, specially after taking into account all possible effects of reaction kinetics, whether such high concentrations can be achieved at all under normal environmental conditions. Only experiments under real world conditions can give an answer to this question. (orig./HK) 891 HK 892 AP [de

  9. Lumbar myelography using water-soluble contrast media

    International Nuclear Information System (INIS)

    Langlotz, M.

    1981-01-01

    With the new water-soluble contrast media developed in the last 10 years, lumbar myelography has become a simple and low-risk diagnostic method of great value which is hardly ever omitted before surgery is undertaken. The book attempts a synopsis of radiology and clinical examinations. In its first part, the pathological, clinical, and radiological aspects of diseases of the lumbosacral spinal duct are reviewed. The second part contains more than 300 myelographic pictures in original size. Each of the myelograms is supplemented by the case history of the patient (anamnesis, neurological examination, therapy and course). Interpretation is facilitated by drawings at the beginning of each chapter which show the major pathological and radiological changes. (orig./MG) [de

  10. Solubility of mixed monomers of tetrafluoroethylene and propylene in water and latex

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro

    1978-03-01

    For kinetical analysis of the emulsion copolymerization of tetrafluoroethylene with propylene and selection of the optimum reaction conditions, the monomer concentrations and composition of the polymer particle were measured and the relations with reaction conditions were determined. Solubilities of tetrafluoroethylene and propylene in water increase with pressure. solubility of propylene is larger than that of tetrafluoroethylene. Solubility of the mixed monomers in water and latex increases with pressure and propylene concentration and decreases with temperature. Propylene concentration in the dissolved monomers is dependent on its concentration in the gas phase and independent of pressure and temperature. The monomer concentrations and the composition were estimated from measurements. Under propylene concentration in the gas phase of 0 to 40 wt % at 30 Kg/cm 2 G and 40 0 C, the monomer concentration and propylene fraction of the polymer particle are 17 -- 27% and 0 -- 62% respectively. The amount of propylene in the particle increases with its fraction in the gas phase, but the amount of tetrafluoroethylene is independent of its fraction in the gas phase. Monomer composition of the polymer particle is dependent on monomer composition of the gas phase and independent of temperature and pressure. The concentration in the polymer particle is 17% at propylene concentration 10 mole % in the gas phase. (auth.)

  11. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    While most hydrophilic F88 (with least PPO/PEO ratio) remained unimers in water at 30◦ C, other copolymers formed micellar solutions. Surfynol® 104 is sparingly soluble in water to only about ∼ 0.1 wt%, but on addition to pluronic solution, it gets incorporated in the micellar region of block copolymer which leads to ...

  12. Nanocomposite copolymer thin-film sensor for detection of escherichia coli

    Science.gov (United States)

    Mathur, Prafull; Misra, S. C. K.; Yadav, Maneesha; Bawa, S. S.; Gupta, A. K.

    2006-01-01

    The majority of human diseases associated with microbial contaminated water are infectious in nature and the associated pathogen includes bacteria, fungi, viruses and protozoa. Water contaminated with bacteria can cause a number of food-borne and water-borne diseases. The waterborne transmission is highly effective means of spreading infectious agents to a large portion of population; this includes water and milk too. Waterborne infections are recognized as resulting either from ingestion of contaminated water or ice, food items, which have, came into contact with microbial contaminated water (occurring through bathing and recreational activities) etc. The detection of E. coli in food and water is normally carried out by culturing methods, which normally take 3-6 days, These methods are complicated and time-consuming in spite of their correctness, and cannot easily meet inspection demands on E. coli. Hence, an establishment of rapid detection methods for E. coli is strongly required. We have developed highly sensitive and cost effective solid sate sensors prepared from vacuum evaporated thin films of nanocomposite copolymer detection of presence of E. coli vapors in the air within 20 seconds. These sensors operate at room temperature. The preparation, optical, electrical, and structural characterization and behavioral acceptance test on the microorganism sensing properties of these sensors are reported here.

  13. Evaluation of poly(2-ethyl-2-oxazoline) containing copolymer networks of varied composition as sustained metoprolol tartrate delivery systems.

    Science.gov (United States)

    Kostova, Bistra; Ivanova, Sijka; Balashev, Konstantin; Rachev, Dimitar; Christova, Darinka

    2014-08-01

    Segmented copolymer networks (SCN) based on poly(2-ethyl-2-oxazoline) and containing 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and/or methyl methacrylate segments have been evaluated as potential sustained release systems of the water soluble cardioselective β-blocker metoprolol tartrate. The structure and properties of the drug carriers were investigated by differential scanning calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. Swelling kinetics of SCNs in various media was followed, and the conditions for effective MT loading were specified. MT-loaded SCNs with drug content up to 80 wt.% were produced. The release kinetics of metoprolol tartrate from the systems was studied and it was shown that the conetworks of different structure and composition are able to sustain the metoprolol tartrate release without additional excipients.

  14. Assessment of acute toxicity of water soluble fraction of diesel on ...

    African Journals Online (AJOL)

    Acute toxicity of water soluble fraction (WSF) of diesel fuel was assessed by evaluating its effects on growth of two marine microalgae, Isochrysis and Chaetoceros. Pure cultures of each of the two microalgae were exposed to concentrations of 0% (controls), 5%, 10%, 15% and 20% of diesel WSF (in triplicates) and allowed ...

  15. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  16. Use of mixtures containing nonionic surfactants in the destabilization of petroleum emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Claudia R.E.; Mauro, Aparecida C.; Aquino, Aline S.; Lechuga, Fernanda C.; Gonzalez, Gaspar; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas; Gonzalez, Gaspar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    During the petroleum dehydration process, it is necessary to used chemical demulsifiers in order to break the w/o emulsions that are formed in the oil field. These demulsifiers products are, in many cases, surfactants based poly(ethylene oxide-propylene oxide) block copolymers (PEO-PPO), with different EO/PO molar ratio. In this work were correlate the structure and the properties of PEO-PPO block copolymers with their performance as petroleum emulsion-destabilizing agent. Moreover, it was used an additive in the formulations, known as hydrotrope, in order to increase the solubility of these copolymers in aqueous solution. The results showed that the copolymer branched, whose hydrophilic segments (PEO and OH) are in an external adjacent position, present the higher solubility, in spite of to own EO/PO ratio similar to the others copolymers and the highest molar mass. Moreover, this copolymer presented the best efficiency in the emulsion destabilization. The addition of the hydrotrope NaBMGS to the PEO-PPO copolymers aqueous solutions caused the solubility increasing of these compounds in water. Such additive being used in the demulsifier formulation provoked an efficiency improving on the emulsion breaking process. (author)

  17. The optical and electrical properties of graphene oxide with water-soluble conjugated polymer composites by radiation.

    Science.gov (United States)

    Jungo, Seung Tae; Oh, Seung-Hwan; Kim, Hyun Bin; Jeun, Joon-Pyo; Lee, Bum-Jae; Kang, Phil-Hyun

    2013-11-01

    In order to overcome the difficulty of dispersion and low conductivity in composite containing graphene, graphene oxide (GO) has been used instead of neat graphene. And the GO treated by radiation, could give improved conductivity of the GO-containing polymer composite. In this study, fluorene based water-soluble conjugated polymer (WPF-6-oxy-F) was introduced in GO solution to investigate the change of optical and electrical properties through radiation process. UV-Vis absorption of irradiated WPF-6-oxy-F-GO composite was red shifted and I(D)/I(G) ratio of Raman spectra decreased. XPS analysis showed that C-N bonds was formed after the irradiation and confirmed the increased bonds between the GO and the water-soluble conjugated polymer matrix. From the AFM and XPS analysis, it was found that the water-soluble conjugated polymer matrix was stacked between the modified GO in the morphology of irradiated WPF-6-oxy-F-GO composite was increased after gamma ray irradiation up to 10(-2) S/cm.

  18. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  19. A concise review of dynamical processes in polymorphic ...

    Indian Academy of Sciences (India)

    TECS

    ... and gel phases. (normal as well as reverse) offer identical microscopic environment. Keywords. Block copolymer; critical micelle temperature; inverse melting transition; rotational diffu- ... carried out with water-soluble triblock copolymers in recent times. ..... DMDPP in nonpolar solvents such as n-hexane, ... and polymer-.

  20. Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers.

    Science.gov (United States)

    Ren, Lixia; Hardy, Christopher G; Tang, Chuanbing

    2010-07-07

    The synthesis of side-chain cobaltocenium-containing block copolymers and their self-assembly in solution was studied. Highly pure monocarboxycobaltocenium was prepared and subsequently attached to side chains of poly(tert-butyl acrylate)-block-poly(2-hydroxyethyl acrylate), yielding poly(tert-butyl acrylate)-block-poly(2-acryloyloxyethyl cobaltoceniumcarboxylate). The cobaltocenium block copolymers exhibited vesicle morphology in the mixture of acetone and water, while micelles of nanotubes were formed in the mixture of acetone and chloroform.

  1. Atmospheric water-soluble organic nitrogen (WSON) in the eastern Mediterranean: origin and ramifications regarding marine productivity

    Science.gov (United States)

    Nehir, Münevver; Koçak, Mustafa

    2018-03-01

    Aerosol and rain sampling in two size fractions was carried out at a rural site located on the coast of the eastern Mediterranean, Erdemli, Turkey (36°33'54'' N, 34°15'18'' E). A total of 674 aerosol samples in two size fractions (337 coarse, 337 fine) and 23 rain samples were collected between March 2014 and April 2015. Samples were analyzed for NO3-, NH4+ and ancillary water-soluble ions using ion chromatography and water-soluble total nitrogen (WSTN) by applying a high-temperature combustion method. The mean aerosol water-soluble organic nitrogen (WSON) was 23.8 ± 16.3 nmol N m-3, reaching a maximum of 79 nmol N m-3, with about 66 % being associated with coarse particles. The volume weighted mean (VWM) concentration of WSON in rain was 21.5 µmol N L-1. The WSON contributed 37 and 29 % to the WSTN in aerosol and rainwater, respectively. Aerosol WSON concentrations exhibited large temporal variation, mainly due to meteorology and the origin of air mass flow. The highest mean aerosol WSON concentration was observed in the summer and was attributed to the absence of rain and resuspension of cultivated soil in the region. The mean concentration of WSON during dust events (38.2 ± 17.5 nmol N m-3) was 1.3 times higher than that of non-dust events (29.4 ± 13.9 nmol N m-3). Source apportionment analysis demonstrated that WSON was originated from agricultural activities (43 %), secondary aerosol (20 %), nitrate (22 %), crustal material (10 %) and sea salt (5 %). The dry and wet depositions of WSON were equivalent and amounted to 36 % of the total atmospheric WSTN flux.

  2. Relation of zinc levels and water soluble phosphorus in suphala [fertilizer] on uptake of phosphorus and zinc

    International Nuclear Information System (INIS)

    Mutatkar, V.K.; Chapke, V.G.

    1975-01-01

    Under pot culture, four levels of Zn 0, 2, 4 and 6 ppm, were studied in relation to 30, 50 and 100 % water soluble levels of phosphorus in suphala for the dry matter production and uptake of P and Zn by maize on acidic soil of Goa and black cotton soil of Maharashtra. 32 P and 65 Zn tracers were used for this investigation. The results revealed that application of Zn has increased the dry matter and uptake of phosphorus upto 4 ppm of Zn application and it has decreased at 6 ppm Zn level. This inhibition of P uptake was observed at all water soluble levels of P and in both the soils studied. Zn uptake by maize in both the soils under study was increased with increasing level of Zn, irrespective of water soluble level of P in suphala. (author)

  3. Ecotoxicity of water-soluble PM1, PM2.5 and PM10 aerosols at Gosan Climate Observatory (GCO) in Jeju, Korea

    Science.gov (United States)

    Kim, J. A.; Lee, M.; Yoon, H. O.; Bae, M. S.

    2017-12-01

    The water-soluble components of aerosols are rapidly permeated to various biosurfaces through the deposition process due to their high solubility and have profound effects on ecosystem functioning as well as human health. In this context, the ecotoxicity of atmospheric aerosol was assessed, particularly for water-soluble components. For measurements of ecotoxicity of water soluble components, ambient aerosols of PM1, PM2.5, and PM10 were collected on filters at Gosan Climate Observatory (GCO), Jeju, Korea in May, August, October 2010, March and July 2011. The ecotoxicity was estimated using Vibrio fischeri based on bioluminescence inhibition bioassay. In this study, EC10 (10% effective concentration) value was used as an ecotoxicity indicator. The EC10 value was generally in good relation with major water-soluble constituents such as SO42-, NH4+, and water-soluble organic carbon (WSOC). The characteristics of ecotoxicity was different in PM1, PM2.5, and PM10 aerosols. The EC10 of PM10 was correlated well with SO42- (r=-0.53) and Mg2+(r=-0.52). The ecotoxicity was relatively high in smaller particles with either high NO3-/SO42- ratio or WSOC concentration. The high ecotoxicity was found in outflows mostly from nearby lands especially under stagnant condition.

  4. Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review.

    Science.gov (United States)

    Blake, Christopher J

    2007-09-01

    Water-soluble vitamins include the B-group vitamins and vitamin C. In order to correctly monitor water-soluble vitamin content in fortified foods for compliance monitoring as well as to establish accurate data banks, an accurate and precise analytical method is a prerequisite. For many years microbiological assays have been used for analysis of B vitamins. However they are no longer considered to be the gold standard in vitamins analysis as many studies have shown up their deficiencies. This review describes the current status of analytical methods, including microbiological assays and spectrophotometric, biosensor and chromatographic techniques. In particular it describes the current status of the official methods and highlights some new developments in chromatographic procedures and detection methods. An overview is made of multivitamin extractions and analyses for foods and supplements.

  5. pH Memory Effects of Tunable Block Copolymer Photonic Gels and Their Applications

    Science.gov (United States)

    Kang, Youngjong; Thomas, Edwin L.

    2007-03-01

    Materials with hysteresis, showing a bistable state to the external stimuli, have been widely investigated due to their potential applications. For example, they could be used as memory devices or optical switches when they have magnetic or optical hysteresis response to the external stimuli. Here we report pH tunable photonic gels which are spontaneously assembled from block copolymers. The general idea of this research is based on the selective swelling of block copolymer lamellar mesogels, where the solubility of one block is responsive to the change of pH. In this system, the domain spacing of the lamellar is varied with the extent of swelling. As a model system, we used protonated polystyrene-b-poly(2-vinly pyridine) (PS-b-P2VP) block copolymers forming lamellar structures. The photonic gel films prepared from protonated PS-b-P2VP show a strong reflectance in aqueous solution and the band position was varied with pH. Interestingly, a very strong optical hysteresis was observed while the reflection band of photonic gels was tuned by changing pH. We anticipate that pH tunable photonic gels with hysteresis can be applicable to novel applications such as a component of memory devices, photonic switches or drug delivery vehicles.

  6. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  7. Water-soluble contrast media compared with barium in enteric follow-through

    International Nuclear Information System (INIS)

    Laerum, F.; Stordahl, A.; Aase, S.

    1988-01-01

    The local effects and radiographic efficacy of 4 water-soluble contrast media, barium and saline were evaluated in 86 anaesthetized rats with the distal ileum ligated. The rats were observed for 8 hours after instillation of 3 ml of the test substance via orogastric tube. Radiographs were taken after 1, 4 and 8 hours of observation. After 8 hours the intestines were weighed and biopsied for light microscopy, and blood and urine were sampled for testing. Sodium diatrizoate caused increased fluid influx to the bowel lumen and, like barium, provided poorer radiographic images as compared with iohexol, ioxaglate or iodixanol. Barium showed slower progression through the small bowel than the other agents, while sodium diatrizoate was the most rapidly progressing contrast medium and caused the greatest distension. Correlation to osmolality was obvious. No significant morphologic effects on the small bowel mucosa were seen in any of the groups. Low-osmolar, water-soluble contrast media may have prospects for clinical use in patients with suspected small bowel obstruction. (orig.)

  8. Micellizationa and Gelation of Water Soluable Thermo-and Light-sensitive Block Copolymer Investigated by SANS

    Science.gov (United States)

    He, Lilin; Hu, Bin; Zhao, Bin

    2015-03-01

    Here we present an extensive small-angle neutron scattering (SANS) characterization of micellization and gelation of PEO-b-P(TEGEA-co-NBA) in deuterated water in a wide range of temperatures and concentrations before and after the removal of o-nitrobenzyl group by UV irradiation. Scattering data analysis indicated that unimers predominated in the solutions at low temperatures and concentrations. The polymer self-assembled into micelles with the P(TEGEA-co-NBA) block packed into the core and PEO forming the corona layer. A core-shell model was used to fit SANS data and obtain sizes and scattering length densities. Structural parameters such as the aggregation numbers, the radius of gyration of the chains in the shell region, the number of water molecules in the both regions were determined. The structural information combined with the rheological data were used to describe the phase behaviors of the diblock copolymer in aqueous solution.

  9. Synthesis of Antibacterial Silver–Poly(ɛ-caprolactone-Methacrylic Acid Graft Copolymer Nanofibers and Their Evaluation as Potential Wound Dressing

    Directory of Open Access Journals (Sweden)

    Mohammed A. Al-Omair

    2015-08-01

    Full Text Available Electrospun polycaprolacyone/polymethacrylic acid graft copolymer nanofibers (PCL/MAA containing silver nanoparticles (AgNPs were synthesized for effective wound disinfection. Surface morphology, AgNPs content, water uptake of electrospun PCL/MAA graft copolymer nanofibers without and with AgNPs, and levels of AgNPs leaching from the nanofibers in water as well as antimicrobial efficacy were studied. Scanning electron microscope images revealed that AgNPs dispersed well in PCL/MAA copolymer nanofibers with mean fiber diameters in the range of 200–579 nm and the fiber uniformity and diameter were not affected by the AgNPs. TEM images showed that AgNPs are present in/on the electrospun PCL/MAA graft copolymer nanofibers. The diameter of the electrospun nanofibers containing AgNPs was in the range of 200–579 nm, however, the diameter of AgNPs was within the range of 20–50 nm and AgNPs were observed to be spherical in shape. The PCL/MAA copolymer nanofibers showed a good hydrophilic property and the nanofibers containing AgNPs had excellent antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and against the Gram-positive bacteria Bacillus thuringiensis and Staphylococcus aureus, with a clear inhibition zone with a diameter between 22 and 53 mm. Moreover, electrospun PCL/MAA copolymer nanofibers sustained the release of AgNPs into water over 72 h.

  10. The effect of water solubles on Kelvin effects of the Maritime Polluted ...

    African Journals Online (AJOL)

    In this work microphysical properties of Maritime Polluted aerosols wereextracted from Optical Properties of Aerosols and Clouds (OPAC) after varying the concentrations of water soluble at five different levels. The analytical expressions for the changes in the equilibrium relative humidity (RH), effective radii, effective ...

  11. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    International Nuclear Information System (INIS)

    Makarska-Bialokoz, Magdalena; Borowski, Piotr

    2015-01-01

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H 2 TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10 5 mol −1 . The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H 2 TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated

  12. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl [Department of Inorganic Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 2, 20-031 Lublin (Poland); Borowski, Piotr [Faculty of Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2015-04-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated.

  13. Self-assembly in poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer template directed synthesis of Linde type A zeolite.

    Science.gov (United States)

    Bonaccorsi, Lucio; Calandra, Pietro; Kiselev, Mikhail A; Amenitsch, Heinz; Proverbio, Edoardo; Lombardo, Domenico

    2013-06-11

    We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.

  14. The radiation crosslinking of ethylene copolymers

    International Nuclear Information System (INIS)

    Burns, N.M.

    1979-01-01

    The enhanced radiation crosslinking tendency of ethylene-vinyl acetate and ethylene-ethyl acrylate copolymers over ethylene homopolymer is proportional to the comonomer content. This is caused by an increase in the amorphous polymer content and by structure-related factors. The copolymers crosslink by a random process that for ethylene-vinyl acetate copolymer involves some crosslinking through the acetoxy group of the comonomer. While knowledge of the process for the crosslinking of ethylene-ethyl acrylate copolymer is less certain, it is currently believed to occur primarily at the branch point on the polymer backbone. Data relating comonomer content and the molecular weight of the copolymers to the radiation crosslinking levels realized were developed to aid in resin selection by the formulator. Triallyl cyanurate cure accelerator was found to be less effective in ethylene-vinyl acetate copolymer than in homopolymer and to have no effect on gel development in ethylene-ethyl acrylate copolymer. (author)

  15. Determination and modeling of the solubility of (limonin in methanol or acetone + water) binary solvent mixtures at T = 283.2 K to 318.2 K

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Zheng, Bing; Liao, Dan-Dan; Yu, Jia-Xin; Cao, Ya-Hui; Zhang, Xue-Hong; Zhu, Jian-Hang

    2016-01-01

    Highlights: • The solubilities of limonin were measured in the binary solvent mixtures methanol + water and acetone + water. • The solubility data were correlated by nine models. • The solubility of limonin had a maximum point at 0.9 mol fraction of acetone in acetone + water mixtures. - Abstract: The solubility of limonin in the binary solvent mixtures (methanol + water) and (acetone + water) with various initial mole fractions of methanol or acetone was measured by high-performance liquid chromatography (HPLC) at different temperatures ranging from 283.2 K to 318.2 K. The solubility of limonin increased with increasing initial mole fraction of methanol in (methanol + water) mixtures, whereas it had a maximum point at 0.9 mol fraction of acetone in (acetone + water) mixtures. The solubility of limonin increased with increasing temperature in the two binary solvent mixtures. The solubility of limonin was correlated with temperature by the van’t Hoff model and the modified Apelblat model, and the fitting results showed that the modified Apelblat model had better correlation. The CNIBS/Redlich–Kister model and the simplified CNIBS/Redlich–Kister model were used to correlate the solubility data with the initial solvent composition, the results show that the CNIBS/Redlich–Kister model reveals better agreement with the experimental values. Furthermore, to illustrate the effects of both temperature and initial solvent composition on the changes in the solubility of limonin, the solubility values were fitted by the Jouyban–Acree, van’t Hoff–Jouyban–Acree, modified Apelblat–Jouyban–Acree, Ma and Sun models. Among the five models, the Jouyban–Acree model give the best correlation results for (methanol + water) binary solvent mixtures, while the experimental solubility in the (acetone + water) system was most accurately correlated by the van’t Hoff–Jouyban–Acree model.

  16. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    Science.gov (United States)

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  17. Synthesis and self-assembly of Chitosan-g-Polystyrene copolymer: A new route for the preparation of heavy metal nanoparticles

    KAUST Repository

    Francis, Raju S.

    2015-01-01

    Amphiphilic graft copolymers made of a Chitosan (CS) backbone and three arm polystyrene (PS) grafts were prepared by "grafting onto" strategy using Toluene Diisocyanate. IR spectroscopy and SEC show the successful grafting process. SEM pictures of Chitosan-g-Polystyrene (CS-g-PS) indicate a spherulite like surface and exhibit properties that result from the disappearance of Chitosan crystallinity. The introduced polystyrene star grafts units improve hydrophobic properties considerably as confirmed by the very high solubility of (CS-g-PS) in organic solvents. The graft copolymer which self-assembles into polymeric micelles in organic media demonstrates much better adsorption of transition and inner transition metal ions than pure Chitosan whose amine groups are not necessarily available due to crystallinity.

  18. Characterization and blood coagulation evaluation of the water-soluble chitooligosaccharides prepared by a facile fractionation method.

    Science.gov (United States)

    Lin, Chia-Wen; Lin, Jui-Che

    2003-01-01

    Water-soluble chitooligosaccharides have been reported to have specific biological activities. In this study, the chitosan samples with different degree of acetylation were used separately to prepare chitooligosaccharide (COS) and highly deacetylated chitooligosaccharide (HDCOS) through the nitrous acid depolymerization. Rather than using the conventional fractionation schemes commonly employed, such as dialysis and ultrafiltration which require a large amount of deionized water as well as a fair long dwell time, an unique fractionation scheme is explored to recover and desalt these nitrous-acid depolymerized chitosan with different molecular weights. This fractionation scheme is based on the differential solubility variation of depolymerized products within the aqueous solutions that contain various ratios of methanol. It was noted that chitosan with different molecular weight can be successfully recovered and fractionated with methanol added sequentially up to a volume of four times of original depolmerized product. In addition, chemical characterization of the fractionated water-soluble COS and HDCOS by 1H NMR spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicated that the chitosan depolymerization reaction is greatly influenced by the degree of acetylation of the parental chitosan reactant. Moreover, the modified whole blood clotting time assay and the platelet coagulation test suggested that the 1:2 fractionated water-soluble COS and HDCOS obtained are much less procoagulant than their parental chitosan compound and can be of use in biomedical applications in which blood coagulation is not desired.

  19. Distribution of various water soluble radioactive metalloporphyrins in tumor bearing mice

    International Nuclear Information System (INIS)

    Hambright, P.; Fawwaz, R.; Valk, P.; McRae, J.; Bearden, A.J.

    1975-01-01

    The distribution of a variety of water soluble 109 Pd and 64 Cu porphyrins were studied in mice bearing three types of tumors. While the metalloporphyrins are found to have an affinity for neoplastic tissue, substantial extra-tumor concentrations are also noted. Although this limits their value as specific tumor imaging agents, their use in localized therapy is discussed

  20. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)