WorldWideScience

Sample records for assessment emergency response

  1. Computerized radiological emergency response and assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Taylor, S.S.

    1985-10-01

    The Department of Energy's Atmospheric Release Advisory Capability (ARAC) has been developed at the Lawrence Livermore National Laboratory to provide a centralized national capability in emergency response to radiological accidents. For the past three years the system has been undergoing a complete redesign and upgrade in software and hardware. Communications, geophysical databases, atmospheric transport and diffusion models, and experienced staff form the core of this rapid response capability. The ARAC system has been used to support US DOE commitments to provide emergency response and assessment of nuclear power plant, nuclear processing facility, transportation, satellite, weapon system, and other accidents or events. This paper describes the major components of this computerized system and discusses the automated and interactive process of the man-machine environment in an emergency response system. 12 refs., 2 figs.

  2. Emergency Response Capability Baseline Needs Assessment Compliance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-16

    This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2013 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2009 BNA, the 2012 BNA document, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures.

  3. Gap Assessment in the Emergency Response Community

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Jonathan L.; Burtner, Edwin R.; Pike, William A.; Peddicord, Annie M Boe; Minsk, Brian S.

    2010-09-27

    This report describes a gap analysis of the emergency response and management (EM) community, performed during the fall of 2009. Pacific Northwest National Laboratory (PNNL) undertook this effort to identify potential improvements to the functional domains in EM that could be provided by the application of current or future technology. To perform this domain-based gap analysis, PNNL personnel interviewed subject matter experts (SMEs) across the EM domain; to make certain that the analyses reflected a representative view of the community, the SMEs were from a variety of geographic areas and from various sized communities (urban, suburban, and rural). PNNL personnel also examined recent and relevant after-action reports and U.S. Government Accountability Office reports.

  4. Generic procedures for assessment and response during a radiological emergency

    International Nuclear Information System (INIS)

    One of the most important aspects of managing a radiological emergency is the ability to promptly and adequately determine and take actions to protect members of the public and emergency workers. Radiological accident assessment must take account of all critical information available at any time and must be an iterative and dynamic process aimed at reviewing the response as more detailed and complete information becomes available. This manual provides the tools, generic procedures and data needed for an initial response to a non-reactor radiological accident. This manual is one out of a set of IAEA publications on emergency preparedness and response, including Method for the Development of Emergency Response Preparedness for Nuclear or Radiological Accidents (IAEA-TECDOC-953), Generic Assessment Procedures for Determining Protective Actions During a Reactor Accident (IAEA-TECDOC-955) and Intervention Criteria in a Nuclear or Radiation Emergency (Safety Series No. 109)

  5. Transportation needs assessment: Emergency response section

    International Nuclear Information System (INIS)

    The transportation impacts of moving high level nuclear waste (HLNW) to a repository at Yucca Mountain in Nevada are of concern to the residents of the State as well as to the residents of other states through which the nuclear wastes might be transported. The projected volume of the waste suggests that shipments will occur on a daily basis for some period of time. This will increase the risk of accidents, including a catastrophic incident. Furthermore, as the likelihood of repository construction and operation and waste shipments increase, so will the attention given by the national media. This document is not to be construed as a willingness to accept the HLNW repository on the part of the State. Rather it is an initial step in ensuring that the safety and well-being of Nevada residents and visitors and the State's economy will be adequately addressed in federal decision-making pertaining to the transportation of HLNW into and across Nevada for disposal in the proposed repository. The Preferred Transportation System Needs Assessment identifies critical system design elements and technical and social issues that must be considered in conducting a comprehensive transportation impact analysis. Development of the needs assessment and the impact analysis is especially complex because of the absence of information and experience with shipping HLNW and because of the ''low probability, high consequence'' aspect of the transportation risk

  6. Transportation needs assessment: Emergency response section

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    The transportation impacts of moving high level nuclear waste (HLNW) to a repository at Yucca Mountain in Nevada are of concern to the residents of the State as well as to the residents of other states through which the nuclear wastes might be transported. The projected volume of the waste suggests that shipments will occur on a daily basis for some period of time. This will increase the risk of accidents, including a catastrophic incident. Furthermore, as the likelihood of repository construction and operation and waste shipments increase, so will the attention given by the national media. This document is not to be construed as a willingness to accept the HLNW repository on the part of the State. Rather it is an initial step in ensuring that the safety and well-being of Nevada residents and visitors and the State`s economy will be adequately addressed in federal decision-making pertaining to the transportation of HLNW into and across Nevada for disposal in the proposed repository. The Preferred Transportation System Needs Assessment identifies critical system design elements and technical and social issues that must be considered in conducting a comprehensive transportation impact analysis. Development of the needs assessment and the impact analysis is especially complex because of the absence of information and experience with shipping HLNW and because of the ``low probability, high consequence`` aspect of the transportation risk.

  7. Optimal network solution for proactive risk assessment and emergency response

    Science.gov (United States)

    Cai, Tianxing

    Coupled with the continuous development in the field industrial operation management, the requirement for operation optimization in large scale manufacturing network has provoked more interest in the research field of engineering. Compared with the traditional way to take the remedial measure after the occurrence of the emergency event or abnormal situation, the current operation control calls for more proactive risk assessment to set up early warning system and comprehensive emergency response planning. Among all the industries, chemical industry and energy industry have higher opportunity to face with the abnormal and emergency situations due to their own industry characterization. Therefore the purpose of the study is to develop methodologies to give aid in emergency response planning and proactive risk assessment in the above two industries. The efficacy of the developed methodologies is demonstrated via two industrial real problems. The first case is to handle energy network dispatch optimization under emergency of local energy shortage under extreme conditions such as earthquake, tsunami, and hurricane, which may cause local areas to suffer from delayed rescues, widespread power outages, tremendous economic losses, and even public safety threats. In such urgent events of local energy shortage, agile energy dispatching through an effective energy transportation network, targeting the minimum energy recovery time, should be a top priority. The second case is a scheduling methodology to coordinate multiple chemical plants' start-ups in order to minimize regional air quality impacts under extreme meteorological conditions. The objective is to reschedule multi-plant start-up sequence to achieve the minimum sum of delay time compared to the expected start-up time of each plant. All these approaches can provide quantitative decision support for multiple stake holders, including government and environment agencies, chemical industry, energy industry and local

  8. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2009-12-30

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  9. Review and assessment of package requirements (yellowcake) and emergency response to transportation accidents

    International Nuclear Information System (INIS)

    As a consequence of an accident involving a truck shipment of yellowcake, a joint NRC--DOT study was undertaken to review and assess the regulations and practices related to package integrity and to emergency response to transportation accidents involving low specific activity radioactive materials. Recommendations are made regarding the responsibilities of state and local agencies, carriers, and shippers, and the DOT and NRC regulations

  10. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    Energy Technology Data Exchange (ETDEWEB)

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection

  11. Development of the assessment method for the idealized images of teams. Investigation on the teamwork in emergency response situation (1)

    International Nuclear Information System (INIS)

    Since the occurrence of the Tohoku Pacific Earthquake and the nuclear disaster in 2011, the strengthening of emergency response training has been emphasized in Japanese electric industries. When disasters and accidents occur in a nuclear power plant, workers should collaborate with each other to mitigate possible hazards and to recovery from emergencies, as self-effort is not sufficient in these times. Effective teamwork is essential for the success of emergency response. However, the aspects of teamwork that are required in emergencies remain unclear. This study developed a questionnaire instrument to assess the idealized image of effective power plant operator teams in three different levels of emergencies. A pilot test of the instrument was conducted with 21 training instructors who are subject-matter experts in nuclear power plant operation. In the questionnaire, three hypothetical situations of differing emergency levels were presented: 'normal' (routine operation), 'abnormal' (trouble shooting and malfunction correction), 'emergency' (severe accident and disaster response). The idealized image of teams in each situation was also assessed in four aspects: 'decision-making', 'coordination', 'adaptation and adjustment', and 'command and control'. Questionnaire responses were summarized in a profile form to picture the idealized images, ant the profile scores in each situation were compared. Results suggested that, the idealized image of effective teams is different depending on the level of emergency. The Implications of results for training and future research directions are discussed. (author)

  12. OEM Emergency Response Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Emergency Management retains records of all incident responses in which it participates. This data asset includes three major sources of information:...

  13. Survey on methodologies in the risk assessment of chemical exposures in emergency response situations in Europe

    DEFF Research Database (Denmark)

    Heinälä, Milla; Gundert-Remy, Ursula; Wood, Maureen Heraty;

    2013-01-01

    A scientifically sound assessment of the risk to human health resulting from acute chemical releases is the cornerstone for chemical incident prevention, preparedness and response. Although the general methodology to identify acute toxicity of chemicals has not substantially changed in the last...... decades, there is ongoing debate on the current approaches for human health risk assessment in scenarios involving acute chemical releases.A survey was conducted to identify: (1) the most important present and potential future chemical incident scenarios and anticipated changes in chemical incidents...

  14. A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China

    Science.gov (United States)

    Xu, Jinghai; An, Jiwen; Nie, Gaozong

    2016-04-01

    Improving earthquake disaster loss estimation speed and accuracy is one of the key factors in effective earthquake response and rescue. The presentation of exposure data by applying a dasymetric map approach has good potential for addressing this issue. With the support of 30'' × 30'' areal exposure data (population and building data in China), this paper presents a new earthquake disaster loss estimation method for emergency response situations. This method has two phases: a pre-earthquake phase and a co-earthquake phase. In the pre-earthquake phase, we pre-calculate the earthquake loss related to different seismic intensities and store them in a 30'' × 30'' grid format, which has several stages: determining the earthquake loss calculation factor, gridding damage probability matrices, calculating building damage and calculating human losses. Then, in the co-earthquake phase, there are two stages of estimating loss: generating a theoretical isoseismal map to depict the spatial distribution of the seismic intensity field; then, using the seismic intensity field to extract statistics of losses from the pre-calculated estimation data. Thus, the final loss estimation results are obtained. The method is validated by four actual earthquakes that occurred in China. The method not only significantly improves the speed and accuracy of loss estimation but also provides the spatial distribution of the losses, which will be effective in aiding earthquake emergency response and rescue. Additionally, related pre-calculated earthquake loss estimation data in China could serve to provide disaster risk analysis before earthquakes occur. Currently, the pre-calculated loss estimation data and the two-phase estimation method are used by the China Earthquake Administration.

  15. The hydrological impact assessment in the decision support of nuclear emergency response.

    Science.gov (United States)

    Vamanu, Dan V; Slavnicu, Dan S; Gheorghiu, Dorina; Acasandrei, Valentin T; Slavnicu, Elena

    2010-07-01

    The paper presents several aspects believed to be relevant for the integration in the decision support systems for the management of radiological emergencies, of assessment tools addressing surface water contamination. Three exemplary cases are discussed in the context-the CONVEX 2005 international alert exercise, AXIOPOLIS 09, a national drill targeting a CANDU reactor at Cernavoda nuclear power plant in Romania, and Oltenia 07-a nation-wide drill around a scenario, involving trans-border effects of a virtual accident at a VVER reactor at Kozloduy, Bulgaria. The capability of different analytic tools were tested, including public deliverables like real-time, online decision support system's HDM module and model-based computerised system for management support to identify optimal remedial strategies for restoring radionuclide-contaminated aquatic ecosystems and drainage areas, as well as research-grade, home-made facilities, in order to identify and sort out merits and issues of interest in steering their effective utilisation. PMID:20172931

  16. The hydrological impact assessment in the decision support of nuclear emergency response.

    Science.gov (United States)

    Vamanu, Dan V; Slavnicu, Dan S; Gheorghiu, Dorina; Acasandrei, Valentin T; Slavnicu, Elena

    2010-07-01

    The paper presents several aspects believed to be relevant for the integration in the decision support systems for the management of radiological emergencies, of assessment tools addressing surface water contamination. Three exemplary cases are discussed in the context-the CONVEX 2005 international alert exercise, AXIOPOLIS 09, a national drill targeting a CANDU reactor at Cernavoda nuclear power plant in Romania, and Oltenia 07-a nation-wide drill around a scenario, involving trans-border effects of a virtual accident at a VVER reactor at Kozloduy, Bulgaria. The capability of different analytic tools were tested, including public deliverables like real-time, online decision support system's HDM module and model-based computerised system for management support to identify optimal remedial strategies for restoring radionuclide-contaminated aquatic ecosystems and drainage areas, as well as research-grade, home-made facilities, in order to identify and sort out merits and issues of interest in steering their effective utilisation.

  17. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  18. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  19. Emergency Response Guideline Development

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Storrick

    2007-09-30

    Task 5 of the collaborative effort between ORNL, Brazil, and Westinghouse for the International Nuclear Energy Research Initiative entitled “Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor” focuses on operator control and protection system interaction, with particular emphasis on developing emergency response guidelines (ERGs). As in the earlier tasks, we will use the IRIS plant as a specific example of an integrated primary system reactor (IPSR) design. The present state of the IRIS plant design – specifically, the lack of a detailed secondary system design – precludes establishing detailed emergency procedures at this time. However, we can create a structure for their eventual development. This report summarizes our progress to date. Section 1.2 describes the scope of this effort. Section 2 compares IPSR ERG development to the recent AP1000 effort, and identifies three key plant differences that affect the ERGs and control room designs. The next three sections investigate these differences in more detail. Section 3 reviews the IRIS Safety-by-Design™ philosophy and its impact on the ERGs. Section 4 looks at differences between the IRIS and traditional loop PWR I&C Systems, and considers their implications for both control room design and ERG development. Section 5 examines the implications of having one operating staff control multiple reactor units. Section 6 provides sample IRIS emergency operating procedures (EOPs). Section 7 summarizes our conclusions.

  20. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    International Nuclear Information System (INIS)

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  1. System model for evaluation of an emergency response plan for a nuclear power plant based on an assessment of nuclear emergency exercises

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Vinicius C.; Medeiros, Jose A.C.C. [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    Nuclear power plants are designed and built with systems dedicated to provide a high degree of protection to its workers, the population living in their neighborhoods and the environment. Among the requirements for ensuring safety there are the existence of the nuclear emergency plan. Due to the relationship between the actions contemplated in the emergency plan and the nuclear emergency exercise, it becomes possible to assess the quality of the nuclear emergency plan, by means of emergency exercise evaluation, The techniques used in this work aim at improving the evaluation method of a nuclear emergency exercise through the use of performance indicators in the evaluation of the structures, actions and procedures involved. The proposed model enables comparisons between different moments of an emergency plan directed to a nuclear power plant as well as comparisons between plans dedicated to different facilities. (author)

  2. SOFTWARE QUALITY ASSURANCE FOR EMERGENCY RESPONSE CONSEQUENCE ASSESSMENT MODELS AT DOE'S SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C

    2007-12-17

    The Savannah River National Laboratory's (SRNL) Atmospheric Technologies Group develops, maintains, and operates computer-based software applications for use in emergency response consequence assessment at DOE's Savannah River Site. These applications range from straightforward, stand-alone Gaussian dispersion models run with simple meteorological input to complex computational software systems with supporting scripts that simulate highly dynamic atmospheric processes. A software quality assurance program has been developed to ensure appropriate lifecycle management of these software applications. This program was designed to meet fully the overall structure and intent of SRNL's institutional software QA programs, yet remain sufficiently practical to achieve the necessary level of control in a cost-effective manner. A general overview of this program is described.

  3. Fire Department Emergency Response

    International Nuclear Information System (INIS)

    In 1995 the SRS Fire Department published the initial Operations Basis Document (OBD). This document was one of the first of its kind in the DOE complex and was widely distributed and reviewed. This plan described a multi-mission Fire Department which provided fire, emergency medical, hazardous material spill, and technical rescue services

  4. Fire Department Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bell, K.; Kelly, J.; Hudson, J.

    1997-09-01

    In 1995 the SRS Fire Department published the initial Operations Basis Document (OBD). This document was one of the first of its kind in the DOE complex and was widely distributed and reviewed. This plan described a multi-mission Fire Department which provided fire, emergency medical, hazardous material spill, and technical rescue services.

  5. Worldwide corporate emergency response preparedness

    International Nuclear Information System (INIS)

    The Conoco Significant Incident Umbrella Plan (SIUP) is a tool which can be implemented at any site for mitigating all types of emergencies. However, before the plan can be implemented into overall response efforts, there are a few procedures which must be in place. When an event occurs (oil spill, fire, explosion, etc.), someone will see, recognize, or observe the incident. The trained individual will react by either responding to the incipient stage of the incident up to his/her level of training or vacating the site to an area of accountability and notifying appropriate designated supervision. The next level notified would assess the situation and activate the site's notification systems. It is at this point where the Significant Incident Umbrella Plan (SIUP) featuring the Incident Command System (ICS) would begin to phase in. Once employees and contractors are accounted for, they would take their assignments in the site's ICS structure as applicable. Site specific procedures to handle the above are absolutely required before implementing the SIUP. Once these procedures are in place, the following SIUP components can be applied. The SIUP is an emergency and spill response template which incorporates a tailored version of the ICS. Areas such as normal business interruption, marine application, and minor changes in the infrastructure were all made so the system would adapt to the needs

  6. NOAA Emergency Response Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The imagery posted on this site is in response to natural disasters. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The...

  7. A Probabilistic Risk Assessment For Emergency Preparedness

    International Nuclear Information System (INIS)

    The importance of nuclear power plant PSA has grown up all over the world due to this incident. The main concern of this study is to develop a methodology to carry on an emergency preparedness evaluation and to set an exclusive area, or the emergency response area boundary in order to apply it to domestic reference plants. This study also focuses on evaluating the risk parameter of major nuclides through a sensitivity analysis and a safety assessment by calculating the population dose, early fatality, and cancer fatality rates. A methodology for an emergency preparedness, which can be applied to evaluate the damage of the radioactive release as well as to assess the safety of the accident scenario of a nuclear power plant, has been developed and applied for the reference plants in Korea. By applying a source term analysis, an exclusive zone based on the radioactive dose is obtained. And the results of the health effect assessment based on the release fraction of specific nuclides to public with an effective emergency response activity have been simulated. A methodology utilizing the Level 3 PSA with the actual emergency response activities has been developed and applied to typical nuclear accident situations. The plausible standard for performing an emergency plan is suggested and the valuable information regarding emergency preparedness has been produced in this study. For further works, the sensitivity study on important parameters will be performed to simulate the actual severe accident situations such as sheltering, evacuation, and emergency response activities

  8. The reliability and validity of passive leg raise and fluid bolus to assess fluid responsiveness in spontaneously breathing emergency department patients

    DEFF Research Database (Denmark)

    Duus, Nicolaj; Shogilev, Daniel J; Skibsted, Simon;

    2015-01-01

    PURPOSE: We investigated the reproducibility of passive leg raise (PLR) and fluid bolus (BOLUS) using the Non-Invasive Cardiac Output Monitor (NICOM; Cheetah Medical, Tel Aviv, Israel) for assessment of fluid responsiveness (FR) in spontaneously breathing emergency department (ED) patients. METHO...

  9. Data modelling for emergency response

    OpenAIRE

    Dilo, Arta; Zlatanova, Sidi

    2010-01-01

    Emergency response is one of the most demanding phases in disaster management. The fire brigade, paramedics, police and municipality are the organisations involved in the first response to the incident. They coordinate their work based on welldefined policies and procedures, but they also need the most complete and up-todate information about the incident, which would allow a reliable decision-making. There is a variety of systems answering the needs of different emergency responders, but the...

  10. Data modelling for emergency response

    NARCIS (Netherlands)

    Dilo, Arta; Zlatanova, Sidi

    2010-01-01

    Emergency response is one of the most demanding phases in disaster management. The fire brigade, paramedics, police and municipality are the organisations involved in the first response to the incident. They coordinate their work based on welldefined policies and procedures, but they also need the m

  11. Emergency Preparedness and Response: A Safety Net

    International Nuclear Information System (INIS)

    Full text: The objective of nuclear regulatory work is to prevent accidents. Nevertheless, possibility of a severe accident cannot be totally excluded, which makes a safety net, efficient emergency preparedness and response, necessary. Should the possibility of accidents be rejected, the result would be in the worst case inadequate protection of population, functions of society, and environment from harmful effects of radiation. Adequate resources for maintenance and development of emergency arrangement are crucial. However, they need to be balanced taking into account risks assessments, justified expectations of society, and international requirements. To successfully respond to an emergency, effective emergency preparedness, such as up-to-date plans and procedures, robust arrangements and knowledgeable and regularly trained staff are required. These, however, are not enough without willingness and proactive attitude to • communicate in a timely manner; • co-operate and coordinate actions; • provide and receive assistance; and • evaluate and improve emergency arrangements. In the establishment and development of emergency arrangements, redundant and diverse means or tools used are needed in, for example, communication and assessment of hazard. Any severe nuclear emergency would affect all countries either directly or indirectly. Thus, national emergency arrangements have to be compatible to the extent practicable with international emergency arrangements. It is important to all countries that the safety nets of emergency arrangements are reliable - and operate efficiently in a coordinated manner when needed - on national, regional and international level. (author)

  12. Hazardous Materials Management and Emergency Response (HAMMER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Federal Training Center is a safety and emergency response training center that offers...

  13. Modeling, simulation and emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.

    1985-01-01

    The Department of Energy's Atmospheric Release Advisory Capability (ARAC) has been developed at the Lawrence Livermore National Laboratory to provide a national capability in emergency response to radiological accidents. For the past two years the system has been undergoing a complete redesign and upgrade in software and hardware. Communications, geophysical databases, atmospheric transport and diffusion models and experienced staff form the core of this rapid response capability. The ARAC system has been used to support DOE commitments to radiological accidents including the Three Mile Island accident, the COSMOS satellite reentries, the TITAN II missile accident and several others. This paper describes the major components of the ARAC system, presents example calculations and discusses the interactive process of the man-machine environment in an emergency response system.

  14. Towards accurate emergency response behavior

    International Nuclear Information System (INIS)

    Nuclear reactor operator emergency response behavior has persisted as a training problem through lack of information. The industry needs an accurate definition of operator behavior in adverse stress conditions, and training methods which will produce the desired behavior. Newly assembled information from fifty years of research into human behavior in both high and low stress provides a more accurate definition of appropriate operator response, and supports training methods which will produce the needed control room behavior. The research indicates that operator response in emergencies is divided into two modes, conditioned behavior and knowledge based behavior. Methods which assure accurate conditioned behavior, and provide for the recovery of knowledge based behavior, are described in detail

  15. Emergency Response Virtual Environment for Safe Schools

    Science.gov (United States)

    Wasfy, Ayman; Walker, Teresa

    2008-01-01

    An intelligent emergency response virtual environment (ERVE) that provides emergency first responders, response planners, and managers with situational awareness as well as training and support for safe schools is presented. ERVE incorporates an intelligent agent facility for guiding and assisting the user in the context of the emergency response operations. Response information folders capture key information about the school. The system enables interactive 3D visualization of schools and academic campuses, including the terrain and the buildings' exteriors and interiors in an easy to use Web..based interface. ERVE incorporates live camera and sensors feeds and can be integrated with other simulations such as chemical plume simulation. The system is integrated with a Geographical Information System (GIS) to enable situational awareness of emergency events and assessment of their effect on schools in a geographic area. ERVE can also be integrated with emergency text messaging notification systems. Using ERVE, it is now possible to address safe schools' emergency management needs with a scaleable, seamlessly integrated and fully interactive intelligent and visually compelling solution.

  16. Opperational Systems for Emergency Preparedness and Response

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, G; Nasstrom, J S; Baskett, R

    2003-11-10

    Operational systems predict the consequences of atmospheric releases of hazardous materials for real-time emergency response, pre-event planning, and post-incident assessment. Such systems provide federal, state, and local agencies, emergency planners and responders, public health officials, military personnel, and other users with critical information on which to base life-and-death decisions on safe zones for siting of incident command posts, sheltering-in-place or evacuation advisories, the need for protective equipment, and the utilization of hospital and health care resources. A range of operational modeling capabilities is required to support different types of release events, distance scales, and response times. Fast-response deployable models are used to perform hazard assessments and initial response functions, and can serve as a backup when connections to a reach-back center are not available. Higher-fidelity three-dimensional dispersion models, coupled to real-time observational data and numerical weather prediction model output, are used for real-time response and support expert quality-assured predictions and refined assessments. Computational fluid dynamics models, which explicitly resolve urban structures, are used for high fidelity applications including vulnerability analyses and planning studies. This paper will briefly discuss the types and capabilities of models used or under development for emergency response systems, customer products, supporting data, and a few representative examples of operational systems. Some selected research priorities are summarized in the final sections.

  17. Assessing the assessment in emergency care training.

    Directory of Open Access Journals (Sweden)

    Mary E W Dankbaar

    Full Text Available Each year over 1.5 million health care professionals attend emergency care courses. Despite high stakes for patients and extensive resources involved, little evidence exists on the quality of assessment. The aim of this study was to evaluate the validity and reliability of commonly used formats in assessing emergency care skills.Residents were assessed at the end of a 2-week emergency course; a subgroup was videotaped. Psychometric analyses were conducted to assess the validity and inter-rater reliability of the assessment instrument, which included a checklist, a 9-item competency scale and a global performance scale.A group of 144 residents and 12 raters participated in the study; 22 residents were videotaped and re-assessed by 8 raters. The checklists showed limited validity and poor inter-rater reliability for the dimensions "correct" and "timely" (ICC = .30 and.39 resp.. The competency scale had good construct validity, consisting of a clinical and a communication subscale. The internal consistency of the (subscales was high (α = .93/.91/.86. The inter-rater reliability was moderate for the clinical competency subscale (.49 and the global performance scale (.50, but poor for the communication subscale (.27. A generalizability study showed that for a reliable assessment 5-13 raters are needed when using checklists, and four when using the clinical competency scale or the global performance scale.This study shows poor validity and reliability for assessing emergency skills with checklists but good validity and moderate reliability with clinical competency or global performance scales. Involving more raters can improve the reliability substantially. Recommendations are made to improve this high stakes skill assessment.

  18. Radiological emergencies the first response

    International Nuclear Information System (INIS)

    This national training course about radiological emergencies first answer include: Targets and preparation for emergency response in case of a nuclear or radiological accident. Operations center, action guide for fire fighting, medical coverage, forensic test, first aid, basic instrumentation for radiation, safety equipment, monitoring radiation, gamma rays, personnel exposed protection , radiation exposure rate, injury and illness for radiation, cancer risk, contamination, decontamination and treatment, markers, personnel dosimetry, training, medical and equipment transportation, shielded and tools. Psychological, physical (health and illness), economical (agriculture and industry) and environment impacts. Terrorist attacks, security belts. Support and international agreements (IAEA)

  19. Emergency response in the Newfoundland offshore industry

    International Nuclear Information System (INIS)

    equipped with fast rescue craft with crews trained in marine rescue. It was concluded that the emergency response process should assess and prioritize all concerns, with people being the highest priority. figs

  20. Short-term emergency response planning and risk assessment via an integrated modeling system for nuclear power plants in complex terrain

    Institute of Scientific and Technical Information of China (English)

    Ni-Bin CHANG; Yu-Chi WENG

    2013-01-01

    Short-term predictions of potential impacts from accidental release of various radionuclides at nuclear power plants are acutely needed,especially after the Fukushima accident in Japan.An integrated modeling system that provides expert services to assess the consequences of accidental or intentional releases of radioactive materials to the atmosphere has received wide attention.These scenarios can be initiated either by accident due to human,software,or mechanical failures,or from intentional acts such as sabotage and radiological dispersal devices.Stringent action might be required just minutes after the occurrence of accidental or intentional release.To fulfill the basic functions of emergency preparedness and response systems,previous studies seldom consider the suitability of air pollutant dispersion models or the connectivity between source term,dispersion,and exposure assessment models in a holistic context for decision support.Therefore,the Gaussian plume and puff models,which are only suitable for illustrating neutral air pollutants in flat terrain conditional to limited meteorological situations,are frequently used to predict the impact from accidental release of industrial sources.In situations with complex terrain or special meteorological conditions,the proposing emergency response actions might be questionable and even intractable to decisionmakers responsible for maintaining public health and environmental quality.This study is a preliminary effort to integrate the source term,dispersion,and exposure assessment models into a Spatial Decision Support System (SDSS) to tackle the complex issues for short-term emergency response planning and risk assessment at nuclear power plants.Through a series model screening procedures,we found that the diagnostic (objective) wind field model with the aid of sufficient on-site meteorological monitoring data was the most applicable model to promptly address the trend of local wind field patterns.However,most of the

  1. PHMC post-NPH emergency response training

    International Nuclear Information System (INIS)

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site

  2. PHMC post-NPH emergency response training

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1997-04-08

    This document describes post-Natural Phenomena Hazard (NPH) emergency response training that was provided to two teams of Project Hanford Management Contractors (PHMC) staff that will be used to assess potential structural damage that may occur as a result of a significant natural phenomena event. This training supports recent plans and procedures to use trained staff to inspect structures following an NPH event on the Hanford Site.

  3. Automated emergency meteorological response system

    International Nuclear Information System (INIS)

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance

  4. Standardized emergency management system and response to a smallpox emergency.

    Science.gov (United States)

    Kim-Farley, Robert J; Celentano, John T; Gunter, Carol; Jones, Jessica W; Stone, Rogelio A; Aller, Raymond D; Mascola, Laurene; Grigsby, Sharon F; Fielding, Jonathan E

    2003-01-01

    The smallpox virus is a high-priority, Category-A agent that poses a global, terrorism security risk because it: (1) easily can be disseminated and transmitted from person to person; (2) results in high mortality rates and has the potential for a major public health impact; (3) might cause public panic and social disruption; and (4) requires special action for public health preparedness. In recognition of this risk, the Los Angeles County Department of Health Services (LAC-DHS) developed the Smallpox Preparedness, Response, and Recovery Plan for LAC to prepare for the possibility of an outbreak of smallpox. A unique feature of the LAC-DHS plan is its explicit use of the Standardized Emergency Management System (SEMS) framework for detailing the functions needed to respond to a smallpox emergency. The SEMS includes the Incident Command System (ICS) structure (management, operations, planning/intelligence, logistics, and finance/administration), the mutual-aid system, and the multi/interagency coordination required during a smallpox emergency. Management for incident command includes setting objectives and priorities, information (risk communications), safety, and liaison. Operations includes control and containment of a smallpox outbreak including ring vaccination, mass vaccination, adverse events monitoring and assessment, management of confirmed and suspected smallpox cases, contact tracing, active surveillance teams and enhanced hospital-based surveillance, and decontamination. Planning/intelligence functions include developing the incident action plan, epidemiological investigation and analysis of smallpox cases, and epidemiological assessment of the vaccination coverage status of populations at risk. Logistics functions include receiving, handling, inventorying, and distributing smallpox vaccine and vaccination clinic supplies; personnel; transportation; communications; and health care of personnel. Finally, finance/administration functions include monitoring

  5. Radiological Emergency Response System of KAERI

    International Nuclear Information System (INIS)

    The Act of Physical Protection and Radiological Emergency came into effect in Feb. 2004. This act requires to the nuclear industries that the situation of the radiological emergency should be monitored by some proper equipment. To monitor the radiological emergency based on the act, KAERI, Korea Atomic Energy Research Institute, has been installing RERS, Radiological Emergency Response System, and establishing the implementation plan on the radiological emergency response. This paper describes the hardware and the operation of the RERS in view of the radiological emergency response

  6. Coordinating International Response to Emergencies

    International Nuclear Information System (INIS)

    Pandemic disease, natural disasters and terrorism can affect thousands of people in a relatively short period of time anywhere in the world. Our recent international experience with hurricanes, earthquakes, tsunamis and infectious diseases (AIDS, TB and highly pathogenic avian influenza) show us that we must respond with a coordinated approach or we will fail the very people we intend to help. Nations from around the world are often eager to send assistance to the site of a disaster, but coordinating the incoming aid is more often flawed and imprecise than it must be in order to save lives and mitigate suffering. How can any one country, suffering from a horrendous calamity coordinate the incoming aid from around the world? Can any one agency hope to coordinate the myriad nation's response let alone that of the hundreds of non-governmental organizations? Currently, the answer is sadly, no. The purpose of this presentation is not to recommend one over the many international bodies which claim to oversee humanitarian assistance; the purpose of this presentation is to discuss the elements of only one aspect of the overall response effort: public health and medical response coordination. Public health response is of course different than a purely medical response. Traditionally, in a natural disaster, immediate public health concerns center around water, sewerage/waste disposal, potential for disease outbreaks, etc, whereas medical response concentrates on triage, saving those who can be saved, patching up the injured, and to a lesser extent, primary care to the survivors. In order to avoid political controversy, this presentation will use the example of Hurricane Iniki in Hawaii, September 1992, to illustrate key concepts. The State of Hawaii is no stranger to natural disasters. Their emergency response mechanisms are well honed, exercised and quite capable. However, the local community leaders on Kauai Island went thru each of the following phases before they

  7. The Implementation and Evaluation of the Emergency Response Dose Assessment System (ERDAS) at Cape Canaveral Air Station/Kennedy Space Center

    Science.gov (United States)

    Evans, Randolph J.; Tremback, Craig J.; Lyons, Walter A.

    1996-01-01

    The Emergency Response Dose Assessment System (ERDAS) is a system which combines the mesoscale meteorological prediction model RAMS with the diffusion models REEDM and HYPACT. Operators use a graphical user interface to run the models for emergency response and toxic hazard planning at CCAS/KCS. The Applied Meteorology Unit has been evaluating the ERDAS meteorological and diffusion models and obtained the following results: (1) RAMS adequately predicts the occurrence of the daily sea breeze during non-cloudy conditions for several cases. (2) RAMS shows a tendency to predict the sea breeze to occur slightly earlier and to move it further inland than observed. The sea breeze predictions could most likely be improved by better parameterizing the soil moisture and/or sea surface temperatures. (3) The HYPACT/REEDM/RAMS models accurately predict launch plume locations when RAMS winds are accurate and when the correct plume layer is modeled. (4) HYPACT does not adequately handle plume buoyancy for heated plumes since all plumes are presently treated as passive tracers. Enhancements should be incorporated into the ERDAS as it moves toward being a fully operational system and as computer workstations continue to increase in power and decrease in cost. These enhancements include the following: activate RAMS moisture physics; use finer RAMS grid resolution; add RAMS input parameters (e.g. soil moisture, radar, and/or satellite data); automate data quality control; implement four-dimensional data assimilation; modify HYPACT plume rise and deposition physics; and add cumulative dosage calculations in HYPACT.

  8. Emergency Response for Cyber Infrastructure Management

    OpenAIRE

    Naval Postgraduate School (U.S.); Center for Information Systems Studies Security and Research (CISR)

    2011-01-01

    Emergency Response White Paper 1 may be found here: http://calhoun.nps.edu/public/handle/10945/497; Emergency Response White Paper 2 may be found here: http://calhoun.nps.edu/public/handle/10945/496 The objective of this research is to investigate architectural mechanisms to provide an emergency response capability for Cyber Infrastructure management through the use of distributed, highly secure, protected domains. Instead of creating a costly physically separate domain, logical separation...

  9. NOAA's Response Plan for Nuclear Emergencies

    International Nuclear Information System (INIS)

    With reference to nuclear emergency information concerning the national emergency plant for nuclear accidents, the response plan for the atmospheric nuclear emergencies of the U.S. National Oceanic and Atmospheric Administration (NOAA) was reviewed and described for introducing an overview on it to the Korea Association for Radiation Protection (KARP)

  10. Radiological emergency: Malaysian preparedness and response

    International Nuclear Information System (INIS)

    Planning and preparation in advance for radiological emergencies can help to minimise potential public health and environmental threats if and when an actual emergency occurs. During the planning process, emergency response organisations think through how they would respond to each type of incident and the resources that will be needed. In Malaysia, planning, preparation for and response to radiological emergencies involve many parties. In the event of a radiological emergency and if it is considered a disaster, the National Security Council, the Atomic Energy Licensing Board and the Malaysian Nuclear Agency (Nuclear Malaysia) will work together with other federal agencies, state and local governments, first responders and international organisations to monitor the situation, contain the release, and clean up the contaminated site. Throughout the response, these agencies use their protective action guidelines. This paper discusses Malaysian preparedness for, and response to, any potential radiological emergency. (authors)

  11. Adaptive workflow simulation of emergency response

    NARCIS (Netherlands)

    Bruinsma, Guido Wybe Jan

    2010-01-01

    Recent incidents and major training exercises in and outside the Netherlands have persistently shown that not having or not sharing information during emergency response are major sources of emergency response inefficiency and error, and affect incident mitigation outcomes through workflow planning

  12. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  13. IEA Response System for Oil Supply Emergencies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  14. Inspecting and auditing the management of emergency response

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    Link Associates International Ltd had prepared this report under contract to the Offshore Safety Division of the Health and Safety Executive. Its primary intended purpose is as a source of information for use by HSE specialist inspection teams when drawing up inspection and audit initiatives in the field of emergency response management. The report gives background information on the importance of offshore emergency response, on the content of emergency response systems, on the mechanisms established in Great Britain for assessing the emergency command capabilities of offshore managers, and it contains suggestions for the Regulator regarding inspection and auditing. For the purpose of this report an emergency response system is considered to comprise of two parts; emergency command and the remainder of the emergency response system. The report examines the health and safety legal duties applying to these two areas and provides suggestions to the Health and Safety Executive on how it might be involved in influencing and regulating emergency response standards. The report contains detailed information on the Offshore Petroleum Industry Training Organisation (OPITO) Standard for emergency command, and on how the Standard is applied by OPITO approved bodies. It is suggested that this information should be used as a knowledge base to inform and stimulate discussion rather than in direct regulatory interventions. (author)

  15. Technical information management in an emergency response

    International Nuclear Information System (INIS)

    Through many experiences in responding to real radiation accidents and emergency response exercises, the Department of Energy (DOE) has developed a technical information management system that will be used in the Federal Radiological Monitoring and Assessment Center (FRMAC) in the event of a major radiological accident. The core of the system is the Data Center in the FRMAC, utilizing a computerized database of all off-site environmental radiological data. The information contained and managed by the Data Center will be comprehensive, accountable, and traceable, providing information to the assessors for immediate health and safety needs as well as for long-term documentation requirements. A DOE task force has been formed to develop compatibility guidelines for video, automated data processing, and communication systems. An electronic mail, information status, and bulletin board system is also being developed to assist in the dissemination of information. Geographic Information Systems (GIS) offer a giant step forward in displaying and analyzing information in a geographically referenced system

  16. PAEC emergency preparedness and response program

    International Nuclear Information System (INIS)

    The Philippine Atomic Energy Commission (PAEC) emergency response organization and operations are presented in details. Included are graphical illustrations on relationship of plan, procedures, resources and training, activation management, expanded activation management, and headquarters, internal organization, initial activation. (ELC)

  17. Off-site response for radiological emergencies

    International Nuclear Information System (INIS)

    Environmental radiological surveillance under emergency conditions at off-site locations is one of the advisory functions provided by DOE within the ORO jurisdiction. The Department of Environmental Management of ORNL has been requested to provide sampling and analytical assistance at such emergency response activities. We have assembled and identified specific individuals and equipment to provide a rapid response force to perform field measurements for environmental radioactivity releases as a consequence of nuclear accidents. Survey teams for sample collection and field measurements are provided along with analytical assistance to operate the radioactivity measuring equipment in the DOE emergency van

  18. Emergency Response Communications and Associated Security Challenges

    CERN Document Server

    Channa, Muhammad Ibrahim

    2010-01-01

    The natural or man-made disaster demands an efficient communication and coordination among first responders to save life and other community resources. Normally, the traditional communication infrastructures such as land line or cellular networks are damaged and don't provide adequate communication services to first responders for exchanging emergency related information. Wireless ad hoc networks such as mobile ad hoc networks, wireless sensor networks and wireless mesh networks are the promising alternatives in such type of situations. The security requirements for emergency response communications include privacy, data integrity, authentication, key management, access control and availability. Various ad hoc communication frameworks have been proposed for emergency response situations. The majority of the proposed frameworks don't provide adequate security services for reliable and secure information exchange. This paper presents a survey of the proposed emergency response communication frameworks and the p...

  19. The Darlington emergency response projection code

    International Nuclear Information System (INIS)

    This paper describes the main features of the Darlington Emergency Response Projection code DERP, a self contained and user friendly personal computer program developed to supplement Ontario Hydro's emergency response capability fur nuclear power plants. DERP addresses the particular accident response characteristics of the negative pressure CANDU containment system, and makes dose projections for the area surrounding the Darlington Nuclear Generating Station resulting from airborne releases following a nuclear accident. Its main application is as an aid in the decision-making process regarding public protection strategies concerning off-site actions such as sheltering or evacuation

  20. Radiological Emergency Response Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    D. R. Bowman

    2001-05-01

    This manual was created to provide health and safety (H&S) guidance for emergency response operations. The manual is organized in sections that define each aspect of H and S Management for emergency responses. The sections are as follows: Responsibilities; Health Physics; Industrial Hygiene; Safety; Environmental Compliance; Medical; and Record Maintenance. Each section gives guidance on the types of training expected for managers and responders, safety processes and procedures to be followed when performing work, and what is expected of managers and participants. Also included are generic forms that will be used to facilitate or document activities during an emergency response. These ensure consistency in creating useful real-time and archival records and help to prevent the loss or omission of information.

  1. Elements of a national emergency response system for nuclear accidents

    International Nuclear Information System (INIS)

    The purpose of this paper is to suggest elements for a general emergency response system, employed at a national level, to detect, evaluate and assess the consequences of a radiological atmospheric release occurring within or outside of national boundaries. These elements are focused on the total aspect of emergency response ranging from providing an initial alarm to a total assessment of the environmental and health effects. Elements of the emergency response system are described in such a way that existing resources can be directly applied if appropriate; if not, newly developed or an expansion of existing resources can be employed. The major thrust of this paper is toward a philosophical discussion and general description of resources that would be required to implementation. If the major features of this proposal system are judged desirable for implementation, then the next level of detail can be added. The philosophy underlying this paper is preparedness - preparedness through planning, awareness and the application of technology. More specifically, it is establishment of reasonable guidelines including the definition of reference and protective action levels for public exposure to accidents involving nuclear material; education of the public, government officials and the news media; and the application of models and measurements coupled to computer systems to address a series of questions related to emergency planning, response and assessment. It is the role of a proven national emergency response system to provide reliable, quality-controlled information to decision makers for the management of environmental crises

  2. Evaluating nuclear power plant crew performance during emergency response drills

    International Nuclear Information System (INIS)

    The Atomic Energy Control Board (AECB) is responsible for the regulation of the health, safety and environmental consequences of nuclear activities in Canada. Recently, the Human Factors Specialists of the AECB have become involved in the assessment of emergency preparedness and emergency response at nuclear facilities. One key contribution to existing AECB methodology is the introduction of Behaviourally Anchored Rating Scales (BARS) to measure crew interaction skills during emergency response drills. This report presents results of an on-going pilot study to determine if the BARS provide a reliable and valid means of rating the key dimensions of communications, openness, task coordination and adaptability under simulated emergency circumstances. To date, the objectivity of the BARS is supported by good inter-rater reliability while the validity of the BARS is supported by the agreement between ratings of crew interaction and qualitative and quantitative observations of crew performance. (author)

  3. Assessment of Emergency Management Performance and Capability

    OpenAIRE

    Jones, Brian J

    2003-01-01

    Hazardous industries in the UK and Europe are under pressure to increase the transparency and accountability of the ways in which they manage their hazards and the risks they pose to the population and environment. The literature has indicated that the field would benefit from a risk-based, continuous improvement approach to emergency management in hazardous industry. The aim of this research was to construct a framework to enable assessment of the emergency management pe...

  4. Overview of the program to assess the reliability of emerging nondestructive techniques open testing and study of flaw type effect on NDE response

    Science.gov (United States)

    Meyer, Ryan M.; Komura, Ichiro; Kim, Kyung-cho; Zetterwall, Tommy; Cumblidge, Stephen E.; Prokofiev, Iouri

    2016-02-01

    In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results.

  5. Assessment and Prognosis for Nuclear Emergency Management in Korea

    International Nuclear Information System (INIS)

    The nuclear accident of Fukushima, March 2011, raised public concerns over the safety of nuclear facilities and emergency preparedness in Korea. Therefore, KINS has enhanced the AtomCARE for assessment and prognosis and environmental monitoring system. The KINS has reinforced the radiological/radioactive environment monitoring system across the country to ensure prompt and effective protective measures for the public. Also, the act of radiological emergency management revised to adopt (PAZ) and the (UPZ) at 2014. All in all, Korea will give comprehensive effort to reflect the lessons learned from Fukushima accident for improvement of the assessment and prognosis system. This paper reviews the status of assessment and prognosis system for nuclear emergency response in Korea. The Korea Institute of Nuclear Safety (KINS) performs the regulation and radiological emergency preparedness of the nuclear facilities and radiation utilizations

  6. Media Spaces, Emergency Response and Palpable Technologies

    DEFF Research Database (Denmark)

    Kyng, Morten; Kristensen, Margit

    2009-01-01

    for technological support of emergency responders and outline important design issues and principles regarding the design. We finally reflect upon our findings in relation to Media Spaces, and describe a number of possibilities and related challenges, by the use of examples. We suggest that moving from symmetry......In this chapter we present and discuss a case on the development and use of technologies for emergency response, which shares important aspects with Media Spaces. We first describe the characteristics of emergency response, based on field and literature studies. We then present visions...... to asymmetry and from static to non-static spaces and more generally from closed to open-ended use situations and technological setups can bring Media Space research to bear on a large spectrum of future technology, which is outside traditional Media Spaces....

  7. L-007: Objectives preparation and Emergency response

    International Nuclear Information System (INIS)

    This lecture explains the preparation and response in a nuclear and radiological emergency. Must be taken into consideration a program of preparedness, the public health and environment protection, propagation of contamination limit, first aid and treatment radiation damage, the stochastic, psychological and physical effects reduction

  8. Responses to emergencies in Mexico and Central America

    International Nuclear Information System (INIS)

    Radiation emergencies have two main aspects: radiation safety, which concerns control of the radiation source, and, more importantly, health effects, which entail diagnoses, treatment, and rehabilitation. The physician participates directly in a radiation emergency because he or she is the professional who knows best the human body and the methodology to re-establish health. However, because these types of incidents are infrequent, many physicians are poorly prepared to deal with such emergencies. Two main aspects of emergency response plans are: (1) prevention, including public education for behavior and planning for appropriate response; and (2) application, including prophylactic measures, assessing the extent of exposure and contamination, controlling public anxiety, and managing and treating the victims

  9. Response of health professionals in a radiation emergency

    International Nuclear Information System (INIS)

    The management of radiation injuries in community hospitals can be achieved by planning, and periodic practice with this plan will ensure appropriate response if an emergency arises. A radiation plan identifies key personnel, equipment, and a designated facility. An understanding of the different types of radiation exposure that are possible should lessen the anxiety of emergency room staff and ensure efficient response. Decontamination of the patient is carried out after assessing the ABCs and sources of radiation. Re-evaluation following decontamination will identify residual foci of radiation. Radiation resulting from inhalation or ingestion requires consultation with radiation experts and, possibly, transfer to a radiation emergency center. The Advanced Burn Life Support Course will provide a resource for the training and education of hospital staffs in the United States and Canada. The course will include a section on radiation emergencies

  10. Generic procedures for medical response during a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    The aim of this publication is to serve as a practical resource for planning the medical response to a nuclear or radiological emergency. It fulfils in part functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to such emergencies. Effective medical response is a necessary component of the overall response to nuclear or radiological (radiation) emergencies. In general, the medical response may represent a difficult challenge for the authorities due to the complexity of the situation, often requiring specialized expertise, and special organizational arrangements and materials. To be effective, adequate planning and preparedness are needed. This manual, if implemented, should help to contribute to coherent international response. The manual provides the practical tools and generic procedures for use by emergency medical personnel during an emergency situation. It also provides guidance to be used at the stage of preparedness for development of medical response capabilities. The manual also addresses mass casualty emergencies resulting from malicious acts involving radioactive material. This part was supported by the Nuclear Security Fund. The manual was developed based on a number of assumptions about national and local capabilities. Therefore, it must be reviewed and revised as part of the planning process to match the potential accidents, threats, local conditions and other unique characteristics of the facility where it may be used

  11. The continuing evolution of the Federal Radiological Emergency Response Plan

    International Nuclear Information System (INIS)

    The Federal Radiological Emergency Response Plan (FRERP) outlines the roles and responsibilities of various federal agencies when responding to a radiological incident in support of a state or local government. The plan reflected the experience of the response to the Three Mile Island incident as well as that gained in a command post exercise and in the first FRERP field exercise in March 1984. The FRERP assigns the overall coordination of the federal response in most incidents to a cognizant federal agency (CFA), the agency owning of regulating the material of facility. The Federal Emergency Management Agency coordinates the nontechnical support and assistance to state and local authorities. The U.S. Department of Energy (DOE) coordinates all federal radiological monitoring and assessment activities during the emergency phase of the response, under the Federal Radiological Monitoring and Assessment Plan (FRMAP), the radiological portion of the FRERP. The Environmental Protection Agency (EPA) later assumes the coordination of long-term federal radiological support. The DOE has the primary responsibility for implementing the FRMAP. The FRERP has provided useful guidance and a means for coordinating federal response in support of the states. The revision of the FRERP will concentrate on clarifying the plan and addressing deficiencies that have been identified during exercises of the plan during real incidents

  12. Responsibility modelling for civil emergency planning

    OpenAIRE

    Sommerville, Ian; Storer, Timothy; Lock, Russell

    2009-01-01

    This paper presents a new approach to analysing and understanding civil emergency planning based on the notion of responsibility modelling combined with HAZOPS-style analysis of information requirements. Our goal is to represent complex contingency plans so that they can be more readily understood, so that inconsistencies can be highlighted and vulnerabilities discovered. In this paper, we outline the framework for contingency planning in the United Kingdom and introduce the notion of respons...

  13. Multi-objective evolutionary emergency response optimization for major accidents

    International Nuclear Information System (INIS)

    Emergency response planning in case of a major accident (hazardous material event, nuclear accident) is very important for the protection of the public and workers' safety and health. In this context, several protective actions can be performed, such as, evacuation of an area; protection of the population in buildings; and use of personal protective equipment. The best solution is not unique when multiple criteria are taken into consideration (e.g. health consequences, social disruption, economic cost). This paper presents a methodology for multi-objective optimization of emergency response planning in case of a major accident. The emergency policy with regards to protective actions to be implemented is optimized. An evolutionary algorithm has been used as the optimization tool. Case studies demonstrating the methodology and its application in emergency response decision-making in case of accidents related to hazardous materials installations are presented. However, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency response procedures in other cases (nuclear accidents, transportation of hazardous materials) or for land-use planning issues.

  14. A Synergistic Consequence Assessment Modeling Strategy for Emergency Operations Centers

    International Nuclear Information System (INIS)

    At the U.S. Department of Energy's Hanford Site, maintaining emergency preparedness and response capabilities is a high priority. A synergistic strategy has emerged for conducting consequence assessment modeling at the Hanford Site Emergency Operation Center (EOC). This strategy involves employing a two-pronged modeling approach. The first prong involves the use of fast, reliable, and locally hosted models to provide timely and conservative projections of the affected area and potential impacts. A key model used for this purpose is the Pacific Northwest National Laboratory?s APGEMS model. The second prong involves the use of sophisticated modeling resources that have greater functionality and flexibility but take longer to initialize, conduct a simulation, and deliver output products. This capability is provided by the National Atmospheric Release Advisory Center (NARAC). The Hanford EOC?s consequence assessment team has found it to be constructive to use both the APGEMS and NARAC models in their emergency preparedness training and exercises. Experience gained with the NARAC system has allowed Hanford EOC personnel to provide NARAC with constructive feedback on model usability, the appropriateness of some default modeling assumptions, and documentation needs. As a result of the synergism associated with using both modeling systems, the Hanford EOC is better positioned to efficiently assess potential consequences during an emergency response event and NARAC is better poised to provide improved modeling support for the Hanford region and other Department of Energy sites

  15. Ready to respond: EPA's Radiological Emergency Preparedness and Response Program

    International Nuclear Information System (INIS)

    The Federal Radiological Emergency Response Plan (FRERP or Federal Plan) assigns roles to several Federal agencies that contribute to an emergency response, including the U.S. Environmental Protection Agency (EPA). The Federal Plan assigns a Lead Federal Agency responsibility for protecting the public and the environment at the site of an accident while assigning the State responsibility for protecting the public and the environment beyond the accident site. Other Federal agencies assist the Lead Federal Agency and the State as needed. EPA's three major responisbilities in the Federal Plan flow from the Agency's overall mission: to protect human health and the environment. EPA establishes guidelines for protecting the public from radiation exposure, such as when to evacuate or relocate citizens. EPA also monitors and assesses radioactivity in the environment from an accident to define the extent of exposure from that accident

  16. Emergency Response Data System (ERDS) implementation

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission has begun implementation of the Emergency Response Data System (ERDS) to upgrade its ability to acquire data from nuclear power plants in the event of an emergency at the plant. ERDS provides a direct real-time transfer of data from licensee plant computers to the NRC Operations Center. The system has been designed to be activated by the licensee during an emergency which has been classified at an ALERT or higher level. The NRC portion of ERDS will receive the data stream, sort and file the data. The users will include the NRC Operations Center, the NRC Regional Office of the affected plant, and if requested the States which are within the ten mile EPZ of the site. The currently installed Emergency Notification System will be used to supplement ERDS data. This report provides the minimum guidance for implementation of ERDS at licensee sites. It is intended to be used for planning implementation under the current voluntary program as well as for providing the minimum standards for implementing the proposed ERDS rule

  17. Emergency Response Data System (ERDS) implementation

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission has begun implementation of the Emergency Response Data System (ERDS) to upgrade its ability to acquire data from nuclear power plants in the event of an emergency at the plant. ERDS provides a direct real-time transfer of data from licensee plant computers to the NRC Operations Center. The system has been designed to be activated by the licensee during an emergency which has been classified at an ALERT or higher level. The NRC portion of ERDS will receive the data stream, sort and file the data. The users will include the NRC Operations Center, the NRC Regional Office of the affected plant, and if requested the States which are within the ten mile EPZ of the site. The currently installed Emergency Notification System will be used to supplement ERDS data. This report provides the minimum guidance for implementation of ERDS at licensee sites. It is intended to be used for planning implementation under the current voluntary program as well as for providing the minimum standards for implementing the proposed ERDS rule. 4 refs., 3 figs

  18. Global approach of emergency response, reflection analysis

    International Nuclear Information System (INIS)

    The emergency response management approach must be dealt with adequately within company strategy, since a badly managed emergency situation can adversely affect a company, not only in terms of asset, but also in terms of the negative impact on its credibility, profitability and image. Thereby, it can be said that there are three main supports to manage the response in an emergency situation. a) Diagnosis b) Prognosis. c) Communications. To reach these capabilities it is necessary a co-ordination of different actions at the following levels. i. Facility Operation implies Local level. ii. Facility Property implies National level iii. Local Authority implies Local level iv. National Authority implies National level Taking into account all the last, these following functions must be covered: a) Management: incorporating communication, diagnosis and prognosis areas. b) Decision: incorporating communication and information means. c) Services: in order to facilitate the decision, as well as the execution of this decision. d) Analysis: in order to facilitate the situations that make easier to decide. e) Documentation: to seek the information for the analysts and decision makers. (Author)

  19. IAEA emergency response network ERNET. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency have undertaken to co-operate among themselves and with the IAEA in facilitating the prompt provision of assistance in the event of a nuclear accident or radiological emergency, and in minimizing the consequences and in protecting life, property and the environment from the effects of any radioactive releases. As part of the IAEA strategy for supporting such co-operation, the Secretariat of the IAEA is establishing a global Emergency Response Network (ERNET) of teams suitably qualified to respond rapidly, on a regional basis, to nuclear accidents or radiological emergencies. This manual sets out the criteria and requirements to be met by ERNET teams. It is intended for use by institutions in Member States in developing, applying and maintaining their emergency response capabilities and in implementing quality assurance programmes within the context of ERNET. The manual is worded on the assumption that a State Competent Authority designated as the body responsible for reacting to nuclear accidents or radiological emergencies which occur outside the jurisdiction of that State will be the State Contact Point for receiving requests for assistance from the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  20. IAEA emergency response network ERNET. Emergency preparedness and response. Date effective: 1 December 2000

    International Nuclear Information System (INIS)

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency have undertaken to co-operate among themselves and with the IAEA in facilitating the prompt provision of assistance in the event of a nuclear accident or radiological emergency, and in minimizing the consequences and in protecting life, property and the environment from the effects of any radioactive releases. As part of the IAEA strategy for supporting such co-operation, the Secretariat of the IAEA is establishing a global Emergency Response Network (ERNET) of teams suitably qualified to respond rapidly, on a regional basis, to nuclear accidents or radiological emergencies. This manual sets out the criteria and requirements to be met by ERNET teams. It is intended for use by institutions in Member States in developing, applying and maintaining their emergency response capabilities and in implementing quality assurance programmes within the context of ERNET. The manual is worded on the assumption that a State Competent Authority designated as the body responsible for reacting to nuclear accidents or radiological emergencies which occur outside the jurisdiction of that State will be the State Contact Point for receiving requests for assistance from the IAEA under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

  1. Assessment of internal doses in emergency situations

    Energy Technology Data Exchange (ETDEWEB)

    Rahola, T.; Muikku, M. [Radiation and Nuclear Safety Authority - STUK (Finland); Falk, R.; Johansson, J. [Swedish Radiation Protection Authority - SSI (Sweden); Liland, A.; Thorshaug, S. [NRPA (Norway)

    2006-04-15

    The need for assessing internal radiation doses in emergency situations was demonstrated after accidents in Brazil, Ukraine and other countries. Lately more and more concern has been expressed regarding malevolent use of radiation and radioactive materials. The scenarios for such use are more difficult to predict than for nuclear power plant or weapons accidents. Much of the results of the work done in the IRADES project can be adopted for use in various accidental situations involving radionuclides that are not addressed in this report. If an emergency situation occurs in only one or a few of the Nordic countries, experts from the other countries could be called upon to assist in monitoring. A big advantage is then our common platform. In the Nordic countries much work has been put down on quality assurance of measurements and on training of dose assessment calculations. Attention to this was addressed at the internal dosimetry course in October 2005. Nordic emergency preparedness exercises have so far not included training of direct measurements of people in the early phase of an emergency. The aim of the IRADES project was to improve the preparedness especially for thyroid measurements. The modest financial support did not enable the participants to make big efforts but certainly acted as a much appreciated reminder of the importance of being prepared also to handle situations with malevolent use of radioactive materials. It was left to each country to decide to which extent to improve the practical skills. There is still a need for detailed national implementation plans. Measurement strategies need to be developed in each country separately taking into account national regulations, local circumstances and resources. End users of the IRADES report are the radiation protection authorities. (au)

  2. Contraceptive Availability During an Emergency Response in the United States

    OpenAIRE

    Ellington, Sascha R.; Kourtis, Athena P.; Curtis, Kathryn M.; Tepper, Naomi; Gorman, Susan; Denise J. Jamieson; Zotti, Marianne; Barfield, Wanda

    2013-01-01

    This article provides the evidence for contraceptive need to prevent unintended pregnancy during an emergency response, discusses the most appropriate types of contraceptives for disaster situations, and details the current provisions in place to provide contraceptives during an emergency response.

  3. Radiation emergency response in Illinois, Alabama, and Texas

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, D.K.; Chester, R.O.

    1978-03-01

    The objective of this study was to examine state radiation emergency response and to locate any areas of emergency planning in need of improvement. This report briefly presents a summary of laws and defining documents governing radiation emergency response, describes the existing and projected need for such response, and presents the authors' analyses of the evolution of state response plans and their application to radiation incidents. Three states' programs are discussed in detail: Illinois, Alabama, and Texas. These states were selected because they have quite different emergency-response programs. Therefore, these state programs provide a wide variety of approaches to state radiation emergency response.

  4. Radiation emergency response in Illinois, Alabama, and Texas

    International Nuclear Information System (INIS)

    The objective of this study was to examine state radiation emergency response and to locate any areas of emergency planning in need of improvement. This report briefly presents a summary of laws and defining documents governing radiation emergency response, describes the existing and projected need for such response, and presents the authors' analyses of the evolution of state response plans and their application to radiation incidents. Three states' programs are discussed in detail: Illinois, Alabama, and Texas. These states were selected because they have quite different emergency-response programs. Therefore, these state programs provide a wide variety of approaches to state radiation emergency response

  5. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    International Nuclear Information System (INIS)

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots

  6. Simulation Training in Early Emergency Response (STEER).

    Science.gov (United States)

    Generoso, Jose Roberto; Latoures, Renee Elizabeth; Acar, Yahya; Miller, Dean Scott; Ciano, Mark; Sandrei, Renan; Vieira, Marlon; Luong, Sean; Hirsch, Jan; Fidler, Richard Lee

    2016-06-01

    HOW TO OBTAIN CONTACT HOURS BY READING THIS ISSUE Instructions: 1.3 contact hours will be awarded by Villanova University College of Nursing upon successful completion of this activity. A contact hour is a unit of measurement that denotes 60 minutes of an organized learning activity. This is a learner-based activity. Villanova University College of Nursing does not require submission of your answers to the quiz. A contact hour certificate will be awarded after you register, pay the registration fee, and complete the evaluation form online at http://goo.gl/gMfXaf. In order to obtain contact hours you must: 1. Read the article, "Simulation Training in Early Emergency Response (STEER)," found on pages 255-263, carefully noting any tables and other illustrative materials that are included to enhance your knowledge and understanding of the content. Be sure to keep track of the amount of time (number of minutes) you spend reading the article and completing the quiz. 2. Read and answer each question on the quiz. After completing all of the questions, compare your answers to those provided within this issue. If you have incorrect answers, return to the article for further study. 3. Go to the Villanova website to register for contact hour credit. You will be asked to provide your name, contact information, and a VISA, MasterCard, or Discover card number for payment of the $20.00 fee. Once you complete the online evaluation, a certificate will be automatically generated. This activity is valid for continuing education credit until May 31, 2019. CONTACT HOURS This activity is co-provided by Villanova University College of Nursing and SLACK Incorporated. Villanova University College of Nursing is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. OBJECTIVES Define the purpose of the Simulation Training in Early Emergency Response (STEER) study. Review the outcome of the STEER study. DISCLOSURE

  7. Incidence of emergency contacts (red responses to Norwegian emergency primary healthcare services in 2007 – a prospective observational study

    Directory of Open Access Journals (Sweden)

    Hansen Elisabeth

    2009-07-01

    Full Text Available Abstract Background The municipalities are responsible for the emergency primary health care services in Norway. These services include casualty clinics, primary doctors on-call and local emergency medical communication centres (LEMC. The National centre for emergency primary health care has initiated an enterprise called "The Watchtowers", comprising emergency primary health care districts, to provide routine information (patients' way of contact, level of urgency and first action taken by the out-of-hours services over several years based on a minimal dataset. This will enable monitoring, evaluation and comparison of the respective activities in the emergency primary health care services. The aim of this study was to assess incidence of emergency contacts (potential life-threatening situations, red responses to the emergency primary health care service. Methods A representative sample of Norwegian emergency primary health care districts, "The Watchtowers" recorded all contacts and first action taken during the year of 2007. All the variables were continuously registered in a data program by the attending nurses and sent by email to the National Centre for Emergency Primary Health Care at a monthly basis. Results During 2007 the Watchtowers registered 85 288 contacts, of which 1 946 (2.3% were defined as emergency contacts (red responses, corresponding to a rate of 9 per 1 000 inhabitants per year. 65% of the instances were initiated by patient, next of kin or health personnel by calling local emergency medical communication centres or meeting directly at the casualty clinics. In 48% of the red responses, the first action taken was a call-out of doctor and ambulance. On a national basis we can estimate approximately 42 500 red responses per year in the EPH in Norway. Conclusion The emergency primary health care services constitute an important part of the emergency system in Norway. Patients call the LEMC or meet directly at casualty clinics

  8. Enhancing nuclear emergency response through international co-operation

    International Nuclear Information System (INIS)

    Full text: A large number of different national plans and procedures have been established and substantial resources allocated world wide with varying comprehensiveness and quality depending an the national requirements and the possible threat scenarios considered. These national plans are only to a small degree harmonized. It is clear that it is the responsibility of the authorities in the respective countries or utilities under their jurisdiction, to decide upon and implement appropriate response actions to a nuclear emergency. The basic needs for responding properly are: infrastructure in terms of plans, procedures etc.; information regarding the accident, its development and consequences; resources in terms of expertise, man power and tools for acquiring and processing information, making assessments and decisions and carry out the actions. When a large number of countries are making assessments and decisions for their own country and providing the public with information, it is important that assessments, decisions and public information become correct, complete and consistent across boarders. In order to achieve this, they should all have access to the same information as basis for their actions. Lack of information or wrong information could easily lead to wrong assessments, wrong decisions and misleading information to the public. If there is a serious nuclear emergency somewhere that could potentially affect several or many States in one way or another, 'everyone' would like to know 'everything' that happens 'everywhere'. In this case, all States should have the obligation to share with the international community the relevant information they have available themselves and that could be of interest for other States responding to the situation. During a serious nuclear or radiological emergency, the demand for different kinds of resources is huge and could, in many countries, probably exceed national capabilities. Looking at the situation in a global

  9. Updating Dosimetry for Emergency Response Dose Projections.

    Science.gov (United States)

    DeCair, Sara

    2016-02-01

    In 2013, the U.S. Environmental Protection Agency (EPA) proposed an update to the 1992 Protective Action Guides (PAG) Manual. The PAG Manual provides guidance to state and local officials planning for radiological emergencies. EPA requested public comment on the proposed revisions, while making them available for interim use by officials faced with an emergency situation. Developed with interagency partners, EPA's proposal incorporates newer dosimetric methods, identifies tools and guidelines developed since the current document was issued, and extends the scope of the PAGs to all significant radiological incidents, including radiological dispersal devices or improvised nuclear devices. In order to best serve the emergency management community, scientific policy direction had to be set on how to use International Commission on Radiological Protection Publication 60 age groups in dose assessment when implementing emergency guidelines. Certain guidelines that lend themselves to different PAGs for different subpopulations are the PAGs for potassium iodide (KI), food, and water. These guidelines provide age-specific recommendations because of the radiosensitivity of the thyroid and young children with respect to ingestion and inhalation doses in particular. Taking protective actions like using KI, avoiding certain foods or using alternative sources of drinking water can be relatively simple to implement by the parents of young children. Clear public messages can convey which age groups should take which action, unlike how an evacuation or relocation order should apply to entire households or neighborhoods. New in the PAG Manual is planning guidance for the late phase of an incident, after the situation is stabilized and efforts turn toward recovery. Because the late phase can take years to complete, decision makers are faced with managing public exposures in areas not fully remediated. The proposal includes quick-reference operational guidelines to inform re-entry to

  10. Updating Dosimetry for Emergency Response Dose Projections.

    Science.gov (United States)

    DeCair, Sara

    2016-02-01

    In 2013, the U.S. Environmental Protection Agency (EPA) proposed an update to the 1992 Protective Action Guides (PAG) Manual. The PAG Manual provides guidance to state and local officials planning for radiological emergencies. EPA requested public comment on the proposed revisions, while making them available for interim use by officials faced with an emergency situation. Developed with interagency partners, EPA's proposal incorporates newer dosimetric methods, identifies tools and guidelines developed since the current document was issued, and extends the scope of the PAGs to all significant radiological incidents, including radiological dispersal devices or improvised nuclear devices. In order to best serve the emergency management community, scientific policy direction had to be set on how to use International Commission on Radiological Protection Publication 60 age groups in dose assessment when implementing emergency guidelines. Certain guidelines that lend themselves to different PAGs for different subpopulations are the PAGs for potassium iodide (KI), food, and water. These guidelines provide age-specific recommendations because of the radiosensitivity of the thyroid and young children with respect to ingestion and inhalation doses in particular. Taking protective actions like using KI, avoiding certain foods or using alternative sources of drinking water can be relatively simple to implement by the parents of young children. Clear public messages can convey which age groups should take which action, unlike how an evacuation or relocation order should apply to entire households or neighborhoods. New in the PAG Manual is planning guidance for the late phase of an incident, after the situation is stabilized and efforts turn toward recovery. Because the late phase can take years to complete, decision makers are faced with managing public exposures in areas not fully remediated. The proposal includes quick-reference operational guidelines to inform re-entry to

  11. NNSA/NV Consequence Management Capabilities for Radiological Emergency Response

    International Nuclear Information System (INIS)

    The U.S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) provides an integrated Consequence Management (CM) response capability for the (NNSA) in the event of a radiological emergency. This encompasses planning, technical operations, and home team support. As the lead organization for CM planning and operations, NNSA/NV coordinates the response of the following assets during the planning and operational phases of a radiological accident or incident: (1) Predictive dispersion modeling through the Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) and the High Consequence Assessment Group at Sandia National Laboratories (SNL); (2) Regional radiological emergency assistance through the eight Radiological Assistance Program (RAP) regional response centers; (3) Medical advice and assistance through the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee; (4) Aerial radiological mapping using the fixed-wing and rotor-wing aircraft of the Aerial Measuring System (AMS); (5) Consequence Management Planning Teams (CMPT) and Consequence Management Response Teams (CMRT) to provide CM field operations and command and control. Descriptions of the technical capabilities employed during planning and operations are given below for each of the elements comprising the integrated CM capability

  12. Offshore oil spill response practices and emerging challenges.

    Science.gov (United States)

    Li, Pu; Cai, Qinhong; Lin, Weiyun; Chen, Bing; Zhang, Baiyu

    2016-09-15

    Offshore oil spills are of tremendous concern due to their potential impact on economic and ecological systems. A number of major oil spills triggered worldwide consciousness of oil spill preparedness and response. Challenges remain in diverse aspects such as oil spill monitoring, analysis, assessment, contingency planning, response, cleanup, and decision support. This article provides a comprehensive review of the current situations and impacts of offshore oil spills, as well as the policies and technologies in offshore oil spill response and countermeasures. Correspondingly, new strategies and a decision support framework are recommended for improving the capacities and effectiveness of oil spill response and countermeasures. In addition, the emerging challenges in cold and harsh environments are reviewed with recommendations due to increasing risk of oil spills in the northern regions from the expansion of the Arctic Passage. PMID:27393213

  13. An expert system for emergency response

    International Nuclear Information System (INIS)

    An expert system, the Reactor Safety Assessment System (RSAS), is being developed by the Idaho National Engineering Laboratory and the US Nuclear Regulatory Commission (NRC) for the NRC Operations Center. The RSAS is intended to aid the reactor safety team (RST) at the operations center in monitoring and projecting core and containment status during an emergency at a licensed nuclear power plant. The RSAS system development has two major aspects. The first is the compilation and storage of knowledge required for RST assessment tasks. The knowledge structure used by RSAS is a goal tree-success tree (GTST) model. The upper level structure of the GTST model is generic in nature. This allows development of models for generic plant-specific GTST models. The second aspect of the RSAS is the development of inferencing techniques for the access, display, and manipulation of the knowledge to meet RST requirements in a real-time manner during the activation of the operations center. This objective is achieved by critical safety function and success path monitoring. This basic strategy is used to determine the current status and estimate future challenges to the status of the reactor, identify procedures and equipment required to maintain or regain the critical safety functions, identify critical equipment, determine information requirements, and display pertinent information concerning current reactor status

  14. Oil supply security: the emergency response potential of IEA countries

    International Nuclear Information System (INIS)

    This work deals with the oil supply security and more particularly with the emergency response potential of International Energy Agency (IEA) countries. The first part describes the changing pattern of IEA emergency response requirements. It begins with the experience from the past, then gives the energy outlook to 2010 and ends with the emergency response policy issues for the future. The second part is an overview on the IEA emergency response potential which includes the organisation, the emergency reserves, the demand restraint and the other response mechanisms. The third part gives the response potential of individual IEA countries. The last part deals with IEA emergency response in practice and more particularly with the gulf crisis of 1990-1991. It includes the initial problems raised by the gulf crisis, the adjustment and preparation and the onset of military action with the IEA response.(O.L.). 7 figs., 85 tabs

  15. 49 CFR 172.604 - Emergency response telephone number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Emergency response telephone number. 172.604... telephone number. (a) A person who offers a hazardous material for transportation must provide an emergency response telephone number, including the area code, for use in the event of an emergency involving...

  16. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  17. Emergency Preparedness and Response: Information for Pregnant Women - Fact Sheet

    Science.gov (United States)

    ... Social Media What CDC is Doing Blog: Public Health Matters What's New Preparation & Planning Emergency Preparedness and Response Information for Pregnant Women - Fact Sheet Recommend on Facebook Tweet Share Compartir Preparing for Emergency Birth Many childbirth education classes ...

  18. Encountering anger in the emergency department: identification, evaluations and responses of staff members to anger displays

    NARCIS (Netherlands)

    A. Cheshin; A. Rafaeli; A. Eisenman

    2012-01-01

    Background. Anger manifestations in emergency departments (EDs) occur daily, interrupting workflow and exposing staff to risk. Objectives. How staff assess and recognize patients’ angry outbursts in EDs and elucidate responses to anger expressions, while considering effects of institution guidelines

  19. The area resource file - An emergency response planning tool

    International Nuclear Information System (INIS)

    Siting of hazardous waste treatment and disposal facilities requires careful advance planning to ensure adequate emergency response capability exists in close proximity to the facility. Similarly, transportation planning for hazardous wastes must account for possible accidents along the transportation route. The Area Resource File (ARF) can be a valuable tool in such planning exercises, particularly with regard to medical response capability. ARF is a nationwide medical geographic information system. The basic county-specific file is a massive data base containing more than 7,000 medical and health response-related variables at the county level for every county in the US. The data include detailed information on available health facilities and hospitals as well as physicians by specialty and other health professionals. Also included are related population characteristics, economic, and environmental data. ARF can facilitate detailed analysis of a potential hazardous waste treatment disposal site or transportation route by assessing the medical and emergency response capabilities, and the population at risk in a given location or set of locations. The fully automated features of ARF allow for easy manipulation of the data files. The paper describes ARF in greater detail, provides example outputs, and explains how ARF can be used in hazardous waste siting and transportation studies

  20. Emergency Response Communications and Associated Security Challenges

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrahim Channa

    2010-10-01

    Full Text Available The natural or man-made disaster demands an efficient communication and coordination among firstresponders to save life and other community resources. Normally, the traditional communicationinfrastructures such as landline or cellular networks are damaged and don’t provide adequatecommunication services to first responders for exchanging emergency related information. Wireless adhoc networks such as mobile ad hoc networks, wireless sensor networks and wireless mesh networks arethe promising alternatives in such type of situations. The security requirements for emergency responsecommunications include privacy, data integrity, authentication, key management, access control andavailability. Various ad hoc communication frameworks have been proposed for emergency responsesituations. The majority of the proposed frameworks don’t provide adequate security services for reliableand secure information exchange. This paper presents a survey of the proposed emergency responsecommunication frameworks and the potential security services required by them to provide reliable andsecure information exchange during emergency situations.

  1. Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza

    Energy Technology Data Exchange (ETDEWEB)

    HCTT-CHE

    2011-04-14

    The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster—readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that—help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners' (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. While the purpose of the CAT is to further prepare the community for an influenza pandemic, its framework is an extension of the traditional all-hazards approach to planning and preparedness. As such, the information gathered by the tool is useful in preparation for most widespread public health emergencies. This tool is primarily intended for use by those involved in healthcare emergency preparedness (e.g., community planners, community disaster preparedness coordinators, 9-1-1 directors, hospital emergency preparedness coordinators). It is divided into sections based on the core agency partners, which may be involved in the community's influenza pandemic influenza response.

  2. Putting It All Together: Integrating Ordinary People Into Emergency Response

    NARCIS (Netherlands)

    Scanlon, J.; Helsloot, I.; Groenendaal, J.

    2014-01-01

    Ordinary citizens may play an important role in the response to large or even small-scale emergencies. This however is often not recognized in the emergency plans and procedures developed by emergency services. As a consequence, the help of ordinary citizens is often underutilized or even rejected b

  3. [Oil and Hazardous Substance Spill Response Emergencies

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A major oil or hazardous substance spill may constitute an emergency situation requiring prompt actions by the Service to protect threatened natural resources. This...

  4. More efficient response to nuclear emergencies

    International Nuclear Information System (INIS)

    Three documents related to the first volume of this report are presented here. These are a description of the emergency provisions organisation, an analysis of the weaknesses in the present organisation and proposed improvements (with appendices on the information problem in excercises with the emergency provisions at Ringhals and attitudes to tasks connected with evacuation following a power reactor accident) and agreements with Denmark, Finland, Norway and the IAEA for mutual assistance. (JIW)

  5. The emergency planning in the Slovak Republic and the Emergency Response Centre of the NRA SR

    International Nuclear Information System (INIS)

    The present situation in emergency planning in the Slovak Republic is presented. Based on experience of countries with highly developed nuclear power as well as on IAEA recommendations, it was decided to establish an Emergency Response Centre of the Slovak Nuclear Regulatory Authority. The UK Government provided consultancy, expert and financial assistance. The Centre was opened on April 11, 1995. The organization chart of the emergency planning in the Slovak Republic is given including the supporting emergency measures. (Z.S.)

  6. Functional criteria for emergency response facilities. Technical report (final)

    International Nuclear Information System (INIS)

    This report describes the facilities and systems to be used by nuclear power plant licensees to improve responses to emergency situations. The facilities include the Technical Support Center (TSC), Onsite Operational Support Center (OSC), and Nearsite Emergency Operations Facility (EOF), as well as a brief discussion of the emergency response function of the control room. The data systems described are the Safety Parameter Display System (SPDS) and Nuclear Data Link (NDL). Together, these facilities and systems make up the total Emergency Response Facilities (ERFs). Licensees should follow the guidance provided both in this report and in NUREG-0654 (FEMA-REP-1), Revision 1, for design and implementation of the ERFs

  7. Emergency response training with the BNL plant analyzer

    International Nuclear Information System (INIS)

    Presented in the experience in the use of the BNL plant analyzer for NRC emergency response training to simulated accidents in a BWR. The unique features of the BNL Plant Analyzer that are important for the emergency response training are summarized. A closed-loop simulation of all the key systems of a power plant in question was found essential to the realism of the emergency drills conducted at NRC. The faster than real-time simulation speeds afforded by the BNL Plant Analyzer have demonstrated its usefulness for the timely conduct of the emergency response training

  8. 40 CFR 68.180 - Emergency response program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Emergency response program. 68.180 Section 68.180 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Risk Management Plan § 68.180 Emergency response...

  9. Scaling-up Support for Emergency Response Organizations

    NARCIS (Netherlands)

    Oomes, A.H.J.; Neef, R.M.

    2005-01-01

    We present the design of an information system that supports the process of scaling-up of emergency response organizations. This process is vital for effective emergency response but tends to go awry in practice. Our proposed system consists of multiple distributed agents that are capable of exchang

  10. 30 CFR 75.1507 - Emergency Response Plan; refuge alternatives.

    Science.gov (United States)

    2010-07-01

    ....1507 Emergency Response Plan; refuge alternatives. (a) The Emergency Response Plan (ERP) shall include... request and the District Manager may approve an alternative location in the ERP if mining involves two-entry systems or yield pillars in a longwall that would prohibit locating the refuge alternative out...

  11. IEA Response System for Oil Supply Emergencies (2012 update)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Emergency response to oil supply disruptions has remained a core mission of the International Energy Agency since its founding in 1974. This information pamphlet explains the decisionmaking process leading to an IEA collective action, the measures available -- focusing on stockdraw -- and finally, the historical background of major oil supply disruptions and the IEA response to them. It also demonstrates the continuing need for emergency preparedness, including the growing importance of engaging key transition and emerging economies in dialogue about energy security.

  12. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  13. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  14. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  15. Development of effective emergency preparedness and response

    International Nuclear Information System (INIS)

    It has been discussed that there were many differences to international standards and the delay for prior planning implementation of unclear emergency preparedness. Therefore, it was necessary to promote the study to take the concept of the international standard to the Guide 'Emergency Preparedness for Nuclear Facilities', and to apply the Precautionary Action Zone (PAZ) etc. as the protective actions procedure. This study was started since the fiscal year 2010 to enhance the effectiveness of the protective actions, which are corresponding to these requirements based on international aspects in the nuclear disaster occurrence. And the study was conducted to introduce the emergency action level (EAL) as decision criteria and to apply urgent protective action considering PAZ, and the results from this study will be used as the basic data necessary to modify and improve the Guide. In order to fulfill the purposes described above, in fiscal year 2011, followings are executed, (1) analysis and verification for basic evacuation area such as the PAZ, (2) analysis with regard to the EAL and prototype of protective actions for public, and (3) analysis with regard to prototype of protective actions for public including evacuation plan. However, taking account of the significance of the Fukushima Daiichi Nuclear Power Plant accident, Japanese emergency preparedness strategy should be studied and reconstructed in logically, systematically, and with international standard, but also being based on the reflection of individual lessons from this accident. (author)

  16. Collective response of human populations to large-scale emergencies

    CERN Document Server

    Bagrow, James P; Barabási, Albert-László; 10.1371/journal.pone.0017680

    2011-01-01

    Despite recent advances in uncovering the quantitative features of stationary human activity patterns, many applications, from pandemic prediction to emergency response, require an understanding of how these patterns change when the population encounters unfamiliar conditions. To explore societal response to external perturbations we identified real-time changes in communication and mobility patterns in the vicinity of eight emergencies, such as bomb attacks and earthquakes, comparing these with eight non-emergencies, like concerts and sporting events. We find that communication spikes accompanying emergencies are both spatially and temporally localized, but information about emergencies spreads globally, resulting in communication avalanches that engage in a significant manner the social network of eyewitnesses. These results offer a quantitative view of behavioral changes in human activity under extreme conditions, with potential long-term impact on emergency detection and response.

  17. Emergency response and radiation monitoring systems in Russian regions

    International Nuclear Information System (INIS)

    Full text: Preparedness of the emergency response system to elimination of radiation incidents and accidents is one of the most important elements of ensuring safe operation of nuclear power facilities. Routine activities on prevention of emergency situations along with adequate, efficient and opportune response actions are the key factors reducing the risks of adverse effects on population and environment. Both high engineering level and multiformity of the nuclear branch facilities make special demands on establishment of response system activities to eventual emergency situations. First and foremost, while resolving sophisticated engineering and scientific problems emerging during the emergency response process, one needs a powerful scientific and technical support system.The emergency response system established in the past decade in Russian nuclear branch provides a high efficiency of response activities due to the use of scientific and engineering potential and experience of the involved institutions. In Russia the responsibility for population protection is imposed on regional authority. So regional emergence response system should include up-to-date tools of radiation monitoring and infrastructure. That's why new activities on development of radiation monitoring and emergency response system were started in the regions of Russia. The main directions of these activities are: 1) Modernization of the existing and setting-up new facility and territorial automatic radiation monitoring systems, including mobile radiation surveillance kits; 2) Establishment of the Regional Crisis Centres and Crisis Centres of nuclear and radiation hazardous facilities; 3) Setting up communication systems for transfer, acquisition, processing, storage and presentation of data for participants of emergency response at the facility, regional and federal levels; 4) Development of software and hardware systems for expert support of decision-making on protection of personnel, population

  18. Early emergency prognosis and response centers

    International Nuclear Information System (INIS)

    An emergency early warning system for the fourteen nuclear generating units in the country has been developed at the Nuclear Research Institute of the Ukrainian Academy of Sciences. All units are connected to the host computer in the emergency center of the State Nuclear Power Authority in Kiew and interconnected with each other. The early warning system is to make another reactor accident of the magnitude of Chernobyl impossible. Installation of the hardware is to begin at the South Ukraine 3 nuclear generating unit in 1997; the costs of the pilot project are estimated at U.S. Dollar 40 million. After subsequent feasibility studies, the software and the hardware may be modified; the early warning system could be in operation countrywide by 1999. (orig.)

  19. Fight or flight: the ethics of emergency physician disaster response.

    Science.gov (United States)

    Iserson, Kenneth V; Heine, Carlton E; Larkin, Gregory Luke; Moskop, John C; Baruch, Jay; Aswegan, Andrew L

    2008-04-01

    Most disaster plans depend on using emergency physicians, nurses, emergency department support staff, and out-of-hospital personnel to maintain the health care system's front line during crises that involve personal risk to themselves or their families. Planners automatically assume that emergency health care workers will respond. However, we need to ask: Should they, and will they, work rather than flee? The answer involves basic moral and personal issues. This article identifies and examines the factors that influence health care workers' decisions in these situations. After reviewing physicians' response to past disasters and epidemics, we evaluate how much danger they actually faced. Next, we examine guidelines from medical professional organizations about physicians' duty to provide care despite personal risks, although we acknowledge that individuals will interpret and apply professional expectations and norms according to their own situation and values. The article goes on to articulate moral arguments for a duty to treat during disasters and social crises, as well as moral reasons that may limit or override such a duty. How fear influences behavior is examined, as are the institutional and social measures that can be taken to control fear and to encourage health professionals to provide treatment in crisis situations. Finally, the article emphasizes the importance of effective risk communication in enabling health care professionals and the public to make informed and defensible decisions during disasters. We conclude that the decision to stay or leave will ultimately depend on individuals' risk assessment and their value systems. Preparations for the next pandemic or disaster should include policies that encourage emergency physicians, who are inevitably among those at highest risk, to "stay and fight."

  20. Value Chain Responsibility in Emerging Technologies

    NARCIS (Netherlands)

    Bos, Colette; van Lente, Harro

    2014-01-01

    Corporate social responsibility (CSR) and value chain responsibility (VCR) have gained increasing importance for firms. The literature on these topics reports on CSR practices for established firms with existing technologies and stable value chains. This raises questions about the viability of CSR a

  1. Engineering simulator applications to emergency response training

    International Nuclear Information System (INIS)

    This paper reports how the Idaho National Engineering Laboratory has recently conducted three comprehensive severe accident drill scenarios at the U.S. Nuclear Regulatory Commission Operations Center in Washington, DC Developed on a RELAP5 based engineering simulator, each scenario resulted in severe core damage with significant off-site release. During each scenario actual emergency procedures were implemented in a representative fashion and realistic complications consistent with the initiating events were introduced. The drill controllers fulfilled all licensee, federal, state and local counterpart functions and also simulated political, media and public affairs liaison

  2. More efficient response to nuclear emergencies

    International Nuclear Information System (INIS)

    A working group was appointed in 1978 to consider the problems which would face the local authorities in the unlikely event of a reactor accident considerably more severe than that foreseen as the basis of the emergency provisions as defined in the parliamentary bill of 1960. The group's report is here presented, together with appendices containing population and meteorological data. This report has been used by the Radiation protection Institute in its evaluations, which are presented in vol. 2 of this report. The views expressed in this report are those of the working group. (JIW)

  3. Evolutionary emergence of responsive and unresponsive personalities

    NARCIS (Netherlands)

    Wolf, M.; Van Doorn, G.S.; Weissing, F.J.

    2008-01-01

    In many animal species, individuals differ consistently in suites of correlated behaviors, comparable with human personalities. Increasing evidence suggests that one of the fundamental factors structuring personality differences is the responsiveness of individuals to environmental stimuli. Whereas

  4. Emergency response planning for transport accidents involving radioactive materials

    International Nuclear Information System (INIS)

    The document presents a basic discussion of the various aspects and philosophies of emergency planning and preparedness along with a consideration of the problems which might be encountered in a transportation accident involving a release of radioactive materials. Readers who are responsible for preparing emergency plans and procedures will have to decide on how best to apply this guidance to their own organizational structures and will also have to decide on an emergency planning and preparedness philosophy suitable to their own situations

  5. Emergency response arrangements for the Pacific Nuclear Transport Fleet

    International Nuclear Information System (INIS)

    Whilst the likelihood of an incident occurring during the transportation of radioactive material is very small and the safety arrangements are extensive, any organisation involved should ensure that comprehensive emergency management arrangements are in place. Details of the particular emergency response arrangements adopted for the Pacific Nuclear Transport Limited (PNTL) Fleet are covered by this paper. (author)

  6. Simulation of Operators' Response in Emergencies

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1986-01-01

    For the simulation of the accidental course of events in industrial process plants, a model is needed of operators' response to the cues presented by the system. A model is proposed, based on the simplifications which can be made when restricting attention to the operator functions having...... significants for a probabilistic risk analysis, and to only skill and rule based performance, i.e., to responses in the early phase of an accident. The model is based on Brunswik's lens model, a model of the normal task repertoire, and on a taxonomy of human errors. To bring the model in perspective, a review...

  7. Experiences from exercises associated with nuclear emergency response in Germany

    International Nuclear Information System (INIS)

    In the Federal Republic of Germany, the 16 federal state Ministries of the Interior are responsible for emergency response (threat through weapons, explosives, etc.). In the case of threats due to radioactive material experts of the competent federal state radiological protection authorities are consulted. The Federal Office for Radiation Protection assists in serious cases of defence against nuclear hazards (nuclear fuels, criticality, risk of dispersion). Currently, exercises are being performed in all 16 federal states to co-ordinate the ways of behaviour, action and thinking of the various necessary organisational units, like police, deactivators, prosecution officials, radiological protection experts and fire brigade. The joint exercises serve the purpose to practise the total chain of necessary measures like: notification chain, organisation at the place of action, co-ordination of appropriate search strategy, investigation of who was responsible, analysis (X ray pictures, radiological analysis), activity determination, assessment of possible effects due to deactivation measures, determination of dispersion conditions, recommendation of measures for the protection of responders and the general population and measures to limit the consequences

  8. Chinese experience on medical response to radiation emergencies

    International Nuclear Information System (INIS)

    Full text: Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). CCMRRE is a liaison of WHO/REMPAN and functions as a national and professional institute for medical preparedness and response to emergencies involving radioactive material. CCMRRE participates in drafting National Medical Assistant Program for Radiation Emergency and relevant technical documents, develops preventive measures and technique means of medical preparedness and response to radiation emergency. CCMRRE is responsible for medical response to radiological or nuclear accident on national level. CCMRRE holds training courses, organizes drills and provides technical support to local medical organizations in practicing medical preparedness and response to radiation emergency. CCMRRE collects, analyzes and exchanges information on medical response to radiological and nuclear emergency and establishes relevant database. CCMRRE also guides and participates in radiation pollution monitoring on accident sites. In the past ten years, we accumulate much knowledge and experience on medical response to radiation emergencies. In this context, we will discuss Xinzhou Accident, which took place in 1992 and involved in three deaths, and Ha'erbin Accident that took place in 2005 and involved one death. A father and two brothers in Xinzhou Accident died of over-exposed to 60Co source and misdiagnosis and improper treatment, which indicates that most general practitioners are uncertain about the health consequences of exposure to ionizing radiation and the medical management of exposed patients. When Ha'erbin Accident happened in 2005, the local hospital gave the right diagnosis and treatment based on the clinic symptoms and signs, which prevent more people suffering from over-expose to 192Ir source. The distinct changes comes from the education and training to primary doctors related

  9. ANS-8.23: Criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    A study group has been formed under the auspices of ANS-8 to examine the need for a standard on nuclear criticality accident emergency planning and response. This standard would be ANS-8.23. ANSI/ANS-8.19-1984, Administrative Practices for Nuclear Criticality Safety, provides some guidance on the subject in Section 10 titled -- Planned Response to Nuclear Criticality Accidents. However, the study group has formed a consensus that Section 10 is inadequate in that technical guidance in addition to administrative guidance is needed. The group believes that a new standard which specifically addresses emergency planning and response to a perceived criticality accident is needed. Plans for underway to request the study group be designated a writing group to create a draft of such a new standard. The proposed standard will divide responsibility between management and technical staff. Generally, management will be charged with providing the necessary elements of emergency planning such as a criticality detection and alarm system, training, safe evacuation routes and assembly areas, a system for timely accountability of personnel, and an effective emergency response organization. The technical staff, on the other hand, will be made responsible for establishing specific items such as safe and clearly posted evacuation evacuation routes and dose criteria for personnel assembly areas. The key to the question of responsibilities is that management must provide the resources for the technical staff to establish the elements of an emergency response effort

  10. Simulation of operators' response in emergencies

    International Nuclear Information System (INIS)

    For the simulation of the accidential course of events in industrial process plants, a model is needed of operators' response to the cues presented by the system. A model is proposed, based on the simplifications which can be made when restricting attention to the operator functions having significants for a probabilistic risk analysis, and to anly skill and rule based performance, i.e., to responses in the early phase of an accident. The model is based on Brunswik's lens model, a model of the normal task repertoire, and on a taxonomy of human errors. To bring the model in perspective, a review of the state of the art of cognitive models of human behaviour is included. (author)

  11. Nuclear emergency response planning based on participatory decision analytic approaches

    International Nuclear Information System (INIS)

    This work was undertaken in order to develop methods and techniques for evaluating systematically and comprehensively protective action strategies in the case of a nuclear or radiation emergency. This was done in a way that the concerns and issues of all key players related to decisions on protective actions could be aggregated into decision- making transparently and in an equal manner. An approach called facilitated workshop, based on the theory of Decision Analysis, was tailored and tested in the planning of actions to be taken. The work builds on case studies in which it was assumed that a hypothetical accident in a nuclear power plant had led to a release of considerable amounts of radionuclides and therefore different types of protective actions should be considered. Altogether six workshops were organised in which all key players were represented, i.e., the authorities, expert organisations, industry and agricultural producers. The participants were those responsible for preparing advice or presenting matters for those responsible for the formal decision-making. Many preparatory meetings were held with various experts to prepare information for the workshops. It was considered essential that the set-up strictly follow the decision- making process to which the key players are accustomed. Key players or stakeholders comprise responsible administrators and organisations, politicians as well as representatives of the citizens affected and other persons who will and are likely to take part in decision-making in nuclear emergencies. The realistic nature and the disciplined process of a facilitated workshop and commitment to decision-making yielded up insight in many radiation protection issues. The objectives and attributes which are considered in a decision on protective actions were discussed in many occasions and were defined for different accident scenario to come. In the workshops intervention levels were derived according justification and optimisation

  12. Ebola Virus Disease: Ethics and Emergency Medical Response Policy.

    Science.gov (United States)

    Jecker, Nancy S; Dudzinski, Denise M; Diekema, Douglas S; Tonelli, Mark

    2015-09-01

    Caring for patients affected with Ebola virus disease (EVD) while simultaneously preventing EVD transmission represents a central ethical challenge of the EVD epidemic. To address this challenge, we propose a model policy for resuscitation and emergent procedure policy of patients with EVD and set forth ethical principles that lend support to this policy. The policy and principles we propose bear relevance beyond the EVD epidemic, offering guidance for the care of patients with other highly contagious, virulent, and lethal diseases. The policy establishes (1) a limited code status for patients with confirmed or suspected EVD. Limited code status means that a code blue will not be called for patients with confirmed or suspected EVD at any stage of the disease; however, properly protected providers (those already in full protective equipment) may initiate resuscitative efforts if, in their clinical assessment, these efforts are likely to benefit the patient. The policy also requires that (2) resuscitation not be attempted for patients with advanced EVD, as resuscitation would be medically futile; (3) providers caring for or having contact with patients with confirmed or suspected EVD be properly protected and trained; (4) the treating team identify and treat in advance likely causes of cardiac and respiratory arrest to minimize the need for emergency response; (5) patients with EVD and their proxies be involved in care discussions; and (6) care team and provider discretion guide the care of patients with EVD. We discuss ethical issues involving medical futility and the duty to avoid harm and propose a utilitarian-based principle of triage to address resource scarcity in the emergency setting.

  13. Emergency response preparedness analysis for radioactive materials transportation

    International Nuclear Information System (INIS)

    This paper evaluates the emergency response capabilities of first responders, specifically fire services, within the state of Nevada. It addresses issues relating to the available emergency responders such as general capabilities, jurisdictions, and response times. Graphical displays of the response units and attribute tables were created using GIS ARC/INFO. These coverages, plus the existing Census Bureau TIGER Files and highway network for the state of Nevada, were utilized to determine approximate service areas of each response unit, population density served by each response unit, population density served by each response unit and the areas that can be served by a response unit for 3, 5, 10, and 30 minutes response times. Results of the analysis enabled identification of the critical areas along the proposed highway route corridor

  14. ASSESSMENT OF THE ORGANIZATIONAL CULTURE OF THE COUNTY EMERGENCY HOSPITAL

    OpenAIRE

    Gavrilescu Liviu; Barbul Claudia

    2010-01-01

    The study proposes assessing the organizational culture of the County Emergency Hospital “Dr. Constantine Opris” of Baia Mare, as a basis for developing a strategic plan to facilitate the successful implementation of organizational goals and objectives. As research instruments were used: OCAI (Organizational Culture Assessment Instrument) and the semi-structured interview. The identified organizational culture of the County Emergency Hospital “Dr. Constantin Opris” has characteristics of a we...

  15. UTILIZING SAR AND MULTISPECTRAL INTEGRATED DATA FOR EMERGENCY RESPONSE

    Directory of Open Access Journals (Sweden)

    S. Havivi

    2016-06-01

    Full Text Available Satellite images are used widely in the risk cycle to understand the exposure, refine hazard maps and quickly provide an assessment after a natural or man-made disaster. Though there are different types of satellite images (e.g. optical, radar these have not been combined for risk assessments. The characteristics of different remote sensing data type may be extremely valuable for monitoring and evaluating the impacts of disaster events, to extract additional information thus making it available for emergency situations. To base this approach, two different change detection methods, for two different sensor's data were used: Coherence Change Detection (CCD for SAR data and Covariance Equalization (CE for multispectral imagery. The CCD provides an identification of the stability of an area, and shows where changes have occurred. CCD shows subtle changes with an accuracy of several millimetres to centimetres. The CE method overcomes the atmospheric effects differences between two multispectral images, taken at different times. Therefore, areas that had undergone a major change can be detected. To achieve our goals, we focused on the urban areas affected by the tsunami event in Sendai, Japan that occurred on March 11, 2011 which affected the surrounding area, coastline and inland. High resolution TerraSAR-X (TSX and Landsat 7 images, covering the research area, were acquired for the period before and after the event. All pre-processed and processed according to each sensor. Both results, of the optical and SAR algorithms, were combined by resampling the spatial resolution of the Multispectral data to the SAR resolution. This was applied by spatial linear interpolation. A score representing the damage level in both products was assigned. The results of both algorithms, high level of damage is shown in the areas closer to the sea and shoreline. Our approach, combining SAR and multispectral images, leads to more reliable information and provides a

  16. Utilizing SAR and Multispectral Integrated Data for Emergency Response

    Science.gov (United States)

    Havivi, S.; Schvartzman, I.; Maman, S.; Marinoni, A.; Gamba, P.; Rotman, S. R.; Blumberg, D. G.

    2016-06-01

    Satellite images are used widely in the risk cycle to understand the exposure, refine hazard maps and quickly provide an assessment after a natural or man-made disaster. Though there are different types of satellite images (e.g. optical, radar) these have not been combined for risk assessments. The characteristics of different remote sensing data type may be extremely valuable for monitoring and evaluating the impacts of disaster events, to extract additional information thus making it available for emergency situations. To base this approach, two different change detection methods, for two different sensor's data were used: Coherence Change Detection (CCD) for SAR data and Covariance Equalization (CE) for multispectral imagery. The CCD provides an identification of the stability of an area, and shows where changes have occurred. CCD shows subtle changes with an accuracy of several millimetres to centimetres. The CE method overcomes the atmospheric effects differences between two multispectral images, taken at different times. Therefore, areas that had undergone a major change can be detected. To achieve our goals, we focused on the urban areas affected by the tsunami event in Sendai, Japan that occurred on March 11, 2011 which affected the surrounding area, coastline and inland. High resolution TerraSAR-X (TSX) and Landsat 7 images, covering the research area, were acquired for the period before and after the event. All pre-processed and processed according to each sensor. Both results, of the optical and SAR algorithms, were combined by resampling the spatial resolution of the Multispectral data to the SAR resolution. This was applied by spatial linear interpolation. A score representing the damage level in both products was assigned. The results of both algorithms, high level of damage is shown in the areas closer to the sea and shoreline. Our approach, combining SAR and multispectral images, leads to more reliable information and provides a complete scene for

  17. Training programs for emergency response personnel at Hanford

    International Nuclear Information System (INIS)

    The Three Mile Island reactor accident has focused attention on emergency planning and preparedness including selection and training of personnel. At Hanford, Pacific Northwest Laboratory (PNL) is in the unique position of providing emergency response personnel, planning, training and equipment not only for its own organization and facilities but also for the Hanford Site in general, as well as the Interagency Radiological Assistance Plan (IRAP) Region 8 Team. Team members are chosen for one or more of the emergency teams based upon professional education and/or experience as well as interest, aptitude and specialized knowledge. Consequently, the initial training orientation of each new team member is not directed toward general professional ability, but rather toward specialized knowledge required to carry out their assigned emergency tasks. Continual training and practice is necessary to maintain the interest and skills for effectively coping with major emergencies. The types of training which are conducted include: tests of emergency systems and/or procedures; drills involving plant employees and/or emergency team members (e.g., activation of emergency notification systems); short training sessions on special topics; and realistic emergency exercises involving the simulation of major accidents wherein the emergency team must solve specific problems on a real time basis

  18. Enabling Communication in Emergency Response Environments

    Directory of Open Access Journals (Sweden)

    Oriel Herrera

    2012-05-01

    Full Text Available Effective communication among first responders during response to natural and human-made large-scale catastrophes has increased tremendously during the last decade. However, most efforts to achieve a higher degree of effectiveness in communication lack synergy between the environment and the technology involved to support first responders operations. This article presents a natural and intuitive interface to support Stigmergy; or communication through the environment, based on intuitively marking and retrieving information from the environment with a pointer. A prototype of the system was built and tested in the field, however the pointing activity revealed challenges regarding accuracy due to limitations of the sensors used. The results obtained from these field tests were the basis for this research effort and will have the potential to enable communication through the environment for first responders operating in highly dynamical and inhospitable disaster relief environments.

  19. Hanford Site emergency response needs, Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Good, D.E.

    1996-04-16

    This report presents the results of a comprehensive third party needs assessment of the Hanford Fire Department (HFD), conducted by Hughes Associates Inc. The assessment was commissioned with the intent of obtaining an unbiased report which could be used as a basis for identifying needed changes/modifications to the fire department and its services. This report serves several functions: (1) it documents current and future site operations and associated hazards and risks identified as a result of document review, site and facility surveys, and interviews with knowledgeable personnel; (2) describes the HFD in terms of organization, existing resources and response capabilities; (3) identifies regulatory and other requirements that are applicable to the HFD and includes a discussion of associated legal liabilities; and (4) provides recommendations based on applicable requirements and existing conditions. Each recommendation is followed by a supporting statement to clarify the intent or justification of the recommendation. This report will be followed by a Master Plan document which will present an implementation method for the recommendations (with associated costs) considered to be essential to maintaining adequate, cost effective emergency services at the Hanford site in the next five to seven years.

  20. Hanford Site emergency response needs, Volumes 1 and 2

    International Nuclear Information System (INIS)

    This report presents the results of a comprehensive third party needs assessment of the Hanford Fire Department (HFD), conducted by Hughes Associates Inc. The assessment was commissioned with the intent of obtaining an unbiased report which could be used as a basis for identifying needed changes/modifications to the fire department and its services. This report serves several functions: (1) it documents current and future site operations and associated hazards and risks identified as a result of document review, site and facility surveys, and interviews with knowledgeable personnel; (2) describes the HFD in terms of organization, existing resources and response capabilities; (3) identifies regulatory and other requirements that are applicable to the HFD and includes a discussion of associated legal liabilities; and (4) provides recommendations based on applicable requirements and existing conditions. Each recommendation is followed by a supporting statement to clarify the intent or justification of the recommendation. This report will be followed by a Master Plan document which will present an implementation method for the recommendations (with associated costs) considered to be essential to maintaining adequate, cost effective emergency services at the Hanford site in the next five to seven years

  1. Emergency Preparedness and Response at Nuclear Power Plants in Pakistan

    International Nuclear Information System (INIS)

    Emergency preparedness and response arrangements at Nuclear Power Plants (NPPs) in Pakistan have been reevaluated in the light of Fukushima Daiichi accident. Appropriate measures have been taken to strengthen and effectively implement the on-site and off-site emergency plans. Verification of these plans is conducted through regulatory review and by witnessing periodic emergency drills and exercises conducted by the NPPs in the fulfilment of the regulatory requirements. Emergency Planning Zones (EPZs) have been revised at NPPs. A multi discipline reserve force has been formed for assistance during severe accidents. Nuclear Emergency Management System (NEMS) has been established at the national level in order to make necessary arrangements for responding to nuclear and radiological emergencies. Training programs for first responders and medical professionals have been launched. Emergencies coordination centres have been established at national and corporate levels. Public awareness program has been initiated to ensure that the surrounding population is provided with appropriate information on emergency planning and response. To share national and international operational experience, Pakistan has arranged various workshops and developed a strong link with International Atomic Energy Agency (IAEA). (author)

  2. Assessing ecorelevance of emerging chemicals in sediments

    DEFF Research Database (Denmark)

    Forbes, Valery E.; Selck, Henriette; Salvito, D.

    2007-01-01

    Environmental monitoring of the Great Lakes and elsewhere has detected the presence of a wide variety of chemicals which has raised concern that these chemicals pose risks to resident species. Sediments are of particular interest due to their tendency to accumulate hydrophobic and persistent...... chemicals and because less is known about toxic effects of chemicals to sediment-feeding organisms than to pelagic species. Data collected on the polycyclic musks provides available evidence relevant to assessing exposure and effects in Great Lakes' sediments. Studies at Roskilde University demonstrate how...

  3. Assessing inhalation injury in the emergency room

    Directory of Open Access Journals (Sweden)

    Tanizaki S

    2015-07-01

    Full Text Available Shinsuke Tanizaki Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan Abstract: Respiratory tract injuries caused by inhalation of smoke or chemical products are related to significant morbidity and mortality. While many strategies have been built up to manage cutaneous burn injuries, few logical diagnostic strategies for patients with inhalation injuries exist and almost all treatment is supportive. The goals of initial management are to ensure that the airway allows adequate oxygenation and ventilation and to avoid ventilator-induced lung injury and substances that may complicate subsequent care. Intubation should be considered if any of the following signs exist: respiratory distress, stridor, hypoventilation, use of accessory respiratory muscles, blistering or edema of the oropharynx, or deep burns to the face or neck. Any patients suspected to have inhalation injuries should receive a high concentration of supplemental oxygen to quickly reverse hypoxia and to displace carbon monoxide from protein binding sites. Management of carbon monoxide and cyanide exposure in smoke inhalation patients remains controversial. Absolute indications for hyperbaric oxygen therapy do not exist because there is a low correlation between carboxyhemoglobin levels and the severity of the clinical state. A cyanide antidote should be administered when cyanide poisoning is clinically suspected. Although an ideal approach for respiratory support of patients with inhalation injuries do not exist, it is important that they are supported using techniques that do not further exacerbate respiratory failure. A well-organized strategy for patients with inhalation injury is critical to reduce morbidity and mortality. Keywords: inhalation injury, burn, carbon monoxide poisoning, cyanide poisoning

  4. A Global Drought Observatory for Emergency Response

    Science.gov (United States)

    Vogt, Jürgen; de Jager, Alfred; Carrão, Hugo; Magni, Diego; Mazzeschi, Marco; Barbosa, Paulo

    2016-04-01

    Droughts are occurring on all continents and across all climates. While in developed countries they cause significant economic and environmental damages, in less developed countries they may cause major humanitarian catastrophes. The magnitude of the problem and the expected increase in drought frequency, extent and severity in many, often highly vulnerable regions of the world demand a change from the current reactive, crisis-management approach towards a more pro-active, risk management approach. Such approach needs adequate and timely information from global to local scales as well as adequate drought management plans. Drought information systems are important for continuous monitoring and forecasting of the situation in order to provide timely information on developing drought events and their potential impacts. Against this background, the Joint Research Centre (JRC) is developing a Global Drought Observatory (GDO) for the European Commission's humanitarian services, providing up-to-date information on droughts world-wide and their potential impacts. Drought monitoring is achieved by a combination of meteorological and biophysical indicators, while the societal vulnerability to droughts is assessed through the targeted analysis of a series of social, economic and infrastructural indicators. The combination of the information on the occurrence and severity of a drought, on the assets at risk and on the societal vulnerability in the drought affected areas results in a likelihood of impact, which is expressed by a Likelihood of Drought Impact (LDI) indicator. The location, extent and magnitude of the LDI is then further analyzed against the number of people and land use/land cover types affected in order to provide the decision bodies with information on the potential humanitarian and economic bearings in the affected countries or regions. All information is presented through web-mapping interfaces based on OGC standards and customized reports can be drawn by the

  5. ShakeMap-Based Earthquake Emergency Response for Lifelines

    Science.gov (United States)

    Nishenko, S.; Eidinger, J.; McLaren, M.

    2007-12-01

    Pacific Gas and Electric (PG&E), Bay Area Rapid Transit (BART), Bonneville Power Administration (BPA), and a number of other lifeline operators and utilities are using Geographic Information System (GIS)-based products, including ShakeMap, to enhance their earthquake emergency response capabilities. PG&E uses ShakeMap in conjunction with improved digital hazard maps for the San Francisco Bay area as a decision support tool to prioritize response activities. Used as a screening tool, this information helps to rapidly identify potential gas and electric transmission problem areas, prior to the receipt of damage reports from the field. Earthquake Risk Values, which combine ground shaking estimates with surface fault rupture, ground failure, and pipeline performance factors, are used to identify potentially vulnerable transmission pipeline segments and gas handling facilities for inspection following an earthquake. Scenario ShakeMaps are used for emergency training exercises and, in the event a large earthquake causes the Internet to be temporarily out of service, can be used for initial damage assessments until actual ShakeMaps become available. BART integrates the ground motions developed in near real time using ShakeMap with a BART vulnerability model in a System Earthquake Risk Assessment (SERA) to establish the likely post earthquake damage to the BART system. After most M3 or larger earthquakes, the SERA model for BART is run, using the ShakeMap- developed ground motions, to assess the likely and near-lower bound performance for more than 15,000 individual structures and components in the BART system. If any of these structures or components are predicted to have greater than a 10% chance of material nonlinear performance that might invoke a life safety situation, BART sends out people to visually inspect the facilities so targeted by the analysis. This software has been used to analyze the BART system for 15 earthquakes (M3.5 to M4.4) using ShakeMaps since 2003

  6. Review on emergency medical response against terrorist attack.

    Science.gov (United States)

    Wang, De-Wen; Liu, Yao; Jiang, Ming-Min

    2014-01-01

    Terrorism is a global issue and a constant international threat. As a result, anti-terrorism and emergency response strategies are tasks of critical importance that have a direct impact on the national security of every country in the world. This paper reviews new characteristics of international anti-terrorism measures and offers an in-depth reflection on emergency medical response countermeasures; additionally, this paper presents the goals of related research, which include: 1) to present a model of a highly efficient medical response command; 2) to introduce the pre-planning phases of the emergency medical response; 3) to establish a response system capable of handling various types of terror attacks; 4) to promote anti-terrorism awareness to the general public and emphasize its prevention; and 5) to continue basic investigations into emergency medical responses for various types of terrorist attacks (for example, the classifications and characteristics of new injuries, pathophysiology, prevention and treatment of the resultant stress disorders, improved high-efficiency medical response measures and equipment, etc.).

  7. Review on emergency medical response against terrorist attack.

    Science.gov (United States)

    Wang, De-Wen; Liu, Yao; Jiang, Ming-Min

    2014-01-01

    Terrorism is a global issue and a constant international threat. As a result, anti-terrorism and emergency response strategies are tasks of critical importance that have a direct impact on the national security of every country in the world. This paper reviews new characteristics of international anti-terrorism measures and offers an in-depth reflection on emergency medical response countermeasures; additionally, this paper presents the goals of related research, which include: 1) to present a model of a highly efficient medical response command; 2) to introduce the pre-planning phases of the emergency medical response; 3) to establish a response system capable of handling various types of terror attacks; 4) to promote anti-terrorism awareness to the general public and emphasize its prevention; and 5) to continue basic investigations into emergency medical responses for various types of terrorist attacks (for example, the classifications and characteristics of new injuries, pathophysiology, prevention and treatment of the resultant stress disorders, improved high-efficiency medical response measures and equipment, etc.). PMID:25722867

  8. ARAC: a computer-based emergency dose-assessment service

    International Nuclear Information System (INIS)

    Over the past 15 years, the Lawrence Livermore National Laboratory's Atmospheric Release Advisory Capability (ARAC) has developed and evolved a computer-based, real-time, radiological-dose-assessment service for the United States Departments of Energy and Defense. This service is built on the integrated components of real-time computer-acquired meteorological data, extensive computer databases, numerical atmospheric-dispersion models, graphical displays, and operational-assessment-staff expertise. The focus of ARAC is the off-site problem where regional meteorology and topography are dominant influences on transport and dispersion. Through application to numerous radiological accidents/releases on scales from small accidental ventings to the Chernobyl reactor disaster, ARAC has developed methods to provide emergency dose assessments from the local to the hemispheric scale. As the power of computers has evolved inversely with respect to cost and size, ARAC has expanded its service and reduced the response time from hours to minutes for an accident within the United States. Concurrently the quality of the assessments has improved as more advanced models have been developed and incorporated into the ARAC system. Over the past six years, the number of directly connected facilities has increased from 6 to 73. All major U.S. Federal agencies now have access to ARAC via the Department of Energy. This assures a level of consistency as well as experience. ARAC maintains its real-time skills by participation in approximately 150 exercises per year; ARAC also continuously validates its modeling systems by application to all available tracer experiments and data sets

  9. Community Assessment Tool for Public Health Emergencies Including Pandemic Influenza

    Energy Technology Data Exchange (ETDEWEB)

    ORAU' s Oak Ridge Institute for Science Education (HCTT-CHE)

    2011-04-14

    The Community Assessment Tool (CAT) for Public Health Emergencies Including Pandemic Influenza (hereafter referred to as the CAT) was developed as a result of feedback received from several communities. These communities participated in workshops focused on influenza pandemic planning and response. The 2008 through 2011 workshops were sponsored by the Centers for Disease Control and Prevention (CDC). Feedback during those workshops indicated the need for a tool that a community can use to assess its readiness for a disaster - readiness from a total healthcare perspective, not just hospitals, but the whole healthcare system. The CAT intends to do just that - help strengthen existing preparedness plans by allowing the healthcare system and other agencies to work together during an influenza pandemic. It helps reveal each core agency partners (sectors) capabilities and resources, and highlights cases of the same vendors being used for resource supplies (e.g., personal protective equipment [PPE] and oxygen) by the partners (e.g., public health departments, clinics, or hospitals). The CAT also addresses gaps in the community's capabilities or potential shortages in resources. This tool has been reviewed by a variety of key subject matter experts from federal, state, and local agencies and organizations. It also has been piloted with various communities that consist of different population sizes, to include large urban to small rural communities.

  10. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (French Edition)

    International Nuclear Information System (INIS)

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  11. Manual for first responders to a radiological emergency. Emergency preparedness and response. Publication date: October 2006

    International Nuclear Information System (INIS)

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  12. Manual for first responders to a radiological emergency. Emergency preparedness and response. Publication date: June 2007

    International Nuclear Information System (INIS)

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  13. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response

    International Nuclear Information System (INIS)

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  14. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Chinese Edition)

    International Nuclear Information System (INIS)

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  15. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Russian Edition)

    International Nuclear Information System (INIS)

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  16. Communication with the Public in a Nuclear or Radiological Emergency. Emergency Preparedness and Response (Spanish Edition)

    International Nuclear Information System (INIS)

    The aim of this publication is to provide practical guidance for public information officers on the preparation for and response to a nuclear or radiological emergency, and to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. SF-1, Fundamental Safety Principles, and in IAEA Safety Standards No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. IAEA Safety Standards Series No. GS-R-2 establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, and specifies that 'All practicable steps shall be taken to provide the public with useful, timely, truthful, consistent and appropriate information throughout a nuclear or radiological emergency' in the response phase. It also requires 'responding to incorrect information and rumours; and responding to requests for information from the public and from the news and information media'. This publication provides guidance in the form of action guides and information sheets that can be easily applied by a State to build a basic capability to respond to a nuclear or radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This publication is published as part of the IAEA's Emergency Preparedness and Response series and complements the Manual for First Responders to a Radiological Emergency in the parts related to the tasks of public information officers. It takes

  17. Manual for first responders to a radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. As stated in IAEA Safety Standards Series No. GS-R-2 'Preparedness and Response for a Nuclear or Radiological Emergency', which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State, 'first responders shall take all practicable and appropriate actions to minimize the consequences of a nuclear or radiological emergency'. The IAEA General Conference, in resolution GC(49)/RES/9, continues to encourage Member States 'to adopt the relevant Agency standards, procedures and practical tools' and underlines 'the need for first responders to have appropriate training for dealing with ionizing radiation during nuclear and radiological emergencies'. This publication is intended to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. Its aim is to provide practical guidance for those who will respond during the first few hours to a radiological emergency (referred to here as 'first responders') and for national officials who would support this early response. It provides guidance in the form of action guides, instructions, and supporting data that can be easily applied by a State to build a basic capability to respond to a radiological emergency. This guidance should be adapted to fit the user State's organizational arrangements, language, terminology, concept of operation and capabilities. This report, published as part of the IAEA Emergency Preparedness and Response Series, replaces and builds on IAEA-TECDOC-1162 in the area of early response and first responders' actions. It takes account of the

  18. Emergency response preparedness: the French experience of large scale exercises

    Energy Technology Data Exchange (ETDEWEB)

    Chanson, D.; Desnoyers, B. [COGEMA Logistics (AREVA Group) (France); Chabane, J.M. [Autorite de Surete Nucleaire (Direction Generale de la Surete Nucleaire et de la Radioprotection) (France)

    2004-07-01

    In compliance with the IAEA regulations for the transport of radioactive material in the event of accidents during transport of radioactive material, emergency provisions to protect persons, property and environment have to be established and developed by the relevant national organisations. In France, the prefect of the department where the accident occurs is responsible for decisions and measures required to ensure the protection of both population and property at risk owing to the accident. During an accident, the ministers concerned provide the prefect with recommendations and information, in order to help him take the requisite decisions. On their side, the nuclear industry and transport companies also have to be prepared to intervene and to support the authorities at their request, depending on their capacities and their specialities. To prepare the emergency teams properly and acquire effective emergency plans, training exercises have to be conducted regularly with every ministerial department involved, the nuclear industry and transport companies, members of the public and the media. Then, the feedback from such exercises shall be taken into account to improve the emergency procedures. This paper will introduce: - emergency response preparedness: what is required by the relevant regulations? - emergency response preparedness: how is France organised? - the French experience of conducting large training exercises simulating accidents involving the transport of radioactive material; - the main difficulties and lessons learned; - the perspectives.

  19. Emergency preparedness and response in transport of radioactive material

    International Nuclear Information System (INIS)

    Nuclear power has been providing clean, affordable electricity in many parts of the world for nearly half a century. The national and international transport of nuclear fuel cycle materials is essential to support this activity. To sustain the nuclear power industry, fuel cycle materials have to be transported safely and efficiently. The nature of the industry is such that most countries with large-scale nuclear power industries cannot provide all the necessary fuel services themselves and consequently nuclear fuel cycle transport activities are international. The radioactive material transport industry has an outstanding safety record spanning over 45 years; however the transport of radioactive materials cannot and most not be taken for granted. Efficient emergency preparedness and response in the transport of radioactive material is an important element to ensure the maximum safety in accident conditions. The World Nuclear Transport Institute (WNTI), founded by International Nuclear Services (INS) of the United Kingdom, AREVA of France an the Federation of Electric Power Companies (FEPC) of Japan, represents the collective interest of the radioactive material transport sector, and those who rely on safe, effective and reliable transport. As part of its activities, WNTI has conducted two surveys through its members on emergency preparedness and response in the transport of radioactive material and emergency exercises. After recalling the International Atomic Energy Agency approach on emergency response, this paper will be discussing the main conclusion of surveys, in particular the national variations in emergency response and preparedness on the national and local levels of regulations, the emergency preparedness in place, the emergency response organisation (who and how), communication and exercises. (author)

  20. USGS Emergency Response and the Hazards Data Distribution System (HDDS)

    Science.gov (United States)

    Jones, B. K.; Lamb, R.

    2013-12-01

    Remotely sensed datasets such as satellite imagery and aerial photography can be an invaluable resource to support the response and recovery from many types of emergency events such as floods, earthquakes, landslides, wildfires, and other natural or human-induced disasters. When disaster strikes there is often an urgent need and high demand for rapid acquisition and coordinated distribution of pre- and post-event geospatial products and remotely sensed imagery. These products and images are necessary to record change, analyze impacts, and facilitate response to the rapidly changing conditions on the ground. The coordinated and timely provision of relevant imagery and other datasets is one important component of the USGS support for domestic and international emergency response activities. The USGS Hazards Data Distribution System (HDDS) serves as a single, consolidated point-of-access for relevant satellite and aerial image datasets during an emergency event response. The HDDS provides data visibility and immediate download services through a complementary pair of graphical map-based and traditional directory-based interfaces. This system allows emergency response personnel to rapidly select and obtain pre-event ('baseline') and post-event emergency response imagery from many different sources. These datasets will typically include images that are acquired directly by USGS, but may also include many other types of images that are collected and contributed by partner agencies and organizations during the course of an emergency event response. Over the past decade, USGS Emergency Response and HDDS have supported hundreds of domestic and international disaster events by providing critically needed pre- and post-event remotely sensed imagery and other related geospatial products as required by the emergency response community. Some of the larger national events supported by HDDS have included Hurricane Sandy (2012), the Deepwater Horizon Oil Spill (2010), and Hurricane

  1. A framework for nuclear power plant emergency response system

    International Nuclear Information System (INIS)

    The purpose of this study is to establish an intelligent expert system for nuclear power plant emergency response. A new framework of environmental risk management methodology by the concept of pattern recognition was introduced in this paper. A knowledge-based decision support system for emergency response and risk management of nuclear power plant was also discussed. The mathematical pattern relationship of accidental release effects on neighboring area and the corresponding response measures were presented in this paper. With this decision system, the decision maker can specify the procedure and minimize their human error in the decision process. The improvement of risk response and the quality of management system could be upgraded by this system. Besides, the methodology can also be served as a basis for the future development of environmental risk response system design. (author)

  2. Emergency response to hazardous material incidents (training manual)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This course provides emergency response personnel, primarily firefighters, police officers, and emergency medical services personnel, with the information and skills needed to recognize, evaluate, and control an incident involving the release of potential release of hazardous materials. It is intended for members of hazardous materials response teams. The focus of the course is on recognizing and evaluating a hazardous materials incident, organizing the response team, protecting response personnel, identifying and using response resources, implementing basic control measures, refining decision-making skills, and protecting the public. Topics that are discussed include chemical and physical properties of hazardous materials, toxicology, recognition and identification of hazardous materials, direct-reading instruments, standard operating procedures, personnel protection and safety, and sources of information.

  3. Generic Procedures for Response to a Nuclear or Radiological Emergency at Research Reactors - Training Materials

    International Nuclear Information System (INIS)

    and Informing the Public; Action Guides and Response Priorities; Medical Management Overview; On-scene Emergency Medical Response; Infrastructure Elements; Emergency Monitoring and Assessment; Non-radiological Safety at Research Reactors; Developing Emergency Response Capability - Step-by-step Process; Outlines of Emergency Plans and Procedures; Discussion Problems; Development and Implementation of an Action Plan; Preparation of a Specific Action Plan; Exercise Preparations; Exercise Controller and Evaluator Training. Additionally, the CD contains an example schedule of the core material and a workshop manual. The information is presented in the form of seminars and work sessions. A table top exercise is also included on the CD-ROM for additional training. In addition to these training materials the CD-ROM contains copies of many of the other IAEA publications used as references in the seminars. The core material is suitable for a one-week course; however, there is more material on the CD-ROM than can be effectively presented in this time. A course may be tailored to the needs of the facility by replacing core seminars with others on the disc, or by expanding the course to more than a week, depending on the objectives of the course and existing level of preparedness by the facility.

  4. Experiences from exercises associated with nuclear emergency response in Germany

    International Nuclear Information System (INIS)

    Full text: Responsibilities Regarding Emergency Response in Germany - In the Federal Republic of Germany, the 16 federal state Ministries of the Interior are responsible for emergency response (threat through weapons, explosives, etc.). In the case of threats due to radioactive material experts of the competent federal state radiological protection authorities are consulted. The Federal Office for Radiation Protection assists in serious cases of defence against nuclear hazards (nuclear fuels, criticality, risk of dispersion). Currently, exercises are being performed in all 16 federal states to co-ordinate the ways of behaviour, action and thinking of the various necessary organisational units, like police, deactivators, prosecution officials, radiological protection experts and fire brigade. The joint exercises serve the purpose to practice the total chain of necessary measures like: notification chain, organisation at the place of action, co-ordination of appropriate search strategy, investigation of who was responsible, analysis (X-ray pictures, radiological analysis), activity determination, assessment of possible effects due to deactivation measures, determination of dispersion conditions, recommendation of measures for the protection of responders and the general population and measures to limit the consequences. Given Exercise Scenario - Via the emergency emergency call a situation is transmitted that urgently demands joint and co-ordinated action of prosecution authority, emergency response and radiation protection authority, to be able to master the situation successfully. As a rule this means that one deals with an IED (Improvised Explosive Device) secured by a booby trap with added radioactive substances. Organisation at the Place of Action - Experience shows that as a rule the patrol police and the local fire brigade will be the first to arrive at the place of action, already after a few minutes. Gradually, the other experts arrive. Depending on distance

  5. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Ontario Hydro has been transporting radioactive material for almost 30 years without any release to the environment. There have been three accidents involving Hydro's shipments of radioactive material with no spill of material in any of the incidents. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond and to provide emergency public information in the event of an accident minimizes the risk to the public and the environment. This emphasizes our commitment to worker safety and public safety. Response capability is mandated under various legislation and regulations

  6. Emergency planning and response - role nad responsibilities of the regulatory body

    International Nuclear Information System (INIS)

    The development of a emergency plan and organisation of adequate emergency preparedness in case of radiological accident in NPP cannot be effective without the appropriate preparatory work. In most countries, also in Republic of Bulgaria, several organisations are identified to have a potential role to play in a radiological emergency. For these reason is very important to have a national organisation, with a mandate to organise, inspect and co-ordinate the possibility of ministries and institution to react in case of radiological emergency, i.e. to quarantine the possibility for implementation of adequate counter measure for protection of the population and environment in case of radiological emergency in NPP. For the purposes of the emergency planning and response the NPP operator, ministries and the institutions developed an Emergency plan - NPP Emergency Plan and National Emergency Plan. The development of the emergency plans will be impossible without the good co-operation of the organisations which have a responsibilities in a radiological emergency. Once emergency plans are adopted, each individual organisation, also the NPP operator, must ensure that in can carry out its role effectively in accordance with the emergency plan and can develop the appropriate organisation for action and implementation of protection counter measures. For testing the emergency plans a regular exercise must be organised. Periodic reviews of the plan and modifications, based on actual events and exercise experience must be performed. The main aim of these report is to present the Bulgarian emergency planning organisation and response by explaining the national emergency panning and response legislation, implementation of IAEA recommendations and exercise experience

  7. Assessment of Evacuation Protective Action Strategies For Emergency Preparedness Plan

    International Nuclear Information System (INIS)

    This report which studies about evacuation formation suggests some considerable factors to reduce damage of radiological accidents. Additional details would be required to study in depth and more elements should be considered for updating emergency preparedness. However, this methodology with sensitivity analysis could adapt to specific plant which has total information such as geological data, weather data and population data. In this point of view the evacuation study could be contribute to set up emergency preparedness plan and propose the direction to enhance protective action strategies. In radiological emergency, residents nearby nuclear power plant should perform protective action that is suggested by emergency preparedness plan. The objective of emergency preparedness plan is that damages, such as casualties and environmental damages, due to radioactive accident should be minimized. The recent PAR study includes a number of subjects to improve the quality of protective action strategies. For enhancing protective action strategies, researches that evaluate many factors related with emergency response scenario are essential parts to update emergency preparedness plan. Evacuation is very important response action as protective action strategy

  8. Accident Emergency Response And Routing Software (AERARS using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Naveen Ramachandran,

    2011-07-01

    Full Text Available AERARS is a response and routing software for accident emergency requirement. A method has been proposed in this project for using a genetic algorithm to find the shortest route between a source and adestination. It make use of genetic algorithms ability to search the opt solution from the population helping to solve spatially addressed problem. The numbers of accident spots are plotted in ArcGISenvironment and ten major accident spots are identified. The software package is designed with closest facility estimation and shortest route generation along with other basic software facilities in Visual Basic environment. Genetic algorithm provided a great optimality to the solutions. The closest facility tool helps to estimate the nearest hospital, ambulance, police station and fire station. The shortest route estimation tool generates shortest path between a locations to the hospital or ambulance spot. The various risk zonesare assessed and more safety measures can be taken to reduce the frequency of accident. The software efficiency can be further increased by incorporating GPS and satellite technology.

  9. Medical Preparedness and Response for a Nuclear or Radiological Emergency. Training Materials

    International Nuclear Information System (INIS)

    Syndrome (Local Radiation Injury); • Cytogenetic Dose Assessments; • Psychological Effects of Radiation Emergencies; • Psychosocial Aspects in Radiation Emergencies • Use of Detection Equipment; • Communication with the Public; • International Emergency Preparedness and Response Framework; • Medical Management On-site and at Pre-hospital Levels; • Hospital Preparedness and Management of Persons Accidentally Exposed to Ionizing Radiation; • Iodine Thyroid Blocking and Other Response Actions; • Lessons Learned from Past Nuclear and Radiological Emergencies. The information is presented in the form of lectures and supplementary materials for drills and tabletop exercises, including a sample triage tag and victim cards. In addition, the CD-ROM contains information on frequently asked questions and suggested answers, a basic and an advanced pre-test, a review test and pocket guides for medical responders at pre-hospital and hospital levels

  10. Oil supply security -- Emergency response of IEA countries 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-29

    When Hurricane Katrina hit the Gulf of Mexico in 2005, the region's oil production and refining infrastructure was devastated and world energy markets were disrupted. The International Energy Agency decided in a matter of days to bring 60 million barrels of additional oil to the market. The emergency response system worked - the collective action helped to stabilise global markets. Since its founding in 1974, oil supply security has been a core mission of the IEA and the Agency has improved its mechanisms to respond to short-term oil supply disruptions. Nevertheless, numerous factors will continue to test the delicate balance of supply and demand. Oil demand growth will continue to accelerate in Asia; oil will be increasingly produced by a shrinking number of countries; and capacities in the supply chain will need to expand. These are just a few of the challenges facing an already tight market. What are the emergency response systems of IEA countries? How are their emergency structures organised? How prepared is the IEA to deal with an oil supply disruption? This publication addresses these questions. It presents another cycle of rigorous reviews of the emergency response mechanisms of IEA member countries. The goal of these reviews is to ensure that the IEA stays ready to respond effectively to oil supply disruptions. This publication also includes overviews of how China, India and countries of Southeast Asia are progressing with domestic policies to improve oil supply security, based on emergency stocks.

  11. Exploring Interoperability as a Multidimensional Challenge for Effective Emergency Response

    Science.gov (United States)

    Santisteban, Hiram

    2010-01-01

    Purpose. The purpose of this research was to further an understanding of how the federal government is addressing the challenges of interoperability for emergency response or crisis management (FEMA, 2009) by informing the development of standards through the review of current congressional law, commissions, studies, executive orders, and…

  12. Concerns Go to Disaster's Impact on Economy and Emergency Response

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ On May 12,2008,NSFC's Department of Management Sciences held a meeting to initiate a program on Disaster Impact on China's Economy and the Emergency Response.Nine research groups were granted in this program through the Department Director's Fund.

  13. Consumer response to food labels in an emerging market

    DEFF Research Database (Denmark)

    Festila, Alexandra Florina; Chrysochou, Polymeros; Krystallis Krontalis, Athanasios

    2014-01-01

    This study investigates consumer response to food labels in an emerging market. More specifically, it measures the levels of awareness, objective and perceived understanding, perceived usefulness and perceived trustworthiness of the most prominent food labels found in the Romanian market. An online...

  14. Application of Robotic System for Emergency Response in NPP

    International Nuclear Information System (INIS)

    Increasing energy demand and concerns over climate change make increasing use of nuclear power plant in worldwide. Even though the probability of accident is greatly reduced, safety is the highest priority issue in the nuclear energy industry. Applying highly reliable and conservative 'defense in depth' concepts with the design and construction of NPP, there are very little possibilities with which accidents are occur and radioactive materials are released to environments in NPP. But NPP have prepared with the emergency response procedures and conduct exercises for post-accident circumstance according to the procedures. The application of robots for emergency response task for post-accident in nuclear facilities is not a new concept. Robots have been sent to recover the damaged reactor at Chernobyl where human workers could receive a lifetime dose of radiation in minutes. Based on NRC's TMI-2 Cleanup Program, several robots were built in the 1980s to help gather information and remove debris from a reactor at the Three Mile Island nuclear power plant that partially melted down in 1979. The first robot was lowered into the basement through a hatch and human operators monitoring in a control room drove it through mud, water and debris, capturing the initial post-accident images of the reactor's basement. It was used for several years equipped with various tools allowing it to scour surfaces, scoop samples and vacuum sludge. A second version carried a core sampler to determine the intensity and depth of the radiation that had permeated into the walls. To perform cleanup tasks, they built Workhorse that featured system redundancy and had a boom extendable to reach high places, but it was never used because it had too many complexities and to clean and fix. While remote robotics technology has proven to remove the human from the radioactive environment, it is also difficult to make it useful because it may requires skill about remote control and obtaining remote

  15. Response in the late phase to a radiological emergency

    International Nuclear Information System (INIS)

    Full text: This paper will look at the key issues that need to be addressed during the transition from the emergency phase to the recovery phase, and the development of the initial recovery strategy. It will then discuss the extent to which current national plans and international advice address the needs of decision makers following contamination of inhabited areas and food production systems. Since the events of September 11th 2001, attention is becoming increasingly focussed on the response to the deliberate dispersal of radioactive material, eg so called 'dirty bombs' or deliberate contamination of the food supply. Whilst some aspects of the response to a dirty bomb will be similar to those for a nuclear accident, in other respects such deliberate dispersal will pose additional challenges (e.g. identification of the radionuclide(s) involved, likely dispersion from within an urban area for dirty bombs, identification of the geographical spread of foods contaminated). This papers also considers the extent to which existing arrangements and assessments underpinning nuclear accident response would need modification/upgrading for response to deliberate dispersal. In the transition from the emergency phase to the recovery phase, decision makers will be under pressure to make rapid decisions concerning the lifting of countermeasures implemented during the emergency phase and the need for further measures. A failure to respond promptly will leave an information void in which other, self-styled, experts will advertise their solutions, thereby adding to the pressure. This may then lead to a loss of confidence by the public, and make it more difficult to develop a practicable recovery strategy that is also acceptable to those affected. However, if decisions are made without a full understanding of the contamination pattern and its likely future impact, then it is possible that promises or actions taken early on will need to be reversed as a fuller understanding of the

  16. Assessment of Emergency Preparedness Modules in Introductory Pharmacy Practice Experiences

    Science.gov (United States)

    von Waldner, Trina; McEwen, Deanna W.; White, Catherine A.

    2016-01-01

    Objective. To determine the impact of emergency preparedness simulations in mass triage and mass dispensing on student pharmacist performance and perceived competency when assuming pharmacist roles in disaster situations. Design. Second-year student pharmacists (144) completed two 3-hour simulations focusing on mass triage and mass dispensing. The mass triage simulation consisted of virtual and live victims to be triaged and assigned a transport order. In the mass dispensing simulation, students assumed patient and pharmacist roles in a point-of-dispensing exercise for influenza. Assessment. For the mass triage simulation, students were challenged most by determining which patients could wait for emergency care but did well assessing those who required immediate or minimal care (83% and 64% correct, respectively). During the mass dispensing simulation, students performed screening and dispensing functions with accuracy rates of 88% and 90%, respectively. Conclusion. Student pharmacists performed well in screening and dispensing functions, but struggled with mass casualty triage during emergency preparedness simulations. PMID:27073276

  17. Assessment of Emergency Preparedness Modules in Introductory Pharmacy Practice Experiences.

    Science.gov (United States)

    Hannings, Ashley N; von Waldner, Trina; McEwen, Deanna W; White, Catherine A

    2016-03-25

    Objective. To determine the impact of emergency preparedness simulations in mass triage and mass dispensing on student pharmacist performance and perceived competency when assuming pharmacist roles in disaster situations. Design. Second-year student pharmacists (144) completed two 3-hour simulations focusing on mass triage and mass dispensing. The mass triage simulation consisted of virtual and live victims to be triaged and assigned a transport order. In the mass dispensing simulation, students assumed patient and pharmacist roles in a point-of-dispensing exercise for influenza. Assessment. For the mass triage simulation, students were challenged most by determining which patients could wait for emergency care but did well assessing those who required immediate or minimal care (83% and 64% correct, respectively). During the mass dispensing simulation, students performed screening and dispensing functions with accuracy rates of 88% and 90%, respectively. Conclusion. Student pharmacists performed well in screening and dispensing functions, but struggled with mass casualty triage during emergency preparedness simulations. PMID:27073276

  18. Technical Support Center and Its Role in a Nuclear Emergency Response Preparedness

    International Nuclear Information System (INIS)

    Full text: Generally, there are at least five major processes or functions that have to be implemented during a nuclear emergency. These are: (1) notification and activation of responsible emergency organisations, (2) data collection and preparation of technical bases relevant for decisions in the field, (3) decision making process, (4) protective measures implementation, and (5) watching the actions that are decided to be taken. In order to fulfil mentioned functions the nuclear emergency response scheme should be properly organised, responsibilities of each organisation involved should be clearly allocated, emergency plans should be developed in details and the staff should be sufficiently equipped and well-trained. In the paper, nuclear emergency response scheme developed in Croatia is briefly described. Special attention is devoted to the Technical Support Centre (TSC) that is, in accordance with international recommendations, established as the lead technical agency. The basic role of TSC is in collecting data and information about the accident, analysing and estimating its development and assessing possible radiological consequences. By this way TSC staff is responsible to prepare the technical bases for making decisions on protective actions that should be taken. This request applies to the urgent as well as the longer-term countermeasures. TSC is required to forward those bases to the Civil Protection Crisis Headquarters (CPCH) which is responsible not just to make such decisions, but to implement them and watch their implementation. (author)

  19. Establishment of exposure dose assessment laboratory in National Radiation Emergency Medical Center (NREMC)

    International Nuclear Information System (INIS)

    As unclear industry grown, 432 of the nuclear power plants are operating and 52 of NPPs are under construction currently. Increasing use of radiation or radioisotopes in the field of industry, medical purpose and research such as non-destructive examination, computed tomography and x-ray, etc. constantly. With use of nuclear or radiation has incidence possibility for example the Fukushima NPP incident, the Goiania accident and the Chernobyl Nuclear accident. Also the risk of terror by radioactive material such as Radiological Dispersal Device(RDD) etc. In Korea, since the 'Law on protection of nuclear facilities and countermeasure for radioactive preparedness was enacted in 2003, the Korean institute of Radiological and Medical Sciences(KIRAMS) was established for the radiation emergency medical response in radiological disaster due to nuclear accident, radioactive terror and so on. Especially National Radiation Emergency Medical Center(NREMC) has the duty that is protect citizens from nuclear, radiological accidents or radiological terrors through the emergency medical preparedness. The NREMC was established by the 39-article law on physical protection of nuclear material and facilities and measures for radiological emergencies. Dose assessment or contamination survey should be performed which provide the radiological information for medical response. For this reason, the NREMC establish and re-organized dose assessment system based on the existing dose assessment system of the NREMC recently. The exposure dose could be measured by physical and biological method. With these two methods, we can have conservative dose assessment result. Therefore the NREMC established the exposure dose assessment laboratory which was re-organized laboratory space and introduced specialized equipment for dose assessment. This paper will report the establishment and operation of exposure dose assessment laboratory for radiological emergency response and discuss how to enhance

  20. Development of a Rapidly Deployed Department of Energy Emergency Response Element

    International Nuclear Information System (INIS)

    The Federal Radiological Emergency Response Plan (FRERP) directs the Department of Energy (DOE) to maintain a viable, timely, and fully documented response option capable of supporting the responsible Lead Federal Agency in the event of a radiological emergency impacting any state or US territory (e.g., CONUS). In addition, the DOE maintains a response option to support radiological emergencies outside the continental US (OCONUS). While the OCUNUS mission is not governed by the FREP, this response is operationally similar to that assigned to the DOE by the FREP. The DOE is prepared to alert, activate, and deploy radiological response teams to augment the Radiological Assistance Program and/or local responders. The Radiological Monitoring and Assessment Center (RMAC) is a phased response that integrates with the Federal Radiological Monitoring and Assessment Center (FRMAC) in CONUS environments and represents a stand-alone DOE response for OCONUS environments. The FRMAC/RMAC Phase I was formally ''stood up'' as an operational element in April 1999. The FRMAC/RMAC Phase II proposed ''stand-up'' date is midyear 2000

  1. Methodology for Estimating Ingestion Dose for Emergency Response at SRS

    CERN Document Server

    Simpkins, A A

    2002-01-01

    At the Savannah River Site (SRS), emergency response models estimate dose for inhalation and ground shine pathways. A methodology has been developed to incorporate ingestion doses into the emergency response models. The methodology follows a two-phase approach. The first phase estimates site-specific derived response levels (DRLs) which can be compared with predicted ground-level concentrations to determine if intervention is needed to protect the public. This phase uses accepted methods with little deviation from recommended guidance. The second phase uses site-specific data to estimate a 'best estimate' dose to offsite individuals from ingestion of foodstuffs. While this method deviates from recommended guidance, it is technically defensibly and more realistic. As guidance is updated, these methods also will need to be updated.

  2. Plume trajectory prediction for use in radiological emergency response planning

    International Nuclear Information System (INIS)

    The SAI multi puff steered plume model was developed for the State of Illinois to aid in emergency response planning. The plume is driven by either user input meteorological data or real-time remote tower data. Realistic steering is accomplished by dividing the plume into small puffs, each of which is individually responsive to wind direction changes. The steered plume is displayed against a topographical background on plotters and color graphics terminals. The background maps, showing realistic local details such as towns and rivers, may be varied both by scale and by amount of detail requested, including an emergency zone overlay. Up to ten contour levels representing nuclide concentrations and various exposure modes may be displayed. A sample scenario is discussed involving a hypothetical non-continuous release under changing meteorological conditions. Slides showing the progress of the plume and displaying contours of gamma dose rate and gamma dose are presented. The Illinois Department of Nuclear Safety emergency response actions for this sample scenario are discussed. The recommendations for evacuation of shelter are based on the predicted doses within specified zones. After an incident, decisions must be made about reentry based in part on deposition and ingestion pathways. Slides showing contour plots of these quantities are shown and the results plotted are analyzed from the point of view of emergency planning

  3. Research on Sensor Cooperation for Distributed Emergency Response System

    Directory of Open Access Journals (Sweden)

    Haoming Guo

    2012-04-01

    Full Text Available With advantages of IOT (internet of things and sensor technique, a new communication mechanism between sensors is enhanced upon which distributed emergency response systems are built. This mechanism enables sensors to cooperate with each other in a decentralized way to improve efficiency in case of emergencies. During the process, the alert messages are exchanged among sensors cooperatively to prepare and implement monitoring activities. The system center won’t be overloaded by flooding messages. However, due to the lack of centralized information processing, there will be message loops and identity confusions, which would affect system’s reliability and credibility. For this problem, an approach called Decentralized Message Broadcasting Process is introduced to address the issue. In the approach, a message protocol is developed. The sensors are wrapped as device node services and work as message relay stations when they receive messages from others. Messages are utilized not only as information about event but also as reference to identify and filter. The requirement of reliability and credibility over the distributed emergency response system is achieved. Upon the approach, a platform is built for CEA’ SPON to support the decentralized earthquake emergency response research applications.

  4. Identifying and training non-technical skills of nuclear emergency response teams

    International Nuclear Information System (INIS)

    Training of the non-technical (social and cognitive) skills that are crucial to safe and effective management by teams in emergency situations is an issue that is receiving increasing emphasis in many organisations, particularly in the nuclear power industry. As teams play a major role in emergency response organisations (ERO), effective functioning and interactions within, between and across teams is crucial, particularly as the management of an emergency situation often requires that teams are extended by members from various other sections and strategic groups throughout the company, as well as members of external agencies. A series of interviews was recently conducted with members of a UK nuclear emergency response organisation to identify the non-technical skills required by team members that would be required for managing an emergency. Critical skills have been identified as decision making and situation assessment, as well as communication, teamwork, and stress management. A number of training strategies are discussed which can be tailored to the roles and responsibilities of the team members and the team leader, based on the roles within the team being defined as either Decision Maker, Evaluator, or Implementor, according to Nuclear Energy Institute (NEI) classifications. It is anticipated that enhanced learning of the necessary non-technical skills, through experience and directed practice, will improve the skills of members of emergency response teams

  5. Improving Emergency Response and Human-Robotic Performance

    Energy Technology Data Exchange (ETDEWEB)

    David I. Gertman; David J. Bruemmer; R. Scott Hartley

    2007-08-01

    Preparedness for chemical, biological, and radiological/nuclear incidents at nuclear power plants (NPPs) includes the deployment of well trained emergency response teams. While teams are expected to do well, data from other domains suggests that the timeliness and accuracy associated with incident response can be improved through collaborative human-robotic interaction. Many incident response scenarios call for multiple, complex procedure-based activities performed by personnel wearing cumbersome personal protective equipment (PPE) and operating under high levels of stress and workload. While robotic assistance is postulated to reduce workload and exposure, limitations associated with communications and the robot’s ability to act independently have served to limit reliability and reduce our potential to exploit human –robotic interaction and efficacy of response. Recent work at the Idaho National Laboratory (INL) on expanding robot capability has the potential to improve human-system response during disaster management and recovery. Specifically, increasing the range of higher level robot behaviors such as autonomous navigation and mapping, evolving new abstractions for sensor and control data, and developing metaphors for operator control have the potential to improve state-of-the-art in incident response. This paper discusses these issues and reports on experiments underway intelligence residing on the robot to enhance emergency response.

  6. Improving Emergency Response and Human-Robotic Performance

    International Nuclear Information System (INIS)

    Preparedness for chemical, biological, and radiological/nuclear incidents at nuclear power plants (NPPs) includes the deployment of well trained emergency response teams. While teams are expected to do well, data from other domains suggests that the timeliness and accuracy associated with incident response can be improved through collaborative human-robotic interaction. Many incident response scenarios call for multiple, complex procedure-based activities performed by personnel wearing cumbersome personal protective equipment (PPE) and operating under high levels of stress and workload. While robotic assistance is postulated to reduce workload and exposure, limitations associated with communications and the robot's ability to act independently have served to limit reliability and reduce our potential to exploit human -robotic interaction and efficacy of response. Recent work at the Idaho National Laboratory INL on expanding robot capability has the potential to improve human-system response during disaster management and recovery. Specifically, increasing the range of higher level robot behaviors such as autonomous navigation and mapping, evolving new abstractions for sensor and control data, and developing metaphors for operator control have the potential to improve state-of-the-art in incident response. This paper discusses these issues and reports on experiments underway intelligence residing on the robot to enhance emergency response

  7. Learning from Japan: strengthening US emergency care and disaster response.

    Science.gov (United States)

    Parmar, Parveen; Arii, Maya; Kayden, Stephanie

    2013-12-01

    As Hurricane Katrina demonstrated in 2005, US health response systems for disasters-typically designed to handle only short-term mass-casualty events-are inadequately prepared for disasters that result in large-scale population displacements. Similarly, after the 2011 Great East Japan Earthquake, Japan found that many of its disaster shelters failed to meet international standards for long-term provision of basic needs and health care for the vulnerable populations that sought refuge in the shelters. Hospital disaster plans had not been tested and turned out to be inadequate, and emergency communication equipment did not function. We make policy recommendations that aim to improve US responses to mass-displacement disasters based on Japan's 2011 experience. First, response systems must provide for the extended care of large populations of chronically ill and vulnerable people. Second, policies should ensure that shelters meet or exceed international standards for the provision of food, water, sanitation, and privacy. Third, hospital disaster plans should include redundant communication systems and sufficient emergency provisions for both staff and patients. Finally, there must be routine drills for responses to mass-displacement disasters so that areas needing improvement can be uncovered before an emergency occurs.

  8. Bridging Scientific Model Outputs with Emergency Response Needs in Catastrophic Earthquake Responses

    Science.gov (United States)

    Johannes, Tay W.

    2010-01-01

    In emergency management, scientific models are widely used for running hazard simulations and estimating losses often in support of planning and mitigation efforts. This work expands utility of the scientific model into the response phase of emergency management. The focus is on the common operating picture as it gives context to emergency…

  9. Satellite image collection modeling for large area hazard emergency response

    Science.gov (United States)

    Liu, Shufan; Hodgson, Michael E.

    2016-08-01

    Timely collection of critical hazard information is the key to intelligent and effective hazard emergency response decisions. Satellite remote sensing imagery provides an effective way to collect critical information. Natural hazards, however, often have large impact areas - larger than a single satellite scene. Additionally, the hazard impact area may be discontinuous, particularly in flooding or tornado hazard events. In this paper, a spatial optimization model is proposed to solve the large area satellite image acquisition planning problem in the context of hazard emergency response. In the model, a large hazard impact area is represented as multiple polygons and image collection priorities for different portion of impact area are addressed. The optimization problem is solved with an exact algorithm. Application results demonstrate that the proposed method can address the satellite image acquisition planning problem. A spatial decision support system supporting the optimization model was developed. Several examples of image acquisition problems are used to demonstrate the complexity of the problem and derive optimized solutions.

  10. Cardiac Emergency Response Planning for Schools: A Policy Statement.

    Science.gov (United States)

    Rose, Kathleen; Martin Goble, Monica; Berger, Stuart; Courson, Ron; Fosse, Gwen; Gillary, Randall; Halowich, Joe; Indik, Julia H; Konig, Madeleine; Lopez-Anderson, Martha; Murphy, M Kathleen; Newman, Mary M; Ranous, Jeff; Sasson, Comilla; Taras, Howard; Thompson, Allison

    2016-09-01

    A sudden cardiac arrest in school or at a school event is potentially devastating to families and communities. An appropriate response to such an event-as promoted by developing, implementing, and practicing a cardiac emergency response plan (CERP)-can increase survival rates. Understanding that a trained lay-responder team within the school can make a difference in the crucial minutes between the time when the victim collapses and when emergency medical services arrive empowers school staff and can save lives. In 2015, the American Heart Association convened a group of stakeholders to develop tools to assist schools in developing CERPs. This article reviews the critical components of a CERP and a CERP team, the factors that should be taken into account when implementing the CERP, and recommendations for policy makers to support CERPs in schools. PMID:27486226

  11. Ontario Hydro's transportation of radioactive material and emergency response plan

    International Nuclear Information System (INIS)

    Ontario Hydro has been transporting radioactive material for almost 30 years without any exposure to the public or release to the environment. However, there have been three accidents involving Hydro's shipments of radioactive material. In addition to the quality packaging and shipping program, Ontario Hydro has an Emergency Response Plan and capability to deal with an accident involving a shipment of radioactive material. The Corporation's ability to respond, to effectively control and contain the situation, site remediation, and to provide emergency public information in the event of a road accident minimizes the risk to the public and the environment. This emphasizes their commitment to worker safety, public safety and impact to the environment. Response capability is mandated under various legislation and regulations in Canada

  12. Regional frequency response analysis under normal and emergency conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bevrani, Hassan [Department of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, PO Box 416 (Iran); Ledwich, Gerard; Ford, Jason J. [School of Engineering Systems, Queensland University of Technology, Brisbane, Qld 4001 (Australia); Dong, Zhao Yang [Department of Electrical Engineering, The Hong Kong Polytechnic University (China)

    2009-05-15

    This paper presents a frequency response analysis approach suitable for a power system control area in a wide range of operating conditions. The analytic approach uses the well-known system frequency response model for the turbine-governor and load units to obtain the mathematical representation of the basic concepts. Primary and supplementary frequency controls are properly considered and the effect of emergency control/protection schemes is included. Therefore, the proposed analysis/modeling approach could be grainfully used for the power system operation during the contingency and normal conditions. Time-domain nonlinear simulations with a power system example showed that the results agree with those predicted analytically. (author)

  13. Combining internet technology and mobile phones for emergency response management

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E. [Icelandic Radiation Protection Inst. (Finland)

    2002-12-01

    The report is intended for persons involved in radiological emergency response management. An introduction is given to the technical basis of the mobile Internet and ongoing development summarised. Examples are given describing how mobile Internet technology has been used to improve monitoring media coverage of incidents and events, and a test is described where web based information was selectively processed and made available to WAP enabled mobile phones. The report concludes with recommendations stressing the need for following mobile Internet developments and taking them into account when designing web applications for radiological response management. Doing so can make web based material accessible to mobile devices at minimal additional cost. (au)

  14. Emerging applications of stimuli-responsive polymer materials

    Science.gov (United States)

    Stuart, Martien A. Cohen; Huck, Wilhelm T. S.; Genzer, Jan; Müller, Marcus; Ober, Christopher; Stamm, Manfred; Sukhorukov, Gleb B.; Szleifer, Igal; Tsukruk, Vladimir V.; Urban, Marek; Winnik, Françoise; Zauscher, Stefan; Luzinov, Igor; Minko, Sergiy

    2010-02-01

    Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa. These materials are playing an increasingly important part in a diverse range of applications, such as drug delivery, diagnostics, tissue engineering and 'smart' optical systems, as well as biosensors, microelectromechanical systems, coatings and textiles. We review recent advances and challenges in the developments towards applications of stimuli-responsive polymeric materials that are self-assembled from nanostructured building blocks. We also provide a critical outline of emerging developments.

  15. Combining internet technology and mobile phones for emergency response management

    International Nuclear Information System (INIS)

    The report is intended for persons involved in radiological emergency response management. An introduction is given to the technical basis of the mobile Internet and ongoing development summarised. Examples are given describing how mobile Internet technology has been used to improve monitoring media coverage of incidents and events, and a test is described where web based information was selectively processed and made available to WAP enabled mobile phones. The report concludes with recommendations stressing the need for following mobile Internet developments and taking them into account when designing web applications for radiological response management. Doing so can make web based material accessible to mobile devices at minimal additional cost. (au)

  16. Emergency notification and assistance technical operations manual. Emergency preparedness and response. Date effective: 1 February 2007

    International Nuclear Information System (INIS)

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear or radiological emergency, with the aim of minimizing the consequences. The International Atomic Energy Agency has specific functions assigned to it under these Conventions, to which, in addition to a large number of States, the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full parties. The arrangements provided between the IAEA, States that are IAEA Member States and/or Parties to one or both Conventions, all other relevant international intergovernmental organizations, and other States for facilitating the implementation of these Conventions - specifically concerning those articles that are operational in nature - are documented in the Emergency Notification and Assistance Technical Operations Manual (ENATOM). ENATOM was first issued on 18 January 1989. Member States, Parties to the Early Notification and Assistance Conventions, relevant international organizations and other States have since then regularly received updates to the manual. In 2000, a complete revision of ENATOM was reissued as EPR-ENATOM (2000) to reflect technological developments, changes in operational concepts, views on standards in the area of emergency preparedness and response, and Member States' expectations. Since then ENATOM has been reviewed and reissued biennially in line with the review cycle of the Joint Radiation Emergency Management Plan of the International Organizations (the 'Joint Plan'). Since the last edition of ENATOM in 2004, several factors have warranted some modifications to

  17. Assessment and management of bullied children in the emergency department.

    Science.gov (United States)

    Waseem, Muhammad; Ryan, Mary; Foster, Carla Boutin; Peterson, Janey

    2013-03-01

    Bullying is an important public health issue in the United States. Up to 30% of children report exposure to such victimization. Not only does it hurt bully victim, but it also negatively impacts the bully, other children, parents, school staff, and health care providers. Because bullying often presents with accompanying serious emotional and behavioral symptoms, there has been an increase in psychiatric referrals to emergency departments. Emergency physicians may be the first responders in the health care system for bullying episodes. Victims of bullying may present with nonspecific symptoms and be reluctant to disclose being victimized, contributing to the underdiagnosis and underreporting of bully victimization. Emergency physicians therefore need to have heightened awareness of physical and psychosocial symptoms related to bullying. They should rapidly screen for bullying, assess for injuries and acute psychiatric issues that require immediate attention, and provide appropriate referrals such as psychiatry and social services. This review defines bullying, examines its presentations and epidemiology, and provides recommendations for the assessment and evaluation of victims of bullying in the emergency department. PMID:23462401

  18. ASSESSMENT OF THE ORGANIZATIONAL CULTURE OF THE COUNTY EMERGENCY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Gavrilescu Liviu

    2010-07-01

    Full Text Available The study proposes assessing the organizational culture of the County Emergency Hospital “Dr. Constantine Opris” of Baia Mare, as a basis for developing a strategic plan to facilitate the successful implementation of organizational goals and objectives. As research instruments were used: OCAI (Organizational Culture Assessment Instrument and the semi-structured interview. The identified organizational culture of the County Emergency Hospital “Dr. Constantin Opris” has characteristics of a weak culture with strong hierarchical accents. Regarding the preferred situation, is obvious the predilection for type clan culture values, based on participation, group cohesion and individual development. The results obtained from the application of the OCAI questionnaire reveals a mismatch between current organizational culture and preferred organizational culture, which requires adapting to contemporary society.

  19. Survey of state and tribal emergency response capabilities for radiological transportation incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vilardo, F J; Mitter, E L; Palmer, J A; Briggs, H C; Fesenmaier, J [Indiana Univ., Bloomington, IN (USA). School of Public and Environmental Affairs

    1990-05-01

    This publication is the final report of a project to survey the fifty states, the District of Columbia, Puerto Rico, and selected Indian Tribal jurisdictions to ascertain their emergency-preparedness planning and capabilities for responding to transportation incidents involving radioactive materials. The survey was conducted to provide the Nuclear Regulatory Commission and other federal agencies with information concerning the current level of emergency-response preparedness of the states and selected tribes and an assessment of the changes that have occurred since 1980. There have been no major changes in the states' emergency-response planning strategies and field tactics. The changes noted included an increased availability of dedicated emergency-response vehicles, wider availability of specialized radiation-detection instruments, and higher proportions of police and fire personnel with training in the handling of suspected radiation threats. Most Indian tribes have no capability to evaluate suspected radiation threats and have no formal relations with emergency-response personnel in adjacent states. For the nation as a whole, the incidence of suspected radiation threats declined substantially from 1980 to 1988. 58 tabs.

  20. WMD first response: requirements, emerging technologies, and policy implications

    Energy Technology Data Exchange (ETDEWEB)

    Vergino, E S; Hoehn, W E

    2000-06-19

    In the US today, efforts are underway to defend against the possible terrorist use of weapons of mass destruction (WMD) against US cities. These efforts include the development and adaptation of technologies to support prevention and detection, to defend against a possible attack, and, if these fail, to provide both mitigation responses and attribution for a WMD incident. Technologies under development span a range of systems, from early detection and identification of an agent or explosive, to diagnostic and systems analysis tools; and to forensic analysis for law enforcement. Also, many techniques and tools that have been developed for other applications are being examined to determine whether, with some modification, they could be of use by the emergency preparedness, public health, and law enforcement communities. However, anecdotal evidence suggests the existence of a serious disconnect between the technology development communities and these user communities. This disconnect arises because funding for technology development is derived primarily from sources (principally federal agencies) distant from the emergency response communities, which are predominantly state, county, or local entities. Moreover, the first responders with whom we have worked candidly admit that their jurisdictions have been given, or have purchased for them, a variety of technological devices, typically without consulting the emergency responders about their utility. In private discussions, emergency responders derisively refer to these as a closet full of useless toys. Technology developers have many new and relevant technologies currently in the development pipeline, but most have not been adequately vetted against the field needs or validated for field use. The Center for Global Security Research at the Lawrence Livermore National Laboratory and the Sam Nunn School of International Affairs at the Georgia Institute of Technology recently sponsored a two-day workshop to bring together

  1. Image and Imaging an Emergency Department: Expense and Benefit of Different Quality Assessment Methods

    Directory of Open Access Journals (Sweden)

    Carmen Andrea Pfortmueller

    2013-01-01

    Full Text Available Introduction. In this era of high-tech medicine, it is becoming increasingly important to assess patient satisfaction. There are several methods to do so, but these differ greatly in terms of cost, time, and labour and external validity. The aim of this study is to describe and compare the structure and implementation of different methods to assess the satisfaction of patients in an emergency department. Methods. The structure and implementation of the different methods to assess patient satisfaction were evaluated on the basis of a 90-minute standardised interview. Results. We identified a total of six different methods in six different hospitals. The average number of patients assessed was 5012, with a range from 230 (M5 to 20 000 patients (M2. In four methods (M1, M3, M5, and M6, the questionnaire was composed by a specialised external institute. In two methods, the questionnaire was created by the hospital itself (M2, M4.The median response rate was 58.4% (range 9–97.8%. With a reminder, the response rate increased by 60% (M3. Conclusion. The ideal method to assess patient satisfaction in the emergency department setting is to use a patient-based, in-emergency department-based assessment of patient satisfaction, planned and guided by expert personnel.

  2. Avertable dose intervention applied in emergency response dose evaluation system for nuclear emergency preparedness in Taiwan

    International Nuclear Information System (INIS)

    In Taiwan the new guides for the nuclear emergency public protective action were laid down by the Atomic Energy Council (AEC) of Executive Yuan, Taiwan, ROC on July 15th, 2005. The main modifications of the guides are that the avertable dose is applied as the intervention levels and suggests the public protective actions. The emergency response dose evaluation system named RPDOSE, which was developed in 2005, was employed in this work to enhance the capability of the avertable dose evaluation for the villages in the emergency planning zone (EPZ). The period of the long-term weather forecasting data was extended from 4 to 8 days to satisfy the requirement of avertable dose computing. According to the intervention levels, the RPDOSE system is used to calculate the avertable dose and suggest appropriate public protective actions such as sheltering, evacuation or iodine prophylaxis as well as the proposed acting times for each village in the EPZ. This system was employed and examined in the annual nuclear emergency exercise of 2008 in the Maanshan nuclear power plant.

  3. Emergency response guide for Point Lepreau area residents

    International Nuclear Information System (INIS)

    The design, construction and operating procedures of CANDU nuclear generating stations ensure that an accident causing a significant risk to people living near these stations is extremely unlikely. However, despite the excellent safety record of nuclear stations, it is common practice to prepare an emergency plan for such facilities. In this regard, The New Brunswick Emergency Measures Organization is responsible for developing and implementing the Off-Site Emergency Plan for the Point Lepreau Generating Station. Work for the Off-Site Emergency Plan began in 1976 and, under the leadership of N.B.E.M.O., a number of government agencies co-operated in this project. The completed plan thus represents agreement among a number of Province of New Brunswick departments, various community groups, NB Power, and representatives of the Government of Canada. Also, information gathered in the annual door-to-door survey of the Lepreau area enabled government planners to make specialized arrangements such as an extensive warden service, a siren system, and evacuation assistance for the disabled

  4. The application of mobile satellite services to emergency response communications

    Science.gov (United States)

    Freibaum, J.

    1980-01-01

    The application of an integrated satellite/terrestrial emergency response communications system in disaster relief operations is discussed. Large area coverage communications capability, full-time availability, a high degree of mobility, plus reliability, are pointed out as criteria for an effective emergency communications system. Response time is seen as a major factor determining the possible survival and/or protection of property. These criteria, can not be met by existing communications systems and complete blackouts were experienced during the past decades caused by either interruption or destruction of existing power lines, and overload or inadequacy of remaining lines. Several emergency cases, caused by either hurricanes, tornados, or floods, during which communication via satellite was instrumental to inform rescue and relief teams, are described in detail. Seismic Risk Maps and charts of Major Tectonic Plates Earthquake Epicenters are given, and it is noted that, 35 percent of the U.S. population is living in critical areas. National and international agreements for the implementation of a satellite-aided global Search and Rescue Program is mentioned. Technological and economic breakthroughs are still needed in large multibeam antennas, switching circuits, and low cost mobile ground terminals. A pending plan of NASA to initiate a multiservice program in 1982/83, with a Land Mobile Satellite capability operating in the 806 - 890 MHz band as a major element, may help to accelerate the needed breakthroughs.

  5. Development of emergency response support system for accident management

    International Nuclear Information System (INIS)

    Specific measures for the accident management (AM) are proposed to prevent the severe accident and to mitigate their effects in order to upgrade the safety of nuclear power plants even further. To ensure accident management effective, it is essential to grasp the plant status accurately. In consideration of the above mentioned background, the Emergency Response Support System (ERSS) was developed as a computer assisted prototype system by a joint study of Japanese BWR group. This system judges and predicts the plant status at the emergency condition in a nuclear power plant. This system displays the results of judgment and prediction. The effectiveness of the system was verified through the test and good prospects for applying the system to a plant was obtained. 7 refs., 10 figs

  6. TWO-GRAPH BUILDING INTERIOR REPRESENTATION FOR EMERGENCY RESPONSE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    P. Boguslawski

    2016-06-01

    Full Text Available Nowadays, in a rapidly developing urban environment with bigger and higher public buildings, disasters causing emergency situations and casualties are unavoidable. Preparedness and quick response are crucial issues saving human lives. Available information about an emergency scene, such as a building structure, helps for decision making and organizing rescue operations. Models supporting decision-making should be available in real, or near-real, time. Thus, good quality models that allow implementation of automated methods are highly desirable. This paper presents details of the recently developed method for automated generation of variable density navigable networks in a 3D indoor environment, including a full 3D topological model, which may be used not only for standard navigation but also for finding safe routes and simulating hazard and phenomena associated with disasters such as fire spread and heat transfer.

  7. Two-Graph Building Interior Representation for Emergency Response Applications

    Science.gov (United States)

    Boguslawski, P.; Mahdjoubi, L.; Zverovich, V.; Fadli, F.

    2016-06-01

    Nowadays, in a rapidly developing urban environment with bigger and higher public buildings, disasters causing emergency situations and casualties are unavoidable. Preparedness and quick response are crucial issues saving human lives. Available information about an emergency scene, such as a building structure, helps for decision making and organizing rescue operations. Models supporting decision-making should be available in real, or near-real, time. Thus, good quality models that allow implementation of automated methods are highly desirable. This paper presents details of the recently developed method for automated generation of variable density navigable networks in a 3D indoor environment, including a full 3D topological model, which may be used not only for standard navigation but also for finding safe routes and simulating hazard and phenomena associated with disasters such as fire spread and heat transfer.

  8. Emergency response to nuclear, biological and chemical incidents:challenges and countermeasures

    Institute of Scientific and Technical Information of China (English)

    Hai-Long Li; Wen-Jun Tang; Ya-Kun Ma; Ji-Min Jia; Rong-Li Dang; Er-Chen Qiu

    2015-01-01

    Given the multiple terrorist attacks that have occurred in recent years in China, medical rescue teams and specialized incident assessment teams have been established by the government; however, medical rescue after nuclear, biological, and chemical incidents remains challenging and is often inefficient. In the present article, problems were analyzed regarding the assessment of responder countermeasures, training of professionals and the management of emergency medical incidents related to nuclear, biological and chemical attacks. Countermeasures, the establishment of response coordination, public education, practical training and exercise, and a professional consultant team or system should be the focus of emergency medical response facilities. Moreover, the government was offered professionals who are involved in managing nuclear, biological and chemical incidents.

  9. Integrated assessment of emerging science and technologies as creating learning processes among assessment communities.

    Science.gov (United States)

    Forsberg, Ellen-Marie; Ribeiro, Barbara; Heyen, Nils B; Nielsen, Rasmus Øjvind; Thorstensen, Erik; de Bakker, Erik; Klüver, Lars; Reiss, Thomas; Beekman, Volkert; Millar, Kate

    2016-12-01

    Emerging science and technologies are often characterised by complexity, uncertainty and controversy. Regulation and governance of such scientific and technological developments needs to build on knowledge and evidence that reflect this complicated situation. This insight is sometimes formulated as a call for integrated assessment of emerging science and technologies, and such a call is analysed in this article. The article addresses two overall questions. The first is: to what extent are emerging science and technologies currently assessed in an integrated way. The second is: if there appears to be a need for further integration, what should such integration consist in? In the article we briefly outline the pedigree of the term 'integrated assessment' and present a number of interpretations of the concept that are useful for informing current analyses and discussions of integration in assessment. Based on four case studies of assessment of emerging science and technologies, studies of assessment traditions, literature analysis and dialogues with assessment professionals, currently under-developed integration dimensions are identified. It is suggested how these dimensions can be addressed in a practical approach to assessment where representatives of different assessment communities and stakeholders are involved. We call this approach the Trans Domain Technology Evaluation Process (TranSTEP). PMID:27465504

  10. Assessing emergency medical care in low income countries: A pilot study from Pakistan

    Directory of Open Access Journals (Sweden)

    Akhtar Tasleem

    2008-07-01

    Full Text Available Abstract Background Emergency Medical Care is an important component of health care system. Unfortunately it is however, ignored in many low income countries. We assessed the availability and quality of facility-based emergency medical care in the government health care system at district level in a low income country – Pakistan. Methods We did a quantitative pilot study of a convenience sample of 22 rural and 20 urban health facilities in 2 districts – Faisalabad and Peshawar – in Pakistan. The study consisted of three separate cross-sectional assessments of selected community leaders, health care providers, and health care facilities. Three data collection instruments were created with input from existing models for facility assessment such as those used by the Joint Commission of Accreditation of Hospitals and the National Center for Health Statistics in USA and the Medical Research Council in Pakistan. Results The majority of respondents 43/44(98%, in community survey were not satisfied with the emergency care provided. Most participants 36/44(82% mentioned that they will not call an ambulance in health related emergency because it does not function properly in the government system. The expenses on emergency care for the last experience were reported to be less than 5,000 Pakistani Rupees (equivalent to US$ 83 for 19/29(66% respondents. Most health care providers 43/44(98% were of the opinion that their facilities were inadequately equipped to treat emergencies. The majority of facilities 31/42(74% had no budget allocated for emergency care. A review of medications and equipment available showed that many critical supplies needed in an emergency were not found in these facilities. Conclusion Assessment of emergency care should be part of health systems analysis in Pakistan. Multiple deficiencies in emergency care at the district level in Pakistan were noted in our study. Priority should be given to make emergency care responsive to

  11. Experiences of an Engineer working in Reactor Safety and Emergency Response

    Science.gov (United States)

    Osborn, Douglas

    2015-04-01

    The U.S. Department of Energy's Federal Radiological Monitoring and Assessment Center Consequence Management Home Team (FRMAC/CMHT) Assessment Scientist's roles, responsibilities incorporate the FRMAC with other federal, state, and local agencies during a nuclear/radiological emergency. Before the Consequence Management Response Team arrives on-site, the FRMAC/CMHT provides technical and logistical support to the FRMAC and to state, local, and tribal authorities following a nuclear/radiological event. The FRMAC/CMHT support includes analyzing event data, evaluating hazards that relate to protection of the public, and providing event information and data products to protective action decision makers. The Assessment Scientist is the primary scientist responsible for performing calculations and analyses and communicating results to the field during any activation of the FRMAC/CMHT assets. As such, the FRMAC/CMHT Assessment Scientist has a number of different roles and responsibilities to fill depending upon the type of response that is required. Additionally, the Sandia National Laboratories (SNL) Consequence Assessment Team (CAT) Consequence Assessor roles, responsibilities involve hazardous materials operational emergency at SNL New Mexico facilities (SNL/NM) which include loss of control over radioactive, chemical, or explosive hazardous materials. When a hazardous materials operational emergency occurs, key decisions must be made in order to regain control over the hazards, protect personnel from the effects of the hazards, and mitigate impacts on operations, facilities, property, and the environment. Many of these decisions depend in whole or in part on the evaluation of potential consequences from a loss of control over the hazards. As such, the CAT has a number of different roles and responsibilities to fill depending upon the type of response that is required. Primary consequence-based decisions supported by the CAT during a hazardous materials operational

  12. Evaluation of Public Health Response to Hurricanes Finds North Carolina Better Prepared for Public Health Emergencies

    OpenAIRE

    Mary, V. Davis

    2007-01-01

    Reviews of state public health preparedness improvements have been primarily limited to measuring funds expenditures and achievement of cooperative agreement benchmarks. Such reviews fail to assess states' actual capacity for meeting the challenges they may face during an emergency, as evidenced by activities undertaken during the various phases of a disaster. This article examines North Carolina's public health preparedness and response performance during two hurricanes, Hurricane Floyd in 1...

  13. In the Face of an Emergency: What Makes a Responsive and Resilient Society?

    Directory of Open Access Journals (Sweden)

    Montine L Walters

    2012-07-01

    Full Text Available This article intends to highlight the ways in which the response required to deal with terrorist threats of the 21st Century differs from that required to respond to threats the UK has faced in the past. In addition it will assess ways in which the UK may strengthen the population’s resilience and the ability of the population to respond to emergency incidents.

  14. Geriatric nursing assessment and intervention in an emergency department

    DEFF Research Database (Denmark)

    Rosted, Elizabeth Emilie; Wagner, Lis; Hendriksen, Carsten;

    2012-01-01

    0.8, and after 6 months 0.4. Older people receiving home care services increased from 79% at discharge to 89% at 1 month and 90% at 6 months follow-up. Conclusion. ISAR 2 works well in a Danish ED setting and intercepts older peoples' problems. It seems that unresolved problems decrease when a nurse......To describe and test a model for structured nursing assessment and intervention to older people discharged from emergency department (ED). Background. Older people recently discharged from hospital are at high risk of readmission. This risk may increase when they are discharged straight home from......: At discharge, and at 1 and 6 months follow-up, a brief standardised nursing assessment (ISAR 2) developed by McCusker et al. was carried out. The focus was on unresolved problems that required medical or nursing intervention, new or different home care services or comprehensive geriatric assessment. After...

  15. Emergency notification and assistance technical operations manual. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear accident or radiological emergency, with the aim of minimizing their consequences. The International Atomic Energy Agency (IAEA) has specific functions assigned to it under these Conventions, to which, in addition to a large number of States (Section 1.7), the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full parties. The arrangements between the IAEA, States that are IAEA Member States and/or Parties to one or both Conventions, all other relevant international intergovernmental organizations, and other States for facilitating the implementation of these Conventions specifically concerning those articles that are operational in nature - are documented in the Emergency Notification and Assistance Technical Operations Manual (ENATOM). In 2000, a complete revision of ENATOM, with all relevant sections updated, withdrawn or replaced with new material, was reissued as EPR-ENATOM (2000) to reflect new technological developments, operational concepts, views on standards in the area of emergency preparedness and response, and Member States' expectations. A separate publication, EPR-JPLAN (2000), the Joint Radiation Emergency Management Plan of the International Organizations (Joint Plan'), described a common understanding of how each of six co-sponsoring international organizations will act during a response and in making preparedness arrangements. It is intended that the ENATOM is reviewed and reissued biennially in line with the review cycle of the Joint Plan. Since the

  16. Complex humanitarian emergencies: A review of epidemiological and response models

    Directory of Open Access Journals (Sweden)

    Burkle Frederick

    2006-01-01

    Full Text Available Complex emergencies (CEs have been the most common human-generated disaster of the past two decades. These internal conflicts and associated acts of genocide have been poorly understood and poorly managed. This article provides an epidemiological background and understanding of developing and developed countries, and chronic or smoldering countries′ CEs, and explains in detail the prevailing models of response seen by the international community. Even though CEs are declining in number, they have become more complex and dangerous. The UN Charter reform is expected to address internal conflicts and genocide but may not provide a more effective and efficient means to respond.

  17. Mobile Health Systems that Optimize Resources in Emergency Response Situations.

    Science.gov (United States)

    Massey, Tammara; Gao, Tia

    2010-01-01

    During mass casualty incidents, a large number of patients need to be triaged accurately in order to save the maximum number of lives. Recently portable health systems have been developed that can gather patient's vital signs and wireless transmit this information to a central location for analysis. This research introduces a methodology to improve triage in mass casualty incidents by combining statistical optimization techniques with mobile health systems to manage resources using evidence based data. We combine data collected during a field test with data of patient's vital signs to simulate how mobile health systems can optimize resources in emergency response situations.

  18. Safety assessment of emergency power systems for nuclear power plants

    International Nuclear Information System (INIS)

    This publication is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing the safety of a given design of the emergency power systems (EPS) for a nuclear power plant. The present publication refers closely to the NUSS Safety Guide 50-SG-D7 (Rev. 1), Emergency Power Systems at Nuclear Power Plants. It covers therefore exactly the same technical subject as that Safety Guide. In view of its objective, however, it attempts to help in the evaluation of possible technical solutions which are intended to fulfill the safety requirements. Section 2 clarifies the scope further by giving an outline of the assessment steps in the licensing process. After a general outline of the assessment process in relation to the licensing of a nuclear power plant, the publication is divided into two parts. First, all safety issues are presented in the form of questions that have to be answered in order for the assessor to be confident of a safe design. The second part presents the same topics in tabulated form, listing the required documentation which the assessor has to consult and those international and national technical standards pertinent to the topics. An extensive reference list provides information on standards. 1 tab

  19. Coordinating a Team Response to Behavioral Emergencies in the Emergency Department: A Simulation-Enhanced Interprofessional Curriculum

    Directory of Open Access Journals (Sweden)

    Ambrose H. Wong

    2015-10-01

    Full Text Available Introduction: While treating potentially violent patients in the emergency department (ED, both patients and staff may be subject to unintentional injury. Emergency healthcare providers are at the greatest risk of experiencing physical and verbal assault from patients. Preliminary studies have shown that a teambased approach with targeted staff training has significant positive outcomes in mitigating violence in healthcare settings. Staff attitudes toward patient aggression have also been linked to workplace safety, but current literature suggests that providers experience fear and anxiety while caring for potentially violent patients. The objectives of the study were (1 to develop an interprofessional curriculum focusing on improving teamwork and staff attitudes toward patient violence using simulation-enhanced education for ED staff, and (2 to assess attitudes towards patient aggression both at pre- and post-curriculum implementation stages using a survey-based study design. Methods: Formal roles and responsibilities for each member of the care team, including positioning during restraint placement, were predefined in conjunction with ED leadership. Emergency medicine residents, nurses and hospital police officers were assigned to interprofessional teams. The curriculum started with an introductory lecture discussing de-escalation techniques and restraint placement as well as core tenets of interprofessional collaboration. Next, we conducted two simulation scenarios using standardized participants (SPs and structured debriefing. The study consisted of a survey-based design comparing pre- and post-intervention responses via a paired Student t-test to assess changes in staff attitudes. We used the validated Management of Aggression and Violence Attitude Scale (MAVAS consisting of 30 Likert-scale questions grouped into four themed constructs. Results: One hundred sixty-two ED staff members completed the course with >95% staff participation

  20. Southern state radiological emergency preparedness and response agencies

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This Report provides information on the state agencies assigned to radioactive materials transportation incidents in 16 Southern States Energy Board member states. For each, the report lists the agencies with primary authority for preparedness and response, their responsibilities and personnel within the agencies who can offer additional information on their radioactive materials transportation programs. The report also lists each state's emergency team members and its laboratory and analytical capabilities. Finally, the governor's designee for receiving advance notification of high-level radioactive materials and spent fuel shipments under 10 CFR Parts 71 and 73 of the US Nuclear Regulatory Commission's regulations is listed for each state. Part 71 requires prenotification for large quantity radioactive waste shipments. Part 73 addresses prenotification for spent nuclear reactor fuel shipments.

  1. Southern state radiological emergency preparedness and response agencies

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This Report provides information on the state agencies assigned to radioactive materials transportation incidents in 16 Southern States Energy Board member states. For each, the report lists the agencies with primary authority for preparedness and response, their responsibilities and personnel within the agencies who can offer additional information on their radioactive materials transportation programs. The report also lists each state`s emergency team members and its laboratory and analytical capabilities. Finally, the governor`s designee for receiving advance notification of high-level radioactive materials and spent fuel shipments under 10 CFR Parts 71 and 73 of the US Nuclear Regulatory Commission`s regulations is listed for each state. Part 71 requires prenotification for large quantity radioactive waste shipments. Part 73 addresses prenotification for spent nuclear reactor fuel shipments.

  2. Southern state radiological emergency preparedness and response agencies

    International Nuclear Information System (INIS)

    This Report provides information on the state agencies assigned to radioactive materials transportation incidents in 16 Southern States Energy Board member states. For each, the report lists the agencies with primary authority for preparedness and response, their responsibilities and personnel within the agencies who can offer additional information on their radioactive materials transportation programs. The report also lists each state's emergency team members and its laboratory and analytical capabilities. Finally, the governor's designee for receiving advance notification of high-level radioactive materials and spent fuel shipments under 10 CFR Parts 71 and 73 of the US Nuclear Regulatory Commission's regulations is listed for each state. Part 71 requires prenotification for large quantity radioactive waste shipments. Part 73 addresses prenotification for spent nuclear reactor fuel shipments

  3. High-speed LWR transients simulation for optimizing emergency response

    International Nuclear Information System (INIS)

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  4. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  5. Emergency preparedness and response: achievements, future needs and opportunities

    International Nuclear Information System (INIS)

    The Chernobyl accident had a profound effect on emergency preparedness and response world-wide and particularly within Europe. Deficiencies in arrangements for dealing with such a large accident, at both national and international levels (eg, world trade in foodstuffs), led to many problems of both a practical and political nature. Many lessons were learnt and considerable resources have since been committed to improve emergency preparedness and avoid similar problems in future. Improvements have been made at national, regional and international levels and have been diverse in nature. Some of the more notable at an international level are the convention on early notification, limits for the contamination of foodstuffs in international trade and broad agreement on the principles of intervention (albeit less so on their practical interpretation). At a regional level, many bi and multi-lateral agreements have been brought into to force for the timely exchange of information and the efficacy of these arrangements is increasingly being demonstrated by regional exercises. At a national level, the improvements have been diverse, ranging from the installation of extensive networks of gamma monitors to provide early warning of an accident to more robust and effective arrangements between the many organisations with a role or responsibility in an emergency. More than a decade after Chernobyl, it is timely to reflect on what has been achieved in practice and, in particular, whether there is a need for further improvement and, if so, where these aspects will be addressed in the context of the likelihood the decreasing resources will be allocated to this area in future as memories fade post Chernobyl. Particular attention will be given to: the potential for advances in informatics, communications and decision support to provide better emergency preparedness and response at reduced cost; the adequacy of guidance on intervention for the long tern management of containment areas

  6. Southern State Radiological Transportation Emergency Response Training Course Summary

    International Nuclear Information System (INIS)

    The Southern States Energy Board (SSEB) is an interstate compact organization that serves 16 states and the commonwealth of Puerto Rico with information and analysis in energy and environmental matters. Nuclear waste management is a topic that has garnered considerable attention in the SSEB region in the last several years. Since 1985, SSEB has received support from the US Department of Energy for the regional analysis of high-level radioactive waste transportation issues. In the performance of its work in this area, SSEB formed the Advisory Committee on High-Level Radioactive Materials Transportation, which comprises representatives from impacted states and tribes. SSEB meets with the committee semi-annually to provide issue updates to members and to solicit their views on activities impacting their respective states. Among the waste transportation issues considered by SSEB and the committee are shipment routing, the impacts of monitored retrievable storage, state liability in the event of an accident and emergency preparedness and response. This document addresses the latter by describing the radiological emergency response training courses and programs of the southern states, as well as federal courses available outside the southern region

  7. Current trends in gamma radiation detection for radiological emergency response

    Science.gov (United States)

    Mukhopadhyay, Sanjoy; Guss, Paul; Maurer, Richard

    2011-09-01

    Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of inter-disciplinary research and development has taken place-techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation-the so-called second line of defense.

  8. IAEA response assistance network. Incident and Emergency Centre. Emergency preparedness and response. Date effective: 1 May 2006

    International Nuclear Information System (INIS)

    This publication is intended to serve as a tool for supporting the provision of international assistance in the case of nuclear or radiological incident or emergency, cooperation between States, their Competent Authorities and the IAEA, and harmonization of response capabilities of States offering assistance. The publication is issued under the authority of the Director General of the IAEA: (1) under the auspices of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the Assistance Convention) [1], to promote, facilitate and support cooperation between States Parties to coordinate and/or provide assistance to a State Party and/or Member State; and (2) in the case of an incident or emergency, as statutory functions, to provide for the application of its safety standards, upon request by a Member State, and to act as an intermediary for the purposes of securing the performance of services or the supplying of materials, equipment or facilities by one Member State for another. The publication sets out the following: a) the RANET concept and the organizational structure for providing assistance; b) functions, responsibilities and activities within the RANET; c) the RANET response operations and arrangements needed for preparedness; and d) the prerequisites for RANET membership and conditions of registration. The RANET is divided into four sections. After the introduction in Section 1, the RANET concept, objectives and scope are described in Section 2. Section 3 presents the concept of operations of the RANET and Section 4 describes expected tasks, capabilities and resources. In addition, EPR-RANET (2006) has three supporting documents, which are issued separately, as follows: 1. Assistance Action Plans with samples of Assistance Action Plans for providing international assistance. 2. Registry with the details of the registry and instructions on how to register national assistance capabilities for the RANET. 3. Technical Guidelines

  9. Emerging aspects of assessing lead poisoning in childhood

    Directory of Open Access Journals (Sweden)

    AL Jones

    2009-01-01

    Full Text Available This review covers the epidemiology of lead poisoning in children on a global scale. Newer sources of lead poisoning are identified. The methods that are used to assess a population of children exposed to lead are discussed, together with the ways of undertaking an exposure risk assessment; this includes assessing the time course and identifying sources of lead exposure. Human assessment measures for lead toxicity, such as blood lead concentrations, deciduous tooth lead, and use of zinc protoporphyrin estimations are evaluated. The role of isotopic fingerprinting techniques for identifying environmental sources of exposure is discussed. Among emerging data on the cognitive and behavioral effects of lead on children, the review considers the growing evidence of neurocognitive dysfunction with blood lead concentrations even below 10 |[mu]|g/dl. The challenge of assessing and explaining the risk that applies to an individual as opposed to a population is discussed. Intervention strategies to mitigate risk from lead are examined together with the limited role for and limitations of chelation therapy for lead. Lessons learned from managing a population lead-dust exposure event in Esperance, Western Australia in 2007 are discussed throughout the review.

  10. A special purpose vehicle for radiological emergency response

    International Nuclear Information System (INIS)

    The scope of this paper encompasses the design and application of a Contamination Control Station (CCS) Response Vehicle. The vehicle is part of emergency response assets at the Department of Energy Pantex Plant, the nation's final assembly and disassembly point for nuclear weapons. The CCS Response Vehicle was designed to satisfy the need for a rapid deployment of equipment for the setup of a Contamination Control Station. This deployment may be either on the Pantex Plant site, or, if directed by the DOE Albuquerque Operations Office, to any location in the US or worldwide to a site having radioactive contamination and needing response assets of this type. Based on the specialized nature of the vehicle and its mission, certain design criteria must be considered. The vehicle must be air transportable. This criteria alone poses size, weight, and material restrictions due to the transporting aircraft and temperature/pressure variations. This paper first focuses on the overall mission of the vehicle, then highlights some of the design considerations

  11. The San Bernardino, California, Terror Attack: Two Emergency Departments' Response.

    Science.gov (United States)

    Lee, Carol; Walters, Elizabeth; Borger, Rodney; Clem, Kathleen; Fenati, Gregory; Kiemeney, Michael; Seng, Sakona; Yuen, Ho-Wang; Neeki, Michael; Smith, Dustin

    2016-01-01

    On December 2, 2015, a terror attack in the city of San Bernardino, California killed 14 Americans and injured 22 in the deadliest attack on U.S. soil since September 11, 2001. Although emergency personnel and law enforcement officials frequently deal with multi-casualty incidents (MCIs), what occurred that day required an unprecedented response. Most of the severely injured victims were transported to either Loma Linda University Medical Center (LLUMC) or Arrowhead Regional Medical Center (ARMC). These two hospitals operate two designated trauma centers in the region and played crucial roles during the massive response that followed this attack. In an effort to shed a light on our response to others, we provide an account of how these two teaching hospitals prepared for and coordinated the medical care of these victims. In general, both centers were able to quickly mobilize large number of staff and resources. Prior disaster drills proved to be invaluable. Both centers witnessed excellent teamwork and coordination involving first responders, law enforcement, administration, and medical personnel from multiple specialty services. Those of us working that day felt safe and protected. Although we did identify areas we could have improved upon, including patchy communication and crowd-control, they were minor in nature and did not affect patient care. MCIs pose major challenges to emergency departments and trauma centers across the country. Responding to such incidents requires an ever-evolving approach as no two incidents will present exactly alike. It is our hope that this article will foster discussion and lead to improvements in management of future MCIs.

  12. Preparation, conduct and evaluation of exercises to test preparedness for a nuclear or radiological emergency. Emergency preparedness and response

    International Nuclear Information System (INIS)

    The aim of this publication is to serve as a practical tool for the preparation, conduct and evaluation of exercises to test preparedness for response to a nuclear or radiological emergency. It fulfils in part the functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning the methodologies, techniques and available results of research on such emergencies. To ensure effective response to radiation emergencies when needed, provisions should be made for regular training of emergency response personnel. As stated in Preparedness and Response for a Nuclear or Radiological Emergency (Safety Requirements, Safety Standard Series No. GS-R-2), 'The operator and the response organizations shall make arrangements for the selection of personnel and training to ensure that the personnel have the requisite knowledge, skills, abilities, equipment, procedures and other arrangements to perform their assigned response functions'. A further requirement is that 'Exercise programmes shall be conducted to ensure that all specified functions required to be performed for emergency response and all organizational interfaces for facilities in threat category I, II or III and the national level programmes for threat category IV or V are tested at suitable intervals'. In 2004 the IAEA General Conference, in resolution GC(48)/RES/10 encouraged Member States to 'implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency'. This document is published as part of the IAEA Emergency Preparedness and Response Series to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. It was developed based on a number of assumptions about national and local capabilities. Therefore, the exercise structure, terms and scenarios must be

  13. Method for the development of emergency response preparedness for nuclear or radiological accidents

    International Nuclear Information System (INIS)

    This report supplements IAEA emergency preparedness guidance published in the 1980s, and is consistent with the new international guidance. It provides practical advice for the development of an emergency response capability based on the potential nature and magnitude of the risk. In order to apply this method, emergency planners should have a good understanding of the basic radiological emergency response principles. Therefore, other applicable international guidance should be reviewed before using this report. This report provides a practical step-by-step method for developing integrated user, local and national emergency response capabilities. It can also be used as the basis for conducting an audit of an existing emergency response capability

  14. UAVs Use for the Support of Emergency Response Teams Specific Missions

    Directory of Open Access Journals (Sweden)

    Sorin-Gabriel CONSTANTINESCU

    2013-03-01

    Full Text Available This article presents various methods of implementation for a new technology concerning the assessment and coordination of emergency situations, which is based upon the usage of Unmanned Aerial Vehicles (UAVs. The UAV platform is equipped with optical electronic sensors and other types of sensors, being an aerial surveillance device as efficient as any other classically piloted platform. While currently being in service as military operations support for various operation theaters, they can also be used for assisting emergency response teams, providing full national coverage. For these special response teams, the ability to carry out overview, surveillance or information gathering activities and locating fixed or mobile targets are key components for the successful accomplishment of their missions, which have the purpose of saving lives and properties and of limiting the damage done to the surrounding environment. More concretely, the presented scenarios are: response in emergency situations, extinguishing of large-scale fires, testing of chemically, biologically or radioactively polluted areas and assessment of natural disasters.

  15. Emerging Diseases in European Forest Ecosystems and Responses in Society

    Directory of Open Access Journals (Sweden)

    Johanna B. Boberg

    2011-04-01

    Full Text Available New diseases in forest ecosystems have been reported at an increasing rate over the last century. Some reasons for this include the increased disturbance by humans to forest ecosystems, changed climatic conditions and intensified international trade. Although many of the contributing factors to the changed disease scenarios are anthropogenic, there has been a reluctance to control them by legislation, other forms of government authority or through public involvement. Some of the primary obstacles relate to problems in communicating biological understanding of concepts to the political sphere of society. Relevant response to new disease scenarios is very often associated with a proper understanding of intraspecific variation in the challenging pathogen. Other factors could be technical, based on a lack of understanding of possible countermeasures. There are also philosophical reasons, such as the view that forests are part of the natural ecosystems and should not be managed for natural disturbances such as disease outbreaks. Finally, some of the reasons are economic or political, such as a belief in free trade or reluctance to acknowledge supranational intervention control. Our possibilities to act in response to new disease threats are critically dependent on the timing of efforts. A common recognition of the nature of the problem and adapting vocabulary that describe relevant biological entities would help to facilitate timely and adequate responses in society to emerging diseases in forests.

  16. Emergency Response to and Preparedness for Extreme Weather Events and Environmental Changes in China.

    Science.gov (United States)

    Wang, Li; Liao, Yongfeng; Yang, Linsheng; Li, Hairong; Ye, Bixiong; Wang, Wuyi

    2016-03-01

    China has achieved impressive rapid economic growth over the past 30 years but accompanied by significant extreme weather events and environmental changes caused by global change and overfast urbanization. Using the absolute hazards index (AHI), we assessed the spatial distribution patterns and related health effects of 4 major extreme natural disasters, including drought, floods (landslides, mudslides), hails, and typhoons from 2000 to 2011 at the provincial level in China. The results showed that (1) central and south China were the most affected by the 4 natural disasters, and north China suffered less; (2) the provinces with higher AHI suffered most from total death, missing people, collapse, and emergently relocated population; (3) the present health emergency response system to disasters in China mainly lacks a multidisciplinary approach. In the concluding section of this article, suggestions on preparedness and rapid response to extreme health events from environmental changes are proposed. PMID:25246501

  17. Beyond self-assessment--assessing organizational cultural responsiveness.

    Science.gov (United States)

    Bowen, Sarah

    2008-01-01

    While there is growing recognition of the need for health care organizations to provide culturally responsive care, appropriate strategies for assessing organizational responsiveness have not been determined. A document review assessment instrument was designed to assess best practice within eight domains, and along seven dimensions of organizational approach to diversity. Results obtained from the pilot of the instrument were congruent with data collected from key informant interviews, a focus group, observational methods and organizational feedback session; however, they were not consistent with self-assessment results at the same site. A larger pilot is required to determine generalizability of results. PMID:19172974

  18. Suicide Assessment in Hospital Emergency Departments: Implications for Patient Satisfaction and Compliance

    OpenAIRE

    Mitchell, Ann M; Garand, Linda; Dean, Diane; Panzak, George; Taylor, Melissa

    2005-01-01

    Suicide is a complex, multidimensional event with a host of contributing factors. Suicidal emergencies are among other behavioral and psychiatric emergencies that provide the basis for emergency department visits. Therefore, emergency departments are ideal clinical environments for the assessment of suicidal patients. A case example from an emergency department visit is provided as a basis of discussion as we describe subpopulations at high risk for suicide and review critical assessment para...

  19. Health impact assessment in China: Emergence, progress and challenges

    International Nuclear Information System (INIS)

    The values, concepts and approaches of health impact assessment (HIA) were outlined in the Gothenburg consensus paper and some industrialized countries have implemented HIA for many years. HIA has played an important role in environmental protection in China, however, the emergence, progress and challenges of HIA in China have not been well described. In this paper, the evolution of HIA in China was analyzed and the challenges of HIA were presented based on the author's experiences. HIA contributed to decision-making for large capital construction projects, such as the Three Gorges Dam project, in its emergence stage. Increasing attention has been given to HIA in recent years due to supportive policies underpinning development of the draft HIA guidelines in 2008. However enormous challenges lie ahead in ensuring the institutionalization of HIA into project, program and policy decision-making process due to limited scope, immature tools and insufficient professionals in HIA practice. HIA should broaden its horizons by encompassing physical, chemical, biological and socio-economic aspects and constant attempts should be made to integrate HIA into the decision-making process, not only for projects and programs but also for policies as well.

  20. Health impact assessment in China: Emergence, progress and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zheng, E-mail: huangzhg@mails.tjmu.edu.cn

    2012-01-15

    The values, concepts and approaches of health impact assessment (HIA) were outlined in the Gothenburg consensus paper and some industrialized countries have implemented HIA for many years. HIA has played an important role in environmental protection in China, however, the emergence, progress and challenges of HIA in China have not been well described. In this paper, the evolution of HIA in China was analyzed and the challenges of HIA were presented based on the author's experiences. HIA contributed to decision-making for large capital construction projects, such as the Three Gorges Dam project, in its emergence stage. Increasing attention has been given to HIA in recent years due to supportive policies underpinning development of the draft HIA guidelines in 2008. However enormous challenges lie ahead in ensuring the institutionalization of HIA into project, program and policy decision-making process due to limited scope, immature tools and insufficient professionals in HIA practice. HIA should broaden its horizons by encompassing physical, chemical, biological and socio-economic aspects and constant attempts should be made to integrate HIA into the decision-making process, not only for projects and programs but also for policies as well.

  1. Report on the emergency response to the event on May 14, 1997, at the plutonium reclamation facility, Hanford Site, Richland,Washington

    International Nuclear Information System (INIS)

    On the evening of May 14,1997, a chemical explosion Occurred at the Plutonium Reclamation Facility (PRF) in the 200 West Area(200-W) of the Hanford Site. The event warranted the declaration of an Alert emergency, activation of the Hanford Emergency Response Organization (BRO), and notification of offsite agencies. As a result of the emergency declaration, a subsequent evaluation was conducted to assess: 9 the performance of the emergency response organization o the occupational health response related to emergency activities o event notifications to offsite and environmental agencies. Additionally, the evaluation was designed to: 9 document the chronology of emergency and occupational health responses and environmental notifications connected with the explosion at the facility 0 assess the adequacy of the Hanford Site emergency preparedness activities; response readiness; and emergency management actions, occupational health, and environmental actions 0 provide an analysis of the causes of the deficiencies and weaknesses in the preparedness and response system that have been identified in the evaluation of the response a assign organizational responsibility to correct deficiencies and weaknesses a improve future performance 0 adjust elements of emergency implementing procedures and emergency preparedness activities

  2. Report on the emergency response to the event on May 14, 1997, at the plutonuim reclamation facility, Hanford Site, Richland,Washington

    Energy Technology Data Exchange (ETDEWEB)

    Shoop, D.S.

    1997-08-20

    On the evening of May 14,1997, a chemical explosion Occurred at the Plutonium Reclamation Facility (PRF) in the 200 West Area(200-W) of the Hanford Site. The event warranted the declaration of an Alert emergency, activation of the Hanford Emergency Response Organization (BRO), and notification of offsite agencies. As a result of the emergency declaration, a subsequent evaluation was conducted to assess: 9 the performance of the emergency response organization o the occupational health response related to emergency activities o event notifications to offsite and environmental agencies. Additionally, the evaluation was designed to: 9 document the chronology of emergency and occupational health responses and environmental notifications connected with the explosion at the facility 0 assess the adequacy of the Hanford Site emergency preparedness activities; response readiness; and emergency management actions, occupational health, and environmental actions 0 provide an analysis of the causes of the deficiencies and weaknesses in the preparedness and response system that have been identified in the evaluation of the response a assign organizational responsibility to correct deficiencies and weaknesses a improve future performance 0 adjust elements of emergency implementing procedures and emergency preparedness activities.

  3. Nuclear emergency planning and response in the Netherlands: Experiences obtained from large scale exercises

    International Nuclear Information System (INIS)

    In 1986 the Chernobyl accident led the Dutch Government to a reconsideration of their possibilities for managing nuclear emergencies. It was decided to improve both the national emergency management organization and the infrastructure for collecting and presenting technical information. The first improvement resulted in the National Plan for Nuclear Emergency Planning and Response (EPR) and the second in a series of technical facilities for the assessment of radiation doses. Since 1990, following the implementation of the EPR and most of the technical facilities, several emergency exercises have taken place to test the effectiveness of organization and infrastructure. Special emphasis has been given to the early phase of the simulated accidents. This paper summarises the experiences obtained from these exercises. Major obstacles appear to be: (1) keeping all participants properly informed during the process, (2) the difference in working attitude of technical experts and decision-makers, (3) premature orders for countermeasures and (4) the (too) large number of people involved in the decision-making process. From these experiences requirements for instruments can be deduced. Such instruments include predictive models, to be used for dose assessment in the early phase of an accident which, apart from being fast, should yield uncomplicated results suitable for decision-makers. Refinements of models, such as taking into account the specific nature of the (urban) environment, are not needed until the recovery phase of a nuclear accident. (author)

  4. Assessing the New and Emerging Treatments for Atopic Dermatitis.

    Science.gov (United States)

    Eichenfield, Lawrence F; Friedlander, Sheila F; Simpson, Eric L; Irvine, Alan D

    2016-06-01

    The newer and emerging treatments for atopic dermatitis (AD) focus on blockade of inflammatory cytokines, especially those that derive from T helper cell type 2 (TH2) and are associated with a pathway of immunoglobulin E (IgE) sensitization. Among the proinflammatory cytokines that have been identified as promising therapeutic targets are chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2), IgE, thymic stromal lymphopoietin (TSLP), and several monoclonal antibodies that block key cytokine pathways in the innate immune response. Two agents that have been studied in phase III clinical trials are the boronbased phosphodiesterase-4 (PDE-4) inhibitor, crisaborole, and dupilumab, an antibody that inhibits the interleukin-4/ IL-13 receptor α chain. Semin Cutan Med Surg 35(supp5):S92-S96. PMID:27525671

  5. Emergency management: e-learning as an immediate response to veterinary training needs

    Directory of Open Access Journals (Sweden)

    Barbara Alessandrini

    2012-06-01

    Full Text Available Veterinary training plays a crucial role in increasing effectiveness of veterinary response to epidemic and non-epidemic emergencies. Being able to assess learning needs and to deliver training is acknowledged as a strategic priority in veterinary public health activities. The validation of an e-learning system that is able to respond to the urgent needs of veterinary professionals to ensure the despatch of rapid teaching methods on emerging and re-emerging animal diseases and zoonoses was the core of a research project developed in the Mediterranean Basin between 2005 and 2009. The project validated a new transferable, sustainable and repeatable learning model, the main components of which are described. The model is applied to an emergency situation that occurred in Italy in 2008, when West Nile disease outbreaks were reported in northern Italy. Approximately 450 official veterinarians were trained, using an e-learning system that showed adaptability and effectiveness in transferring knowledge, skills and competence to face the situation. The case was used to validate the effectiveness of the model and proved that it can be applied in any emergency situation, i.e. every time that rapid dissemination of knowledge and skills is required.

  6. Emergency management: e-learning as an immediate response to veterinary training needs.

    Science.gov (United States)

    Alessandrini, Barbara; D'Albenzio, Silvia; Turrini, Monica; Valerii, Lejla; Moretti, Michela; Pediconi, Ombretta; Callegari, Maria Luisa; Lelli, Rossella

    2012-01-01

    Veterinary training plays a crucial role in increasing effectiveness of veterinary response to epidemic and non-epidemic emergencies. Being able to assess learning needs and to deliver training is acknowledged as a strategic priority in veterinary public health activities. The validation of an e-learning system that is able to respond to the urgent needs of veterinary professionals to ensure the despatch of rapid teaching methods on emerging and re-emerging animal diseases and zoonoses was the core of a research project developed in the Mediterranean Basin between 2005 and 2009. The project validated a new transferable, sustainable and repeatable learning model, the main components of which are described. The model is applied to an emergency situation that occurred in Italy in 2008, when West Nile disease outbreaks were reported in northern Italy. Approximately 450 official veterinarians were trained, using an e-learning system that showed adaptability and effectiveness in transferring knowledge, skills and competence to face the situation. The case was used to validate the effectiveness of the model and proved that it can be applied in any emergency situation, i.e. every time that rapid dissemination of knowledge and skills is required. PMID:22718337

  7. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals.

    Science.gov (United States)

    Sangion, Alessandro; Gramatica, Paola

    2016-05-01

    The strong and widespread use of pharmaceuticals, together with incorrect disposal procedures, has recently made these products contaminants of emerging concern (CEC). Unfortunately, little is known about pharmaceuticals' environmental behaviour and ecotoxicity, so that EMEA (European Medicines Agency) released guidelines for the pharmaceuticals' environmental risk assessment. In particular, there is a severe lack of information about persistence, bioaccumulation and toxicity (PBT) of the majority of the thousands of substances on the market. Computational tools, like QSAR (Quantitative Structure Activity Relationship) models, are the only way to screen large sets of chemicals in short time, with the aim of ranking, highlighting and prioritizing the most environmentally hazardous for focusing further experimental studies. In this work we propose a screening method to assess the potential persistence, bioaccumulation and toxicity of more than 1200 pharmaceutical ingredients, based on the application of two different QSAR models. We applied the Insubria-PBT Index, a MLR (Multiple Linear Regression) QSAR model based on four simple molecular descriptors, implemented in QSARINS software, and able to synthesize the PBT potential in a unique cumulative value and the US-EPA PBT Profiler that assesses the PBT behaviour evaluating separately P, B and T. Particular attention was given to the study of Applicability Domain in order to provide reliable predictions. An agreement of 86% was found between the two models and a priority list of 35 pharmaceuticals, highlighted as potential PBTs by consensus, was proposed for further experimental validation. Moreover, the results of this computational screening are in agreement with preliminary experimental data in the literature. This study shows how in silico models can be applied in the hazard assessment to perform preliminary screening and prioritization of chemicals, and how the identification of the structural features, mainly

  8. Evaluation of management of communication in the actions of preparedness and response to nuclear and radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Mello Filho, Mauro Otto de Cavalcanti; Beserra, Marcela Tatiana Fernandes, E-mail: maurootto@cefet-rj.br, E-mail: maurootto@gmail.com, E-mail: mbeserra@cefet-rj.br [Centro Federal de Educacao Celso Sucknow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil); Wasserman, Maria Angelica Vergara, E-mail: mwasserman@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Wasserman, Julio Cesar de Faria Alvim, E-mail: geowass@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2013-07-01

    The use of practices involving the use of ionizing radiation in diverse areas of knowledge increases every day. This growth warning about the increased probability of accidents, radiological and nuclear emergencies, with possible consequences for the public, workers and the environment. Within this scenario, it is clear that studies and reassessments of the emergency response actions, receive proposals for continuous improvement. The achievement of the objectives of the response must be sustained by tactical, operation and logistics optimized processes. The articulation through communication between the teams involved in the response must be adaptable to each accident or emergency, respecting its size. The objectives of this study is to perform an assessment on the management of communication in the actions of Preparedness and Response to Nuclear and Radiological Emergencies. This assessment is supported by best practices of the Incident Command System (ICS) and the Institute of Project Management (Project Management Institute-PMI). For this purpose, based on models referred were established performance indicators supported by the BSC (Balanced Scorecard). These indicators allowed to evaluate more objectively the performance of the communication processes associated with each phase of the response. The study resulted in the proposed model documents aiming to assist planning of communications exercises in preparation and response actions, supported and adapted the best practices of PMI. These methodologies were evaluated by real cases selected from radiological and nuclear emergencies published by the International Atomic Energy Agency (IAEA). (author)

  9. Evaluation of Rugged Wireless Mesh Nodes for Use In Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Young; Alan M Snyder

    2007-11-01

    During the summer of 2007, engineers at the Idaho National Laboratory (INL) conducted a two-day evaluation of commercially available battery powered, wireless, self-forming mesh nodes for use in emergency response. In this paper, the author describes the fundamentals of this emerging technology, applciations for emergency response and specific results of the technology evaluation conducted at the Idaho National Laboratory.

  10. Biogeochemical and Hydrological Heterogeneity and Emergent Archetypical Catchment Response Patterns

    Science.gov (United States)

    Jawitz, J. W.; Gall, H. E.; Rao, P. S.

    2014-12-01

    What can stream hydrologic and biogeochemical signals tell us about interactions among spatially heterogeneous hydrological and biogeochemical processes at the catchment-scale? We seek to understand how the spatial structure of solute sources coupled with both stationary and nonstationary hydroclimatic drivers affect observed archetypes of concentration-discharge (C-Q) patterns. These response patterns are the spatially integrated expressions of the spatiotemporal structure of solutes exported from managed catchments, and can provide insight into likely ecological consequences of receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the spatial correlation between the structure of flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of archetypical C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We applied a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the type and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each archetype C-Q pattern can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. We compared observed multidecadal data to

  11. Assessing Seismic Hazards - Algorithms, Maps, and Emergency Scenarios

    Science.gov (United States)

    Ferriz, H.

    2007-05-01

    Public officials in charge of building codes, land use planning, and emergency response need sound estimates of seismic hazards. Sources may be well defined (e.g., active faults that have a surface trace) or diffuse (e.g., a subduction zone or a blind-thrust belt), but in both cases one can use a deterministic or worst-case scenario approach. For each scenario, a design earthquake is selected based on historic data or the known length of Holocene ruptures (as determined by geologic mapping). Horizontal ground accelerations (HGAs) can then be estimated at different distances from the earthquake epicenter using published attenuation relations (e.g., Seismological Res. Letters, v. 68, 1997) and estimates of the elastic properties of the substrate materials. No good algorithms are available to take into account reflection of elastic waves across other fault planes (e.g., a common effect in California, where there are many strands of the San Andreas fault), or amplification of waves in water-saturated alluvial and lacustrine basins (e.g., the Mexico City basin), but empirical relations can be developed by correlating historic damage patterns with predicted HGAs. The ultimate result is a map of HGAs. With this map, and with additional data on depth to groundwater and geotechnical properties of local soils, a liquefaction susceptibility map can be prepared, using published algorithms (e.g., J. of Geotech. Geoenv. Eng., v. 127, p. 817-833, 2001; Eng. Geology Practice in N. California, p. 579-594, 2001). Finally, the HGA estimates, digital elevation models, geologic structural data, and geotechnical properties of local geologic units can be used to prepare a slope failure susceptibility map (e.g., Eng. Geology Practice in N. California, p. 77-94, 2001). Seismic hazard maps are used by: (1) Building officials to determine areas of the city where special construction codes have to be implemented, and where existing buildings may need to be retrofitted. (2) Planning officials

  12. Modeling and public health emergency responses: lessons from SARS.

    Science.gov (United States)

    Glasser, John W; Hupert, Nathaniel; McCauley, Mary M; Hatchett, Richard

    2011-03-01

    Modelers published thoughtful articles after the 2003 SARS crisis, but had limited if any real-time impact on the global response and may even have inadvertently contributed to a lingering misunderstanding of the means by which the epidemic was controlled. The impact of any intervention depends on its efficiency as well as efficacy, and efficient isolation of infected individuals before they become symptomatic is difficult to imagine. Nonetheless, in exploring the possible impact of quarantine, the product of efficiency and efficacy was varied over the entire unit interval. Another mistake was repeatedly fitting otherwise appropriate gamma distributions to times to event regardless of whether they were stationary or not, particularly onset-isolation intervals whose progressive reduction evidently contributed to SARS control. By virtue of their unknown biology, newly-emerging diseases are more challenging than familiar human scourges. Influenza, for example, recurs annually and has been modeled more thoroughly than any other infectious disease. Moreover, models were integrated into preparedness exercises, during which working relationships were established that bore fruit during the 2009 A/H1N1 pandemic. To provide the most accurate and timely advice possible, especially about the possible impact of measures designed to control diseases caused by novel human pathogens, we must appreciate the value and difficulty of policy-oriented modeling. Effective communication of insights gleaned from modeling SARS will help to ensure that policymakers involve modelers in future outbreaks of newly-emerging infectious diseases. Accordingly, we illustrate the increasingly timely care-seeking by which, together with increasingly accurate diagnoses and effective isolation, SARS was controlled via heuristic arguments and descriptive analyses of familiar observations. PMID:21420657

  13. Emergency and urgent care capacity in a resource-limited setting: an assessment of health facilities in western Kenya

    OpenAIRE

    Burke, Thomas F.; Hines, Rosemary; Ahn, Roy; Walters, Michelle; Young, David; Anderson, Rachel Eleanor; Tom, Sabrina M; Clark, Rachel; Obita, Walter; Nelson, Brett D

    2014-01-01

    Objective: Injuries, trauma and non-communicable diseases are responsible for a rising proportion of death and disability in low-income and middle-income countries. Delivering effective emergency and urgent healthcare for these and other conditions in resource-limited settings is challenging. In this study, we sought to examine and characterise emergency and urgent care capacity in a resource-limited setting. Methods: We conducted an assessment within all 30 primary and secondary hospitals an...

  14. Emergency and urgent care capacity in a resource-limited setting: an assessment of health facilities in western Kenya

    OpenAIRE

    Burke, Thomas F.; Hines, Rosemary; Ahn, Roy; Walters, Michelle; Young, David; Anderson, Rachel Eleanor; Tom, Sabrina M; Clark, Rachel; Obita, Walter; Nelson, Brett D

    2014-01-01

    Objective Injuries, trauma and non-communicable diseases are responsible for a rising proportion of death and disability in low-income and middle-income countries. Delivering effective emergency and urgent healthcare for these and other conditions in resource-limited settings is challenging. In this study, we sought to examine and characterise emergency and urgent care capacity in a resource-limited setting. Methods We conducted an assessment within all 30 primary and secondary hospitals and ...

  15. Toward enhancing preparedness and response arrangements and capabilities for a nuclear emergency, (1). Emergency preparedness and response. Concepts in international standards and Fukushima experience

    International Nuclear Information System (INIS)

    Based on lessons learned from the accident at the Fukushima Dai-ichi Nuclear Power Station, Nuclear Regulation Authority newly established guideline of nuclear emergency preparedness and response in 2013, which conformed to international standards of emergency preparedness and response with a focus on IAEA safety standards. The Nuclear Safety Division of the Atomic Energy Society of Japan (AESJ/NSD) issued the report of seminars to investigate the accident at the Fukushima Dai-ichi Nuclear Power Station - What were wrong? What should be done from now on? - in March 2013. At 2014 annual meeting, the planning session was held with three lectures and extended discussion on 'problems and activities of nuclear emergency preparedness and response - toward enhancing preparedness and response arrangements and capabilities for a nuclear emergency -. Based on a lecture, this article explained IAEA's safety requirements and their bases: basic philosophy of radiological protection strategy for a nuclear emergency as well as the Fukushima experience. (T. Tanaka)

  16. Method for developing arrangements for response to a nuclear or radiological emergency. Updating IAEA-TECDOC-953. Emergency preparedness and response. Publication date: October 2003

    International Nuclear Information System (INIS)

    In 1997 the IAEA compiled, consolidated and organized existing information, and published the TECDOC-953 'Method for Development of Emergency Response Preparedness for Nuclear or Radiological Accidents'. Subsequently this publication was used extensively by the IAEA for training and for evaluation of emergency response programmes. In November 1999 a technical committee meeting (TCM) with representatives of over 20 States reviewed and provided feedback on IAEA-TECDOC-953. In March 2002, the IAEA's Board of Governors approved a Safety Requirements publication, 'Preparedness and Response for a Nuclear or Radiological Emergency', jointly sponsored by seven international organizations, which establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. The IAEA General Conference in resolution GC(46)/RES/9 encouraged Member States to implement, if necessary, instruments for improving their own preparedness and response capabilities for nuclear and radiological incidents and accidents, including their arrangements for responding to acts involving the malicious use of nuclear or radioactive material and to threats of such acts, and has further encouraged them to implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency. The obligations, responsibilities and requirements for preparedness and response for radiation emergencies are set out in the safety standards, in particular the 1996 'International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources'. Consensus information on relevant radiation protection criteria was established in 1994 and published in 'Intervention Criteria in a Nuclear or Radiation Emergency'. Several other guides and publications in the area of emergency preparedness and response had previously been issued. The present publication now being issued in the Emergency Preparedness and

  17. Application of GIS to build earthquake emergency response system for urban area

    Institute of Scientific and Technical Information of China (English)

    汤爱平; 谢礼立; 陶夏新

    2002-01-01

    A GIS based decision-making system is designed for earthquake emergency response for city governments. The system could be used for seismic hazard assessment, earthquake damage and losses evaluation, emergency response and post-earthquake recovering. The principle, design criteria, structure and functions of the system are described in detials. The system is composed of four parts: an information- and data-base, analytical modules, a decision-making subsystem and a user interface. The information- and data-base consists of 68 coverages, including historically and instrumentally recorded earthquakes, seismo-tectonic zones, active faults, potential source areas, isoseismals of scenario earthquake, soil profiles, characteristics of buildings, and all infrastructure systems such as: transportation network (roads and bridges, culverts), oil pipeline network, gas, water, electric-power, communication etc., distribution of citizens, rush-repair schemes of infrastructures and so on. There are also 28 analytical modules established in the system for generating isoseismals of scenario earthquake, site effects estimation, damage and losses evaluation and decision-making for rescue, relief, evacuation and other emergency response actions. As an illustration, the operation of this system for reoccurrence of a historical earthquake is demonstrated.

  18. Identification and assessment of site treatment plan implementation opportunities for emerging technologies

    International Nuclear Information System (INIS)

    The Department of Energy (DOE), in response to the 1992 Federal Facility Compliance Act, has prepared Site Treatment Plans (STP) for the approximately 2,000 waste streams identified within its mixed waste inventory Concurrently, emerging mixed waste treatment technologies are in final development. This paper defines a three-phase process to identify and assess implementation opportunities for these emerging technologies within the STP. It highlights the first phase, functional matching of expected treatment capabilities with proposed treatment requirements. Matches are based on treatment type, regulated contaminant and waste matrix type, for both capabilities and requirements. Results identify specific waste streams and volumes that could be treated by each emerging technology. A study for Plasma Hearth Process, Delphi DETOXsm, Supercritical Water Oxidation and Vitrification shows that about 200,000 ml of DOE's mixed waste inventory can potentially be treated by one or more of these emerging technologies. Actual implementations are small fractions of the treatable inventory. Differences between potential and actual implementations must be minimized to accrue optimum benefit from implementation of emerging or alternative treatment technologies. Functional matching is the first phase in identifying and quantifying benefits, addressing technology system and treatment issues, and providing, in part, the basis for STP implementation decisions. DOE, through EM's Office of Technology Development, has funded this work

  19. Identification and assessment of site treatment plan implementation opportunities for emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, E.A. [Sandia National Labs., Germantown, MD (United States)

    1995-12-31

    The Department of Energy (DOE), in response to the 1992 Federal Facility Compliance Act, has prepared Site Treatment Plans (STP) for the approximately 2,000 waste streams identified within its mixed waste inventory Concurrently, emerging mixed waste treatment technologies are in final development. This paper defines a three-phase process to identify and assess implementation opportunities for these emerging technologies within the STP. It highlights the first phase, functional matching of expected treatment capabilities with proposed treatment requirements. Matches are based on treatment type, regulated contaminant and waste matrix type, for both capabilities and requirements. Results identify specific waste streams and volumes that could be treated by each emerging technology. A study for Plasma Hearth Process, Delphi DETOX{sup sm}, Supercritical Water Oxidation and Vitrification shows that about 200,000 ml of DOE`s mixed waste inventory can potentially be treated by one or more of these emerging technologies. Actual implementations are small fractions of the treatable inventory. Differences between potential and actual implementations must be minimized to accrue optimum benefit from implementation of emerging or alternative treatment technologies. Functional matching is the first phase in identifying and quantifying benefits, addressing technology system and treatment issues, and providing, in part, the basis for STP implementation decisions. DOE, through EM`s Office of Technology Development, has funded this work.

  20. Stellar Coronal Response to Differential Rotation and Flux Emergence

    CERN Document Server

    Gibb, G P S; Jardine, M M; Yeates, A R

    2016-01-01

    We perform a numerical parameter study to determine what effect varying differential rotation and flux emergence has on a star's non-potential coronal magnetic field. In particular we consider the effects on the star's surface magnetic flux, open magnetic flux, mean azimuthal field strength, coronal free magnetic energy, coronal heating and flux rope eruptions. To do this, we apply a magnetic flux transport model to describe the photospheric evolution, and couple this to the non-potential coronal evolution using a magnetofrictional technique. A flux emergence model is applied to add new magnetic flux onto the photosphere and into the corona. The parameters of this flux emergence model are derived from the solar flux emergence profile, however the rate of emergence can be increased to represent higher flux emergence rates than the Sun's. Overall we find that flux emergence has a greater effect on the non-potential coronal properties compared to differential rotation, with all the aforementioned properties incr...

  1. Centre of Emergency Response of the Nuclear Regulatory Authority of the Slovak Republic

    International Nuclear Information System (INIS)

    In this contribution author presents the Centre of Emergency Response of the Nuclear Regulatory Authority of the Slovak Republic (CER UJD). Organic structure and emergency plans as well as history of the CER UJD are presented

  2. MEASURES. Multiple radiological emergency assistance system for urgent response

    International Nuclear Information System (INIS)

    Mitsubishi Heavy Industries, Ltd. (MHI) has been carrying out the evaluation of the diffusion of the radioactive material using our wind tunnel facilities before as the environmental impact assessment of Nuclear Power Station in Japan. Further, we are tackling development of the analysis code adapting the technology of abundant air current analyses and diffusion analyses, and dose projection analysis. On the other hand, we also have been coping positively with the support of Nuclear Comprehensive Emergency Drills/Exercises which was started seriously after Tokai-mura JCO Criticality Accident occurred on September 30, 1999. We also have abundant experiences in design, manufacture, and construction nuclear facilities including PWR Power Plants since Mihama Nuclear Plant Unit 1 of Kansai Electric Power which started its commercial operation on November 28, 1970. By utilizing these experiences, outcomes, and knowledge, we have developed the system called MEASURES aiming at practical use in Nuclear Power Stations. In this presentation, the concept and basic system configuration of MEASURES, advanced features of MEASURES developed on the basis of discussions regarding Fukushima events which were occurred on March 11th, 2011, and the post evaluation results of Fukushima events will be reported. (author)

  3. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 December 2002

    International Nuclear Information System (INIS)

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear accident or radiological emergency, with the aim of minimizing the consequences. The International Atomic Energy Agency (IAEA) has specific functions allocated to it under these Conventions, to which, in addition to a number of States, the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full Parties. Since 1989, the arrangements between these organizations for facilitating the practical implementation of those articles of the two Conventions that are operational in nature have been documented by the IAEA in the Emergency Notification and Assistance Technical Operations Manual (ENATOM). The manual is intended for use primarily by Contact Points as identified in the Conventions. Pursuant to the obligations placed on it by the Conventions, the IAEA regularly convenes the Inter-Agency Committee on Response to Nuclear Accidents (lACRNA), whose purpose is to co-ordinate the arrangements of the relevant international intergovernmental organizations ('international organizations') for preparing for and responding to nuclear or radiological emergencies. Although the Conventions assign specific response functions and responsibilities to the IAEA and the Parties, various international organizations have - by virtue of their statutory functions or of related legal instruments - general functions and responsibilities that encompass aspects of preparedness and response. Moreover, some regional organizations (e.g. the European Union) are party to legally binding treaties and have

  4. Updated tool for nuclear criticality accident emergency response

    International Nuclear Information System (INIS)

    Some 20 yr ago a hand-held slide rule was developed at the Oak Ridge Y-12 Plant to aid in the response to several postulated nuclear criticality accidents. These assumed accidents involved highly enriched uranium in either a bare metal or a uranyl nitrate system. The slide rule consisted of a sliding scale based on the total fission yield and four corresponding dose indicators: (1) a prompt radiation dose relationship as a function of distance; (2) a delayed fission product gamma dose rate relationship as a function of time and distance; (3) the total dose relationship with time and distance; and (4) the I-min integrated dose relationship with time and distance. The original slide rule was generated assuming very simplistic numerical procedures such as the inverse-square relationship of dose with distance and the Way-Wigner relationship to express the time dependence of the dose. The simple prescriptions were tied to actual dose measurements from similar systems to yield a meaningful, yet simple approach to emergency planning and response needs. This paper describes the application of an advanced procedure to the updating of the original slide rule for five critical systems. These five systems include (a) an unreflected sphere of 93.2 wt% enriched uranium metal, (b) an unreflected sphere of 93.2 wt% enriched uranyl nitrate solution with a H/235U ratio of 500, (c) an unreflected sphere of damp 93.2 wt% enriched uranium oxide with a H/235U ratio of 10, (d) an unreflected sphere of 4.95 wt% enriched uranyl fluoride solution having a H/235U ratio of 410, and (e) an unreflected sphere of damp 5 wt% enriched uranium dioxide having a H/235U ratio of 200

  5. The atmospheric release advisory capability (ARAC): A federal emergency response capability

    International Nuclear Information System (INIS)

    The Atmospheric Release Capability (ARAC) is a Department of Energy (DOE)-sponsored emergency-response service set up to provide real-time prediction of the dose levels and the extent of surface contamination resulting from a broad range of possible occurrences (accidents, spills, extortion threats involving nuclear material, reentry of nuclear-powered satellites, and atmospheric nuclear tests) that could involve the release of airborne radioactive material. During the past decade, ARAC has responded to more than 150 real-time situations, including exercises. The most notable responses include the Three Mile Island accident in Pennsylvania, the Titan II missile accident in Arkansas, the reentry of the USSR's COSMOS-954 into the atmosphere over Canada, the accidental release of uranium hexafluoride from the Sequoyah Facility accident in Oklahoma, and, most recently, the Chernobyl reactor accident in the Soviet Union. ARAC currently supports the emergency-preparedness plans at 50 Department of Defense (DOD) and DOE sites within the US and also responds to accidents that happen elsewhere. Our ARAC center serves as the focal point for data acquisition, data analysis and assessments during a response, using a computer-based communication network to acquire real-time weather data from the accident site and the surrounding region, as well as pertinent accident information. Its three-dimensional computer models for atmospheric dispersion, MATHEW and ADPIC, digest all this information and produce the predictions used in accident assessment. 9 refs., 6 figs., 1 tab

  6. Geographic Situational Awareness: Mining Tweets for Disaster Preparedness, Emergency Response, Impact, and Recovery

    OpenAIRE

    Qunying Huang; Yu Xiao

    2015-01-01

    Social media data have emerged as a new source for detecting and monitoring disaster events. A number of recent studies have suggested that social media data streams can be used to mine actionable data for emergency response and relief operation. However, no effort has been made to classify social media data into stages of disaster management (mitigation, preparedness, emergency response, and recovery), which has been used as a common reference for disaster researchers and emergency managers ...

  7. Assessment of emergency responders after a vinyl chloride release from a train derailment - New Jersey, 2012.

    Science.gov (United States)

    Brinker, Kimberly; Lumia, Margaret; Markiewicz, Karl V; Duncan, Mary Anne; Dowell, Chad; Rey, Araceli; Wilken, Jason; Shumate, Alice; Taylor, Jamille; Funk, Renée

    2015-01-01

    On November 30, 2012, at approximately 7:00 am, a freight train derailed near a small town in New Jersey. Four tank cars, including a breached tank car carrying vinyl chloride, landed in a tidal creek. Vinyl chloride, a colorless gas with a mild, sweet odor, is used in plastics manufacture. Acute exposure can cause respiratory irritation and headache, drowsiness, and dizziness; chronic occupational exposure can result in liver damage, accumulation of fat in the liver, and tumors (including angiosarcoma of the liver). Because health effects associated with acute exposures have not been well studied, the New Jersey Department of Health requested assistance from the Agency for Toxic Substances and Disease Registry (ATSDR) and CDC. On December 11, teams from these agencies deployed to assist the New Jersey Department of Health in conducting an assessment of exposures in the community as well as the occupational health and safety of emergency personnel who responded to the incident. This report describes the results of the investigation of emergency personnel. A survey of 93 emergency responders found that 26% of respondents experienced headache and upper respiratory symptoms during the response. A minority (22%) reported using respiratory protection during the incident. Twenty-one (23%) of 92 respondents sought medical evaluation. Based on these findings, CDC recommended that response agencies 1) implement the Emergency Responder Health Monitoring and Surveillance (ERHMS) system for ongoing health monitoring of the emergency responders involved in the train derailment response and 2) ensure that in future incidents, respiratory protection is used when exposure levels are unknown or above the established occupational exposure limits. PMID:25577988

  8. Rapid screening of radioactivity in food for emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Bari, A., E-mail: axb16@health.state.ny.u [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509 (United States); Khan, A.J.; Semkow, T.M.; Syed, U.-F.; Roselan, A.; Haines, D.K. [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509 (United States); Roth, G. [Department of Environmental Health Sciences, School of Public Health, University at Albany, One University Place, Rensselaer, NY 12144 (United States); West, L.; Arndt, M. [Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718 (United States)

    2011-06-15

    This paper describes the development of methods for the rapid screening of gross alpha (GA) and gross beta (GB) radioactivity in liquid foods, specifically, Tang drink mix, apple juice, and milk, as well as screening of GA, GB, and gamma radioactivity from surface deposition on apples. Detailed procedures were developed for spiking of matrices with {sup 241}Am (alpha radioactivity), {sup 90}Sr/{sup 90}Y (beta radioactivity), and {sup 60}Co, {sup 137}Cs, and {sup 241}Am (gamma radioactivity). Matrix stability studies were performed for 43 days after spiking. The method for liquid foods is based upon rapid digestion, evaporation, and flaming, followed by gas proportional (GP) counting. For the apple matrix, surface radioactivity was acid-leached, followed by GP counting and/or gamma spectrometry. The average leaching recoveries from four different apple brands were between 63% and 96%, and have been interpreted on the basis of ion transport through the apple cuticle. The minimum detectable concentrations (MDCs) were calculated from either the background or method-blank (MB) measurements. They were found to satisfy the required U.S. FDA's Derived Intervention Levels (DILs) in all but one case. The newly developed methods can perform radioactivity screening in foods within a few hours and have the potential to capacity with further automation. They are especially applicable to emergency response following accidental or intentional contamination of food with radioactivity.

  9. New Structure of Emergency Response Plan in Croatia

    International Nuclear Information System (INIS)

    The new structure of a national emergency response plan in the case of nuclear accident is based on general requirements of modernization according to international recommendations, with a new Technical Support Center as a so-called lead technical agency, with the plan adapted to the organization of the Civil Protection, with all necessary elements of preparedness for the event of a nuclear accident in Krsko NPP and Paks NPP and with such a plan of procedures that will, to greatest possible extent, be compatible with the existing plan in neighboring countries Slovenia and Hungary. The main requirement that direct s a new organization scheme for taking protective actions in the event of a nuclear accident, is the requirement of introducing a Technical Support Center. The basic role of TSC is collecting data and information on nuclear accident, analyzing and estimating development of an accident, and preparing proposals for taking protective actions and for informing the public. TSC is required to forward those proposals to the Civil Protection, which on the basis of evaluation of proposals makes decisions on implementation and surveillance of implementation of protective measures. (author)

  10. The 2012 derecho: emergency medical services and hospital response.

    Science.gov (United States)

    Kearns, Randy D; Wigal, Mark S; Fernandez, Antonio; Tucker, March A; Zuidgeest, Ginger R; Mills, Michael R; Cairns, Bruce A; Cairns, Charles B

    2014-10-01

    During the early afternoon of June 29, 2012, a line of destructive thunderstorms producing straight line winds known as a derecho developed near Chicago (Illinois, USA). The storm moved southeast with wind speeds recorded from 100 to 160 kilometers per hour (kph, 60 to 100 miles per hour [mph]). The storm swept across much of West Virginia (USA) later that evening. Power outage was substantial as an estimated 1,300,000 West Virginians (more than half) were without power in the aftermath of the storm and approximately 600,000 citizens were still without power a week later. This was one of the worst storms to strike this area and occurred as residents were enduring a prolonged heat wave. The wind damage left much of the community without electricity and the crippling effect compromised or destroyed critical infrastructure including communications, air conditioning, refrigeration, and water and sewer pumps. This report describes utilization of Emergency Medical Services (EMS) and hospital resources in West Virginia in response to the storm. Also reported is a review of the weather phenomena and the findings and discussion of the disaster and implications. PMID:25231139

  11. The 2012 derecho: emergency medical services and hospital response.

    Science.gov (United States)

    Kearns, Randy D; Wigal, Mark S; Fernandez, Antonio; Tucker, March A; Zuidgeest, Ginger R; Mills, Michael R; Cairns, Bruce A; Cairns, Charles B

    2014-10-01

    During the early afternoon of June 29, 2012, a line of destructive thunderstorms producing straight line winds known as a derecho developed near Chicago (Illinois, USA). The storm moved southeast with wind speeds recorded from 100 to 160 kilometers per hour (kph, 60 to 100 miles per hour [mph]). The storm swept across much of West Virginia (USA) later that evening. Power outage was substantial as an estimated 1,300,000 West Virginians (more than half) were without power in the aftermath of the storm and approximately 600,000 citizens were still without power a week later. This was one of the worst storms to strike this area and occurred as residents were enduring a prolonged heat wave. The wind damage left much of the community without electricity and the crippling effect compromised or destroyed critical infrastructure including communications, air conditioning, refrigeration, and water and sewer pumps. This report describes utilization of Emergency Medical Services (EMS) and hospital resources in West Virginia in response to the storm. Also reported is a review of the weather phenomena and the findings and discussion of the disaster and implications.

  12. Variation in implementation of corporate social responsibility practices in emerging economies' firms: A survey of Chilean fruit exporters

    NARCIS (Netherlands)

    Klerkx, L.W.A.; Villalobos, P.; Engler, A.

    2012-01-01

    As in many sectors in emerging economies, the concept of corporate social responsibility (CSR) has become important for exporting agri-food firms in view of their integration in global supply chains. The purpose of this research was to assess the implementation by Chilean fruit exporters of CSR prac

  13. General arrangement design optimization of emergency response facility (TSC, OSC) in Korea next generation reactor (APR-1400)

    International Nuclear Information System (INIS)

    The accident at the Three Mile Island (TMI) led to install some data processing and display equipment to assist control room personnel in rapidly evaluating the safety status. And also to place in the plant for providing operators with technical support and an emergency response center for radiological environmental assessments and determination of recommended public protective action during emergency. In practice, most of the countries possessing nuclear power plants including USA have partially or wholly adopted US NRC regulations and guidelines for Emergency Response Facility(ERF). Also the Korea nuclear power plants are implementing or operating ERF and SPDS after analyzing US NRC regulations and guideline since TMI accident. So this paper first been reviewed Korea Regulations, US NRC published codes and standards related to ERF (TSC/OSC). Finally this paper is described the design optimization of general arrangement in emergency response facility to improve emergency response capability in Korea Next Generation Reactor(APR-1400), which are best suitable for our domestic situation and also enhance the emergency response capability of ERF

  14. Oak Ridge Y-12 Plant Emergency Management Hazards Assessment (EMHA) Process

    International Nuclear Information System (INIS)

    This report establishes requirements and standard methods for the development and maintenance of the Emergency Management Hazards Assessment (EMHA) process used by the lead and all event contractors at the Y-12 Plant for emergency planning and preparedness. The EMHA process provides the technical basis for the Y-12 emergency management program. The instructions provides in this report include methods and requirements for performing the following emergency management activities at Y-12: hazards identification; hazards survey, and hazards assessment

  15. Ireland's Preparedness for Nuclear Emergencies - Development of a Handbook for the Technical Assessment Team (TAT)

    International Nuclear Information System (INIS)

    In Ireland, the National Emergency Plan for Nuclear Accidents (NEPNA) provides a framework for the national response to a large scale nuclear incident with the potential to contaminate a wide area. Under this plan, the Radiological Protection Institute of Ireland (RPII) has been assigned a major role covering a range of responsibilities. One of these is to carry out a radiological assessment of the situation. The RPII Technical Assessment Team (TAT) is activated in such circumstances, and is tasked with delivering this radiological assessment. Broadly speaking, the role of the TAT is to gather together all of the available information relevant to the event and to use this information to assess the radiological consequences for Ireland so as to formulate advice regarding subsequent precautionary actions, particular regarding food controls and preventive measures for the agricultural sectors. The TAT could also be asked to assess the radiological consequences for Irish citizens abroad, living in any location potentially affected by radioactive contamination. The arrangements for the running of the TAT are set out in the TAT handbook. This document has been under developed for a number of years and is now undergoing a major revision. A large number of additional documents have been developed since the original draft version was produced and, in conjunction with RPII's experience in responding to real events and exercises these need to be integrated and taken into account to produce an updated version. This poster will explain the rationale behind the review; it will outline the planning process and describe the various implementation phases, from the inventory of the existing documents and procedures to the integration of the new information that need to be considered during the response to an emergency. An outline of some of the key procedures being developed will also be given. (authors)

  16. Development and application of a random walk model of atmospheric diffusion in the emergency response of nuclear accidents

    Institute of Scientific and Technical Information of China (English)

    CHI Bing; LI Hong; FANG Dong

    2007-01-01

    Plume concentration prediction is one of the main contents of radioactive consequence assessment for early emergency response to nuclear accidents. Random characteristics of atmospheric diffusion itself was described, a random walk model of atmospheric diffusion (Random Walk) was introduced and compared with the Lagrangian puff model (RIMPUFF) in the nuclear emergency decision support system (RODOS) developed by the European Community for verification. The results show the concentrations calculated by the two models are quite close except that the plume area calculated by Random Walk is a little smaller than that by RIMPUFF. The random walk model for atmospheric diffusion can simulate the atmospheric diffusion in case of nuclear accidents, and provide more actual information for early emergency and consequence assessment as one of the atmospheric diffusion module of the nuclear emergency decision support system.

  17. Encountering Anger in the Emergency Department: Identification, Evaluations and Responses of Staff Members to Anger Displays

    Directory of Open Access Journals (Sweden)

    Cheshin Arik

    2012-01-01

    Full Text Available Background. Anger manifestations in emergency departments (EDs occur daily, interrupting workflow and exposing staff to risk. Objectives. How staff assess and recognize patients’ angry outbursts in EDs and elucidate responses to anger expressions, while considering effects of institution guidelines. Methods. Observations of staff patient interaction in EDs and personal interviews of staff (n=38 were conducted. Two questionnaires were administered (n=80 & n=144. Assessment was based mainly on regression statistic tests. Results. Staff recognizes two types of anger displays. Magnitude of anger expressions were correlated with staff’s fear level. Staff’s responses ranged from ignoring incidents, giving in to patients’ requests or immediately calling security. When staff felt fear and became angry they tended to call security. Staff was more likely to ignore anger when incident responsibility was assigned to patients. Discussion. Anger encounters are differentiated according to intensity level, which influences interpretations and response. Organizational policy has an effect on staff’s response. Conclusions. Staff recognizes anger at varying levels and responds accordingly. The level of danger staff feels is a catalyst in giving in or calling security. Call security is influenced by fear, and anger. Permanent guidelines can help staff in responding to anger encounters.

  18. Joint research and development on toxic-material emergency response between ENEA and LLNL. 1982 progress report

    International Nuclear Information System (INIS)

    A summary is presented of current and future cooperative studies between ENEA and LLNL researchers designed to develop improved real-time emergency response capabilities for assessing the environmental consequences resulting from an accidental release of toxic materials into the atmosphere. These studies include development and evaluation of atmospheric transport and dispersion models, interfacing of data processing and communications systems, supporting meteorological field experiments, and integration of radiological measurements and model results into real-time assessments

  19. Emergency response capabilities developed in the United States to deal with nuclear materials transportation accidents

    International Nuclear Information System (INIS)

    The non-existence of emergency response programs is frequently stated as a reason for restricting the movement of radioactive materials through states or local jurisdictions. Yet, studies discussed here indicate that emergency response capability, while not in the best condition, is getting more money, interest and attention, and in most states response networks exist which could be effective in responding to radiological emergencies. Awareness of such capabilities by the public is an important feature in increasing the public's confidence in the ability of federal, state and local officials in controlling hazards. One aspect of this awareness program could be in broader availability of radioactive emergency techniques for possible first responders to emergencies. This training, public awareness and more emphasis on workable emergency plans will help to assure reliable and workable emergency response plans

  20. Responsibilities and tasks of the Emergency planning organization

    International Nuclear Information System (INIS)

    In order to strengthen the emergency preparedness of the most essential agencies so that all types of nuclear accidents can be mastered, the following measures will be taken: - special training for decision-makers and other personnel - introduction of continuously operating staff emergency organization - introduction of a prompt radiation measurement organization - introduction of reliable telecommunications links. (author)

  1. Nuclear power plants in Germany. Recent developments in off-site nuclear emergency preparedness and response

    International Nuclear Information System (INIS)

    The reactor accident in Fukushima, Japan, in 2011 triggered a thorough review of the off-site emergency preparedness and response for nuclear power plants in Germany. ''Off-site emergency preparedness and response'' includes all actions to protect the public outside the fence of a nuclear power plant. This review resulted in several changes in off-site emergency preparedness and response, which are briefly described in this article. Additionally, several recent activities are described which may influence emergency preparedness and response in the future.

  2. Review of Current Neutron Detection Systems for Emergency Response

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S. [NSTec; Maurer, R. [NSTec; Guss, P. [NSTec; Kruschwitz, C. [NSTec

    2014-09-01

    Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern micro-fabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.

  3. Essentials for emergency care: Lessons from an inventory assessment of an emergency centre in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Kofi Marfo Osei

    2014-12-01

    Conclusion: Beyond pointing out specific material resource deficiencies at the Surgical Medical Emergency (SME centre, our inventory assessment indicated a need to develop better implementation strategies for infection control policies, to collaborate with other departments on coordination of patient care, and to set a research agenda to develop emergency and acute care protocols that are both effective and sustainable in our setting. Equipment and supplies are essential elements of emergency preparedness that must be both available and ‘ready-to-hand’. Consequently, key factors in determining readiness to provide quality emergency care include supply-chain, healthcare financing, functionality of systems, and a coordinated institutional vision. Lessons learnt may be useful for others facing similar challenges to emergency medicine development.

  4. Diagnostic Emergency Ultrasound: Assessment Techniques In The Pediatric Patient.

    Science.gov (United States)

    Guttman, Joshua; Nelson, Bret P

    2016-01-01

    Emergency ultrasound is performed at the point of care to answer focused clinical questions in a rapid manner. Over the last 20 years, the use of this technique has grown rapidly, and it has become a core requirement in many emergency medicine residencies and in some pediatric emergency medicine fellowships. The use of emergency ultrasound in the pediatric setting is increasing due to the lack of ionizing radiation with these studies, as compared to computed tomography. Utilizing diagnostic ultrasound in the emergency department can allow clinicians to arrive at a diagnosis at the bedside rather than sending the patient out of the department for another study. This issue focuses on common indications for diagnostic ultrasound, as found in the pediatric literature or extrapolated from adult literature where pediatric evidence is scarce. Limitations, current trends, controversies, and future directions of diagnostic ultrasound in the emergency department are also discussed.

  5. Brief report: Assessing youth well-being in global emergency settings: Early results from the Emergency Developmental Assets Profile.

    Science.gov (United States)

    Scales, Peter C; Roehlkepartain, Eugene C; Wallace, Teresa; Inselman, Ashley; Stephenson, Paul; Rodriguez, Michael

    2015-12-01

    The 13-item Emergency Developmental Assets Profile measures the well-being of children and youth in emergency settings such as refugee camps and armed conflict zones, assessing whether young people are experiencing adequate positive relationships and opportunities, and developing positive values, skills, and self-perceptions, despite being in crisis circumstances. The instrument was found to have acceptable and nearly identical internal consistency reliability in 22 administrations in non-emergency samples in 15 countries (.75), and in 4 samples of youth ages 10-18 (n = 1550) in the emergency settings (war refugees and typhoon victims, .74) that are the measure's focus, and evidence of convergent validity. Confirmatory Factor Analysis showed acceptable model fit among those youth in emergency settings. Measures of model fit showed that the Em-DAP has configural and metric invariance across all emergency contexts and scalar invariance across some. The Em-DAP is a promising brief cross-cultural tool for assessing the developmental quality of life as reported by samples of youth in a current humanitarian crisis situation. The results can help to inform international relief program decisions about services and activities to be provided for children, youth, and families in emergency settings.

  6. Brief report: Assessing youth well-being in global emergency settings: Early results from the Emergency Developmental Assets Profile.

    Science.gov (United States)

    Scales, Peter C; Roehlkepartain, Eugene C; Wallace, Teresa; Inselman, Ashley; Stephenson, Paul; Rodriguez, Michael

    2015-12-01

    The 13-item Emergency Developmental Assets Profile measures the well-being of children and youth in emergency settings such as refugee camps and armed conflict zones, assessing whether young people are experiencing adequate positive relationships and opportunities, and developing positive values, skills, and self-perceptions, despite being in crisis circumstances. The instrument was found to have acceptable and nearly identical internal consistency reliability in 22 administrations in non-emergency samples in 15 countries (.75), and in 4 samples of youth ages 10-18 (n = 1550) in the emergency settings (war refugees and typhoon victims, .74) that are the measure's focus, and evidence of convergent validity. Confirmatory Factor Analysis showed acceptable model fit among those youth in emergency settings. Measures of model fit showed that the Em-DAP has configural and metric invariance across all emergency contexts and scalar invariance across some. The Em-DAP is a promising brief cross-cultural tool for assessing the developmental quality of life as reported by samples of youth in a current humanitarian crisis situation. The results can help to inform international relief program decisions about services and activities to be provided for children, youth, and families in emergency settings. PMID:26426457

  7. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 January 2007

    International Nuclear Information System (INIS)

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear accident or radiological emergency, with the aim of minimizing the consequences. The International Atomic Energy Agency (IAEA) has specific functions assigned to it under these Conventions, to which, in addition to a number of States, the European Union (EURATOM), the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full Parties. Since 1989, the arrangements between these organizations for facilitating the practical implementation of those articles of the two Conventions that are operational in nature have been documented by the IAEA in the Emergency Notification and Assistance Technical Operations Manual (ENATOM)1. The manual is intended for use primarily by contact points as identified in the Conventions. Pursuant to the obligations placed on it by the Conventions, the IAEA regularly convenes the Inter-Agency Committee on Response to Nuclear Accidents (IACRNA)2, whose purpose is to co-ordinate the arrangements of the relevant international intergovernmental organizations ('international organizations') for preparing for and responding to nuclear or radiological emergencies. Although the Conventions assign specific response functions and responsibilities to the IAEA and the Parties, various international organizations have - by virtue of their statutory functions or of related legal instruments - general functions and responsibilities that encompass aspects of preparedness and response. Moreover, some regional organizations (e.g. the European Union) are party to legally

  8. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications

    Directory of Open Access Journals (Sweden)

    Piero Boccardo

    2015-07-01

    Full Text Available Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author’s group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.

  9. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications.

    Science.gov (United States)

    Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Tonolo, Fabio Giulio; Lingua, Andrea

    2015-07-02

    Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author's group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.

  10. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications.

    Science.gov (United States)

    Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Tonolo, Fabio Giulio; Lingua, Andrea

    2015-01-01

    Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author's group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications. PMID:26147728

  11. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications

    Science.gov (United States)

    Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Giulio Tonolo, Fabio; Lingua, Andrea

    2015-01-01

    Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author’s group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications. PMID:26147728

  12. Medical preparedness and response. Educational material. Training for radiation emergency preparedness and response

    International Nuclear Information System (INIS)

    Radiation is widely used in medicine, industry, agriculture and research. It provides invaluable benefits. However, radiation sources can be lost, stolen, or otherwise not under proper control, and this can lead to injuries to people who come into contact with them. Even so, radiation accidents are rare. Between 1944 and 2001, altogether 420 accidents were registered worldwide: approximately 3000 persons were injured, with 133 fatalities (including the 28 victims of the Chernobyl accident). Often the victims of radiation emergencies are unaware that they may have been exposed to radiation. Even if health consequences of exposure are first seen by medical doctors, a proper diagnosis may not be immediately forthcoming. Lack of knowledge about the clinical effects of radiation exposure is one of the main reasons why many accidental injuries are not recognized sufficiently early to prevent further exposures and to provide for the most effective treatment. Therefore, a wider understanding of the health consequences of radiation exposure among health authorities and medical personnel, needs to be developed. The IAEA-WHO educational programme on Medical Preparedness and Response to Radiation Emergencies was developed to provide medical personnel with knowledge of health consequences of radiation exposure. The programme consists of 24 modules including 30 lectures, a demonstration, a drill and five video films. By the end of the course the participants will be able to train: emergency medical personnel to recognize and respond to radiation overexposure including establishing and maintaining contact with appropriate response authorities; emergency medical teams to provide pre-hospital care for overexposed, injured or contaminated persons; hospital staff to provide treatment for overexposed, injured or contaminated victims

  13. Safety regulation on emergency response and radiation protection in civilian nuclear installations

    International Nuclear Information System (INIS)

    The NNSA organized continuously a review on the emergency planning of the nuclear installations for the operating organizations GNPS, INET/TU and NPIC, and the regulatory inspection on site emergency response and radiation protection for YNFP, INET/TU: Especially a site inspection on site emergency preparedness including an exercise for the Mingjiang Experimental Reactor of NPIC were implemented in 1996

  14. Real time quality control of meteorological data used in SRP's emergency response system

    International Nuclear Information System (INIS)

    The Savannah River Laboratory's WIND minicomputer system allows quick and accurate assessment of an accidental release at the Savannah River Plant using data from eight meteorological towers. The accuracy of the assessment is largely determined by the accuracy of the meteorological data; therefore quality control is important in an emergency response system. Real-time quality control of this data will be added to the WIND system to automatically identify inaccurate data. Currently, the system averages the measurements from the towers to minimize the influence of inaccurate data being used in calculations. The computer code used in the real-time quality control has been previously used to identify inaccurate measurements from the archived tower data

  15. Fast response system for vacuum volume emergency separation

    International Nuclear Information System (INIS)

    A system which allows to separate vacuum systems of the magnetic-optic beam channels connected with the accelerator has been worked out for case of emergency environment break through the extraction ''window''. The system, consisting of two valve - gate devices and a control unit, allows one in the emergency case to separate more than 20 m long volume from the accelerator without any pressure changes in the latter one

  16. Emergency Preparedness Hazards Assessment for Transuranic (TRU) Waste Pads. Revision 1

    International Nuclear Information System (INIS)

    This report is a revision of the facility Emergency Preparedness Hazards Assessment (EPHA) for the Transuranic (TRU) Waste Pads located on the Department of Energy (DOE) Savannah River Site (SRS). The EPHA was conducted in accordance with Emergency Management Program Procedure (EMPP) 6Q-001 (Ref. 1). The EPHA provides the technical basis for facility emergency planning efforts

  17. French emergency response against nuclear and radiological terrorism

    International Nuclear Information System (INIS)

    Full text: The French response in case of nuclear or radiological terrorism threat is organized around a technical response group DCI (Interministerial Central Detachment). This group is in charge of search, diagnostic, assess and neutralize a nuclear or radiological improvised device. The DCI was set up on 6 March 1995 to deal with the threat of terrorist attacks using CBRN devices, or following the discovery of a device suspected of containing CBRN or similar materials for terrorist or criminal purposes. This group is able to deploy anywhere in France, and is made of people from Homeland security Minister (Police squad, scientific police and civilian security), Defense Minister (EOD teams), and French Atomic Commission - Military Application Division (CEA/DAM). Upon proposal of the Prime Minister's National Defence General Secretariat, the head of the RAID (special police force) is appointed by the Ministers of Homeland Security and Defense. He assumes command of the DCI and choose his deputy in regard with the threat; for the nuclear and radiological threat, the deputy who will assist the Chief of the group is issued from CEA/DAM. The group deals with search, assesment and render safe any such device (containment and neutralization). Its objective is to assess the threat level and to advise the Prefet or Military Authority in charge of the crisis on the best technical solutions to deal with the incident and to realise technical actions in order to rend safe the device. For that it will provide its expertise and relies on specific technical means of dealing with CBRN incidents, which it alone is able to deploy at the national level. The DCI has the capacity to deal with CBRN cases such as the use of a CBRN device used in a terrorist related workplace blackmail. A second role undertaken by the group since its inception is that of bringing a level of technical expertise to the Police, Gendarmerie or Customs Services in the fight against trafficking. In support of

  18. Tactical and strategic decision-making aids for nuclear power plant emergency response

    International Nuclear Information System (INIS)

    This paper examines the prospective role of computer-based decision aids for nuclear power plant emergency response. The role of these systems is subordinate to human activities, but in a complementary manner these systems process decision logic more accurately and foster a more thorough understanding of emergency situations than might other wise be possible. Within this context two decision support systems being developed are discussed. Both of these systems utilize technology derived from artificial intelligence, focussing on two different facets of emergency response. An automated emergency operating procedures (EOP) tracking expert system is described as a tactical aid for control room operator response. A reactor emergency action level monitor (REALM) expert system is proposed as a strategic decision aid for site emergency response. The discrimination between tactical and strategic decision-making is an intrinsic part of this examination

  19. Analysis of the Baseline Assessments Conducted in 35 U.S. State/Territory Emergency Management Programs: Emergency Management Accreditation Program (EMAP) 2003-2004

    OpenAIRE

    Lucus, Valerie CEM, CBCP

    2006-01-01

    The Emergency Management Accreditation Program (EMAP) is a non profit organization developed to accredit government emergency management programs in the 56 U.S. states and territories. This accreditation model is based on the NFPA 1600 Standard on Disaster/Emergency Management and Business Continuity Programs. In 2003, the Federal Emergency Management Agency funded EMAP to conduct baseline assessments of each U.S. state and territory to assess their emergency management capabilities. Between ...

  20. 49 CFR 1.69 - Delegations to the Director of Intelligence, Security, and Emergency Response.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Delegations to the Director of Intelligence... Intelligence, Security, and Emergency Response. The Director of Intelligence, Security, and Emergency Response is delegated authority for the following: (a) Intelligence and Security. Carry out the...

  1. A FTA-based method for risk decision-making in emergency response

    DEFF Research Database (Denmark)

    Liu, Yang; Li, Hongyan

    2014-01-01

    Decision-making problems in emergency response are usually risky and uncertain due to the limited decision data and possible evolvement of emergency scenarios. This paper focuses on a risk decisionmaking problem in emergency response with several distinct characteristics including dynamic evolvem....... Finally, a case study on H1N1 infectious diseases is given to illustrate the feasibility and validity of the proposed method....

  2. Knowledge management for improved of emergency preparedness and response at nuclear facilities

    International Nuclear Information System (INIS)

    Full text: Sustaining of knowledge management poses inseparable part of safety maintenance at a nuclear facilities and provision of competence of regulatory authority. In the report key issues are considered to achieve the proper level of staff competence of operating organizations and the regulatory authority in domains of nuclear safety at Russian Nuclear Research Facilities (NRF) on the basis of international fundamental principles of safety. The principle of prime responsibility for safety was established at legislative level in Russia. Federal environmental, industrial and nuclear supervision service of Russia (Rostechnadzor) carries out major functions of the regulatory body of nuclear and radiation safety including development of regulations and guides, authorization, review and assessment of safety; inspections and enforcement measures. Moreover, Rostechnadzor's competence includes arrangement to ensure functions of the state subsystem to oversee the emergency situation at objects of the use of atomic energy. In current practice operating organization fulfils knowledge management of personal including training, retraining, and provision of qualification skill. Rostechnadzor issues permits conferring the right to carry out activities in the sphere of the use of atomic energy. Rostechnadzor's employees' qualification and skills levels are being tested on the basis of Federal law 'On Public Service in Russian Federation'. The regulatory body develops comprehensive system for staff skills in all domains of regulation of nuclear and radiation safety. The scope of necessary knowledge of state employees includes issues of legislation, regulation, safety of nuclear facilities, radiation protection and monitoring, information technologies and communication, public relations, psychology and other areas of knowledge. Problem of emergency preparedness and emergency response are fundamental importance for facilities in operation and includes all listed above specific

  3. Communication of emergency public warnings: A social science perspective and state-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mileti, D.S. (Colorado State Univ., Fort Collins, CO (USA)); Sorensen, J.H. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    More than 200 studies of warning systems and warning response were reviewed for this social science perspective and state-of-the-art assessment of communication of emergency public warnings. The major findings are as follows. First, variations in the nature and content of warnings have a large impact on whether or not the public heeds the warning. Relevant factors include the warning source; warning channel; the consistency, credibility, accuracy, and understandability of the message; and the warning frequency. Second, characteristics of the population receiving the warning affect warning response. These include social characteristics such as gender, ethnicity and age, social setting characteristics such as stage of life or family context, psychological characteristics such as fatalism or risk perception, and knowledge characteristics such as experience or training. Third, many current myths about public response to emergency warning are at odds with knowledge derived from field investigations. Some of these myths include the keep it simple'' notion, the cry wolf'' syndrome, public panic and hysteria, and those concerning public willingness to respond to warnings. Finally, different methods of warning the public are not equally effective at providing an alert and notification in different physical and social settings. Most systems can provide a warning given three or more hours of available warning time. Special systems such as tone-alert radios are needed to provide rapid warning. 235 refs., 8 figs., 2 tabs.

  4. Community response grids: using information technology to help communities respond to bioterror emergencies.

    Science.gov (United States)

    Jaeger, Paul T; Fleischmann, Kenneth R; Preece, Jennifer; Shneiderman, Ben; Wu, Philip Fei; Qu, Yan

    2007-12-01

    Access to accurate and trusted information is vital in preparing for, responding to, and recovering from an emergency. To facilitate response in large-scale emergency situations, Community Response Grids (CRGs) integrate Internet and mobile technologies to enable residents to report information, professional emergency responders to disseminate instructions, and residents to assist one another. CRGs use technology to help residents and professional emergency responders to work together in community response to emergencies, including bioterrorism events. In a time of increased danger from bioterrorist threats, the application of advanced information and communication technologies to community response is vital in confronting such threats. This article describes CRGs, their underlying concepts, development efforts, their relevance to biosecurity and bioterrorism, and future research issues in the use of technology to facilitate community response.

  5. Discharge from an emergency department observation unit and a surgical assessment unit

    DEFF Research Database (Denmark)

    Schultz, Helen; Qvist, Niels; Backer Mogensen, Christian;

    2014-01-01

    To investigate the experiences of patients with acute abdominal pain at discharge from an emergency department observation unit compared with discharge from a surgical assessment unit.......To investigate the experiences of patients with acute abdominal pain at discharge from an emergency department observation unit compared with discharge from a surgical assessment unit....

  6. Assessment and Evaluation of National Human Resource Development System Competitiveness in Emerging Countries

    Science.gov (United States)

    Oh, HunSeok; Seo, DongIn; Kim, JuSeuk; Yoo, SangOk; Seong, HeeChang

    2015-01-01

    This study assessed and evaluated the competitiveness of national human resource development (NHRD) systems in emerging countries with potential for growth. The literature on emerging countries and NHRD systems was reviewed. The study developed a model mechanism with forty-one indices and nine sub-components for the NHRD system assessment in…

  7. Technical support and preparations for the response to radiological emergencies

    International Nuclear Information System (INIS)

    The work picks up the efforts directed to elevate the technical capacity of the answer in front of the radiological emergencies. Expressing them by means of the actions carried out as for teaching, research and development and intervention before accidental radiological events. The same one reflects the leading role of the participant institutions in those marks of the answer system to radiological emergencies that for its technical level it satisfies the national and international demands in the matter. In execution of the mentioned goals research projects guided to endow to the national system of methodologies and procedures for the administration of radiological emergencies have been executed that favor the improvement of its technical and organizational capacities. As well as the postulates of the National Plan of Measures for Case of Catastrophes in the corresponding to radiological accidents. (Author)

  8. Development of procedure for emergency response in the combined disaster

    International Nuclear Information System (INIS)

    Lessons learned from operating experience at the emergency after a East Japan Great Earthquake, have shown that development of decision making procedure and criteria for protective action implementation would be important at the emergency in the combined disaster such as nuclear accidents caused by natural disasters (including tsunami, flood, heavy snow, fire, etc.). In this study, the problemdefinition, the concept of operation and the data development were planned for three years since fiscal year 2011. In tins year, trial calculation of evacuation time estimate (ETE) for the wide area was performed. Moreover, the basic concept and procedure for carrying out ETE condidering the combined emergency were developed based on the last year results. (author)

  9. Assessment and Management of Bullied Children in the Emergency Department

    OpenAIRE

    Waseem, Muhammad; Ryan, Mary; Foster, Carla Boutin; Peterson, Janey

    2013-01-01

    Bullying is an important public health issue in the United States. Up to 30% of children report exposure to such victimization. Not only does it hurt bully victim, but it also negatively impacts the bully, other children, parents, school staff, and health care providers. Because bullying often presents with accompanying serious emotional and behavioral symptoms, there has been an increase in psychiatric referrals to emergency departments. Emergency physicians may be the first responders in th...

  10. Duties and responsibilities of various agencies in radiological emergencies

    International Nuclear Information System (INIS)

    Depending on the severity of an accident in a nuclear facility, the consequences can range from trivial to serious ones involving injury, loss of life, dislocation of communities, destruction of property and environment. In a radiological emergency a number of agencies have to work in close cooperation. Since human senses are immune to radioactive pollutants all inputs are based on interpretation of readings of sensitive instrumentation. Successful implementation of the emergency programme depends upon close cooperation between the three principal agencies involved, viz. a) facility operators; b) government departments and c) members of public. The role of each of these agencies are examined in detail

  11. Warning of and emergency response to nuclear and radiological terrorist incidents

    International Nuclear Information System (INIS)

    This paper introduces mainly the research status and developing focuses of warning of and emergency response to nuclear and radiological terrorist incidents and discusses the system and technology of warning and emergency response to nuclear and radiological terrorist incident. The system of warning and response of nuclear and radiation incident is comprised of information acquirement and management, analysis and decision-making, and emergency response. The system is based on threat evaluation. The content and technology of the system is analyzed in the paper, in particular the importance of information flow, such as information collection, estimation, release and so on. (author)

  12. Massive Open Online Librarianship: Emerging Practices in Response to MOOCs

    Science.gov (United States)

    Mune, Christina

    2015-01-01

    Massive Open Online Courses, or MOOCs, have recently emerged as a disruptive pedagogy gaining rapid momentum in higher education. In some states, proposed legislations would accredit MOOCs to provide college-credit courses in the name of cost saving, efficiency and access. While debates rage regarding the place of MOOCs in higher education, some…

  13. Hazard analysis of critical control points assessment as a tool to respond to emerging infectious disease outbreaks.

    Science.gov (United States)

    Edmunds, Kelly L; Hunter, Paul R; Few, Roger; Bell, Diana J

    2013-01-01

    Highly pathogenic avian influenza virus (HPAI) strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP) assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam's domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam's domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases. PMID:23967294

  14. Hazard analysis of critical control points assessment as a tool to respond to emerging infectious disease outbreaks.

    Directory of Open Access Journals (Sweden)

    Kelly L Edmunds

    Full Text Available Highly pathogenic avian influenza virus (HPAI strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam's domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam's domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases.

  15. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  16. Emergency response planning and preparedness for transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    The purpose of this Guide is to provide assistance to public authorities and others (including consignors and carriers of radioactive materials) who are responsible for ensuring safety in establishing and developing emergency response arrangements for responding effectively to transport accidents involving radioactive materials. This Guide is concerned mainly with the preparation of emergency response plans. It provides information which will assist those countries whose involvement with radioactive materials is just beginning and those which have already developed their industries involving radioactive materials and attendant emergency plans, but may need to review and improve these plans. The need for emergency response plans and the ways in which they are implemented vary from country to country. In each country, the responsible authorities must decide how best to apply this Guide, taking into account the actual shipments and associated hazards. In this Guide the emergency response planning and response philosophy are outlined, including identification of emergency response organizations and emergency services that would be required during a transport accident. General consequences which could prevail during an accident are described taking into account the IAEA Regulations for the Safe Transport of Radioactive Material. 43 refs, figs and tabs

  17. Preliminary study on Malaysian Nuclear Agency emergency response and preparedness plan from ICT perspective

    International Nuclear Information System (INIS)

    Emergency response and preparedness (ERP) is an important components of a safety programme developed for any nuclear research centre or nuclear power plant to ensure that the facility can be operated safely and immediate response and actions can be taken to minimize the risk in case of unplanned events and incidences. ERP inclusion in the safety program has been made compulsory by most of the safety standard systems introduced currently including those of ISO 14000, OSHAS 18001 and IAEA. ERP has been included in the Nuclear Malaysia's Safety Health and Environment Management System (SHE-MS) for similar purpose. The ERP has been developed based on guidelines stipulated by AELB, IAEA, DOSH, Fire Brigade and Police Force, taking into consideration all possible events and incidences that can happen within the laboratories and irradiation facilities as a result of activities carried out by its personnel. This paper briefly describes the overall structure of the Nuclear Malaysia ERP, how it functions and being managed, and a brief historical perspective. However ERP is not easily implemented because of human errors and other weaknesses identified. Some ERP cases are analysed and assessed which based on the challenges, strategies and lessons learned from an ICT (Information and Communication Technology) perspective. Therefore, results of the analysis could then be used as inputs to develop a new system of Decision Support System (DSS) for ERP that is more effective in managing emergencies. This system is to be incorporated into the existing SHE-MS of Nuclear Malaysia. (Author)

  18. Development of a health and safety manual for emergency response operations

    International Nuclear Information System (INIS)

    The Federal Radiological Monitoring and Assessment Center (FRMAC) Health and Safety Manual, which has been under development by a multi-agency group, is nearing completion and publication. The manual applies to offsite monitoring during a radiological accident or incident. Though written for multi-agency offsite monitoring activities (FRMAC), the manual is generic in nature and should be readily adaptable for other emergency response operations. Health and safety issues for emergency response situations often differ from those of normal operations. Examples of these differences and methodologies to address these issues are discussed. Challenges in manual development, including lack of regulatory and guidance documentation, are also discussed. One overriding principle in the Health and Safety Manual development is the overall reduction of risk, not just dose. The manual is broken into several chapters, which include Overview of Responsibities, Health Physics, Industrial Hygiene and Safey, Medical, and Environmental Compliance and Records. Included is a series of appendices, which presents additional information on forms and plans for default scenarios

  19. Student assessment via graded response model

    OpenAIRE

    Mariagiulia Matteucci; Luisa Stracqualursi

    2008-01-01

    Recently, the Faculty of Political Science at the University of Bologna has started a program of didactics reorganization for several courses, introducing more than one evaluation test during the learning process. Student assessment before the final examination has the double aim of measuring both the level of student’s ability and the effectiveness of the teaching process, in order to correct it real-time. In such an evaluation system, common to the Anglo-Saxon countries, Item Response Theor...

  20. Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia

    Science.gov (United States)

    Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul

    2016-03-01

    Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.

  1. MMS: An electronic message management system for emergency response

    DEFF Research Database (Denmark)

    Andersen, H.B.; Garde, H.; Andersen, V.

    1998-01-01

    This paper outlines the main features of an electronic communication system, MMS, designed to support coordination and exchange of information in connection with emergency management (EM) efforts, The design. of the MMS has been motivated by interviews with EM decision makers and reviews of commu......This paper outlines the main features of an electronic communication system, MMS, designed to support coordination and exchange of information in connection with emergency management (EM) efforts, The design. of the MMS has been motivated by interviews with EM decision makers and reviews...... of communication and coordination problems observed during EM efforts and exercises, The system involves the use of a small set of message types designed to match the main categories of acts of communication in the domain of EM. Message tokens related to a sequence of message transactions fan he linked, and links...

  2. The Role of the International Atomic Energy Agency in a Response to Nuclear and Radiological Incidents and Emergencies

    International Nuclear Information System (INIS)

    Full text: The role of the International Atomic Energy Agency (IAEA) in a response to nuclear and radiological incidents and emergencies has been defined and further expanded through the IAEA Statute, the Convention on Early Notification of a Nuclear Accident, the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, the Convention on Physical Protection of Nuclear Material, IAEA safety standards, relevant decisions by Policy Making Organs of the IAEA, inter-agency agreements and other documents such as the IAEA Action Plan on Nuclear Safety. The IAEA Secretariat fulfils its roles through the Agency's Incident and Emergency System (IES) and the Incident and Emergency Centre (IEC). The IEC is the global focal point for international preparedness and response to nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest and for coordination of International assistance. During a response the IEC performs and facilitates for Member States many specific functions which include: prompt notification; official information exchange; assessment of potential consequences; prognosis of emergency progression; provision, facilitation and coordination of International assistance; provision of timely, accurate and easily understandable public information; coordination of inter-agency response at the International level. Through officially designated contact points of Member States the IEC is able to communicate at any time with national authorities to ensure the prompt and successful sharing of information and resources. The IEC routinely performs internal exercising of all aspects of the IAEA response and in cooperation with Member States, the IAEA organizes and facilitates the conduct of large scale international exercises to practice cooperation and coordination. This presentation outlines in detail the specific functions of the IAEA IEC during a response. (author)

  3. A knowledge based system for training radiation emergency response personnel

    International Nuclear Information System (INIS)

    One of the important aspects of radiation emergency preparedness is to impart training to emergency handling staff. Mock exercises are generally used for this purpose. But practical considerations limit the frequency of such exercises. A suitably designed computer software can be effectively used to impart training. With the advent of low cost personal computers, the frequency with which the training programme can be conducted is unlimited. A computer software with monotonic behaviour is inadequate for such training. It is necessary to provide human like tutoring capabilities. With the advances in knowledge based computer systems, it is possible to develop such a system. These systems have the capability of providing individualized training. This paper describes the development of such a system for training and evaluation of agencies associated with the management of radiation emergency. It also discusses the utility of the software as a general purpose tutor. The details required for the preparation of data files and knowledge base files are included. It uses a student model based on performance measures. The software is developed in C under MS-DOS. It uses a rule based expert system shell developed in C. The features of this shell are briefly described. (author). 5 refs

  4. Emergency preparedness: a responsibility of the medical profession

    International Nuclear Information System (INIS)

    There are a series of things that we might do with regard to emergency planning. Some are clearly obvious, some perhaps are less so. Obviously, we should try to prevent a disaster from occurring. But we know that disasters are going to happen. Second, we should attempt to minimize the number of casualties in the event of an emergency. A part of planning is traffic control, with the traffic control designed to prevent that particular difficulty. Clearly we need to prevent additional casualties once the natural or man-made disaster has occurred. Without question, we have to rescue the injured, we have to be able to provide first aid, and we have to make value judgments instantly on who needs aid and who does not. Obviously, the medical community has to supply the leaders in terms of the care of the injured. Equally obvious is that other people in the community, such as the governor, the mayor, the city manager, the chief of police, and the fire chief, have to be involved. When you become involved in emergency planning, remember that there are other people in the health care family. It is not just physicians who are important; the Red Cross, nurses, public health agencies, those in state radiation control programs, and many others also are important. And let us not forget the people with specialized training in nuclear medicine, as well as radiologists and radiation oncologists

  5. Physical and Digital Design of the BlueBio Biomonitoring System Prototype, to be used in Emergency Medical Response

    DEFF Research Database (Denmark)

    Kramp, Gunnar; Kristensen, Margit; Pedersen, Jacob Frølund

    2007-01-01

    and user control. Our design framework, in relation to the BlueBio monitoring system, approaches these challenges from the perspective of familiarity, medical assessment and person ID/registration of data. We present how this informs and has implications for both the physical and digital design......This paper presents the physical and digital design of a wireless biomonitoring system meant to be used especially in the prehospital medical emergency response. The handling of many patients with a minimum of ressources at major incidents is an immense challenge for the emergency personnel at work...

  6. Healthcare coalitions: the new foundation for national healthcare preparedness and response for catastrophic health emergencies.

    Science.gov (United States)

    Courtney, Brooke; Toner, Eric; Waldhorn, Richard; Franco, Crystal; Rambhia, Kunal; Norwood, Ann; Inglesby, Thomas V; O'Toole, Tara

    2009-06-01

    After 9/11 and the 2001 anthrax letters, it was evident that our nation's healthcare system was largely underprepared to handle the unique needs and large volumes of people who would seek medical care following catastrophic health events. In response, in 2002 Congress established the Hospital Preparedness Program (HPP) in the U.S. Department of Health and Human Services (HHS) to strengthen the ability of U.S. hospitals to prepare for and respond to bioterrorism and naturally occurring epidemics and disasters. Since 2002, the program has resulted in substantial improvements in individual hospitals' disaster readiness. In 2007, the HHS Office of the Assistant Secretary for Preparedness and Response (ASPR) contracted with the Center for Biosecurity of the University of Pittsburgh Medical Center to conduct an assessment of U.S. hospital preparedness and to develop tools and recommendations for evaluating and improving future hospital preparedness efforts. One of the most important findings from this work is that healthcare coalitions-collaborative groups of local healthcare institutions and response agencies that work together to prepare for and respond to emergencies-have emerged throughout the U.S. since the HPP began. This article provides an overview of the HPP and the Center's hospital preparedness research for ASPR. Based on that work, the article also defines healthcare coalitions and identifies their structure and core functions, provides examples of more developed coalitions and common challenges faced by coalitions, and proposes that healthcare coalitions should become the foundation of a national strategy for healthcare preparedness and response for catastrophic health events.

  7. A research of virtual reality engineering for emergency response in radioactive materials transport

    International Nuclear Information System (INIS)

    As the result of typical nuclear accidents in last few years, people began to pay attention to the emergency response in nuclear accidents. CRIEPI developed the concept of support system for all of normal condition, emergency condition and education during transport, using Virtual Reality technique and other up-to-date engineering. This system consist of three subsystems, namely 'on-site' for normal condition, 'on-site support system' for emergency condition and 'education system' for transport workers training. Each subsystem contains computer, communication devices, display, video camera, various sensors, data base and control or analysis programs. This system needs the following characteristics; 1) Using Virtual Reality technique, it is practicable for users to produce the hypothetical accident scenes and to show data, graphs and text messages on a see-through type head-mounted display. 2) Each subsystem refers the common data bases for route soundings, accident probability estimation and environment impact assessment and so on. 3) In the case of accident, it can smoothly transfer from 'on-site support system' for normal condition to 'on-site support system' for emergency condition. 4) It is capable to communicate by digital full duplex communication between on-site and the control center. 5) Movie from video camera and observed data from on-site monitoring posts are transmitted to the control center, analyzed with the central computer, then returned to on-site transportation team for visualization on each head mounted displays of crew. Some technology, mainly in the field for communication, have been developed up to now, but the others are expected to realize in near future. CRIEPI will constantly make efforts for those development. (author)

  8. Proposal of new framework in nuclear emergency response based on problem in East Japan Great Earthquake

    International Nuclear Information System (INIS)

    In the nuclear emergency response activity in a East Japan great earthquake, the weakness the frame and the activity procedure (scheme) of the emergency response activity of our country that had been constructed after the accident of JCO became clear. Especially, it is necessary to recognize the importance of the enhancement of a prior plan after not only provision to response but also the damage to the environment occurs in the emergency for measures for restoration. Moreover, it is necessary to examine a concrete strategy about the management system strengthening of the radiation exposure at the accident. In this study, the experience and the finding in a East Japan great earthquake are arranged. The accident scenario that should be targeted is rearranged, and it proposes a new frame in the nuclear emergency response field through the requirement examinations such as the points of procedure, equipment, and the capital machine parts that lie a regulations frame of the nuclear emergency response, the activity frame of the nuclear emergency response, and materialized of the nuclear emergency response activity. (author)

  9. Joint radiation emergency management plan of the international organizations. Emergency preparedness and response. Date effective: 1 December 2004

    International Nuclear Information System (INIS)

    The Convention on Early Notification of a Nuclear Accident (the 'Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') are the prime legal instruments that establish an international framework to facilitate the exchange of information and the prompt provision of assistance in the event of a nuclear accident or radiological emergency, with the aim of minimizing the consequences. The International Atomic Energy Agency (IAEA) has specific functions assigned to it under these Conventions, to which, in addition to a number of States, the World Health Organization (WHO), the World Meteorological Organization (WMO) and the Food and Agriculture Organization of the United Nations (FAO) are full Parties. Since 1989, the arrangements between these organizations for facilitating the practical implementation of those articles of the two Conventions that are operational in nature have been documented by the IAEA in the Emergency Notification and Assistance Technical Operations Manual (ENATOM). The manual is intended for use primarily by contact points as identified in the Conventions. Pursuant to the obligations placed on it by the Conventions, the IAEA regularly convenes the Inter-Agency Committee on Response to Nuclear Accidents (IACRNA)2, whose purpose is to co-ordinate the arrangements of the relevant international intergovernmental organizations ('international organizations') for preparing for and responding to nuclear or radiological emergencies. Although the Conventions assign specific response functions and responsibilities to the IAEA and the Parties, various international organizations have - by virtue of their statutory functions or of related legal instruments - general functions and responsibilities that encompass aspects of preparedness and response. Moreover, some regional organizations (e.g. the European Union) are party to legally binding treaties and have

  10. 78 FR 34031 - Burned Area Emergency Response, Forest Service

    Science.gov (United States)

    2013-06-06

    ... level. 2523.4--Suppression-Damaged Areas Clarified that costs for suppression-damage rehabilitation... Response activities on National Forest System lands. Agency regulations at 36 CFR 220.6(d)(2) (73 FR 43093... cost-effective response actions. This interim directive supersedes the existing directive located...

  11. Instrument for assessing the quality of mobile emergency pre-hospital care: content validation

    Directory of Open Access Journals (Sweden)

    Rodrigo Assis Neves Dantas

    2015-06-01

    Full Text Available OBJECTIVES To validate an instrument to assess quality of mobile emergency pre-hospital care. METHOD A methodological study where 20 professionals gave their opinions on the items of the proposed instrument. The analysis was performed using Kappa test (K and Content Validity Index (CVI, considering K> 0.80 and CVI ≥ 0.80. RESULTS Three items were excluded from the instrument: Professional Compensation; Job Satisfaction and Services Performed. Items that obtained adequate K and CVI indexes and remained in the instrument were: ambulance conservation status; physical structure; comfort in the ambulance; availability of material resources; user/staff safety; continuous learning; safety demonstrated by the team; access; welcoming; humanization; response time; costumer privacy; guidelines on care; relationship between professionals and costumers; opportunity for costumers to make complaints and multiprofessional conjunction/actuation. CONCLUSION The instrument to assess quality of care has been validated and may contribute to the evaluation of pre-hospital care in mobile emergency services.

  12. Assessing PDT response with diffuse optical spectroscopies

    Science.gov (United States)

    Rohrbach, Daniel J.

    Photodynamic therapy (PDT) is used to treat a variety of conditions including cancer. Effective PDT requires three components: a photosensitizer (PS), light of a specific wavelength to activate the PS and oxygen. When all three are present in a lesion it leads to cell death and vascular destruction. Optical techniques such as diffuse reflectance spectroscopy (DRS), diffuse fluorescence spectroscopy (DFS) and diffuse correlation spectroscopy (DCS) can be used to quantify vascular parameters and photosensitizer content before and after PDT, providing valuable information for assessing response. For the quantification of vascular parameters, a probe-specific empirical light transport model was developed. A look-up-table was constructed using tissue simulating phantoms made of Intralipid to control the scattering, India Ink to control the absorption and water. The empirical model allowed the quantification of optical properties as well as the vascular parameters blood volume fraction (BVf) and blood oxygen saturation (SO2) with DRS. Blood flow was measured using DCS. For the quantification of PS content two techniques were used. DRS was used to fit the absorption of the PS and DFS measured the fluorescence of the PS. For quantification of PS content from measured fluorescence, a correction factor was developed using Monte Carlo simulations to account for the optical properties at the excitation and emission wavelengths. The three techniques were used to assess PDT response in pre-clinical and clinical studies. For the preclinical study, mice were treated with HPPH-PDT and blood flow was measured continuously with DCS. Blood flow variables were compared to STAT3 crosslinking (a molecular marker for PDT photoreaction) and CD31 staining (to visualize intact endothelial cells after PDT). For the clinical study, patients in a clinical trial for HPPH-PDT were measured with DRS, DFS and DCS before and after treatment. Multiple parameters were compared to the clinical response

  13. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-11-09

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  14. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    International Nuclear Information System (INIS)

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel

  15. Development of Educational and Training Simulator for Emergency Response to Chinese Nuclear Accidents

    International Nuclear Information System (INIS)

    One of the lessons in the emergency response category is that information on the nuclear power plants of neighboring countries should be organized and the consequence can be assessed. In addition, many reactors have been constructed and are under construction on the eastern coast of China recently. Korea might be directly affected by an accident of Chinese nuclear power plant since Korea is located in the westerly belt. performed with the PCTRAN/CPR-1000 module. The result showed that normal operation and DBA conditions were simulated swiftly with the speed of 16 times faster than real time. Thus, it would be a good source term estimation module for the educational and training simulator

  16. Risk assessment and emerging chemicals hazards in foods

    Directory of Open Access Journals (Sweden)

    Umberto Moscato

    2007-03-01

    Full Text Available The main beliefs relating to the risk assessment of chemicals in foods, new chemicals in raw material as well as in food processing are briefly presented. Evaluation reviews of representative chemicals found in traditional and novel foods are given. Old and new processes or newly recognized compounds, that require careful assessment in terms of their potential human health impact, are discussed. As example of processing-related contaminants, a risk assessment for acrylamide, is described, providing two different approaches in food safety assessment and the management of carcinogenic contaminants.

  17. Emerging contaminants: Presentations at the 2009 Toxicology and Risk Assessment Conference

    International Nuclear Information System (INIS)

    A session entitled 'Emerging Contaminants' was held in April 2009 in Cincinnati, OH at the 2009 Toxicology and Risk Assessment Conference. The purpose of the session was to share information on both programmatic and technical aspects associated with emerging contaminants. Emerging contaminants are chemicals or materials that are characterized by a perceived or real threat to human health or environment, a lack of published health standards or an evolving standard. A contaminant may also be 'emerging' because of the discovery of a new source, a new pathway to humans, or a new detection method or technology. The session included five speakers representing the Department of Defense (DoD), the Environmental Protection Agency (EPA), and each of the military services. The DoD created the Emerging Contaminant Directorate to proactively address environmental, health, and safety concerns associated with emerging contaminants. This session described the scan-watch-action list process, impact assessment methodology, and integrated risk management concept that DoD has implemented to manage emerging contaminants. EPA presented emerging trends in health risk assessment. Researchers made technical presentations on the status of some emerging contaminates in the assessment process (i.e. manganese, RDX, and naphthalene).

  18. Emerging applications of stimuli-responsive polymer materials

    NARCIS (Netherlands)

    Stuart, M.A.C.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S.

    2010-01-01

    Responsive polymer materials can adapt to surrounding environments, regulate transport of ions and molecules, change wettability and adhesion of different species on external stimuli, or convert chemical and biochemical signals into optical, electrical, thermal and mechanical signals, and vice versa

  19. Generic Procedures for Response to a Nuclear or Radiological Emergency at Research Reactors

    International Nuclear Information System (INIS)

    Under Article 5.a(ii) of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research relating to response to nuclear or radiological emergencies. The IAEA publishes the Emergency Preparedness and Response Series to fulfil that function. This publication is part of that series. IAEA Safety Standards Series No. GS-R-2 Preparedness and Response for a Nuclear or Radiological Emergency, contains the following requirement: 'To ensure that arrangements are in place for a timely, managed, controlled, coordinated and effective response at the scene...'. The IAEA General Conference, in resolution GC(53)/RES/10, continues to encourage Member States '...to enhance, where necessary, their own preparedness and response capabilities for nuclear and radiological incidents and emergencies, by improving capabilities to prevent accidents, to respond to emergencies and to mitigate any harmful consequences...'. This publication is intended to assist Member States meet the requirements of GS-R-2 and enhance their preparedness by providing guidance on the response by facility personnel to emergencies at research reactor facilities.

  20. Emerging contaminants in groundwater: occurrence and risk assessment

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan

    2012-01-01

    Emerging groundwater contaminants (EGCs) are compounds previously not considered or known to be significant (in terms of distribution and/or concentration) but now being more widely detected. As analytical techniques improve, previously undetected micropollutants are observed. There is a paucity of information regarding EGC occurrence in groundwaters compared to surface waters. The types of organic micropollutants which can be found include, pesticides, pharmaceuticals, caffeine and nicotin...

  1. Assessments of emerging science and technologies: Mapping the landscape

    NARCIS (Netherlands)

    Forsberg, E.M.; Thorstensen, E.; Nielsen, R.O.; Bakker, de E.

    2014-01-01

    This paper presents comparative work from the EST-Frame project on technology appraisal. It focuses on studies of 'advisory domains' (more or less distinct traditions for assessment of technologies, such as risk analysis, foresight and ethical assessments). The purpose of the study was to increase t

  2. Zika--an emerging infectious disease. The risk assessment from Polish perspective.

    Science.gov (United States)

    Gańczak, Maria

    2016-01-01

    In the last years, attention has been paid to Zika virus (ZIKV) infection, the emerging vector-borne disease. It is responsible for major outbreaks in Africa, Asia and, more recently, in previously infection-naïve territories of the Pacific area, South America and Caribbean. The etiology, epidemiology, transmission, and clinical manifestations of ZIKV disease are discussed, along with the diagnostic possibilities in the aim to assessing the risk of its introduction to Poland. ZIKV is spread by Aedes mosquitoes which are not found throughout Poland. The prevention strategies adopted by national public health authorities should be based on a surveillance of imported cases and on increasing awareness among healthcare professionals and travelers. Due to a large number of asymptomatic ZIKV infections and limitations in the availability of diagnostic tests, monitoring based on laboratory results is likely to be unreliable in Poland. There are no requirements to report ZIKV infections to the European Centre for Disease Prevention and Control. Nevertheless, the global epidemic continues to spread, and despite travels of Poles to countries in which Aedes mosquitoes are active, Polish sportsmen will be travelling to Brazil in August 2016 to participate in the Olympic Games, the will also be true of the many fans who will follow them; therefore imported cases of ZIKV infection are possible. As the awareness of the infection risk will increase among medical staff and travelers, the number of suspected cases of travel-related ZIKV infections may rise in Poland. Medical staff should be informed where and how to report such cases. Thorough surveillance, adequate assessment of possible threats, action plans, rapid and effective intervention development, spread of up to date information of ZIKV, as well as other emerging or re-emerging infectious pathogens can play a key role in guaranteeing population health. PMID:27344465

  3. Zika--an emerging infectious disease. The risk assessment from Polish perspective.

    Science.gov (United States)

    Gańczak, Maria

    2016-01-01

    In the last years, attention has been paid to Zika virus (ZIKV) infection, the emerging vector-borne disease. It is responsible for major outbreaks in Africa, Asia and, more recently, in previously infection-naïve territories of the Pacific area, South America and Caribbean. The etiology, epidemiology, transmission, and clinical manifestations of ZIKV disease are discussed, along with the diagnostic possibilities in the aim to assessing the risk of its introduction to Poland. ZIKV is spread by Aedes mosquitoes which are not found throughout Poland. The prevention strategies adopted by national public health authorities should be based on a surveillance of imported cases and on increasing awareness among healthcare professionals and travelers. Due to a large number of asymptomatic ZIKV infections and limitations in the availability of diagnostic tests, monitoring based on laboratory results is likely to be unreliable in Poland. There are no requirements to report ZIKV infections to the European Centre for Disease Prevention and Control. Nevertheless, the global epidemic continues to spread, and despite travels of Poles to countries in which Aedes mosquitoes are active, Polish sportsmen will be travelling to Brazil in August 2016 to participate in the Olympic Games, the will also be true of the many fans who will follow them; therefore imported cases of ZIKV infection are possible. As the awareness of the infection risk will increase among medical staff and travelers, the number of suspected cases of travel-related ZIKV infections may rise in Poland. Medical staff should be informed where and how to report such cases. Thorough surveillance, adequate assessment of possible threats, action plans, rapid and effective intervention development, spread of up to date information of ZIKV, as well as other emerging or re-emerging infectious pathogens can play a key role in guaranteeing population health.

  4. The performance of △POP in the assessment of fluid responsiveness in septic shock patients in emergency department%脉搏血氧波形振幅变异率在急诊感染性休克患者容量复苏中的作用

    Institute of Scientific and Technical Information of China (English)

    刘业成; 徐军; 朱华栋; 王仲; 于学忠

    2014-01-01

    目的 脉搏血氧波形振幅变异率(respiratory variations in the pulse oximetry plethysmographic waveform amplitude,△POP)作为容量反应的动态评估指标正在被广泛研究.本研究旨在探讨△POP在急诊感染性休克患者的容量反应评估中的作用.方法 本实验前瞻性地研究2010年10月到2011年10月北京协和医院急诊科抢救室和EICU收治的28例感染性休克患者,记录所有患者在扩容(羟乙基淀粉万汶500 mL)前后的各项血流动力学参数,如心输出量、每搏输出量变异率(stroke volume variation,SVV)和△POP等,容量反应阳性定义为扩容后患者每搏输出量较输液前增加15%以上.结果 容量反应阳性患者扩容前的△POP较容量反应阴性患者高(P<0.01).扩容前的SVV和△POP两指标之间存在显著的正相关关系,Spearman相关系数为0.900 (P<0.01).结论 △POP对急诊感染性休克患者的容量反应预测准确性较高,和SVV有很好的相关性,优于CI、SVRI、CVP等静态指标,值得进一步研究.%Objective Respiratory variations in the pulse oximetry plethysmographic waveform amplitude (△POP) have been popularly studied as a dynamic indicators for fluid responsiveness assessment.The authors hypothesized that △POP can indicate fluid responsiveness in septic shock patient in emergency department.Methods A prospective study of 28 patients with septic shock was carried out in Emergency Room and Emergency Intensive Care Unit from 1 October,2010 to 30 September,2011.Hemodynamic data including cardiac index,stroke volume Variation (SVV) and △POP were recorded before and after volume expansion treatment.Fluid responsiveness was defined as an increase in cardiac index of 15% or greater.Results Changes in △POP after volume expansion were greater in responders than that in non-responders (P < 0.01).There was a significant relation between △POP and SVV before volume expansion (r =0.900,P < 0.0001).Conclusions

  5. Safety regulation on emergency response and radiation protection in civilian nuclear installations

    International Nuclear Information System (INIS)

    The NNSA organized the review of emergency plan for the Daya Bay Nuclear Power Plant. The China Institute of Atomic Energy, the Institute of Nuclear Energy Technology, Tsinghua University and the Nuclear Power Institute of China in 1995, and organized a surveillance and inspection at site on the preparedness of emergency response and control of radiation protection for nuclear power plants and research reactors

  6. Resolution no. 18/2012 Guide for the preparation and emergency response radiological

    International Nuclear Information System (INIS)

    This guide aims to establish requirements to ensure an adequate level of entities, for the preparation and response to radiological emergencies and to prepare the Radiation Emergency Plan (PER), asset out in the Basic Safety Standards radiological and authorizations Regulations in force. This guide applies to organizations providing employment practices associated with sources of ionizing radiation, hereinafter sources.

  7. 14-04 Emergency response with extensive damage; Respuesta a emergencias con dano extenso

    Energy Technology Data Exchange (ETDEWEB)

    Caro Benito, R.

    2012-07-01

    This paper summarizes the main features of the Preparedness and Response to Emergency with Extensive Damage. This aspect was particularly emphasized after the events in the Japanese Nuclear Fukushima-Daichi. the aim is to review developments after the accident at the plant and the fundamentals of emergency management to prevent fuel damage and mitigate its potential consequences.

  8. Emerging frontier technologies for food safety analysis and risk assessment

    Institute of Scientific and Technical Information of China (English)

    DONG Yi-yang; LIU Jia-hui; WANG Sai; CHEN Qi-long; GUO Tian-yang; ZHANG Li-ya; JIN Yong; SU Hai-jia; TAN Tian-wei

    2015-01-01

    Access to security and safe food is a basic human necessity and essential for a sustainable world. To perform hi-end food safety analysis and risk assessment with state of the art technologies is of utmost importance thereof. With applications as exempliifed by microlfuidic immunoassay, aptasensor, direct analysis in real time, high resolution mass spectrometry, benchmark dose and chemical speciifc adjustment factor, this review presents frontier food safety analysis and risk assess-ment technologies, from which both food quality and public health wil beneift undoubtedly in a foreseeable future.

  9. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China.

    Science.gov (United States)

    Duan, Weili; He, Bin

    2015-07-10

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  10. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    Directory of Open Access Journals (Sweden)

    Weili Duan

    2015-07-01

    Full Text Available In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs is a significant issue in China. An emergency response system (ERS was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  11. Cognitive radio-aided wireless sensor networks for emergency response

    International Nuclear Information System (INIS)

    A lot of research effort has been put into wireless sensor networks (WSNs) and several methods have been proposed to minimize the energy consumption and maximize the network's lifetime. However, little work has been carried out regarding WSNs deployed for emergency situations. We argue that such WSNs should function under a flexible channel allocation scheme when needed and be able to operate and adapt in dynamic, ever-changing environments coexisting with other interfering networks (IEEE 802.11b/g, 802.15.4, 802.15.1). In this paper, a simple and efficient method for the detection of a single operational frequency channel that guarantees satisfactory communication among all network nodes is proposed. Experimental measurements carried out in a real environment reveal the coexistence problem among networks in close proximity that operate in the same frequency band and prove the validity and efficiency of our approach

  12. Business Responses to Climate Change. Identifying Emergent Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A.; Pinkse, J. [Business School, University of Amsterdam, Amsterdam (Netherlands)

    2005-07-01

    Companies face much uncertainty about the competitive effects of the recently adopted Kyoto Protocol on global climate change and the current and future regulations that may emerge from it. Companies have considerable discretion to explore different market strategies to address global warming and reduce greenhouse gas emissions. This article examines these strategic options by reviewing the market-oriented actions that are currently being taken by 136 large companies that are part of the Global 500. There are six different market strategies that companies use to address climate change and that consist of different combinations of the market components available to managers. Managers can choose between more emphasis on improvements in their business activities through innovation or employ compensatory approaches such as emissions trading. They can either act by themselves or work with other companies, NGOs, or (local) governments.

  13. Are archetypes transmitted or emergent? A response to Christian Roesler.

    Science.gov (United States)

    Martin-Vallas, François

    2013-04-01

    In this paper the author argues that Jung's concept of archetype should not be reduced to an univocal definition. Jung himself proposed many definitions of this concept, some of them being partially or totally contradictory to others. A univocal and logical way of thinking can lead us to refute and reject part of those definitions, but a complex way of thinking, as proposed by Edgar Morin or Roy Bhaskar for example, can allow us to consider that those apparent contradictions in Jung's definitions of archetype reflect the complexity of the psychic reality. The main argument of the author is that Jung was missing the epistemological concept of emergence (which appeared in science at the time of his death) and that he tried to express it with the epistemological concepts of his time. PMID:23550577

  14. Are archetypes transmitted or emergent? A response to Christian Roesler.

    Science.gov (United States)

    Martin-Vallas, François

    2013-04-01

    In this paper the author argues that Jung's concept of archetype should not be reduced to an univocal definition. Jung himself proposed many definitions of this concept, some of them being partially or totally contradictory to others. A univocal and logical way of thinking can lead us to refute and reject part of those definitions, but a complex way of thinking, as proposed by Edgar Morin or Roy Bhaskar for example, can allow us to consider that those apparent contradictions in Jung's definitions of archetype reflect the complexity of the psychic reality. The main argument of the author is that Jung was missing the epistemological concept of emergence (which appeared in science at the time of his death) and that he tried to express it with the epistemological concepts of his time.

  15. Student assessment via graded response model

    Directory of Open Access Journals (Sweden)

    Mariagiulia Matteucci

    2008-06-01

    Full Text Available Recently, the Faculty of Political Science at the University of Bologna has started a program of didactics reorganization for several courses, introducing more than one evaluation test during the learning process. Student assessment before the final examination has the double aim of measuring both the level of student’s ability and the effectiveness of the teaching process, in order to correct it real-time. In such an evaluation system, common to the Anglo-Saxon countries, Item Response Theory (IRT expresses its effectiveness fully. In this paper, an IRT model for ordered polytomous variables is considered in order to investigate the item properties and to evaluate the student achievement. Particularly, the Graded Response Model (GRM is taken into account in the analysis of three different written tests of a basic Statistics course. The results highlight the different composition of the items and provide a simple description of the student ability distribution.

  16. Assessment of the breath alcohol concentration in emergency care patients with different level of consciousness

    OpenAIRE

    Kaisdotter Andersson, Annika; Kron, Josefin; Castren, Maaret; Muntlin Athlin, Åsa; Hök, Bertil; Wiklund, Lars

    2015-01-01

    Background Many patients seeking emergency care are under the influence of alcohol, which in many cases implies a differential diagnostic problem. For this reason early objective alcohol screening is of importance not to falsely assign the medical condition to intake of alcohol and thus secure a correct medical assessment. Objective At two emergency departments, demonstrate the feasibility of accurate breath alcohol testing in emergency patients with different levels of cooperation. Method As...

  17. Emergency response exercise of laboratories equipped with gammaspectrometry

    International Nuclear Information System (INIS)

    Seven laboratories equipped with semiconductor gamma spectrometry (HPGe detectors) are currently included in the Radiation Monitoring Network (RMN) in the Czech Republic. These laboratories have more than 30 spectrometric chains and approximately 20 'experts' and 70 'users' who would guarantee measurements during the radiological emergency (RE). The emergency exercise was carried out in 5 of them in 2014 (in 4 of them also in 2013). The aim was to test repeatedly their capacity in existing technical facilities and with current staff in the event of a RE and identify problems (bottlenecks) in the whole process from receipt of samples to entering the results into the central database of RMN. Duration of the exercise was 12 hours, due to the shortage of staff; work in one 12-hour shift is presumed during a RE, which the laboratories should be able to provide for 14 days. These exercise samples covered a wide range of commodities that would probably come to the laboratories during the RE (aerosol filters, sorbents for sorption of gaseous forms of iodine, fallout, surface and drinking waters, food chain components and soils). Some of the samples were previously spiked with 85Sr, 88Y and 40K (in the exercise these nuclides represented actual contamination that would occur in RE); liquid samples were spiked with 85Sr and 88Y and bulk materials with 40K.During the exercise almost 800 samples were analysed; in addition, the automatic gamma counter (GA) in Prague laboratory measured other 90 samples automatically during the night (samples were prepared during the day-shift). On the basis of the results the total measuring capacity of the laboratories of RMN CR was estimated at about 1300 samples per day. (authors)

  18. Indian Point Nuclear Power Station: verification analysis of County Radiological Emergency-Response Plans

    International Nuclear Information System (INIS)

    This report was developed as a management tool for use by the Federal Emergency Management Agency (FEMA) Region II staff. The analysis summarized in this report was undertaken to verify the extent to which procedures, training programs, and resources set forth in the County Radiological Emergency Response Plans (CRERPs) for Orange, Putnam, and Westchester counties in New York had been realized prior to the March 9, 1983, exercise of the Indian Point Nuclear Power Station near Buchanan, New York. To this end, a telephone survey of county emergency response organizations was conducted between January 19 and February 22, 1983. This report presents the results of responses obtained from this survey of county emergency response organizations

  19. 75 FR 52957 - Supplemental Funding Under the Food and Drug Administration's Food Emergency Response Laboratory...

    Science.gov (United States)

    2010-08-30

    ... HUMAN SERVICES Food and Drug Administration Supplemental Funding Under the Food and Drug Administration's Food Emergency Response Laboratory Network Microbiological Cooperative Agreement Program (U18) PAR-09-215; Request for Supplemental Applications AGENCY: Food and Drug Administration, HHS....

  20. Training and exercises of the Emergency Response Team at the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory Plutonium Facility has an active Emergency Response Team. The Emergency Response Team is composed of members of the operating and support groups within the Plutonium Facility. In addition to their initial indoctrination, the members are trained and certified in first-aid, CPR, fire and rescue, and the use of self-contained-breathing-apparatus. Training exercises, drills, are conducted once a month. The drills consist of scenarios which require the Emergency Response Team to apply CPR and/or first aid. The drills are performed in the Plutonium Facility, they are video taped, then reviewed and critiqued by site personnel. Through training and effective drills and the Emergency Response Team can efficiently respond to any credible accident which may occur at the Plutonium Facility. 3 tabs

  1. Emerging Responsibilities, Emerging Persons: Reflective and Relational Religious Education in Three Episcopal High Schools

    Science.gov (United States)

    Geiger, Matthew W.

    2016-01-01

    Based in an ethnographic project involving three Episcopal Church-affiliated high schools, this article considers how reflective and relational pedagogy influenced students' personal growth in religious education classes. Students became self-responsible for their spiritual development in the school settings where the practice of…

  2. Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field.

    Science.gov (United States)

    De Ron, Antonio M; Rodiño, Ana P; Santalla, Marta; González, Ana M; Lema, María J; Martín, Isaura; Kigel, Jaime

    2016-01-01

    Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were (i) to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and (ii) to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate, and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA) representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593, and the cultivar Borlotto, with stress-tolerance at emergence, and high yield

  3. Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field

    Science.gov (United States)

    De Ron, Antonio M.; Rodiño, Ana P.; Santalla, Marta; González, Ana M.; Lema, María J.; Martín, Isaura; Kigel, Jaime

    2016-01-01

    Rapid and uniform seed germination and seedling emergence under diverse environmental conditions is a desirable characteristic for crops. Common bean genotypes (Phaseolus vulgaris L.) differ in their low temperature tolerance regarding growth and yield. Cultivars tolerant to low temperature during the germination and emergence stages and carriers of the grain quality standards demanded by consumers are needed for the success of the bean crop. The objectives of this study were (i) to screen the seedling emergence and the phenotypic response of bean germplasm under a range of temperatures in controlled chamber and field conditions to display stress-tolerant genotypes with good agronomic performances and yield potential, and (ii) to compare the emergence of bean seedlings under controlled environment and in open field conditions to assess the efficiency of genebanks standard germination tests for predicting the performance of the seeds in the field. Three trials were conducted with 28 dry bean genotypes in open field and in growth chamber under low, moderate, and warm temperature. Morpho-agronomic data were used to evaluate the phenotypic performance of the different genotypes. Cool temperatures resulted in a reduction of the rate of emergence in the bean genotypes, however, emergence and early growth of bean could be under different genetic control and these processes need further research to be suitably modeled. Nine groups arose from the Principal Component Analysis (PCA) representing variation in emergence time and proportion of emergence in the controlled chamber and in the open field indicating a trend to lower emergence in large and extra-large seeded genotypes. Screening of seedling emergence and phenotypic response of the bean germplasm under a range of temperatures in controlled growth chambers and under field conditions showed several genotypes, as landraces 272, 501, 593, and the cultivar Borlotto, with stress-tolerance at emergence, and high yield

  4. A proposed architecture for emergency response systems based on Digital Earth

    Science.gov (United States)

    Li, Dapeng; Cheng, Chengqi

    2010-11-01

    Emergencies are incidents that threaten public safety, health and welfare. Many disastrous emergency events that happened in recent years have drawn great attention to more effective Emergency Response Systems (ERS). ERS need to integrate various kinds of information to support quick emergency response. Digital Earth can solve data interoperation and information integration problems in emergency response. This paper aims to establish the system architecture for quick emergency response based on relevant principles and technologies in the domain of Digital Earth. First, this paper analyzes the system requirements of ERS in terms of information integration, fast data access, timeliness and information updating, etc. Second, this paper explores the useful principles and technologies in Digital Earth and discusses how to incorporate them into the architecture of ERS. More attention is paid to Open Geospatial Consortium's Sensor Web Enablement (SWE) information standards. Furthermore, Service Oriented Architecture (SOA) and Location-Based Services (LBS) are also reviewed and the "From Sensor to User" application pattern in emergency response is put forward. Finally, a system architecture based on Digital Earth is proposed for ERS.

  5. System of medical response to radiation emergency after a terror attack in China

    International Nuclear Information System (INIS)

    Full text: Nuclear or radiological accident is an unintended or unexpected event occurring with a radiation source or during a practice involving ionizing radiation, which may result in significant human exposure and/or material damage. Recent events involving terrorist activities have focused attention on the radiological threats. The full spectrum of radiological threats from terrorist spans the deliberate dispersal of radioactive material to the detonation of a nuclear weapon. While the most likely threat is the dispersal of radioactive materials, the use of a crude nuclear weapon against a major city cannot be dismissed. Radiological incident response requires functions similar to non-radiological incident response. Radiation emergency system in China has been established for radiological emergency preparedness and response. National coordination committee of radiation emergency has been setup in 1994, which consist of 17 ministries. The ministry is responsible for the medical assistance for radiation emergency. Chinese Center for Medical Response to Radiation Emergency (CCMRRE) was established in 1992, based on the National Institute for Radiological Protection, China CDC (NIRP, China CDC). The CCMRRE has been as one liaison institutes of WHO/REMPAN and functions as a national and professional institute for medical assistance in radiation accidents and terrorist events involving radioactive material. Under Provincial Committee of Radiation Emergency, there are local organizations of medical assistance in radiation emergency. The organizations carry out the first aid, regional clinic treatment, radiation protection and radiation monitory in nuclear accidents and radiological accidents. (author)

  6. Development of an extended framework for emergency response criteria. Interim report for comments

    International Nuclear Information System (INIS)

    Experience from response to recent nuclear and radiological emergencies has clearly demonstrated the importance of an efficient response system that includes, among other components, emergency plans, procedures, and internally consistent operational criteria. An analysis of lessons identified from recent responses has shown that a lack of crucial components in the emergency response system could result in major radiological and nonradiological consequences at the national level. One of the reasons for the overwhelming psychological consequences of the Chernobyl and Goiania emergencies was public mistrust of decision-makers, who lost their credibility by frequently changing the criteria for taking action. Moreover, national response arrangements that are incompatible among countries can result in major mistrust by the public. It is considered important to have internationally agreed criteria and guidance for emergency response established in advance of an emergency. Currently there are several IAEA safety standards that contain recommendations for response to radiation emergencies, addressing principles and response criteria. Mindful of the lessons identified from recent emergencies, the IAEA convened in November 2001 a technical committee meeting (TCM) to develop aspects of the technical basis for emergency response to radiation emergencies. At this meeting, the lessons from response to the Chernobyl, Goiania and other emergencies over the past years were examined to identify where revisions were needed to the existing international guidance for response. In particular, the existing international criteria and guidance for taking protective and other actions were examined in the light of these lessons. The objectives of this document are: (1) to propose an extension of existing criteria for undertaking protective and other actions during or following a nuclear or radiological emergency that: addresses the lessons from past emergencies, addresses the recently

  7. Canadian biodosimetry capacity for response to radiation emergencies

    International Nuclear Information System (INIS)

    In December 2001, Canada's response to the international political climate was launched by the creation of the Chemical, Biological, Radiological/Nuclear Research and Technology Initiative (CRTI). The National Biological Dosimetry Response Plan (NBDRP), established through partnering the expertise of three federal departments and one university, was created in response to this initiative. The NBDRP objectives were to develop a network of laboratories with expertise to perform biological dosimetry by cytogenetics and to investigate new technologies that may be applicable in the development of the new biodosimetry program. Since the creation of the NBDRP, Canada has made significant progress in enhancing expertise and resources to be better prepared for radiological/nuclear events. Through participation in exercises, the existing capacities were tested and recommendations for improvements were made. This paper describes the results from two exercises. The first exercise was designed to test the culturing, analysis, and reporting procedures within a single laboratory, and the second exercise was intended to test the capacity of the NBDRP. Future exercises will further challenge the network resulting in an improved national response capability

  8. Medical response guide for the initial phase of a radiological emergency

    International Nuclear Information System (INIS)

    In case of a sanitary emergency, the local community and its health care system are the first aid providers. Therefore, preparedness through education and training programs would allow emergency systems to provide an appropriate first medical response. The main objective of this guide is to give basic guidelines for the medical response management after situations involving radioactive materials, in an easy and simple way. The information contained in this guide is addressed to health care personnel of any local assistance center. (author)

  9. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    OpenAIRE

    Weili Duan; Bin He

    2015-01-01

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the ...

  10. Public health response to radiation emergencies and the role of the Helsinki Project Office

    International Nuclear Information System (INIS)

    This paper focuses on the public health element of nuclear emergency preparedness, defined as the mitigation of the long-term effects of radiation on exposed populations, as opposed to dealing with the health consequences of an exposure in an individual (termed medical aspects). The paper also approaches to the role of the Helsinki Project Office which is concerned with the protection of public health through effective response to nuclear emergencies, and falling into two categories, namely contingency planning or preparedness, and response

  11. Child Protection Assessment in Humanitarian Emergencies: Case Studies from Georgia, Gaza, Haiti and Yemen

    Science.gov (United States)

    Ager, Alastair; Blake, Courtney; Stark, Lindsay; Daniel, Tsufit

    2011-01-01

    Objectives: The paper reviews the experiences of conducting child protection assessments across four humanitarian emergencies where violence and insecurity, directly or indirectly, posed a major threat to children. We seek to identify common themes emerging from these experiences and propose ways to guide the planning and implementation of…

  12. The efficacy of structured assessment and analgesia provision in the paediatric emergency department

    OpenAIRE

    Boyd, R.; Stuart, P

    2005-01-01

    Objectives: To ascertain if the use of a structured pain assessment tool and nurse initiated oral analgesia protocols improve uptake and time to analgesia for children presenting to the emergency department with minor or moderate musculoskeletal injuries.

  13. [Assessment of traumatic tooth injuries in the emergency room].

    Science.gov (United States)

    Risheim, Helge

    2006-04-27

    Many patients with facial injuries are first seen by doctors in the emergency room. Injuries affecting teeth and alveolar process are common in children; approximately half of all children have sustained such an injury before adulthood. Dentoalveolar trauma does not pose a significant morbid risk for the trauma patient. However, failure to recognise or obtain appropriate consultation can result in premature tooth or alveolar bone loss, resulting in problematic prosthetic rehabilitation. Emergency room doctors should know the initial treatment guidelines for traumatic dental injuries to provide optimal treatment before the patient can seen by a dentist. An avulsed tooth should be replanted immediately, or kept moist until it can be replanted. Prognosis is related to storage media and the length of the extra-alveolar period. Teeth replanted within 5 minutes have the best prognosis. If the primary consultation is by phone the patient, or the parent, should be informed to replant the avulsed tooth. If this is not feasible the tooth should be stored in milk, saliva (oral cavity) or physiologic saline until replanted. Primary teeth are not replanted.

  14. Reactive Metabolites: Current and Emerging Risk and Hazard Assessments.

    Science.gov (United States)

    Thompson, Richard A; Isin, Emre M; Ogese, Monday O; Mettetal, Jerome T; Williams, Dominic P

    2016-04-18

    Although idiosyncratic adverse drug reactions are rare, they are still a major concern to patient safety. Reactive metabolites are widely accepted as playing a pivotal role in the pathogenesis of idiosyncratic adverse drug reactions. While there are today well established strategies for the risk assessment of stable metabolites within the pharmaceutical industry, there is still no consensus on reactive metabolite risk assessment strategies. This is due to the complexity of the mechanisms of these toxicities as well as the difficulty in identifying and quantifying short-lived reactive intermediates such as reactive metabolites. In this review, reactive metabolite risk and hazard assessment approaches are discussed, and their pros and cons highlighted. We also discuss the nature of idiosyncratic adverse drug reactions, using acetaminophen and nefazodone to exemplify the complexity of the underlying mechanisms of reactive metabolite mediated hepatotoxicity. One of the key gaps moving forward is our understanding of and ability to predict the contribution of immune activation in idiosyncratic adverse drug reactions. Sections are included on the clinical phenotypes of immune mediated idiosyncratic adverse drug reactions and on the present understanding of immune activation by reactive metabolites. The advances being made in microphysiological systems have a great potential to transform our ability to risk assess reactive metabolites, and an overview of the key components of these systems is presented. Finally, the potential impact of systems pharmacology approaches in reactive metabolite risk assessments is highlighted. PMID:26735163

  15. Emerging Vectors of Narratology: Toward Consolidation or Diversification? (A Response

    Directory of Open Access Journals (Sweden)

    David Stromberg

    2013-12-01

    Full Text Available This is a response to the questions asked by Franco Passalacqua and Federico Pianzola as a follow-up of the 2013 ENN conference. The discussions that originated at the conference were rich and thought-provoking and so the editors of this special section of «Enthymema» decided to continue the dialogue about the state of the art and the future of narratology.

  16. Emerging Vectors of Narratology: Toward Consolidation or Diversification? (A Response

    Directory of Open Access Journals (Sweden)

    Göran Rossholm

    2013-12-01

    Full Text Available This is a response to the questions asked by Franco Passalacqua and Federico Pianzola as a follow-up of the 2013 ENN conference. The discussions that originated at the conference  were rich and thought-provoking and so the editors of this special section of «Enthymema» decided to continue the dialogue about the state of the art and the future of narratology.

  17. Assessing pain responses during general anesthesia.

    Science.gov (United States)

    Stomberg, M W; Sjöström, B; Haljamäe, H

    2001-06-01

    Major technical and pharmacological achievements in recent years have greatly influenced the practice of anesthesia. Clinical signs related to the main aspects of anesthesia, i.e., hypnosis, analgesia, and muscular relaxation, are increasingly obtainable from variables supplied by the monitoring equipment. It is not known, however, to what extent more indirect, patient-associated clinical signs of pain/depth of anesthesia are still considered of importance and relied on in the intraoperative management of surgical patients. The aims of the present study were to assess what clinical signs, indirect as well as monitor-derived, are considered indicative of intraoperative pain or depth of anesthesia by nurse anesthetists during general anesthesia. In connection with anesthetic management of surgical patients, Swedish nurse anesthetists (N = 40) were interviewed about clinical signs that they routinely assessed and were asked if the observed signs were considered indicative mainly of intraoperative pain or depth of anesthesia. It was found that skin-associated responses (temperature, color, moisture/stickiness) were commonly considered to indicate intraoperative pain rather than depth of anesthesia. Respiratory movements, eye reactions, and circulatory responses were considered to be indicative of either pain or insufficient depth of anesthesia. The present data indicate that indirect physiological signs are still considered of major importance by anesthesia nurses during the anesthetic management of surgical patients. PMID:11759565

  18. Needs assessment for emerging oral microbiome knowledge in dental hygiene education

    OpenAIRE

    Wiener, R. Constance; Shockey, Alcinda Trickett

    2015-01-01

    The curricula of dental hygiene education reflect the knowledge gained through research and clinical advances. Emerging knowledge is often complex and tentative. The purpose of this study is to assess dental hygiene students' confidence in their knowledge about the oral microbiome and to conduct a knowledge needs assessment for expanding their exposure to emerging knowledge about the oral microbiome. Sixty dental hygiene students were surveyed, using a Likert-type scale about their confidence...

  19. Emergency Preparedness Hazards Assessment for solid waste management facilities in E-area not previously evaluated

    International Nuclear Information System (INIS)

    This report documents the facility Emergency Preparedness Hazards Assessment (EPHA) for the Solid Waste Management Department (SWMD) activities located on the Department of Energy (DOE) Savannah River Site (SRS) within E Area that are not described in the EPHAs for Mixed Hazardous Waste storage, the TRU Waste Storage Pads or the E-Area Vaults. The hazards assessment is intended to identify and analyze those hazards that are significant enough to warrant consideration in the SWMD operational emergency management program

  20. Objective Structured Clinical Examinations Provide Valid Clinical Skills Assessment in Emergency Medicine Education

    OpenAIRE

    Wallenstein, Joshua; Ander, Douglas

    2015-01-01

    Introduction: Evaluation of emergency medicine (EM) learners based on observed performance in the emergency department (ED) is limited by factors such as reproducibility and patient safety. EM educators depend on standardized and reproducible assessments such as the objective structured clinical examination (OSCE). The validity of the OSCE as an evaluation tool in EM education has not been previously studied. The objective was to assess the validity of a novel management-focused OSCE as an ev...

  1. ASSESSMENT OF THE ORGANIZATIONAL CULTURE OF THE COUNTY EMERGENCY HOSPITAL "DR. CONSTANTIN OPRIS", BAIA MARE

    OpenAIRE

    Gavrilescu Liviu; Barbul Claudia

    2010-01-01

    The study proposes assessing the organizational culture of the County Emergency Hospital “Dr. Constantine Opris” of Baia Mare, as a basis for developing a strategic plan to facilitate the successful implementation of organizational goals and objectives. As research instruments were used: OCAI (Organizational Culture Assessment Instrument) and the semi-structured interview. The identified organizational culture of the County Emergency Hospital “Dr. Constantin Opris” has characteristics of a we...

  2. The IAEAs incident and emergency centre: the global focal point for nuclear and radiological emergency preparedness and response

    Energy Technology Data Exchange (ETDEWEB)

    Buglova, E.

    2016-08-01

    The continuous use of nuclear power to generate electricity and the continued threat of radioactive materials being used for nefarious reasons reminds us of the importance to stay prepared to respond to nuclear or radiological emergencies. Stringent nuclear safety and nuclear security requirements, the training of personnel, operational checks and legal frameworks cannot always prevent radiation-related emergencies. Though these events can range in severity, each has the potential to cause harm to the public, employees, patients, property and the environment. Until the Chernobyl nuclear accident in 1986, there was no international information exchange system. Immediately following that accident, the international community negotiated the so-called Emergency Conventions to ensure that the country suffering an accident with an international transboundary release of radioactive material would issue timely, authenticated information, while the States that could field technical support, would do so in a coordinated fashion. The Conventions also place specific legal obligations on the International Atomic energy Agency (IAEA) with regard to emergency preparedness and response. (Author)

  3. A comparison between integrated risk assessment and classical health/environmental assessment: Emerging beneficial properties

    International Nuclear Information System (INIS)

    Both humans and wildlife are exposed to various types of halogenated organic compounds such as polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT), typically old chemicals, and tris(4-chlorophenyl) methane (TCPM) and brominated flame retardants, some new chemicals, simultaneously. Classical risk assessment has evaluated health and ecological risks independently by experts from different disciplines. Taking into considerations the recent concerns about endocrine disrupting chemicals and the progress of research in related areas, we integrated and assessed data on exposure and potential effects in humans and wildlife. Comparisons were made for organ concentrations, body burdens of several organochlorine compounds (OCs), metabolic capacities between humans and various wildlife. When we integrate the knowledge on effects and exposure in humans and in wildlife, new insights were suggested about similarities and/or differences in potential effects among various human populations living on different foods and having different body burdens. Combining existing information with emerging knowledge of mechanisms of actions on endocrine disrupting chemicals after exposure to above chemicals during early developmental stages will further elucidate potential risks from exposure to those chemicals

  4. Emergency assessment and treatment planning for traumatic dental injuries.

    Science.gov (United States)

    Moule, A; Cohenca, N

    2016-03-01

    Trauma involving the dentoalveolar region is a frequent occurrence which can result in the fracturing and displacement of teeth, crushing and/or fracturing of bone and soft tissue injuries including contusions, abrasions and lacerations. This review describes the assessment of patients with these injuries, not in a didactic sense by repeating excellent already published classifications and treatment options, but by addressing questions that arise during assessment. It covers trauma first aid, examination of the patient, factors that affect treatment planning decisions, and the importance of communicating treatment options and prognosis to traumatized patients. PMID:26923446

  5. Emergency response planning to reduce the impact of contaminated drinking water during natural disasters

    Institute of Scientific and Technical Information of China (English)

    Craig L. Patterson; Jeffrey Q. Adams

    2011-01-01

    Natural disasters can be devastating to local water supplies affecting millions of people.Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water systems.Prior to an event,utilities and municipalities can use “What if”? scenarios to develop emergency operation,response,and recovery plans designed to reduce the severity of damage and destruction.Government agencies including the EPA are planning ahead to provide temporary supplies of potable water and small drinking water treatment technologies to communities as an integral part of emergency response activities that will ensure clean and safe drinking water.

  6. Development of supporting system for emergency response to maritime transport accidents involving radioactive material

    International Nuclear Information System (INIS)

    National Maritime Research Institute has developed a supporting system for emergency response of competent authority to maritime transport accidents involving radioactive material. The supporting system for emergency response has functions of radiation shielding calculation, marine diffusion simulation, air diffusion simulation and radiological impact evaluation to grasp potential hazard of radiation. Loss of shielding performance accident and loss of sealing ability accident were postulated and impact of the accidents was evaluated based on the postulated accident scenario. Procedures for responding to emergency were examined by the present simulation results

  7. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  8. The evaluation of time performance in the emergency response center to provide pre-hospital emergency services in Kermanshah.

    Science.gov (United States)

    Mohammadi, Mohsen; Nasiripour, Amir Ashkan; Fakhri, Mahmood; Bakhtiari, Ahad; Azari, Samad; Akbarzadeh, Arash; Goli, Ali; Mahboubi, Mohammad

    2014-09-28

    This study evaluated the time performance in the emergency response center to provide pre-hospital emergency services in Kermanshah. This study was a descriptive retrospective cross-sectional study. In this study 500 cases of patients from Shahrivar (September) 2012 to the end of Shahrivar (September) 2013 were selected and studied by the non-probability quota method. The measuring tool included a preset cases record sheet and sampling method was completing the cases record sheet by referring to the patients' cases. Data were analyzed using SPSS version 18 and the concepts of descriptive and inferential statistics (Kruskal-Wallis test, benchmark Eta (Eta), Games-Howell post hoc test). The results showed that the interval mean between receiving the mission to reaching the scene, between reaching the scene to moving from the scene, and between moving from the scene to a health center was 7.28, 16.73 and 7.28 minutes. The overall mean of time performance from the scene to the health center was 11.34 minutes. Any intervention in order to speed up service delivery, reduce response times, ambulance equipment and facilities required for accuracy, validity and reliability of the data recorded in the emergency dispatch department, Continuing Education of ambulance staffs, the use of manpower with higher specialize levels such as nurses, supply the job satisfaction, and increase the coordination with other departments that are somehow involved in this process can provide the ground for reducing the loss and disability resulting from traffic accidents.

  9. Resilience and Brittleness in a Nuclear Emergency Response Simulation: Focusing on Team Coordination Activity

    International Nuclear Information System (INIS)

    The current work presents results from a cognitive task analysis (CTA) of a nuclear disaster simulation. Audio-visual records were collected from an emergency room team composed of individuals from 26 different agencies as they responded to multiple scenarios in a simulated nuclear disaster. This simulation was part of a national emergency response training activity for a nuclear power plant located in a developing country. The objectives of this paper are to describe sources of resilience and brittleness in these activities, identify cues of potential improvements for future emergency simulations, and leveraging the resilience of the emergency response System in case of a real disaster. Multiple CTA techniques were used to gain a better understanding of the cognitive dimensions of the activity and to identify team coordination and crisis management patterns that emerged from the simulation training. (authors)

  10. Oil spill model development and application for emergency response system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper introduces systematically the developing principle ofCWCM 1.0 oil spill model based on Lagrange system and oil spill fate processes in environment, reviews two oil spill incidents of "East Ambassador" in Jiaozhou Bay and "Min Fuel 2" in the mouth of Pearl River, and designs the predict system simulating oil spill applied in contingency plans. It is indicated that CWCM 1.0 has met preliminarily the demands for functions of precision simulating and oil spill predicting, and can plan an important role to support oil spill response.

  11. Experience Report: Constraint-Based Modelling and Simulation of Railway Emergency Response Plans

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Sandberg, Lene

    2016-01-01

    We report on experiences from a case study applying a constraint-based process-modelling and -simulation tool, dcrgraphs.net, to the modelling and rehearsal of railway emergency response plans with domain experts. The case study confirmed the approach as a viable means for domain experts to analyse...... and rehearse emergency response plans, through the activities of formally modelling the plan and subsequently rehearsing it by simulating that model collaboratively. In particular, the constraint-based modelling notation resulted in a flexible model giving rehearsal participants freedom to explore different...... ways to proceed, including ways not necessarily anticipated in the paper-based emergency response plans. The case study was undertaken as part of a short research, ProSec, project funded by the Danish Defence Agency, with the aim of applying and developing methods for collaborative mapping of emergency...

  12. Clarification of TMI action plan requirements. Requirements for emergency response capability

    International Nuclear Information System (INIS)

    This document, Supplement 1 to NUREG-0737, is a letter from D. G. Eisenhut, Director of the Division of Licensing, NRR, to licensees of operating power reactors, applicants for operating licenses, and holders of construction permits forwarding post-TMI requirements for emergency response capability which have been approved for implementation. On October 30, 1980, the NRC staff issued NUREG-0737, which incorporated into one document all TMI-related items approved for implementation by the Commission at that time. In this NRC report, additional clarification is provided regarding Safety Parameter Display Systems, Detailed Control Room Design Reviews, Regulatory Guide 1.97 (Revision 2) - Application to Emergency Response Facilities, Upgrade of Emergency Operating Procedures, Emergency Response Facilities, and Meteorological Data

  13. Airborne remote sensing for Deepwater Horizon oil spill emergency response

    Science.gov (United States)

    Kroutil, Robert T.; Shen, Sylvia S.; Lewis, Paul E.; Miller, David P.; Cardarelli, John; Thomas, Mark; Curry, Timothy; Kudaraskus, Paul

    2010-08-01

    On April 28, 2010, the Environmental Protection Agency's (EPA) Airborne Spectral Photometric Environmental Collection Technology (ASPECT) aircraft was deployed to Gulfport, Mississippi to provide airborne remotely sensed air monitoring and situational awareness data and products in response to the Deepwater Horizon oil rig disaster. The ASPECT aircraft was released from service on August 9, 2010 after having flown over 75 missions that included over 250 hours of flight operation. ASPECT's initial mission responsibility was to provide air quality monitoring (i.e., identification of vapor species) during various oil burning operations. The ASPECT airborne wide-area infrared remote sensing spectral data was used to evaluate the hazard potential of vapors being produced from open water oil burns near the Deepwater Horizon rig site. Other significant remote sensing data products and innovations included the development of an advanced capability to correctly identify, locate, characterize, and quantify surface oil that could reach beaches and wetland areas. This advanced identification product provided the Incident Command an improved capability to locate surface oil in order to improve the effectiveness of oil skimmer vessel recovery efforts directed by the US Coast Guard. This paper discusses the application of infrared spectroscopy and multispectral infrared imagery to address significant issues associated with this national crisis. More specifically, this paper addresses the airborne remote sensing capabilities, technology, and data analysis products developed specifically to optimize the resources and capabilities of the Deepwater Horizon Incident Command structure personnel and their remediation efforts.

  14. Using Geo-Data Corporately on the Response Phase of Emergency Management

    Science.gov (United States)

    Demir Ozbek, E.; Ates, S.; Aydinoglu, A. C.

    2015-08-01

    Response phase of emergency management is the most complex phase in the entire cycle because it requires cooperation between various actors relating to emergency sectors. A variety of geo-data is needed at the emergency response such as; existing data provided by different institutions and dynamic data collected by different sectors at the time of the disaster. Disaster event is managed according to elaborately defined activity-actor-task-geodata cycle. In this concept, every activity of emergency response is determined with Standard Operation Procedure that enables users to understand their tasks and required data in any activity. In this study, a general conceptual approach for disaster and emergency management system is developed based on the regulations to serve applications in Istanbul Governorship Provincial Disaster and Emergency Directorate. The approach is implemented to industrial facility explosion example. In preparation phase, optimum ambulance locations are determined according to general response time of the ambulance to all injury cases in addition to areas that have industrial fire risk. Management of the industrial fire case is organized according to defined actors, activities, and working cycle that describe required geo-data. A response scenario was prepared and performed for an industrial facility explosion event to exercise effective working cycle of actors. This scenario provides using geo-data corporately between different actors while required data for each task is defined to manage the industrial facility explosion event. Following developing web technologies, this scenario based approach can be effective to use geo-data on the web corporately.

  15. Emergency response to radiological occurrences in the centre of isotopes in Cuba

    International Nuclear Information System (INIS)

    It is internationally recognized that establishment and implementation emergency provisions are key issues for an effective response. This paper aims to summarize the experiences in responding to radiological events in the Centre of Isotopes (CENTIS), the biggest radioactive facility in Cuba. Specific potential accident scenarios are assessed by identifying maximum radioactive inventories, operational procedures, room dimensions and ventilation system parameters. Additionally, transport accidents are analyzed since CENTIS is also the main carrier of radioactive materials in Cuba. A range of events is considered from highly improbable events of larger consequence to more frequent events of small radiological impact. The maximum radionuclide release events are identified. A review of the radiological occurrences from 1997 to 2007 is conducted, using the Cuban's regulatory classification system. The details of these occurrences have been entered into the Radiological Event Database (RED). Spills of 131I in controlled zone are mainly registered. It has been not reported any incident in about two thousand road shipments carried out. Results show a good agreement between hypothesized occurrences and those registered. There were obtained the maximum values of exposures for workers and first responders as follows: 2.23mSv (effective dose (E)), 0.7mSv (committed effective dose) and 50.49mSv (equivalent dose to hands). The biggest contribution to E took place during opening a radioactive package with 14.8GBq of 90Sr in controlled zone. Suitable sets of individual protective means and monitoring equipment have been guaranteed. The programmes of training and full-scale exercises are fulfilled. Finally, it is concluded that findings from operational experience and preparedness infrastructure have contributed to CENTIS' emergency response capabilities. (author)

  16. Emerging strategic corporate social responsibility partnership initiatives in agribusiness

    DEFF Research Database (Denmark)

    Pötz, Katharina Anna; Haas, Rainer; Balzarova, Michaela

    2012-01-01

    Over the past 20 years the concept of Corporate Social Responsibility (CSR) has gained momentum in business practices and strategies. In the agribusiness sector, the need for CSR integration has recently triggered a number of private sector led initiatives that should contribute to sustainable...... agricultural practices. Consequently we emphasize that for managing innovation processes for sustainability and their institutional context, the food sustainability discourse also needs to investigate the state of the art of CSR in agribusiness. Based on a model to compare and contrast accountability standards...... we analyse the Sustainable Agriculture Initiative (SAI) platform and its principles. We conclude that over the past 5 years agribusiness corporations have become more pro-active in addressing sustainability concerns, and mainstream initiatives start to compete with the traditional niche markets...

  17. 医疗风险应急处置中的信息应急技术探讨%Information emergency technology in medical risk emergency response

    Institute of Scientific and Technical Information of China (English)

    姜鑫; 高睿心; 霍原; 张赫楠

    2014-01-01

    Covered in the paper are concepts and contents of medical risk and emergency response technology.Based on a description of medical risk information management experiences in Japan,Sweden and the United States and the current studies of medical risk response information management,the paper proposed measures for China in medical risk information emergency technology.Recommendations made include establishing a comprehensive emergency medical risk information management system,scientific medical risk information collection,monitoring,assessment,early warning systems,as well as building an intelligent risk emergency information decision system and establishing medical risk communication channels,thereby preventing effectively the occurrence of medical risks.%介绍了医疗风险与应急处置技术、医疗风险应急信息等基本概念及内容,通过对日本、瑞典、美国等国家医疗风险信息管理的介绍,分析了医疗风险应急信息管理研究的现状,从而提出完善我国医疗风险信息应急技术的对策,即建立完备的医疗风险应急信息管理制度,形成科学的医疗风险信息采集、监测、评估、预警系统,建设智能风险应急信息决策系统,建立医疗风险信息沟通渠道,从而真正科学有效地防范医疗风险的发生.

  18. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (Spanish Edition)

    International Nuclear Information System (INIS)

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the … application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  19. Lessons Learned from the Response to Radiation Emergencies (1945-2010) (French Edition)

    International Nuclear Information System (INIS)

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  20. Lessons Learned from the Response to Radiation Emergencies (1945-2010)

    International Nuclear Information System (INIS)

    An underlying concept in the safety standards of the International Atomic Energy Agency (IAEA) is that prevention is better than cure. This is achieved through the application of appropriate standards in design and operation. Nevertheless, radiation incidents and emergencies do occur and safety standards are necessary that define the approaches to be used in mitigating the consequences. The IAEA Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2, establishes the requirements for an adequate level of preparedness and response for a nuclear or radiological emergency in any State. They take account of several other Safety Standards at the Safety Requirements level, namely: the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS); Governmental, Legal and Regulatory Framework for Safety, GSR Part 1; Safety of Nuclear Power Plants: Design, NS-R-1; and Safety of Nuclear Power Plants: Operation, NS-R-2. Implementation of the requirements is intended to minimize the consequences for people, property and the environment of any nuclear or radiological emergency. Although developed before the publication of the Fundamental Safety Principles, they define the requirements that must be satisfied in order to achieve the overall objective and apply the principles that are presented in publications relating to emergencies. An emergency is defined in the Agency's glossary as 'a non-routine situation or event that necessitates prompt action, primarily to mitigate a hazard or adverse consequences for human health and safety, quality of life, property or the environment. This includes nuclear and radiological emergencies and conventional emergencies such as fires, release of hazardous chemicals, storms or earthquakes. It includes situations for which prompt action is warranted to mitigate the effects of a perceived hazard'. Several nuclear emergencies have

  1. Report of the workshop on biological dosimetry: increasing capacity for emergency response.

    Science.gov (United States)

    Chauhan, V; Wilkins, R C

    2010-11-01

    Recent events have brought increased attention to the possibility and dangers of a radiological terrorist threat and its potential implication on the national capacity for radiation accident preparedness. In such an event, there is a pressing need to rapidly identify severely irradiated individuals who require prompt medical attention from those who have not been exposed or have been subject to low doses. Initial dose assessment is a key component in rapid triage and treatment, however, the development of accurate methods for rapid dose assessment remains a challenge. In this report, the authors describe a recent workshop supported by the Chemical, Biological, Radiological-Nuclear and Explosives Research and Technology Initiative regarding the international effort to increase biological dosimetry capacity to effectively mount an emergency response in a mass casualty situation. Specifically, the focus of the workshop was on the current state of biological dosimetry capabilities and capacities in North America, recent developments towards increasing throughput for biological dosimetry and to identify opportunities for developing a North American Biological Dosimetry Network and forming partnerships and collaborations within Canada and the USA.

  2. Report of the workshop on biological dosimetry: Increasing capacity for emergency response

    International Nuclear Information System (INIS)

    Recent events have brought increased attention to the possibility and dangers of a radiological terrorist threat and its potential implication on the national capacity for radiation accident preparedness. In such an event, there is a pressing need to rapidly identify severely irradiated individuals who require prompt medical attention from those who have not been exposed or have been subject to low doses. Initial dose assessment is a key component in rapid triage and treatment, however, the development of accurate methods for rapid dose assessment remains a challenge. In this report, the authors describe a recent workshop supported by the Chemical, Biological, Radiological-Nuclear and Explosives Research and Technology Initiative regarding the international effort to increase biological dosimetry capacity to effectively mount an emergency response in a mass casualty situation. Specifically, the focus of the workshop was on the current state of biological dosimetry capabilities and capacities in North America, recent developments towards increasing throughput for biological dosimetry and to identify opportunities for developing a North American Biological Dosimetry Network and forming partnerships and collaborations within Canada and the USA. (authors)

  3. Suitability of rapid energy magnitude determinations for emergency response purposes

    Science.gov (United States)

    Di Giacomo, Domenico; Parolai, Stefano; Bormann, Peter; Grosser, Helmut; Saul, Joachim; Wang, Rongjiang; Zschau, Jochen

    2010-01-01

    It is common practice in the seismological community to use, especially for large earthquakes, the moment magnitude Mw as a unique magnitude parameter to evaluate the earthquake's damage potential. However, as a static measure of earthquake size, Mw does not provide direct information about the released seismic wave energy and its high frequency content, which is the more interesting information both for engineering purposes and for a rapid assessment of the earthquake's shaking potential. Therefore, we recommend to provide to disaster management organizations besides Mw also sufficiently accurate energy magnitude determinations as soon as possible after large earthquakes. We developed and extensively tested a rapid method for calculating the energy magnitude Me within about 10-15 min after an earthquake's occurrence. The method is based on pre-calculated spectral amplitude decay functions obtained from numerical simulations of Green's functions. After empirical validation, the procedure has been applied offline to a large data set of 767 shallow earthquakes that have been grouped according to their type of mechanism (strike-slip, normal faulting, thrust faulting, etc.). The suitability of the proposed approach is discussed by comparing our rapid Me estimates with Mw published by GCMT as well as with Mw and Me reported by the USGS. Mw is on average slightly larger than our Me for all types of mechanisms. No clear dependence on source mechanism is observed for our Me estimates. In contrast, Me from the USGS is generally larger than Mw for strike-slip earthquakes and generally smaller for the other source types. For ~67 per cent of the event data set our Me differs events. A reason of that may be the overcorrection of the energy flux applied by the USGS for this type of earthquakes. We follow the original definition of magnitude scales, which does not apply a priori mechanism corrections to measured amplitudes, also since reliable fault-plane solutions are hardly

  4. The Gulf Coast Vulnerability Assessment: Mangrove, Tidal Emergent Marsh, Barrier Islands, and Oyster Reef

    Science.gov (United States)

    Watson, Amanda; Reece, Joshua S.; Tirpak, Blair; Edwards, Cynthia Kallio; Geselbracht, Laura; Woodrey, Mark; LaPeyre, Megan K.; Dalyander, Patricia (Soupy)

    2015-01-01

    Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates the aspects of exposure and sensitivity to threats, coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams. Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge. Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both

  5. Emergency response to a highway accident in Springfield, Massachusetts, on December 16, 1991

    International Nuclear Information System (INIS)

    On December 16, 1991, a truck carrying unirradiated (fresh) nuclear fuel was involved in an accident on US Interstate 91, in Springfield, Massachusetts. This report describes the emergency response measures undertaken by local, State, Federal, and private parties. The report also discusses ''lessons learned'' from the response to the accident and suggests areas where improvements might be made

  6. 40 CFR 1.47 - Office of Solid Waste and Emergency Response.

    Science.gov (United States)

    2010-07-01

    ... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.47 Office of Solid Waste and Emergency Response. The... organizations, including the Office of Management and Budget (OMB), Congress, U.S. Department of Justice and... direction, guidance, and support to the Environmental Response Teams and overseeing their activities;...

  7. Emergency response to a highway accident in Springfield, Massachusetts, on December 16, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    On December 16, 1991, a truck carrying unirradiated (fresh) nuclear fuel was involved in an accident on US Interstate 91, in Springfield, Massachusetts. This report describes the emergency response measures undertaken by local, State, Federal, and private parties. The report also discusses lessons learned'' from the response to the accident and suggests areas where improvements might be made.

  8. Emergency response to a highway accident in Springfield, Massachusetts, on December 16, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    On December 16, 1991, a truck carrying unirradiated (fresh) nuclear fuel was involved in an accident on US Interstate 91, in Springfield, Massachusetts. This report describes the emergency response measures undertaken by local, State, Federal, and private parties. The report also discusses ``lessons learned`` from the response to the accident and suggests areas where improvements might be made.

  9. LEADERS: Lightweight Epidemiology Advanced Detection and Emergency Response System

    Science.gov (United States)

    Ritter, Todd A.

    2002-06-01

    Technological advancements in molecular biology now offer a wide-range of applications for bio-warfare defense, medical surveillance, agricultural surveillance and pure research. Idaho Technology has designed and produced the world's fastest DNA-based identifiers. The R.A.P.I.D. TM (Ruggedized Advanced Pathogen Identification Device) provides several options for using sensitive and specific molecular biology-based technology One of the key features of the RAPID is a software package called Detector*. Detector* allows Minimally Trained Care Providers (MTCP) to operate the instrument by automating the steps of running PCR and automatically analyzing the sample data. Pathogen identification is carried out automatically using positive and negative controls to protect against false positive and false negative results. As part of the LEADER system, the Remote RAPID Viewer (RRV) component allows for real-time remote monitoring of PCR reactions run on the RAPID, thus giving the Subject Matter Expert (SME) the ability to request specific tests when triggered by the auto-analysis system. In addition the RRV component facilitates in result verification of tests run by MTCP, assists in tracking outbreaks, and helps coordinate large scale real-time crisis management. The system will allow access to epidemiological data from thin client (i.e. web browser), thus allowing the SME to connect from anywhere with an internet connection. In addition the LEADER system will automatically contact and alert SME when threshold criteria are met, helping reduce the time to first response.

  10. GIS-based emergency response system for sudden water pollution accidents

    Science.gov (United States)

    Rui, Yikang; Shen, Dingtao; Khalid, Shoaib; Yang, Zaigui; Wang, Jiechen

    The frequent occurrence of sudden water pollution accidents brings enormous risks to water environment safety. Therefore, there is great need for the modeling and development of early warning systems and rapid response procedures for current water pollution situation in China. This paper proposes an emergency response system based on the integration of Geographic Information System (GIS) technology and a hydraulic/water-quality model. Using the spatial analysis and three-dimensional visualization capabilities of GIS technology, we calculated pollutant diffusion measures, and visualized and analyzed the simulation results, in order to provide the services of early warning and emergency response for sudden water pollution accidents in the Xiangjia Dam area on the Yangtze River. The results show that the proposed system offers reliable technological support for emergency response to sudden water pollution events, and it shows good potential for wide applications in various aspects of water resources protection.

  11. Critical Emergency Medicine Procedural Skills: A Comparative Study of Methods for Teaching and Assessment.

    Science.gov (United States)

    Chapman, Dane M.; And Others

    Three critical procedural skills in emergency medicine were evaluated using three assessment modalities--written, computer, and animal model. The effects of computer practice and previous procedure experience on skill competence were also examined in an experimental sequential assessment design. Subjects were six medical students, six residents,…

  12. Development of a Real-Time Radiological Area Monitoring Network for Emergency Response at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bertoldo, N; Hunter, S; Fertig, R; Laguna, G; MacQueen, D

    2004-03-08

    A real-time radiological sensor network for emergency response was developed and deployed at the Lawrence Livermore National Laboratory (LLNL). The Real-Time Radiological Area Monitoring (RTRAM) network is comprised of 16 Geiger-Mueller (GM) sensors positioned on the LLNL Livermore site perimeter to continuously monitor for a radiological condition resulting from a terrorist threat to site security and the health and safety of LLNL personnel. The RTRAM network sensor locations coincide with wind sector directions to provide thorough coverage of the one square mile site. These low-power sensors are supported by a central command center (CCC) and transmit measurement data back to the CCC computer through the LLNL telecommunications infrastructure. Alarm conditions are identified by comparing current data to predetermined threshold parameters and are validated by comparison with plausible dispersion modeling scenarios and prevailing meteorological conditions. Emergency response personnel are notified of alarm conditions by automatic radio and computer based notifications. A secure intranet provides emergency response personnel with current condition assessment data that enable them to direct field response efforts remotely. The RTRAM network has proven to be a reliable system since initial deployment in August 2001 and maintains stability during inclement weather conditions.

  13. NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency

    International Nuclear Information System (INIS)

    This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), Radiological Assistance Program (RAP) personnel, and the Consequence Management Response Team (CMRT) to Japan. DOE/NNSA home team assets included the Consequence Management Home Team (CMHT); National Atmospheric Release Advisory Center (NARAC); Radiation Emergency Assistance Center/Training Site (REAC/TS); and Radiological Triage. NARAC was activated by the DOE/NNSA on March 11, shortly after the Tohoku earthquake and tsunami occurred. The center remained on active operations through late May when DOE ended its deployment to Japan. Over 32 NARAC staff members

  14. NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, G; Nasstrom, J S; Probanz, B; Foster, K T; Simpson, M; Vogt, P; Aluzzi, F; Dillon, M; Homann, S

    2012-02-14

    This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), Radiological Assistance Program (RAP) personnel, and the Consequence Management Response Team (CMRT) to Japan. DOE/NNSA home team assets included the Consequence Management Home Team (CMHT); National Atmospheric Release Advisory Center (NARAC); Radiation Emergency Assistance Center/Training Site (REAC/TS); and Radiological Triage. NARAC was activated by the DOE/NNSA on March 11, shortly after the Tohoku earthquake and tsunami occurred. The center remained on active operations through late May when DOE ended its deployment to Japan. Over 32 NARAC staff

  15. Medical and radiological aspects of emergency preparedness and response at SevRAO facilities

    International Nuclear Information System (INIS)

    Regulatory cooperation between the Norwegian Radiation Protection Authority and the Federal Medical Biological Agency (FMBA) of the Russian Federation has the overall goal of promoting improvements in radiation protection in Northwest Russia. One of the projects in this programme has the objectives to review and improve the existing medical emergency preparedness capabilities at the sites for temporary storage of spent nuclear fuel and radioactive waste. These are operated by SevRAO at Andreeva Bay and in Gremikha village on the Kola Peninsula. The work is also intended to provide a better basis for regulation of emergency response and medical emergency preparedness at similar facilities elsewhere in Russia. The purpose of this paper is to present the main results of that project, implemented by the Burnasyan Federal Medical Biophysical Centre. The first task was an analysis of the regulatory requirements and the current state of preparedness for medical emergency response at the SevRAO facilities. Although Russian regulatory documents are mostly consistent with international recommendations, some distinctions lead to numerical differences in operational intervention criteria under otherwise similar conditions. Radiological threats relating to possible accidents, and related gaps in the regulation of SevRAO facilities, were also identified. As part of the project, a special exercise on emergency medical response on-site at Andreeva Bay was prepared and carried out, and recommendations were proposed after the exercise. Following fruitful dialogue among regulators, designers and operators, special regulatory guidance has been issued by FMBA to account for the specific and unusual features of the SevRAO facilities. Detailed sections relate to the prevention of accidents, and emergency preparedness and response, supplementing the basic Russian regulatory requirements. Overall it is concluded that (a) the provision of medical and sanitary components of emergency

  16. Performance Determinants for Responsible Supply Chain Management in the European Emerging Countries

    OpenAIRE

    Camelia Chirilă; Andreea Gangone; Mihaela Asandei; Mariana Cristina Ganescu

    2013-01-01

    Starting from the premise that there are numerous institutional and national factors influencing the performance of responsible supply chain management, the present article seeks to measure and quantify performance of the European emerging states by creating an index of performance of responsible supply chain management and to identify the factors that influence responsible supply chain management. The acquisition of this index was based on our own measurement methodology, starting from two c...

  17. Statistical study of emerging flux regions and the response of the upper atmosphere

    Institute of Scientific and Technical Information of China (English)

    Jie Zhao; Hui Li

    2012-01-01

    We statistically study the properties of emerging flux regions (EFRs) and response of the upper solar atmosphere to the flux emergence using data from the Helioseismic and Magnetic Imager and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory.Parameters including total emerged flux,flux growth rate,maximum area,duration of the emergence and separation speed of the opposite polarities are adopted to delineate the properties of EFRs.The response of the upper atmosphere is addressed by the response of the atmosphere at different wavelengths (and thus at different temperatures).According to our results,the total emerged fluxes are in the range of (0.44-11.2)× 1019 Mx while the maximum area ranges from 17 to 182 arcsec2.The durations of the emergence are between 1 and 12 h,which are positively correlated to both the total emerged flux and the maximum area.The maximum distances between the opposite polarities are 7-25 arcsec and are also positively correlated to the duration.The separation speeds are from 0.05 to 1.08 km S-1,negatively correlated to the duration.The derived flux growth rates are (0.1-1.3) × 1019 Mxh-1,which are positively correlated to the total emerging flux.The upper atmosphere first responds to the flux emergence in the 1600(A) chromospheric line,and then tens to hundreds of seconds later,in coronal lines,such as the 171(A) (T = 105.8 K) and 211(A)(T = 106.3 K) lines almost simultaneously,suggesting the successive heating of the atmosphere from the chromosphere to the corona.

  18. Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Edward J. [Environmental Health Sciences, School of Public Health, Morrill I, N344, University of Massachusetts, Amherst, MA 01003 (United States)]. E-mail: edwardc@schoolph.umass.edu

    2005-12-15

    This paper provides an assessment of the toxicological basis of the hormetic dose-response relationship including issues relating to its reproducibility, frequency, and generalizability across biological models, endpoints measured and chemical class/physical stressors and implications for risk assessment. The quantitative features of the hormetic dose response are described and placed within toxicological context that considers study design, temporal assessment, mechanism, and experimental model/population heterogeneity. Particular emphasis is placed on an historical evaluation of why the field of toxicology rejected hormesis in favor of dose response models such as the threshold model for assessing non-carcinogens and linear no threshold (LNT) models for assessing carcinogens. The paper argues that such decisions were principally based on complex historical factors that emerged from the intense and protracted conflict between what is now called traditional medicine and homeopathy and the overly dominating influence of regulatory agencies on the toxicological intellectual agenda. Such regulatory agency influence emphasized hazard/risk assessment goals such as the derivation of no observed adverse effect levels (NOAELs) and the lowest observed adverse effect levels (LOAELs) which were derived principally from high dose studies using few doses, a feature which restricted perceptions and distorted judgments of several generations of toxicologists concerning the nature of the dose-response continuum. Such historical and technical blind spots lead the field of toxicology to not only reject an established dose-response model (hormesis), but also the model that was more common and fundamental than those that the field accepted. - The quantitative features of the hormetic dose/response are described and placed within the context of toxicology.

  19. Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences

    International Nuclear Information System (INIS)

    This paper provides an assessment of the toxicological basis of the hormetic dose-response relationship including issues relating to its reproducibility, frequency, and generalizability across biological models, endpoints measured and chemical class/physical stressors and implications for risk assessment. The quantitative features of the hormetic dose response are described and placed within toxicological context that considers study design, temporal assessment, mechanism, and experimental model/population heterogeneity. Particular emphasis is placed on an historical evaluation of why the field of toxicology rejected hormesis in favor of dose response models such as the threshold model for assessing non-carcinogens and linear no threshold (LNT) models for assessing carcinogens. The paper argues that such decisions were principally based on complex historical factors that emerged from the intense and protracted conflict between what is now called traditional medicine and homeopathy and the overly dominating influence of regulatory agencies on the toxicological intellectual agenda. Such regulatory agency influence emphasized hazard/risk assessment goals such as the derivation of no observed adverse effect levels (NOAELs) and the lowest observed adverse effect levels (LOAELs) which were derived principally from high dose studies using few doses, a feature which restricted perceptions and distorted judgments of several generations of toxicologists concerning the nature of the dose-response continuum. Such historical and technical blind spots lead the field of toxicology to not only reject an established dose-response model (hormesis), but also the model that was more common and fundamental than those that the field accepted. - The quantitative features of the hormetic dose/response are described and placed within the context of toxicology

  20. Ubiquitous robust communications for emergency response using multi-operator heterogeneous networks

    Directory of Open Access Journals (Sweden)

    Verikoukis Christos

    2011-01-01

    Full Text Available Abstract A number of disasters in various places of the planet have caused an extensive loss of lives, severe damages to properties and the environment, as well as a tremendous shock to the survivors. For relief and mitigation operations, emergency responders are immediately dispatched to the disaster areas. Ubiquitous and robust communications during the emergency response operations are of paramount importance. Nevertheless, various reports have highlighted that after many devastating events, the current technologies used, failed to support the mission critical communications, resulting in further loss of lives. Inefficiencies of the current communications used for emergency response include lack of technology inter-operability between different jurisdictions, and high vulnerability due to their centralized infrastructure. In this article, we propose a flexible network architecture that provides a common networking platform for heterogeneous multi-operator networks, for interoperation in case of emergencies. A wireless mesh network is the main part of the proposed architecture and this provides a back-up network in case of emergencies. We first describe the shortcomings and limitations of the current technologies, and then we address issues related to the applications and functionalities a future emergency response network should support. Furthermore, we describe the necessary requirements for a flexible, secure, robust, and QoS-aware emergency response multi-operator architecture, and then we suggest several schemes that can be adopted by our proposed architecture to meet those requirements. In addition, we suggest several methods for the re-tasking of communication means owned by independent individuals to provide support during emergencies. In order to investigate the feasibility of multimedia transmission over a wireless mesh network, we measured the performance of a video streaming application in a real wireless metropolitan multi

  1. Interview: Health technology assessment in Asia: an emerging trend.

    Science.gov (United States)

    Yang, Bong-min

    2012-05-01

    Bong-min Yang, PhD (in economics), is Professor and former Dean of the School of Public Health at the Seoul National University, South Korea. Professor Yang has led research and written many papers in health economics and healthcare systems in Korea and Asia. His recent research and publications focus on the field of economic evaluation and outcomes research. He played a key role in the introduction of a formal health technology assessment system within Korean healthcare. He is currently serving as Executive Director, Institute of Health and Environment, Seoul National University. In addition to his research and publications, Professor Yang is Associate Editor for Journal of Comparative Effectiveness Research, is co-editor-in-chief for Value in Health Regional Issues, and is currently chair of the Management Advisory Board of Value in Health and a member of the editorial board of the Journal of Medical Economics. He has been a policy consultant to China, Japan, Indonesia, Hong Kong, Malaysia, Taiwan, Thailand and India. He has also worked as a short-term consultant at the WHO, ADB, UNDP and the World Bank. For the Korean government, he served as Chairperson of the Health Insurance Reform Committee, and Chairperson of the Drug Pricing and Reimbursement Committee. He is currently serving as Chair of the International Society of Pharmacoeconomics and Outcomes Research-Asia Consortium, and a member of the Board of Directors of the International Society of Pharmacoeconomics and Outcomes Research. PMID:24237405

  2. Bothrops lanceolatus bites: guidelines for severity assessment and emergent management.

    Science.gov (United States)

    Resiere, Dabor; Mégarbane, Bruno; Valentino, Ruddy; Mehdaoui, Hossein; Thomas, Laurent

    2010-01-01

    Approximately 20-30 declared snakebite cases occurin Martinique each year. Bothrops lanceolatus, a member of the Crotalidae family, is considered to be the only involved snake. B. lanceolatus, commonly named "Fer-de-Lance", is endemic and only found on this Caribbean island. Envenomation local features include the presence of fang marks, swelling, pain, bleeding from punctures, and ecchymosis. Severe envenomation is associated with multiple systemic thromboses appearing within 48 h of the bite and resulting in cerebral, myocardial or pulmonary infarctions. Diagnosis requires first of all identification of the snake. Coagulation tests are helpful to identify thrombocytopenia or disseminated intravascular coagulation. A clinical score based on 4 grades is helpful to assess envonimation severity. A specific monovalent equine anti-venom (Bothrofav(®), Sanofi-Pasteur, France) to neutralize B. lanceolatus venom is available. Its early administration within 6h from the biting in case of progressive local injures, general signs or coagulation disturbances is effective to prevent severe thrombosis and coagulopathy. Its tolerance is considered to be good. Despite an increasing incidence of bites, no deaths have been recently attributed to B. lanceolatus in Martinique, probably due to the currently recommended strategy of early antivenom administration when required. PMID:22069552

  3. Guidance Manual for preparing Nuclear and Radiological Emergency Preparedness and Response Plan

    International Nuclear Information System (INIS)

    The Nuclear and Radiological Emergency Preparedness and Response Plan(NREPRP) describes the capabilities, responsibilities and authorities of government agencies and a conceptual basis for integrating the activities of these agencies to protect public health and safety. The NREPRP addresses issues related to actual or perceived radiation hazard requiring a national response in order to: i. Provide co-ordination of a response involving multi-jurisdictions or significant national responsibilities; or ii. Provide national support to state and local governments. The objective of this research is to establish Guidance Manual for preparing a timely, organized and coordinated emergency response plan for Authorities/agencies to promptly and adequately determine and take actions to protect members of the public and emergency workers. The manual will not provide sufficient details for an adequate response. This level of details is contained in standard operating procedures that are being developed based on the plan developed. Base on the data obtain from integrated planning levels and responsibility sharing, the legal document of major government agencies participating in NREPRP form the legal basis for the response plan. Also the following documents should be some international legal binding documents. Base on the international safety requirement and some countries well developed NREPRP, we have drafted a guidance manual for new comer countries for easy development of their countries NREPRP. Also we have taken in to consideration lessons learn from most accident especially Fukushima accident

  4. Deliberate self harm assessment by accident and emergency staff--an intervention study.

    OpenAIRE

    Crawford, M J; Turnbull, G; Wessely, S

    1998-01-01

    OBJECTIVE: To examine the impact of specific training for accident and emergency (A&E) staff on the quality of psychosocial assessment of deliberate self harm patients. METHODS: A non-randomised intervention study that compared the psychosocial assessment of deliberate self harm patients before and after a one hour teaching session for the A&E departments nursing and junior medical staff. Adequacy of psychosocial assessment was judged by examining A&E case notes. The records of the hospital's...

  5. A mobile radiological laboratory for rapid response to off-site radiation emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Katoch, D. S.; Sharma, R. C.; Mehta, D. J.; Raj, V. Venkat [Bhabha Atomic Research Centre, Mumbai (India)

    2002-07-01

    A mobile radiological laboratory (MRL) has been designed and developed primarily for providing a rapid response to radiation emergencies arising as a consequence of nuclear and/or radiological accidents. It is equipped specifically to monitor the environment and provide quick assessment of radiological hazards to the population living within a radius of 30 km around a nuclear facility. In this paper, various design features of an Indian MRL together with the details of installed equipment are presented. The MRL has been designed for a continuous outdoor operation of about two weeks. It is built on a 10.70 m long air suspension Bus Chassis and has four sections : Driver's Cabin, Main Counting Laboratory, Whole Body Monitor and Rear section housing general utilities. The electric power is provided by two diesel generators during field operation and by 230 V AC mains supply at headquarters and wherever possible. The equipment installed in the MRL includes : Alpha, beta and gamma counting systems and low and high volume air samplers for the assessment of radioactive contents in the samples of air, water, soil and vegetation; environment dose rate meters and a variety of survey meters for evaluating any potential increase in radiation levels; personal dosimeters to control external radiation exposure; personal protective equipment for avoiding skin and clothing contamination; a chair type of whole body monitor for the assessment of internal radioactive contamination of the human body, in particular, thyroidal uptake of radioiodine; an automatic weather station for recording continuously the meteorological parameters and a satellite based global positioning system to continuously track and display the geographical location of the MRL. The calibrations of the installed equipment are presently in progress. Preliminary results obtained for the methods needed for rapid detection of gamma emitters in the environment and human body, namely, in situ gamma spectrometry and

  6. Method for Developing a Communication Strategy and Plan for a Nuclear or Radiological Emergency. Emergency Preparedness and Response. Publication Date: July 2015

    International Nuclear Information System (INIS)

    The aim of this publication is to provide a practical resource for emergency planning in the area of public communication in the development of a radiation emergency communication plan (RECP). The term 'public communication' is defined as any activity that communicates information to the public and the media during a nuclear or radiological emergency. To avoid confusion, the term public communication has been used in this publication rather than public information, which may be used in other IAEA publications and documents to ensure consistency with the terminology used in describing the command and control system. This publication also aims to fulfil in part functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), as well as meeting requirements stated in IAEA Safety Standards Series No. GS-R-2, Preparedness and Response for a Nuclear or Radiological Emergency. Under Article 5(a)(11) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and results of research with regard to the response to nuclear or radiological emergencies. This publication is intended to provide guidance to national and local authorities on developing an RECP which incorporates the specific functions, arrangements and capabilities that will be required for public communication during a nuclear or radiological emergency. The two main features of this publication are the template provided to develop an RECP and detailed guidance on developing a communication strategy for emergency preparedness and response to nuclear or radiological emergencies. The template is consistent with the outline of the national radiation emergency plan proposed in Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency (EPR-Method 2003). This publication is part of the IAEA

  7. Emergency imaging assessment of deep neck space infections.

    Science.gov (United States)

    Maroldi, Roberto; Farina, Davide; Ravanelli, Marco; Lombardi, Davide; Nicolai, Piero

    2012-10-01

    Deep neck space infection may lead to severe and potentially life-threatening complications, such as airway obstruction, mediastinitis, septic embolization, dural sinus thrombosis, and intracranial abscess. The clinical presentation is widely variable, and often early symptoms do not reflect the disease severity. The complication risk depends on the extent and anatomical site: diseases that transgress fascial boundaries and spread along vertically oriented spaces (parapharyngeal, retropharyngeal, and paravertebral space) have a higher risk of complications and require a more aggressive treatment compared with those confined within a nonvertically oriented space (peritonsillar, sublingual, submandibular, parotid, and masticator space). Imaging has 5 crucial roles: (1) confirm the suspected clinical diagnosis, (2) define the precise extent of the disease, (3) identify complications, (4) distinguish between drainable abscesses and cellulitis, and (5) monitor deep neck space infection progression. Ultrasonography is the gold standard to differentiate abscesses from cellulitis, for the diagnosis of lymphadenitis. and to identify internal jugular thrombophlebitis in the infrahyoid neck. However, field-of-view limitation and poor anatomical information confine the use of ultrasonography to the evaluation of superficial lesions and to image-guided aspiration or drainage. Computed tomography (CT) combines fast image acquisition and precise anatomical information without field-of-view limitations. For these reasons, it is the most reliable technique for the evaluation of deep and multicompartment lesions and for the identification of mediastinal and intracranial complications. Contrast agent administration enhances the capability to differentiate fluid collections from cellulitis and allows the detection of vascular complications. Magnetic resonance imaging is more time-consuming than CT, limiting its use to selected indications. It is the technique of choice for assessing

  8. ANSTO training for radiological emergency preparedness and response in South East Asia

    International Nuclear Information System (INIS)

    This paper describes the collaborative and systematic approach to training for nuclear and radiological emergency preparedness and response and the outcomes of this work with ANSTO's South East Asian counterparts in Thailand, the Philippines, Malaysia and Indonesia. The standards and criteria being applied are discussed, along with the methods, design and conduct of workshops, table-top and field exercises. The following elements of this training will be presented: (a) identifying the priority areas for training through needs analysis; (b) strengthening individual professional expertise through a structured approach to training; and (c) enhancing individual Agency and National nuclear and radiological emergency preparedness and response arrangements and capabilities. Whilst the work is motivated by nuclear security concerns, the implications for effective and sustainable emergency response to any nuclear or radiological incidents are noted.

  9. Corporate social responsibility, social contract, corporate personhood and human rights law: understanding the emerging responsibilities of modern corporations

    OpenAIRE

    Amao, Olufemi

    2008-01-01

    Copyright @ 2008 Olufemi Amao. The social contract theory has been advanced as a theoretical basis for explaining the emerging practice of Corporate Social Responsibility (CSR) by corporations. Since the 17th century the social contract concept has also been used to justify human rights. The concept is the constitutional foundation of many western states starting with England, US and France. Business ethicists and philosophers have tried to construct and analyse the social responsibility o...

  10. Emergency department triage: a program assessment using the tools of continuous quality improvement.

    Science.gov (United States)

    Cook, S; Sinclair, D

    1997-01-01

    An assessment was undertaken in the emergency department of a busy tertiary care center to illustrate the role of continuous quality improvement in the evaluation of an emergency triage program that utilizes the emergency medical attendant to provide triage. An evaluation team interviewed triage staff, charge nurses, internal customers, risk management, and the patient representative. A detailed review of staff job descriptions, organization charts, orientation manual, and physical facilities was conducted. A chart audit was completed on 100 triage notes. Direct observation was undertaken on nine occasions. An evaluation of the data gathered was performed using the tools of continuous quality improvement, and resulted in specific recommendations being made to improve the process of care. It was concluded that emergency medical attendants function very well in an emergency medicine triage system and the tools of continuous quality improvement can be applied to a clinical service to improve the quality of care. PMID:9404811

  11. Sodium dichromate expedited response action assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The US Environmental Protection Agency (EPA) and Washington Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) perform an expedited response action (ERA) for the Sodium Dichromate Barrel Disposal Landfill. The ERA lead regulatory agency is Ecology and EPA is the support agency. The ERA was categorized as non-time-critical, which required preparation of an engineering evaluation and cost analysis (EE/CA). The EE/CA was included in the ERA proposal. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the Sodium Dichromate Barrel Disposal Landfill is the only waste site within the operable unit, the removal action may be the final remediation of the 100-IU-4 Operable Unit. This ERA process started in March 1992. The ERA proposal went through a parallel review process with Westinghouse Hanford Company (WHC), DOE Richland Operations (RL), EPA, Ecology, and a 30-day public comment period. Ecology and EPA issued an Action Agreement Memorandum in March 1993 (Appendix A). The memorandum directed excavation of all anomalies and disposal of the collected materials at the Hanford Site Central Landfill. Primary field activities were completed by the end of April 1993. Final waste disposal of a minor quantity of hazardous waste was completed in July 1993.

  12. Sodium dichromate expedited response action assessment

    International Nuclear Information System (INIS)

    The US Environmental Protection Agency (EPA) and Washington Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) perform an expedited response action (ERA) for the Sodium Dichromate Barrel Disposal Landfill. The ERA lead regulatory agency is Ecology and EPA is the support agency. The ERA was categorized as non-time-critical, which required preparation of an engineering evaluation and cost analysis (EE/CA). The EE/CA was included in the ERA proposal. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the Sodium Dichromate Barrel Disposal Landfill is the only waste site within the operable unit, the removal action may be the final remediation of the 100-IU-4 Operable Unit. This ERA process started in March 1992. The ERA proposal went through a parallel review process with Westinghouse Hanford Company (WHC), DOE Richland Operations (RL), EPA, Ecology, and a 30-day public comment period. Ecology and EPA issued an Action Agreement Memorandum in March 1993 (Appendix A). The memorandum directed excavation of all anomalies and disposal of the collected materials at the Hanford Site Central Landfill. Primary field activities were completed by the end of April 1993. Final waste disposal of a minor quantity of hazardous waste was completed in July 1993

  13. A GIS based urban flood risk analysis model for vulnerability assessment of critical structures during flood emergencies

    Science.gov (United States)

    Albano, R.; Sole, A.; Adamowski, J.; Mancusi, L.

    2014-04-01

    Risk analysis has become a priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk by considering the priority and benefits of possible interventions. Within this context, a flood risk analysis model was developed in this study that is based on GIS, and integrated with a model that assesses the degree of accessibility and operability of strategic emergency response structures in an urban area. The proposed model is unique in that it provides a quantitative estimation of flood risk on the basis of the operability of the strategic emergency structures in an urban area, their accessibility, and connection within the urban system of a city (i.e., connection between aid centres and buildings at risk) in the emergency phase. The results of a case study in the Puglia Region in Southern Italy are described to illustrate the practical applications of this newly proposed approach. The main advantage of the proposed approach is that it allows for the defining of a hierarchy between different infrastructures in the urban area through the identification of particular components whose operation and efficiency are critical for emergency management. This information can be used by decision makers to prioritize risk reduction interventions in flood emergencies in urban areas.

  14. Distributed emergency response system to model dispersion and deposition of atmospheric releases

    International Nuclear Information System (INIS)

    Aging hardware and software and increasing commitments by the Departments of Energy and Defense have led us to develop a new, expanded system to replace the existing Atmospheric Release Advisory Capability (ARAC) system. This distributed, computer-based, emergency response system is used by state and federal agencies to assess the environmental health hazards resulting from an accidental release of radioactive material into the atmosphere. Like its predecessor, the expanded system uses local meteorology (e.g., wind speed and wind direction), as well as terrain information, to simulate the transport and dispersion of the airborne material. The system also calculates deposition and dose and displays them graphically over base maps of the local geography for use by on-site authorities. This paper discusses the limitations of the existing ARAC system. It also discusses the components and functionality of the new system, the technical difficulties encountered and resolved in its design and implementation, and the software methodologies and tools employed in its development

  15. Geographic Situational Awareness: Mining Tweets for Disaster Preparedness, Emergency Response, Impact, and Recovery

    Directory of Open Access Journals (Sweden)

    Qunying Huang

    2015-08-01

    Full Text Available Social media data have emerged as a new source for detecting and monitoring disaster events. A number of recent studies have suggested that social media data streams can be used to mine actionable data for emergency response and relief operation. However, no effort has been made to classify social media data into stages of disaster management (mitigation, preparedness, emergency response, and recovery, which has been used as a common reference for disaster researchers and emergency managers for decades to organize information and streamline priorities and activities during the course of a disaster. This paper makes an initial effort in coding social media messages into different themes within different disaster phases during a time-critical crisis by manually examining more than 10,000 tweets generated during a natural disaster and referencing the findings from the relevant literature and official government procedures involving different disaster stages. Moreover, a classifier based on logistic regression is trained and used for automatically mining and classifying the social media messages into various topic categories during various disaster phases. The classification results are necessary and useful for emergency managers to identify the transition between phases of disaster management, the timing of which is usually unknown and varies across disaster events, so that they can take action quickly and efficiently in the impacted communities. Information generated from the classification can also be used by the social science research communities to study various aspects of preparedness, response, impact and recovery.

  16. Emergency preparedness and response to 'not-in-a-facility' radiological accidents

    International Nuclear Information System (INIS)

    The paper provides an overview of lessons learned from the past radiological accidents, which have not occurred in an operating facility, i.e. 'not-in-a-facility' radiological emergencies. A method to analyze status of prevention of accidents is proposed taking into account the experiences and findings from the past events. The main emergency planning items are discussed, which would render effective response in case of such emergencies. Although the IAEA has published many documents about establishing an adequate emergency response capability, it is not an easy task to bring these recommendations into life. This paper gives some hints how to overcome the most obvious difficulties while users of these documents trying to adapt the guidance to their own needs. The special cases of alpha emitters and radiological dispersal devices were considered separately. The balanced approach to emergency response is promoted throughout the text, which means that a level of preparedness should be commensurate to the threat and the existing resources should be used to the extent possible. (author)

  17. Emergency preparedness and response to 'Not-in-a-Facility' radiological accidents

    International Nuclear Information System (INIS)

    The paper provides an overview of lessons learned from the past radiological accidents, which have not occurred in an operating facility, i.e. 'not-in-a-facility' radiological emergencies. A method to analyze status of prevention of accidents is proposed taking into account the experiences and findings from the past events. The main emergency planning items are discussed, which would render effective response in case of such emergencies. Although the IAEA has published many documents about establishing an adequate emergency response capability, it is not an easy task to bring these recommendations into life. This paper gives some hints how to overcome the most obvious difficulties while users of these documents trying to adapt the guidance to their own needs. The special cases of alpha emitters and radiological dispersal devices were considered separately. The balanced approach to emergency response is promoted throughout the text, which means that a level of preparedness should be commensurate to the threat and the existing resources should be used to the extent possible. (author)

  18. Strategic Models and the Response of Government Agencies to Extreme Emergencies

    DEFF Research Database (Denmark)

    Casler, Catherine; Pierides, Dean

    Government agencies that are tasked with responding to extreme emergencies are constantly battling with the tensions and trade-offs of centralized control versus decentralized decision-making. Many of today’s emergency management organizations are a product of World War II and as such they have...... by the growth of managerialism, these models attend to very different organizational realities from those of the military and of civil service. This is over and above the reduction of specificity within management and organizational theories that already characterizes them. In this paper, we focus on strategy...... and address how military and strategic management models organize the response of government agencies to extreme emergencies whilst also failing to address their core organizational problems. We are interested in the relatively recent creation of centralized organizations like the US Federal Emergency...

  19. Emergency response to a nuclear facility accident: preplanning and preparedness by off-site organizations

    International Nuclear Information System (INIS)

    The subject is discussed under the headings: introduction ('defence-in-depth' concept); accident assessment (prompt notification of off-site authorities); time factors associated with accidents leading to radiological releases off-site; radiological characteristics of releases; emergency communications; an adequate planning basis; training. (U.K.)

  20. Development of emergency response tools for accidental radiological contamination of French coastal areas.

    Science.gov (United States)

    Duffa, Céline; Bailly du Bois, Pascal; Caillaud, Matthieu; Charmasson, Sabine; Couvez, Céline; Didier, Damien; Dumas, Franck; Fievet, Bruno; Morillon, Mehdi; Renaud, Philippe; Thébault, Hervé

    2016-01-01

    The Fukushima nuclear accident resulted in the largest ever accidental release of artificial radionuclides in coastal waters. This accident has shown the importance of marine assessment capabilities for emergency response and the need to develop tools for adequately predicting the evolution and potential impact of radioactive releases to the marine environment. The French Institute for Radiological Protection and Nuclear Safety (IRSN) equips its emergency response centre with operational tools to assist experts and decision makers in the event of accidental atmospheric releases and contamination of the terrestrial environment. The on-going project aims to develop tools for the management of marine contamination events in French coastal areas. This should allow us to evaluate and anticipate post-accident conditions, including potential contamination sites, contamination levels and potential consequences. In order to achieve this goal, two complementary tools are developed: site-specific marine data sheets and a dedicated simulation tool (STERNE, Simulation du Transport et du transfert d'Eléments Radioactifs dans l'environNEment marin). Marine data sheets are used to summarize the marine environment characteristics of the various sites considered, and to identify vulnerable areas requiring implementation of population protection measures, such as aquaculture areas, beaches or industrial water intakes, as well as areas of major ecological interest. Local climatological data (dominant sea currents as a function of meteorological or tidal conditions) serving as the basis for an initial environmental sampling strategy is provided whenever possible, along with a list of possible local contacts for operational management purposes. The STERNE simulation tool is designed to predict radionuclide dispersion and contamination in seawater and marine species by incorporating spatio-temporal data. 3D hydrodynamic forecasts are used as input data. Direct discharge points or

  1. The Emergence of Ethic Banks and Social Responsibility in Financing Local Development

    OpenAIRE

    Teodora Barbu; Georgeta Vintila

    2007-01-01

    The evaluation of the present offer of banking products and services in the developed countries as well in the emerging ones shows the extent to which they fulfill or not the principles specific to social responsibility and ethics in economics. Considering heightened competition, some institutions adopt new strategies based on the creation of new concepts where human finality is to replace economical finality. Thus, banking ethics and social responsibility are concepts which are found at the ...

  2. Simulating Social Situations in Immersive Virtual Reality - A Study of Bystander Responses to Violent Emergencies

    OpenAIRE

    Rovira Perez, A.

    2016-01-01

    The goal of this research is to show how immersive virtual reality (IVR) can be used to study human responses to extreme emergencies in social situations. Participants interact realistically with animated virtual humans. We show this through experimental studies of bystander responses to a violent confrontation, and find that there are conditions under which people intervene to help virtual characters that are threatened. We go on to show that a reinforcement learning (RL) method can capture ...

  3. International Space Station Environmental Control and Life Support Emergency Response Verification for Node 1

    Science.gov (United States)

    Williams, David E.

    2008-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 Emergency Response capability, which includes nominal and off-nominal FDS operation, off nominal ACS operation, and off-nominal THC operation. These subsystems provide the capability to help aid the crew members during an emergency cabin depressurization, a toxic spill, or a fire. The paper will also provide a discussion of the detailed Node 1 ECLS Element Verification methodologies for operation of the Node 1 Emergency Response hardware operations utilized during the Qualification phase.

  4. The Umbra Simulation and Integration Framework Applied to Emergency Response Training

    Science.gov (United States)

    Hamilton, Paul Lawrence; Britain, Robert

    2010-01-01

    The Mine Emergency Response Interactive Training Simulation (MERITS) is intended to prepare personnel to manage an emergency in an underground coal mine. The creation of an effective training environment required realistic emergent behavior in response to simulation events and trainee interventions, exploratory modification of miner behavior rules, realistic physics, and incorporation of legacy code. It also required the ability to add rich media to the simulation without conflicting with normal desktop security settings. Our Umbra Simulation and Integration Framework facilitated agent-based modeling of miners and rescuers and made it possible to work with subject matter experts to quickly adjust behavior through script editing, rather than through lengthy programming and recompilation. Integration of Umbra code with the WebKit browser engine allowed the use of JavaScript-enabled local web pages for media support. This project greatly extended the capabilities of Umbra in support of training simulations and has implications for simulations that combine human behavior, physics, and rich media.

  5. The Fukushima Daiichi Accident. Technical Volume 3/5. Emergency Preparedness and Response

    International Nuclear Information System (INIS)

    This volume describes the key events and response actions from the onset of the accident at the Fukushima Daiichi nuclear power plant (NPP), operated by the Tokyo Electric Power Company (TEPCO), on 11 March 2011. It also describes the national emergency preparedness and response (EPR) system in place in Japan and the international EPR framework prior to the accident. It is divided into five sections. Section 3.1 describes the initial actions taken by Japan in response to the accident, involving: identification of the accident, notification of off-site authorities and activation of the response; mitigatory actions taken on-site; and initial off-site response. Section 3.2 describes the protective measures taken for personnel in response to the natural disaster, protection of emergency workers, medical management of emergency workers and the voluntary involvement of members of the public in the emergency response. Section 3.3 describes the protective actions and other response actions taken by Japan to protect the public. It addresses urgent and early protective actions; the use of a dose projection model, the System for Prediction of Environmental Emergency Dose Information (SPEEDI), as a basis for decisions on protective actions during the accident; environmental monitoring; provision of information to the public and international community; and issues related to international trade and waste management. Section 3.4 describes the transition from the emergency phase to the recovery phase. It also addresses the national analysis of the accident and the emergency response. Section 3.5 describes the response by the IAEA, other international organizations within the Inter- Agency Committee on Radiological and Nuclear Emergencies (IACRNE), the actions of IAEA Member States with regard to protective actions recommended to their nationals in Japan and the provision of international assistance. A summary, observations and lessons conclude each section. There are three

  6. METHODOLOGICAL APPROACHES TO THE ASSESSMENT LEVEL OF SOCIAL RESPONSIBILITY

    OpenAIRE

    Vorona, E.

    2010-01-01

    A study of current approaches to assessing the level of social responsibility. Proposed methodological approach to evaluating the performance of the social responsibility of railway transport. Conceptual Basis of social reporting in rail transport.

  7. Emergency Preparedness and Response in the School Setting--The Role of the School Nurse. Position Statement

    Science.gov (United States)

    Tuck, Christine M.; Haynie, Kathey; Davis, Catherine

    2014-01-01

    It is the position of the National Association of School Nurses (NASN) that the registered professional school nurse (hereinafter referred to as school nurse) provides leadership in all phases of emergency preparedness and response. School nurses are a vital part of the school team responsible for developing emergency response procedures for the…

  8. A data model for operational and situational information in emergency response: the Dutch case

    NARCIS (Netherlands)

    Zlatanova, S.; Dilo, A.

    2010-01-01

    During emergency response a lot of dynamic information is created and needs to be studied and analysed in the decision-making process. However, this analysis of data is difficult and often not possible. A major reason for this is that a lot of information coming from the field operations is not arch

  9. Safety regulation on emergency response and radiation protection in civilian nuclear installations

    International Nuclear Information System (INIS)

    To enhance the outer coordination on emergency response for nuclear accidents, the NNSA laid stress in 1999 on the control of radiation environment and re-evaluate the monitoring ability for Chinese radioactive environment, to establish a technical supporting organization, i.e., the Monitoring Center on Radioactive Environment, SEPA

  10. Work Scope for Developing Standards for Emergency Preparedness and Response: Fiscal Year 2004 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.

    2005-09-28

    Summarizes the fiscal year 2004 work completed on PNNL's Department of Homeland Security Emergency Preparedness and Response Standards Development Project. Also, the report includes key draft standards, in various stages of development and publication, that were associated with various tasks of the fiscal year 2004 scope of the project.

  11. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Youngen, G.

    1988-10-01

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant`s operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ``onsite`` response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world`s collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously.

  12. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    International Nuclear Information System (INIS)

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant's operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ''onsite'' response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world's collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously

  13. Emotional Intelligence in Library Disaster Response Assistance Teams: Which Competencies Emerged?

    Science.gov (United States)

    Wilkinson, Frances C.

    2015-01-01

    This qualitative study examines the relationship between emotional intelligence competencies and the personal attributes of library disaster response assistance team (DRAT) members. Using appreciative inquiry protocol to conduct interviews at two academic libraries, the study presents findings from emergent thematic coding of interview…

  14. WS-011: EPR-First Responders: Demonstration of a radiological emergency response

    International Nuclear Information System (INIS)

    The purpose of this working session is that the participant can apply their knowledge in a radiological emergency response as well as how to prevent potential contamination damage. The participants have to know how to respond in a radiological criminal scenario, the personal protection and the risks

  15. Experience Report: Constraint-Based Modelling and Simulation of Railway Emergency Response Plans

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Sandberg, Lene

    2016-01-01

    We report on experiences from a case study applying a constraint-based process-modelling and -simulation tool, dcrgraphs.net, to the modelling and rehearsal of railway emergency response plans with domain experts. The case study confirmed the approach as a viable means for domain experts to analy...... and security processes in the danish public transport sector and their dependency on ICT....

  16. NOAA's National Geodetic Survey Utilization of Aerial Sensors for Emergency Response Efforts

    Science.gov (United States)

    White, Stephen

    2007-01-01

    Remote Sensing Division has a Coastal Mapping program and a Airport Survey program and research and development that support both programs. NOAA/NGS/RSD plans to acquire remotely sensed data to support the agency's homeland security and emergency response requirements.

  17. Criteria for use in preparedness and response for a nuclear or radiological emergency. General safety guide

    International Nuclear Information System (INIS)

    In March 2002, the IAEA's Board of Governors approved a Safety Requirements publication, Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), jointly sponsored by seven international organizations, which establishes the requirements for an adequate level of preparedness for and response to a nuclear or radiological emergency in any State. The IAEA General Conference, in resolution GC(46)/RES/9, encouraged Member States 'to implement, if necessary, instruments for improving their own preparedness and response capabilities for nuclear and radiological incidents and accidents, including their arrangements for responding to acts involving the malicious use of nuclear or radioactive material and to threats of such acts', and further encouraged them to 'implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency'. The Convention on Early Notification of a Nuclear Accident ('the Early Notification Convention') and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency ('the Assistance Convention') (IAEA Legal Series No. 14), adopted in 1986, place specific obligations on the Parties and on the IAEA. Under Article 5a(ii) of the Assistance Convention, one function of the IAEA is to collect and disseminate to States Parties and Member States information concerning methodologies, techniques and available results of research relating to response to such emergencies. This Safety Guide is intended to assist Member States in the application of the Safety Requirements publication on Preparedness and Response for a Nuclear or Radiological Emergency (IAEA Safety Standards Series No. GS-R-2), and to help in the fulfilment of the IAEA's obligations under the Assistance Convention. It provides generic criteria for protective actions and other response actions in the case of a nuclear or radiological emergency, including numerical values of these criteria

  18. Developing Anticipatory Life Cycle Assessment Tools to Support Responsible Innovation

    Science.gov (United States)

    Wender, Benjamin

    Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA---building on the theory of anticipatory governance---as a series of methodological improvements that seek to align LCA practices with the objectives of RRI. Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and

  19. Epidemiology of Emergency Medical Services-Assessed Mass Casualty Incidents according to Causes

    OpenAIRE

    Park, Ju Ok; Shin, Sang Do; Song, Kyoung Jun; Hong, Kijeong; Kim, Jeong Eun

    2016-01-01

    To effectively mitigate and reduce the burden of mass casualty incidents (MCIs), preparedness measures should be based on MCIs’ epidemiological characteristics. This study aimed to describe the epidemiological characteristics and outcomes of emergency medical services (EMS)-assessed MCIs from multiple areas according to cause. Therefore, we extracted the records of all MCIs that involved ≥ 6 patients from an EMS database. All patients involved in EMS-assessed MCIs from six areas were eligible...

  20. Safety assessment of emergency electric power systems for nuclear power plants

    International Nuclear Information System (INIS)

    This paper is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing a given design of the Emergency Electrical Power System. Those non-electric power systems which may be used in a plant design to serve as emergency energy sources are addressed only in their general safety aspects. The paper thus relates closely to Safety Series 50-SG-D7 ''Emergency Power Systems at Nuclear Power Plants'' (1982), as far as it addresses emergency electric power systems. Several aspects are dealt with: the information the assessor may expect from the applicant to fulfill his task of safety review; the main questions the reviewer has to answer in order to determine the compliance with requirements of the NUSS documents; the national or international standards which give further guidance on a certain system or piece of equipment; comments and suggestions which may help to judge a variety of possible solutions

  1. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  2. A baseline assessment of emergency planning and preparedness in Italian universities.

    Science.gov (United States)

    Marincioni, Fausto; Fraboni, Rita

    2012-04-01

    Besides offering teaching and research services, schools and universities also must provide for the safety and security of their employees, students, and visitors. This paper describes emergency preparedness in a sample of Italian universities. In particular it examines risk perception within a specific professional category (university safety and security officers) in a specific cultural context (Italy). In addition, it discusses the transposition and implementation in a European Union (EU) member state of EU Council Directive 89/391/EEC of 12 June 1989, on the introduction of measures to encourage improvements in the safety and health of workers. The findings highlight heterogeneous and fragmented emergency management models within the Italian university system, underlining the need for a stricter framework of standardised safety protocols and emergency management guidelines. The study also points out that enhancing emergency planning and preparedness in Italian universities entails increasing safety leadership, employee engagement and individual responsibility for safety and security; essentially, it necessitates improving the culture of risk prevention.

  3. An Assessment of State Board of Pharmacy Legal Documents for Public Health Emergency Preparedness.

    Science.gov (United States)

    Ford, Heath; Trent, Shane; Wickizer, Stephen

    2016-03-25

    Objective. To estimate pharmaceutical emergency preparedness of US states and commonwealth territories. Methods. A quantitative content analysis was performed to evaluate board of pharmacy legal documents (ie, statutes, rules, and regulations) for the presence of the 2006 Rules for Public Health Emergencies (RPHE) from the National Association of Boards of Pharmacy's (NABP) Model Pharmacy Practice Act. Results. The median number of state-adopted RPHE was one, which was significantly less than the hypothesized value of four. Rule Two, which recommended policies and procedures for reporting disasters, was adopted significantly more than other RPHE. Ten states incorporated language specific to public health emergency refill dispensing, and among these, only six allowed 30-day refill quantities. Conclusion. Based on the 2006 NABP model rules, it does not appear that states are prepared to expedite an effective pharmaceutical response during a public health emergency. Boards of pharmacy should consider adding the eight RPHE to their state pharmacy practice acts. PMID:27073273

  4. Emerging Theoretical Models of Reading through Authentic Assessments among Preservice Teachers: Two Case Studies

    Science.gov (United States)

    Oboler, Eileen S.; Gupta, Abha

    2010-01-01

    This two-part study examines the emerging understanding of the reading process among preservice teachers (PTs), enrolled in a teacher preparation course on diagnostic reading. The study focuses on the use of reading assessment tools to understand the process of reading, while using reading inventories for diagnostic as well as pedagogical…

  5. Information and Communications Technology (ICT) in Nigeria Educational Assessment System--Emerging Challenges

    Science.gov (United States)

    Aworanti, Olatunde Awotokun

    2016-01-01

    This paper examines Information and Communications Technology (ICT) in Nigeria educational assessment system with its emerging challenges. This is inevitable following the globalisation trend which has brought drastic changes in the world of technology. The essence of the paper is to describe the present status of ICT in the Nigeria educational…

  6. Assessing Psychosocial Impairment in the Pediatric Emergency Department: Child/Caregiver Concordance

    Science.gov (United States)

    Montano, Zorash; Mahrer, Nicole E.; Nager, Alan L.; Claudius, Ilene; Gold, Jeffrey I.

    2011-01-01

    The objective of this study was to examine the level of agreement between child- and caregiver-reports of the child's psychosocial problems presenting to a Pediatric Emergency Department (PED) using a validated screening tool. This was an anonymous, prospective, cross-sectional, multi-informant (child and caregiver) study assessing cognitive,…

  7. Dose assessment and approach to the safety for the public in the emergency. Proceedings

    International Nuclear Information System (INIS)

    This issue is the collection of the papers presented at the 21st NIRS seminar on Dose Assessment and Approach to the Safety for the Public in the Emergency. The 16 of the presented papers are indexed individually. (J.P.N.)

  8. Safeguarding production agriculture and natural ecosystems against biological terrorism. A U.S. Department of Agriculture emergency response framework.

    Science.gov (United States)

    Sequeira, R

    1999-01-01

    Foreign pest introductions and outbreaks represent threats to agricultural productivity and ecosystems, and, thus, to the health and national security of the United States. It is advisable to identify relevant techniques and bring all appropriate strategies to bear on the problem of controlling accidentally and intentionally introduced pest outbreaks. Recent political shifts indicate that the U.S. may be at increased risk for biological terrorism. The existing emergency-response strategies of the Animal and Plant Health Inspection Services (APHIS) will evolve to expand activities in coordination with other emergency management agencies. APHIS will evolve its information superstructure to include extensive application of simulation models for forecasting, meteorological databases and analysis, systems analysis, geographic information systems, satellite image analysis, remote sensing, and the training of specialized cadres within the emergency-response framework capable of managing the necessary information processing and analysis. Finally, the threat of key pests ranked according to perceived risk will be assessed with mathematical models and "what-if" scenarios analyzed to determine impact and mitigation practices. An infrastructure will be maintained that periodically surveys ports and inland regions for the presence of exotic pest threats and will identify trend abnormalities. This survey and monitoring effort will include cooperation from industry groups, federal and state organizations, and academic institutions. PMID:10681969

  9. Preparing for the worst : Calgary startup brings emergency response into the digital age

    International Nuclear Information System (INIS)

    The potential danger of blowouts and oil spills is present in areas with high concentration of energy facilities and infrastructure. Ensuring that all possible measures have been taken to alert residents as early as possible is one way to alleviate fears of well blowouts, gas processing plant leaks, pipeline failures, or refinery or upgrader explosions. This article presented the GeoAlert, a high technology solution developed by Cell Bridge Communications Corporation to bring emergency response into the modern communications era. The features, benefits, and applications of GeoAlert were described. The program is a web-based emergency notification geographic information system application, that created a digital audit trail, and served as an internal communications and training platform, and had the potential to eliminate duplication among oil companies with overlapping jurisdictions. The system enabled companies to program emergency zones based on precise geographical co-ordinates and to use the system to proactively manage emergency response. It was concluded that the most visually striking feature of GeoAlert is its three-dimensional satellite mapping technology, which could display plumes as a purple-coloured initial isolation zone laid over designated emergency planning zones, moving in real-time while automatically identifying who should be notified and when. 1 fig.

  10. A study on HCI design strategy using emergent features and response time

    International Nuclear Information System (INIS)

    Existing design process of user interface has some weak point that there is no feedback information and no quantitative information between each sub process. If they're such information in design process, the design time cycle will be decreased and the contentment of HCI in the aspect of user will be more easily archived. In this study, new design process with feedback information and quantitative information was proposed using emergent features and user response time. The proposed methodology was put together with three main parts. First part is to calculate distinctiveness of a user interface or expanded user interface with consideration of emergent features. Second part is to expand a prototype user interface with design option for purpose of design requirement using directed structure graph (or nodal graph) theory. Last part is to convert non-realized value, distinctiveness, into realized value, response time, by response time database or response time correlation in the form of Hick-Hyman law equation. From the present validations, the usefulness of the proposed methodology was obtained by simple validation testing. It was found that emergent features should be improved for high reflection of real user interface. For the reliability of response time database, lots of end-user experiment is necessary. Expansion algorithm and representation technique of qualitative information should be somewhat improved for more efficient design process

  11. Rapid response seismic networks in Europe: lessons learnt from the L'Aquila earthquake emergency

    Directory of Open Access Journals (Sweden)

    Angelo Strollo

    2011-08-01

    Full Text Available

    The largest dataset ever recorded during a normal fault seismic sequence was acquired during the 2009 seismic emergency triggered by the damaging earthquake in L'Aquila (Italy. This was possible through the coordination of different rapid-response seismic networks in Italy, France and Germany. A seismic network of more than 60 stations recorded up to 70,000 earthquakes. Here, we describe the different open-data archives where it is possible to find this unique set of data for studies related to hazard, seismotectonics and earthquake physics. Moreover, we briefly describe some immediate and direct applications of emergency seismic networks. At the same time, we note the absence of communication platforms between the different European networks. Rapid-response networks need to agree on common strategies for network operations. Hopefully, over the next few years, the European Rapid-Response Seismic Network will became a reality.

  12. Objective versus Subjective Assessment of Methylphenidate Response

    Science.gov (United States)

    Manor, Iris; Meidad, Sheera; Zalsman, Gil; Zemishlany, Zvi; Tyano, Sam; Weizman, Abraham

    2008-01-01

    Subjective improvement-assessment in attention deficit/hyperactivity disorder (ADHD), following a single dose of methylphenidate (MPH) was compared to performance on the Test-of-Variables-of-Attention (TOVA). Self-perception was assessed with the clinical-global-impression-of-change (CGI-C). Participants included 165 ADHD subjects (M:F ratio…

  13. Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control.

    Science.gov (United States)

    Liang, Guodong; Gao, Xiaoyan; Gould, Ernest A

    2015-03-01

    Slave trading of Africans to the Americas, during the 16th to the 19th century was responsible for the first recorded emergence in the New World of two arthropod-borne viruses (arboviruses), yellow fever virus and dengue virus. Many other arboviruses have since emerged from their sylvatic reservoirs and dispersed globally due to evolving factors that include anthropological behaviour, commercial transportation and land-remediation. Here, we outline some characteristics of these highly divergent arboviruses, including the variety of life cycles they have developed and the mechanisms by which they have adapted to evolving changes in habitat and host availability. We cite recent examples of virus emergence that exemplify how arboviruses have exploited the consequences of the modern human lifestyle. Using our current understanding of these viruses, we also attempt to demonstrate some of the limitations encountered in developing control strategies to reduce the impact of future emerging arbovirus diseases. Finally, we present recommendations for development by an international panel of experts reporting directly to World Health Organization, with the intention of providing internationally acceptable guidelines for improving emerging arbovirus disease control strategies. Success in these aims should alleviate the suffering and costs encountered during recent decades when arboviruses have emerged from their sylvatic environment.

  14. Report to Congress on status of emergency response planning for nuclear power plants

    International Nuclear Information System (INIS)

    This report responds to a request (Public Law 96-295, Section 109) for the Nuclear Regulatory Commission (NRC) to report to Congress on the status of emergency response planning in support of nuclear power reactors. The report includes information on the status of this planning as well as on the Commission actions relating to emergency preparedness. These actions include a summary of the new regulatory requirements and the preliminary results of two comprehensive Evacuation Time Estimate studies; one requested by the NRC including 50 nuclear power plant sites and one conducted by the Federal Emergency Management Agency (FEMA) for 12 high population density sites. FEMA provided the information in this report on the status of State and local planning, including projected schedules for joint State/county/licensee emergency preparedness exercises. Included as Appendicies are the NRC Emergency Planning Final Regulations, 10 CFR Part 50 (45 FR 55402), the FEMA Proposed Rule, 'Review and Approval of State and Local Radiological Emergency Plans and Preparedness', 44 CFR Part 350 (45 FR 42341) and the NRC/FEMA Memorandums of Understanding

  15. The Emergence of Ethic Banks and Social Responsibility in Financing Local Development

    Directory of Open Access Journals (Sweden)

    Teodora Barbu

    2007-12-01

    Full Text Available The evaluation of the present offer of banking products and services in the developed countries as well in the emerging ones shows the extent to which they fulfill or not the principles specific to social responsibility and ethics in economics. Considering heightened competition, some institutions adopt new strategies based on the creation of new concepts where human finality is to replace economical finality. Thus, banking ethics and social responsibility are concepts which are found at the level of credit cooperative and ethical banks. Oriented mainly towards rural financing and financing social responsible projects, within the study, the two approaches complete and sustain each other.

  16. Resource conflict detection and removal strategy for nondeterministic emergency response processes using Petri nets

    Science.gov (United States)

    Zeng, Qingtian; Liu, Cong; Duan, Hua

    2016-09-01

    Correctness of an emergency response process specification is critical to emergency mission success. Therefore, errors in the specification should be detected and corrected at build-time. In this paper, we propose a resource conflict detection approach and removal strategy for emergency response processes constrained by resources and time. In this kind of emergency response process, there are two timing functions representing the minimum and maximum execution time for each activity, respectively, and many activities require resources to be executed. Based on the RT_ERP_Net, the earliest time to start each activity and the ideal execution time of the process can be obtained. To detect and remove the resource conflicts in the process, the conflict detection algorithms and a priority-activity-first resolution strategy are given. In this way, real execution time for each activity is obtained and a conflict-free RT_ERP_Net is constructed by adding virtual activities. By experiments, it is proved that the resolution strategy proposed can shorten the execution time of the whole process to a great degree.

  17. Oil and Gas Security. Emergency Response of IEA Countries - Portugal 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Portugal for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  18. Oil and Gas Security. Emergency Response of IEA Countries - Spain 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Spain for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  19. Oil and Gas Security. Emergency Response of IEA Countries - Greece 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Greece for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  20. Oil and Gas Security. Emergency Response of IEA Countries - Belgium 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Belgium for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  1. Oil and Gas Security. Emergency Response of IEA Countries - Czech Republic 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Czech Republic for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  2. Oil and Gas Security. Emergency Response of IEA Countries - Slovak Republic 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Slovak Republic for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  3. Oil and Gas Security. Emergency Response of IEA Countries - Italy 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Italy for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  4. Oil and Gas Security. Emergency Response of IEA Countries - Canada 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in Canada for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  5. Oil and Gas Security. Emergency Response of IEA Countries - New Zealand 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in New Zealand for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  6. Oil and Gas Security. Emergency Response of IEA Countries - Poland 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Poland for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  7. Oil and Gas Security. Emergency Response of IEA Countries - Denmark 2011 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    This publication provides a detailed look at the specific systems in Denmark for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  8. Oil and Gas Security. Emergency Response of IEA Countries - United Kingdom 2010 update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This publication provides a detailed look at the specific systems in United Kingdom for responding to an oil supply crisis. Initially prepared as a chapter in the overarching publication on the emergency response mechanisms in various IEA member countries, the IEA has started a new cycle of reviews which now includes reviewing gas emergency policies. Rather than waiting for the completion of the current review cycle to renew the full larger publication, the IEA will be making available updates to the country chapters as these become available following the country's review.

  9. Web-based emergency response exercise management systems and methods thereof

    Science.gov (United States)

    Goforth, John W.; Mercer, Michael B.; Heath, Zach; Yang, Lynn I.

    2014-09-09

    According to one embodiment, a method for simulating portions of an emergency response exercise includes generating situational awareness outputs associated with a simulated emergency and sending the situational awareness outputs to a plurality of output devices. Also, the method includes outputting to a user device a plurality of decisions associated with the situational awareness outputs at a decision point, receiving a selection of one of the decisions from the user device, generating new situational awareness outputs based on the selected decision, and repeating the sending, outputting and receiving steps based on the new situational awareness outputs. Other methods, systems, and computer program products are included according to other embodiments of the invention.

  10. Responsible chain management: a capability assessment framework

    NARCIS (Netherlands)

    Bakker, de Frank; Nijhof, André

    2002-01-01

    In recent years, increased attention has been paid to issues of responsibility across the entire product lifecycle. Responsible behaviour of organizations in the product chain is dependent on the actions of other parties such as suppliers and customers. Only through co-operation and close interactio

  11. Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies.

    Science.gov (United States)

    Sharp, Benjamin E; Miller, Shelie A

    2016-03-15

    Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts. Diffusion of innovation is an established field of research that analyzes the adoption of new innovations, and its principles can be used to construct scenario models that enhance LCA of emerging technologies. Integrating diffusion modeling techniques with an LCA of emerging technology can provide estimates for the extent of market penetration, the displacement of existing systems, and the rate of adoption. Two general perspectives of application are macro-level diffusion models that use a function of time to represent adoption, and microlevel diffusion models that simulate adoption through interactions of individuals. Incorporating diffusion of innovation concepts complement existing methods within LCA to inform proactive environmental management of emerging technologies. PMID:26820700

  12. Emergency preparedness hazards assessment for the Concentrate, Storage and Transfer Facility

    International Nuclear Information System (INIS)

    This report documents this facility Emergency Preparedness Hazards Assessment (EPHA) for the Concentrate, Storage and Transfer Facility (CSTF) located on the Department of Energy (DOE) Savannah River Site (SRS). The CSTF encompasses the F-Area and the H-Area Tank Farms including the Replacement High Level Waste Evaporator (RHLWE) (3H evaporator) as a segment of the H-Area Tank Farm. This EPHA is intended to identify and analyze those hazards that are significant enough to warrant consideration in the tank farm operational emergency management programs

  13. New tools for emergency managers: an assessment of obstacles to use and implementation.

    Science.gov (United States)

    McCormick, Sabrina

    2016-04-01

    This paper focuses on the role of the formal response community's use of social media and crowdsourcing for emergency managers (EMs) in disaster planning, response and recovery in the United States. In-depth qualitative interviews with EMs on the Eastern seaboard at the local, state and federal level demonstrate that emergency management tools are in a state of transition--from formal, internally regulated tools for crisis response to an incorporation of new social media and crowdsourcing tools. The first set of findings provides insight into why many EMs are not using social media, and describes their concerns that result in fear, uncertainty and doubt. Second, this research demonstrates how internal functioning and staffing issues within these agencies present challenges. This research seeks to examine the dynamics of this transition and offer lessons for how to improve its outcomes--critical to millions of people across the United States. PMID:26281801

  14. Dangerous quantities of radioactive material (D-values). Emergency preparedness and response. Publication date: August 2006

    International Nuclear Information System (INIS)

    Radioactive material is widely used in industry, medicine, education and agriculture. In addition, it occurs naturally. The health risk posed by these materials vary widely depending on many factors, the most important of which are the amount of the material involved and its physical and chemical form. Therefore, there is a need to identify the quantity and type of radioactive material for which emergency preparedness and other arrangements (e.g. security) are warrant due to the health risk they pose. The aim of this publication is to provide practical guidance for Member States on that quantity of radioactive material that may be considered dangerous. A dangerous quantity is that, which if uncontrolled, could be involved in a reasonable scenario resulting in the death of an exposed individual or a permanent injury, which decreases that person's quality of life. This publication is published as part of the IAEA Emergency Preparedness and Response Series. It supports several publications including: the IAEA Safety Requirements 'Preparedness and Response for a Nuclear or Radiological Emergency', IAEA Safety Standards Series No. GS-R-2. IAEA, Vienna (2002); IAEA Safety Guide 'Categorization of Radioactive Sources', IAEA Safety Standards Series No RS-G-1.9, IAEA, Vienna (2005) and IAEA Safety Guide 'Arrangements for Preparedness for a Nuclear or Radiological Emergency' IAEA Safety Standards Series No. GS-G-2.1, IAEA, Vienna (2006). The procedures and data in this publication have been prepared with due attention to accuracy. However, as part of the review process, they undergo ongoing quality assurance checks. Comments are welcome and, following a period that will allow for a more extensive review, the IAEA may revise this publication as part of the process of continuous improvement. The publication uses a number of exposure scenarios, risk models and dosimetric data, which could be used during the response to nuclear or radiological emergency or other purposes

  15. Training for the medical response in radiological emergency experiences and results

    International Nuclear Information System (INIS)

    The use of the nuclear techniques int he social practice confers a special imporatnce to the relative aspects to the safety of the practices and radiationsources, for what the implementation of efficient programs of radiation protection constitutes a priority. However in spite of the will before expressed, regrettably radiological situations happen accidental assocaited to multiple causes taht suggest the creation of response capacities to intervention before these fortuitous facts. The experiences accumulated in the last decades related with accidental exposures have evidenced the convenience of having properly qualified human resources for the Medical Response in Radiological Emergencies. The training in the medical aspects of the radiological emergencies acquires a singular character. In such a sense when valuing the national situation put onof manifest deficiences as for the training in medical aspects of the radiological emergencies that advised the development of training programs in such aspects for the different response groups linked to the topic. After identified the training necessities and the scope of the same ones, the contents of the training program were elaborated. The program has as general purpose the invigoration of the capacity of the medical response in front of accidental radiological situations, by means of actions that they bear to prepare groups of medical response in the handling of people accident victims and to the identification of potentials,accidental scenarios, as well as of the necessary resources to confront them. The program content approaches theoretical and paractical aspects to the medical aspect to radiological emergencies. The program include the different topics about fundamental of physical biological to radiation protection, radiation protection during exposure of radiological accidents, medical care for overexposed or contaminated persons, drill, exercises and concludes with designation of a strategy as preparation and

  16. Assessment of a Chief Complaint–Based Curriculum for Resident Education in Geriatric Emergency Medicine

    Directory of Open Access Journals (Sweden)

    Robert L Muelleman

    2011-05-01

    Full Text Available Introduction: We hypothesized that a geriatric chief complaint–based didactic curriculum would improve resident documentation of elderly patient care in the emergency department (ED. Methods: A geriatric chief complaint curriculum addressing the 3 most common chief complaints—abdominal pain, weakness, and falls—was developed and presented. A pre- and postcurriculum implementation chart review assessed resident documentation of the 5 components of geriatric ED care: 1 differential diagnosis/patient evaluation considering atypical presentations, 2 determination of baseline function, 3 chronic care facility/caregiver communication, 4 cognitive assessment, and 5 assessment of polypharmacy. A single reviewer assessed 5 pre- and 5 postimplementation charts for each of 18 residents included in the study. We calculated 95% confidence and determined that statistical significance was determined by a 2-tailed z test for 2 proportions, with statistical significance at 0.003 by Bonferroni correction. Results: For falls, resident documentation improved significantly for 1 of 5 measures. For abdominal pain, 2 of 5 components improved. For weakness, 3 of 5 components improved. Conclusion: A geriatric chief complaint–based curriculum improved emergency medicine resident documentation for the care of elderly patients in the ED compared with a non–age-specific chief complaint–based curriculum. [West J Emerg Med. 2011;12(4:484–488.

  17. Response of vetch, lentil, chickpea and red pea to pre- or post-emergence applied herbicides

    Directory of Open Access Journals (Sweden)

    I. Vasilakoglou

    2013-09-01

    Full Text Available Broad-leaved weeds constitute a serious problem in the production of winter legumes, but few selective herbicides controlling these weeds have been registered in Europe. Four field experiments were conducted in 2009/10 and repeated in 2010/11 in Greece to study the response of common vetch (Vicia sativa L., lentil (Lens culinaris Medik., chickpea (Cicer arietinum L. and red pea (Lathyrus cicera L. to several rates of the herbicides pendimethalin, S-metolachlor, S-metolachlor plus terbuthylazine and flumioxazin applied pre-emergence, as well as imazamox applied post-emergence. Phytotoxicity, crop height, total weight and seed yield were evaluated during the experiments. The results of this study suggest that common vetch, lentil, chickpea and red pea differed in their responses to the herbicides tested. Pendimethalin at 1.30 kg ha-1, S-metolachlor at 0.96 kg ha-1 and flumioxazine at 0.11 kg ha-1 used as pre-emergence applied herbicides provided the least phytotoxicity to legumes. Pendimethalin at 1.98 kg ha-1 and both rates of S-metolachlor plus terbuthylazine provided the greatest common lambsquarters (Chenopodium album L. control. Imazamox at 0.03 to 0.04 kg ha-1 could also be used as early post-emergence applied herbicide in common vetch and red pea without any significant detrimental effect.

  18. Emergency assessment of postwildfire debris-flow hazards for the 2011 Motor Fire, Sierra and Stanislaus National Forests, California

    Science.gov (United States)

    Cannon, Susan H.; Michael, John A.

    2011-01-01

    This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2011 Motor fire in the Sierra and Stanislaus National Forests, Calif. Statistical-empirical models are used to estimate the probability and volume of debris flows that may be produced from burned drainage basins as a function of different measures of basin burned extent, gradient, and soil physical properties, and in response to a 30-minute-duration, 10-year-recurrence rainstorm. Debris-flow probability and volume estimates are then combined to form a relative hazard ranking for each basin. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two years following the fire.

  19. "Hits" emerge through self-organized coordination in collective response of free agents

    Science.gov (United States)

    Chakrabarti, Anindya S.; Sinha, Sitabhra

    2016-10-01

    Individuals in free societies frequently exhibit striking coordination when making independent decisions en masse. Examples include the regular appearance of hit products or memes with substantially higher popularity compared to their otherwise equivalent competitors or extreme polarization in public opinion. Such segregation of events manifests as bimodality in the distribution of collective choices. Here we quantify how apparently independent choices made by individuals result in a significantly polarized but stable distribution of success in the context of the box-office performance of movies and show that it is an emergent feature of a system of noninteracting agents who respond to sequentially arriving signals. The aggregate response exhibits extreme variability amplifying much smaller differences in individual cost of adoption. Due to self-organization of the competitive landscape, most events elicit only a muted response but a few stimulate widespread adoption, emerging as "hits".

  20. Development of a virtual reality training system. An application to emergency response in radioactive materials transport

    International Nuclear Information System (INIS)

    A virtual reality (VR) training system was developed for the purpose of confirming the applicability of virtual reality on training systems for emergency response of radioactive materials transport. This system has following features; 1) Accident scenarios were derived from an event tree analysis. 2) Instructors can edit the training scenario. 3) Three VR scenes were prepared: vehicle and equipment checks, vehicle travel on an expressway, and emergency response in a tunnel fire accident. 4) every action by users is recorded automatically. 5) Instructors and users hold briefing session after the training, and they can review and confirm the results with VR animation. 6) A support database is provided for the convenience of users. The applicability of the system was validated through some trial applications and demonstrations. (author)