WorldWideScience

Sample records for assessing phylogenetic motif

  1. MINER: software for phylogenetic motif identification

    OpenAIRE

    La, David; Livesay, Dennis R.

    2005-01-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at . ...

  2. MINER: software for phylogenetic motif identification.

    Science.gov (United States)

    La, David; Livesay, Dennis R

    2005-07-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at http://www.pmap.csupomona.edu/MINER/. Source code is available to the academic community on request.

  3. Assessment of composite motif discovery methods

    Directory of Open Access Journals (Sweden)

    Johansen Jostein

    2008-02-01

    Full Text Available Abstract Background Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery – discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. Results We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Conclusion Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual

  4. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    Science.gov (United States)

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  5. Intergenic regions of Borrelia plasmids contain phylogenetically conserved RNA secondary structure motifs

    Directory of Open Access Journals (Sweden)

    Delihas Nicholas

    2009-03-01

    Full Text Available Abstract Background Borrelia species are unusual in that they contain a large number of linear and circular plasmids. Many of these plasmids have long intergenic regions. These regions have many fragmented genes, repeated sequences and appear to be in a state of flux, but they may serve as reservoirs for evolutionary change and/or maintain stable motifs such as small RNA genes. Results In an in silico study, intergenic regions of Borrelia plasmids were scanned for phylogenetically conserved stem loop structures that may represent functional units at the RNA level. Five repeat sequences were found that could fold into stable RNA-type stem loop structures, three of which are closely linked to protein genes, one of which is a member of the Borrelia lipoprotein_1 super family genes and another is the complement regulator-acquiring surface protein_1 (CRASP-1 family. Modeled secondary structures of repeat sequences display numerous base-pair compensatory changes in stem regions, including C-G→A-U transversions when orthologous sequences are compared. Base-pair compensatory changes constitute strong evidence for phylogenetic conservation of secondary structure. Conclusion Intergenic regions of Borrelia species carry evolutionarily stable RNA secondary structure motifs. Of major interest is that some motifs are associated with protein genes that show large sequence variability. The cell may conserve these RNA motifs whereas allow a large flux in amino acid sequence, possibly to create new virulence factors but with associated RNA motifs intact.

  6. Type 2 diabetes mellitus: phylogenetic motifs for predicting protein functional sites

    Indian Academy of Sciences (India)

    Ashok Sharma; Tanuja Rastogi; Meenakshi Bhartiya; A K Shasany; S P S Khanuja

    2007-08-01

    Diabetes mellitus, commonly referred to as diabetes, is a medical condition associated with abnormally high levels of glucose (or sugar) in the blood. Keeping this view, we demonstrate the phylogenetic motifs (PMs) identification in type 2 diabetes mellitus very likely corresponding to protein functional sites. In this article, we have identified PMs for all the candidate genes for type 2 diabetes mellitus. Glycine 310 remains conserved for glucokinase and potassium channel KCNJ11. Isoleucine 137 was conserved for insulin receptor and regulatory subunit of a phosphorylating enzyme. Whereas residues valine, leucine, methionine were highly conserved for insulin receptor. Occurrence of proline was very high for calpain 10 gene and glucose transporter

  7. Assessing the Exceptionality of Coloured Motifs in Networks

    Directory of Open Access Journals (Sweden)

    Lacroix Vincent

    2009-01-01

    Full Text Available Various methods have been recently employed to characterise the structure of biological networks. In particular, the concept of network motif and the related one of coloured motif have proven useful to model the notion of a functional/evolutionary building block. However, algorithms that enumerate all the motifs of a network may produce a very large output, and methods to decide which motifs should be selected for downstream analysis are needed. A widely used method is to assess if the motif is exceptional, that is, over- or under-represented with respect to a null hypothesis. Much effort has been put in the last thirty years to derive -values for the frequencies of topological motifs, that is, fixed subgraphs. They rely either on (compound Poisson and Gaussian approximations for the motif count distribution in Erdös-Rényi random graphs or on simulations in other models. We focus on a different definition of graph motifs that corresponds to coloured motifs. A coloured motif is a connected subgraph with fixed vertex colours but unspecified topology. Our work is the first analytical attempt to assess the exceptionality of coloured motifs in networks without any simulation. We first establish analytical formulae for the mean and the variance of the count of a coloured motif in an Erdös-Rényi random graph model. Using simulations under this model, we further show that a Pólya-Aeppli distribution better approximates the distribution of the motif count compared to Gaussian or Poisson distributions. The Pólya-Aeppli distribution, and more generally the compound Poisson distributions, are indeed well designed to model counts of clumping events. Altogether, these results enable to derive a -value for a coloured motif, without spending time on simulations.

  8. Genome-wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and Viruses: its distribution, characteristic motif, and phylogenetic relationship.

    Science.gov (United States)

    Bai, Lina; Xie, Ting; Hu, Qingqing; Deng, Changyan; Zheng, Rong; Chen, Wanping

    2015-10-01

    Ferritins are highly conserved proteins that are widely distributed in various species from archaea to humans. The ubiquitous characteristic of these proteins reflects the pivotal contribution of ferritins to the safe storage and timely delivery of iron to achieve iron homeostasis. This study investigated the ferritin genes in 248 genomes from various species, including viruses, archaea, bacteria, and eukarya. The distribution comparison suggests that mammals and eudicots possess abundant ferritin genes, whereas fungi contain very few ferritin genes. Archaea and bacteria show considerable numbers of ferritin genes. Generally, prokaryotes possess three types of ferritin (the typical ferritin, bacterioferritin, and DNA-binding protein from starved cell), whereas eukaryotes have various subunit types of ferritin, thereby indicating the individuation of the ferritin family during evolution. The characteristic motif analysis of ferritins suggested that all key residues specifying the unique structural motifs of ferritin are highly conserved across three domains of life. Meanwhile, the characteristic motifs were also distinguishable between ferritin groups, especially phytoferritins, which show a plant-specific motif. The phylogenetic analyses show that ferritins within the same subfamily or subunits are generally clustered together. The phylogenetic relationships among ferritin members suggest that both gene duplication and horizontal transfer contribute to the wide variety of ferritins, and their possible evolutionary scenario was also proposed. The results contribute to a better understanding of the distribution, characteristic motif, and evolutionary relationship of the ferritin family.

  9. Genome-wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and Viruses: its distribution, characteristic motif, and phylogenetic relationship

    Science.gov (United States)

    Bai, Lina; Xie, Ting; Hu, Qingqing; Deng, Changyan; Zheng, Rong; Chen, Wanping

    2015-10-01

    Ferritins are highly conserved proteins that are widely distributed in various species from archaea to humans. The ubiquitous characteristic of these proteins reflects the pivotal contribution of ferritins to the safe storage and timely delivery of iron to achieve iron homeostasis. This study investigated the ferritin genes in 248 genomes from various species, including viruses, archaea, bacteria, and eukarya. The distribution comparison suggests that mammals and eudicots possess abundant ferritin genes, whereas fungi contain very few ferritin genes. Archaea and bacteria show considerable numbers of ferritin genes. Generally, prokaryotes possess three types of ferritin (the typical ferritin, bacterioferritin, and DNA-binding protein from starved cell), whereas eukaryotes have various subunit types of ferritin, thereby indicating the individuation of the ferritin family during evolution. The characteristic motif analysis of ferritins suggested that all key residues specifying the unique structural motifs of ferritin are highly conserved across three domains of life. Meanwhile, the characteristic motifs were also distinguishable between ferritin groups, especially phytoferritins, which show a plant-specific motif. The phylogenetic analyses show that ferritins within the same subfamily or subunits are generally clustered together. The phylogenetic relationships among ferritin members suggest that both gene duplication and horizontal transfer contribute to the wide variety of ferritins, and their possible evolutionary scenario was also proposed. The results contribute to a better understanding of the distribution, characteristic motif, and evolutionary relationship of the ferritin family.

  10. SUMAC: Constructing Phylogenetic Supermatrices and Assessing Partially Decisive Taxon Coverage

    OpenAIRE

    William A. Freyman

    2015-01-01

    The amount of phylogenetically informative sequence data in GenBank is growing at an exponential rate, and large phylogenetic trees are increasingly used in research. Tools are needed to construct phylogenetic sequence matrices from GenBank data and evaluate the effect of missing data. Supermatrix Constructor (SUMAC) is a tool to data-mine GenBank, construct phylogenetic supermatrices, and assess the phylogenetic decisiveness of a matrix given the pattern of missing sequence data. SUMAC calcu...

  11. Molecular Detection, Phylogenetic Analysis, and Identification of Transcription Motifs in Feline Leukemia Virus from Naturally Infected Cats in Malaysia

    Directory of Open Access Journals (Sweden)

    Faruku Bande

    2014-01-01

    Full Text Available A nested PCR assay was used to determine the viral RNA and proviral DNA status of naturally infected cats. Selected samples that were FeLV-positive by PCR were subjected to sequencing, phylogenetic analysis, and motifs search. Of the 39 samples that were positive for FeLV p27 antigen, 87.2% (34/39 were confirmed positive with nested PCR. FeLV proviral DNA was detected in 38 (97.3% of p27-antigen negative samples. Malaysian FeLV isolates are found to be highly similar with a homology of 91% to 100%. Phylogenetic analysis revealed that Malaysian FeLV isolates divided into two clusters, with a majority (86.2% sharing similarity with FeLV-K01803 and fewer isolates (13.8% with FeLV-GM1 strain. Different enhancer motifs including NF-GMa, Krox-20/WT1I-del2, BAF1, AP-2, TBP, TFIIF-beta, TRF, and TFIID are found to occur either in single, duplicate, triplicate, or sets of 5 in different positions within the U3-LTR-gag region. The present result confirms the occurrence of FeLV viral RNA and provirus DNA in naturally infected cats. Malaysian FeLV isolates are highly similar, and a majority of them are closely related to a UK isolate. This study provides the first molecular based information on FeLV in Malaysia. Additionally, different enhancer motifs likely associated with FeLV related pathogenesis have been identified.

  12. Phylogenetic biodiversity assessment based on systematic nomenclature

    Directory of Open Access Journals (Sweden)

    Paul-Michael Agapow

    2005-01-01

    Full Text Available Biodiversity assessment demands objective measures, because ultimately conservation decisions must prioritize the use of limited resources for preserving taxa. The most general framework for the objective assessment of conservation worth are those that assess evolutionary distinctiveness, e.g. Genetic (Crozier 1992 and Phylogenetic Diversity (Faith 1992, and Evolutionary History (Nee & May 1997. These measures all attempt to assess the conservation worth of any scheme based on how much of the encompassing phylogeny of organisms is preserved. However, their general applicability is limited by the small proportion of taxa that have been reliably placed in a phylogeny. Given that phylogenizaton of many interesting taxa or important is unlikely to occur soon, we present a framework for using taxonomy as a reasonable surrogate for phylogeny. Combining this framework with exhaustive searches for combinations of sites containing maximal diversity, we provide a proof-of-concept for assessing conservation schemes for systematized but un-phylogenised taxa spread over a series of sites. This is illustrated with data from four studies, on North Queensland flightless insects (Yeates et al. 2002, ants from a Florida Transect (Lubertazzi & Tschinkel 2003, New England bog ants (Gotelli & Ellison 2002 and a simulated distribution of the known New Zealand Lepidosauria (Daugherty et al. 1994. The results support this approach, indicating that species, genus and site numbers predict evolutionary history, to a degree depending on the size of the data set.

  13. Phylogenetic biodiversity assessment based on systematic nomenclature

    Directory of Open Access Journals (Sweden)

    Ross H Crozier

    2006-01-01

    Full Text Available Biodiversity assessment demands objective measures, because ultimately conservation decisions must prioritize the use of limited resources for preserving taxa. The most general framework for the objective assessment of conservation worth are those that assess evolutionary distinctiveness, e.g. Genetic (Crozier 1992 and Phylogenetic Diversity (Faith 1992, and Evolutionary History (Nee & May 1997. These measures all attempt to assess the conservation worth of any scheme based on how much of the encompassing phylogeny of organisms is preserved. However, their general applicability is limited by the small proportion of taxa that have been reliably placed in a phylogeny. Given that phylogenizaton of many interesting taxa or important is unlikely to occur soon, we present a framework for using taxonomy as a reasonable surrogate for phylogeny. Combining this framework with exhaustive searches for combinations of sites containing maximal diversity, we provide a proof-of-concept for assessing conservation schemes for systematized but un-phylogenised taxa spread over a series of sites. This is illustrated with data from four studies, on North Queensland flightless insects (Yeates et al. 2002, ants from a Florida Transect (Lubertazzi & Tschinkel 2003, New England bog ants (Gotelli & Ellison 2002 and a simulated distribution of the known New Zealand Lepidosauria (Daugherty et al. 1994. The results support this approach, indicating that species, genus and site numbers predict evolutionary history, to a degree depending on the size of the data set.

  14. Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination.

    Science.gov (United States)

    Kegel, Linde; Jaegle, Martine; Driegen, Siska; Aunin, Eerik; Leslie, Kris; Fukata, Yuko; Watanabe, Masahiko; Fukata, Masaki; Meijer, Dies

    2014-04-01

    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution.

  15. The valine and lysine residues in the conserved FxVTxK motif are important for the function of phylogenetically distant plant cellulose synthases.

    Science.gov (United States)

    Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle; Wilson, Liza; Wilson, Carmen; Davis, Jonathan K; Cosgrove, Daniel J; Anderson, Charles T; Roberts, Alison W; Haigler, Candace H

    2016-05-01

    Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure-function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA.

  16. Transcription factor motif quality assessment requires systematic comparative analysis [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Caleb Kipkurui Kibet

    2016-03-01

    Full Text Available Transcription factor (TF binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis.

  17. Assessing the effects of symmetry on motif discovery and modeling.

    Directory of Open Access Journals (Sweden)

    Lala M Motlhabi

    Full Text Available BACKGROUND: Identifying the DNA binding sites for transcription factors is a key task in modeling the gene regulatory network of a cell. Predicting DNA binding sites computationally suffers from high false positives and false negatives due to various contributing factors, including the inaccurate models for transcription factor specificity. One source of inaccuracy in the specificity models is the assumption of asymmetry for symmetric models. METHODOLOGY/PRINCIPAL FINDINGS: Using simulation studies, so that the correct binding site model is known and various parameters of the process can be systematically controlled, we test different motif finding algorithms on both symmetric and asymmetric binding site data. We show that if the true binding site is asymmetric the results are unambiguous and the asymmetric model is clearly superior to the symmetric model. But if the true binding specificity is symmetric commonly used methods can infer, incorrectly, that the motif is asymmetric. The resulting inaccurate motifs lead to lower sensitivity and specificity than would the correct, symmetric models. We also show how the correct model can be obtained by the use of appropriate measures of statistical significance. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the most commonly used motif-finding approaches usually model symmetric motifs incorrectly, which leads to higher than necessary false prediction errors. It also demonstrates how alternative motif-finding methods can correct the problem, providing more accurate motif models and reducing the errors. Furthermore, it provides criteria for determining whether a symmetric or asymmetric model is the most appropriate for any experimental dataset.

  18. SUMAC: Constructing Phylogenetic Supermatrices and Assessing Partially Decisive Taxon Coverage.

    Science.gov (United States)

    Freyman, William A

    2015-01-01

    The amount of phylogenetically informative sequence data in GenBank is growing at an exponential rate, and large phylogenetic trees are increasingly used in research. Tools are needed to construct phylogenetic sequence matrices from GenBank data and evaluate the effect of missing data. Supermatrix Constructor (SUMAC) is a tool to data-mine GenBank, construct phylogenetic supermatrices, and assess the phylogenetic decisiveness of a matrix given the pattern of missing sequence data. SUMAC calculates a novel metric, Missing Sequence Decisiveness Scores (MSDS), which measures how much each individual missing sequence contributes to the decisiveness of the matrix. MSDS can be used to compare supermatrices and prioritize the acquisition of new sequence data. SUMAC constructs supermatrices either through an exploratory clustering of all GenBank sequences within a taxonomic group or by using guide sequences to build homologous clusters in a more targeted manner. SUMAC assembles supermatrices for any taxonomic group recognized in GenBank and is optimized to run on multicore computer systems by parallelizing multiple stages of operation. SUMAC is implemented as a Python package that can run as a stand-alone command-line program, or its modules and objects can be incorporated within other programs. SUMAC is released under the open source GPLv3 license and is available at https://github.com/wf8/sumac.

  19. Protein clustering and RNA phylogenetic reconstruction of the influenza A [corrected] virus NS1 protein allow an update in classification and identification of motif conservation.

    Directory of Open Access Journals (Sweden)

    Edgar E Sevilla-Reyes

    Full Text Available The non-structural protein 1 (NS1 of influenza A virus (IAV, coded by its third most diverse gene, interacts with multiple molecules within infected cells. NS1 is involved in host immune response regulation and is a potential contributor to the virus host range. Early phylogenetic analyses using 50 sequences led to the classification of NS1 gene variants into groups (alleles A and B. We reanalyzed NS1 diversity using 14,716 complete NS IAV sequences, downloaded from public databases, without host bias. Removal of sequence redundancy and further structured clustering at 96.8% amino acid similarity produced 415 clusters that enhanced our capability to detect distinct subgroups and lineages, which were assigned a numerical nomenclature. Maximum likelihood phylogenetic reconstruction using RNA sequences indicated the previously identified deep branching separating group A from group B, with five distinct subgroups within A as well as two and five lineages within the A4 and A5 subgroups, respectively. Our classification model proposes that sequence patterns in thirteen amino acid positions are sufficient to fit >99.9% of all currently available NS1 sequences into the A subgroups/lineages or the B group. This classification reduces host and virus bias through the prioritization of NS1 RNA phylogenetics over host or virus phenetics. We found significant sequence conservation within the subgroups and lineages with characteristic patterns of functional motifs, such as the differential binding of CPSF30 and crk/crkL or the availability of a C-terminal PDZ-binding motif. To understand selection pressures and evolution acting on NS1, it is necessary to organize the available data. This updated classification may help to clarify and organize the study of NS1 interactions and pathogenic differences and allow the drawing of further functional inferences on sequences in each group, subgroup and lineage rather than on a strain-by-strain basis.

  20. Phylogenetic and functional assessment of orthologs inference projects and methods.

    Directory of Open Access Journals (Sweden)

    Adrian M Altenhoff

    2009-01-01

    Full Text Available Accurate genome-wide identification of orthologs is a central problem in comparative genomics, a fact reflected by the numerous orthology identification projects developed in recent years. However, only a few reports have compared their accuracy, and indeed, several recent efforts have not yet been systematically evaluated. Furthermore, orthology is typically only assessed in terms of function conservation, despite the phylogeny-based original definition of Fitch. We collected and mapped the results of nine leading orthology projects and methods (COG, KOG, Inparanoid, OrthoMCL, Ensembl Compara, Homologene, RoundUp, EggNOG, and OMA and two standard methods (bidirectional best-hit and reciprocal smallest distance. We systematically compared their predictions with respect to both phylogeny and function, using six different tests. This required the mapping of millions of sequences, the handling of hundreds of millions of predicted pairs of orthologs, and the computation of tens of thousands of trees. In phylogenetic analysis or in functional analysis where high specificity is required, we find that OMA and Homologene perform best. At lower functional specificity but higher coverage level, OrthoMCL outperforms Ensembl Compara, and to a lesser extent Inparanoid. Lastly, the large coverage of the recent EggNOG can be of interest to build broad functional grouping, but the method is not specific enough for phylogenetic or detailed function analyses. In terms of general methodology, we observe that the more sophisticated tree reconstruction/reconciliation approach of Ensembl Compara was at times outperformed by pairwise comparison approaches, even in phylogenetic tests. Furthermore, we show that standard bidirectional best-hit often outperforms projects with more complex algorithms. First, the present study provides guidance for the broad community of orthology data users as to which database best suits their needs. Second, it introduces new methodology

  1. Phylogenetic assessment of filoviruses: how many lineages of Marburg virus?

    Science.gov (United States)

    Peterson, A Townsend; Holder, Mark T

    2012-08-01

    Filoviruses have to date been considered as consisting of one diverse genus (Ebola viruses) and one undifferentiated genus (Marburg virus). We reconsider this idea by means of detailed phylogenetic analyses of sequence data available for the Filoviridae: using coalescent simulations, we ascertain that two Marburg isolates (termed the "RAVN" strain) represent a quite-distinct lineage that should be considered in studies of biogeography and host associations, and may merit recognition at the level of species. In contrast, filovirus isolates recently obtained from bat tissues are not distinct from previously known strains, and should be considered as drawn from the same population. Implications for understanding the transmission geography and host associations of these viruses are discussed.

  2. Assessing the Value of DNA Barcodes and Other Priority Gene Regions for Molecular Phylogenetics of Lepidoptera

    Science.gov (United States)

    Wilson, John James

    2010-01-01

    Background Despite apparently abundant amounts of observable variation and species diversity, the order Lepidoptera exhibits a morphological homogeneity that has provided only a limited number of taxonomic characters and led to widespread use of nucleotides for inferring relationships. This study aims to characterize and develop methods to quantify the value of priority gene regions designated for Lepidoptera molecular systematics. In particular, I assess how the DNA barcode segment of the mitochondrial COI gene performs across a broad temporal range given its number one position of priority, most sequenced status, and the conflicting opinions on its phylogenetic performance. Methodology/Principal Findings Gene regions commonly sequenced for Lepidoptera phylogenetics were scored using multiple measures across three categories: practicality, which includes universality of primers and sequence quality; phylogenetic utility; and phylogenetic signal. I found that alternative measures within a category often appeared correlated, but high scores in one category did not necessarily translate into high scores in another. The DNA barcode was easier to sequence than other genes, and had high scores for utility but low signal above the genus level. Conclusions/Significance Given limited financial resources and time constraints, careful selection of gene regions for molecular phylogenetics is crucial to avoid wasted effort producing partially informative data. This study introduces an approach to assessing the value of gene regions prior to the initiation of new studies and presents empirical results to help guide future selections. PMID:20479871

  3. Assessing the value of DNA barcodes and other priority gene regions for molecular phylogenetics of Lepidoptera.

    Directory of Open Access Journals (Sweden)

    John James Wilson

    Full Text Available BACKGROUND: Despite apparently abundant amounts of observable variation and species diversity, the order Lepidoptera exhibits a morphological homogeneity that has provided only a limited number of taxonomic characters and led to widespread use of nucleotides for inferring relationships. This study aims to characterize and develop methods to quantify the value of priority gene regions designated for Lepidoptera molecular systematics. In particular, I assess how the DNA barcode segment of the mitochondrial COI gene performs across a broad temporal range given its number one position of priority, most sequenced status, and the conflicting opinions on its phylogenetic performance. METHODOLOGY/PRINCIPAL FINDINGS: Gene regions commonly sequenced for lepidoptera phylogenetics were scored using multiple measures across three categories: practicality, which includes universality of primers and sequence quality; phylogenetic utility; and phylogenetic signal. I found that alternative measures within a category often appeared correlated, but high scores in one category did not necessarily translate into high scores in another. The DNA barcode was easier to sequence than other genes, and had high scores for utility but low signal above the genus level. CONCLUSIONS/SIGNIFICANCE: Given limited financial resources and time constraints, careful selection of gene regions for molecular phylogenetics is crucial to avoid wasted effort producing partially informative data. This study introduces an approach to assessing the value of gene regions prior to the initiation of new studies and presents empirical results to help guide future selections.

  4. Comparative endocrinology of leptin: Assessing function in a phylogenetic context

    Science.gov (United States)

    Londraville, Richard L.; Macotela, Yazmin; Duff, Robert J.; Easterling, Marietta R.; Liu, Qin; Crespi, Erica J.

    2014-01-01

    As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans. PMID:24525452

  5. Assessing the value of DNA barcodes for molecular phylogenetics: effect of increased taxon sampling in lepidoptera.

    Directory of Open Access Journals (Sweden)

    John James Wilson

    Full Text Available BACKGROUND: A common perception is that DNA barcode datamatrices have limited phylogenetic signal due to the small number of characters available per taxon. However, another school of thought suggests that the massively increased taxon sampling afforded through the use of DNA barcodes may considerably increase the phylogenetic signal present in a datamatrix. Here I test this hypothesis using a large dataset of macrolepidopteran DNA barcodes. METHODOLOGY/PRINCIPAL FINDINGS: Taxon sampling was systematically increased in datamatrices containing macrolepidopteran DNA barcodes. Sixteen family groups were designated as concordance groups and two quantitative measures; the taxon consistency index and the taxon retention index, were used to assess any changes in phylogenetic signal as a result of the increase in taxon sampling. DNA barcodes alone, even with maximal taxon sampling (500 species per family, were not sufficient to reconstruct monophyly of families and increased taxon sampling generally increased the number of clades formed per family. However, the scores indicated a similar level of taxon retention (species from a family clustering together in the cladograms as the number of species included in the datamatrix was increased, suggesting substantial phylogenetic signal below the 'family' branch. CONCLUSIONS/SIGNIFICANCE: The development of supermatrix, supertree or constrained tree approaches could enable the exploitation of the massive taxon sampling afforded through DNA barcodes for phylogenetics, connecting the twigs resolved by barcodes to the deep branches resolved through phylogenomics.

  6. Combining Phylogenetic and Occurrence Information for Risk Assessment of Pest and Pathogen Interactions with Host Plants

    Directory of Open Access Journals (Sweden)

    Ángel L. Robles-Fernández

    2017-08-01

    Full Text Available Phytosanitary agencies conduct plant biosecurity activities, including early detection of potential introduction pathways, to improve control and eradication of pest and pathogen incursions. For such actions, analytical tools based on solid scientific knowledge regarding plant-pest or pathogen relationships for pest risk assessment are needed. Recent evidence indicating that closely related species share a higher chance of becoming infected or attacked by pests has allowed the identification of taxa with different degrees of vulnerability. Here, we use information readily available online about pest-host interactions and their geographic distributions, in combination with host phylogenetic reconstructions, to estimate a pest-host interaction (in some cases infection index in geographic space as a more comprehensive, spatially explicit tool for risk assessment. We demonstrate this protocol using phylogenetic relationships for 20 beetle species and 235 host plant genera: first, we estimate the probability of a host sharing pests, and second, we project the index in geographic space. Overall, the predictions allow identification of the pest-host interaction type (e.g., generalist or specialist, which is largely determined by both host range and phylogenetic constraints. Furthermore, the results can be valuable in terms of identifying hotspots where pests and vulnerable hosts interact. This knowledge is useful for anticipating biological invasions or spreading of disease. We suggest that our understanding of biotic interactions will improve after combining information from multiple dimensions of biodiversity at multiple scales (e.g., phylogenetic signal and host-vector-pathogen geographic distribution.

  7. Integrative taxonomy of ciliates: Assessment of molecular phylogenetic content and morphological homology testing.

    Science.gov (United States)

    Vďačný, Peter

    2017-02-24

    The very diverse and comparatively complex morphology of ciliates has given rise to numerous taxonomic concepts. However, the information content of the utilized molecular markers has seldom been explored prior to phylogenetic analyses and taxonomic decisions. Likewise, robust testing of morphological homology statements and the apomorphic nature of diagnostic characters of ciliate taxa is rarely carried out. Four phylogenetic techniques that may help address these issues are reviewed. (1) Split spectrum analysis serves to determine the exact number and quality of nucleotide positions supporting individual nodes in phylogenetic trees and to discern long-branch artifacts that cause spurious phylogenies. (2) Network analysis can depict all possible evolutionary trajectories inferable from the dataset and locate and measure the conflict between them. (3) A priori likelihood mapping tests the suitability of data for reconstruction of a well resolved tree, visualizes the tree-likeness of quartets, and assesses the support of an internal branch of a given tree topology. (4) Reconstruction of ancestral morphologies can be applied for analyzing homology and apomorphy statements without circular reasoning. Since these phylogenetic tools are rarely used, their principles and interpretation are introduced and exemplified using various groups of ciliates. Finally, environmental sequencing data are discussed in this light.

  8. Hitchcock's Motifs

    NARCIS (Netherlands)

    Walker, Michael

    2005-01-01

    Among the abundant Alfred Hitchcock literature, Hitchcock's Motifs has found a fresh angle. Starting from recurring objects, settings, character-types and events, Michael Walker tracks some forty motifs, themes and clusters across the whole of Hitchcock's oeuvre, including not only all his 52 extant

  9. Comparative assessment of performance and genome dependence among phylogenetic profiling methods

    Directory of Open Access Journals (Sweden)

    Wu Jie

    2006-09-01

    Full Text Available Abstract Background The rapidly increasing speed with which genome sequence data can be generated will be accompanied by an exponential increase in the number of sequenced eukaryotes. With the increasing number of sequenced eukaryotic genomes comes a need for bioinformatic techniques to aid in functional annotation. Ideally, genome context based techniques such as proximity, fusion, and phylogenetic profiling, which have been so successful in prokaryotes, could be utilized in eukaryotes. Here we explore the application of phylogenetic profiling, a method that exploits the evolutionary co-occurrence of genes in the assignment of functional linkages, to eukaryotic genomes. Results In order to evaluate the performance of phylogenetic profiling in eukaryotes, we assessed the relative performance of commonly used profile construction techniques and genome compositions in predicting functional linkages in both prokaryotic and eukaryotic organisms. When predicting linkages in E. coli with a prokaryotic profile, the use of continuous values constructed from transformed BLAST bit-scores performed better than profiles composed of discretized E-values; the use of discretized E-values resulted in more accurate linkages when using S. cerevisiae as the query organism. Extending this analysis by incorporating several eukaryotic genomes in profiles containing a majority of prokaryotes resulted in similar overall accuracy, but with a surprising reduction in pathway diversity among the most significant linkages. Furthermore, the application of phylogenetic profiling using profiles composed of only eukaryotes resulted in the loss of the strong correlation between common KEGG pathway membership and profile similarity score. Profile construction methods, orthology definitions, ontology and domain complexity were explored as possible sources of the poor performance of eukaryotic profiles, but with no improvement in results. Conclusion Given the current set of

  10. Assessing the Goodness of Fit of Phylogenetic Comparative Methods: A Meta-Analysis and Simulation Study.

    Science.gov (United States)

    Jhwueng, Dwueng-Chwuan

    2013-01-01

    Phylogenetic comparative methods (PCMs) have been applied widely in analyzing data from related species but their fit to data is rarely assessed. Can one determine whether any particular comparative method is typically more appropriate than others by examining comparative data sets? I conducted a meta-analysis of 122 phylogenetic data sets found by searching all papers in JEB, Blackwell Synergy and JSTOR published in 2002-2005 for the purpose of assessing the fit of PCMs. The number of species in these data sets ranged from 9 to 117. I used the Akaike information criterion to compare PCMs, and then fit PCMs to bivariate data sets through REML analysis. Correlation estimates between two traits and bootstrapped confidence intervals of correlations from each model were also compared. For phylogenies of less than one hundred taxa, the Independent Contrast method and the independent, non-phylogenetic models provide the best fit.For bivariate analysis, correlations from different PCMs are qualitatively similar so that actual correlations from real data seem to be robust to the PCM chosen for the analysis. Therefore, researchers might apply the PCM they believe best describes the evolutionary mechanisms underlying their data.

  11. Assessing the Goodness of Fit of Phylogenetic Comparative Methods: A Meta-Analysis and Simulation Study.

    Directory of Open Access Journals (Sweden)

    Dwueng-Chwuan Jhwueng

    Full Text Available Phylogenetic comparative methods (PCMs have been applied widely in analyzing data from related species but their fit to data is rarely assessed.Can one determine whether any particular comparative method is typically more appropriate than others by examining comparative data sets?I conducted a meta-analysis of 122 phylogenetic data sets found by searching all papers in JEB, Blackwell Synergy and JSTOR published in 2002-2005 for the purpose of assessing the fit of PCMs. The number of species in these data sets ranged from 9 to 117.I used the Akaike information criterion to compare PCMs, and then fit PCMs to bivariate data sets through REML analysis. Correlation estimates between two traits and bootstrapped confidence intervals of correlations from each model were also compared.For phylogenies of less than one hundred taxa, the Independent Contrast method and the independent, non-phylogenetic models provide the best fit.For bivariate analysis, correlations from different PCMs are qualitatively similar so that actual correlations from real data seem to be robust to the PCM chosen for the analysis. Therefore, researchers might apply the PCM they believe best describes the evolutionary mechanisms underlying their data.

  12. Assessing the Goodness of Fit of Phylogenetic Comparative Methods: A Meta-Analysis and Simulation Study: e67001

    National Research Council Canada - National Science Library

    Dwueng-Chwuan Jhwueng

    2013-01-01

    ...? Data I conducted a meta-analysis of 122 phylogenetic data sets found by searching all papers in JEB, Blackwell Synergy and JSTOR published in 2002-2005 for the purpose of assessing the fit of PCMs...

  13. Diversity of Clonostachys species assessed by molecular phylogenetics and MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Abreu, Lucas M; Moreira, Gláucia M; Ferreira, Douglas; Rodrigues-Filho, Edson; Pfenning, Ludwig H

    2014-12-01

    We assessed the species diversity among 45 strains of Clonostachys from different substrates and localities in Brazil using molecular phylogenetics, and compared the results with the phenotypic classification of strains obtained from matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Phylogenetic analyses were based on beta tubulin (Tub), ITS-LSU rDNA, and a combined Tub-ITS DNA dataset. MALDI-TOF MS analyses were performed using intact conidia and conidiophores of strains cultivated on oatmeal agar and 4% malt extract agar. Six known species were identified: Clonostachys byssicola, Clonostachys candelabrum, Clonostachys pseudochroleuca, Clonostachys rhizophaga, Clonostachys rogersoniana, and Clonostachys rosea. Two clades and two singleton lineages did not correspond to known species represented in the reference DNA dataset and were identified as Clonostachys sp. 1-4. Multivariate cluster analyses of MALDI-TOF MS data classified the strains into eight clusters and three singletons, corresponding to the ten identified species plus one additional cluster containing two strains of C. rogersoniana that split from the other co-specific strains. The consistent results of MALDI-TOF MS supported the identification of strains assigned to C. byssicola and C. pseudochroleuca, which did not form well supported clades in all phylogenetic analyses, but formed distinct clusters in the MALDI-TOF dendrograms.

  14. Phylogenetic analysis, based on EPIYA repeats in the cagA gene of Indian Helicobacter pylori, and the implications of sequence variation in tyrosine phosphorylation motifs on determining the clinical outcome

    Directory of Open Access Journals (Sweden)

    Santosh K. Tiwari

    2011-01-01

    Full Text Available The population of India harbors one of the world's most highly diverse gene pools, owing to the influx of successive waves of immigrants over regular periods in time. Several phylogenetic studies involving mitochondrial DNA and Y chromosomal variation have demonstrated Europeans to have been the first settlers in India. Nevertheless, certain controversy exists, due to the support given to the thesis that colonization was by the Austro-Asiatic group, prior to the Europeans. Thus, the aim was to investigate pre-historic colonization of India by anatomically modern humans, using conserved stretches of five amino acid (EPIYA sequences in the cagA gene of Helicobacter pylori. Simultaneously, the existence of a pathogenic relationship of tyrosine phosphorylation motifs (TPMs, in 32 H. pylori strains isolated from subjects with several forms of gastric diseases, was also explored. High resolution sequence analysis of the above described genes was performed. The nucleotide sequences obtained were translated into amino acids using MEGA (version 4.0 software for EPIYA. An MJ-Network was constructed for obtaining TPM haplotypes by using NETWORK (version 4.5 software. The findings of the study suggest that Indian H. pylori strains share a common ancestry with Europeans. No specific association of haplotypes with the outcome of disease was revealed through additional network analysis of TPMs.

  15. Motif Yggdrasil: sampling sequence motifs from a tree mixture model.

    Science.gov (United States)

    Andersson, Samuel A; Lagergren, Jens

    2007-06-01

    In phylogenetic foot-printing, putative regulatory elements are found in upstream regions of orthologous genes by searching for common motifs. Motifs in different upstream sequences are subject to mutations along the edges of the corresponding phylogenetic tree, consequently taking advantage of the tree in the motif search is an appealing idea. We describe the Motif Yggdrasil sampler; the first Gibbs sampler based on a general tree that uses unaligned sequences. Previous tree-based Gibbs samplers have assumed a star-shaped tree or partially aligned upstream regions. We give a probabilistic model (MY model) describing upstream sequences with regulatory elements and build a Gibbs sampler with respect to this model. The model allows toggling, i.e., the restriction of a position to a subset of nucleotides, but does not require aligned sequences nor edge lengths, which may be difficult to come by. We apply the collapsing technique to eliminate the need to sample nuisance parameters, and give a derivation of the predictive update formula. We show that the MY model improves the modeling of difficult motif instances and that the use of the tree achieves a substantial increase in nucleotide level correlation coefficient both for synthetic data and 37 bacterial lexA genes. We investigate the sensitivity to errors in the tree and show that using random trees MY sampler still has a performance similar to the original version.

  16. Assessing community assembly along a successional gradient in the North Adriatic Karst with functional and phylogenetic distances.

    Science.gov (United States)

    Batalha, Marco Antonio; Pipenbaher, Nataša; Bakan, Branko; Kaligarič, Mitja; Škornik, Sonja

    2015-08-01

    Recently, two approaches to account for ecological differences in community composition have been developed: one based on trait differences (functional diversity) and another based on evolutionary history (phylogenetic diversity). Combining them allows an integrated view of processes structuring communities. The North Adriatic Karst is covered by species-rich grasslands, but land abandonment has resulted in replacement by woodlands. This creates a successional gradient along which environmental conditions may change, and different community assembly rules may apply. We sampled 56 plant communities in the Karst and used functional-phylogenetic distances to assess assembly along a successional gradient, from grasslands to shrublands and woodlands. We found 146 species, for which we measured functional traits and built a phylogenetic tree. The three successional stages were floristically different, with grasslands having species that are typical of harsher soil conditions and woodlands with species preferring milder soil conditions. All communities had higher functional than phylogenetic distances, implying that closely related species tended to be phenotypically dissimilar. When more importance was given to functional distances, most grasslands and some shrublands were underdispersed; when more importance was given to phylogenetic distances, only one grassland was underdispersed and one woodland was overdispersed. Combining functional and phylogenetic distances provided us with better estimates of ecological differences in a successional gradient, where environmental filters seem to be the dominant force in early stages and competitive exclusion becomes more important in later stages. Taking into account that sucessional stages are assembled by different rules is essential to predicting their behaviour under future environmental scenarios.

  17. Community Phylogenetics: Assessing Tree Reconstruction Methods and the Utility of DNA Barcodes.

    Science.gov (United States)

    Boyle, Elizabeth E; Adamowicz, Sarah J

    2015-01-01

    Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagel's λ) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities.

  18. Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.

    Directory of Open Access Journals (Sweden)

    Yaron Orenstein

    Full Text Available The new technology of protein binding microarrays (PBMs allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.

  19. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data.

    Science.gov (United States)

    Adams, Dean C

    2014-09-01

    Studies of evolutionary correlations commonly use phylogenetic regression (i.e., independent contrasts and phylogenetic generalized least squares) to assess trait covariation in a phylogenetic context. However, while this approach is appropriate for evaluating trends in one or a few traits, it is incapable of assessing patterns in highly multivariate data, as the large number of variables relative to sample size prohibits parametric test statistics from being computed. This poses serious limitations for comparative biologists, who must either simplify how they quantify phenotypic traits, or alter the biological hypotheses they wish to examine. In this article, I propose a new statistical procedure for performing ANOVA and regression models in a phylogenetic context that can accommodate high-dimensional datasets. The approach is derived from the statistical equivalency between parametric methods using covariance matrices and methods based on distance matrices. Using simulations under Brownian motion, I show that the method displays appropriate Type I error rates and statistical power, whereas standard parametric procedures have decreasing power as data dimensionality increases. As such, the new procedure provides a useful means of assessing trait covariation across a set of taxa related by a phylogeny, enabling macroevolutionary biologists to test hypotheses of adaptation, and phenotypic change in high-dimensional datasets.

  20. The evolutionary relationships and age of Homo naledi: An assessment using dated Bayesian phylogenetic methods.

    Science.gov (United States)

    Dembo, Mana; Radovčić, Davorka; Garvin, Heather M; Laird, Myra F; Schroeder, Lauren; Scott, Jill E; Brophy, Juliet; Ackermann, Rebecca R; Musiba, Chares M; de Ruiter, Darryl J; Mooers, Arne Ø; Collard, Mark

    2016-08-01

    Homo naledi is a recently discovered species of fossil hominin from South Africa. A considerable amount is already known about H. naledi but some important questions remain unanswered. Here we report a study that addressed two of them: "Where does H. naledi fit in the hominin evolutionary tree?" and "How old is it?" We used a large supermatrix of craniodental characters for both early and late hominin species and Bayesian phylogenetic techniques to carry out three analyses. First, we performed a dated Bayesian analysis to generate estimates of the evolutionary relationships of fossil hominins including H. naledi. Then we employed Bayes factor tests to compare the strength of support for hypotheses about the relationships of H. naledi suggested by the best-estimate trees. Lastly, we carried out a resampling analysis to assess the accuracy of the age estimate for H. naledi yielded by the dated Bayesian analysis. The analyses strongly supported the hypothesis that H. naledi forms a clade with the other Homo species and Australopithecus sediba. The analyses were more ambiguous regarding the position of H. naledi within the (Homo, Au. sediba) clade. A number of hypotheses were rejected, but several others were not. Based on the available craniodental data, Homo antecessor, Asian Homo erectus, Homo habilis, Homo floresiensis, Homo sapiens, and Au. sediba could all be the sister taxon of H. naledi. According to the dated Bayesian analysis, the most likely age for H. naledi is 912 ka. This age estimate was supported by the resampling analysis. Our findings have a number of implications. Most notably, they support the assignment of the new specimens to Homo, cast doubt on the claim that H. naledi is simply a variant of H. erectus, and suggest H. naledi is younger than has been previously proposed.

  1. Biodiversity and evolutionary history: useful extensions of the PD phylogenetic diversity assessment framework.

    Science.gov (United States)

    Faith, Daniel P

    2013-06-01

    Evolutionary biology is a core discipline in biodiversity science. Evolutionary history or phylogeny provides one natural measure of biodiversity through the popular phylogenetic diversity (PD) measure. The evolutionary model underlying PD means that it can be interpreted as quantifying the relative feature diversity of sets of species. Quantifying feature diversity measures possible future uses and benefits or option values. Interpretation of PD as counting-up features is the basis for an emerging broad family of PD calculations, of use to both biodiversity researchers and decision makers. Many of these calculations extend conventional species-level indices to the features level. Useful PD calculations include PD complementarity and endemism, Hill and Valley numbers incorporating abundance, and PD dissimilarities. A flexible analysis framework is provided by expected PD calculations, applied to either probabilities of extinction or presence-absence. Practical extensions include phylogenetic risk analysis and measures of distinctiveness and endemism. These support the integration of phylogenetic diversity into biodiversity conservation and monitoring programs.

  2. Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence

    Directory of Open Access Journals (Sweden)

    Pepato Almir R

    2010-08-01

    standard (direct optimization POY analysis, however, led to the recovery of trees differing in the absence of the otherwise well-supported group Solifugae + Acariformes. Conclusions Previous studies combining ribosomal sequences and morphology often recovered topologies similar to purely morphological analyses of Chelicerata. The apparent stability of certain clades not recovered here, like Haplocnemata and Acari, is regarded as a byproduct of the way the molecular homology was previously established using the instrumentalist approach implemented in POY. Constraining the analysis by a priori homology assessment is defended here as a way of maintaining the severity of the test when adding new data to the analysis. Although the strength of the method advocated here is keeping phylogenetic information from regions usually discarded in an exclusively static homology framework; it still has the inconvenience of being uninformative on the effect of alignment ambiguity on resampling methods of clade support estimation. Finally, putative morphological apomorphies of Solifugae + Acariformes are the reduction of the proximal cheliceral podomere, medial abutting of the leg coxae, loss of sperm nuclear membrane, and presence of differentiated germinative and secretory regions in the testis delivering their products into a common lumen.

  3. Assessing phylogenetic relationships of Lycium samples using RAPD and entropy theory

    Institute of Scientific and Technical Information of China (English)

    Xiao-lin YIN; Kai-tai FANG; Yi-zeng LIANG; Ricky NS WONG; Amber WY HA

    2005-01-01

    Aim: To evaluate the phylogenetic relationships among related species of Lycium samples. Methods: Random amplified polymorphic DNA (RAPD) fingerprinting and lab-on-a-chip electrophoresis techniques were used to analyze the characteristics of Lycium species. Seven species and 3 varieties of Lycium were studied.Based on RAPD fingerprint data obtained from 11 primers, we proposed a new index, called dispersivity, using entropy theory and projection methods to depict the diversity of the DNA fingerprints. Results: Using the proposed dispersivity,primers were sorted and the dendrograms of the 7 species and 3 varieties of Lycium were constructed synthetically by merging primer information. Conclusion:Phylogenetic relationships among Lycium samples were constructed synthetically based on RAPD fingerprint data generated from 11 primers.

  4. rMotifGen: random motif generator for DNA and protein sequences

    Directory of Open Access Journals (Sweden)

    Hardin C Timothy

    2007-08-01

    Full Text Available Abstract Background Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM. Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Results Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. Conclusion rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

  5. Phylogenetic trees

    OpenAIRE

    Baños, Hector; Bushek, Nathaniel; Davidson, Ruth; Gross, Elizabeth; Harris, Pamela E.; Krone, Robert; Long, Colby; Stewart, Allen; WALKER, Robert

    2016-01-01

    We introduce the package PhylogeneticTrees for Macaulay2 which allows users to compute phylogenetic invariants for group-based tree models. We provide some background information on phylogenetic algebraic geometry and show how the package PhylogeneticTrees can be used to calculate a generating set for a phylogenetic ideal as well as a lower bound for its dimension. Finally, we show how methods within the package can be used to compute a generating set for the join of any two ideals.

  6. A Molecular Assessment of Phylogenetic Relationships and LineageDiversification Within the Family Salamandridae (Amphibia, Caudata)

    Energy Technology Data Exchange (ETDEWEB)

    Weisrock, David W.; Papenfuss, Theodore J.; Macey, J. Robert; Litvinchuk, Spartak N.; Polymeni, Rosa; Ugurtas, Ismail H.; Zhao, Ermi; Larson, Allan

    2005-08-08

    Phylogenetic relationships among species of the salamanderfamily Salamandridae are investigated using nearly 3000 nucleotide basesof newly reported mitochondrial DNA sequence data from the mtDNA genicregion spanning the genes tRNALeu-COI. This study uses nearlycomprehensive species-level sampling to provide the first completephylogeny for the Salamandridae. Deep phylogenetic relationships amongthe three most divergent lineages in the family Salamandrina terdigitata,a clade comprising the "True" salamanders, and a clade comprising allnewts except S. terdigitata are difficult to resolve. However, mostrelationships within the latter two lineages are resolved with robustlevels of branch support. The genera Euproctus and Triturus arestatistically shown to be nonmonophyletic, instead each contains adiverse set of lineages positioned within the large newt clade. The genusParamesotriton is also resolve as a nonmonophyletic group, with the newlydescribed species P. laoensis constituting a divergent lineage placed ina sister position to clade containing all Pachytriton species and allremaining Paramesotriton species. Sequence divergences between P.laoensis and other Paramesotriton species are as great as those comparingP. laoensis and species of the genera Cynops and Pachytriton. Analyses oflineage diversification across the Salamandridae indicate that, despiteits exceptional diversity, lineage accumulation appears to have beenconstant across time, indicating that it does not represent a truespecies radiation.

  7. Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Joo Hee Seo

    2017-10-01

    Full Text Available Objective This study was conducted to investigate the basic information on genetic structure and characteristics of Korean Native chickens (NC and foreign breeds through the analysis of the pure chicken populations and commercial chicken lines of the Hanhyup Company which are popular in the NC market, using the 20 microsatellite markers. Methods In this study, the genetic diversity and phylogenetic relationships of 445 NC from five different breeds (NC, Leghorn [LH], Cornish [CS], Rhode Island Red [RIR], and Hanhyup [HH] commercial line were investigated by performing genotyping using 20 microsatellite markers. Results The highest genetic distance was observed between RIR and LH (18.9%, whereas the lowest genetic distance was observed between HH and NC (2.7%. In the principal coordinates analysis (PCoA illustrated by the first component, LH was clearly separated from the other groups. The correspondence analysis showed close relationship among individuals belonging to the NC, CS, and HH lines. From the STRUCTURE program, the presence of 5 clusters was detected and it was found that the proportion of membership in the different clusters was almost comparable among the breeds with the exception of one breed (HH, although it was highest in LH (0.987 and lowest in CS (0.578. For the cluster 1 it was high in HH (0.582 and in CS (0.368, while for the cluster 4 it was relatively higher in HH (0.392 than other breeds. Conclusion Our study showed useful genetic diversity and phylogenetic relationship data that can be utilized for NC breeding and development by the commercial chicken industry to meet consumer demands.

  8. A parametric method for assessing diversification-rate variation in phylogenetic trees.

    Science.gov (United States)

    Shah, Premal; Fitzpatrick, Benjamin M; Fordyce, James A

    2013-02-01

    Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification-rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false-positive rates and statistical power to detect rate variation. We apply the PRC method to the well-studied radiation of North American Plethodon salamanders, and support the inference that the large-bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  9. CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design.

    Science.gov (United States)

    Zhang, Shaoqiang; Chen, Yong

    2016-01-01

    A set of conserved binding sites recognized by a transcription factor is called a motif, which can be found by many applications of comparative genomics for identifying over-represented segments. Moreover, when numerous putative motifs are predicted from a collection of genome-wide data, their similarity data can be represented as a large graph, where these motifs are connected to one another. However, an efficient clustering algorithm is desired for clustering the motifs that belong to the same groups and separating the motifs that belong to different groups, or even deleting an amount of spurious ones. In this work, a new motif clustering algorithm, CLIMP, is proposed by using maximal cliques and sped up by parallelizing its program. When a synthetic motif dataset from the database JASPAR, a set of putative motifs from a phylogenetic foot-printing dataset, and a set of putative motifs from a ChIP dataset are used to compare the performances of CLIMP and two other high-performance algorithms, the results demonstrate that CLIMP mostly outperforms the two algorithms on the three datasets for motif clustering, so that it can be a useful complement of the clustering procedures in some genome-wide motif prediction pipelines. CLIMP is available at http://sqzhang.cn/climp.html.

  10. Dental metric assessment of the omo fossils: implications for the phylogenetic position of Australopithecus africanus.

    Science.gov (United States)

    Hunt, K; Vitzthum, V J

    1986-10-01

    The discovery of Australopithecus afarensis has led to new interpretations of hominid phylogeny, some of which reject A. africanus as an ancestor of Homo. Analysis of buccolingual tooth crown dimensions in australopithecines and Homo species by Johanson and White (Science 202:321-330, 1979) revealed that the South African gracile australopithecines are intermediate in size between Laetoli/hadar hominids and South African robust hominids. Homo, on the other hand, displays dimensions similar to those of A. afarensis and smaller than those of other australopithecines. These authors conclude, therefore, that A. africanus is derived in the direction of A. robustus and is not an ancestor of the Homo clade. However, there is a considerable time gap (ca. 800,000 years) between the Laetoli/Hadar specimens and the earliest Homo specimens; "gracile" hominids from Omo fit into this chronological gap and are from the same geographic area. Because the early specimens at Omo have been designated A. afarensis and the later specimens classified as Homo habilis, Omo offers a unique opportunity to test hypotheses concerning hominid evolution, especially regarding the phylogenetic status of A. africanus. Comparisons of mean cheek teeth breadths disclosed the significant (P less than or equal to 0.05) differences between the Omo sample and the Laetoli/Hadar fossils (P4, M2, and M3), the Homo fossils (P3, P4, M1, M2, and M1), and A. africanus (M3). Of the several possible interpretations of these data, it appears that the high degree of similarity between the Omo sample and the South African gracile australopithecine material warrants considering the two as geographical variants of A. africanus. The geographic, chronologic, and metric attributes of the Omo sample argue for its lineal affinity with A. afarensis and Homo. In conclusion, a consideration of hominid postcanine dental metrics provides no basis for removing A. africanus from the ancestry of the Homo lineage.

  11. Assessing phylogenetic relationships among galliformes: a multigene phylogeny with expanded taxon sampling in Phasianidae.

    Directory of Open Access Journals (Sweden)

    Ning Wang

    Full Text Available Galliform birds (relatives of the chicken and turkey have attracted substantial attention due to their importance to society and value as model systems. This makes understanding the evolutionary history of Galliformes, especially the species-rich family Phasianidae, particularly interesting and important for comparative studies in this group. Previous studies have differed in their conclusions regarding galliform phylogeny. Some of these studies have suggested that specific clades within this order underwent rapid radiations, potentially leading to the observed difficulty in resolving their phylogenetic relationships. Here we presented analyses of six nuclear intron sequences and two mitochondrial regions, an amount of sequence data larger than many previous studies, and expanded taxon sampling by collecting data from 88 galliform species and four anseriform outgroups. Our results corroborated recent studies describing relationships among the major families, and provided further evidence that the traditional division of the largest family, the Phasianidae into two major groups ("pheasants" and "partridges" is not valid. Within the Phasianidae, relationships among many genera have varied among studies and there has been little consensus for the placement of many taxa. Using this large dataset, with substantial sampling within the Phasianidae, we obtained strong bootstrap support to confirm some previously hypothesized relationships and we were able to exclude others. In addition, we added the first nuclear sequence data for the partridge and quail genera Ammoperdix, Caloperdix, Excalfactoria, and Margaroperdix, placing these taxa in the galliform tree of life with confidence. Despite the novel insights obtained by combining increased sampling of taxa and loci, our results suggest that additional data collection will be necessary to solve the remaining uncertainties.

  12. Phylogenetic Trees From Sequences

    Science.gov (United States)

    Ryvkin, Paul; Wang, Li-San

    In this chapter, we review important concepts and approaches for phylogeny reconstruction from sequence data.We first cover some basic definitions and properties of phylogenetics, and briefly explain how scientists model sequence evolution and measure sequence divergence. We then discuss three major approaches for phylogenetic reconstruction: distance-based phylogenetic reconstruction, maximum parsimony, and maximum likelihood. In the third part of the chapter, we review how multiple phylogenies are compared by consensus methods and how to assess confidence using bootstrapping. At the end of the chapter are two sections that list popular software packages and additional reading.

  13. Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment

    Directory of Open Access Journals (Sweden)

    Aravind L

    2007-05-01

    Full Text Available Abstract Background A widely-used approach for discovering functional and physical interactions among proteins involves phylogenetic profile comparisons (PPCs. Here, proteins with similar profiles are inferred to be functionally related under the assumption that proteins involved in the same metabolic pathway or cellular system are likely to have been co-inherited during evolution. Results Our experimentation with E. coli and yeast proteins with 16 different carefully composed reference sets of genomes revealed that the phyletic patterns of proteins in prokaryotes alone could be adequate enough to make reasonably accurate functional linkage predictions. A slight improvement in performance is observed on adding few eukaryotes into the reference set, but a noticeable drop-off in performance is observed with increased number of eukaryotes. Inclusion of most parasitic, pathogenic or vertebrate genomes and multiple strains of the same species into the reference set do not necessarily contribute to an improved sensitivity or accuracy. Interestingly, we also found that evolutionary histories of individual pathways have a significant affect on the performance of the PPC approach with respect to a particular reference set. For example, to accurately predict functional links in carbohydrate or lipid metabolism, a reference set solely composed of prokaryotic (or bacterial genomes performed among the best compared to one composed of genomes from all three super-kingdoms; this is in contrast to predicting functional links in translation for which a reference set composed of prokaryotic (or bacterial genomes performed the worst. We also demonstrate that the widely used random null model to quantify the statistical significance of profile similarity is incomplete, which could result in an increased number of false-positives. Conclusion Contrary to previous proposals, it is not merely the number of genomes but a careful selection of informative genomes in the

  14. The effect of orthology and coregulation on detecting regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Valerie Storms

    Full Text Available BACKGROUND: Computational de novo discovery of transcription factor binding sites is still a challenging problem. The growing number of sequenced genomes allows integrating orthology evidence with coregulation information when searching for motifs. Moreover, the more advanced motif detection algorithms explicitly model the phylogenetic relatedness between the orthologous input sequences and thus should be well adapted towards using orthologous information. In this study, we evaluated the conditions under which complementing coregulation with orthologous information improves motif detection for the class of probabilistic motif detection algorithms with an explicit evolutionary model. METHODOLOGY: We designed datasets (real and synthetic covering different degrees of coregulation and orthologous information to test how well Phylogibbs and Phylogenetic sampler, as representatives of the motif detection algorithms with evolutionary model performed as compared to MEME, a more classical motif detection algorithm that treats orthologs independently. RESULTS AND CONCLUSIONS: Under certain conditions detecting motifs in the combined coregulation-orthology space is indeed more efficient than using each space separately, but this is not always the case. Moreover, the difference in success rate between the advanced algorithms and MEME is still marginal. The success rate of motif detection depends on the complex interplay between the added information and the specificities of the applied algorithms. Insights in this relation provide information useful to both developers and users. All benchmark datasets are available at http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Storms_Valerie_PlosONE.

  15. A Caenorhabditis motif compendium for studying transcriptional gene regulation

    Science.gov (United States)

    Dieterich, Christoph; Sommer, Ralf J

    2008-01-01

    Background Controlling gene expression is fundamental to biological complexity. The nematode Caenorhabditis elegans is an important model for studying principles of gene regulation in multi-cellular organisms. A comprehensive parts list of putative regulatory motifs was yet missing for this model system. In this study, we compile a set of putative regulatory motifs by combining evidence from conservation and expression data. Description We present an unbiased comparative approach to a regulatory motif compendium for Caenorhabditis species. This involves the assembly of a new nematode genome, whole genome alignments and assessment of conserved k-mers counts. Candidate motifs are selected from a set of 9,500 randomly picked genes by three different motif discovery strategies. Motif candidates have to pass a conservation enrichment filter. Motif degeneracy and length are optimized. Retained motif descriptions are evaluated by expression data using a non-parametric test, which assesses expression changes due to the presence/absence of individual motifs. Finally, we also provide condition-specific motif ensembles by conditional tree analysis. Conclusion The nematode genomes align surprisingly well despite high neutral substitution rates. Our pipeline delivers motif sets by three alternative strategies. Each set contains less than 400 motifs, which are significantly conserved and correlated with 214 out of 270 tested gene expression conditions. This motif compendium is an entry point to comprehensive studies on nematode gene regulation. The website: http://corg.eb.tuebingen.mpg.de/CMC has extensive query capabilities, supplements this article and supports the experimental list. PMID:18215260

  16. Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring.

    Directory of Open Access Journals (Sweden)

    Veljo Kisand

    Full Text Available Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used direct sequencing of total DNA from water samples to compare the microbial communities of two distinct coastal regions exposed to different anthropogenic pressures: the highly polluted Port of Genoa and the protected area of Montecristo Island in the Mediterranean Sea. Analysis of the metagenomes revealed significant differences in both microbial diversity and abundance between the two areas, reflecting their distinct ecological habitats and anthropogenic stress conditions. Our results indicate that the combination of next generation sequencing (NGS technologies and bioinformatics tools presents a new approach to monitor the diversity and the ecological status of aquatic ecosystems. Integration of metagenomics into environmental monitoring campaigns should enable the impact of the anthropogenic pressure on microbial biodiversity in various ecosystems to be better assessed and also predicted.

  17. Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring.

    Science.gov (United States)

    Kisand, Veljo; Valente, Angelica; Lahm, Armin; Tanet, Gerard; Lettieri, Teresa

    2012-01-01

    Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used direct sequencing of total DNA from water samples to compare the microbial communities of two distinct coastal regions exposed to different anthropogenic pressures: the highly polluted Port of Genoa and the protected area of Montecristo Island in the Mediterranean Sea. Analysis of the metagenomes revealed significant differences in both microbial diversity and abundance between the two areas, reflecting their distinct ecological habitats and anthropogenic stress conditions. Our results indicate that the combination of next generation sequencing (NGS) technologies and bioinformatics tools presents a new approach to monitor the diversity and the ecological status of aquatic ecosystems. Integration of metagenomics into environmental monitoring campaigns should enable the impact of the anthropogenic pressure on microbial biodiversity in various ecosystems to be better assessed and also predicted.

  18. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype.

    Science.gov (United States)

    Gongora, Jaime; Fleming, Peter; Spencer, Peter B S; Mason, Richard; Garkavenko, Olga; Meyer, Johann-Nikolaus; Droegemueller, Cord; Lee, Jun Heon; Moran, Chris

    2004-11-01

    Pigs were introduced into Australia and New Zealand in the 18th and 19th centuries, with some establishing feral populations. With few records of pig introductions into these two countries, molecular phylogenetic analysis was used to assess their origins. Mitochondrial (mt) control region sequence and nuclear glucosephosphate isomerase pseudogene (GPIP) restriction fragments were used, as distinct European and Asian domestic pig and Wild Boar control region clades and GPIP genotypes can be recognised. Feral pig control region sequences clustered with either European or Asian domestic pig sequences and both Asian and European GPIP alleles were segregating. It was not possible to distinguish direct importation of Asian domestic animals into Australia and New Zealand from indirect introgression of Asian domestic sequences via Europe. However, the clustering of three feral control region sequences of pigs from northern Australia with Asian Wild Boar implies unrecorded introduction of Wild Boar or crossbred animals into Australia. However, two of these feral pigs had European GPIP alleles. In combination, analyses of control region and GPIP markers suggest that both European and Asian pigs have contributed in similar frequencies to the origins of Australian feral pigs.

  19. Application of PCR amplicon sequencing using a single primer pair in PCR amplification to assess variations in Helicobacter pylori CagA EPIYA tyrosine phosphorylation motifs

    OpenAIRE

    Karlsson Anneli; Monstein Hans-Jürg; Ryberg Anna; Borch Kurt

    2010-01-01

    Background The presence of various EPIYA tyrosine phosphorylation motifs in the CagA protein of Helicobacter pylori has been suggested to contribute to pathogenesis in adults. In this study, a unique PCR assay and sequencing strategy was developed to establish the number and variation of cagA EPIYA motifs. Findings MDA-DNA derived from gastric biopsy specimens from eleven subjects with gastritis was used with M13- and T7- sequence-tagged primers for amplification of the cagA EPIYA motif regio...

  20. The Motif Tracking Algorithm

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper, we introduce the motif tracking algorithm (MTA), a novel immune inspired (IS) pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases, the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilization of an intuitive symbolic representation.The resulting population of motifs is shown to have considerable potential value for other applications such as forecasting and algorithm seeding.

  1. The Motif Tracking Algorithm

    CERN Document Server

    Wilson, William; Aickelin, Uwe; 10.1007/s11633.008.0032.0

    2010-01-01

    The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper we introduce the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilisation of an intuitive symbolic representation. The resulting population of motifs is shown to have considerable potential value for other ap...

  2. Ultrafast Approximation for Phylogenetic Bootstrap

    NARCIS (Netherlands)

    Bui Quang Minh, [No Value; Nguyen, Thi; von Haeseler, Arndt

    2013-01-01

    Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and

  3. Visibility graph motifs

    CERN Document Server

    Iacovacci, Jacopo

    2015-01-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of visibility graph motifs, smaller substructures that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification a...

  4. 1-t-motifs

    CERN Document Server

    Taelman, Lenny

    2009-01-01

    We show that the module of rational points on an abelian t-module E is canonically isomorphic with the module Ext^1(M_E, K[t]) of extensions of the trivial t-motif K[t] by the t-motif M_E associated with E. This generalizes prior results of Anderson and Thakur and of Papanikolas and Ramachandran. In case E is uniformizable then we show that this extension module is canonically isomorphic with the corresponding extension module of Pink-Hodge structures. This situation is formally very similar to Deligne's theory of 1-motifs and we have tried to build up the theory in a way that makes this analogy as clear as possible.

  5. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif...... viewer, that allows the display of the likely binding motif for all human class I proteins of the loci HLA A, B, C, and E and for MHC class I molecules from chimpanzee (Pan troglodytes), rhesus monkey (Macaca mulatta), and mouse (Mus musculus). Furthermore, it covers all HLA-DR protein sequences...

  6. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  7. Assessment of phylogenetic relationship of rare plant species collected from Saudi Arabia using internal transcribed spacer sequences of nuclear ribosomal DNA.

    Science.gov (United States)

    Al-Qurainy, F; Khan, S; Nadeem, M; Tarroum, M; Alaklabi, A

    2013-03-11

    The rare and endangered plants of any country are important genetic resources that often require urgent conservation measures. Assessment of phylogenetic relationships and evaluation of genetic diversity is very important prior to implementation of conservation strategies for saving rare and endangered plant species. We used internal transcribed spacer sequences of nuclear ribosomal DNA for the evaluation of sequence identity from the available taxa in the GenBank database by using the Basic Local Alignment Search Tool (BLAST). Two rare plant species viz, Heliotropium strigosum claded with H. pilosum (98% branch support) and Pancratium tortuosum claded with P. tenuifolium (61% branch support) clearly. However, some species, viz Scadoxus multiflorus, Commiphora myrrha and Senecio hadiensis showed close relationships with more than one species. We conclude that nuclear ribosomal internal transcribed spacer sequences are useful markers for phylogenetic study of these rare plant species in Saudi Arabia.

  8. Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2008-01-01

    Full Text Available Abstract Background The detection of conserved motifs in promoters of orthologous genes (phylogenetic footprints has become a common strategy to predict cis-acting regulatory elements. Several software tools are routinely used to raise hypotheses about regulation. However, these tools are generally used as black boxes, with default parameters. A systematic evaluation of optimal parameters for a footprint discovery strategy can bring a sizeable improvement to the predictions. Results We evaluate the performances of a footprint discovery approach based on the detection of over-represented spaced motifs. This method is particularly suitable for (but not restricted to Bacteria, since such motifs are typically bound by factors containing a Helix-Turn-Helix domain. We evaluated footprint discovery in 368 Escherichia coli K12 genes with annotated sites, under 40 different combinations of parameters (taxonomical level, background model, organism-specific filtering, operon inference. Motifs are assessed both at the levels of correctness and significance. We further report a detailed analysis of 181 bacterial orthologs of the LexA repressor. Distinct motifs are detected at various taxonomical levels, including the 7 previously characterized taxon-specific motifs. In addition, we highlight a significantly stronger conservation of half-motifs in Actinobacteria, relative to Firmicutes, suggesting an intermediate state in specificity switching between the two Gram-positive phyla, and thereby revealing the on-going evolution of LexA auto-regulation. Conclusion The footprint discovery method proposed here shows excellent results with E. coli and can readily be extended to predict cis-acting regulatory signals and propose testable hypotheses in bacterial genomes for which nothing is known about regulation.

  9. Phylogenetic relationships among clonal groups of extraintestinal pathogenic Escherichia coli as assessed by multi-locus sequence analysis.

    Science.gov (United States)

    Johnson, James R; Owens, Krista L; Clabots, Connie R; Weissman, Scott J; Cannon, Steven B

    2006-06-01

    The evolutionary origins of extraintestinal pathogenic Escherichia coli (ExPEC) remain uncertain despite these organisms' relevance to human disease. A valid understanding of ExPEC phylogeny is needed as a framework against which the observed distribution of virulence factors and clinical associations can be analyzed. Accordingly, phylogenetic relationships were defined by multi-locus sequence analysis among 44 representatives of selected ExPEC clonal groups and the E. coli Reference (ECOR) collection. Recombination, which significantly obscured the phylogenetic signal for several strains, was dealt with by excluding strains or specific sequences. Conflicting overall phylogenies, and internal phylogenies for virulence-associated phylogenetic group B2, were inferred depending on the specific dataset (i.e., how extensively purged of recombination), outgroup (Salmonella enterica and/or Escherichia fergusonii), and analysis method (neighbor joining, maximum parsimony, maximum likelihood, or Bayesian likelihood). Nonetheless, the major E. coli phylogenetic groups A, B1, and B2 were consistently well resolved, as was a major sub-component of group D and an ECOR 37-O157:H7 clade. Moreover, nine important ExPEC clonal groups within groups B2 and D, characterized by serotypes O6:K2:H1, O18:K1:H7, O6:H31, and O4:K+:H+ (from group B2), and O1:K1:H-, O7:K1:H-, O157:K+:H (non-7), O15:K52:H1, and O11/17/77:K52:H18 ("clonal group A") (from group D), were consistently well resolved, regardless of clinical background (cystitis, pyelonephritis, neonatal meningitis, sepsis, or fecal), host group, geographical origin, and virulence profile. Among the group B2-derived clonal groups the O6:K2:H1 clade appeared basal. Within group D, "clonal group A" and the O15:K52:H1 clonal group were consistently placed with ECOR 47 and ECOR 44, respectively, as nearest neighbors. These findings clarify phylogenetic relationships among key ExPEC clonal groups but also emphasize that recombination

  10. A Nuclear Ribosomal DNA Phylogeny of Acer Inferred with Maximum Likelihood, Splits Graphs, and Motif Analysis of 606 Sequences

    Directory of Open Access Journals (Sweden)

    Guido W. Grimm

    2006-01-01

    Full Text Available The multi-copy internal transcribed spacer (ITS region of nuclear ribosomal DNA is widely used to infer phylogenetic relationships among closely related taxa. Here we use maximum likelihood (ML and splits graph analyses to extract phylogenetic information from ~ 600 mostly cloned ITS sequences, representing 81 species and subspecies of Acer, and both species of its sister Dipteronia. Additional analyses compared sequence motifs in Acer and several hundred Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, and Sapindaceae ITS sequences in GenBank. We also assessed the effects of using smaller data sets of consensus sequences with ambiguity coding (accounting for within-species variation instead of the full (partly redundant original sequences. Neighbor-nets and bipartition networks were used to visualize conflict among character state patterns. Species clusters observed in the trees and networks largely agree with morphology-based classifications; of de Jong’s (1994 16 sections, nine are supported in neighbor-net and bipartition networks, and ten by sequence motifs and the ML tree; of his 19 series, 14 are supported in networks, motifs, and the ML tree. Most nodes had higher bootstrap support with matrices of 105 or 40 consensus sequences than with the original matrix. Within-taxon ITS divergence did not differ between diploid and polyploid Acer, and there was little evidence of differentiated parental ITS haplotypes, suggesting that concerted evolution in Acer acts rapidly.

  11. Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence.

    Science.gov (United States)

    Alfaro, Michael E; Zoller, Stefan; Lutzoni, François

    2003-02-01

    Bayesian Markov chain Monte Carlo sampling has become increasingly popular in phylogenetics as a method for both estimating the maximum likelihood topology and for assessing nodal confidence. Despite the growing use of posterior probabilities, the relationship between the Bayesian measure of confidence and the most commonly used confidence measure in phylogenetics, the nonparametric bootstrap proportion, is poorly understood. We used computer simulation to investigate the behavior of three phylogenetic confidence methods: Bayesian posterior probabilities calculated via Markov chain Monte Carlo sampling (BMCMC-PP), maximum likelihood bootstrap proportion (ML-BP), and maximum parsimony bootstrap proportion (MP-BP). We simulated the evolution of DNA sequence on 17-taxon topologies under 18 evolutionary scenarios and examined the performance of these methods in assigning confidence to correct monophyletic and incorrect monophyletic groups, and we examined the effects of increasing character number on support value. BMCMC-PP and ML-BP were often strongly correlated with one another but could provide substantially different estimates of support on short internodes. In contrast, BMCMC-PP correlated poorly with MP-BP across most of the simulation conditions that we examined. For a given threshold value, more correct monophyletic groups were supported by BMCMC-PP than by either ML-BP or MP-BP. When threshold values were chosen that fixed the rate of accepting incorrect monophyletic relationship as true at 5%, all three methods recovered most of the correct relationships on the simulated topologies, although BMCMC-PP and ML-BP performed better than MP-BP. BMCMC-PP was usually a less biased predictor of phylogenetic accuracy than either bootstrapping method. BMCMC-PP provided high support values for correct topological bipartitions with fewer characters than was needed for nonparametric bootstrap.

  12. Multilocus sequence analysis for assessment of phylogenetic diversity and biogeography in Thalassospira bacteria from diverse marine environments.

    Science.gov (United States)

    Lai, Qiliang; Liu, Yang; Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16-97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76-97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments.

  13. Functional characterization of variations on regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Michal Lapidot

    2008-03-01

    Full Text Available Transcription factors (TFs regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.

  14. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    Science.gov (United States)

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  15. Multilocus sequence analysis for the assessment of phylogenetic diversity and biogeography in hyphomonas bacteria from diverse marine environments.

    Science.gov (United States)

    Li, Chongping; Lai, Qiliang; Li, Guizhen; Liu, Yang; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Hyphomonas, a genus of budding, prosthecate bacteria, are primarily found in the marine environment. Seven type strains, and 35 strains from our collections of Hyphomonas, isolated from the Pacific Ocean, Atlantic Ocean, Arctic Ocean, South China Sea and the Baltic Sea, were investigated in this study using multilocus sequence analysis (MLSA). The phylogenetic structure of these bacteria was evaluated using the 16S rRNA gene, and five housekeeping genes (leuA, clpA, pyrH, gatA and rpoD) as well as their concatenated sequences. Our results showed that each housekeeping gene and the concatenated gene sequence all yield a higher taxonomic resolution than the 16S rRNA gene. The 42 strains assorted into 12 groups. Each group represents an independent species, which was confirmed by virtual DNA-DNA hybridization (DDH) estimated from draft genome sequences. Hyphomonas MLSA interspecies and intraspecies boundaries ranged from 93.3% to 96.3%, similarity calculated using a combined DDH and MLSA approach. Furthermore, six novel species (groups I, II, III, IV, V and XII) of the genus Hyphomonas exist, based on sequence similarities of the MLSA and DDH values. Additionally, we propose that the leuA gene (93.0% sequence similarity across our dataset) alone could be used as a fast and practical means for identifying species within Hyphomonas. Finally, Hyphomonas' geographic distribution shows that strains from the same area tend to cluster together as discrete species. This study provides a framework for the discrimination and phylogenetic analysis of the genus Hyphomonas for the first time, and will contribute to a more thorough understanding of the biological and ecological roles of this genus.

  16. The distribution of RNA motifs in natural sequences.

    Science.gov (United States)

    Bourdeau, V; Ferbeyre, G; Pageau, M; Paquin, B; Cedergren, R

    1999-11-15

    Functional analysis of genome sequences has largely ignored RNA genes and their structures. We introduce here the notion of 'ribonomics' to describe the search for the distribution of and eventually the determination of the physiological roles of these RNA structures found in the sequence databases. The utility of this approach is illustrated here by the identification in the GenBank database of RNA motifs having known binding or chemical activity. The frequency of these motifs indicates that most have originated from evolutionary drift and are selectively neutral. On the other hand, their distribution among species and their location within genes suggest that the destiny of these motifs may be more elaborate. For example, the hammerhead motif has a skewed organismal presence, is phylogenetically stable and recent work on a schistosome version confirms its in vivo biological activity. The under-representation of the valine-binding motif and the Rev-binding element in GenBank hints at a detrimental effect on cell growth or viability. Data on the presence and the location of these motifs may provide critical guidance in the design of experiments directed towards the understanding and the manipulation of RNA complexes and activities in vivo.

  17. Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations.

    Science.gov (United States)

    Kittel, Rebecca N; Austin, Andrew D; Klopfstein, Seraina

    2016-08-01

    Parasitoid wasps of the subfamily Cheloninae are both species rich and poorly known. Although the taxonomy of Cheloninae appears to be relatively stable, there is no clear understanding of relationships among higher-level taxa. We here applied molecular phylogenetic analyses using three markers (COI, EF1α, 28S) and 37 morphological characters to elucidate the evolution and systematics of these wasps. Analyses were based on 83 specimens representing 13 genera. All genera except Ascogaster, Phanerotoma, and Pseudophanerotoma formed monophyletic groups; Furcidentia (stat. rev.) is raised to generic rank. Neither Chelonus (Chelonus) nor Chelonus (Microchelonus) were recovered as monophyletic, but together formed a monophyletic lineage. The tribes Chelonini and Odontosphaeropygini formed monophyletic groups, but the Phanerotomini sensu Zettel and Pseudophanerotomini were retrieved as either para- or polyphyletic. The genera comprising the former subfamily Adeliinae were confirmed as being nested within the Cheloninae. To estimate the age of the subfamily, we used 16 fossil taxa. Three approaches were compared: fixed-rate dating, node dating, and total-evidence dating, with age estimates differing greatly between the three methods. Shortcomings of each approach in relation to our dataset are discussed, and none of the age estimates is deemed sufficiently reliable. Given that most dating studies use a single method only, in most cases without presenting analyses on the sensitivity to priors, it is likely that numerous age estimates in the literature suffer from a similar lack of robustness. We argue for a more rigorous approach to dating analyses and for a faithful presentation of uncertainties in divergence time estimates. Given the results of the phylogenetic analysis the following taxonomic changes are proposed: Furcidentia Zettel (stat. rev.), previously treated as a subgenus of Pseudophanerotoma Zettel is raised to generic rank; Microchelonus Szépligeti (syn. nov

  18. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  19. Phylogenetic relationships of Semaphore geckos (Squamata: Sphaerodactylidae: Pristurus) with an assessment of the taxonomy of Pristurus rupestris.

    Science.gov (United States)

    Badiane, Arnaud; Garcia-Porta, Joan; Červenka, Jan; Kratochvíl, Lukáš; Sindaco, Roberto; Robinson, Michael D; Morales, Hernan; Mazuch, Tomáš; Price, Thomas; Amat, Fèlix; Shobrak, Mohammed Y; Wilms, Thomas; Simó-Riudalbas, Marc; Ahmadzadeh, Faraham; Papenfuss, Theodore J; Cluchier, Alexandre; Viglione, Julien; Carranza, Salvador

    2014-07-09

    A molecular phylogeny of the sphaerodactylid geckos of the genus Pristurus is inferred based on an alignment of 1845 base pairs (bp) of concatenated mitochondrial (12S) and nuclear (acm4, cmos, rag1 and rag2) genes for 80 individuals, representing 18 of the 23-26 species, and the three subspecies of P. rupestris. The results indicate that P. rupestris is polyphyletic and includes two highly divergent clades: the eastern clade, found in coastal Iran and throughout the Hajar Mountain range in northern Oman and eastern UAE; and the western clade, distributed from central coastal Oman, through Yemen, Saudi Arabia and north to southern Jordan. Inferred haplotype networks for the four nuclear genes show that the eastern and western clades of "P. rupestris" are highly differentiated and do not share any alleles. Moreover, although the two clades are differentiated by a morphological multivariate analysis, no one character or set of characters was found to be diagnostic. Based on the molecular analysis of specimens from the type locality of P. rupestris rupestris, the name P. rupestris is applied to the eastern clade. The name that should apply to the western clade cannot be clarified until morphological and genetic data for "P. rupestris" is available from the vicinity of Bosaso, Somalia, and therefore we refer to it as Pristurus sp. 1. The phylogenetic tree of Pristurus supports the hypothesis that P. celerrimus is sister to all the other species in the analyses and that the Socotra Archipelago was independently colonized a minimum of two times.

  20. Phylogenetic approaches to natural product structure prediction.

    Science.gov (United States)

    Ziemert, Nadine; Jensen, Paul R

    2012-01-01

    Phylogenetics is the study of the evolutionary relatedness among groups of organisms. Molecular phylogenetics uses sequence data to infer these relationships for both organisms and the genes they maintain. With the large amount of publicly available sequence data, phylogenetic inference has become increasingly important in all fields of biology. In the case of natural product research, phylogenetic relationships are proving to be highly informative in terms of delineating the architecture and function of the genes involved in secondary metabolite biosynthesis. Polyketide synthases and nonribosomal peptide synthetases provide model examples in which individual domain phylogenies display different predictive capacities, resolving features ranging from substrate specificity to structural motifs associated with the final metabolic product. This chapter provides examples in which phylogeny has proven effective in terms of predicting functional or structural aspects of secondary metabolism. The basics of how to build a reliable phylogenetic tree are explained along with information about programs and tools that can be used for this purpose. Furthermore, it introduces the Natural Product Domain Seeker, a recently developed Web tool that employs phylogenetic logic to classify ketosynthase and condensation domains based on established enzyme architecture and biochemical function.

  1. Social Network Analysis Based on Network Motifs

    OpenAIRE

    2014-01-01

    Based on the community structure characteristics, theory, and methods of frequent subgraph mining, network motifs findings are firstly introduced into social network analysis; the tendentiousness evaluation function and the importance evaluation function are proposed for effectiveness assessment. Compared with the traditional way based on nodes centrality degree, the new approach can be used to analyze the properties of social network more fully and judge the roles of the nodes effectively. I...

  2. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    Science.gov (United States)

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  3. Network motifs in music sequences

    CERN Document Server

    Zanette, Damian H

    2010-01-01

    In this note, I summarize ongoing research on motif distribution in networks built up out of symbolic sequences of Western musical origin. Their motif significance profiles exhibit remarkable consistency over different styles and periods, and define a class that cannot be identified with any of the four "superfamilies" to which most real networks seem to belong. Networks from music sequences possess an unusual abundance of bidirectional connections, due to the inherent reversibility of short musical note patterns. This property contributes to motif significance from both local and large-scale features of musical structure.

  4. Network motifs provide signatures that characterize metabolism†

    OpenAIRE

    Shellman, Erin R.; Burant, Charles F.; Schnell, Santiago

    2013-01-01

    Motifs are repeating patterns that determine the local properties of networks. In this work, we characterized all 3-node motifs using enzyme commission numbers of the International Union of Biochemistry and Molecular Biology to show that motif abundance is related to biochemical function. Further, we present a comparative analysis of motif distributions in the metabolic networks of 21 species across six kingdoms of life. We found the distribution of motif abundances to be similar between spec...

  5. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  6. Characterization of the tandem CWCH2 sequence motif: a hallmark of inter-zinc finger interactions

    Directory of Open Access Journals (Sweden)

    Aruga Jun

    2010-02-01

    Full Text Available Abstract Background The C2H2 zinc finger (ZF domain is widely conserved among eukaryotic proteins. In Zic/Gli/Zap1 C2H2 ZF proteins, the two N-terminal ZFs form a single structural unit by sharing a hydrophobic core. This structural unit defines a new motif comprised of two tryptophan side chains at the center of the hydrophobic core. Because each tryptophan residue is located between the two cysteine residues of the C2H2 motif, we have named this structure the tandem CWCH2 (tCWCH2 motif. Results Here, we characterized 587 tCWCH2-containing genes using data derived from public databases. We categorized genes into 11 classes including Zic/Gli/Glis, Arid2/Rsc9, PacC, Mizf, Aebp2, Zap1/ZafA, Fungl, Zfp106, Twincl, Clr1, and Fungl-4ZF, based on sequence similarity, domain organization, and functional similarities. tCWCH2 motifs are mostly found in organisms belonging to the Opisthokonta (metazoa, fungi, and choanoflagellates and Amoebozoa (amoeba, Dictyostelium discoideum. By comparison, the C2H2 ZF motif is distributed widely among the eukaryotes. The structure and organization of the tCWCH2 motif, its phylogenetic distribution, and molecular phylogenetic analysis suggest that prototypical tCWCH2 genes existed in the Opisthokonta ancestor. Within-group or between-group comparisons of the tCWCH2 amino acid sequence identified three additional sequence features (site-specific amino acid frequencies, longer linker sequence between two C2H2 ZFs, and frequent extra-sequences within C2H2 ZF motifs. Conclusion These features suggest that the tCWCH2 motif is a specialized motif involved in inter-zinc finger interactions.

  7. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards.

    Directory of Open Access Journals (Sweden)

    Patrick P Edger

    Full Text Available The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1. Ease of amplification due to high copy number of the gene clusters, 2. Available cost-effective methods and highly conserved primers, 3. Rapidly evolving markers (i.e. variable between closely related species, and 4. The assumption (and/or treatment that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  8. Reference: TCA1MOTIF [PLACE

    Lifescience Database Archive (English)

    Full Text Available TCA1MOTIF Goldsbrough AP, Albrecht H, Stratford R Salicylic acid-inducible binding ...of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3:563-571 (1993) PubMed: 8220463; ...

  9. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  10. Parametric bootstrapping for biological sequence motifs.

    Science.gov (United States)

    O'Neill, Patrick K; Erill, Ivan

    2016-10-06

    Biological sequence motifs drive the specific interactions of proteins and nucleic acids. Accordingly, the effective computational discovery and analysis of such motifs is a central theme in bioinformatics. Many practical questions about the properties of motifs can be recast as random sampling problems. In this light, the task is to determine for a given motif whether a certain feature of interest is statistically unusual among relevantly similar alternatives. Despite the generality of this framework, its use has been frustrated by the difficulties of defining an appropriate reference class of motifs for comparison and of sampling from it effectively. We define two distributions over the space of all motifs of given dimension. The first is the maximum entropy distribution subject to mean information content, and the second is the truncated uniform distribution over all motifs having information content within a given interval. We derive exact sampling algorithms for each. As a proof of concept, we employ these sampling methods to analyze a broad collection of prokaryotic and eukaryotic transcription factor binding site motifs. In addition to positional information content, we consider the informational Gini coefficient of the motif, a measure of the degree to which information is evenly distributed throughout a motif's positions. We find that both prokaryotic and eukaryotic motifs tend to exhibit higher informational Gini coefficients (IGC) than would be expected by chance under either reference distribution. As a second application, we apply maximum entropy sampling to the motif p-value problem and use it to give elementary derivations of two new estimators. Despite the historical centrality of biological sequence motif analysis, this study constitutes to our knowledge the first use of principled null hypotheses for sequence motifs given information content. Through their use, we are able to characterize for the first time differerences in global motif statistics

  11. Metrics for phylogenetic networks II: nodal and triplets metrics.

    Science.gov (United States)

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel

    2009-01-01

    The assessment of phylogenetic network reconstruction methods requires the ability to compare phylogenetic networks. This is the second in a series of papers devoted to the analysis and comparison of metrics for tree-child time consistent phylogenetic networks on the same set of taxa. In this paper, we generalize to phylogenetic networks two metrics that have already been introduced in the literature for phylogenetic trees: the nodal distance and the triplets distance. We prove that they are metrics on any class of tree-child time consistent phylogenetic networks on the same set of taxa, as well as some basic properties for them. To prove these results, we introduce a reduction/expansion procedure that can be used not only to establish properties of tree-child time consistent phylogenetic networks by induction, but also to generate all tree-child time consistent phylogenetic networks with a given number of leaves.

  12. Phylogenetic lineages in Entomophthoromycota

    NARCIS (Netherlands)

    Gryganskyi, A.P.; Humber, R.A.; Smith, M.E.; Hodge, K.; Huang, B.; Voigt, K.; Vilgalys, R.

    2013-01-01

    Entomophthoromycota is one of six major phylogenetic lineages among the former phylum Zygomycota. These early terrestrial fungi share evolutionarily ancestral characters such as coenocytic mycelium and gametangiogamy as a sexual process resulting in zygospore formation. Previous molecular studies ha

  13. Main: TCA1MOTIF [PLACE

    Lifescience Database Archive (English)

    Full Text Available TCA1MOTIF S000159 17-May-1998 (last modified) kehi TCA-1 (tobacco nuclear protein 1...) binding site; Related to salicylic acid-inducible expression of many genes; Found in barley beta-1,3-gluca...nase and over 30 different plant genes which are known to be induced by one or more forms of stress; A similar sequence (TCA... et al., 1997); SA; salicylic acid; stress; TCA-1; barley (Hordeum vulgare); tobacco (Nicotiana tabacum); TCATCTTCTT ...

  14. Fast and Accurate Discovery of Degenerate Linear Motifs in Protein Sequences

    Science.gov (United States)

    Levy, Emmanuel D.; Michnick, Stephen W.

    2014-01-01

    Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest, including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S. cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences, (ii) length and (iii) the number of degenerate or “wildcard” positions. The benchmark enabled the evaluation of the impact of these three properties on the performance of the different algorithms. The results showed that MotifHound and SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information. MotifHound is available (http://michnick.bcm.umontreal.ca or http

  15. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.

    Science.gov (United States)

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/.

  16. Analysis of septins across kingdoms reveals orthology and new motifs

    Directory of Open Access Journals (Sweden)

    Malmberg Russell L

    2007-07-01

    Full Text Available Abstract Background Septins are cytoskeletal GTPase proteins first discovered in the fungus Saccharomyces cerevisiae where they organize the septum and link nuclear division with cell division. More recently septins have been found in animals where they are important in processes ranging from actin and microtubule organization to embryonic patterning and where defects in septins have been implicated in human disease. Previous studies suggested that many animal septins fell into independent evolutionary groups, confounding cross-kingdom comparison. Results In the current work, we identified 162 septins from fungi, microsporidia and animals and analyzed their phylogenetic relationships. There was support for five groups of septins with orthology between kingdoms. Group 1 (which includes S. cerevisiae Cdc10p and human Sept9 and Group 2 (which includes S. cerevisiae Cdc3p and human Sept7 contain sequences from fungi and animals. Group 3 (which includes S. cerevisiae Cdc11p and Group 4 (which includes S. cerevisiae Cdc12p contain sequences from fungi and microsporidia. Group 5 (which includes Aspergillus nidulans AspE contains sequences from filamentous fungi. We suggest a modified nomenclature based on these phylogenetic relationships. Comparative sequence alignments revealed septin derivatives of already known G1, G3 and G4 GTPase motifs, four new motifs from two to twelve amino acids long and six conserved single amino acid positions. One of these new motifs is septin-specific and several are group specific. Conclusion Our studies provide an evolutionary history for this important family of proteins and a framework and consistent nomenclature for comparison of septin orthologs across kingdoms.

  17. seeMotif: exploring and visualizing sequence motifs in 3D structures

    OpenAIRE

    2009-01-01

    Sequence motifs are important in the study of molecular biology. Motif discovery tools efficiently deliver many function related signatures of proteins and largely facilitate sequence annotation. As increasing numbers of motifs are detected experimentally or predicted computationally, characterizing the functional roles of motifs and identifying the potential synergetic relationships between them are important next steps. A good way to investigate novel motifs is to utilize the abundant 3D st...

  18. Detecting correlations among functional-sequence motifs

    Science.gov (United States)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  19. Phylogenetically resolving epidemiologic linkage.

    Science.gov (United States)

    Romero-Severson, Ethan O; Bulla, Ingo; Leitner, Thomas

    2016-03-08

    Although the use of phylogenetic trees in epidemiological investigations has become commonplace, their epidemiological interpretation has not been systematically evaluated. Here, we use an HIV-1 within-host coalescent model to probabilistically evaluate transmission histories of two epidemiologically linked hosts. Previous critique of phylogenetic reconstruction has claimed that direction of transmission is difficult to infer, and that the existence of unsampled intermediary links or common sources can never be excluded. The phylogenetic relationship between the HIV populations of epidemiologically linked hosts can be classified into six types of trees, based on cladistic relationships and whether the reconstruction is consistent with the true transmission history or not. We show that the direction of transmission and whether unsampled intermediary links or common sources existed make very different predictions about expected phylogenetic relationships: (i) Direction of transmission can often be established when paraphyly exists, (ii) intermediary links can be excluded when multiple lineages were transmitted, and (iii) when the sampled individuals' HIV populations both are monophyletic a common source was likely the origin. Inconsistent results, suggesting the wrong transmission direction, were generally rare. In addition, the expected tree topology also depends on the number of transmitted lineages, the sample size, the time of the sample relative to transmission, and how fast the diversity increases after infection. Typically, 20 or more sequences per subject give robust results. We confirm our theoretical evaluations with analyses of real transmission histories and discuss how our findings should aid in interpreting phylogenetic results.

  20. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    Science.gov (United States)

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  1. NestedMICA as an ab initio protein motif discovery tool

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2008-01-01

    Full Text Available Abstract Background Discovering overrepresented patterns in amino acid sequences is an important step in protein functional element identification. We adapted and extended NestedMICA, an ab initio motif finder originally developed for finding transcription binding site motifs, to find short protein signals, and compared its performance with another popular protein motif finder, MEME. NestedMICA, an open source protein motif discovery tool written in Java, is driven by a Monte Carlo technique called Nested Sampling. It uses multi-class sequence background models to represent different "uninteresting" parts of sequences that do not contain motifs of interest. In order to assess NestedMICA as a protein motif finder, we have tested it on synthetic datasets produced by spiking instances of known motifs into a randomly selected set of protein sequences. NestedMICA was also tested using a biologically-authentic test set, where we evaluated its performance with respect to varying sequence length. Results Generally NestedMICA recovered most of the short (3–9 amino acid long test protein motifs spiked into a test set of sequences at different frequencies. We showed that it can be used to find multiple motifs at the same time, too. In all the assessment experiments we carried out, its overall motif discovery performance was better than that of MEME. Conclusion NestedMICA proved itself to be a robust and sensitive ab initio protein motif finder, even for relatively short motifs that exist in only a small fraction of sequences. Availability NestedMICA is available under the Lesser GPL open-source license from: http://www.sanger.ac.uk/Software/analysis/nmica/

  2. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  3. Multivariate and phylogenetic analyses assessing the response of bacterial mat communities from an ancient oligotrophic aquatic ecosystem to different scenarios of long-term environmental disturbance.

    Science.gov (United States)

    Pajares, Silvia; Souza, Valeria; Eguiarte, Luis E

    2015-01-01

    Understanding the response of bacterial communities to environmental change is extremely important in predicting the effect of biogeochemical modifications in ecosystem functioning. The Cuatro Cienegas Basin is an ancient oasis in the Mexican Chihuahuan desert that hosts a wide diversity of microbial mats and stromatolites that have survived in extremely oligotrophic pools with nearly constant conditions. However, thus far, the response of these unique microbial communities to long-term environmental disturbances remains unexplored. We therefore studied the compositional stability of these bacterial mat communities by using a replicated (3x) mesocosm experiment: a) Control; b) Fluct: fluctuating temperature; c) 40C: increase to 40 ºC; d) UVplus: artificial increase in UV radiation; and f) UVmin: UV radiation protection. In order to observe the changes in biodiversity, we obtained 16S rRNA gene clone libraries from microbial mats at the end of the experiment (eight months) and analyzed them using multivariate and phylogenetic tools. Sequences were assigned to 13 major lineages, among which Cyanobacteria (38.8%) and Alphaproteobacteria (25.5%) were the most abundant. The less extreme treatments (Control and UVmin) had a more similar composition and distribution of the phylogenetic groups with the natural pools than the most extreme treatments (Fluct, 40C, and UVplus), which showed drastic changes in the community composition and structure, indicating a different community response to each environmental disturbance. An increase in bacterial diversity was found in the UVmin treatment, suggesting that protected environments promote the establishment of complex bacterial communities, while stressful environments reduce diversity and increase the dominance of a few Cyanobacterial OTUs (mainly Leptolyngbya sp) through environmental filtering. Mesocosm experiments using complex bacterial communities, along with multivariate and phylogenetic analyses of molecular data, can

  4. Multivariate and phylogenetic analyses assessing the response of bacterial mat communities from an ancient oligotrophic aquatic ecosystem to different scenarios of long-term environmental disturbance.

    Directory of Open Access Journals (Sweden)

    Silvia Pajares

    Full Text Available Understanding the response of bacterial communities to environmental change is extremely important in predicting the effect of biogeochemical modifications in ecosystem functioning. The Cuatro Cienegas Basin is an ancient oasis in the Mexican Chihuahuan desert that hosts a wide diversity of microbial mats and stromatolites that have survived in extremely oligotrophic pools with nearly constant conditions. However, thus far, the response of these unique microbial communities to long-term environmental disturbances remains unexplored. We therefore studied the compositional stability of these bacterial mat communities by using a replicated (3x mesocosm experiment: a Control; b Fluct: fluctuating temperature; c 40C: increase to 40 ºC; d UVplus: artificial increase in UV radiation; and f UVmin: UV radiation protection. In order to observe the changes in biodiversity, we obtained 16S rRNA gene clone libraries from microbial mats at the end of the experiment (eight months and analyzed them using multivariate and phylogenetic tools. Sequences were assigned to 13 major lineages, among which Cyanobacteria (38.8% and Alphaproteobacteria (25.5% were the most abundant. The less extreme treatments (Control and UVmin had a more similar composition and distribution of the phylogenetic groups with the natural pools than the most extreme treatments (Fluct, 40C, and UVplus, which showed drastic changes in the community composition and structure, indicating a different community response to each environmental disturbance. An increase in bacterial diversity was found in the UVmin treatment, suggesting that protected environments promote the establishment of complex bacterial communities, while stressful environments reduce diversity and increase the dominance of a few Cyanobacterial OTUs (mainly Leptolyngbya sp through environmental filtering. Mesocosm experiments using complex bacterial communities, along with multivariate and phylogenetic analyses of molecular

  5. Maximizing the phylogenetic diversity of seed banks.

    Science.gov (United States)

    Griffiths, Kate E; Balding, Sharon T; Dickie, John B; Lewis, Gwilym P; Pearce, Tim R; Grenyer, Richard

    2015-04-01

    Ex situ conservation efforts such as those of zoos, botanical gardens, and seed banks will form a vital complement to in situ conservation actions over the coming decades. It is therefore necessary to pay the same attention to the biological diversity represented in ex situ conservation facilities as is often paid to protected-area networks. Building the phylogenetic diversity of ex situ collections will strengthen our capacity to respond to biodiversity loss. Since 2000, the Millennium Seed Bank Partnership has banked seed from 14% of the world's plant species. We assessed the taxonomic, geographic, and phylogenetic diversity of the Millennium Seed Bank collection of legumes (Leguminosae). We compared the collection with all known legume genera, their known geographic range (at country and regional levels), and a genus-level phylogeny of the legume family constructed for this study. Over half the phylogenetic diversity of legumes at the genus level was represented in the Millennium Seed Bank. However, pragmatic prioritization of species of economic importance and endangerment has led to the banking of a less-than-optimal phylogenetic diversity and prioritization of range-restricted species risks an underdispersed collection. The current state of the phylogenetic diversity of legumes in the Millennium Seed Bank could be substantially improved through the strategic banking of relatively few additional taxa. Our method draws on tools that are widely applied to in situ conservation planning, and it can be used to evaluate and improve the phylogenetic diversity of ex situ collections. © 2014 Society for Conservation Biology.

  6. Discovering novel sequence motifs with MEME.

    Science.gov (United States)

    Bailey, Timothy L

    2002-11-01

    This unit illustrates how to use MEME to discover motifs in a group of related nucleotide or peptide sequences. A MEME motif is a sequence pattern that occurs repeatedly in one or more sequences in the input group. MEME can be used to discover novel patterns because it bases its discoveries only on the input sequences, not on any prior knowledge (such as databases of known motifs). The input to MEME is a set of unaligned sequences of the same type (peptide or nucleotide). For each motif it discovers, MEME reports the occurrences (sites), consensus sequence, and the level of conservation (information content) at each position in the pattern. MEME also produces block diagrams showing where all of the discovered motifs occur in the training set sequences. MEME's hypertext (HTML) output also contains buttons that allow for the convenient use of the motifs in other searches.

  7. Systematic reconstruction of RNA functional motifs with high-throughput microfluidics.

    Science.gov (United States)

    Martin, Lance; Meier, Matthias; Lyons, Shawn M; Sit, Rene V; Marzluff, William F; Quake, Stephen R; Chang, Howard Y

    2012-12-01

    We present RNA-mechanically induced trapping of molecular interactions (RNA-MITOMI), a microfluidic platform that allows integrated synthesis and functional assays for programmable RNA libraries. The interaction of a comprehensive library of RNA mutants with stem-loop-binding protein precisely defined the RNA structural and sequence features that govern affinity. The functional motif reconstructed in a single experiment on our platform uncovers new binding specificities and enriches interpretation of phylogenetic data.

  8. MSDmotif: exploring protein sites and motifs

    Directory of Open Access Journals (Sweden)

    Henrick Kim

    2008-07-01

    Full Text Available Abstract Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.

  9. Phylogenetic molecular function annotation

    OpenAIRE

    Engelhardt, Barbara E.; Jordan, Michael I.; Repo, Susanna T; Brenner, Steven E.

    2009-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic ...

  10. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...

  11. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  12. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.

    Directory of Open Access Journals (Sweden)

    Bryan M Zhao

    Full Text Available Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P residue, but also the Ser(P and Thr(P residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7, atypical (DUSP3, DUSP14, DUSP22 and DUSP27, viral (variola VH1, and Cdc25 (A-C. Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets.

  13. Helix-packing motifs in membrane proteins.

    Science.gov (United States)

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  14. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    . Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  15. Phylogenetic constraints in key functional traits behind species' climate niches

    DEFF Research Database (Denmark)

    Kellermann, Vanessa; Loeschcke, Volker; Hoffmann, Ary A;

    2012-01-01

    adapted to similar environments or alternatively phylogenetic inertia. For desiccation resistance, weak phylogenetic inertia was detected; ancestral trait reconstruction, however, revealed a deep divergence that could be traced back to the genus level. Despite drosophilids’ high evolutionary potential......) for 92–95 Drosophila species and assessed their importance for geographic distributions, while controlling for acclimation, phylogeny, and spatial autocorrelation. Employing an array of phylogenetic analyses, we documented moderate-to-strong phylogenetic signal in both desiccation and cold resistance....... Desiccation and cold resistance were clearly linked to species distributions because significant associations between traits and climatic variables persisted even after controlling for phylogeny. We used different methods to untangle whether phylogenetic signal reflected phylogenetically related species...

  16. Phylogenetic Analysis of Viridans Group Streptococci Causing Endocarditis ▿

    Science.gov (United States)

    Simmon, Keith E.; Hall, Lori; Woods, Christopher W.; Marco, Francesc; Miro, Jose M.; Cabell, Christopher; Hoen, Bruno; Marin, Mercedes; Utili, Riccardo; Giannitsioti, Efthymia; Doco-Lecompte, Thanh; Bradley, Suzanne; Mirrett, Stanley; Tambic, Arjana; Ryan, Suzanne; Gordon, David; Jones, Phillip; Korman, Tony; Wray, Dannah; Reller, L. Barth; Tripodi, Marie-Francoise; Plesiat, Patrick; Morris, Arthur J.; Lang, Selwyn; Murdoch, David R.; Petti, Cathy A.

    2008-01-01

    Identification of viridans group streptococci (VGS) to the species level is difficult because VGS exchange genetic material. We performed multilocus DNA target sequencing to assess phylogenetic concordance of VGS for a well-defined clinical syndrome. The hierarchy of sequence data was often discordant, underscoring the importance of establishing biological relevance for finer phylogenetic distinctions. PMID:18650347

  17. Phylogenetic analysis of viridans group streptococci causing endocarditis.

    Science.gov (United States)

    Simmon, Keith E; Hall, Lori; Woods, Christopher W; Marco, Francesc; Miro, Jose M; Cabell, Christopher; Hoen, Bruno; Marin, Mercedes; Utili, Riccardo; Giannitsioti, Efthymia; Doco-Lecompte, Thanh; Bradley, Suzanne; Mirrett, Stanley; Tambic, Arjana; Ryan, Suzanne; Gordon, David; Jones, Phillip; Korman, Tony; Wray, Dannah; Reller, L Barth; Tripodi, Marie-Francoise; Plesiat, Patrick; Morris, Arthur J; Lang, Selwyn; Murdoch, David R; Petti, Cathy A

    2008-09-01

    Identification of viridans group streptococci (VGS) to the species level is difficult because VGS exchange genetic material. We performed multilocus DNA target sequencing to assess phylogenetic concordance of VGS for a well-defined clinical syndrome. The hierarchy of sequence data was often discordant, underscoring the importance of establishing biological relevance for finer phylogenetic distinctions.

  18. Phylogenetic structure in tropical hummingbird communities

    DEFF Research Database (Denmark)

    Graham, Catherine H; Parra, Juan L; Rahbek, Carsten;

    2009-01-01

    composition of 189 hummingbird communities in Ecuador. We assessed how species and phylogenetic composition changed along environmental gradients and across biogeographic barriers. We show that humid, low-elevation communities are phylogenetically overdispersed (coexistence of distant relatives), a pattern...... an expensive means of locomotion at high elevations. We found that communities in the lowlands on opposite sides of the Andes tend to be phylogenetically similar despite their large differences in species composition, a pattern implicating the Andes as an important dispersal barrier. In contrast, along...... the steep environmental gradient between the lowlands and the Andes we found evidence that species turnover is comprised of relatively distantly related species. The integration of local and regional patterns of diversity across environmental gradients and biogeographic barriers provides insight...

  19. [Psychopathological study of lie motif in schizophrenia].

    Science.gov (United States)

    Otsuka, Koichiro; Kato, Satoshi

    2006-01-01

    The theme of a statement is called "lie motif" by the authors when schizophrenic patients say "I have lied to anybody". We tried to analyse of the psychopathological characteristics and anthropological meanings of the lie motifs in schizophrenia, which has not been thematically examined until now, based on 4 cases, and contrasting with the lie motif (Lügenmotiv) in depression taken up by A. Kraus (1989). We classified the lie motifs in schizophrenia into the following two types: a) the past directive lie motif: the patients speak about their real lie regarding it as a 'petty fault' in their distant past with self-guilty feeling, b) the present directive lie motif: the patients say repeatedly 'I have lied' (about their present speech and behavior), retreating from their previous commitments. The observed false confessions of innocent fault by the patients seem to belong to the present directed lie motif. In comparison with the lie motif in depression, it is characteristic for the lie motif in schizophrenia that the patients feel themselves to already have been caught out by others before they confess the lie. The lie motif in schizophrenia seems to come into being through the attribution process of taking the others' blame on ones' own shoulders, which has been pointed out to be common in the guilt experience in schizophrenia. The others' blame on this occasion is due to "the others' gaze" in the experience of the initial self-centralization (i.e. non delusional self-referential experience) in the early stage of schizophrenia (S. Kato 1999). The others' gaze is supposed to bring about the feeling of amorphous self-revelation which could also be regarded as the guilt feeling without content, to the patients. When the guilt feeling is bound with a past concrete fault, the patients tell the past directive lie motif. On the other hand, when the patients cannot find a past fixed content, and feel their present actions as uncertain and experience them as lies, the

  20. Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics.

    Science.gov (United States)

    Smits, Theo H M; Rezzonico, Fabio; López, María M; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Duffy, Brion

    2013-10-01

    Erwinia piriflorinigrans is a necrotrophic pathogen of pear reported from Spain that destroys flowers but does not progress further into the host. We sequenced the complete genome of the type strain CFBP 5888(T) clarifying its phylogenetic position within the genus Erwinia, and indicating a position between its closest relative, the epiphyte Erwinia tasmaniensis and other plant pathogenic Erwinia spp. (i.e., the fire blight pathogen E. amylovora and the Asian pear pathogen E. pyrifoliae). Common features are the type III and type VI secretion systems, amylovoran biosynthesis and desferrioxamine production. The E. piriflorinigrans genome also provided the first evidence for production of the siderophore chrysobactin within the genus Erwinia sensu stricto, which up to now was mostly associated with phytopathogenic, soft-rot Dickeya and Pectobacterium species. Plasmid pEPIR37, reported in this strain, is closely related to small plasmids found in the fire blight pathogen E. amylovora and E. pyrifoliae. The genome of E. piriflorinigrans also gives detailed insights in evolutionary genomics of pathoadapted Erwinia.

  1. VARUN: discovering extensible motifs under saturation constraints.

    Science.gov (United States)

    Apostolico, Alberto; Comin, Matteo; Parida, Laxmi

    2010-01-01

    The discovery of motifs in biosequences is frequently torn between the rigidity of the model on one hand and the abundance of candidates on the other hand. In particular, motifs that include wild cards or "don't cares" escalate exponentially with their number, and this gets only worse if a don't care is allowed to stretch up to some prescribed maximum length. In this paper, a notion of extensible motif in a sequence is introduced and studied, which tightly combines the structure of the motif pattern, as described by its syntactic specification, with the statistical measure of its occurrence count. It is shown that a combination of appropriate saturation conditions and the monotonicity of probabilistic scores over regions of constant frequency afford us significant parsimony in the generation and testing of candidate overrepresented motifs. A suite of software programs called Varun is described, implementing the discovery of extensible motifs of the type considered. The merits of the method are then documented by results obtained in a variety of experiments primarily targeting protein sequence families. Of equal importance seems the fact that the sets of all surprising motifs returned in each experiment are extracted faster and come in much more manageable sizes than would be obtained in the absence of saturation constraints.

  2. Detecting Motifs in System Call Sequences

    CERN Document Server

    Wilson, William O; Aickelin, Uwe

    2010-01-01

    The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs which repeat within time series data. The power of the algorithm is derived from its use of a small number of parameters with minimal assumptions. The algorithm searches from a completely neutral perspective that is independent of the data being analysed, and the underlying motifs. In this paper the motif tracking algorithm is applied to the search for patterns within sequences of low level system calls between the Linux kernel and the operating system's user space. The MTA is able to compress data found in large system call data sets to a limited number of motifs which summarise that data. The motifs provide a resource from which a profile of executed processes can be built. The potential for these profiles and new implications for security research are highlighted. A...

  3. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  4. Hunting Motifs in Situla Art

    Directory of Open Access Journals (Sweden)

    Andrej Preložnik

    2013-07-01

    Full Text Available Situla art developed as an echo of the toreutic style which had spread from the Near East through the Phoenicians, Greeks and Etruscans as far as the Veneti, Raeti, Histri, and their eastern neighbours in the region of Dolenjska (Lower Carniola. An Early Iron Age phenomenon (c. 600—300 BC, it rep- resents the major and most arresting form of the contemporary visual arts in an area stretching from the foot of the Apennines in the south to the Drava and Sava rivers in the east. Indeed, individual pieces have found their way across the Alpine passes and all the way north to the Danube. In the world and art of the situlae, a prominent role is accorded to ani- mals. They are displayed in numerous representations of human activities on artefacts crafted in the classic situla style – that is, between the late 6th  and early 5th centuries BC – as passive participants (e.g. in pageants or in harness or as an active element of the situla narrative. The most typical example of the latter is the hunting scene. Today we know at least four objects decorat- ed exclusively with hunting themes, and a number of situlae and other larger vessels where hunting scenes are embedded in composite narratives. All this suggests a popularity unparallelled by any other genre. Clearly recognisable are various hunting techniques and weapons, each associated with a particu- lar type of game (Fig. 1. The chase of a stag with javelin, horse and hound is depicted on the long- familiar and repeatedly published fibula of Zagorje (Fig. 2. It displays a hound mauling the stag’s back and a hunter on horseback pursuing a hind, her neck already pierced by the javelin. To judge by the (so far unnoticed shaft end un- der the stag’s muzzle, the hunter would have been brandishing a second jave- lin as well, like the warrior of the Vače fibula or the rider of the Nesactium situla, presumably himself a hunter. Many parallels to his motif are known from Greece, Etruria, and

  5. seeMotif: exploring and visualizing sequence motifs in 3D structures

    Science.gov (United States)

    Chang, Darby Tien-Hao; Chien, Ting-Ying; Chen, Chien-Yu

    2009-01-01

    Sequence motifs are important in the study of molecular biology. Motif discovery tools efficiently deliver many function related signatures of proteins and largely facilitate sequence annotation. As increasing numbers of motifs are detected experimentally or predicted computationally, characterizing the functional roles of motifs and identifying the potential synergetic relationships between them are important next steps. A good way to investigate novel motifs is to utilize the abundant 3D structures that have also been accumulated at an astounding rate in recent years. This article reports the development of the web service seeMotif, which provides users with an interactive interface for visualizing sequence motifs on protein structures from the Protein Data Bank (PDB). Researchers can quickly see the locations and conformation of multiple motifs among a number of related structures simultaneously. Considering the fact that PDB sequences are usually shorter than those in sequence databases and/or may have missing residues, seeMotif has two complementary approaches for selecting structures and mapping motifs to protein chains in structures. As more and more structures belonging to previously uncharacterized protein families become available, combining sequence and structure information gives good opportunities to facilitate understanding of protein functions in large-scale genome projects. Available at: http://seemotif.csie.ntu.edu.tw,http://seemotif.ee.ncku.edu.tw or http://seemotif.csbb.ntu.edu.tw. PMID:19477961

  6. seeMotif: exploring and visualizing sequence motifs in 3D structures.

    Science.gov (United States)

    Chang, Darby Tien-Hao; Chien, Ting-Ying; Chen, Chien-Yu

    2009-07-01

    Sequence motifs are important in the study of molecular biology. Motif discovery tools efficiently deliver many function related signatures of proteins and largely facilitate sequence annotation. As increasing numbers of motifs are detected experimentally or predicted computationally, characterizing the functional roles of motifs and identifying the potential synergetic relationships between them are important next steps. A good way to investigate novel motifs is to utilize the abundant 3D structures that have also been accumulated at an astounding rate in recent years. This article reports the development of the web service seeMotif, which provides users with an interactive interface for visualizing sequence motifs on protein structures from the Protein Data Bank (PDB). Researchers can quickly see the locations and conformation of multiple motifs among a number of related structures simultaneously. Considering the fact that PDB sequences are usually shorter than those in sequence databases and/or may have missing residues, seeMotif has two complementary approaches for selecting structures and mapping motifs to protein chains in structures. As more and more structures belonging to previously uncharacterized protein families become available, combining sequence and structure information gives good opportunities to facilitate understanding of protein functions in large-scale genome projects. Available at: http://seemotif.csie.ntu.edu.tw,http://seemotif.ee.ncku.edu.tw or http://seemotif.csbb.ntu.edu.tw.

  7. Phylogenetic trees in bioinformatics

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom L [Los Alamos National Laboratory

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  8. Entanglement, Invariants, and Phylogenetics

    Science.gov (United States)

    Sumner, J. G.

    2007-10-01

    This thesis develops and expands upon known techniques of mathematical physics relevant to the analysis of the popular Markov model of phylogenetic trees required in biology to reconstruct the evolutionary relationships of taxonomic units from biomolecular sequence data. The techniques of mathematical physics are plethora and have been developed for some time. The Markov model of phylogenetics and its analysis is a relatively new technique where most progress to date has been achieved by using discrete mathematics. This thesis takes a group theoretical approach to the problem by beginning with a remarkable mathematical parallel to the process of scattering in particle physics. This is shown to equate to branching events in the evolutionary history of molecular units. The major technical result of this thesis is the derivation of existence proofs and computational techniques for calculating polynomial group invariant functions on a multi-linear space where the group action is that relevant to a Markovian time evolution. The practical results of this thesis are an extended analysis of the use of invariant functions in distance based methods and the presentation of a new reconstruction technique for quartet trees which is consistent with the most general Markov model of sequence evolution.

  9. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    Science.gov (United States)

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  10. Phylogenetic diversity (PD and biodiversity conservation: some bioinformatics challenges

    Directory of Open Access Journals (Sweden)

    Daniel P. Faith

    2006-01-01

    Full Text Available Biodiversity conservation addresses information challenges through estimations encapsulated in measures of diversity. A quantitative measure of phylogenetic diversity, “PD”, has been defined as the minimum total length of all the phylogenetic branches required to span a given set of taxa on the phylogenetic tree (Faith 1992a. While a recent paper incorrectly characterizes PD as not including information about deeper phylogenetic branches, PD applications over the past decade document the proper incorporation of shared deep branches when assessing the total PD of a set of taxa. Current PD applications to macroinvertebrate taxa in streams of New South Wales, Australia illustrate the practical importance of this definition. Phylogenetic lineages, often corresponding to new, “cryptic”, taxa, are restricted to a small number of stream localities. A recent case of human impact causing loss of taxa in one locality implies a higher PD value for another locality, because it now uniquely represents a deeper branch. This molecular-based phylogenetic pattern supports the use of DNA barcoding programs for biodiversity conservation planning. Here, PD assessments side-step the contentious use of barcoding-based “species” designations. Bio-informatics challenges include combining different phylogenetic evidence, optimization problems for conservation planning, and effective integration of phylogenetic information with environmental and socio-economic data.

  11. The Phylogenetic Diversity of Metagenomes

    Science.gov (United States)

    Kembel, Steven W.; Eisen, Jonathan A.; Pollard, Katherine S.; Green, Jessica L.

    2011-01-01

    Phylogenetic diversity—patterns of phylogenetic relatedness among organisms in ecological communities—provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context. PMID:21912589

  12. Chaotic motifs in gene regulatory networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  13. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism.

    Science.gov (United States)

    Davies, T Jonathan; Kraft, Nathan J B; Salamin, Nicolas; Wolkovich, Elizabeth M

    2012-02-01

    The tendency for more closely related species to share similar traits and ecological strategies can be explained by their longer shared evolutionary histories and represents phylogenetic conservatism. How strongly species traits co-vary with phylogeny can significantly impact how we analyze cross-species data and can influence our interpretation of assembly rules in the rapidly expanding field of community phylogenetics. Phylogenetic conservatism is typically quantified by analyzing the distribution of species values on the phylogenetic tree that connects them. Many phylogenetic approaches, however, assume a completely sampled phylogeny: while we have good estimates of deeper phylogenetic relationships for many species-rich groups, such as birds and flowering plants, we often lack information on more recent interspecific relationships (i.e., within a genus). A common solution has been to represent these relationships as polytomies on trees using taxonomy as a guide. Here we show that such trees can dramatically inflate estimates of phylogenetic conservatism quantified using S. P. Blomberg et al.'s K statistic. Using simulations, we show that even randomly generated traits can appear to be phylogenetically conserved on poorly resolved trees. We provide a simple rarefaction-based solution that can reliably retrieve unbiased estimates of K, and we illustrate our method using data on first flowering times from Thoreau's woods (Concord, Massachusetts, USA).

  14. Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves

    Directory of Open Access Journals (Sweden)

    Harter Klaus

    2006-11-01

    Full Text Available Abstract Background The discovery of cis-regulatory motifs still remains a challenging task even though the number of sequenced genomes is constantly growing. Computational analyses using pattern search algorithms have been valuable in phylogenetic footprinting approaches as have expression profile experiments to predict co-occurring motifs. Surprisingly little is known about the nature of cis-regulatory element (CRE distribution in promoters. Results In this paper we used the Motif Mapper open-source collection of visual basic scripts for the analysis of motifs in any aligned set of DNA sequences. We focused on promoter motif distribution curves to identify positional over-representation of DNA motifs. Using differentially aligned datasets from the model species Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces cerevisiae, we convincingly demonstrated the importance of the position and orientation for motif discovery. Analysis with known CREs and all possible hexanucleotides showed that some functional elements gather close to the transcription and translation initiation sites and that elements other than the TATA-box motif are conserved between eukaryote promoters. While a high background frequency usually decreases the effectiveness of such an enumerative investigation, we improved our analysis by conducting motif distribution maps using large datasets. Conclusion This is the first study to reveal positional over-representation of CREs and promoter motifs in a cross-species approach. CREs and motifs shared between eukaryotic promoters support the observation that an eukaryotic promoter structure has been conserved throughout evolutionary time. Furthermore, with the information on positional enrichment of a motif or a known functional CRE, it is possible to get a more detailed insight into where an element appears to function. This in turn might accelerate the in depth examination of known and yet unknown

  15. Comparative Analysis of Regulatory Motif Discovery Tools for Transcription Factor Binding Sites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the post-genomic era, identification of specific regulatory motifs or transcription factor binding sites (TFBSs) in non-coding DNA sequences, which is essential to elucidate transcriptional regulatory networks, has emerged as an obstacle that frustrates many researchers. Consequently, numerous motif discovery tools and correlated databases have been applied to solving this problem. However, these existing methods, based on different computational algorithms, show diverse motif prediction efficiency in non-coding DNA sequences. Therefore, understanding the similarities and differences of computational algorithms and enriching the motif discovery literatures are important for users to choose the most appropriate one among the online available tools. Moreover, there still lacks credible criterion to assess motif discovery tools and instructions for researchers to choose the best according to their own projects. Thus integration of the related resources might be a good approach to improve accuracy of the application. Recent studies integrate regulatory motif discovery tools with experimental methods to offer a complementary approach for researchers, and also provide a much-needed model for current researches on transcriptional regulatory networks. Here we present a comparative analysis of regulatory motif discovery tools for TFBSs.

  16. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  17. On Nakhleh's metric for reduced phylogenetic networks.

    Science.gov (United States)

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel

    2009-01-01

    We prove that Nakhleh's metric for reduced phylogenetic networks is also a metric on the classes of tree-child phylogenetic networks, semibinary tree-sibling time consistent phylogenetic networks, and multilabeled phylogenetic trees. We also prove that it separates distinguishable phylogenetic networks. In this way, it becomes the strongest dissimilarity measure for phylogenetic networks available so far. Furthermore, we propose a generalization of that metric that separates arbitrary phylogenetic networks.

  18. WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches.

    Science.gov (United States)

    Romer, Katherine A; Kayombya, Guy-Richard; Fraenkel, Ernest

    2007-07-01

    WebMOTIFS provides a web interface that facilitates the discovery and analysis of DNA-sequence motifs. Several studies have shown that the accuracy of motif discovery can be significantly improved by using multiple de novo motif discovery programs and using randomized control calculations to identify the most significant motifs or by using Bayesian approaches. WebMOTIFS makes it easy to apply these strategies. Using a single submission form, users can run several motif discovery programs and score, cluster and visualize the results. In addition, the Bayesian motif discovery program THEME can be used to determine the class of transcription factors that is most likely to regulate a set of sequences. Input can be provided as a list of gene or probe identifiers. Used with the default settings, WebMOTIFS accurately identifies biologically relevant motifs from diverse data in several species. WebMOTIFS is freely available at http://fraenkel.mit.edu/webmotifs.

  19. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  20. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification.

    Science.gov (United States)

    Wang, Yin; Li, Rudong; Zhou, Yuhua; Ling, Zongxin; Guo, Xiaokui; Xie, Lu; Liu, Lei

    2016-01-01

    Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  1. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification

    Directory of Open Access Journals (Sweden)

    Yin Wang

    2016-01-01

    Full Text Available Background. Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Results. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. Conclusions. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  2. Quartets and unrooted phylogenetic networks.

    Science.gov (United States)

    Gambette, Philippe; Berry, Vincent; Paul, Christophe

    2012-08-01

    Phylogenetic networks were introduced to describe evolution in the presence of exchanges of genetic material between coexisting species or individuals. Split networks in particular were introduced as a special kind of abstract network to visualize conflicts between phylogenetic trees which may correspond to such exchanges. More recently, methods were designed to reconstruct explicit phylogenetic networks (whose vertices can be interpreted as biological events) from triplet data. In this article, we link abstract and explicit networks through their combinatorial properties, by introducing the unrooted analog of level-k networks. In particular, we give an equivalence theorem between circular split systems and unrooted level-1 networks. We also show how to adapt to quartets some existing results on triplets, in order to reconstruct unrooted level-k phylogenetic networks. These results give an interesting perspective on the combinatorics of phylogenetic networks and also raise algorithmic and combinatorial questions.

  3. Structural motifs are closed into cycles in proteins.

    Science.gov (United States)

    Efimov, Alexander V

    2010-08-27

    Beta-hairpins, triple-strand beta-sheets and betaalphabeta-units represent simple structural motifs closed into cycles by systems of hydrogen bonds. Secondary closing of these simple motifs into large cycles by means of different superhelices, split beta-hairpins or SS-bridges results in the formation of more complex structural motifs having unique overall folds and unique handedness such as abcd-units, phi-motifs, five- and seven-segment alpha/beta-motifs. Apparently, the complex structural motifs are more cooperative and stable and this may be one of the main reasons of high frequencies of occurrence of the motifs in proteins.

  4. MicroRNA sequence motifs reveal asymmetry between the stem arms

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Havgaard, Jakob Hull; Ensterö, M.

    2006-01-01

    RNAs in their genomic contexts. We have compared profiles of mature miRNAs within their genomic context of the 5' and 3' stemloop precursor arms and we find asymmetry between mature sequences of the 5' and 3' stemloop precursor arms. The main observation is that vertebrate organisms have a characteristic motif on the 5......' arm which is in contrast to the 3' arm motif which mainly show the conserved U at the position of the mature start. Also the vertebrate 5' arm motif show a semi-conserved G 13 nucleotides upstream from the first position. We compared the 5' and 3' arm profiles using the average log likelihood ratio...... (ALLR) score, as defined by Wang and Stormo (2003) [Wang T., Stormo, G.D., 2003. Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics 2369-2380.] and computing a p-value we find that the two profiles differs significantly in their 3' end where the 5' arm...

  5. Sublinear Time Motif Discovery from Multiple Sequences

    Directory of Open Access Journals (Sweden)

    Yunhui Fu

    2013-10-01

    Full Text Available In this paper, a natural probabilistic model for motif discovery has been used to experimentally test the quality of motif discovery programs. In this model, there are k background sequences, and each character in a background sequence is a random character from an alphabet, Σ. A motif G = g1g2 ... gm is a string of m characters. In each background sequence is implanted a probabilistically-generated approximate copy of G. For a probabilistically-generated approximate copy b1b2 ... bm of G, every character, bi, is probabilistically generated, such that the probability for bi ≠ gi is at most α. We develop two new randomized algorithms and one new deterministic algorithm. They make advancements in the following aspects: (1 The algorithms are much faster than those before. Our algorithms can even run in sublinear time. (2 They can handle any motif pattern. (3 The restriction for the alphabet size is a lower bound of four. This gives them potential applications in practical problems, since gene sequences have an alphabet size of four. (4 All algorithms have rigorous proofs about their performances. The methods developed in this paper have been used in the software implementation. We observed some encouraging results that show improved performance for motif detection compared with other software.

  6. Phylogenetic molecular function annotation

    Science.gov (United States)

    Engelhardt, Barbara E.; Jordan, Michael I.; Repo, Susanna T.; Brenner, Steven E.

    2009-07-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called "phylogenomics") is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  7. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.

    Science.gov (United States)

    Tong, Hao; Schliekelman, Paul; Mrázek, Jan

    2017-01-05

    DNA sequences contain repetitive motifs which have various functions in the physiology of the organism. A number of methods have been developed for discovery of such sequence motifs with a primary focus on detection of regulatory motifs and particularly transcription factor binding sites. Most motif-finding methods apply probabilistic models to detect motifs characterized by unusually high number of copies of the motif in the analyzed sequences. We present a novel method for detection of pairs of motifs separated by spacers of variable nucleotide sequence but conserved length. Unlike existing methods for motif discovery, the motifs themselves are not required to occur at unusually high frequency but only to exhibit a significant preference to occur at a specific distance from each other. In the present implementation of the method, motifs are represented by pentamers and all pairs of pentamers are evaluated for statistically significant preference for a specific distance. An important step of the algorithm eliminates motif pairs where the spacers separating the two motifs exhibit a high degree of sequence similarity; such motif pairs likely arise from duplications of the whole segment including the motifs and the spacer rather than due to selective constraints indicative of a functional importance of the motif pair. The method was used to scan 569 complete prokaryotic genomes for novel sequence motifs. Some motifs detected were previously known but other motifs found in the search appear to be novel. Selected motif pairs were subjected to further investigation and in some cases their possible biological functions were proposed. We present a new motif-finding technique that is applicable to scanning complete genomes for sequence motifs. The results from analysis of 569 genomes suggest that the method detects previously known motifs that are expected to be found as well as new motifs that are unlikely to be discovered by traditional motif-finding methods. We conclude

  8. Sequential motif profile of natural visibility graphs

    CERN Document Server

    Iacovacci, Jacopo

    2016-01-01

    The concept of sequential visibility graph motifs -subgraphs appearing with characteristic frequencies in the visibility graphs associated to time series- has been advanced recently along with a theoretical framework to compute analytically the motif profiles associated to Horizontal Visibility Graphs (HVGs). Here we develop a theory to compute the profile of sequential visibility graph motifs in the context of Natural Visibility Graphs (VGs). This theory gives exact results for deterministic aperiodic processes with a smooth invariant density or stochastic processes that fulfil the Markov property and have a continuous marginal distribution. The framework also allows for a linear time numerical estimation in the case of empirical time series. A comparison between the HVG and the VG case (including evaluation of their robustness for short series polluted with measurement noise) is also presented.

  9. Phylogenetic analysis of S1 gene of infectious bronchitis virus isolates from China.

    Science.gov (United States)

    Yan, Fang; Zhao, Yujun; Yue, Wenbin; Yao, J; Lihua, Lv; Ji, Wenhui; Li, Xuying; Liu, Fengbo; Wu, Qian

    2011-09-01

    Between 2006 and 2009, seven strains of infectious bronchitis (IB) virus (IBV) were isolated from vaccinated chicken flocks on different chicken farms in China. The pathogenic characters of seven IBV strains were assessed. Each of the seven strains was infective to the test chickens and could induce an immune response. The results from chicken embryo cross-neutralization assays showed that these strains were antigenically distinct from classic IBV strains of H120, M41, Conn, and Gray. Compared to H120 vaccine strain, point mutation, short insertion, and deletion occurred at many positions in the S1 protein of the seven strains. Five of the seven strains had the motif (HRRRR), which was identical to that of the epidemic IBV strains in China. Two new motifs (HRLRR and RRIRR) emerged in the isolated strains. The homology of the nucleotide and amino acid sequences of the S1 gene among the seven isolates was 81.7%-99.7% and 79.0%-99.4%, respectively. These seven strains were also genetically different from the vaccine strains and non-China IBV strains but closely related to large numbers of Chinese strains. The seven isolates and 36 reference IBV strains were clustered into six distinct groups (I-VI). The seven strains were categorized into groups I, II, and III, forming a big phylogenetic branch, which is closely related to Chinese IBVs, whereas the vaccine strains belonging to group VI are genetically distant from groups I, II, and III. The results from this study indicate that different IBV strains cocirculate in the chicken population in China.

  10. Phylogenetics and the human microbiome.

    Science.gov (United States)

    Matsen, Frederick A

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work.

  11. [Foundations of the new phylogenetics].

    Science.gov (United States)

    Pavlinov, I Ia

    2004-01-01

    Evolutionary idea is the core of the modern biology. Due to this, phylogenetics dealing with historical reconstructions in biology takes a priority position among biological disciplines. The second half of the 20th century witnessed growth of a great interest to phylogenetic reconstructions at macrotaxonomic level which replaced microevolutionary studies dominating during the 30s-60s. This meant shift from population thinking to phylogenetic one but it was not revival of the classical phylogenetics; rather, a new approach emerged that was baptized The New Phylogenetics. It arose as a result of merging of three disciplines which were developing independently during 60s-70s, namely cladistics, numerical phyletics, and molecular phylogenetics (now basically genophyletics). Thus, the new phylogenetics could be defined as a branch of evolutionary biology aimed at elaboration of "parsimonious" cladistic hypotheses by means of numerical methods on the basis of mostly molecular data. Classical phylogenetics, as a historical predecessor of the new one, emerged on the basis of the naturphilosophical worldview which included a superorganismal idea of biota. Accordingly to that view, historical development (the phylogeny) was thought an analogy of individual one (the ontogeny) so its most basical features were progressive parallel developments of "parts" (taxa), supplemented with Darwinian concept of monophyly. Two predominating traditions were diverged within classical phylogenetics according to a particular interpretation of relation between these concepts. One of them (Cope, Severtzow) belittled monophyly and paid most attention to progressive parallel developments of morphological traits. Such an attitude turned this kind of phylogenetics to be rather the semogenetics dealing primarily with evolution of structures and not of taxa. Another tradition (Haeckel) considered both monophyletic and parallel origins of taxa jointly: in the middle of 20th century it was split into

  12. Alignment-free phylogenetics and population genetics.

    Science.gov (United States)

    Haubold, Bernhard

    2014-05-01

    Phylogenetics and population genetics are central disciplines in evolutionary biology. Both are based on comparative data, today usually DNA sequences. These have become so plentiful that alignment-free sequence comparison is of growing importance in the race between scientists and sequencing machines. In phylogenetics, efficient distance computation is the major contribution of alignment-free methods. A distance measure should reflect the number of substitutions per site, which underlies classical alignment-based phylogeny reconstruction. Alignment-free distance measures are either based on word counts or on match lengths, and I apply examples of both approaches to simulated and real data to assess their accuracy and efficiency. While phylogeny reconstruction is based on the number of substitutions, in population genetics, the distribution of mutations along a sequence is also considered. This distribution can be explored by match lengths, thus opening the prospect of alignment-free population genomics.

  13. MEME SUITE: tools for motif discovery and searching.

    Science.gov (United States)

    Bailey, Timothy L; Boden, Mikael; Buske, Fabian A; Frith, Martin; Grant, Charles E; Clementi, Luca; Ren, Jingyuan; Li, Wilfred W; Noble, William S

    2009-07-01

    The MEME Suite web server provides a unified portal for online discovery and analysis of sequence motifs representing features such as DNA binding sites and protein interaction domains. The popular MEME motif discovery algorithm is now complemented by the GLAM2 algorithm which allows discovery of motifs containing gaps. Three sequence scanning algorithms--MAST, FIMO and GLAM2SCAN--allow scanning numerous DNA and protein sequence databases for motifs discovered by MEME and GLAM2. Transcription factor motifs (including those discovered using MEME) can be compared with motifs in many popular motif databases using the motif database scanning algorithm TOMTOM. Transcription factor motifs can be further analyzed for putative function by association with Gene Ontology (GO) terms using the motif-GO term association tool GOMO. MEME output now contains sequence LOGOS for each discovered motif, as well as buttons to allow motifs to be conveniently submitted to the sequence and motif database scanning algorithms (MAST, FIMO and TOMTOM), or to GOMO, for further analysis. GLAM2 output similarly contains buttons for further analysis using GLAM2SCAN and for rerunning GLAM2 with different parameters. All of the motif-based tools are now implemented as web services via Opal. Source code, binaries and a web server are freely available for noncommercial use at http://meme.nbcr.net.

  14. Skeletal Rigidity of Phylogenetic Trees

    CERN Document Server

    Cheng, Howard; Li, Brian; Risteski, Andrej

    2012-01-01

    Motivated by geometric origami and the straight skeleton construction, we outline a map between spaces of phylogenetic trees and spaces of planar polygons. The limitations of this map is studied through explicit examples, culminating in proving a structural rigidity result.

  15. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  16. Bioactive motifs of agouti signal protein.

    Science.gov (United States)

    Virador, V M; Santis, C; Furumura, M; Kalbacher, H; Hearing, V J

    2000-08-25

    The switch between the synthesis of eu- and pheomelanins is modulated by the interaction of two paracrine signaling molecules, alpha-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP), which interact with melanocytes via the MSH receptor (MC1R). Comparison of the primary sequence of ASP with the known MSH pharmacophore provides no suggestion about the putative bioactive domain(s) of ASP. To identify such bioactive motif(s), we synthesized 15-mer peptides that spanned the primary sequence of ASP and determined their effects on the melanogenic activities of murine melanocytes. Northern and Western blotting were used, together with chemical analysis of melanins and enzymatic assays, to identify three distinct bioactive regions of ASP that down-regulate eumelanogenesis. The decrease in eumelanin production was mediated by down-regulation of mRNA levels for tyrosinase and other melanogenic enzymes, as occurs in vivo, and these effects were comparable to those elicited by intact recombinant ASP. Shorter peptides in those motifs were synthesized and their effects on melanogenesis were further investigated. The amino acid arginine, which is present in the MSH peptide pharmacophore (HFRW), is also in the most active domain of ASP (KVARP). Our data suggest that lysines and an arginine (in motifs such as KxxxxKxxR or KxxRxxxxK) are important for the bioactivity of ASP. Identification of the specific ASP epitope that interacts with the MC1R has potential pharmacological applications in treating dysfunctions of skin pigmentation.

  17. Identifying motifs in folktales using topic models

    NARCIS (Netherlands)

    Karsdorp, F.; Bosch, A.P.J. van den

    2013-01-01

    With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well a

  18. Quantum Simulation of Phylogenetic Trees

    CERN Document Server

    Ellinas, Demosthenes

    2011-01-01

    Quantum simulations constructing probability tensors of biological multi-taxa in phylogenetic trees are proposed, in terms of positive trace preserving maps, describing evolving systems of quantum walks with multiple walkers. Basic phylogenetic models applying on trees of various topologies are simulated following appropriate decoherent quantum circuits. Quantum simulations of statistical inference for aligned sequences of biological characters are provided in terms of a quantum pruning map operating on likelihood operator observables, utilizing state-observable duality and measurement theory.

  19. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  20. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  1. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  2. An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers.

    Science.gov (United States)

    Wang, Rang Jian; Gao, Xiang Feng; Kong, Xiang Rui; Yang, Jun

    2016-01-01

    Microsatellites, or simple sequence repeats (SSRs), especially those with long-core motifs (tri-, tetra-, penta-, and hexa-nucleotide) represent an excellent tool for DNA fingerprinting. SSRs with long-core motifs are preferred since neighbor alleles are more easily separated and identified from each other, which render the interpretation of electropherograms and the true alleles more reliable. In the present work, with the purpose of characterizing a set of core SSR markers with long-core motifs for well fingerprinting clonal cultivars of tea (Camellia sinensis), we analyzed 66 elite clonal tea cultivars in China with 33 initially-chosen long-core motif SSR markers covering all the 15 linkage groups of tea plant genome. A set of 6 SSR markers were conclusively selected as core SSR markers after further selection. The polymorphic information content (PIC) of the core SSR markers was >0.5, with ≤5 alleles in each marker containing 10 or fewer genotypes. Phylogenetic analysis revealed that the core SSR markers were not strongly correlated with the trait 'cultivar processing-property'. The combined probability of identity (PID) between two random cultivars for the whole set of 6 SSR markers was estimated to be 2.22 × 10(-5), which was quite low, confirmed the usefulness of the proposed SSR markers for fingerprinting analyses in Camellia sinensis. Moreover, for the sake of quickly discriminating the clonal tea cultivars, a cultivar identification diagram (CID) was subsequently established using these core markers, which fully reflected the identification process and provided the immediate information about which SSR markers were needed to identify a cultivar chosen among the tested ones. The results suggested that long-core motif SSR markers used in the investigation contributed to the accurate and efficient identification of the clonal tea cultivars and enabled the protection of intellectual property.

  3. Phylogenetic analysis of Maverick/Polinton giant transposons across organisms.

    Science.gov (United States)

    Haapa-Paananen, Saija; Wahlberg, Niklas; Savilahti, Harri

    2014-09-01

    Polintons are a recently discovered group of large transposable elements (<40Kb in size) encoding up to 10 different proteins. The increasing number of genome sequencing projects has led to the discovery of these elements in genomes of protists, fungi, and animals, but not in plants. The RepBase database of eukaryotic repetitive elements currently contains consensus sequences and information of 70 Polinton elements from 28 organisms. Previous phylogenetic analyses have shown the relationship of Polintons to linear plasmids, bacteriophages, and retroviruses. However, a comprehensive phylogenetic analysis of all known Polintons has been lacking. We retrieved the Polinton consensus sequences from the most recent version of RepBase, and compiled amino acid sequences for the two most common Polinton-specific genes, the DNA polymerase-B and retroviral-like integrase. Open reading frame predictions and homology comparisons revealed partial or full sequences for 54 polymerases and 55 Polinton integrases. Multiple sequence alignments portrayed conservation in several functional motifs of these proteins. Phylogenetic analyses based on Bayesian inference using single- and combined-gene datasets revealed seven distinct lineages of Polintons that broadly follow the tree of life. Two of the seven lineages are found within the same species, indicating that ancient divergences have been retained to this day. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. A discriminative approach for unsupervised clustering of DNA sequence motifs.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available Algorithmic comparison of DNA sequence motifs is a problem in bioinformatics that has received increased attention during the last years. Its main applications concern characterization of potentially novel motifs and clustering of a motif collection in order to remove redundancy. Despite growing interest in motif clustering, the question which motif clusters to aim at has so far not been systematically addressed. Here we analyzed motif similarities in a comprehensive set of vertebrate transcription factor classes. For this we developed enhanced similarity scores by inclusion of the information coverage (IC criterion, which evaluates the fraction of information an alignment covers in aligned motifs. A network-based method enabled us to identify motif clusters with high correspondence to DNA-binding domain phylogenies and prior experimental findings. Based on this analysis we derived a set of motif families representing distinct binding specificities. These motif families were used to train a classifier which was further integrated into a novel algorithm for unsupervised motif clustering. Application of the new algorithm demonstrated its superiority to previously published methods and its ability to reproduce entrained motif families. As a result, our work proposes a probabilistic approach to decide whether two motifs represent common or distinct binding specificities.

  5. A Consistent Phylogenetic Backbone for the Fungi

    Science.gov (United States)

    Ebersberger, Ingo; de Matos Simoes, Ricardo; Kupczok, Anne; Gube, Matthias; Kothe, Erika; Voigt, Kerstin; von Haeseler, Arndt

    2012-01-01

    The kingdom of fungi provides model organisms for biotechnology, cell biology, genetics, and life sciences in general. Only when their phylogenetic relationships are stably resolved, can individual results from fungal research be integrated into a holistic picture of biology. However, and despite recent progress, many deep relationships within the fungi remain unclear. Here, we present the first phylogenomic study of an entire eukaryotic kingdom that uses a consistency criterion to strengthen phylogenetic conclusions. We reason that branches (splits) recovered with independent data and different tree reconstruction methods are likely to reflect true evolutionary relationships. Two complementary phylogenomic data sets based on 99 fungal genomes and 109 fungal expressed sequence tag (EST) sets analyzed with four different tree reconstruction methods shed light from different angles on the fungal tree of life. Eleven additional data sets address specifically the phylogenetic position of Blastocladiomycota, Ustilaginomycotina, and Dothideomycetes, respectively. The combined evidence from the resulting trees supports the deep-level stability of the fungal groups toward a comprehensive natural system of the fungi. In addition, our analysis reveals methodologically interesting aspects. Enrichment for EST encoded data—a common practice in phylogenomic analyses—introduces a strong bias toward slowly evolving and functionally correlated genes. Consequently, the generalization of phylogenomic data sets as collections of randomly selected genes cannot be taken for granted. A thorough characterization of the data to assess possible influences on the tree reconstruction should therefore become a standard in phylogenomic analyses. PMID:22114356

  6. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    DNA regulatory motif selection based on support vector machine (SVM) and its application in microarray ... African Journal of Biotechnology ... experiments to explore the underlying relationships between motif types and gene functions.

  7. Using SCOPE to identify potential regulatory motifs in coregulated genes.

    Science.gov (United States)

    Martyanov, Viktor; Gross, Robert H

    2011-05-31

    SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data. In this article, we utilize a web version of SCOPE to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs and has been used in other studies. The three algorithms that comprise SCOPE are BEAM, which finds non-degenerate motifs (ACCGGT), PRISM, which finds degenerate motifs (ASCGWT), and SPACER, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from

  8. apex: phylogenetics with multiple genes.

    Science.gov (United States)

    Jombart, Thibaut; Archer, Frederick; Schliep, Klaus; Kamvar, Zhian; Harris, Rebecca; Paradis, Emmanuel; Goudet, Jérome; Lapp, Hilmar

    2017-01-01

    Genetic sequences of multiple genes are becoming increasingly common for a wide range of organisms including viruses, bacteria and eukaryotes. While such data may sometimes be treated as a single locus, in practice, a number of biological and statistical phenomena can lead to phylogenetic incongruence. In such cases, different loci should, at least as a preliminary step, be examined and analysed separately. The r software has become a popular platform for phylogenetics, with several packages implementing distance-based, parsimony and likelihood-based phylogenetic reconstruction, and an even greater number of packages implementing phylogenetic comparative methods. Unfortunately, basic data structures and tools for analysing multiple genes have so far been lacking, thereby limiting potential for investigating phylogenetic incongruence. In this study, we introduce the new r package apex to fill this gap. apex implements new object classes, which extend existing standards for storing DNA and amino acid sequences, and provides a number of convenient tools for handling, visualizing and analysing these data. In this study, we introduce the main features of the package and illustrate its functionalities through the analysis of a simple data set.

  9. Bases of motifs for generating repeated patterns with wild cards

    OpenAIRE

    Pisanti, Nadia; Crochemore, Maxime; Grossi, Roberto; Sagot, Marie-France

    2005-01-01

    Motif inference represents one of the most important areas of research in computational biology, and one of its oldest ones. Despite this, the problem remains very much open in the sense that no existing definition is fully satisfying, either in formal terms, or in relation to the biological questions that involve finding such motifs. Two main types of motifs have been considered in the literature: matrices (of letter frequency per position in the motif) and patterns. There is no conclusive e...

  10. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif.

    Science.gov (United States)

    Magliery, Thomas J; Regan, Lynne

    2004-10-22

    Consensus design methods have been used successfully to engineer proteins with a particular fold, and moreover to engineer thermostable exemplars of particular folds. Here, we consider how a statistical free energy approach can expand upon current methods of phylogenetic design. As an example, we have analyzed the tetratricopeptide repeat (TPR) motif, using multiple sequence alignment to identify the significance of each position in the TPR. The results provide information above and beyond that revealed by consensus design alone, especially at poorly conserved positions. A particularly striking finding is that certain residues, which TPR-peptide co-crystal structures show are in direct contact with the ligand, display a marked hypervariability. This suggests a novel means of identifying ligand-binding sites, and also implies that TPRs generally function as ligand-binding domains. Using perturbation analysis (or statistical coupling analysis), we examined site-site interactions within the TPR motif. Correlated occurrences of amino acid residues at poorly conserved positions explain how TPRs achieve their near-neutral surface charge distributions, and why a TPR designed from straight consensus has an unusually high net charge. Networks of interacting sites revealed that TPRs fall into two unrecognized families with distinct sets of interactions related to the identity of position 7 (Leu or Lys/Arg). Statistical free energy analysis provides a more complete description of "What makes a TPR a TPR?" than consensus alone, and it suggests general approaches to extend and improve the phylogenetic design of proteins.

  11. Anticipated synchronization in neuronal network motifs

    Science.gov (United States)

    Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.

    2013-01-01

    Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.

  12. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    Directory of Open Access Journals (Sweden)

    Bálint Gál

    2016-11-01

    Full Text Available While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation.

  13. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  14. Trading networks, abnormal motifs and stock manipulation

    OpenAIRE

    2012-01-01

    We study trade-based manipulation of stock prices from the perspective of complex trading networks constructed by using detailed information of trades. A stock trading network consists of nodes and directed links, where every trader is a node and a link is formed from one trader to the other if the former sells shares to the latter. Specifically, three abnormal network motifs are investigated, which are found to be formed by a few traders, implying potential intention of price manipulation. W...

  15. MENGUNGKAP SEJARAH DAN MOTIF BATIK SEMARANGAN

    Directory of Open Access Journals (Sweden)

    Dewi Yuliati

    2011-10-01

    Full Text Available Batik Semarang was born in line with the needs of the people of Hyderabad of the material with a new motif or style tailored to the taste, intention, and creativity of the craftsmen. Batik is a combination of several countries influence developing in Indonesian culture. Based on its shape, Batik designs can be divided into two major groups, namely geometric and non-Geometric. The development of Semarangan batik was due to the fact that certain motif of batik can only be worn by certain people, not for all group of people. Batik semarangan craftments are found in coastal regions. It displays the design composing of ornaments plucked from marine environment. Indonesian Batik develops not only to display a blending of court Batik designs with the coastal Batik technique, but also to incorporate other ornaments which come from many various ethnic groups in Indonesia.   Key words: batik, history, ornaments, marine environment, designs   Batik Semarang lahirkan sejalan dengan kebutuhan dari orang-orang dari Hyderabad akan bahan dengan motif atau gaya baru yang berdasarkan pada rasa, niat, dan kreatifitas dari pembuatnya. Batik merupakan perpaduan dari pengaruh beberapa negara yang berkembang dalam budaya Indonesia. Ditinjau dari desainnya, desain batik dapat dibagi menjadi dua kelompok utama, yakni geometrik dan nongeometrik. Pengembangan yang dilakukan terhadap batik semarangan disebabkan adanya beberapa motif batik yang hanya digunakan oleh kalangan tertentu, dan tidak boleh untuk kalangan umum. Pengrajin batik Semarangan berkembang di kawasan pesisir. Ia menampilkan desain yang terdiri atas berbagai ornamen yang menunjukkan ciri khas kemaritiman. Batik ini dikembangakan tidak hanya menampilkan desain batik khas pesisiran, tetapi juga memasukkan berbagai ornament dari beragam kelompok etnis di Indonesia.   Kata kunci: batik, sejarah, ragam hias, lingkungan pesisir, desain  

  16. Bosque: integrated phylogenetic analysis software.

    Science.gov (United States)

    Ramírez-Flandes, Salvador; Ulloa, Osvaldo

    2008-11-01

    Phylogenetic analyses today involve dealing with computer files in different formats and often several computer programs. Although some widely used applications have integrated important functionalities for such analyses, they still work with local resources only: input/output files (users have to manage them) and local computing (users have sometimes to leave their programs, on their desktop computers, running for extended periods of time). To address these problems we have developed 'Bosque', a multi-platform client-server software that performs standard phylogenetic tasks either locally or remotely on servers, and integrates the results on a local relational database. Bosque performs sequence alignments and graphical visualization and editing of trees, thus providing a powerful environment that integrates all the steps of phylogenetic analyses. http://bosque.udec.cl

  17. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  18. Multilayer motif analysis of brain networks

    CERN Document Server

    Battiston, Federico; Chavez, Mario; Latora, Vito

    2016-01-01

    In the last decade network science has shed new light on the anatomical connectivity and on correlations in the activity of different areas of the human brain. The study of brain networks has made possible in fact to detect the central areas of a neural system, and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on structural and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows to perform a multiplex analysis of the human brain where the structural and functional layers are considered at the same time. In this work we describe how to classify subgraphs in multiplex networks, and we extend motif analysis to networks with many layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, respectively obtained from diffusion and functional magnetic resonance imaging. Results i...

  19. HeliCis: a DNA motif discovery tool for colocalized motif pairs with periodic spacing

    Directory of Open Access Journals (Sweden)

    Mostad Petter

    2007-10-01

    Full Text Available Abstract Background Correct temporal and spatial gene expression during metazoan development relies on combinatorial interactions between different transcription factors. As a consequence, cis-regulatory elements often colocalize in clusters termed cis-regulatory modules. These may have requirements on organizational features such as spacing, order and helical phasing (periodic spacing between binding sites. Due to the turning of the DNA helix, a small modification of the distance between a pair of sites may sometimes drastically disrupt function, while insertion of a full helical turn of DNA (10–11 bp between cis elements may cause functionality to be restored. Recently, de novo motif discovery methods which incorporate organizational properties such as colocalization and order preferences have been developed, but there are no tools which incorporate periodic spacing into the model. Results We have developed a web based motif discovery tool, HeliCis, which features a flexible model which allows de novo detection of motifs with periodic spacing. Depending on the parameter settings it may also be used for discovering colocalized motifs without periodicity or motifs separated by a fixed gap of known or unknown length. We show on simulated data that it can efficiently capture the synergistic effects of colocalization and periodic spacing to improve detection of weak DNA motifs. It provides a simple to use web interface which interactively visualizes the current settings and thereby makes it easy to understand the parameters and the model structure. Conclusion HeliCis provides simple and efficient de novo discovery of colocalized DNA motif pairs, with or without periodic spacing. Our evaluations show that it can detect weak periodic patterns which are not easily discovered using a sequential approach, i.e. first finding the binding sites and second analyzing the properties of their pairwise distances.

  20. Interpreting the universal phylogenetic tree

    Science.gov (United States)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  1. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  2. ET-Motif: Solving the Exact (l, d)-Planted Motif Problem Using Error Tree Structure.

    Science.gov (United States)

    Al-Okaily, Anas; Huang, Chun-Hsi

    2016-07-01

    Motif finding is an important and a challenging problem in many biological applications such as discovering promoters, enhancers, locus control regions, transcription factors, and more. The (l, d)-planted motif search, PMS, is one of several variations of the problem. In this problem, there are n given sequences over alphabets of size [Formula: see text], each of length m, and two given integers l and d. The problem is to find a motif m of length l, where in each sequence there is at least an l-mer at a Hamming distance of [Formula: see text] of m. In this article, we propose ET-Motif, an algorithm that can solve the PMS problem in [Formula: see text] time and [Formula: see text] space. The time bound can be further reduced by a factor of m with [Formula: see text] space. In case the suffix tree that is built for the input sequences is balanced, the problem can be solved in [Formula: see text] time and [Formula: see text] space. Similarly, the time bound can be reduced by a factor of m using [Formula: see text] space. Moreover, the variations of the problem, namely the edit distance PMS and edited PMS (Quorum), can be solved using ET-Motif with simple modifications but upper bands of space and time. For edit distance PMS, the time and space bounds will be increased by [Formula: see text], while for edited PMS the increase will be of [Formula: see text] in the time bound.

  3. Dynamics of network motifs in genetic regulatory networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Zeng-Rong; Zhang Jian-Bao

    2007-01-01

    Network motifs hold a very important status in genetic regulatory networks. This paper aims to analyse the dynamical property of the network motifs in genetic regulatory networks. The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point, but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles. The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.

  4. Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity

    Science.gov (United States)

    Erceg, Jelena; Saunders, Timothy E.; Girardot, Charles; Devos, Damien P.; Hufnagel, Lars; Furlong, Eileen E. M.

    2014-01-01

    Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood. PMID:24391522

  5. Evolutionary Phylogenetic Networks: Models and Issues

    Science.gov (United States)

    Nakhleh, Luay

    Phylogenetic networks are special graphs that generalize phylogenetic trees to allow for modeling of non-treelike evolutionary histories. The ability to sequence multiple genetic markers from a set of organisms and the conflicting evolutionary signals that these markers provide in many cases, have propelled research and interest in phylogenetic networks to the forefront in computational phylogenetics. Nonetheless, the term 'phylogenetic network' has been generically used to refer to a class of models whose core shared property is tree generalization. Several excellent surveys of the different flavors of phylogenetic networks and methods for their reconstruction have been written recently. However, unlike these surveys, this chapte focuses specifically on one type of phylogenetic networks, namely evolutionary phylogenetic networks, which explicitly model reticulate evolutionary events. Further, this chapter focuses less on surveying existing tools, and addresses in more detail issues that are central to the accurate reconstruction of phylogenetic networks.

  6. Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics.

    Science.gov (United States)

    Andújar, Carmelo; Arribas, Paula; Ruzicka, Filip; Crampton-Platt, Alex; Timmermans, Martijn J T N; Vogler, Alfried P

    2015-07-01

    High-throughput DNA methods hold great promise for the study of taxonomically intractable mesofauna of the soil. Here, we assess species diversity and community structure in a phylogenetic framework, by sequencing total DNA from bulk specimen samples and assembly of mitochondrial genomes. The combination of mitochondrial metagenomics and DNA barcode sequencing of 1494 specimens in 69 soil samples from three geographic regions in southern Iberia revealed >300 species of soil Coleoptera (beetles) from a broad spectrum of phylogenetic lineages. A set of 214 mitochondrial sequences longer than 3000 bp was generated and used to estimate a well-supported phylogenetic tree of the order Coleoptera. Shorter sequences, including cox1 barcodes, were placed on this mitogenomic tree. Raw Illumina reads were mapped against all available sequences to test for species present in local samples. This approach simultaneously established the species richness, phylogenetic composition and community turnover at species and phylogenetic levels. We find a strong signature of vertical structuring in soil fauna that shows high local community differentiation between deep soil and superficial horizons at phylogenetic levels. Within the two vertical layers, turnover among regions was primarily at the tip (species) level and was stronger in the deep soil than leaf litter communities, pointing to layer-mediated drivers determining species diversification, spatial structure and evolutionary assembly of soil communities. This integrated phylogenetic framework opens the application of phylogenetic community ecology to the mesofauna of the soil, among the most diverse and least well-understood ecosystems, and will propel both theoretical and applied soil science.

  7. Phylogenetic relationships among Maloideae species

    Science.gov (United States)

    The Maloideae is a highly diverse sub-family of the Rosaceae containing several agronomically important species (Malus sp. and Pyrus sp.) and their wild relatives. Previous phylogenetic work within the group has revealed extensive intergeneric hybridization and polyploidization. In order to develop...

  8. Phylogenetics of neotropical Platymiscium (Leguminosae

    DEFF Research Database (Denmark)

    Saslis-Lagoudakis, C. Haris; Chase, Mark W; Robinson, Daniel N

    2008-01-01

    Platymiscium is a neotropical legume genus of forest trees in the Pterocarpus clade of the pantropical "dalbergioid" clade. It comprises 19 species (29 taxa), distributed from Mexico to southern Brazil. This study presents a molecular phylogenetic analysis of Platymiscium and allies inferred from...

  9. No tradeoff between versatility and robustness in gene circuit motifs

    Science.gov (United States)

    Payne, Joshua L.

    2016-05-01

    Circuit motifs are small directed subgraphs that appear in real-world networks significantly more often than in randomized networks. In the Boolean model of gene circuits, most motifs are realized by multiple circuit genotypes. Each of a motif's constituent circuit genotypes may have one or more functions, which are embodied in the expression patterns the circuit forms in response to specific initial conditions. Recent enumeration of a space of nearly 17 million three-gene circuit genotypes revealed that all circuit motifs have more than one function, with the number of functions per motif ranging from 12 to nearly 30,000. This indicates that some motifs are more functionally versatile than others. However, the individual circuit genotypes that constitute each motif are less robust to mutation if they have many functions, hinting that functionally versatile motifs may be less robust to mutation than motifs with few functions. Here, I explore the relationship between versatility and robustness in circuit motifs, demonstrating that functionally versatile motifs are robust to mutation despite the inherent tradeoff between versatility and robustness at the level of an individual circuit genotype.

  10. CONTEMPORARY USAGE OF TRADITIONAL TURKISH MOTIFS IN PRODUCT DESIGNS

    Directory of Open Access Journals (Sweden)

    Tulay Gumuser

    2012-12-01

    Full Text Available The aim of this study is to identify the traditional Turkish motifs and its relations among present industrial designs. Traditional Turkish motifs played a very important role in 16th century onwards. The arts of the Ottoman Empire were used because of their symbolic meanings and unique styles. When we examine these motifs we encounter; Tiger Stripe, Three Spot (Çintemani, Rumi, Hatayi, Penç, Cloud, Crescent, Star, Crown, Hyacinth, Tulip and Carnation motifs. Nowadays, Turkish designers have begun to use these traditional Turkish motifs in their designs so as to create differences and awareness in the world design. The examples of these industrial designs, using the Turkish motifs, have survived and have Ottoman heritage and historical value. In this study, the Turkish motifs will be examined along with their focus on contemporary Turkish industrial designs used today.

  11. RNA structural motif recognition based on least-squares distance.

    Science.gov (United States)

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  12. AISMOTIF-An Artificial Immune System for DNA Motif Discovery

    CERN Document Server

    Seeja, K R

    2011-01-01

    Discovery of transcription factor binding sites is a much explored and still exploring area of research in functional genomics. Many computational tools have been developed for finding motifs and each of them has their own advantages as well as disadvantages. Most of these algorithms need prior knowledge about the data to construct background models. However there is not a single technique that can be considered as best for finding regulatory motifs. This paper proposes an artificial immune system based algorithm for finding the transcription factor binding sites or motifs and two new weighted scores for motif evaluation. The algorithm is enumerative, but sufficient pruning of the pattern search space has been incorporated using immune system concepts. The performance of AISMOTIF has been evaluated by comparing it with eight state of art composite motif discovery algorithms and found that AISMOTIF predicts known motifs as well as new motifs from the benchmark dataset without any prior knowledge about the data...

  13. Chaotic motif sampler: detecting motifs from biological sequences by using chaotic neurodynamics

    Science.gov (United States)

    Matsuura, Takafumi; Ikeguchi, Tohru

    Identification of a region in biological sequences, motif extraction problem (MEP) is solved in bioinformatics. However, the MEP is an NP-hard problem. Therefore, it is almost impossible to obtain an optimal solution within a reasonable time frame. To find near optimal solutions for NP-hard combinatorial optimization problems such as traveling salesman problems, quadratic assignment problems, and vehicle routing problems, chaotic search, which is one of the deterministic approaches, has been proposed and exhibits better performance than stochastic approaches. In this paper, we propose a new alignment method that employs chaotic dynamics to solve the MEPs. It is called the Chaotic Motif Sampler. We show that the performance of the Chaotic Motif Sampler is considerably better than that of the conventional methods such as the Gibbs Site Sampler and the Neighborhood Optimization for Multiple Alignment Discovery.

  14. Charles Darwin, beetles and phylogenetics.

    Science.gov (United States)

    Beutel, Rolf G; Friedrich, Frank; Leschen, Richard A B

    2009-11-01

    Here, we review Charles Darwin's relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in "The Descent of Man". During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig's new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data. This has

  15. Charles Darwin, beetles and phylogenetics

    Science.gov (United States)

    Beutel, Rolf G.; Friedrich, Frank; Leschen, Richard A. B.

    2009-11-01

    Here, we review Charles Darwin’s relation to beetles and developments in coleopteran systematics in the last two centuries. Darwin was an enthusiastic beetle collector. He used beetles to illustrate different evolutionary phenomena in his major works, and astonishingly, an entire sub-chapter is dedicated to beetles in “The Descent of Man”. During his voyage on the Beagle, Darwin was impressed by the high diversity of beetles in the tropics, and he remarked that, to his surprise, the majority of species were small and inconspicuous. However, despite his obvious interest in the group, he did not get involved in beetle taxonomy, and his theoretical work had little immediate impact on beetle classification. The development of taxonomy and classification in the late nineteenth and earlier twentieth century was mainly characterised by the exploration of new character systems (e.g. larval features and wing venation). In the mid-twentieth century, Hennig’s new methodology to group lineages by derived characters revolutionised systematics of Coleoptera and other organisms. As envisioned by Darwin and Ernst Haeckel, the new Hennigian approach enabled systematists to establish classifications truly reflecting evolution. Roy A. Crowson and Howard E. Hinton, who both made tremendous contributions to coleopterology, had an ambivalent attitude towards the Hennigian ideas. The Mickoleit school combined detailed anatomical work with a classical Hennigian character evaluation, with stepwise tree building, comparatively few characters and a priori polarity assessment without explicit use of the outgroup comparison method. The rise of cladistic methods in the 1970s had a strong impact on beetle systematics. Cladistic computer programs facilitated parsimony analyses of large data matrices, mostly morphological characters not requiring detailed anatomical investigations. Molecular studies on beetle phylogeny started in the 1990s with modest taxon sampling and limited DNA data

  16. Bases of motifs for generating repeated patterns with wild cards.

    Science.gov (United States)

    Pisanti, Nadia; Crochemore, Maxime; Grossi, Roberto; Sagot, Marie-France

    2005-01-01

    Motif inference represents one of the most important areas of research in computational biology, and one of its oldest ones. Despite this, the problem remains very much open in the sense that no existing definition is fully satisfying, either in formal terms, or in relation to the biological questions that involve finding such motifs. Two main types of motifs have been considered in the literature: matrices (of letter frequency per position in the motif) and patterns. There is no conclusive evidence in favor of either, and recent work has attempted to integrate the two types into a single model. In this paper, we address the formal issue in relation to motifs as patterns. This is essential to get at a better understanding of motifs in general. In particular, we consider a promising idea that was recently proposed, which attempted to avoid the combinatorial explosion in the number of motifs by means of a generator set for the motifs. Instead of exhibiting a complete list of motifs satisfying some input constraints, what is produced is a basis of such motifs from which all the other ones can be generated. We study the computational cost of determining such a basis of repeated motifs with wild cards in a sequence. We give new upper and lower bounds on such a cost, introducing a notion of basis that is provably contained in (and, thus, smaller) than previously defined ones. Our basis can be computed in less time and space, and is still able to generate the same set of motifs. We also prove that the number of motifs in all bases defined so far grows exponentially with the quorum, that is, with the minimal number of times a motif must appear in a sequence, something unnoticed in previous work. We show that there is no hope to efficiently compute such bases unless the quorum is fixed.

  17. Effects of rate-limiting steps in transcription initiation on genetic filter motifs.

    Science.gov (United States)

    Häkkinen, Antti; Tran, Huy; Yli-Harja, Olli; Ribeiro, Andre S

    2013-01-01

    The behavior of genetic motifs is determined not only by the gene-gene interactions, but also by the expression patterns of the constituent genes. Live single-molecule measurements have provided evidence that transcription initiation is a sequential process, whose kinetics plays a key role in the dynamics of mRNA and protein numbers. The extent to which it affects the behavior of cellular motifs is unknown. Here, we examine how the kinetics of transcription initiation affects the behavior of motifs performing filtering in amplitude and frequency domain. We find that the performance of each filter is degraded as transcript levels are lowered. This effect can be reduced by having a transcription process with more steps. In addition, we show that the kinetics of the stepwise transcription initiation process affects features such as filter cutoffs. These results constitute an assessment of the range of behaviors of genetic motifs as a function of the kinetics of transcription initiation, and thus will aid in tuning of synthetic motifs to attain specific characteristics without affecting their protein products.

  18. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  19. Functionally and phylogenetically diverse plant communities key to soil biota.

    Science.gov (United States)

    Milcu, Alexandru; Allan, Eric; Roscher, Christiane; Jenkins, Tania; Meyer, Sebastian T; Flynn, Dan; Bessler, Holger; Buscot, François; Engels, Christof; Gubsch, Marlén; König, Stephan; Lipowsky, Annett; Loranger, Jessy; Renker, Carsten; Scherber, Christoph; Schmid, Bernhard; Thébault, Elisa; Wubet, Tesfaye; Weisser, Wolfgang W; Scheu, Stefan; Eisenhauer, Nico

    2013-08-01

    Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity--ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.

  20. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  1. DNA motif elucidation using belief propagation

    OpenAIRE

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-01-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the ...

  2. DistAMo: A web-based tool to characterize DNA-motif distribution on bacterial chromosomes

    Directory of Open Access Journals (Sweden)

    Patrick eSobetzko

    2016-03-01

    Full Text Available Short DNA motifs are involved in a multitude of functions such as for example chromosome segregation, DNA replication or mismatch repair. Distribution of such motifs is often not random and the specific chromosomal pattern relates to the respective motif function. Computational approaches which quantitatively assess such chromosomal motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution Analysis of DNA Motifs. The algorithm uses codon redundancy to calculate the relative abundance of short DNA motifs from single genes to entire chromosomes. Comparative genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using DistAMo revealed that (i genes beside the replication origin are enriched in GATCs, (ii genome-wide GATC distribution follows a distinct pattern and (iii genes involved in DNA replication and repair are enriched in GATCs. These features are specific for bacterial chromosomes encoding a Dam methyltransferase. The new software is available as a stand-alone or as an easy-to-use web-based server version at http://www.computational.bio.uni-giessen.de/distamo.

  3. Remarkable phylogenetic resolution of the most complex clade of Cyprinidae (Teleostei: Cypriniformes): a proof of concept of homology assessment and partitioning sequence data integrated with mixed model Bayesian analyses.

    Science.gov (United States)

    Tao, Wenjing; Mayden, Richard L; He, Shunping

    2013-03-01

    Despite many efforts to resolve evolutionary relationships among major clades of Cyprinidae, some nodes have been especially problematic and remain unresolved. In this study, we employ four nuclear gene fragments (3.3kb) to infer interrelationships of the Cyprinidae. A reconstruction of the phylogenetic relationships within the family using maximum parsimony, maximum likelihood, and Bayesian analyses is presented. Among the taxa within the monophyletic Cyprinidae, Rasborinae is the basal-most lineage; Cyprinine is sister to Leuciscine. The monophyly for the subfamilies Gobioninae, Leuciscinae and Acheilognathinae were resolved with high nodal support. Although our results do not completely resolve relationships within Cyprinidae, this study presents novel and significant findings having major implications for a highly diverse and enigmatic clade of East-Asian cyprinids. Within this monophyletic group five closely-related subgroups are identified. Tinca tinca, one of the most phylogenetically enigmatic genera in the family, is strongly supported as having evolutionary affinities with this East-Asian clade; an established yet remarkable association because of the natural variation in phenotypes and generalized ecological niches occupied by these taxa. Our results clearly argue that the choice of partitioning strategies has significant impacts on the phylogenetic reconstructions, especially when multiple genes are being considered. The most highly partitioned model (partitioned by codon positions within genes) extracts the strongest phylogenetic signals and performs better than any other partitioning schemes supported by the strongest 2Δln Bayes factor. Future studies should include higher levels of taxon sampling and partitioned, model-based analyses.

  4. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  5. Protein functional-group 3D motif and its applications

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Representing and recognizing protein active sites sequence motif (1D motif) and structural motif (3D motif) is an important topic for predicting and designing protein function. Prevalent methods for extracting and searching 3D motif always consider residue as the minimal unit, which have limited sensitivity. Here we present a new spatial representation of protein active sites, called "functional-group 3D motif ", based on the fact that the functional groups inside a residue contribute mostly to its function. Relevant algorithm and computer program are developed, which could be widely used in the function prediction and the study of structural-function relationship of proteins. As a test, we defined a functional-group 3D motif of the catalytic triad and oxyanion hole with the structure of porcine trypsin (PDB code: 1mct) as the template. With our motif-searching program, we successfully found similar sub-structures in trypsins, subtilisins and a/b hydrolases, which show distinct folds but share similar catalytic mechanism. Moreover, this motif can be used to elucidate the structural basis of other proteins with variant catalytic triads by comparing it to those proteins. Finally, we scanned this motif against a non-redundant protein structure database to find its matches, and the results demonstrated the potential application of functional group 3D motif in function prediction. Above all, compared with the other 3D-motif representations on residues, the functional group 3D motif achieves better representation of protein active region, which is more sensitive for protein function prediction.

  6. The network motif architecture of dominance hierarchies.

    Science.gov (United States)

    Shizuka, Daizaburo; McDonald, David B

    2015-04-01

    The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies.

  7. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Science.gov (United States)

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-01

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations. PMID:28117683

  8. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  9. Global patterns of amphibian phylogenetic diversity

    DEFF Research Database (Denmark)

    Fritz, Susanne; Rahbek, Carsten

    2012-01-01

    phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index...... successfully colonized these archipelagos. Areas with unusually high phylogenetic diversity were located around biogeographic contact zones in Central America and southern China, and seem to have experienced high immigration or in situ diversification rates, combined with local persistence of old lineages...

  10. Phyx: phylogenetic tools for unix.

    Science.gov (United States)

    Brown, Joseph W; Walker, Joseph F; Smith, Stephen A

    2017-02-08

    The ease with which phylogenomic data can be generated has drastically escalated the computational burden for even routine phylogenetic investigations. To address this, we present phyx : a collection of programs written in C ++ to explore, manipulate, analyze and simulate phylogenetic objects (alignments, trees and MCMC logs). Modelled after Unix/GNU/Linux command line tools, individual programs perform a single task and operate on standard I/O streams that can be piped to quickly and easily form complex analytical pipelines. Because of the stream-centric paradigm, memory requirements are minimized (often only a single tree or sequence in memory at any instance), and hence phyx is capable of efficiently processing very large datasets. phyx runs on POSIX-compliant operating systems. Source code, installation instructions, documentation and example files are freely available under the GNU General Public License at https://github.com/FePhyFoFum/phyx. eebsmith@umich.edu. Supplementary data are available at Bioinformatics online.

  11. Vestige: Maximum likelihood phylogenetic footprinting

    Directory of Open Access Journals (Sweden)

    Maxwell Peter

    2005-05-01

    Full Text Available Abstract Background Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process. Results Vestige was applied to a reference dataset of the SCL locus from four species and provided clear identification of the known conserved regions in this dataset. To demonstrate the flexibility to use diverse models of molecular evolution and dissect the nature of the evolutionary process Vestige was used to footprint the Ka/Ks ratio in primate BRCA1 with a codon model of evolution. Two regions of putative adaptive evolution were identified illustrating the ability of Vestige to represent the spatial distribution of distinct molecular evolutionary processes. Conclusion Vestige provides a flexible, open platform for phylogenetic footprinting. Underpinned by the PyEvolve toolkit, Vestige provides a framework for visualising the signatures of evolutionary processes across the genome of numerous organisms simultaneously. By exploiting the maximum-likelihood statistical framework, the complex interplay between mutational

  12. Phylogenetic analysis of otospiralin protein

    Science.gov (United States)

    Torktaz, Ibrahim; Behjati, Mohaddeseh; Rostami, Amin

    2016-01-01

    Background: Fibrocyte-specific protein, otospiralin, is a small protein, widely expressed in the central nervous system as neuronal cell bodies and glia. The increased expression of otospiralin in reactive astrocytes implicates its role in signaling pathways and reparative mechanisms subsequent to injury. Indeed, otospiralin is considered to be essential for the survival of fibrocytes of the mesenchymal nonsensory regions of the cochlea. It seems that other functions of this protein are not yet completely understood. Materials and Methods: Amino acid sequences of otospiralin from 12 vertebrates were derived from National Center for Biotechnology Information database. Phylogenetic analysis and phylogeny estimation were performed using MEGA 5.0.5 program, and neighbor-joining tree was constructed by this software. Results: In this computational study, the phylogenetic tree of otospiralin has been investigated. Therefore, dendrograms of otospiralin were depicted. Alignment performed in MUSCLE method by UPGMB algorithm. Also, entropy plot determined for a better illustration of amino acid variations in this protein. Conclusion: In the present study, we used otospiralin sequence of 12 different species and by constructing phylogenetic tree, we suggested out group for some related species. PMID:27099854

  13. Identification of conserved splicing motifs in mutually exclusive exons of 15 insect species.

    Science.gov (United States)

    Buendia, Patricia; Tyree, John; Loredo, Robert; Hsu, Shu-Ning

    2012-04-12

    During alternative splicing, the inclusion of an exon in the final mRNA molecule is determined by nuclear proteins that bind cis-regulatory sequences in a target pre-mRNA molecule. A recent study suggested that the regulatory codes of individual RNA-binding proteins may be nearly immutable between very diverse species such as mammals and insects. The model system Drosophila melanogaster therefore presents an excellent opportunity for the study of alternative splicing due to the availability of quality EST annotations in FlyBase. In this paper, we describe an in silico analysis pipeline to extract putative exonic splicing regulatory sequences from a multiple alignment of 15 species of insects. Our method, ESTs-to-ESRs (E2E), uses graph analysis of EST splicing graphs to identify mutually exclusive (ME) exons and combines phylogenetic measures, a sliding window approach along the multiple alignment and the Welch's t statistic to extract conserved ESR motifs. The most frequent 100% conserved word of length 5 bp in different insect exons was "ATGGA". We identified 799 statistically significant "spike" hexamers, 218 motifs with either a left or right FDR corrected spike magnitude p-value < 0.05 and 83 with both left and right uncorrected p < 0.01. 11 genes were identified with highly significant motifs in one ME exon but not in the other, suggesting regulation of ME exon splicing through these highly conserved hexamers. The majority of these genes have been shown to have regulated spatiotemporal expression. 10 elements were found to match three mammalian splicing regulator databases. A putative ESR motif, GATGCAG, was identified in the ME-13b but not in the ME-13a of Drosophila N-Cadherin, a gene that has been shown to have a distinct spatiotemporal expression pattern of spliced isoforms in a recent study. Analysis of phylogenetic relationships and variability of sequence conservation as implemented in the E2E spikes method may lead to improved identification of ESRs

  14. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Science.gov (United States)

    Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo

    2010-09-08

    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  15. A phylogenetic blueprint for a modern whale.

    Science.gov (United States)

    Gatesy, John; Geisler, Jonathan H; Chang, Joseph; Buell, Carl; Berta, Annalisa; Meredith, Robert W; Springer, Mark S; McGowen, Michael R

    2013-02-01

    The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life.

  16. A molecular phylogenetic evaluation of the spizellomycetales.

    Science.gov (United States)

    Wakefield, William S; Powell, Martha J; Letcher, Peter M; Barr, Donald J S; Churchill, Perry F; Longcore, Joyce E; Chen, Shu-Fen

    2010-01-01

    Order Spizellomycetales was delineated based on a unique suite of zoospore ultrastructural characters and currently includes five genera and 14 validly published species, all of which have a propensity for soil habitats. We generated DNA sequences from small (SSU), large (LSU) and 5.8S ribosomal subunit genes to assess the monophyly of all genera and species in this order. The 53 cultures analyzed included isolates on which all described species were based, plus other spizellomycetalean cultures. Phylogenetic placement of these chytrids was explored with maximum parsimony and maximum likelihood analyses, both of which yielded comparable topologies. Kochiomyces, Powellomyces and Triparticalcar were monophyletic, while Gaertneriomyces and Spizellomyces were polyphyletic. Isolates, distinct from described species, clustered among each of the five genera, indicating that species diversity in genera is greater than currently recognized. One isolate formed a clade that included no described species, representing a new genus. Zoospore ultrastructural features and architecture seem to be good indicators of phylogenetic relationships, but finer scrutiny of characters such as kinetosome-associated structures (KAS) is needed to understand more clearly the diversity within this order as it is revised.

  17. Parole, Sintagmatik, dan Paradigmatik Motif Batik Mega Mendung

    Directory of Open Access Journals (Sweden)

    Rudi - Nababan

    2012-04-01

    Full Text Available ABSTRACT   Discussing traditional batik is related a lot to the organization system of fine arts element ac- companying it, either the pattern of the motif or the technique of the making. In this case, the motif of Mega Mendung Cirebon certainly has patterns and rules which are traditionally different from the other motifs in other areas. Through  semiotics analysis especially with Saussure and Pierce concept, it can be traced that batik with Cirebon motif, in this case Mega Mendung motif, has parole and langue system, as unique fine arts language in batik, and structure of visual syntagmatic and paradigmatic. In the context of batik motif as fine arts language, it is surely related to sign system as symbol and icon.       Keywords: visual semiotic, Cirebon’s batik.

  18. An Affinity Propagation-Based DNA Motif Discovery Algorithm

    Directory of Open Access Journals (Sweden)

    Chunxiao Sun

    2015-01-01

    Full Text Available The planted (l,d motif search (PMS is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  19. An Affinity Propagation-Based DNA Motif Discovery Algorithm.

    Science.gov (United States)

    Sun, Chunxiao; Huo, Hongwei; Yu, Qiang; Guo, Haitao; Sun, Zhigang

    2015-01-01

    The planted (l, d) motif search (PMS) is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs) in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP) clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM) refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  20. Probabilistic models for semisupervised discriminative motif discovery in DNA sequences.

    Science.gov (United States)

    Kim, Jong Kyoung; Choi, Seungjin

    2011-01-01

    Methods for discriminative motif discovery in DNA sequences identify transcription factor binding sites (TFBSs), searching only for patterns that differentiate two sets (positive and negative sets) of sequences. On one hand, discriminative methods increase the sensitivity and specificity of motif discovery, compared to generative models. On the other hand, generative models can easily exploit unlabeled sequences to better detect functional motifs when labeled training samples are limited. In this paper, we develop a hybrid generative/discriminative model which enables us to make use of unlabeled sequences in the framework of discriminative motif discovery, leading to semisupervised discriminative motif discovery. Numerical experiments on yeast ChIP-chip data for discovering DNA motifs demonstrate that the best performance is obtained between the purely-generative and the purely-discriminative and the semisupervised learning improves the performance when labeled sequences are limited.

  1. Triadic motifs in the dependence networks of virtual societies

    CERN Document Server

    Xie, Wen-Jie; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (${\\rm{M}}_9$) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks...

  2. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Bernad Lucia

    2009-11-01

    Full Text Available Abstract Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as

  3. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    Energy Technology Data Exchange (ETDEWEB)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  4. iTriplet, a rule-based nucleic acid sequence motif finder

    Directory of Open Access Journals (Sweden)

    Gunderson Samuel I

    2009-10-01

    Full Text Available Abstract Background With the advent of high throughput sequencing techniques, large amounts of sequencing data are readily available for analysis. Natural biological signals are intrinsically highly variable making their complete identification a computationally challenging problem. Many attempts in using statistical or combinatorial approaches have been made with great success in the past. However, identifying highly degenerate and long (>20 nucleotides motifs still remains an unmet challenge as high degeneracy will diminish statistical significance of biological signals and increasing motif size will cause combinatorial explosion. In this report, we present a novel rule-based method that is focused on finding degenerate and long motifs. Our proposed method, named iTriplet, avoids costly enumeration present in existing combinatorial methods and is amenable to parallel processing. Results We have conducted a comprehensive assessment on the performance and sensitivity-specificity of iTriplet in analyzing artificial and real biological sequences in various genomic regions. The results show that iTriplet is able to solve challenging cases. Furthermore we have confirmed the utility of iTriplet by showing it accurately predicts polyA-site-related motifs using a dual Luciferase reporter assay. Conclusion iTriplet is a novel rule-based combinatorial or enumerative motif finding method that is able to process highly degenerate and long motifs that have resisted analysis by other methods. In addition, iTriplet is distinguished from other methods of the same family by its parallelizability, which allows it to leverage the power of today's readily available high-performance computing systems.

  5. Insights into the molecular evolution of the PDZ/LIM family and identification of a novel conserved protein motif.

    Directory of Open Access Journals (Sweden)

    Aartjan J W Te Velthuis

    Full Text Available The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36, Mystique, Enigma (LMP-1, Enigma homologue (ENH, ZASP (Cypher, Oracle, LMO7 and the two LIM domain kinases (LIMK1 and LIMK2. As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call 'ALP-like motif' (AM. This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family.

  6. STEME: a robust, accurate motif finder for large data sets.

    Directory of Open Access Journals (Sweden)

    John E Reid

    Full Text Available Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface.

  7. Motif content comparison between monocot and dicot species

    Directory of Open Access Journals (Sweden)

    Matyas Cserhati

    2015-03-01

    Full Text Available While a number of DNA sequence motifs have been functionally characterized, the full repertoire of motifs in an organism (the motifome is yet to be characterized. The present study wishes to widen the scope of motif content analysis in different monocot and dicot species that include both rice species, Brachypodium, corn, wheat as monocots and Arabidopsis, Lotus japonica, Medicago truncatula, and Populus tremula as dicots. All possible existing motifs were analyzed in different regions of genomes such as were found in different sets of sequences in these species: the whole genome, core proximal and distal promoters, 5′ and 3′ UTRs, and the 1st introns. Due to the increased number of species involved in this study compared to previous works, species relationships were analyzed based on the similarity of common motif content. Certain secondary structure elements were inferred in the genomes of these species as well as new unknown motifs. The distribution of 20 motifs common to the studied species were found to have a significantly larger occurrence within the promoters and 3′ UTRs of genes, both being regulatory regions. Motifs common to the promoter regions of japonica rice, Brachypodium, and corn were also found in a number of orthologous and paralogous genes. Some of our motifs were found to be complementary to miRNA elements in Brachypodium distachyon and japonica rice.

  8. Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers

    Directory of Open Access Journals (Sweden)

    Lifang Hu

    2011-01-01

    Full Text Available Members of the ERF transcription-factor family participate in a number of biological processes, viz., responses to hormones, adaptation to biotic and abiotic stress, metabolism regulation, beneficial symbiotic interactions, cell differentiation and developmental processes. So far, no tissue-expression profile of any cucumber ERF protein has been reported in detail. Recent completion of the cucumber full-genome sequence has come to facilitate, not only genome-wide analysis of ERF family members in cucumbers themselves, but also a comparative analysis with those in Arabidopsis and rice. In this study, 103 hypothetical ERF family genes in the cucumber genome were identified, phylogenetic analysis indicating their classification into 10 groups, designated I to X. Motif analysis further indicated that most of the conserved motifs outside the AP2/ERF domain, are selectively distributed among the specific clades in the phylogenetic tree. From chromosomal localization and genome distribution analysis, it appears that tandem-duplication may have contributed to CsERF gene expansion. Intron/exon structure analysis indicated that a few CsERFs still conserved the former intron-position patterns existent in the common ancestor of monocots and eudicots. Expression analysis revealed the widespread distribution of the cucumber ERF gene family within plant tissues, thereby implying the probability of their performing various roles therein. Furthermore, members of some groups presented mutually similar expression patterns that might be related to their phylogenetic groups.

  9. Towards an integrated phylogenetic classification of the Tremellomycetes.

    Science.gov (United States)

    Liu, X-Z; Wang, Q-M; Göker, M; Groenewald, M; Kachalkin, A V; Lumbsch, H T; Millanes, A M; Wedin, M; Yurkov, A M; Boekhout, T; Bai, F-Y

    2015-06-01

    Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained.

  10. An RNA motif that binds ATP

    Science.gov (United States)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  11. Modeling Network Evolution Using Graph Motifs

    CERN Document Server

    Conway, Drew

    2011-01-01

    Network structures are extremely important to the study of political science. Much of the data in its subfields are naturally represented as networks. This includes trade, diplomatic and conflict relationships. The social structure of several organization is also of interest to many researchers, such as the affiliations of legislators or the relationships among terrorist. A key aspect of studying social networks is understanding the evolutionary dynamics and the mechanism by which these structures grow and change over time. While current methods are well suited to describe static features of networks, they are less capable of specifying models of change and simulating network evolution. In the following paper I present a new method for modeling network growth and evolution. This method relies on graph motifs to generate simulated network data with particular structural characteristic. This technique departs notably from current methods both in form and function. Rather than a closed-form model, or stochastic ...

  12. Complex lasso: new entangled motifs in proteins

    Science.gov (United States)

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-11-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.

  13. Rekayasa Pengembangan Desain Motif Batik Khas Melayu

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    Full Text Available ABSTRAKPengembangan desain batik melalui rancang bangun perekayasaan desain menurut ragam hias Melayu meliputi pengembangan motif dan proses, termasuk pemilihan komposisi warna. Proses yang sering dilakukan yaitu proses celup, penghilangan lilin dan celup warna tumpangan atau proses colet, celup, penghilangan lilin atau celup kemudian penghilangan lilin yang disebut Batik Kelengan. Setiap pulau di Indonesia mempunyai ciri khas budaya dan kesenian yang dikenal dengan corak/ragam hias khas daerah, juga ornamen yang diminati oleh masyarakat dari daerah tersebut atau dari daerah lain. Kondisi demikian mendorong pertumbuhan industri kerajinan yang memanfaatkan unsur–unsur seni. Adapun motif yang diperoleh adalah: Ayam Berlaga, Bungo Matahari, Kuntum Bersanding, Lancang Kuning, Encong Kerinci, Durian Pecah, Bungo Bintang, Bungo Pauh Kecil, Riang-riang, Bungo Nagaro. Pengembangan desain tersebut dipilih 3 produk terbaik yang dinilai oleh 5 penilai yang ahli di bidang desain batik, yaitu motif Durian Pecah, Ayam Berlaga, dan Bungo Matahari. Rancang bangun diversifikasi desain dengan memanfaatkan unsur–unsur seni dan ketrampilan etnis Melayu yaitu pemilihan ragam hias dan motif batik Melayu untuk diterapkan ke bahan sandang dengan komposisi warna yang menarik, sehingga produk memenuhi selera konsumen. Memperbaiki keberagaman batik dengan meningkatkan desain produk antara lain menuangkan ragam hias Melayu ke dalam proses batik yang menggunakan berbagai macam warna sehingga komposisi warna memadai. Diperoleh hasil produk batik dengan ragam hias Melayu yang berkualitas dan komposisi warna yang sesuai dengan karakter ragam hias Melayu. Rancang bangun desain produk untuk mendapatkan formulasi desain serta kelayakan prosesnya dengan penekanan pada teknologi akrab lingkungan dilaksanakan dengan alternatif pendekatan yaitu penciptaan desain bentuk baru.Kata kunci: desain, batik, rancang bangun, ragam hias, MelayuABSTRACTDevelopment of batik design through

  14. Comparison of tree-child phylogenetic networks.

    Science.gov (United States)

    Cardona, Gabriel; Rosselló, Francesc; Valiente, Gabriel

    2009-01-01

    Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of nontreelike evolutionary events, like recombination, hybridization, or lateral gene transfer. While much progress has been made to find practical algorithms for reconstructing a phylogenetic network from a set of sequences, all attempts to endorse a class of phylogenetic networks (strictly extending the class of phylogenetic trees) with a well-founded distance measure have, to the best of our knowledge and with the only exception of the bipartition distance on regular networks, failed so far. In this paper, we present and study a new meaningful class of phylogenetic networks, called tree-child phylogenetic networks, and we provide an injective representation of these networks as multisets of vectors of natural numbers, their path multiplicity vectors. We then use this representation to define a distance on this class that extends the well-known Robinson-Foulds distance for phylogenetic trees and to give an alignment method for pairs of networks in this class. Simple polynomial algorithms for reconstructing a tree-child phylogenetic network from its path multiplicity vectors, for computing the distance between two tree-child phylogenetic networks and for aligning a pair of tree-child phylogenetic networks, are provided. They have been implemented as a Perl package and a Java applet, which can be found at http://bioinfo.uib.es/~recerca/phylonetworks/mudistance/.

  15. Functional and phylogenetic ecology in R

    CERN Document Server

    Swenson, Nathan G

    2014-01-01

    Functional and Phylogenetic Ecology in R is designed to teach readers to use R for phylogenetic and functional trait analyses. Over the past decade, a dizzying array of tools and methods were generated to incorporate phylogenetic and functional information into traditional ecological analyses. Increasingly these tools are implemented in R, thus greatly expanding their impact. Researchers getting started in R can use this volume as a step-by-step entryway into phylogenetic and functional analyses for ecology in R. More advanced users will be able to use this volume as a quick reference to understand particular analyses. The volume begins with an introduction to the R environment and handling relevant data in R. Chapters then cover phylogenetic and functional metrics of biodiversity; null modeling and randomizations for phylogenetic and functional trait analyses; integrating phylogenetic and functional trait information; and interfacing the R environment with a popular C-based program. This book presents a uni...

  16. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  17. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus.

    Science.gov (United States)

    Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs

    2015-02-01

    Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Functionally and phylogenetically diverse plant communities key to soil biota

    OpenAIRE

    Milcu, Alexandru; Allan, Eric; Roscher, Christiane; Jenkins, Tania; Sebastian T Meyer; Flynn, Dan; Bessler, Holger; Buscot, François; Engels, Christof; Gubsch, Marlén; König, Stephan; Lipowsky, Annett; Loranger, Jessy; Renker, Carsten; Scherber, Christoph

    2013-01-01

    Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity–ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset ...

  19. EXTREME: an online EM algorithm for motif discovery

    Science.gov (United States)

    Quang, Daniel; Xie, Xiaohui

    2014-01-01

    Motivation: Identifying regulatory elements is a fundamental problem in the field of gene transcription. Motif discovery—the task of identifying the sequence preference of transcription factor proteins, which bind to these elements—is an important step in this challenge. MEME is a popular motif discovery algorithm. Unfortunately, MEME’s running time scales poorly with the size of the dataset. Experiments such as ChIP-Seq and DNase-Seq are providing a rich amount of information on the binding preference of transcription factors. MEME cannot discover motifs in data from these experiments in a practical amount of time without a compromising strategy such as discarding a majority of the sequences. Results: We present EXTREME, a motif discovery algorithm designed to find DNA-binding motifs in ChIP-Seq and DNase-Seq data. Unlike MEME, which uses the expectation-maximization algorithm for motif discovery, EXTREME uses the online expectation-maximization algorithm to discover motifs. EXTREME can discover motifs in large datasets in a practical amount of time without discarding any sequences. Using EXTREME on ChIP-Seq and DNase-Seq data, we discover many motifs, including some novel and infrequent motifs that can only be discovered by using the entire dataset. Conservation analysis of one of these novel infrequent motifs confirms that it is evolutionarily conserved and possibly functional. Availability and implementation: All source code is available at the Github repository http://github.com/uci-cbcl/EXTREME. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24532725

  20. Encoded expansion: an efficient algorithm to discover identical string motifs.

    Directory of Open Access Journals (Sweden)

    Aqil M Azmi

    Full Text Available A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009 Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963 devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms.

  1. Unique motifs identify PIG-A proteins from glycosyltransferases of the GT4 family

    Directory of Open Access Journals (Sweden)

    Bhattacharya Alok

    2008-06-01

    Full Text Available Abstract Background The first step of GPI anchor biosynthesis is catalyzed by PIG-A, an enzyme that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to phosphatidylinositol. This protein is present in all eukaryotic organisms ranging from protozoa to higher mammals, as part of a larger complex of five to six 'accessory' proteins whose individual roles in the glycosyltransferase reaction are as yet unclear. The PIG-A gene has been shown to be an essential gene in various eukaryotes. In humans, mutations in the protein have been associated with paroxysomal noctural hemoglobuinuria. The corresponding PIG-A gene has also been recently identified in the genome of many archaeabacteria although genes of the accessory proteins have not been discovered in them. The present study explores the evolution of PIG-A and the phylogenetic relationship between this protein and other glycosyltransferases. Results In this paper we show that out of the twelve conserved motifs identified by us eleven are exclusively present in PIG-A and, therefore, can be used as markers to identify PIG-A from newly sequenced genomes. Three of these motifs are absent in the primitive eukaryote, G. lamblia. Sequence analyses show that seven of these conserved motifs are present in prokaryote and archaeal counterparts in rudimentary forms and can be used to differentiate PIG-A proteins from glycosyltransferases. Using partial least square regression analysis and data involving presence or absence of motifs in a range of PIG-A and glycosyltransferases we show that (i PIG-A may have evolved from prokaryotic glycosyltransferases and lipopolysaccharide synthases, members of the GT4 family of glycosyltransferases and (ii it is possible to uniquely classify PIG-A proteins versus glycosyltransferases. Conclusion Besides identifying unique motifs and showing that PIG-A protein from G. lamblia and some putative PIG-A proteins from archaebacteria are evolutionarily closer to

  2. Phylogenetic trees and Euclidean embeddings.

    Science.gov (United States)

    Layer, Mark; Rhodes, John A

    2017-01-01

    It was recently observed by de Vienne et al. (Syst Biol 60(6):826-832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.

  3. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  4. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  5. Discovering large network motifs from a complex biological network

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Aika; Sese, Jun, E-mail: terada@sel.is.ocha.ac.j, E-mail: sesejun@is.ocha.ac.j [Department of Computer Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2009-12-01

    Graph structures representing relationships between entries have been studied in statistical analysis, and the results of these studies have been applied to biological networks, whose nodes and edges represent proteins and the relationships between them, respectively. Most of the studies have focused on only graph structures such as scale-free properties and cliques, but the relationships between nodes are also important features since most of the proteins perform their functions by connecting to other proteins. In order to determine such relationships, the problem of network motif discovery has been addressed; network motifs are frequently appearing graph structures in a given graph. However, the methods for network motif discovery are highly restrictive for the application to biological network because they can only be used to find small network motifs or they do not consider noise and uncertainty in observations. In this study, we introduce a new index to measure network motifs called AR index and develop a novel algorithm called ARIANA for finding large motifs even when the network has noise. Experiments using a synthetic network verify that our method can find better network motifs than an existing algorithm. By applying ARIANA to a real complex biological network, we find network motifs associated with regulations of start time of cell functions and generation of cell energies and discover that the cell cycle proteins can be categorized into two different groups.

  6. Aztec, Incan and Mayan Motifs...Lead to Distinctive Designs.

    Science.gov (United States)

    Shields, Joanne

    2001-01-01

    Describes an art project for seventh-grade students in which they choose motifs based on Incan, Aztec, and Mayan Indian materials to incorporate into two-dimensional designs. Explains that the activity objective is to create a unified, balanced and pleasing composition using a minimum of three motifs. (CMK)

  7. Phylogenetic Conservatism in Plant Phenology

    Science.gov (United States)

    Davies, T. Jonathan; Wolkovich, Elizabeth M.; Kraft, Nathan J. B.; Salamin, Nicolas; Allen, Jenica M.; Ault, Toby R.; Betancourt, Julio L.; Bolmgren, Kjell; Cleland, Elsa E.; Cook, Benjamin I.; Crimmins, Theresa M.; Mazer, Susan J.; McCabe, Gregory J.; Pau, Stephanie; Regetz, Jim; Schwartz, Mark D.; Travers, Steven E.

    2013-01-01

    Phenological events defined points in the life cycle of a plant or animal have been regarded as highly plastic traits, reflecting flexible responses to various environmental cues. The ability of a species to track, via shifts in phenological events, the abiotic environment through time might dictate its vulnerability to future climate change. Understanding the predictors and drivers of phenological change is therefore critical. Here, we evaluated evidence for phylogenetic conservatism the tendency for closely related species to share similar ecological and biological attributes in phenological traits across flowering plants. We aggregated published and unpublished data on timing of first flower and first leaf, encompassing 4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set of included species, first, using the software program Phylomatic, and second, from DNA data. We then quantified phylogenetic conservatism in plant phenology within and across sites. We show that more closely related species tend to flower and leaf at similar times. By contrasting mean flowering times within and across sites, however, we illustrate that it is not the time of year that is conserved, but rather the phenological responses to a common set of abiotic cues. Our findings suggest that species cannot be treated as statistically independent when modelling phenological responses.Closely related species tend to resemble each other in the timing of their life-history events, a likely product of evolutionarily conserved responses to environmental cues. The search for the underlying drivers of phenology must therefore account for species' shared evolutionary histories.

  8. Morphological phylogenetics of Bignoniaceae Juss.

    Directory of Open Access Journals (Sweden)

    Usama K. Abdel-Hameed

    2014-09-01

    Full Text Available The most recent classification of Bignoniaceae recognized seven tribes, Phylogenetic and monographic studies focusing on clades within Bignoniaceae had revised tribal and generic boundaries and species numbers for several groups, the portions of the family that remain most poorly known are the African and Asian groups. The goal of the present study is to identify the primary lineages of Bignoniaceae in Egypt based on macromorphological traits. A total of 25 species of Bignoniaceae in Egypt was included in this study (Table 1, along with Barleria cristata as outgroup. Parsimony analyses were conducted using the program NONA 1.6, preparation of data set matrices and phylogenetic tree editing were achieved in WinClada Software. The obtained cladogram showed that within the studied taxa of Bignoniaceae there was support for eight lineages. The present study revealed that the two studied species of Tabebuia showed a strong support for monophyly as well as Tecoma and Kigelia. It was revealed that Bignonia, Markhamia and Parmentiera are not monophyletic genera.

  9. MotifCombinator: a web-based tool to search for combinations of cis-regulatory motifs

    Directory of Open Access Journals (Sweden)

    Tsunoda Tatsuhiko

    2007-03-01

    Full Text Available Abstract Background A combination of multiple types of transcription factors and cis-regulatory elements is often required for gene expression in eukaryotes, and the combinatorial regulation confers specific gene expression to tissues or environments. To reveal the combinatorial regulation, computational methods are developed that efficiently infer combinations of cis-regulatory motifs that are important for gene expression as measured by DNA microarrays. One promising type of computational method is to utilize regression analysis between expression levels and scores of motifs in input sequences. This type takes full advantage of information on expression levels because it does not require that the expression level of each gene be dichotomized according to whether or not it reaches a certain threshold level. However, there is no web-based tool that employs regression methods to systematically search for motif combinations and that practically handles combinations of more than two or three motifs. Results We here introduced MotifCombinator, an online tool with a user-friendly interface, to systematically search for combinations composed of any number of motifs based on regression methods. The tool utilizes well-known regression methods (the multivariate linear regression, the multivariate adaptive regression spline or MARS, and the multivariate logistic regression method for this purpose, and uses the genetic algorithm to search for combinations composed of any desired number of motifs. The visualization systems in this tool help users to intuitively grasp the process of the combination search, and the backup system allows users to easily stop and restart calculations that are expected to require large computational time. This tool also provides preparatory steps needed for systematic combination search – i.e., selecting single motifs to constitute combinations and cutting out redundant similar motifs based on clustering analysis. Conclusion

  10. Identification of sequence motifs significantly associated with antisense activity

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. Results We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. Conclusion The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic

  11. CyanoLyase: a database of phycobilin lyase sequences, motifs and functions.

    Science.gov (United States)

    Bretaudeau, Anthony; Coste, François; Humily, Florian; Garczarek, Laurence; Le Corguillé, Gildas; Six, Christophe; Ratin, Morgane; Collin, Olivier; Schluchter, Wendy M; Partensky, Frédéric

    2013-01-01

    CyanoLyase (http://cyanolyase.genouest.org/) is a manually curated sequence and motif database of phycobilin lyases and related proteins. These enzymes catalyze the covalent ligation of chromophores (phycobilins) to specific binding sites of phycobiliproteins (PBPs). The latter constitute the building bricks of phycobilisomes, the major light-harvesting systems of cyanobacteria and red algae. Phycobilin lyases sequences are poorly annotated in public databases. Sequences included in CyanoLyase were retrieved from all available genomes of these organisms and a few others by similarity searches using biochemically characterized enzyme sequences and then classified into 3 clans and 32 families. Amino acid motifs were computed for each family using Protomata learner. CyanoLyase also includes BLAST and a novel pattern matching tool (Protomatch) that allow users to rapidly retrieve and annotate lyases from any new genome. In addition, it provides phylogenetic analyses of all phycobilin lyases families, describes their function, their presence/absence in all genomes of the database (phyletic profiles) and predicts the chromophorylation of PBPs in each strain. The site also includes a thorough bibliography about phycobilin lyases and genomes included in the database. This resource should be useful to scientists and companies interested in natural or artificial PBPs, which have a number of biotechnological applications, notably as fluorescent markers.

  12. Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs.

    Science.gov (United States)

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

  13. An isoprenylation and palmitoylation motif promotes intraluminal vesicle delivery of proteins in cells from distant species.

    Science.gov (United States)

    Oeste, Clara L; Pinar, Mario; Schink, Kay O; Martínez-Turrión, Javier; Stenmark, Harald; Peñalva, Miguel A; Pérez-Sala, Dolores

    2014-01-01

    The C-terminal ends of small GTPases contain hypervariable sequences which may be posttranslationally modified by defined lipid moieties. The diverse structural motifs generated direct proteins towards specific cellular membranes or organelles. However, knowledge on the factors that determine these selective associations is limited. Here we show, using advanced microscopy, that the isoprenylation and palmitoylation motif of human RhoB (-CINCCKVL) targets chimeric proteins to intraluminal vesicles of endolysosomes in human cells, displaying preferential co-localization with components of the late endocytic pathway. Moreover, this distribution is conserved in distant species, including cells from amphibians, insects and fungi. Blocking lipidic modifications results in accumulation of CINCCKVL chimeras in the cytosol, from where they can reach endolysosomes upon release of this block. Remarkably, CINCCKVL constructs are sorted to intraluminal vesicles in a cholesterol-dependent process. In the lower species, neither the C-terminal sequence of RhoB, nor the endosomal distribution of its homologs are conserved; in spite of this, CINCCKVL constructs also reach endolysosomes in Xenopus laevis and insect cells. Strikingly, this behavior is prominent in the filamentous ascomycete fungus Aspergillus nidulans, in which GFP-CINCCKVL is sorted into endosomes and vacuoles in a lipidation-dependent manner and allows monitoring endosomal movement in live fungi. In summary, the isoprenylated and palmitoylated CINCCKVL sequence constitutes a specific structure which delineates an endolysosomal sorting strategy operative in phylogenetically diverse organisms.

  14. Dynamic motifs of strategies in prisoner's dilemma games

    Science.gov (United States)

    Kim, Young Jin; Roh, Myungkyoon; Jeong, Seon-Young; Son, Seung-Woo

    2014-12-01

    We investigate the win-lose relations between strategies of iterated prisoner's dilemma games by using a directed network concept to display the replicator dynamics results. In the giant strongly-connected component of the win/lose network, we find win-lose circulations similar to rock-paper-scissors and analyze the fixed point and its stability. Applying the network motif concept, we introduce dynamic motifs, which describe the population dynamics relations among the three strategies. Through exact enumeration, we find 22 dynamic motifs and display their phase portraits. Visualization using directed networks and motif analysis is a useful method to make complex dynamic behavior simple in order to understand it more intuitively. Dynamic motifs can be building blocks for dynamic behavior among strategies when they are applied to other types of games.

  15. Dynamic Motifs of Strategies in Prisoner's Dilemma Games

    CERN Document Server

    Kim, Young Jin; Jeong, Seon-Young; Son, Seung-Woo

    2014-01-01

    We investigate the win-lose relations between strategies of iterated prisoner's dilemma games by using a directed network concept to display the replicator dynamics results. In the giant strongly-connected component of the win/lose network, we find win-lose circulations similar to rock-paper-scissors and analyze the fixed point and its stability. Applying the network motif concept, we introduce dynamic motifs, which describe the population dynamics relations among the three strategies. Through exact enumeration, we find 22 dynamic motifs and display their phase portraits. Visualization using directed networks and motif analysis is a useful method to make complex dynamic behavior simple in order to understand it more intuitively. Dynamic motifs can be building blocks for dynamic behavior among strategies when they are applied to other types of games.

  16. An algorithm for motif-based network design

    CERN Document Server

    Mäki-Marttunen, Tuomo

    2016-01-01

    A determinant property of the structure of a biological network is the distribution of local connectivity patterns, i.e., network motifs. In this work, a method for creating directed, unweighted networks while promoting a certain combination of motifs is presented. This motif-based network algorithm starts with an empty graph and randomly connects the nodes by advancing or discouraging the formation of chosen motifs. The in- or out-degree distribution of the generated networks can be explicitly chosen. The algorithm is shown to perform well in producing networks with high occurrences of the targeted motifs, both ones consisting of 3 nodes as well as ones consisting of 4 nodes. Moreover, the algorithm can also be tuned to bring about global network characteristics found in many natural networks, such as small-worldness and modularity.

  17. Phylogenetic analysis of Newcastle disease viruses isolated from commercial poultry in Mozambique (2011-2016).

    Science.gov (United States)

    Mapaco, Lourenço P; Monjane, Iolanda V A; Nhamusso, Antonieta E; Viljoen, Gerrit J; Dundon, William G; Achá, Sara J

    2016-10-01

    The complete sequence of the fusion (F) protein gene from 11 Newcastle disease viruses (NDVs) isolated from commercial poultry in Mozambique between 2011 and 2016 has been generated. The F gene cleavage site motif for all 11 isolates was (112)RRRKRF(117) indicating that the viruses are virulent. A phylogenetic analysis using the full F gene sequence revealed that the viruses clustered within genotype VIIh and showed a higher similarity to NDVs from South Africa, China and Southeast Asia than to viruses previously described in Mozambique in 1994, 1995 and 2005. The identification of these new NDVs has important implications for Newcastle disease management and control in Mozambique.

  18. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  19. Algal MIPs, high diversity and conserved motifs

    Directory of Open Access Journals (Sweden)

    Johanson Urban

    2011-04-01

    Full Text Available Abstract Background Major intrinsic proteins (MIPs also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs and GlpF-like Intrinsic Proteins (GIPs, are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  20. Molecular Phylogenetics: Concepts for a Newcomer.

    Science.gov (United States)

    Ajawatanawong, Pravech

    2016-10-26

    Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.

  1. Tripartitions do not always discriminate phylogenetic networks.

    Science.gov (United States)

    Cardona, Gabriel; Rosselló, Francesc; Valiente, Gabriel

    2008-02-01

    Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of non-treelike evolutionary events, like recombination, hybridization, or lateral gene transfer. In a recent series of papers devoted to the study of reconstructibility of phylogenetic networks, Moret, Nakhleh, Warnow and collaborators introduced the so-called tripartition metric for phylogenetic networks. In this paper we show that, in fact, this tripartition metric does not satisfy the separation axiom of distances (zero distance means isomorphism, or, in a more relaxed version, zero distance means indistinguishability in some specific sense) in any of the subclasses of phylogenetic networks where it is claimed to do so. We also present a subclass of phylogenetic networks whose members can be singled out by means of their sets of tripartitions (or even clusters), and hence where the latter can be used to define a meaningful metric.

  2. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes.

    Science.gov (United States)

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved.

  3. Phylogenetic analysis of the spirochetes.

    Science.gov (United States)

    Paster, B J; Dewhirst, F E; Weisburg, W G; Tordoff, L A; Fraser, G J; Hespell, R B; Stanton, T B; Zablen, L; Mandelco, L; Woese, C R

    1991-10-01

    The 16S rRNA sequences were determined for species of Spirochaeta, Treponema, Borrelia, Leptospira, Leptonema, and Serpula, using a modified Sanger method of direct RNA sequencing. Analysis of aligned 16S rRNA sequences indicated that the spirochetes form a coherent taxon composed of six major clusters or groups. The first group, termed the treponemes, was divided into two subgroups. The first treponeme subgroup consisted of Treponema pallidum, Treponema phagedenis, Treponema denticola, a thermophilic spirochete strain, and two species of Spirochaeta, Spirochaeta zuelzerae and Spirochaeta stenostrepta, with an average interspecies similarity of 89.9%. The second treponeme subgroup contained Treponema bryantii, Treponema pectinovorum, Treponema saccharophilum, Treponema succinifaciens, and rumen strain CA, with an average interspecies similarity of 86.2%. The average interspecies similarity between the two treponeme subgroups was 84.2%. The division of the treponemes into two subgroups was verified by single-base signature analysis. The second spirochete group contained Spirochaeta aurantia, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirochaeta litoralis, and Spirochaeta isovalerica, with an average similarity of 87.4%. The Spirochaeta group was related to the treponeme group, with an average similarity of 81.9%. The third spirochete group contained borrelias, including Borrelia burgdorferi, Borrelia anserina, Borrelia hermsii, and a rabbit tick strain. The borrelias formed a tight phylogenetic cluster, with average similarity of 97%. THe borrelia group shared a common branch with the Spirochaeta group and was closer to this group than to the treponemes. A single spirochete strain isolated fromt the shew constituted the fourth group. The fifth group was composed of strains of Serpula (Treponema) hyodysenteriae and Serpula (Treponema) innocens. The two species of this group were closely related, with a similarity of greater than 99%. Leptonema illini

  4. Phylogenetic diversity of Amazonian tree communities

    OpenAIRE

    Honorio Coronado, Eurídice N.; Dexter, Kyle G.; Pennington, R. Toby; Chave, Jérôme; Lewis, Simon L.; Alexiades, Miguel N.; Alvarez, Esteban; Alves de Oliveira, Atila; Amaral, Iêda L.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard, Gerardo A.; Baraloto, Christopher; Bonal, Damien; Brienen, Roel

    2015-01-01

    Aim: To examine variation in the phylogenetic diversity (PD) of tree communities across geographical and environmental gradients in Amazonia. Location: Two hundred and eighty-three c. 1 ha forest inventory plots from across Amazonia. Methods: We evaluated PD as the total phylogenetic branch length across species in each plot (PDss), the mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardized for species richness (ses...

  5. Motif-specific sampling of phosphoproteomes.

    Science.gov (United States)

    Ruse, Cristian I; McClatchy, Daniel B; Lu, Bingwen; Cociorva, Daniel; Motoyama, Akira; Park, Sung Kyu; Yates, John R

    2008-05-01

    Phosphoproteomics, the targeted study of a subfraction of the proteome which is modified by phosphorylation, has become an indispensable tool to study cell signaling dynamics. We described a methodology that linked phosphoproteome and proteome analysis based on Ba2+ binding properties of amino acids. This technology selected motif-specific phosphopeptides independent of the system under analysis. MudPIT (Multidimensional Identification Technology) identified 1037 precipitated phosphopeptides from as little as 250 microg of proteins. To extend coverage of the phosphoproteome, we sampled the nuclear extract of HeLa cells with three values of Ba2+ ions molarity. The presence of more than 70% of identified phosphoproteins was further substantiated by their nonmodified peptides. Upon isoproterenol stimulation of HEK cells, we identified an increasing number of phosphoproteins from MAPK cascades and AKAP signaling hubs. We quantified changes in both protein and phosphorylation levels of 197 phosphoproteins including a critical kinase, MAPK1. Integration of differential phosphorylation of MAPK1 with knowledge bases constructed modules that correlated well with its role as node in cross-talk of canonical pathways.

  6. Tripartite motif 32 prevents pathological cardiac hypertrophy.

    Science.gov (United States)

    Chen, Lijuan; Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan; Li, Hongliang

    2016-05-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. © 2016 The Author(s).

  7. Relevant phylogenetic invariants of evolutionary models

    CERN Document Server

    Casanellas, Marta

    2009-01-01

    Recently there have been several attempts to provide a whole set of generators of the ideal of the algebraic variety associated to a phylogenetic tree evolving under an algebraic model. These algebraic varieties have been proven to be useful in phylogenetics. In this paper we prove that, for phylogenetic reconstruction purposes, it is enough to consider generators coming from the edges of the tree, the so-called edge invariants. This is the algebraic analogous to Buneman's Splits Equivalence Theorem. The interest of this result relies on its potential applications in phylogenetics for the widely used evolutionary models such as Jukes-Cantor, Kimura 2 and 3 parameters, and General Markov models.

  8. Alu elements and hominid phylogenetics

    Science.gov (United States)

    Salem, Abdel-Halim; Ray, David A.; Xing, Jinchuan; Callinan, Pauline A.; Myers, Jeremy S.; Hedges, Dale J.; Garber, Randall K.; Witherspoon, David J.; Jorde, Lynn B.; Batzer, Mark A.

    2003-01-01

    Alu elements have inserted in primate genomes throughout the evolution of the order. One particular Alu lineage (Ye) began amplifying relatively early in hominid evolution and continued propagating at a low level as many of its members are found in a variety of hominid genomes. This study represents the first conclusive application of short interspersed elements, which are considered nearly homoplasy-free, to elucidate the phylogeny of hominids. Phylogenetic analysis of Alu Ye5 elements and elements from several other subfamilies reveals high levels of support for monophyly of Hominidae, tribe Hominini and subtribe Hominina. Here we present the strongest evidence reported to date for a sister relationship between humans and chimpanzees while clearly distinguishing the chimpanzee and human lineages. PMID:14561894

  9. Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues

    Directory of Open Access Journals (Sweden)

    Johnson Virgil E

    2011-05-01

    Full Text Available Abstract Background BAHD acyltransferases are involved in the synthesis and elaboration of a wide variety of secondary metabolites. Previous research has shown that characterized proteins from this family fall broadly into five major clades and contain two conserved protein motifs. Here, we aimed to expand the understanding of BAHD acyltransferase diversity in plants through genome-wide analysis across five angiosperm taxa. We focus particularly on Populus, a woody perennial known to produce an abundance of secondary metabolites. Results Phylogenetic analysis of putative BAHD acyltransferase sequences from Arabidopsis, Medicago, Oryza, Populus, and Vitis, along with previously characterized proteins, supported a refined grouping of eight major clades for this family. Taxon-specific clustering of many BAHD family members appears pervasive in angiosperms. We identified two new multi-clade motifs and numerous clade-specific motifs, several of which have been implicated in BAHD function by previous structural and mutagenesis research. Gene duplication and expression data for Populus-dominated subclades revealed that several paralogous BAHD members in this genus might have already undergone functional divergence. Conclusions Differential, taxon-specific BAHD family expansion via gene duplication could be an evolutionary process contributing to metabolic diversity across plant taxa. Gene expression divergence among some Populus paralogues highlights possible distinctions between their biochemical and physiological functions. The newly discovered motifs, especially the clade-specific motifs, should facilitate future functional study of substrate and donor specificity among BAHD enzymes.

  10. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution.

    Science.gov (United States)

    Mukherjee, Krishanu; Bürglin, Thomas R

    2007-08-01

    TALE homeodomain proteins are an ancient subgroup within the group of homeodomain transcription factors that play important roles in animal, plant, and fungal development. We have extracted the full complement of TALE superclass homeobox genes from the genome projects of seven protostomes, seven deuterostomes, and Nematostella. This was supplemented with TALE homeobox genes from additional species and phylogenetic analyses were carried out with 276 sequences. We found 20 homeobox genes and 4 pseudogenes in humans, 21 genes in mouse, 8 genes in Drosophila, and 5 genes plus one truncated gene in Caenorhabditis elegans. Apart from the previously identified TALE classes MEIS, PBC, IRO, and TGIF, a novel class is identified, termed MOHAWK (MKX). Further, we show that the MEIS class can be divided into two families, PREP and MEIS. Prep genes have previously only been described in vertebrates but are lacking in Drosophila. Here we identify orthologues in other insect taxa as well as in the cnidarian Nematostella. In C. elegans, a divergent Prep protein has lost the homeodomain. Full-length multiple sequence alignment of the protostome and deuterostome sequences allowed us to identify several novel conserved motifs within the MKX, TGIF, and MEIS classes. Phylogenetic analyses revealed fast-evolving PBC class genes; in particular, some X-linked PBC genes in nematodes are subject to rapid evolution. In addition, several instances of gene loss were identified. In conclusion, our comprehensive analysis provides a defining framework for the classification of animal TALE homeobox genes and the understanding of their evolution.

  11. MEME: discovering and analyzing DNA and protein sequence motifs.

    Science.gov (United States)

    Bailey, Timothy L; Williams, Nadya; Misleh, Chris; Li, Wilfred W

    2006-07-01

    MEME (Multiple EM for Motif Elicitation) is one of the most widely used tools for searching for novel 'signals' in sets of biological sequences. Applications include the discovery of new transcription factor binding sites and protein domains. MEME works by searching for repeated, ungapped sequence patterns that occur in the DNA or protein sequences provided by the user. Users can perform MEME searches via the web server hosted by the National Biomedical Computation Resource (http://meme.nbcr.net) and several mirror sites. Through the same web server, users can also access the Motif Alignment and Search Tool to search sequence databases for matches to motifs encoded in several popular formats. By clicking on buttons in the MEME output, users can compare the motifs discovered in their input sequences with databases of known motifs, search sequence databases for matches to the motifs and display the motifs in various formats. This article describes the freely accessible web server and its architecture, and discusses ways to use MEME effectively to find new sequence patterns in biological sequences and analyze their significance.

  12. Profile-based short linear protein motif discovery

    Science.gov (United States)

    2012-01-01

    Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods. PMID:22607209

  13. Profile-based short linear protein motif discovery

    Directory of Open Access Journals (Sweden)

    Haslam Niall J

    2012-05-01

    Full Text Available Abstract Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.

  14. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  15. Triadic motifs in the dependence networks of virtual societies

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  16. Strategi Mengenali Motif Khas Kain Tenun Cual Bangka Dengan AHP

    Directory of Open Access Journals (Sweden)

    Hilyah Magdalena

    2016-12-01

    Full Text Available Woven fabric cual Bangka currently used as one of the identity of community pride in Bangka Belitung Islands. The specificity of this fart cual fabric interesting to study because of the motives that have similarities with songket palembang. Woven fabric cual Bangka and Palembang songket cloth looks similar because the same cloth-making techniques - both using techniques sungkit. The purpose of this research is how to recognize a particular motif woven fabric cual fart. This research using Analytical Hierarchy Process ( AHP to classify some specific motifs that exist in woven fabric cual fart. Experts in the field of woven fabric cual is to inform you that the woven fabric cual farts have tabled motif, motifs or patterns, motifs fabric edge, motif gold thread, fabric base material, as well as the specific color. The research involved four experts that the results of the questionnaires is processed by software Expert Choice 2000. The results showed that the main peculiarity of the woven fabric cual fart is in a pattern or motif with a percentage of 31.5, and is the chosen alternative product is songket with a percentage of 25.4.

  17. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  18. MEME-ChIP: motif analysis of large DNA datasets.

    Science.gov (United States)

    Machanick, Philip; Bailey, Timothy L

    2011-06-15

    Advances in high-throughput sequencing have resulted in rapid growth in large, high-quality datasets including those arising from transcription factor (TF) ChIP-seq experiments. While there are many existing tools for discovering TF binding site motifs in such datasets, most web-based tools cannot directly process such large datasets. The MEME-ChIP web service is designed to analyze ChIP-seq 'peak regions'--short genomic regions surrounding declared ChIP-seq 'peaks'. Given a set of genomic regions, it performs (i) ab initio motif discovery, (ii) motif enrichment analysis, (iii) motif visualization, (iv) binding affinity analysis and (v) motif identification. It runs two complementary motif discovery algorithms on the input data--MEME and DREME--and uses the motifs they discover in subsequent visualization, binding affinity and identification steps. MEME-ChIP also performs motif enrichment analysis using the AME algorithm, which can detect very low levels of enrichment of binding sites for TFs with known DNA-binding motifs. Importantly, unlike with the MEME web service, there is no restriction on the size or number of uploaded sequences, allowing very large ChIP-seq datasets to be analyzed. The analyses performed by MEME-ChIP provide the user with a varied view of the binding and regulatory activity of the ChIP-ed TF, as well as the possible involvement of other DNA-binding TFs. MEME-ChIP is available as part of the MEME Suite at http://meme.nbcr.net.

  19. Exploitation of peptide motif sequences and their use in nanobiotechnology.

    Science.gov (United States)

    Shiba, Kiyotaka

    2010-08-01

    Short amino acid sequences extracted from natural proteins or created using in vitro evolution systems are sometimes associated with particular biological functions. These peptides, called peptide motifs, can serve as functional units for the creation of various tools for nanobiotechnology. In particular, peptide motifs that have the ability to specifically recognize the surfaces of solid materials and to mineralize certain inorganic materials have been linking biological science to material science. Here, I review how these peptide motifs have been isolated from natural proteins or created using in vitro evolution systems, and how they have been used in the nanobiotechnology field.

  20. BlockLogo: Visualization of peptide and sequence motif conservation

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian

    2013-01-01

    , selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes...... and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms...

  1. Identification of protein superfamily from structure- based sequence motif

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) Ⅰ and Ⅱ superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitution patterns of residues in common sequence conserved regions. And the phosphatases Ⅰ and Ⅱ can be correctly identified together by the structure-based PTP sequence motif from SWISS-PROT and TrEBML databases. The results show that the correct rates of identification are over 98%. This is the first time to identify PTP Ⅰ and Ⅱ together by this motif.

  2. ROMANIAN FOLKLORE MOTIFS IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    MOCENCO Alexandra

    2014-05-01

    Full Text Available The traditional Romanian costume such as the entire popular art (architecture, woodcarvins, pottery etc. was born and lasted in our country since ancient times. Closely related to human existence, the traditional costume reflected over the years as reflected nowadays, the mentality and artistic conception of the people. Today the traditional Romanian costume became an inspiration source to the wholesale fashion production industry designers, both Romanian and international. Although the contemporary designers are working in accordance with a vision, using a wide area of styles, methods and current technology, they usually return to traditional techniques and ethnic folklore motifs, which converts and resize them, integrating them in their contemporary space. Adrian Oianu is a very appreciated Romanian designer who launched two collections inspired by his native’s country traditional costumes: “Suflecata pan’ la brau” (“Turned up ‘til the belt” and “Bucurie” (“Joy”. Dorin Negrau had as inspiration for his “Lost” collection the traditional costume from the Bihor region. Yves Saint Laurent had a collection inspired by the Romanian traditional flax blouses called “La blouse roumaine”. The paper presents the traditional Romanian values throw fashion collections. The research activity will create innovative concepts to support the garment industry in order to develop their own brand and to bring the design activities in Romania at an international level. The research was conducted during the initial stage of a project, financed through national founds, consisting in a documentary study on ethnographic characteristics of the popular costume from different regions of the country.

  3. Targeting functional motifs of a protein family

    Science.gov (United States)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  4. Metrics for phylogenetic networks I: generalizations of the Robinson-Foulds metric.

    Science.gov (United States)

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel

    2009-01-01

    The assessment of phylogenetic network reconstruction methods requires the ability to compare phylogenetic networks. This is the first in a series of papers devoted to the analysis and comparison of metrics for tree-child time consistent phylogenetic networks on the same set of taxa. In this paper, we study three metrics that have already been introduced in the literature: the Robinson-Foulds distance, the tripartitions distance and the mu-distance. They generalize to networks the classical Robinson-Foulds or partition distance for phylogenetic trees. We analyze the behavior of these metrics by studying their least and largest values and when they achieve them. As a by-product of this study, we obtain tight bounds on the size of a tree-child time consistent phylogenetic network.

  5. Comparison of phylogenetic trees through alignment of embedded evolutionary distances

    Directory of Open Access Journals (Sweden)

    Choi Kwangbom

    2009-12-01

    Full Text Available Abstract Background The understanding of evolutionary relationships is a fundamental aspect of modern biology, with the phylogenetic tree being a primary tool for describing these associations. However, comparison of trees for the purpose of assessing similarity and the quantification of various biological processes remains a significant challenge. Results We describe a novel approach for the comparison of phylogenetic distance information based on the alignment of representative high-dimensional embeddings (xCEED: Comparison of Embedded Evolutionary Distances. The xCEED methodology, which utilizes multidimensional scaling and Procrustes-related superimposition approaches, provides the ability to measure the global similarity between trees as well as incongruities between them. We demonstrate the application of this approach to the prediction of coevolving protein interactions and demonstrate its improved performance over the mirrortree, tol-mirrortree, phylogenetic vector projection, and partial correlation approaches. Furthermore, we show its applicability to both the detection of horizontal gene transfer events as well as its potential use in the prediction of interaction specificity between a pair of multigene families. Conclusions These approaches provide additional tools for the study of phylogenetic trees and associated evolutionary processes. Source code is available at http://gomezlab.bme.unc.edu/tools.

  6. Threatened species and the potential loss of phylogenetic diversity: conservation scenarios based on estimated extinction probabilities and phylogenetic risk analysis.

    Science.gov (United States)

    Faith, Daniel P

    2008-12-01

    New species conservation strategies, including the EDGE of Existence (EDGE) program, have expanded threatened species assessments by integrating information about species' phylogenetic distinctiveness. Distinctiveness has been measured through simple scores that assign shared credit among species for evolutionary heritage represented by the deeper phylogenetic branches. A species with a high score combined with a high extinction probability receives high priority for conservation efforts. Simple hypothetical scenarios for phylogenetic trees and extinction probabilities demonstrate how such scoring approaches can provide inefficient priorities for conservation. An existing probabilistic framework derived from the phylogenetic diversity measure (PD) properly captures the idea of shared responsibility for the persistence of evolutionary history. It avoids static scores, takes into account the status of close relatives through their extinction probabilities, and allows for the necessary updating of priorities in light of changes in species threat status. A hypothetical phylogenetic tree illustrates how changes in extinction probabilities of one or more species translate into changes in expected PD. The probabilistic PD framework provided a range of strategies that moved beyond expected PD to better consider worst-case PD losses. In another example, risk aversion gave higher priority to a conservation program that provided a smaller, but less risky, gain in expected PD. The EDGE program could continue to promote a list of top species conservation priorities through application of probabilistic PD and simple estimates of current extinction probability. The list might be a dynamic one, with all the priority scores updated as extinction probabilities change. Results of recent studies suggest that estimation of extinction probabilities derived from the red list criteria linked to changes in species range sizes may provide estimated probabilities for many different species

  7. An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs.

    Science.gov (United States)

    Pan, Zhu; Zhu, Jinwei; Shang, Yuan; Wei, Zhiyi; Jia, Min; Xia, Caihao; Wen, Wenyu; Wang, Wenning; Zhang, Mingjie

    2013-06-01

    LGN plays essential roles in asymmetric cell divisions via its N-terminal TPR-motif-mediated binding to mInsc and NuMA. This scaffolding activity requires the release of the autoinhibited conformation of LGN by binding of Gα(i) to its C-terminal GoLoco (GL) motifs. The interaction between the GL and TPR motifs of LGN represents a distinct GL/target binding mode with an unknown mechanism. Here, we show that two consecutive GL motifs of LGN form a minimal TPR-motif-binding unit. GL12 and GL34 bind to TPR0-3 and TPR4-7, respectively. The crystal structure of a truncated LGN reveals that GL34 forms a pair of parallel α helices and binds to the concave surface of TPR4-7, thereby preventing LGN from binding to other targets. Importantly, the GLs bind to TPR motifs with a mode distinct from that observed in the GL/Gα(i)·GDP complexes. Our results also indicate that multiple and orphan GL motif proteins likely respond to G proteins with distinct mechanisms.

  8. Conflicting phylogenetic position of Schizosaccharomyces pombe

    NARCIS (Netherlands)

    Kuramae, Eiko E.; Robert, Vincent; Snel, Berend; Boekhout, Teun

    2006-01-01

    The phylogenetic position of the fission yeast Schizosaccharomyces pombe in the fungal Tree of Life is still controversial. Three alternative phylogenetic positions have been proposed in the literature, namely (1) a position basal to the Hemiascomycetes and Euascomycetes, (2) a position as a sister

  9. Efficient Computation of Popular Phylogenetic Tree Measures

    DEFF Research Database (Denmark)

    Tsirogiannis, Constantinos; Sandel, Brody Steven; Cheliotis, Dimitris

    2012-01-01

    Given a phylogenetic tree $\\mathcal{T}$ of n nodes, and a sample R of its tips (leaf nodes) a very common problem in ecological and evolutionary research is to evaluate a distance measure for the elements in R. Two of the most common measures of this kind are the Mean Pairwise Distance...... software package for processing phylogenetic trees....

  10. Insect phylogenetics in the digital age.

    Science.gov (United States)

    Dietrich, Christopher H; Dmitriev, Dmitry A

    2016-12-01

    Insect systematists have long used digital data management tools to facilitate phylogenetic research. Web-based platforms developed over the past several years support creation of comprehensive, openly accessible data repositories and analytical tools that support large-scale collaboration, accelerating efforts to document Earth's biota and reconstruct the Tree of Life. New digital tools have the potential to further enhance insect phylogenetics by providing efficient workflows for capturing and analyzing phylogenetically relevant data. Recent initiatives streamline various steps in phylogenetic studies and provide community access to supercomputing resources. In the near future, automated, web-based systems will enable researchers to complete a phylogenetic study from start to finish using resources linked together within a single portal and incorporate results into a global synthesis.

  11. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Directory of Open Access Journals (Sweden)

    Bráulio A Santos

    Full Text Available Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  12. Automatic Network Fingerprinting through Single-Node Motifs

    CERN Document Server

    Echtermeyer, Christoph; Rodrigues, Francisco A; Kaiser, Marcus; 10.1371/journal.pone.0015765

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs---a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes...

  13. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-02-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  14. A combinatorial code for splicing silencing: UAGG and GGGG motifs

    National Research Council Canada - National Science Library

    Han, Kyoungha; Yeo, Gene; An, Ping; Burge, Christopher B; Grabowski, Paula J

    2005-01-01

    .... Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5'-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19...

  15. Direct vs 2-stage approaches to structured motif finding

    Directory of Open Access Journals (Sweden)

    Federico Maria

    2012-08-01

    Full Text Available Abstract Background The notion of DNA motif is a mathematical abstraction used to model regions of the DNA (known as Transcription Factor Binding Sites, or TFBSs that are bound by a given Transcription Factor to regulate gene expression or repression. In turn, DNA structured motifs are a mathematical counterpart that models sets of TFBSs that work in concert in the gene regulations processes of higher eukaryotic organisms. Typically, a structured motif is composed of an ordered set of isolated (or simple motifs, separated by a variable, but somewhat constrained number of “irrelevant” base-pairs. Discovering structured motifs in a set of DNA sequences is a computationally hard problem that has been addressed by a number of authors using either a direct approach, or via the preliminary identification and successive combination of simple motifs. Results We describe a computational tool, named SISMA, for the de-novo discovery of structured motifs in a set of DNA sequences. SISMA is an exact, enumerative algorithm, meaning that it finds all the motifs conforming to the specifications. It does so in two stages: first it discovers all the possible component simple motifs, then combines them in a way that respects the given constraints. We developed SISMA mainly with the aim of understanding the potential benefits of such a 2-stage approach w.r.t. direct methods. In fact, no 2-stage software was available for the general problem of structured motif discovery, but only a few tools that solved restricted versions of the problem. We evaluated SISMA against other published tools on a comprehensive benchmark made of both synthetic and real biological datasets. In a significant number of cases, SISMA outperformed the competitors, exhibiting a good performance also in most of the cases in which it was inferior. Conclusions A reflection on the results obtained lead us to conclude that a 2-stage approach can be implemented with many advantages over direct

  16. Robust and Adaptive MicroRNA-Mediated Incoherent Feedforward Motifs

    Institute of Scientific and Technical Information of China (English)

    XU Feng-Dan; LIU Zeng-Rong; ZHANG Zhi-Yong; SHEN Jian-Wei

    2009-01-01

    We integrate transcriptional and post-transcriptional regulation into microRNA-mediated incoherent feedforward motifs and analyse their dynamical behaviour and functions. The analysis show that the behaviour of the system is almost uninfluenced by the varying input in certain ranges and by introducing of delay and noise. The results indicate that microRNA-mediated incoherent feedforward motifs greatly enhance the robustness of gene regulation.

  17. The Origin of Motif Families in Food Webs

    OpenAIRE

    Klaise, Janis; Johnson, Samuel

    2016-01-01

    Food webs have been found to exhibit remarkable motif profiles, patterns in the relative prevalences of all possible three-species sub-graphs, and this has been related to ecosystem properties such as stability and robustness. Analysing 46 food webs of various kinds, we find that most food webs fall into one of two distinct motif families. The separation between the families is well predicted by a global measure of hierarchical order in directed networks - trophic coherence. We find that trop...

  18. Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs.

    Science.gov (United States)

    Tian, Cheng; Zhang, Chuan

    2017-01-01

    Tile-based DNA self-assembly is a promising method in DNA nanotechnology and has produced a wide range of nanostructures by using a small set of unique DNA strands. DNA star motif, as one of DNA tiles, has been employed to assemble varieties of symmetric one-, two-, three-dimensional (1, 2, 3D) DNA nanostructures. Herein, we describe the design principles, assembly methods, and characterization methods of 3D DNA nanostructures assembled from the DNA star motifs.

  19. Optimizing Phylogenetic Queries for Performance.

    Science.gov (United States)

    Jamil, Hasan M

    2017-08-24

    The vast majority of phylogenetic databases do not support declarative querying using which their contents can be flexibly and conveniently accessed and the template based query interfaces they support do not allow arbitrary speculative queries. They therefore also do not support query optimization leveraging unique phylogeny properties. While a small number of graph query languages such as XQuery, Cypher and GraphQL exist for computer savvy users, most are too general and complex to be useful for biologists, and too inefficient for large phylogeny querying. In this paper, we discuss a recently introduced visual query language, called PhyQL, that leverages phylogeny specific properties to support essential and powerful constructs for a large class of phylogentic queries. We develop a range of pruning aids, and propose a substantial set of query optimization strategies using these aids suitable for large phylogeny querying. A hybrid optimization technique that exploits a set of indices and ``graphlet" partitioning is discussed. A ``fail soonest" strategy is used to avoid hopeless processing and is shown to produce dividends. Possible novel optimization techniques yet to be explored are also discussed.

  20. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    Energy Technology Data Exchange (ETDEWEB)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.

  1. Transcriptional Network growing Models using Motif-based Preferential Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk Abdelzaher

    2015-10-01

    Full Text Available Understanding relationships between architectural properties of gene-regulatory networks (GRNs has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs--i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent ``building blocks'' of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops, its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  2. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment.

    Science.gov (United States)

    Abdelzaher, Ahmed F; Al-Musawi, Ahmad F; Ghosh, Preetam; Mayo, Michael L; Perkins, Edward J

    2015-01-01

    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs - i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent "building blocks" of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  3. A novel pro-Arg motif recognized by WW domains.

    Science.gov (United States)

    Bedford, M T; Sarbassova, D; Xu, J; Leder, P; Yaffe, M B

    2000-04-07

    WW domains mediate protein-protein interactions through binding to short proline-rich sequences. Two distinct sequence motifs, PPXY and PPLP, are recognized by different classes of WW domains, and another class binds to phospho-Ser-Pro sequences. We now describe a novel Pro-Arg sequence motif recognized by a different class of WW domains using data from oriented peptide library screening, expression cloning, and in vitro binding experiments. The prototype member of this group is the WW domain of formin-binding protein 30 (FBP30), a p53-regulated molecule whose WW domains bind to Pro-Arg-rich cellular proteins. This new Pro-Arg sequence motif re-classifies the organization of WW domains based on ligand specificity, and the Pro-Arg class now includes the WW domains of FBP21 and FE65. A structural model is presented which rationalizes the distinct motifs selected by the WW domains of YAP, Pin1, and FBP30. The Pro-Arg motif identified for WW domains often overlaps with SH3 domain motifs within protein sequences, suggesting that the same extended proline-rich sequence could form discrete SH3 or WW domain complexes to transduce distinct cellular signals.

  4. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  5. Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d

    Directory of Open Access Journals (Sweden)

    Moffatt Barbara A

    2010-08-01

    Full Text Available Abstract Background Aromatic amino acids play a critical role in protein-glycan interactions. Clusters of surface aromatic residues and their features may therefore be useful in distinguishing glycan-binding sites as well as predicting novel glycan-binding proteins. In this work, a structural bioinformatics approach was used to screen the Protein Data Bank (PDB for coplanar aromatic motifs similar to those found in known glycan-binding proteins. Results The proteins identified in the screen were significantly associated with carbohydrate-related functions according to gene ontology (GO enrichment analysis, and predicted motifs were found frequently within novel folds and glycan-binding sites not included in the training set. In addition to numerous binding sites predicted in structural genomics proteins of unknown function, one novel prediction was a surface motif (W34/W36/W192 in the tobacco pathogenesis-related protein, PR-5d. Phylogenetic analysis revealed that the surface motif is exclusive to a subfamily of PR-5 proteins from the Solanaceae family of plants, and is absent completely in more distant homologs. To confirm PR-5d's insoluble-polysaccharide binding activity, a cellulose-pulldown assay of tobacco proteins was performed and PR-5d was identified in the cellulose-binding fraction by mass spectrometry. Conclusions Based on the combined results, we propose that the putative binding site in PR-5d may be an evolutionary adaptation of Solanaceae plants including potato, tomato, and tobacco, towards defense against cellulose-containing pathogens such as species of the deadly oomycete genus, Phytophthora. More generally, the results demonstrate that coplanar aromatic clusters on protein surfaces are a structural signature of glycan-binding proteins, and can be used to computationally predict novel glycan-binding proteins from 3 D structure.

  6. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia

    Science.gov (United States)

    Hudson, Andrew J.; Moore, Ashley N.; Elniski, David; Joseph, Joella; Yee, Janet; Russell, Anthony G.

    2012-01-01

    Non-coding RNAs (ncRNAs) have diverse essential biological functions in all organisms, and in eukaryotes, two such classes of ncRNAs are the small nucleolar (sno) and small nuclear (sn) RNAs. In this study, we have identified and characterized a collection of sno and snRNAs in Giardia lamblia, by exploiting our discovery of a conserved 12 nt RNA processing sequence motif found in the 3′ end regions of a large number of G. lamblia ncRNA genes. RNA end mapping and other experiments indicate the motif serves to mediate ncRNA 3′ end formation from mono- and di-cistronic RNA precursor transcripts. Remarkably, we find the motif is also utilized in the processing pathway of all four previously identified trans-spliced G. lamblia introns, revealing a common RNA processing pathway for ncRNAs and trans-spliced introns in this organism. Motif sequence conservation then allowed for the bioinformatic and experimental identification of additional G. lamblia ncRNAs, including new U1 and U6 spliceosomal snRNA candidates. The U6 snRNA candidate was then used as a tool to identity novel U2 and U4 snRNAs, based on predicted phylogenetically conserved snRNA–snRNA base-pairing interactions, from a set of previously identified G. lamblia ncRNAs without assigned function. The Giardia snRNAs retain the core features of spliceosomal snRNAs but are sufficiently evolutionarily divergent to explain the difficulties in their identification. Most intriguingly, all of these snRNAs show structural features diagnostic of U2-dependent/major and U12-dependent/minor spliceosomal snRNAs. PMID:23019220

  7. The Complete Mitochondrial Genome of Ctenoptilum vasava (Lepidoptera: Hesperiidae: Pyrginae and Its Phylogenetic Implication

    Directory of Open Access Journals (Sweden)

    Jiasheng Hao

    2012-01-01

    Full Text Available We here report the first complete mitochondrial (mt genome of a skipper, Ctenoptilum vasava Moore, 1865 (Lepidoptera: Hesperiidae: Pyrginae. The mt genome of the skipper is a circular molecule of 15,468 bp, containing 2 ribosomal RNA genes, 24 putative transfer RNA (tRNA, genes including an extra copy of trnS (AGN and a tRNA-like insertion trnL (UUR, 13 protein-coding genes and an AT-rich region. All protein-coding genes (PCGs are initiated by ATN codons and terminated by the typical stop codon TAA or TAG, except for COII which ends with a single T. The intergenic spacer sequence between trnS (AGN and ND1 genes also contains the ATACTAA motif. The AT-rich region of 429 bp is comprised of nonrepetitive sequences, including the motif ATAGA followed by an 19 bp poly-T stretch, a microsatellite-like (AT3 (TA9 element next to the ATTTA motif, an 11 bp poly-A adjacent to tRNAs. Phylogenetic analyses (ML and BI methods showed that Papilionoidea is not a natural group, and Hesperioidea is placed within the Papilionoidea as a sister to ((Pieridae + Lycaenidae + Nymphalidae while Papilionoidae is paraphyletic to Hesperioidea. This result is remarkably different from the traditional view where Papilionoidea and Hesperioidea are considered as two distinct superfamilies.

  8. Phylogenetic Study of the Evolution of PEP-Carboxykinase

    Directory of Open Access Journals (Sweden)

    Sanjukta Aich

    2007-01-01

    Full Text Available Phosphoenolpyruvate carboxykinase (PCK is the key enzyme to initiate the gluconeogenic pathway in vertebrates, yeast, plants and most bacteria. Nucleotide specificity divided all PCKs into two groups. All the eukaryotic mammalian and most archaeal PCKs are GTP-specifi c. Bacterial and fungal PCKs can be ATP-or GTP-specific but all plant PCKs are ATPspecific. Amino acid sequence alignment of PCK enzymes shows that the nucleotide binding sites are somewhat conserved within each class with few exceptions that do not have any clear ATP- or GTP-specific binding motif. Although the active site residues are mostly conserved in all PCKs, not much significant sequence homology persists between ATP- and GTPdependent PCK enzymes. There is only one planctomycetes PCK enzyme (from Cadidatus Kuenenia stuttgartiensis that shows sequence homology with both ATP-and GTP-dependent PCKs. Phylogenetic studies have been performed to understand the evolutionary relationship of various PCKs from different sources. Based on this study a flowchart of the evolution of PCK has been proposed.

  9. On distances between phylogenetic trees

    Energy Technology Data Exchange (ETDEWEB)

    DasGupta, B. [Rutgers Univ., Camden, NJ (United States); He, X. [SUNY, Buffalo, NY (United States); Jiang, T. [McMaster Univ., Hamilton, Ontario (Canada)] [and others

    1997-06-01

    Different phylogenetic trees for the same group of species are often produced either by procedures that use diverse optimality criteria or from different genes in the study of molecular evolution. Comparing these trees to find their similarities and dissimilarities, i.e. distance, is thus an important issue in computational molecular biology. The nearest neighbor interchange distance and the subtree-transfer distance are two major distance metrics that have been proposed and extensively studied for different reasons. Despite their many appealing aspects such as simplicity and sensitivity to tree topologies, computing these distances has remained very challenging. This article studies the complexity and efficient approximation algorithms for computing the nni distance and a natural extension of the subtree-transfer distance, called the linear-cost subtree-transfer distance. The linear-cost subtree-transfer model is more logical than the subtree-transfer model and in fact coincides with the nni model under certain conditions. The following results have been obtained as part of our project of building a comprehensive software package for computing distances between phylogenies. (1) Computing the nni distance is NP-complete. This solves a 25 year old open question appearing again and again in, for example, under the complexity-theoretic assumption of P {ne} NP. We also answer an open question regarding the nni distance between unlabeled trees for which an erroneous proof appeared in. We give an algorithm to compute the optimal nni sequence in time O(n{sup 2} logn + n {circ} 2{sup O(d)}), where the nni distance is at most d. (2) Biological applications require us to extend the nni and linear-cost subtree-transfer models to weighted phylogenies, where edge weights indicate the length of evolution along each edge. We present a logarithmic ratio approximation algorithm for nni and a ratio 2 approximation algorithm for linear-cost subtree-transfer, on weighted trees.

  10. Molecular Phylogenetics: Mathematical Framework and Unsolved Problems

    Science.gov (United States)

    Xia, Xuhua

    Phylogenetic relationship is essential in dating evolutionary events, reconstructing ancestral genes, predicting sites that are important to natural selection, and, ultimately, understanding genomic evolution. Three categories of phylogenetic methods are currently used: the distance-based, the maximum parsimony, and the maximum likelihood method. Here, I present the mathematical framework of these methods and their rationales, provide computational details for each of them, illustrate analytically and numerically the potential biases inherent in these methods, and outline computational challenges and unresolved problems. This is followed by a brief discussion of the Bayesian approach that has been recently used in molecular phylogenetics.

  11. On Tree-Based Phylogenetic Networks.

    Science.gov (United States)

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  12. Experimental design in phylogenetics: testing predictions from expected information.

    Science.gov (United States)

    San Mauro, Diego; Gower, David J; Cotton, James A; Zardoya, Rafael; Wilkinson, Mark; Massingham, Tim

    2012-07-01

    chosen) taxon may increase phylogenetic resolution and support in weakly supported parts of the tree without adding more characters/genes. Altogether our results corroborate that, although still underexplored, Goldman's method offers a powerful tool for experimental design in molecular phylogenetic studies. However, there are still several drawbacks to overcome, and further assessment of the method is needed in order to make it better understood, more accessible, and able to assess the addition of multiple taxa.

  13. On the phylogenetic position of Carollia manu Pacheco et al., 2004 (Chiroptera: Phyllostomidae: Carolliinae).

    Science.gov (United States)

    Velazco, Paol M

    2013-01-01

    The Neotropical bat genus Carollia (Phyllostomidae: Carolliinae) currently includes eight species. Carollia manu was described in 2004 and is distributed in montane forests in southern Peru and Bolivia. The phylogenetic affinities of C. manu have never been assessed before. Phylogenetic analyses of cytochrome b sequences of seven of the eight known species of the genus place C. manu sister to C. subrufa. The analyses also suggest hidden diversity in the genus.

  14. The disentangling number for phylogenetic mixtures

    CERN Document Server

    Sullivant, Seth

    2011-01-01

    We provide a logarithmic upper bound for the disentangling number on unordered lists of leaf labeled trees. This results is useful for analyzing phylogenetic mixture models. The proof depends on interpreting multisets of trees as high dimensional contingency tables.

  15. Advances in phylogenetic studies of Nematoda

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nematoda is a metazoan group with extremely high diversity only next to Insecta. Caenorhabditis elegans is now a favorable experimental model animal in modern developmental biology, genetics and genomics studies. However, the phylogeny of Nematoda and the phylogenetic position of the phylum within animal kingdom have long been in debate. Recent molecular phylogenetic studies gave great challenges to the traditional nematode classification. The new phylogenies not only placed the Nematoda in the Ecdysozoan and divided the phylum into five clades, but also provided new insights into animal molecular identification and phylogenetic biodiversity studies. The present paper reviews major progress and remaining problems in the current molecular phylogenetic studies of Nematoda, and prospects the developmental tendencies of this field.

  16. Sequence heterogeneity and phylogenetic relationships between the copia retrotransposon in Drosophila species of the repleta and melanogaster groups

    Directory of Open Access Journals (Sweden)

    Carareto Claudia MA

    2006-09-01

    Full Text Available Abstract Although the retrotransposon copia has been studied in the melanogaster group of Drosophila species, very little is known about copia dynamism and evolution in other groups. We analyzed the occurrence and heterogeneity of the copia 5'LTR-ULR partial sequence and their phylogenetic relationships in 24 species of the repleta group of Drosophila. PCR showed that copia occurs in 18 out of the 24 species evaluated. Sequencing was possible in only eight species. The sequences showed a low nucleotide diversity, which suggests selective constraints maintaining this regulatory region over evolutionary time. On the contrary, the low nucleotide divergence and the phylogenetic relationships between the D. willistoni/Zaprionus tuberculatus/melanogaster species subgroup suggest horizontal transfer. Sixteen transcription factor binding sites were identified in the LTR-ULR repleta and melanogaster consensus sequences. However, these motifs are not homologous, neither according to their position in the LTR-ULR sequences, nor according to their sequences. Taken together, the low motif homologies, the phylogenetic relationship and the great nucleotide divergence between the melanogaster and repleta copia sequences reinforce the hypothesis that there are two copia families.

  17. Phylogenetic Distribution of Fungal Sterols

    Science.gov (United States)

    Weete, John D.; Abril, Maritza; Blackwell, Meredith

    2010-01-01

    Background Ergosterol has been considered the “fungal sterol” for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. Methodology/Principal Findings The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Δ5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Δ5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade), and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28)-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. Conclusions/Significance Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol), and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles) target reactions in the synthesis of

  18. Phylogenetic distribution of fungal sterols.

    Directory of Open Access Journals (Sweden)

    John D Weete

    Full Text Available BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5 sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5 sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade, and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol, and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles target reactions in

  19. Discovering motifs in ranked lists of DNA sequences.

    Directory of Open Access Journals (Sweden)

    Eran Eden

    2007-03-01

    Full Text Available Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP-chip (chromatin immuno-precipitation on a microarray measurements. Several major challenges in sequence motif discovery still require consideration: (i the need for a principled approach to partitioning the data into target and background sets; (ii the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii the need for an appropriate framework for accounting for motif multiplicity; (iv the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs, which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP-chip and CpG methylation data and obtained the following results. (i Identification of 50 novel putative transcription factor (TF binding sites in yeast ChIP-chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked

  20. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    Science.gov (United States)

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs.

  1. Multilocus sequence evaluation for differentiating species of the trematode Family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification.

    Science.gov (United States)

    Ghatani, Sudeep; Shylla, Jollin Andrea; Roy, Bishnupada; Tandon, Veena

    2014-09-15

    Amphistomiasis, a neglected trematode infectious disease of ruminants, is caused by numerous species of amphistomes belonging to six families under the Superfamily Paramphistomoidea. In the present study, four frequently used DNA markers, viz. nuclear ribosomal 28S (D1-D3 regions), 18S and ITS2 and mitochondrial COI genes, as well as sequence motifs from these genes were evaluated for their utility in species characterization of members of the amphistomes' Family Gastrothylacidae commonly prevailing in Northeast India. In sequence and phylogenetic analyses the COI gene turned out to be the most useful marker in identifying the gastrothylacid species, with the exception of Gastrothylax crumenifer, which showed a high degree of intraspecific variations among its isolates. The sequence analysis data also showed the ITS2 region to be effective for interspecies characterization, though the 28S and 18S genes were found unsuitable for the purpose. On the other hand, sequence motif analysis data revealed the motifs from the COI gene to be highly conserved and specific for their target species which allowed accurate in silico identification of the gastrothylacid species irrespective of their intraspecific differences. We propose the use of COI motifs generated in the study as a potential tool for identification of these species.

  2. A practical guide to phylogenetics for nonexperts.

    Science.gov (United States)

    O'Halloran, Damien

    2014-02-05

    Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts. We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteria and finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studies and also serve as an educational resource that could be incorporated into a classroom or teaching-lab.

  3. How does cognition evolve? Phylogenetic comparative psychology

    Science.gov (United States)

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  4. How does cognition evolve? Phylogenetic comparative psychology.

    Science.gov (United States)

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  5. Nodal distances for rooted phylogenetic trees.

    Science.gov (United States)

    Cardona, Gabriel; Llabrés, Mercè; Rosselló, Francesc; Valiente, Gabriel

    2010-08-01

    Dissimilarity measures for (possibly weighted) phylogenetic trees based on the comparison of their vectors of path lengths between pairs of taxa, have been present in the systematics literature since the early seventies. For rooted phylogenetic trees, however, these vectors can only separate non-weighted binary trees, and therefore these dissimilarity measures are metrics only on this class of rooted phylogenetic trees. In this paper we overcome this problem, by splitting in a suitable way each path length between two taxa into two lengths. We prove that the resulting splitted path lengths matrices single out arbitrary rooted phylogenetic trees with nested taxa and arcs weighted in the set of positive real numbers. This allows the definition of metrics on this general class of rooted phylogenetic trees by comparing these matrices through metrics in spaces M(n)(R) of real-valued n x n matrices. We conclude this paper by establishing some basic facts about the metrics for non-weighted phylogenetic trees defined in this way using L(p) metrics on M(n)(R), with p [epsilon] R(>0).

  6. Fitting a mixture model by expectation maximization to discover motifs in biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, T.L.; Elkan, C. [Univ. of California, La Jolla, CA (United States)

    1994-12-31

    The algorithm described in this paper discovers one or more motifs in a collection of DNA or protein sequences by using the technique of expectation maximization to fit a two-component finite mixture model to the set of sequences. Multiple motifs are found by fitting a mixture model to the data, probabilistically erasing the occurrences of the motif thus found, and repeating the process to find successive motifs. The algorithm requires only a set of unaligned sequences and a number specifying the width of the motifs as input. It returns a model of each motif and a threshold which together can be used as a Bayes-optimal classifier for searching for occurrences of the motif in other databases. The algorithm estimates how many times each motif occurs in each sequence in the dataset and outputs an alignment of the occurrences of the motif. The algorithm is capable of discovering several different motifs with differing numbers of occurrences in a single dataset.

  7. Sevoflurane Alters Spatiotemporal Functional Connectivity Motifs That Link Resting-State Networks during Wakefulness

    Science.gov (United States)

    Kafashan, MohammadMehdi; Ching, ShiNung; Palanca, Ben J. A.

    2016-01-01

    Background: The spatiotemporal patterns of correlated neural activity during the transition from wakefulness to general anesthesia have not been fully characterized. Correlation analysis of blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) allows segmentation of the brain into resting-state networks (RSNs), with functional connectivity referring to the covarying activity that suggests shared functional specialization. We quantified the persistence of these correlations following the induction of general anesthesia in healthy volunteers and assessed for a dynamic nature over time. Methods: We analyzed human fMRI data acquired at 0 and 1.2% vol sevoflurane. The covariance in the correlated activity among different brain regions was calculated over time using bounded Kalman filtering. These time series were then clustered into eight orthogonal motifs using a K-means algorithm, where the structure of correlated activity throughout the brain at any time is the weighted sum of all motifs. Results: Across time scales and under anesthesia, the reorganization of interactions between RSNs is related to the strength of dynamic connections between member pairs. The covariance of correlated activity between RSNs persists compared to that linking individual member pairs of different RSNs. Conclusions: Accounting for the spatiotemporal structure of correlated BOLD signals, anesthetic-induced loss of consciousness is mainly associated with the disruption of motifs with intermediate strength within and between members of different RSNs. In contrast, motifs with higher strength of connections, predominantly with regions-pairs from within-RSN interactions, are conserved among states of wakefulness and sevoflurane general anesthesia. PMID:28082871

  8. Phylogenetic and evolutionary analysis of NBS-encoding genes in Rutaceae fruit crops.

    Science.gov (United States)

    Xu, Qiang; Biswas, Manosh Kumar; Lan, Hong; Zeng, Wenfang; Liu, Chaoyang; Xu, Jidi; Deng, Xiuxin

    2011-02-01

    The nucleotide-binding site leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes in plants. However, our understanding of the evolution of NBS-LRR genes in Rutaceae fruit crops is rather limited. We report an evolutionary study of 103 NBS-encoding genes isolated from Poncirus trifoliata (trifoliate orange), Citrus reticulata (tangerine) and their F(1) progeny. In all, 58 of the sequences contained a continuous open reading frame. Phylogenetic analysis classified the 58 NBS genes into nine clades, eight of which were genus specific. This was taken to imply that most of the ancestors of these NBS genes evolved after the genus split. The motif pattern of the 58 NBS-encoding genes was consistent with their phylogenetic profile. An extended phylogenetic analysis, incorporating citrus NBS genes from the public database, classified 95 citrus NBS genes into six clades, half of which were genus specific. RFLP analysis showed that citrus NBS-encoding genes have been evolving rapidly, and that they are unstable when passed through an intergeneric cross. Of 32 NBS-encoding genes tracked by gene-specific PCR, 24 showed segregation distortion among a set of 94 F(1) individuals. This study provides new insight into the evolution of Rutaceae NBS genes and their behaviour following an intergeneric cross.

  9. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  10. Motifs in Triadic Random Graphs based on Steiner Triple Systems

    CERN Document Server

    Winkler, Marco

    2013-01-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade the overabundance of certain sub-network patterns, so called motifs, has attracted high attention. It has been hypothesized, these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graphs (ERGMs) to define novel models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obst...

  11. Network Motifs in Object-Oriented Software Systems

    CERN Document Server

    Ma, Yutao; Liu, Jing

    2008-01-01

    Nowadays, software has become a complex piece of work that may be beyond our control. Understanding how software evolves over time plays an important role in controlling software development processes. Recently, a few researchers found the quantitative evidence of structural duplication in software systems or web applications, which is similar to the evolutionary trend found in biological systems. To investigate the principles or rules of software evolution, we introduce the relevant theories and methods of complex networks into structural evolution and change of software systems. According to the results of our experiment on network motifs, we find that the stability of a motif shows positive correlation with its abundance and a motif with high Z score tends to have stable structure. These findings imply that the evolution of software systems is based on functional cloning as well as structural duplication and tends to be structurally stable. So, the work presented in this paper will be useful for the analys...

  12. [Specific motifs in the genomes of the family Chlamydiaceae].

    Science.gov (United States)

    Demkin, V V; Kirillova, N V

    2012-01-01

    Specific motifs in the genomes of the family Chlamydiaceae were discussed. The search for genetic markers ofbacteria identification and typing is an urgent problem. The progress in sequencing technology resulted in compilation of the database of genomic nucleotide sequences of bacteria. This raised the problem of the search and selection of genetic targets for identification and typing in bacterial genes based on comparative analysis of complete genomic sequences. The goal of this work was to implement comparative genetic analysis of different species of the family Chlamydiaceae. This analysis was focused to detection of specific motifs capable of serving as genetic marker of this family. The consensus domains were detected using the Visual Basic for Application software for MS Excel. Complete coincidence of segments 25 nucleotide long was used as the test for consensus domain selection. One complete genomic sequence for each of 8 bacterial species was taken for the experiment. The experimental sample did not contain complete sequence of C. suis, because at the moment of this research this species was absence in the database GenBank. Comparative assay of the sequences of the C. trachomatis and other representatives of the family Chlamydiaceae revealed 41 common motifs for 8 Chlamydiaceae species tested in this work. The maximal number of consensus motifs was observed in genes of ribosomal RNA and t-RNA. In addition to genes of r-RNA and t-RNA consensus motifs were observed in 5 genes and 6 intergene segments. The gene CTL0299, CTLO800, dagA, and hctA consensus motifs detected in this work can be regarded as identification domains of the family Chlamydiaceae.

  13. Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants

    Directory of Open Access Journals (Sweden)

    Ahmad A. Malik

    2017-05-01

    Full Text Available Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine. The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid, suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity.

  14. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  15. Quartet decomposition server: a platform for analyzing phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Mao Fenglou

    2012-06-01

    Full Text Available Abstract Background The frequent exchange of genetic material among prokaryotes means that extracting a majority or plurality phylogenetic signal from many gene families, and the identification of gene families that are in significant conflict with the plurality signal is a frequent task in comparative genomics, and especially in phylogenomic analyses. Decomposition of gene trees into embedded quartets (unrooted trees each with four taxa is a convenient and statistically powerful technique to address this challenging problem. This approach was shown to be useful in several studies of completely sequenced microbial genomes. Results We present here a web server that takes a collection of gene phylogenies, decomposes them into quartets, generates a Quartet Spectrum, and draws a split network. Users are also provided with various data download options for further analyses. Each gene phylogeny is to be represented by an assessment of phylogenetic information content, such as sets of trees reconstructed from bootstrap replicates or sampled from a posterior distribution. The Quartet Decomposition server is accessible at http://quartets.uga.edu. Conclusions The Quartet Decomposition server presented here provides a convenient means to perform Quartet Decomposition analyses and will empower users to find statistically supported phylogenetic conflicts.

  16. Quartet decomposition server: a platform for analyzing phylogenetic trees.

    Science.gov (United States)

    Mao, Fenglou; Williams, David; Zhaxybayeva, Olga; Poptsova, Maria; Lapierre, Pascal; Gogarten, J Peter; Xu, Ying

    2012-06-07

    The frequent exchange of genetic material among prokaryotes means that extracting a majority or plurality phylogenetic signal from many gene families, and the identification of gene families that are in significant conflict with the plurality signal is a frequent task in comparative genomics, and especially in phylogenomic analyses. Decomposition of gene trees into embedded quartets (unrooted trees each with four taxa) is a convenient and statistically powerful technique to address this challenging problem. This approach was shown to be useful in several studies of completely sequenced microbial genomes. We present here a web server that takes a collection of gene phylogenies, decomposes them into quartets, generates a Quartet Spectrum, and draws a split network. Users are also provided with various data download options for further analyses. Each gene phylogeny is to be represented by an assessment of phylogenetic information content, such as sets of trees reconstructed from bootstrap replicates or sampled from a posterior distribution. The Quartet Decomposition server is accessible at http://quartets.uga.edu. The Quartet Decomposition server presented here provides a convenient means to perform Quartet Decomposition analyses and will empower users to find statistically supported phylogenetic conflicts.

  17. Molecular phylogenetics of New World searobins (Triglidae; Prionotinae).

    Science.gov (United States)

    Portnoy, David S; Willis, Stuart C; Hunt, Elizabeth; Swift, Dominic G; Gold, John R; Conway, Kevin W

    2017-02-01

    Phylogenetic relationships among members of the New World searobin genera Bellator and Prionotus (Family Triglidae, Subfamily Prionotinae) and among other searobins in the families Triglidae and Peristediidae were investigated using both mitochondrial and nuclear DNA sequences. Phylogenetic hypotheses derived from maximum likelihood and Bayesian methodologies supported a monophyletic Prionotinae that included four well resolved clades of uncertain relationship; three contained species in the genus Prionotus and one contained species in the genus Bellator. Bellator was always recovered within the genus Prionotus, a result supported by post hoc model testing. Two nominal species of Prionotus (P. alatus and P. paralatus) were not recovered as exclusive lineages, suggesting the two may comprise a single species. Phylogenetic hypotheses also supported a monophyletic Triglidae but only if armored searobins (Family Peristediidae) were included. A robust morphological assessment is needed to further characterize relationships and suggest classification of clades within Prionotinae; for the time being we recommend that Bellator be considered a synonym of Prionotus. Relationships between armored searobins (Family Peristediidae) and searobins (Family Triglidae) and relationships within Triglidae also warrant further study.

  18. Some results on more flexible versions of Graph Motif

    CERN Document Server

    Rizzi, Romeo

    2012-01-01

    The problems studied in this paper originate from Graph Motif, a problem introduced in 2006 in the context of biological networks. Informally speaking, it consists in deciding if a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Due to the high rate of noise in the biological data, more flexible definitions of the problem have been outlined. We present in this paper two inapproximability results for two different optimization variants of Graph Motif. We also study another definition of the problem, when the connectivity constraint is replaced by modularity. While the problem stays NP-complete, it allows algorithms in FPT for biologically relevant parameterizations.

  19. BayesMD: flexible biological modeling for motif discovery

    DEFF Research Database (Denmark)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-01-01

    We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on trans......We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained...

  20. Rarefaction and Extrapolation: Making Fair Comparison of Abundance-Sensitive Phylogenetic Diversity among Multiple Assemblages.

    Science.gov (United States)

    Hsieh, T C; Chao, Anne

    2017-01-01

    Measures of phylogenetic diversity are basic tools in many studies of systematic biology. Faith’s PD (sum of branch lengths of a phylogenetic tree connecting all focal species) is the most widely used phylogenetic measure. Like species richness, Faith’s PD based on sampling data is highly dependent on sample size and sample completeness. The sample-size- and sample-coverage-based integration of rarefaction and extrapolation of Faith’s PD was recently developed to make fair comparison across multiple assemblages. However, species abundances are not considered in Faith’s PD. Based on the framework of Hill numbers, Faith’s PD was generalized to a class of phylogenetic diversity measures that incorporates species abundances. In this article, we develop both theoretical formulae and analytic estimators for seamless rarefaction and extrapolation for this class of abundance-sensitive phylogenetic measures, which includes simple transformations of phylogenetic entropy and of quadratic entropy. This work generalizes the previous rarefaction/extrapolation model of Faith’s PD to incorporate species abundance, and also extends the previous rarefaction/extrapolation model of Hill numbers to include phylogenetic differences among species. Thus a unified approach to assessing and comparing species/taxonomic diversity and phylogenetic diversity can be established. A bootstrap method is suggested for constructing confidence intervals around the phylogenetic diversity, facilitating the comparison of multiple assemblages. Our formulation and estimators can be extended to incidence data collected from multiple sampling units. We also illustrate the formulae and estimators using bacterial sequence data from the human distal esophagus and phyllostomid bat data from three habitats.

  1. The phylogenetic position and diversity of the enigmatic mongrel frog Nothophryne Poynton, 1963 (Amphibia, Anura).

    Science.gov (United States)

    Bittencourt-Silva, Gabriela B; Conradie, Werner; Siu-Ting, Karen; Tolley, Krystal A; Channing, Alan; Cunningham, Michael; Farooq, Harith M; Menegon, Michele; Loader, Simon P

    2016-06-01

    The phylogenetic relationships of the African mongrel frog genus Nothophryne are poorly understood. We provide the first molecular assessment of the phylogenetic position of, and diversity within, this monotypic genus from across its range-the Afromontane regions of Malawi and Mozambique. Our analysis using a two-tiered phylogenetic approach allowed us to place the genus in Pyxicephalidae. Within the family, Nothophryne grouped with Tomopterna, a hypothesis judged significantly better than alternative hypotheses proposed based on morphology. Our analyses of populations across the range of Nothophryne suggest the presence of several cryptic species, at least one species per mountain. Formal recognition of these species is pending but there is a major conservation concern for these narrowly distributed populations in an area impacted by major habitat change. The phylogenetic tree of pyxicephalids is used to examine evolution of life history, ancestral habitat, and biogeography of this group. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Increased taxon sampling greatly reduces phylogenetic error.

    Science.gov (United States)

    Zwickl, Derrick J; Hillis, David M

    2002-08-01

    Several authors have argued recently that extensive taxon sampling has a positive and important effect on the accuracy of phylogenetic estimates. However, other authors have argued that there is little benefit of extensive taxon sampling, and so phylogenetic problems can or should be reduced to a few exemplar taxa as a means of reducing the computational complexity of the phylogenetic analysis. In this paper we examined five aspects of study design that may have led to these different perspectives. First, we considered the measurement of phylogenetic error across a wide range of taxon sample sizes, and conclude that the expected error based on randomly selecting trees (which varies by taxon sample size) must be considered in evaluating error in studies of the effects of taxon sampling. Second, we addressed the scope of the phylogenetic problems defined by different samples of taxa, and argue that phylogenetic scope needs to be considered in evaluating the importance of taxon-sampling strategies. Third, we examined the claim that fast and simple tree searches are as effective as more thorough searches at finding near-optimal trees that minimize error. We show that a more complete search of tree space reduces phylogenetic error, especially as the taxon sample size increases. Fourth, we examined the effects of simple versus complex simulation models on taxonomic sampling studies. Although benefits of taxon sampling are apparent for all models, data generated under more complex models of evolution produce higher overall levels of error and show greater positive effects of increased taxon sampling. Fifth, we asked if different phylogenetic optimality criteria show different effects of taxon sampling. Although we found strong differences in effectiveness of different optimality criteria as a function of taxon sample size, increased taxon sampling improved the results from all the common optimality criteria. Nonetheless, the method that showed the lowest overall

  3. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  4. Primate molecular phylogenetics in a genomic era.

    Science.gov (United States)

    Ting, Nelson; Sterner, Kirstin N

    2013-02-01

    A primary objective of molecular phylogenetics is to use molecular data to elucidate the evolutionary history of living organisms. Dr. Morris Goodman founded the journal Molecular Phylogenetics and Evolution as a forum where scientists could further our knowledge about the tree of life, and he recognized that the inference of species trees is a first and fundamental step to addressing many important evolutionary questions. In particular, Dr. Goodman was interested in obtaining a complete picture of the primate species tree in order to provide an evolutionary context for the study of human adaptations. A number of recent studies use multi-locus datasets to infer well-resolved and well-supported primate phylogenetic trees using consensus approaches (e.g., supermatrices). It is therefore tempting to assume that we have a complete picture of the primate tree, especially above the species level. However, recent theoretical and empirical work in the field of molecular phylogenetics demonstrates that consensus methods might provide a false sense of support at certain nodes. In this brief review we discuss the current state of primate molecular phylogenetics and highlight the importance of exploring the use of coalescent-based analyses that have the potential to better utilize information contained in multi-locus data.

  5. Worldwide phylogenetic relationship of avian poxviruses

    Science.gov (United States)

    Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  6. Fourier transform inequalities for phylogenetic trees.

    Science.gov (United States)

    Matsen, Frederick A

    2009-01-01

    Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.

  7. Teaching Molecular Phylogenetics through Investigating a Real-World Phylogenetic Problem

    Science.gov (United States)

    Zhang, Xiaorong

    2012-01-01

    A phylogenetics exercise is incorporated into the "Introduction to biocomputing" course, a junior-level course at Savannah State University. This exercise is designed to help students learn important concepts and practical skills in molecular phylogenetics through solving a real-world problem. In this application, students are required to identify…

  8. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.

    Science.gov (United States)

    Gilbert, Gregory S; Parker, Ingrid M

    2016-08-04

    An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.

  9. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  10. Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers.

    Science.gov (United States)

    Adrianos, Sherry L; Teulé, Florence; Hinman, Michael B; Jones, Justin A; Weber, Warner S; Yarger, Jeffery L; Lewis, Randolph V

    2013-06-10

    Flagelliform spider silk is the most extensible silk fiber produced by orb weaver spiders, though not as strong as the dragline silk of the spider. The motifs found in the core of the Nephila clavipes flagelliform Flag protein are GGX, spacer, and GPGGX. Flag does not contain the polyalanine motif known to provide the strength of dragline silk. To investigate the source of flagelliform fiber strength, four recombinant proteins were produced containing variations of the three core motifs of the Nephila clavipes flagelliform Flag protein that produces this type of fiber. The as-spun fibers were processed in 80% aqueous isopropanol using a standardized process for all four fiber types, which produced improved mechanical properties. Mechanical testing of the recombinant proteins determined that the GGX motif contributes extensibility and the spacer motif contributes strength to the recombinant fibers. Recombinant protein fibers containing the spacer motif were stronger than the proteins constructed without the spacer that contained only the GGX motif or the combination of the GGX and GPGGX motifs. The mechanical and structural X-ray diffraction analysis of the recombinant fibers provide data that suggests a functional role of the spacer motif that produces tensile strength, though the spacer motif is not clearly defined structurally. These results indicate that the spacer is likely a primary contributor of strength, with the GGX motif supplying mobility to the protein network of native N. clavipes flagelliform silk fibers.

  11. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F;

    2008-01-01

    Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory networks underlying cellular responses to environmental cues. However, matching these sites to the kinases that phosphorylate them and the phosphorylation-dependent binding domains that may subsequently...... sequence models of linear motifs. The atlas is available as a community resource (http://netphorest.info)....

  12. How curved membranes recruit amphipathic helices and protein anchoring motifs

    DEFF Research Database (Denmark)

    Hatzakis, Nikos; Bhatia, Vikram Kjøller; Larsen, Jannik;

    2009-01-01

    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing...

  13. RNA recognition motif (RRM)-containing proteins in Bombyx mori

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... containing proteins in B. mori and may serve as a basis ... and domain structures, and then orthologous proteins were assigned with similar .... DQ648521. CG10466. RNA binding motif protein,. X-linked. 2. (RBMX2). 1RRM. 1 ... Polymerase delta ... tion or initiation, 8 in transcription, and 3 in apoptosis. For.

  14. Mother goddesses with boat motifs on stone sculptures from Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, R.; Gaur, A.S.

    in temples made of laterite dressed stone blocks, which might have been a tradition of the post-Kadamba period. At Savarde, a few architectural members lying Fig.4. Fragmented sculpture with boat motif from Guleli in the vicinity suggest that a temple...

  15. Motifs in triadic random graphs based on Steiner triple systems

    Science.gov (United States)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  16. Insights into the motif preference of APOBEC3 enzymes.

    Directory of Open Access Journals (Sweden)

    Diako Ebrahimi

    Full Text Available We used a multivariate data analysis approach to identify motifs associated with HIV hypermutation by different APOBEC3 enzymes. The analysis showed that APOBEC3G targets G mainly within GG, TG, TGG, GGG, TGGG and also GGGT. The G nucleotides flanked by a C at the 3' end (in +1 and +2 positions were indicated as disfavoured targets by APOBEC3G. The G nucleotides within GGGG were found to be targeted at a frequency much less than what is expected. We found that the infrequent G-to-A mutation within GGGG is not limited to the inaccessibility, to APOBEC3, of poly Gs in the central and 3'polypurine tracts (PPTs which remain double stranded during the HIV reverse transcription. GGGG motifs outside the PPTs were also disfavoured. The motifs GGAG and GAGG were also found to be disfavoured targets for APOBEC3. The motif-dependent mutation of G within the HIV genome by members of the APOBEC3 family other than APOBEC3G was limited to GA→AA changes. The results did not show evidence of other types of context dependent G-to-A changes in the HIV genome.

  17. Insights into the motif preference of APOBEC3 enzymes.

    Science.gov (United States)

    Ebrahimi, Diako; Alinejad-Rokny, Hamid; Davenport, Miles P

    2014-01-01

    We used a multivariate data analysis approach to identify motifs associated with HIV hypermutation by different APOBEC3 enzymes. The analysis showed that APOBEC3G targets G mainly within GG, TG, TGG, GGG, TGGG and also GGGT. The G nucleotides flanked by a C at the 3' end (in +1 and +2 positions) were indicated as disfavoured targets by APOBEC3G. The G nucleotides within GGGG were found to be targeted at a frequency much less than what is expected. We found that the infrequent G-to-A mutation within GGGG is not limited to the inaccessibility, to APOBEC3, of poly Gs in the central and 3'polypurine tracts (PPTs) which remain double stranded during the HIV reverse transcription. GGGG motifs outside the PPTs were also disfavoured. The motifs GGAG and GAGG were also found to be disfavoured targets for APOBEC3. The motif-dependent mutation of G within the HIV genome by members of the APOBEC3 family other than APOBEC3G was limited to GA→AA changes. The results did not show evidence of other types of context dependent G-to-A changes in the HIV genome.

  18. Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-12-01

    Full Text Available The data presented in this paper is supporting the research article “Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum” [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4, “Bayesian phylogenetic inference under mixed models” [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, “SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.” [3] and motif sequences of SODs identified by InterProScan (version 4.8 with the Pfam database, “Pfam: the protein families database” [4].

  19. Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum.

    Science.gov (United States)

    Wang, Wei; Xia, Minxuan; Chen, Jie; Deng, Fenni; Yuan, Rui; Zhang, Xiaopei; Shen, Fafu

    2016-12-01

    The data presented in this paper is supporting the research article "Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum" [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), "Bayesian phylogenetic inference under mixed models" [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, "SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information." [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, "Pfam: the protein families database" [4].

  20. ScripTree: scripting phylogenetic graphics.

    Science.gov (United States)

    Chevenet, François; Croce, Olivier; Hebrard, Maxime; Christen, Richard; Berry, Vincent

    2010-04-15

    There is a large amount of tools for interactive display of phylogenetic trees. However, there is a shortage of tools for the automation of tree rendering. Scripting phylogenetic graphics would enable the saving of graphical analyses involving numerous and complex tree handling operations and would allow the automation of repetitive tasks. ScripTree is a tool intended to fill this gap. It is an interpreter to be used in batch mode. Phylogenetic graphics instructions, related to tree rendering as well as tree annotation, are stored in a text file and processed in a sequential way. ScripTree can be used online or downloaded at www.scriptree.org, under the GPL license. ScripTree, written in Tcl/Tk, is a cross-platform application available for Windows and Unix-like systems including OS X. It can be used either as a stand-alone package or included in a bioinformatic pipeline and linked to a HTTP server.

  1. Phylogenetics, evolution, and medical importance of polyomaviruses.

    Science.gov (United States)

    Krumbholz, Andi; Bininda-Emonds, Olaf R P; Wutzler, Peter; Zell, Roland

    2009-09-01

    The increasing frequency of tissue transplantation, recent progress in the development and application of immunomodulators, and the depressingly high number of AIDS patients worldwide have placed human polyomaviruses, a group of pathogens that can become reactivated under the status of immunosuppression, suddenly in the spotlight. Since the first description of a polyomavirus a half-century ago in 1953, a multiplicity of human and animal polyomaviruses have been discovered. After reviewing the history of research into this group, with a special focus is made on the clinical importance of human polyomaviruses, we conclude by elucidating the phylogenetic relationships and thus evolutionary history of these viruses. Our phylogenetic analyses are based on all available putative polyomavirus species as well as including all subtypes, subgroups, and (sub)lineages of the human BK and JC polyomaviruses. Finally, we reveal that the hypothesis of a strict codivergence of polyomaviruses with their respective hosts does not represent a realistic assumption in light of phylogenetic findings presented here.

  2. Phylogenetic invariants for group-based models

    CERN Document Server

    Donten-Bury, Maria

    2010-01-01

    In this paper we investigate properties of algebraic varieties representing group-based phylogenetic models. We give the (first) example of a nonnormal general group-based model for an abelian group. Following Kaie Kubjas we also determine some invariants of group-based models showing that the associated varieties do not have to be deformation equivalent. We propose a method of generating many phylogenetic invariants and in particular we show that our approach gives the whole ideal of the claw tree for 3-Kimura model under the assumption of the conjecture of Sturmfels and Sullivant. This, combined with the results of Sturmfels and Sullivant, would enable to determine all phylogenetic invariants for any tree for 3-Kimura model and possibly for other group-based models.

  3. Morphological and molecular convergences in mammalian phylogenetics.

    Science.gov (United States)

    Zou, Zhengting; Zhang, Jianzhi

    2016-09-02

    Phylogenetic trees reconstructed from molecular sequences are often considered more reliable than those reconstructed from morphological characters, in part because convergent evolution, which confounds phylogenetic reconstruction, is believed to be rarer for molecular sequences than for morphologies. However, neither the validity of this belief nor its underlying cause is known. Here comparing thousands of characters of each type that have been used for inferring the phylogeny of mammals, we find that on average morphological characters indeed experience much more convergences than amino acid sites, but this disparity is explained by fewer states per character rather than an intrinsically higher susceptibility to convergence for morphologies than sequences. We show by computer simulation and actual data analysis that a simple method for identifying and removing convergence-prone characters improves phylogenetic accuracy, potentially enabling, when necessary, the inclusion of morphologies and hence fossils for reliable tree inference.

  4. Visualizing Phylogenetic Treespace Using Cartographic Projections

    Science.gov (United States)

    Sundberg, Kenneth; Clement, Mark; Snell, Quinn

    Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger datasets.

  5. Molecular phylogenetics of the hummingbird genus Coeligena.

    Science.gov (United States)

    Parra, Juan Luis; Remsen, J V; Alvarez-Rebolledo, Mauricio; McGuire, Jimmy A

    2009-11-01

    Advances in the understanding of biological radiations along tropical mountains depend on the knowledge of phylogenetic relationships among species. Here we present a species-level molecular phylogeny based on a multilocus dataset for the Andean hummingbird genus Coeligena. We compare this phylogeny to previous hypotheses of evolutionary relationships and use it as a framework to understand patterns in the evolution of sexual dichromatism and in the biogeography of speciation within the Andes. Previous phylogenetic hypotheses based mostly on similarities in coloration conflicted with our molecular phylogeny, emphasizing the unreliability of color characters for phylogenetic inference. Two major clades, one monochromatic and the other dichromatic, were found in Coeligena. Closely related species were either allopatric or parapatric on opposite mountain slopes. No sister lineages replaced each other along an elevational gradient. Our results indicate the importance of geographic isolation for speciation in this group and the potential interaction between isolation and sexual selection to promote diversification.

  6. Variable structure motifs for transcription factor binding sites.

    Science.gov (United States)

    Reid, John E; Evans, Kenneth J; Dyer, Nigel; Wernisch, Lorenz; Ott, Sascha

    2010-01-14

    Classically, models of DNA-transcription factor binding sites (TFBSs) have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs). Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does provide more interpretable models of motifs of variable

  7. Variable structure motifs for transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Wernisch Lorenz

    2010-01-01

    Full Text Available Abstract Background Classically, models of DNA-transcription factor binding sites (TFBSs have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs. Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. Results We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. Conclusions We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does

  8. Probabilistic graphical model representation in phylogenetics.

    Science.gov (United States)

    Höhna, Sebastian; Heath, Tracy A; Boussau, Bastien; Landis, Michael J; Ronquist, Fredrik; Huelsenbeck, John P

    2014-09-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis-Hastings or Gibbs sampling of the posterior distribution.

  9. [Analysis phylogenetic relationship of Gynostemma (Cucurbitaceae)].

    Science.gov (United States)

    Qin, Shuang-shuang; Li, Hai-tao; Wang, Zhou-yong; Cui, Zhan-hu; Yu, Li-ying

    2015-05-01

    The sequences of ITS, matK, rbcL and psbA-trnH of 9 Gynostemma species or variety including 38 samples were compared and analyzed by molecular phylogeny method. Hemsleya macrosperma was designated as outgroup. The MP and NJ phylogenetic tree of Gynostemma was built based on ITS sequence, the results of PAUP phylogenetic analysis showed the following results: (1) The eight individuals of G. pentaphyllum var. pentaphyllum were not supported as monophyletic in the strict consensus trees and NJ trees. (2) It is suspected whether G. longipes and G. laxum should be classified as the independent species. (3)The classification of subgenus units of Gynostemma plants is supported.

  10. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  11. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    and validated as a binding motif for the SH2 domain-containing inositol phosphatase SHIP2. Our decomposition of the in vivo Tyr(P) proteome furthermore suggests that two-thirds of the Tyr(P) sites mediate interaction, whereas the remaining third govern processes such as enzyme activation and nucleic acid...

  12. Differential evolutionary conservation of motif modes in the yeast protein interaction network

    Directory of Open Access Journals (Sweden)

    Yu Chang-Yung

    2006-04-01

    Full Text Available Abstract Background The importance of a network motif (a recurring interconnected pattern of special topology which is over-represented in a biological network lies in its position in the hierarchy between the protein molecule and the module in a protein-protein interaction network. Until now, however, the methods available have greatly restricted the scope of research. While they have focused on the analysis in the resolution of a motif topology, they have not been able to distinguish particular motifs of the same topology in a protein-protein interaction network. Results We have been able to assign the molecular function annotations of Gene Ontology to each protein in the protein-protein interactions of Saccharomyces cerevisiae. For various motif topologies, we have developed an algorithm, enabling us to unveil one million "motif modes", each of which features a unique topological combination of molecular functions. To our surprise, the conservation ratio, i.e., the extent of the evolutionary constraints upon the motif modes of the same motif topology, varies significantly, clearly indicative of distinct differences in the evolutionary constraints upon motifs of the same motif topology. Equally important, for all motif modes, we have found a power-law distribution of the motif counts on each motif mode. We postulate that motif modes may very well represent the evolutionary-conserved topological units of a protein interaction network. Conclusion For the first time, the motifs of a protein interaction network have been investigated beyond the scope of motif topology. The motif modes determined in this study have not only enabled us to differentiate among different evolutionary constraints on motifs of the same topology but have also opened up new avenues through which protein interaction networks can be analyzed.

  13. Phylogenetic representativeness: a new method for evaluating taxon sampling in evolutionary studies

    Directory of Open Access Journals (Sweden)

    Passamonti Marco

    2010-04-01

    Full Text Available Abstract Background Taxon sampling is a major concern in phylogenetic studies. Incomplete, biased, or improper taxon sampling can lead to misleading results in reconstructing evolutionary relationships. Several theoretical methods are available to optimize taxon choice in phylogenetic analyses. However, most involve some knowledge about the genetic relationships of the group of interest (i.e., the ingroup, or even a well-established phylogeny itself; these data are not always available in general phylogenetic applications. Results We propose a new method to assess taxon sampling developing Clarke and Warwick statistics. This method aims to measure the "phylogenetic representativeness" of a given sample or set of samples and it is based entirely on the pre-existing available taxonomy of the ingroup, which is commonly known to investigators. Moreover, our method also accounts for instability and discordance in taxonomies. A Python-based script suite, called PhyRe, has been developed to implement all analyses we describe in this paper. Conclusions We show that this method is sensitive and allows direct discrimination between representative and unrepresentative samples. It is also informative about the addition of taxa to improve taxonomic coverage of the ingroup. Provided that the investigators' expertise is mandatory in this field, phylogenetic representativeness makes up an objective touchstone in planning phylogenetic studies.

  14. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.

    Science.gov (United States)

    Li, Lanping; Li, Zhikuo; Cadotte, Marc W; Jia, Peng; Chen, Guanguang; Jin, Lanna S; Du, Guozhen

    2016-10-01

    The study of phylogenetic conservatism in alpine plant phenology is critical for predicting climate change impacts; currently we have a poor understanding of how phylogeny and climate factors interactively influence plant phenology. Therefore, we explored the influence of phylogeny and climate factors on flowering phenology in alpine meadows. For two different types of alpine plant communities, we recorded phenological data, including flowering peak, first flower budding, first flowering, first fruiting and the flowering end for 62 species over the course of 5 years (2008-2012). From sequences in two plastid regions, we constructed phylogenetic trees. We used Blomberg's K and Pagel's lambda to assess the phylogenetic signal in phenological traits and species' phenological responses to climate factors. We found a significant phylogenetic signal in the date of all reproductive phenological events and in species' phenological responses to weekly day length and temperature. The number of species in flower was strongly associated with the weekly day lengths and followed by the weekly temperature prior to phenological activity. Based on phylogenetic eigenvector regression (PVR) analysis, we found a highly shared influence of phylogeny and climate factors on alpine species flowering phenology. Our results suggest the phylogenetic conservatism in both flowering and fruiting phenology may depend on the similarity of responses to external environmental cues among close relatives.

  15. CXC motif chemokine receptor 4 gene polymorphism and cancer risk

    Science.gov (United States)

    Wu, Yang; Zhang, Chun; Xu, Weizhang; Zhang, Jianzhong; Zheng, Yuxiao; Lu, Zipeng; Liu, Dongfang; Jiang, Kuirong

    2016-01-01

    Abstract Background: Previous epidemiological studies have reported the relationship between CXC motif chemokine receptor 4 (CXCR4) synonymous polymorphism (rs2228014), and risk of cancer, but the results remained conflicting and controversial. Therefore, this study was devised to evaluate the genetic effects of the rs2228014 polymorphism on cancer risk in a large meta-analysis. Methods: The computer-based databases (EMBASE, Web of Science, and PubMed) were searched for all relevant studies evaluating rs2228014 and susceptibility to cancer. In the analysis, pooled odds ratios (ORs) with its corresponding 95% confidence intervals (CIs) were calculated in 5 genetic models to assess the genetic risk. Egger regression and Begg funnel plots test were conducted to appraise the publication bias. Results: Data on rs2228014 polymorphism and overall cancer risk were available for 3684 cancer patients and 5114 healthy controls participating in 11 studies. Overall, a significantly increased risk of cancer was associated with rs2228014 polymorphism in homozygote model (OR = 2.01, 95% CI: 1.22–3.33) and in recessive model (OR = 1.97, 95% CI: 1.23–3.16). When stratified by ethnicity, the results were positive only in Asian populations (heterozygote model: OR = 1.36, 95% CI: 1.13–1.65; homozygote model: OR = 2.43, 95% CI: 1.21–4.91; dominant model: OR = 1.47, 95% CI: 1.13–1.90; recessive model: OR = 2.25, 95% CI: 1.13–4.48; and allele model: OR = 1.48, 95% CI: 1.10–1.99). Besides, in the subgroup analysis by source of control, the result was significant only in population-based control (homozygote model: OR = 2.39, 95% CI: 1.06–5.40; recessive model: pooled OR = 2.24, 95% CI: 1.02–4.96). Conclusion: In general, our results first indicated that the rs2228014 polymorphism in CXCR4 gene is correlated with an increased risk of cancer, especially among Asian ethnicity. Large, well-designed epidemiological studies are required to verify the current findings. PMID

  16. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    Science.gov (United States)

    Austin, Ryan S; Provart, Nicholas J; Cutler, Sean R

    2007-01-01

    Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*), the ER-retention signal (K/HDEL*), the ER-retrieval signal for membrane bound proteins (KKxx*), the prenylation signal (CC*) and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists between species, among

  17. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    Directory of Open Access Journals (Sweden)

    Cutler Sean R

    2007-06-01

    Full Text Available Abstract Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*, the ER-retention signal (K/HDEL*, the ER-retrieval signal for membrane bound proteins (KKxx*, the prenylation signal (CC* and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists

  18. Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree

    Science.gov (United States)

    Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.

    2017-02-01

    Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.

  19. Causes, consequences and solutions of phylogenetic incongruence.

    Science.gov (United States)

    Som, Anup

    2015-05-01

    Phylogenetic analysis is used to recover the evolutionary history of species, genes or proteins. Understanding phylogenetic relationships between organisms is a prerequisite of almost any evolutionary study, as contemporary species all share a common history through their ancestry. Moreover, it is important because of its wide applications that include understanding genome organization, epidemiological investigations, predicting protein functions, and deciding the genes to be analyzed in comparative studies. Despite immense progress in recent years, phylogenetic reconstruction involves many challenges that create uncertainty with respect to the true evolutionary relationships of the species or genes analyzed. One of the most notable difficulties is the widespread occurrence of incongruence among methods and also among individual genes or different genomic regions. Presence of widespread incongruence inhibits successful revealing of evolutionary relationships and applications of phylogenetic analysis. In this article, I concisely review the effect of various factors that cause incongruence in molecular phylogenies, the advances in the field that resolved some factors, and explore unresolved factors that cause incongruence along with possible ways for tackling them. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Phylogenetics in plant biotechnology: principles, obstacles and ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... Their faster evolution may lead to more infor- mative characters. However .... the coefficient of variation was determined principally by the amount of ... phylogenetic context the priority switches from more samples to more ..... phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol.

  1. Constructing Student Problems in Phylogenetic Tree Construction.

    Science.gov (United States)

    Brewer, Steven D.

    Evolution is often equated with natural selection and is taught from a primarily functional perspective while comparative and historical approaches, which are critical for developing an appreciation of the power of evolutionary theory, are often neglected. This report describes a study of expert problem-solving in phylogenetic tree construction.…

  2. The phylogenetics of succession can guide restoration

    DEFF Research Database (Denmark)

    Shooner, Stephanie; Chisholm, Chelsea Lee; Davies, T. Jonathan

    2015-01-01

    Phylogenetic tools have increasingly been used in community ecology to describe the evolutionary relationships among co-occurring species. In studies of succession, such tools may allow us to identify the evolutionary lineages most suited for particular stages of succession and habitat rehabilita...

  3. The First Darwinian Phylogenetic Tree of Plants.

    Science.gov (United States)

    Hoßfeld, Uwe; Watts, Elizabeth; Levit, Georgy S

    2017-02-01

    In 1866, the German zoologist Ernst Haeckel (1834-1919) published the first Darwinian trees of life in the history of biology in his book General Morphology of Organisms. We take a specific look at the first phylogenetic trees for the plant kingdom that Haeckel created as part of this two-volume work. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Quantifying MCMC exploration of phylogenetic tree space.

    Science.gov (United States)

    Whidden, Chris; Matsen, Frederick A

    2015-05-01

    In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks.

  5. Multilocus phylogenetic analysis of the genus Aeromonas.

    Science.gov (United States)

    Martinez-Murcia, Antonio J; Monera, Arturo; Saavedra, M Jose; Oncina, Remedios; Lopez-Alvarez, Monserrate; Lara, Erica; Figueras, M Jose

    2011-05-01

    A broad multilocus phylogenetic analysis (MLPA) of the representative diversity of a genus offers the opportunity to incorporate concatenated inter-species phylogenies into bacterial systematics. Recent analyses based on single housekeeping genes have provided coherent phylogenies of Aeromonas. However, to date, a multi-gene phylogenetic analysis has never been tackled. In the present study, the intra- and inter-species phylogenetic relationships of 115 strains representing all Aeromonas species described to date were investigated by MLPA. The study included the independent analysis of seven single gene fragments (gyrB, rpoD, recA, dnaJ, gyrA, dnaX, and atpD), and the tree resulting from the concatenated 4705 bp sequence. The phylogenies obtained were consistent with each other, and clustering agreed with the Aeromonas taxonomy recognized to date. The highest clustering robustness was found for the concatenated tree (i.e. all Aeromonas species split into 100% bootstrap clusters). Both possible chronometric distortions and poor resolution encountered when using single-gene analysis were buffered in the concatenated MLPA tree. However, reliable phylogenetic species delineation required an MLPA including several "bona fide" strains representing all described species.

  6. Characterization of Escherichia coli Phylogenetic Groups ...

    African Journals Online (AJOL)

    high surface hydrophobicity, toxin (hemolysin and CNF) ... Triplex polymerase chain reaction was used to classify the phylogenetic groups; hemolysin ... was detected by combination disk method; AmpC was detected by AmpC disk test, ... Quick Response Code: ... norfloxacin (10 μg), amikacin (30 μg), gentamicin (10 μg),.

  7. Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling.

    Science.gov (United States)

    Yesson, C; Culham, A

    2006-10-01

    We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of

  8. Binets: Fundamental Building Blocks for Phylogenetic Networks.

    Science.gov (United States)

    van Iersel, Leo; Moulton, Vincent; de Swart, Eveline; Wu, Taoyang

    2017-05-01

    Phylogenetic networks are a generalization of evolutionary trees that are used by biologists to represent the evolution of organisms which have undergone reticulate evolution. Essentially, a phylogenetic network is a directed acyclic graph having a unique root in which the leaves are labelled by a given set of species. Recently, some approaches have been developed to construct phylogenetic networks from collections of networks on 2- and 3-leaved networks, which are known as binets and trinets, respectively. Here we study in more depth properties of collections of binets, one of the simplest possible types of networks into which a phylogenetic network can be decomposed. More specifically, we show that if a collection of level-1 binets is compatible with some binary network, then it is also compatible with a binary level-1 network. Our proofs are based on useful structural results concerning lowest stable ancestors in networks. In addition, we show that, although the binets do not determine the topology of the network, they do determine the number of reticulations in the network, which is one of its most important parameters. We also consider algorithmic questions concerning binets. We show that deciding whether an arbitrary set of binets is compatible with some network is at least as hard as the well-known graph isomorphism problem. However, if we restrict to level-1 binets, it is possible to decide in polynomial time whether there exists a binary network that displays all the binets. We also show that to find a network that displays a maximum number of the binets is NP-hard, but that there exists a simple polynomial-time 1/3-approximation algorithm for this problem. It is hoped that these results will eventually assist in the development of new methods for constructing phylogenetic networks from collections of smaller networks.

  9. A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

    Science.gov (United States)

    Romero, José R.; Carballido, Jessica A.; Garbus, Ingrid; Echenique, Viviana C.; Ponzoni, Ignacio

    2016-01-01

    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka. PMID:27812277

  10. Complete mitochondrial genomes of five skippers (Lepidoptera: Hesperiidae) and phylogenetic reconstruction of Lepidoptera.

    Science.gov (United States)

    Kim, Min Jee; Wang, Ah Rha; Park, Jeong Sun; Kim, Iksoo

    2014-10-01

    We sequenced mitogenomes of five skippers (family Hesperiidae, Lepidoptera) to obtain further insight into the characteristics of butterfly mitogenomes and performed phylogenetic reconstruction using all available gene sequences (PCGs, rRNAs, and tRNAs) from 85 species (20 families in eight superfamilies). The general genomic features found in the butterflies also were found in the five skippers: a high A+T composition (79.3%-80.9%), dominant usage of TAA stop codon, similar skewness pattern in both strands, consistently length intergenic spacer sequence between tRNA(Gln) and ND2 (64-87 bp), conserved ATACTAA motif between tRNA(Ser (UCN)) and ND1, and characteristic features of the A+T-rich region (the ATAGA motif, varying length of poly-T stretch, and poly-A stretch). The start codon for COI was CGA in four skippers as typical, but Lobocla bifasciatus evidently possessed canonical ATG as start codon. All species had the ancestral arrangement tRNA(Asn)/tRNA(Ser (AGN)), instead of the rearrangement tRNA(Ser (AGN))/tRNA(Asn), found in another skipper species (Erynnis). Phylogenetic analyses using all available genes (PCGs, rRNAS, and tRNAs) yielded the consensus superfamilial relationships ((((((Bombycoidea+Noctuoidea+Geometroidea)+Pyraloidea)+Papilionoidea)+Tortricoidea)+Yponomeutoidea)+Hepialoidea), confirming the validity of Macroheterocera (Bombycoidea, Noctuoidea, and Geometroidea in this study) and its sister relationship to Pyraloidea. Within Rhopalocera (butterflies and skippers) the familial relationships (Papilionidae+(Hesperiidae+(Pieridae+((Lycaenidae+Riodinidae)+Nymphalidae)))) were strongly supported in all analyses (0.98-1 by BI and 96-100 by ML methods), rendering invalid the superfamily status for Hesperioidea. On the other hand, current mitogenome-based phylogeny did not find consistent superfamilial relationships among Noctuoidea, Geometroidea, and Bombycoidea and the familial relationships within Bombycoidea between analyses, requiring further

  11. MEME-LaB: motif analysis in clusters.

    Science.gov (United States)

    Brown, Paul; Baxter, Laura; Hickman, Richard; Beynon, Jim; Moore, Jonathan D; Ott, Sascha

    2013-07-01

    Genome-wide expression analysis can result in large numbers of clusters of co-expressed genes. Although there are tools for ab initio discovery of transcription factor-binding sites, most do not provide a quick and easy way to study large numbers of clusters. To address this, we introduce a web tool called MEME-LaB. The tool wraps MEME (an ab initio motif finder), providing an interface for users to input multiple gene clusters, retrieve promoter sequences, run motif finding and then easily browse and condense the results, facilitating better interpretation of the results from large-scale datasets. MEME-LaB is freely accessible at: http://wsbc.warwick.ac.uk/wsbcToolsWebpage/. Supplementary data are available at Bioinformatics online.

  12. Genetic analysis of beta1 integrin "activation motifs" in mice

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R

    2006-01-01

    tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin......-null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the beta1 integrin tail are essential for beta1 integrin function, whereas tyrosine phosphorylation......Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha/beta...

  13. A new motif for inhibitors of geranylgeranyl diphosphate synthase.

    Science.gov (United States)

    Foust, Benjamin J; Allen, Cheryl; Holstein, Sarah A; Wiemer, David F

    2016-08-15

    The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure-function relationship which is dependent on the nature of the alkyl group at the α-carbon.

  14. A Cooperative Approach for the Extraction of Protein Motifs

    Institute of Scientific and Technical Information of China (English)

    Chao CHEN; Yuan Xin TIAN; Xiao Yong ZOU; Pei Xiang CAI; Jin Yuan MO

    2006-01-01

    By integrating the concept of cooperative approach, an extension of the fast annealing coevolutionary algorithm is presented in this paper. It outperformed the original algorithm in the domain of function optimization, especially in terms of convergence rate. It was also applied to a real optimization problem, protein motif extraction. And a satisfactory result has been obtained with the accuracy of prediction achieving 67.0%, which is in agreement with the result in the PROSITE database.

  15. Neoanalysis, Orality, and Intertextuality: An Examination of Homeric Motif Transference

    Directory of Open Access Journals (Sweden)

    Jonathan Burgess

    2006-03-01

    Full Text Available In Homeric studies scholars have speculated on the influence of (non-surviving preHomeric material on the Iliad. This article expands this line of argument from an oralist perspective, with reference to modern intertextual theory. It concludes that preHomeric and nonHomeric motifs from oral traditions were transferred into the epic poem, creating an intertextually allusive poetics that would have been recognizable to an early Greek audience informed of mythological traditions.

  16. Motif Analysis in the Amazon Product Co-Purchasing Network

    OpenAIRE

    Srivastava, Abhishek

    2010-01-01

    Online stores like Amazon and Ebay are growing by the day. Fewer people go to departmental stores as opposed to the convenience of purchasing from stores online. These stores may employ a number of techniques to advertise and recommend the appropriate product to the appropriate buyer profile. This article evaluates various 3-node and 4-node motifs occurring in such networks. Community structures are evaluated too.These results may provide interesting insights into user behavior and a better u...

  17. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  18. Characterizing regulatory path motifs in integrated networks using perturbational data

    OpenAIRE

    Joshi, Anagha Madhusudan; Van Parys, Thomas; de Peer, Yves Van; Michoel, Tom

    2010-01-01

    We introduce Pathicular http://bioinformatics.psb.ugent.be/software/details/Pathicular, a Cytoscape plugin for studying the cellular response to perturbations of transcription factors by integrating perturbational expression data with transcriptional, protein-protein and phosphorylation networks. Pathicular searches for 'regulatory path motifs', short paths in the integrated physical networks which occur significantly more often than expected between transcription factors and their targets in...

  19. A combinatorial code for splicing silencing: UAGG and GGGG motifs.

    Directory of Open Access Journals (Sweden)

    Kyoungha Han

    2005-05-01

    Full Text Available Alternative pre-mRNA splicing is widely used to regulate gene expression by tuning the levels of tissue-specific mRNA isoforms. Few regulatory mechanisms are understood at the level of combinatorial control despite numerous sequences, distinct from splice sites, that have been shown to play roles in splicing enhancement or silencing. Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5'-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19 of the glutamate NMDA R1 receptor (GRIN1 transcript. Disruption of three components of the motif pattern converted the CI cassette into a constitutive exon, while predominant skipping was conferred when the same components were introduced, de novo, into a heterologous constitutive exon. Predominant exon silencing was directed by the motif pattern in the presence of six competing exonic splicing enhancers, and this effect was retained after systematically repositioning the two exonic UAGGs within the CI cassette. In this system, hnRNP A1 was shown to mediate silencing while hnRNP H antagonized silencing. Genome-wide computational analysis combined with RT-PCR testing showed that a class of skipped human and mouse exons can be identified by searches that preserve the sequence and spatial configuration of the UAGG and GGGG motifs. This analysis suggests that the multi-component silencing code may play an important role in the tissue-specific regulation of the CI cassette exon, and that it may serve more generally as a molecular language to allow for intricate adjustments and the coordination of splicing patterns from different genes.

  20. A combinatorial code for splicing silencing: UAGG and GGGG motifs.

    Science.gov (United States)

    Han, Kyoungha; Yeo, Gene; An, Ping; Burge, Christopher B; Grabowski, Paula J

    2005-05-01

    Alternative pre-mRNA splicing is widely used to regulate gene expression by tuning the levels of tissue-specific mRNA isoforms. Few regulatory mechanisms are understood at the level of combinatorial control despite numerous sequences, distinct from splice sites, that have been shown to play roles in splicing enhancement or silencing. Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5'-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19) of the glutamate NMDA R1 receptor (GRIN1) transcript. Disruption of three components of the motif pattern converted the CI cassette into a constitutive exon, while predominant skipping was conferred when the same components were introduced, de novo, into a heterologous constitutive exon. Predominant exon silencing was directed by the motif pattern in the presence of six competing exonic splicing enhancers, and this effect was retained after systematically repositioning the two exonic UAGGs within the CI cassette. In this system, hnRNP A1 was shown to mediate silencing while hnRNP H antagonized silencing. Genome-wide computational analysis combined with RT-PCR testing showed that a class of skipped human and mouse exons can be identified by searches that preserve the sequence and spatial configuration of the UAGG and GGGG motifs. This analysis suggests that the multi-component silencing code may play an important role in the tissue-specific regulation of the CI cassette exon, and that it may serve more generally as a molecular language to allow for intricate adjustments and the coordination of splicing patterns from different genes.

  1. The leitmotif racket in Lolita—marginal notes on Nabokov’s use of motifs

    OpenAIRE

    2013-01-01

    This is a study of Nabokov’s use of leitmotifs in Lolita, a study of how they intertwine and interact, and the problems Nabokov’s stylistic dexterity pose to the reader and critic. It traces prominent occurrences of the toilet and telephone motifs, and their connection with motifs like the slipper and the racket motif.

  2. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  3. Process-based network decomposition reveals backbone motif structure.

    Science.gov (United States)

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-06-08

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated).

  4. STEME: efficient EM to find motifs in large data sets

    Science.gov (United States)

    Reid, John E.; Wernisch, Lorenz

    2011-01-01

    MEME and many other popular motif finders use the expectation–maximization (EM) algorithm to optimize their parameters. Unfortunately, the running time of EM is linear in the length of the input sequences. This can prohibit its application to data sets of the size commonly generated by high-throughput biological techniques. A suffix tree is a data structure that can efficiently index a set of sequences. We describe an algorithm, Suffix Tree EM for Motif Elicitation (STEME), that approximates EM using suffix trees. To the best of our knowledge, this is the first application of suffix trees to EM. We provide an analysis of the expected running time of the algorithm and demonstrate that STEME runs an order of magnitude more quickly than the implementation of EM used by MEME. We give theoretical bounds for the quality of the approximation and show that, in practice, the approximation has a negligible effect on the outcome. We provide an open source implementation of the algorithm that we hope will be used to speed up existing and future motif search algorithms. PMID:21785132

  5. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  6. Motif structure and cooperation in real-world complex networks

    Science.gov (United States)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  7. THE MOTIF OF THE PRODIGAL SON IN IVAN TURGENEV'S NOVELS

    Directory of Open Access Journals (Sweden)

    Valentina Ivanovna Gabdullina

    2013-11-01

    Full Text Available The author questions the perception of Ivan Turgenev as a “non- Christian writer” and studies the problem of the prodigal son motif functioning in a series of his novels. In his novels, Turgenev pictured different phases of the archetypal story, originating from the Gospel parable of the prodigal son. In the novel Rudin he depicted the phase of spiritual wanderings of the hero who had lost touch with his native land — Russia. In his next novels (Home of the Gentry, Fathers and Sons and Smoke, after leading his hero in circles and sending him back to his paternal home, Turgenev reconstructs the model of human behavior, represented in the parable, thereby recognizing the immutability of the idea formalized in the Gospel. The motif of the return to Russian land gets its completion in Turgenev's last novel Virgin Soil, in which the author paradoxically connects the Westernist idea with the Gospel imperative. Solomin, the son of a deacon, sent by his wise father out to Europe “to get education”, studies in England, masters the European knowledge and returns back “to his native land” to establish his own business in inland Russia. Thus, a series of Turgenev's novels, in which he portrayed different phases of social life, are interlinked with the motif of the prodigal son, who is represented by novels' main characters.

  8. ROMANIAN TRADITIONAL MOTIF ELEMENT OF MODERNITY IN CLOTHING

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius Darius

    2017-05-01

    Full Text Available In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the T-shirt for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the University of Oradea and traditional motif was selected from a collection comprising a number of Romanian traditional motifs from different parts of the country and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. The embroidery was done using BERNINA Embroidery Software Designer Plus Software. This software allows you to export the model to any domestic or industrial embroidery machine regardless of brand. Finally we observed the resistance of the printed and embroided model to various: elasticity, resistance to abrasion and a sensory analysis on the preservation of color. After testing we noticed the imprint resistance applied to the fabric, resulting in a quality that makes possible to keep the Romanian traditional motif from generation to generation.

  9. MAR characteristic motifs mediate episomal vector in CHO cells.

    Science.gov (United States)

    Lin, Yan; Li, Zhaoxi; Wang, Tianyun; Wang, Xiaoyin; Wang, Li; Dong, Weihua; Jing, Changqin; Yang, Xianjun

    2015-04-01

    An ideal gene therapy vector should enable persistent transgene expression without limitations in safety and reproducibility. Recent researches' insight into the ability of chromosomal matrix attachment regions (MARs) to mediate episomal maintenance of genetic elements allowed the development of a circular episomal vector. Although a MAR-mediated engineered vector has been developed, little is known on which motifs of MAR confer this function during interaction with the host genome. Here, we report an artificially synthesized DNA fragment containing only characteristic motif sequences that served as an alternative to human beta-interferon matrix attachment region sequence. The potential of the vector to mediate gene transfer in CHO cells was investigated. The short synthetic MAR motifs were found to mediate episomal vector at a low copy number for many generations without integration into the host genome. Higher transgene expression was maintained for at least 4 months. In addition, MAR was maintained episomally and conferred sustained EGFP expression even in nonselective CHO cells. All the results demonstrated that MAR characteristic sequence-based vector can function as stable episomes in CHO cells, supporting long-term and effective transgene expression.

  10. Event Networks and the Identification of Crime Pattern Motifs.

    Directory of Open Access Journals (Sweden)

    Toby Davies

    Full Text Available In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible.

  11. A novel Bayesian DNA motif comparison method for clustering and retrieval.

    Directory of Open Access Journals (Sweden)

    Naomi Habib

    2008-02-01

    Full Text Available Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors.

  12. Phylogenetic paleobiogeography of Late Ordovician Laurentian brachiopods

    Directory of Open Access Journals (Sweden)

    Jennifer E. Bauer

    2014-12-01

    Full Text Available Phylogenetic biogeographic analysis of four brachiopod genera was used to uncover large-scale geologic drivers of Late Ordovician biogeographic differentiation in Laurentia. Previously generated phylogenetic hypotheses were converted into area cladograms, ancestral geographic ranges were optimized and speciation events characterized as via dispersal or vicariance, when possible. Area relationships were reconstructed using Lieberman-modified Brooks Parsimony Analysis. The resulting area cladograms indicate tectonic and oceanographic changes were the primary geologic drivers of biogeographic patterns within the focal taxa. The Taconic tectophase contributed to the separation of the Appalachian and Central basins as well as the two midcontinent basins, whereas sea level rise following the Boda Event promoted interbasinal dispersal. Three migration pathways into the Cincinnati Basin were recognized, which supports the multiple pathway hypothesis for the Richmondian Invasion.

  13. Clustering with phylogenetic tools in astrophysics

    CERN Document Server

    Fraix-Burnet, Didier

    2016-01-01

    Phylogenetic approaches are finding more and more applications outside the field of biology. Astrophysics is no exception since an overwhelming amount of multivariate data has appeared in the last twenty years or so. In particular, the diversification of galaxies throughout the evolution of the Universe quite naturally invokes phylogenetic approaches. We have demonstrated that Maximum Parsimony brings useful astrophysical results, and we now proceed toward the analyses of large datasets for galaxies. In this talk I present how we solve the major difficulties for this goal: the choice of the parameters, their discretization, and the analysis of a high number of objects with an unsupervised NP-hard classification technique like cladistics. 1. Introduction How do the galaxy form, and when? How did the galaxy evolve and transform themselves to create the diversity we observe? What are the progenitors to present-day galaxies? To answer these big questions, observations throughout the Universe and the physical mode...

  14. Concepts of Classification and Taxonomy. Phylogenetic Classification

    CERN Document Server

    Fraix-Burnet, Didier

    2016-01-01

    Phylogenetic approaches to classification have been heavily developed in biology by bioinformaticians. But these techniques have applications in other fields, in particular in linguistics. Their main characteristics is to search for relationships between the objects or species in study, instead of grouping them by similarity. They are thus rather well suited for any kind of evolutionary objects. For nearly fifteen years, astrocladistics has explored the use of Maximum Parsimony (or cladistics) for astronomical objects like galaxies or globular clusters. In this lesson we will learn how it works. 1 Why phylogenetic tools in astrophysics? 1.1 History of classification The need for classifying living organisms is very ancient, and the first classification system can be dated back to the Greeks. The goal was very practical since it was intended to distinguish between eatable and toxic aliments, or kind and dangerous animals. Simple resemblance was used and has been used for centuries. Basically, until the XVIIIth...

  15. Morphological Phylogenetics in the Genomic Age.

    Science.gov (United States)

    Lee, Michael S Y; Palci, Alessandro

    2015-10-05

    Evolutionary trees underpin virtually all of biology, and the wealth of new genomic data has enabled us to reconstruct them with increasing detail and confidence. While phenotypic (typically morphological) traits are becoming less important in reconstructing evolutionary trees, they still serve vital and unique roles in phylogenetics, even for living taxa for which vast amounts of genetic information are available. Morphology remains a powerful independent source of evidence for testing molecular clades, and - through fossil phenotypes - the primary means for time-scaling phylogenies. Morphological phylogenetics is therefore vital for transforming undated molecular topologies into dated evolutionary trees. However, if morphology is to be employed to its full potential, biologists need to start scrutinising phenotypes in a more objective fashion, models of phenotypic evolution need to be improved, and approaches for analysing phenotypic traits and fossils together with genomic data need to be refined.

  16. Molecular phylogenetics of mastodon and Tyrannosaurus rex.

    Science.gov (United States)

    Organ, Chris L; Schweitzer, Mary H; Zheng, Wenxia; Freimark, Lisa M; Cantley, Lewis C; Asara, John M

    2008-04-25

    We report a molecular phylogeny for a nonavian dinosaur, extending our knowledge of trait evolution within nonavian dinosaurs into the macromolecular level of biological organization. Fragments of collagen alpha1(I) and alpha2(I) proteins extracted from fossil bones of Tyrannosaurus rex and Mammut americanum (mastodon) were analyzed with a variety of phylogenetic methods. Despite missing sequence data, the mastodon groups with elephant and the T. rex groups with birds, consistent with predictions based on genetic and morphological data for mastodon and on morphological data for T. rex. Our findings suggest that molecular data from long-extinct organisms may have the potential for resolving relationships at critical areas in the vertebrate evolutionary tree that have, so far, been phylogenetically intractable.

  17. A Phylogenetic Index for Cichlid Microsatellite Primers

    Directory of Open Access Journals (Sweden)

    Robert D. Kunkle

    2010-01-01

    Full Text Available Microsatellites abound in most organisms and have proven useful for a range of genetic and genomic studies. Once primers have been created, they can be applied to populations or taxa that have diverged from the source taxon. We use PCR amplification, in a 96-well format, to determine the presence and absence of 46 microsatellite loci in 13 cichlid species. At least one primer set amplified a product in each species tested, and some products were present in nearly all species. These results are compared to the known phylogenetic relationships among cichlids. While we do not address intraspecies variation, our results present a phylogenetic index for the success of microsatellite PCR primer product amplification, thus providing information regarding a collection of primers that are applicable to wide range of species. Through the use of such a uniform primer panel, the potential impact for cross species would be increased.

  18. Statistical Methods in Phylogenetic and Evolutionary Inferences

    Directory of Open Access Journals (Sweden)

    Luigi Bertolotti

    2013-05-01

    Full Text Available Molecular instruments are the most accurate methods in organisms’identification and characterization. Biologists are often involved in studies where the main goal is to identify relationships among individuals. In this framework, it is very important to know and apply the most robust approaches to infer correctly these relationships, allowing the right conclusions about phylogeny. In this review, we will introduce the reader to the most used statistical methods in phylogenetic analyses, the Maximum Likelihood and the Bayesian approaches, considering for simplicity only analyses regardingDNA sequences. Several studieswill be showed as examples in order to demonstrate how the correct phylogenetic inference can lead the scientists to highlight very peculiar features in pathogens biology and evolution.

  19. Frequency patterns of T-cell exposed motifs in immunoglobulin heavy chain peptides presented by MHCs

    Directory of Open Access Journals (Sweden)

    Robert D. Bremel

    2014-10-01

    Full Text Available Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV to assess the diversity of T-cell exposed motifs (TCEM. TCEM comprise those amino acids in a MHC-bound peptide which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM. Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of T-cell exposed motif re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by clonal expansion that develop along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.

  20. Phylogenetics and Computational Biology of Multigene Families

    Science.gov (United States)

    Liò, Pietro; Brilli, Matteo; Fani, Renato

    This chapter introduces the study of the major evolutionary forces operating in large gene families. The reconstruction of duplication history and phylogenetic analysis provide an interpretative framework of the evolution of multigene families. We present here two case studies, the first coming from Eukaryotes (chemokine receptors) and the second from Prokaryotes (TIM barrel proteins), showing how functional and structural constraints have shaped gene duplication events.

  1. Phylogenetic estimation with partial likelihood tensors

    CERN Document Server

    Sumner, J G

    2008-01-01

    We present an alternative method for calculating likelihoods in molecular phylogenetics. Our method is based on partial likelihood tensors, which are generalizations of partial likelihood vectors, as used in Felsenstein's approach. Exploiting a lexicographic sorting and partial likelihood tensors, it is possible to obtain significant computational savings. We show this on a range of simulated data by enumerating all numerical calculations that are required by our method and the standard approach.

  2. A phylogenetic analysis of Aquifex pyrophilus

    Science.gov (United States)

    Burggraf, S.; Olsen, G. J.; Stetter, K. O.; Woese, C. R.

    1992-01-01

    The 16S rRNA of the bacterion Aquifex pyrophilus, a microaerophilic, oxygen-reducing hyperthermophile, has been sequenced directly from the the PCR amplified gene. Phylogenetic analyses show the Aq. pyrophilus lineage to be probably the deepest (earliest) in the (eu)bacterial tree. The addition of this deep branching to the bacterial tree further supports the argument that the Bacteria are of thermophilic ancestry.

  3. Bayesian phylogenetic estimation of fossil ages

    Science.gov (United States)

    Drummond, Alexei J.; Stadler, Tanja

    2016-01-01

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences

  4. The Land of the Dead – International Motifs in the Oldest Work of Japanese Literature

    OpenAIRE

    Danijela Vasić

    2010-01-01

    Il existe dans le Kojiki (712), la plus ancienne œuvre littéraire du Japon, une abondance de motifs que l’on peut retrouver dans les cultures de nombreux peuples dans le monde entier. Cet article traite des motifs internationaux tissés dans deux mythes du premier tome, formant une image poétique du Pays des morts, la partie souterraine d’une structure cosmique tripartite. Sont abordés, entre autres, le motif largement connu de Perséphone, le motif orphique ou encore le motif de la fuite du Pa...

  5. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L;

    1998-01-01

    amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  6. Selenolthiol and dithiol C-terminal tetrapeptide motifs for one-step purification and labeling of recombinant proteins produced in E. coli.

    Science.gov (United States)

    Cheng, Qing; Johansson, Linda; Thorell, Jan-Olov; Fredriksson, Anna; Samén, Erik; Stone-Elander, Sharon; Arnér, Elias S J

    2006-12-01

    We have previously shown that a redox-active selenocysteine-containing tetrapeptide-Sel-tag (Gly-Cys-Sec-Gly)-can be used as a C-terminal fusion motif for recombinant proteins produced in Escherichia coli. This Sel-tag allows selenolate-targeted one-step purification, as well as fluorescent labeling or radiolabeling either with gamma emitters (75Se) or with positron-emitting radionuclides (11C). Here we have analyzed four different redox-active C-terminal motifs, carrying either dithiol (Gly-Cys-Cys-Gly or Ser-Cys-Cys-Ser) or selenolthiol (Gly-Cys-Sec-Gly or Ser-Cys-Sec-Ser) motifs. Utilizing these different functional motifs with the same recombinant protein (Fel d 1), we were able to assess their relative reactivities and potential usefulness for biotechnological applications. We found that all four redox-active tags could be utilized for efficient one-step purification to provide pure protein from a crude bacterial lysate through reversible binding to phenylarsine oxide sepharose, with yields and purities comparable to those obtained for a His-tagged protein purified by the more common approach with use of a Ni2+ column. For labeling with electrophilic fluorescent or radioactive compounds, however, the selenolthiol motifs were considerably more efficient than their dithiol counterparts. The results thus show that both the selenolthiol- and the dithiol-containing tags can serve as efficient alternatives to His-tags for protein purification, while the selenolthiol motifs offer additional and unique potential for Sec-targeted labeling. It should therefore be possible to utilize these multifunctional tetrapeptide motifs to develop a wide range of novel biotechnological applications based on Sec targeting with electrophilic compounds.

  7. Phylogenetic conservatism of environmental niches in mammals.

    Science.gov (United States)

    Cooper, Natalie; Freckleton, Rob P; Jetz, Walter

    2011-08-01

    Phylogenetic niche conservatism is the pattern where close relatives occupy similar niches, whereas distant relatives are more dissimilar. We suggest that niche conservatism will vary across clades in relation to their characteristics. Specifically, we investigate how conservatism of environmental niches varies among mammals according to their latitude, range size, body size and specialization. We use the Brownian rate parameter, σ(2), to measure the rate of evolution in key variables related to the ecological niche and define the more conserved group as the one with the slower rate of evolution. We find that tropical, small-ranged and specialized mammals have more conserved thermal niches than temperate, large-ranged or generalized mammals. Partitioning niche conservatism into its spatial and phylogenetic components, we find that spatial effects on niche variables are generally greater than phylogenetic effects. This suggests that recent evolution and dispersal have more influence on species' niches than more distant evolutionary events. These results have implications for our understanding of the role of niche conservatism in species richness patterns and for gauging the potential for species to adapt to global change.

  8. Incongruencies in Vaccinia Virus Phylogenetic Trees

    Directory of Open Access Journals (Sweden)

    Chad Smithson

    2014-10-01

    Full Text Available Over the years, as more complete poxvirus genomes have been sequenced, phylogenetic studies of these viruses have become more prevalent. In general, the results show similar relationships between the poxvirus species; however, some inconsistencies are notable. Previous analyses of the viral genomes contained within the vaccinia virus (VACV-Dryvax vaccine revealed that their phylogenetic relationships were sometimes clouded by low bootstrapping confidence. To analyze the VACV-Dryvax genomes in detail, a new tool-set was developed and integrated into the Base-By-Base bioinformatics software package. Analyses showed that fewer unique positions were present in each VACV-Dryvax genome than expected. A series of patterns, each containing several single nucleotide polymorphisms (SNPs were identified that were counter to the results of the phylogenetic analysis. The VACV genomes were found to contain short DNA sequence blocks that matched more distantly related clades. Additionally, similar non-conforming SNP patterns were observed in (1 the variola virus clade; (2 some cowpox clades; and (3 VACV-CVA, the direct ancestor of VACV-MVA. Thus, traces of past recombination events are common in the various orthopoxvirus clades, including those associated with smallpox and cowpox viruses.

  9. Phylogenetic analysis of cubilin (CUBN) gene.

    Science.gov (United States)

    Shaik, Abjal Pasha; Alsaeed, Abbas H; Kiranmayee, S; Bammidi, Vk; Sultana, Asma

    2013-01-01

    Cubilin, (CUBN; also known as intrinsic factor-cobalamin receptor [Homo sapiens Entrez Pubmed ref NM_001081.3; NG_008967.1; GI: 119606627]), located in the epithelium of intestine and kidney acts as a receptor for intrinsic factor - vitamin B12 complexes. Mutations in CUBN may play a role in autosomal recessive megaloblastic anemia. The current study investigated the possible role of CUBN in evolution using phylogenetic testing. A total of 588 BLAST hits were found for the cubilin query sequence and these hits showed putative conserved domain, CUB superfamily (as on 27(th) Nov 2012). A first-pass phylogenetic tree was constructed to identify the taxa which most often contained the CUBN sequences. Following this, we narrowed down the search by manually deleting sequences which were not CUBN. A repeat phylogenetic analysis of 25 taxa was performed using PhyML, RAxML and TreeDyn softwares to confirm that CUBN is a conserved protein emphasizing its importance as an extracellular domain and being present in proteins mostly known to be involved in development in many chordate taxa but not found in prokaryotes, plants and yeast.. No horizontal gene transfers have been found between different taxa.

  10. The JAMM motif of human deubiquitinase Poh1 is essential for cell viability.

    Science.gov (United States)

    Gallery, Melissa; Blank, Jonathan L; Lin, Yinghui; Gutierrez, Juan A; Pulido, Jacqueline C; Rappoli, David; Badola, Sunita; Rolfe, Mark; Macbeth, Kyle J

    2007-01-01

    Poh1 deubiquitinase activity is required for proteolytic processing of polyubiquitinated substrates by the 26S proteasome, linking deubiquitination to complete substrate degradation. Poh1 RNA interference (RNAi) in HeLa cells resulted in a reduction in cell viability and an increase in polyubiquitinated protein levels, supporting the link between Poh1 and the ubiquitin proteasome pathway. To more specifically test for any requirement of the zinc metalloproteinase motif of Poh1 to support cell viability and proteasome function, we developed a RNAi complementation strategy. Effects on cell viability and proteasome activity were assessed in cells with RNAi of endogenous Poh1 and induced expression of wild-type Poh1 or a mutant form of Poh1, in which two conserved histidines of the proposed catalytic site were replaced with alanines. We show that an intact zinc metalloproteinase motif is essential for cell viability and 26S proteasome function. As a required enzymatic component of the proteasome, Poh1 is an intriguing therapeutic drug target for cancer.

  11. Phylogenetic relationships of Malassezia species based on multilocus sequence analysis.

    Science.gov (United States)

    Castellá, Gemma; Coutinho, Selene Dall' Acqua; Cabañes, F Javier

    2014-01-01

    Members of the genus Malassezia are lipophilic basidiomycetous yeasts, which are part of the normal cutaneous microbiota of humans and other warm-blooded animals. Currently, this genus consists of 14 species that have been characterized by phenetic and molecular methods. Although several molecular methods have been used to identify and/or differentiate Malassezia species, the sequencing of the rRNA genes and the chitin synthase-2 gene (CHS2) are the most widely employed. There is little information about the β-tubulin gene in the genus Malassezia, a gene has been used for the analysis of complex species groups. The aim of the present study was to sequence a fragment of the β-tubulin gene of Malassezia species and analyze their phylogenetic relationship using a multilocus sequence approach based on two rRNA genes (ITS including 5.8S rRNA and D1/D2 region of 26S rRNA) together with two protein encoding genes (CHS2 and β-tubulin). The phylogenetic study of the partial β-tubulin gene sequences indicated that this molecular marker can be used to assess diversity and identify new species. The multilocus sequence analysis of the four loci provides robust support to delineate species at the terminal nodes and could help to estimate divergence times for the origin and diversification of Malassezia species.

  12. First phylogenetic analysis of Avipoxvirus (APV in Brazil

    Directory of Open Access Journals (Sweden)

    Hiran C. Kunert-Filho

    2016-05-01

    Full Text Available Abstract: This study represents the first phylogenetic analysis of avian poxvirus recovered from turkeys in Brazil. The clinical disorders related to fowlpox herein described occurred in a turkey housing system. The birds displaying characteristic pox lesions which were observed on the neck, eyelids and beak of the turkeys. Four affected turkeys were randomly chosen, euthanized and necropsied. Tissues samples were submitted for histopathological analysis and total DNA was further extracted, amplified by conventional PCR, sequenced and phylogenetically analyzed. Avian poxviruses specific PCR was performed based on P4b core protein gene sequence. The histological analysis revealed dermal inflammatory process, granulation tissue, hyperplasia of epithelial cells and inclusion bodies. The P4b gene was detected in all samples. Sequencing revealed a 100% nucleotide and amino acid sequence identity among the samples, and the sequences were deposited in GenBank®. The four Avian poxviruses fragments sequenced in this study clustered along the A1 clade of avipoxviruses, and were classified as Avipoxvirus (APV. Additional studies, such as virus isolation, PCR and sequencing includinga large number of specimens from the Brazilian turkey production must be conducted due to the hazardous risk that poxvirus infections may cause to the Brazilian poultry production scenario, given that Brazil's turkey production attracts attention due to its economic importance worldwide. Our findings point to the need to identify the prevalence of APV in Brazilian turkey production, to perform risk assessment studies and continued surveillance of APV infections in both wild and commercial avian species.

  13. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    Directory of Open Access Journals (Sweden)

    Stéphanie Manel

    Full Text Available Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon. We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  14. Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga.

    Science.gov (United States)

    Ribeiro, Elâine M S; Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Tabarelli, Marcelo; Souza, Gustavo; Leal, Inara R

    2016-06-01

    Chronic disturbances, such as selective logging, firewood extraction and extensive grazing, may lead to the taxonomic and phylogenetic impoverishment of remaining old-growth forest communities worldwide; however, the empirical evidence on this topic is limited. We tested this hypothesis in the Caatinga vegetation--a seasonally dry tropical forest restricted to northeast Brazil. We sampled 11,653 individuals (adults, saplings, and seedlings) from 51 species in 29 plots distributed along a gradient of chronic disturbance. The gradient was assessed using a chronic disturbance index (CDI) based on five recognized indicators of chronic disturbances: proximity to urban center, houses and roads and the density of both people and livestock. We used linear models to test if mean effective number of lineages, mean phylogenetic distance and phylogenetic dispersion decreased with CDI and if such relationships differed among ontogenetic stages. As expected, the mean effective number of lineages and the mean phylogenetic distance were negatively related to CDI, and such diversity losses occurred irrespective of ontogeny. Yet the increase in phylogenetic clustering in more disturbed plots was only evident in seedlings and saplings, mostly because clades with more descendent taxa than expected by chance (e.g., Euphorbiaceae) thrived in more disturbed plots. This novel study indicates that chronic human disturbances are promoting the phylogenetic impoverishment of the irreplaceable woody flora of the Brazilian Caatinga forest. The highest impoverishment was observed in seedlings and saplings, indicating that if current chronic disturbances remain, they will result in increasingly poorer phylogenetically forests. This loss of evolutionary history will potentially limit the capacity of this ecosystem to respond to human disturbances (i.e., lower ecological resilience) and particularly their ability to adapt to rapid climatic changes in the region.

  15. Some limitations of public sequence data for phylogenetic inference (in plants.

    Directory of Open Access Journals (Sweden)

    Cody E Hinchliff

    Full Text Available The GenBank database contains essentially all of the nucleotide sequence data generated for published molecular systematic studies, but for the majority of taxa these data remain sparse. GenBank has value for phylogenetic methods that leverage data-mining and rapidly improving computational methods, but the limits imposed by the sparse structure of the data are not well understood. Here we present a tree representing 13,093 land plant genera--an estimated 80% of extant plant diversity--to illustrate the potential of public sequence data for broad phylogenetic inference in plants, and we explore the limits to inference imposed by the structure of these data using theoretical foundations from phylogenetic data decisiveness. We find that despite very high levels of missing data (over 96%, the present data retain the potential to inform over 86.3% of all possible phylogenetic relationships. Most of these relationships, however, are informed by small amounts of data--approximately half are informed by fewer than four loci, and more than 99% are informed by fewer than fifteen. We also apply an information theoretic measure of branch support to assess the strength of phylogenetic signal in the data, revealing many poorly supported branches concentrated near the tips of the tree, where data are sparse and the limiting effects of this sparseness are stronger. We argue that limits to phylogenetic inference and signal imposed by low data coverage may pose significant challenges for comprehensive phylogenetic inference at the species level. Computational requirements provide additional limits for large reconstructions, but these may be overcome by methodological advances, whereas insufficient data coverage can only be remedied by additional sampling effort. We conclude that public databases have exceptional value for modern systematics and evolutionary biology, and that a continued emphasis on expanding taxonomic and genomic coverage will play a critical

  16. Motif-based analysis of large nucleotide data sets using MEME-ChIP.

    Science.gov (United States)

    Ma, Wenxiu; Noble, William S; Bailey, Timothy L

    2014-01-01

    MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by CLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix-based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP's interactive HTML output groups and aligns significant motifs to ease interpretation. This protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods.

  17. Local therapy with CpG motifs in a murine model of allergic airway inflammation in IFN-beta knock-out mice

    DEFF Research Database (Denmark)

    Matheu, Victor; Treschow, Alexandra; Teige, Ingrid;

    2005-01-01

    of CpG-ODN is not known. OBJECTIVE: Here, we aimed to elucidate the role of IFN-beta in the anti-allergic effect of CpG motifs. METHODS: We assessed the immune response in OVA-primed/OVA-challenged IFN-beta knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment...

  18. An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA

    Science.gov (United States)

    J. Geml; I. Timling; C.H. Robinson; N. Lennon; H.C. Nusbaum; C. Brochmann; M.E. Noordeloos; D.L. Taylor

    2011-01-01

    Current evidence from temperate studies suggests that ectomycorrhizal (ECM) fungi require overland routes for migration because of their obligate symbiotic associations with woody plants. Despite their key roles in arctic ecosystems, the phylogenetic diversity and phylogeography of arctic ECM fungi remains little known. Here we assess the phylogenetic diversity of ECM...

  19. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif.

    Science.gov (United States)

    Chimura, Takahiko; Launey, Thomas; Ito, Masao

    2011-06-08

    The interactions between PDZ (PSD-95, Dlg, ZO-1) domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C-) terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V) or type-II (x-x-V-x-I/V) PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode). We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA) bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  20. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Directory of Open Access Journals (Sweden)

    Launey Thomas

    2011-06-01

    Full Text Available Abstract Background The interactions between PDZ (PSD-95, Dlg, ZO-1 domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C- terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V or type-II (x-x-V-x-I/V PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode. We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  1. A Broad Phylogenetic Survey Unveils the Diversity and Evolution of Telomeres in Eukaryotes

    Science.gov (United States)

    Fulnečková, Jana; Ševčíková, Tereza; Fajkus, Jiří; Lukešová, Alena; Lukeš, Martin; Vlček, Čestmír; Lang, B. Franz; Kim, Eunsoo; Eliáš, Marek; Sýkorová, Eva

    2013-01-01

    Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap, we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: 1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; 2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; 3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; and 4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently. PMID:23395982

  2. Conserved DNA Motifs, Including the CENP-B Box-like, Are Possible Promoters of Satellite DNA Array Rearrangements in Nematodes

    Science.gov (United States)

    Car, Ana; Castagnone-Sereno, Philippe; Abad, Pierre; Plohl, Miroslav

    2013-01-01

    Tandemly arrayed non-coding sequences or satellite DNAs (satDNAs) are rapidly evolving segments of eukaryotic genomes, including the centromere, and may raise a genetic barrier that leads to speciation. However, determinants and mechanisms of satDNA sequence dynamics are only partially understood. Sequence analyses of a library of five satDNAs common to the root-knot nematodes Meloidogyne chitwoodi and M. fallax together with a satDNA, which is specific for M. chitwoodi only revealed low sequence identity (32–64%) among them. However, despite sequence differences, two conserved motifs were recovered. One of them turned out to be highly similar to the CENP-B box of human alpha satDNA, identical in 10–12 out of 17 nucleotides. In addition, organization of nematode satDNAs was comparable to that found in alpha satDNA of human and primates, characterized by monomers concurrently arranged in simple and higher-order repeat (HOR) arrays. In contrast to alpha satDNA, phylogenetic clustering of nematode satDNA monomers extracted either from simple or from HOR array indicated frequent shuffling between these two organizational forms. Comparison of homogeneous simple arrays and complex HORs composed of different satDNAs, enabled, for the first time, the identification of conserved motifs as obligatory components of monomer junctions. This observation highlights the role of short motifs in rearrangements, even among highly divergent sequences. Two mechanisms are proposed to be involved in this process, i.e., putative transposition-related cut-and-paste insertions and/or illegitimate recombination. Possibility for involvement of the nematode CENP-B box-like sequence in the transposition-related mechanism and together with previously established similarity of the human CENP-B protein and pogo-like transposases implicate a novel role of the CENP-B box and related sequence motifs in addition to the known function in centromere protein binding. PMID:23826269

  3. Comparing Phylogenetic Trees by Matching Nodes Using the Transfer Distance Between Partitions.

    Science.gov (United States)

    Bogdanowicz, Damian; Giaro, Krzysztof

    2017-02-08

    Ability to quantify dissimilarity of different phylogenetic trees describing the relationship between the same group of taxa is required in various types of phylogenetic studies. For example, such metrics are used to assess the quality of phylogeny construction methods, to define optimization criteria in supertree building algorithms, or to find horizontal gene transfer (HGT) events. Among the set of metrics described so far in the literature, the most commonly used seems to be the Robinson-Foulds distance. In this article, we define a new metric for rooted trees-the Matching Pair (MP) distance. The MP metric uses the concept of the minimum-weight perfect matching in a complete bipartite graph constructed from partitions of all pairs of leaves of the compared phylogenetic trees. We analyze the properties of the MP metric and present computational experiments showing its potential applicability in tasks related to finding the HGT events.

  4. On the ancestral compatibility of two phylogenetic trees with nested taxa.

    Science.gov (United States)

    Llabrés, Mercè; Rocha, Jairo; Rosselló, Francesc; Valiente, Gabriel

    2006-09-01

    Compatibility of phylogenetic trees is the most important concept underlying widely-used methods for assessing the agreement of different phylogenetic trees with overlapping taxa and combining them into common supertrees to reveal the tree of life. The notion of ancestral compatibility of phylogenetic trees with nested taxa was recently introduced. In this paper we analyze in detail the meaning of this compatibility from the points of view of the local structure of the trees, of the existence of embeddings into a common supertree, and of the joint properties of their cluster representations. Our analysis leads to a very simple polynomial-time algorithm for testing this compatibility, which we have implemented and is freely available for download from the BioPerl collection of Perl modules for computational biology.

  5. DNA nanotechnology based on i-motif structures.

    Science.gov (United States)

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  6. Phylo_dCor: distance correlation as a novel metric for phylogenetic profiling.

    Science.gov (United States)

    Sferra, Gabriella; Fratini, Federica; Ponzi, Marta; Pizzi, Elisabetta

    2017-09-05

    Elaboration of powerful methods to predict functional and/or physical protein-protein interactions from genome sequence is one of the main tasks in the post-genomic era. Phylogenetic profiling allows the prediction of protein-protein interactions at a whole genome level in both Prokaryotes and Eukaryotes. For this reason it is considered one of the most promising methods. Here, we propose an improvement of phylogenetic profiling that enables handling of large genomic datasets and infer global protein-protein interactions. This method uses the distance correlation as a new measure of phylogenetic profile similarity. We constructed robust reference sets and developed Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation that makes it applicable to large genomic data. Using Saccharomyces cerevisiae and Escherichia coli genome datasets, we showed that Phylo-dCor outperforms phylogenetic profiling methods previously described based on the mutual information and Pearson's correlation as measures of profile similarity. In this work, we constructed and assessed robust reference sets and propose the distance correlation as a measure for comparing phylogenetic profiles. To make it applicable to large genomic data, we developed Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation. Two R scripts that can be run on a wide range of machines are available upon request.

  7. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    Science.gov (United States)

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.

  8. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  9. Identification of imine reductase-specific sequence motifs.

    Science.gov (United States)

    Fademrecht, Silvia; Scheller, Philipp N; Nestl, Bettina M; Hauer, Bernhard; Pleiss, Jürgen

    2016-05-01

    Chiral amines are valuable building blocks for the production of a variety of pharmaceuticals, agrochemicals and other specialty chemicals. Only recently, imine reductases (IREDs) were discovered which catalyze the stereoselective reduction of imines to chiral amines. Although several IREDs were biochemically characterized in the last few years, knowledge of the reaction mechanism and the molecular basis of substrate specificity and stereoselectivity is limited. To gain further insights into the sequence-function relationships, the Imine Reductase Engineering Database (www.IRED.BioCatNet.de) was established and a systematic analysis of 530 putative IREDs was performed. A standard numbering scheme based on R-IRED-Sk was introduced to facilitate the identification and communication of structurally equivalent positions in different proteins. A conservation analysis revealed a highly conserved cofactor binding region and a predominantly hydrophobic substrate binding cleft. Two IRED-specific motifs were identified, the cofactor binding motif GLGxMGx(5 )[ATS]x(4) Gx(4) [VIL]WNR[TS]x(2) [KR] and the active site motif Gx[DE]x[GDA]x[APS]x(3){K}x[ASL]x[LMVIAG]. Our results indicate a preference toward NADPH for all IREDs and explain why, despite their sequence similarity to β-hydroxyacid dehydrogenases (β-HADs), no conversion of β-hydroxyacids has been observed. Superfamily-specific conservations were investigated to explore the molecular basis of their stereopreference. Based on our analysis and previous experimental results on IRED mutants, an exclusive role of standard position 187 for stereoselectivity is excluded. Alternatively, two standard positions 139 and 194 were identified which are superfamily-specifically conserved and differ in R- and S-selective enzymes. © 2016 Wiley Periodicals, Inc.

  10. Molecular phylogenetic assessment of host range in five Dermanyssus species

    NARCIS (Netherlands)

    Roy, L.; Dowling, A.P.G.; Chauve, C.M.; Lesna, I.; Sabelis, M.W.; Buronfosse, T.

    2009-01-01

    Given that 14 out of the 25 currently described species of Dermanyssus Dugès, 1834, are morphologically very close to each another, misidentifications may occur and are suspected in at least some records. One of these 14 species is the red fowl mite, D. gallinae (De Geer, 1778), a blood parasite of

  11. Quantitative phylogenetic assessment of microbial communities indiverse environments

    Energy Technology Data Exchange (ETDEWEB)

    von Mering, C.; Hugenholtz, P.; Raes, J.; Tringe, S.G.; Doerks,T.; Jensen, L.J.; Ward, N.; Bork, P.

    2007-01-01

    The taxonomic composition of environmental communities is an important indicator of their ecology and function. Here, we use a set of protein-coding marker genes, extracted from large-scale environmental shotgun sequencing data, to provide a more direct, quantitative and accurate picture of community composition than traditional rRNA-based approaches using polymerase chain reaction (PCR). By mapping marker genes from four diverse environmental data sets onto a reference species phylogeny, we show that certain communities evolve faster than others, determine preferred habitats for entire microbial clades, and provide evidence that such habitat preferences are often remarkably stable over time.

  12. Evolving DNA motifs to predict GeneChip probe performance

    Directory of Open Access Journals (Sweden)

    Harrison AP

    2009-03-01

    Full Text Available Abstract Background Affymetrix High Density Oligonuclotide Arrays (HDONA simultaneously measure expression of thousands of genes using millions of probes. We use correlations between measurements for the same gene across 6685 human tissue samples from NCBI's GEO database to indicated the quality of individual HG-U133A probes. Low correlation indicates a poor probe. Results Regular expressions can be automatically created from a Backus-Naur form (BNF context-free grammar using strongly typed genetic programming. Conclusion The automatically produced motif is better at predicting poor DNA sequences than an existing human generated RE, suggesting runs of Cytosine and Guanine and mixtures should all be avoided.

  13. Indonesian Traditional Toys and the Development of Batik Motifs

    Directory of Open Access Journals (Sweden)

    Bagus Indrayana

    2016-06-01

    Full Text Available There is a wide array of traditional toys in Indonesia. In the past, traditional toys played an important role for skill and creativity development of children. Today, the position of traditional toys in the society is displaced by toys from large-scale manufacturers. Given the critical role of traditional toys for children’s motoric and social development, there is a need to develop media that can be used to promote these traditional products and strengthen their position in the public. We propose to use Batik as a way to effectively disseminate and promote traditional toys to the general public. Apart from this, using traditional toys to create new Batik motifs can have an economic value for the producers of Batik, promote Indonesian products and enrich the Indonesian Batik. This study aims to explore the variety of traditional toys, mainly from Klaten and Magelang, in the Central Java province of Indonesia, and use them as the basis for the development of Batik motif creation. This study used Trilogi Keseimbangan (or Harmony Trilogy aesthetic theory analytical approach that explains the creation of craft consists of the following phases: exploration, design, and materialization. The creation method in this study adopts Tiga Tahap Enam Langkah (Three Phases, Six Steps method offered in the theory. The finding in the field found that the traditional toys material used in Klaten and Magelang, mostly made from waste wood, plywood, and zinc. The manufacturing process is done manually by two or three craftsmen using a simple technology. The traditional toys are designed by the artisans mostly, although there may be designs from the clients. In addition, we also found that the traditional toys have never been used as a Batik motif. The traditional toys Batik motif presented in this work is researcher’s design. For the purposes of this study, we first research the variety of traditional toys available in the market today in Indonesia. We look

  14. Core signalling motif displaying multistability through multi-state enzymes

    DEFF Research Database (Denmark)

    Feng, Song; Saez Cornellana, Meritxell; Wiuf, Carsten Henrik

    2016-01-01

    Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology......-state kinases and the described competition-based motif are part of several natural signalling systems and thereby could enable them to implement complex information processing through multistability. These results indicate that multi-state kinases in signalling systems are readily exploited by natural...

  15. Present status of quinoxaline motifs: excellent pathfinders in therapeutic medicine.

    Science.gov (United States)

    Ajani, Olayinka Oyewale

    2014-10-01

    Quinoxalines belong to a class of excellent heterocyclic scaffolds owing to their wide biological properties and diverse therapeutic applications in medicinal research. They are complementary in shapes and charges to numerous biomolecules they interact with, thereby resulting in increased binding affinity. The pharmacokinetic properties of drugs bearing quinoxaline cores have shown them to be relatively easy to administer either as intramuscular solutions, oral capsules or rectal suppositories. This work deals with recent advances in the synthesis and pharmacological diversities of quinoxaline motifs which might pave ways for novel drugs development.

  16. Nucleic Acid i-Motif Structures in Analytical Chemistry.

    Science.gov (United States)

    Alba, Joan Josep; Sadurní, Anna; Gargallo, Raimundo

    2016-09-02

    Under the appropriate experimental conditions of pH and temperature, cytosine-rich segments in DNA or RNA sequences may produce a characteristic folded structure known as an i-motif. Besides its potential role in vivo, which is still under investigation, this structure has attracted increasing interest in other fields due to its sharp, fast and reversible pH-driven conformational changes. This "on/off" switch at molecular level is being used in nanotechnology and analytical chemistry to develop nanomachines and sensors, respectively. This paper presents a review of the latest applications of this structure in the field of chemical analysis.

  17. Phylogenetic modeling of heterogeneous gene-expression microarray data from cancerous specimens.

    Science.gov (United States)

    Abu-Asab, Mones S; Chaouchi, Mohamed; Amri, Hakima

    2008-09-01

    The qualitative dimension of gene expression data and its heterogeneous nature in cancerous specimens can be accounted for by phylogenetic modeling that incorporates the directionality of altered gene expressions, complex patterns of expressions among a group of specimens, and data-based rather than specimen-based gene linkage. Our phylogenetic modeling approach is a double algorithmic technique that includes polarity assessment that brings out the qualitative value of the data, followed by maximum parsimony analysis that is most suitable for the data heterogeneity of cancer gene expression. We demonstrate that polarity assessment of expression values into derived and ancestral states, via outgroup comparison, reduces experimental noise; reveals dichotomously expressed asynchronous genes; and allows data pooling as well as comparability of intra- and interplatforms. Parsimony phylogenetic analysis of the polarized values produces a multidimensional classification of specimens into clades that reveal shared derived gene expressions (the synapomorphies); provides better assessment of ontogenic pathways and phyletic relatedness of specimens; efficiently utilizes dichotomously expressed genes; produces highly predictive class recognition; illustrates gene linkage and multiple developmental pathways; provides higher concordance between gene lists; and projects the direction of change among specimens. Further implication of this phylogenetic approach is that it may transform microarray into diagnostic, prognostic, and predictive tool.

  18. A Note on Encodings of Phylogenetic Networks of Bounded Level

    CERN Document Server

    Gambette, Philippe

    2009-01-01

    Driven by the need for better models that allow one to shed light into the question how life's diversity has evolved, phylogenetic networks have now joined phylogenetic trees in the center of phylogenetics research. Like phylogenetic trees, such networks canonically induce collections of phylogenetic trees, clusters, and triplets, respectively. Thus it is not surprising that many network approaches aim to reconstruct a phylogenetic network from such collections. Related to the well-studied perfect phylogeny problem, the following question is of fundamental importance in this context: When does one of the above collections encode (i.e. uniquely describe) the network that induces it? In this note, we present a complete answer to this question for the special case of a level-1 (phylogenetic) network by characterizing those level-1 networks for which an encoding in terms of one (or equivalently all) of the above collections exists. Given that this type of network forms the first layer of the rich hierarchy of lev...

  19. Recurring sequence-structure motifs in (βα)8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs.

    Science.gov (United States)

    Wang, Jichao; Zhang, Tongchuan; Liu, Ruicun; Song, Meilin; Wang, Juncheng; Hong, Jiong; Chen, Quan; Liu, Haiyan

    2017-02-01

    An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Phylogenetic and biogeographic analysis of sphaerexochine trilobites.

    Directory of Open Access Journals (Sweden)

    Curtis R Congreve

    Full Text Available BACKGROUND: Sphaerexochinae is a speciose and widely distributed group of cheirurid trilobites. Their temporal range extends from the earliest Ordovician through the Silurian, and they survived the end Ordovician mass extinction event (the second largest mass extinction in Earth history. Prior to this study, the individual evolutionary relationships within the group had yet to be determined utilizing rigorous phylogenetic methods. Understanding these evolutionary relationships is important for producing a stable classification of the group, and will be useful in elucidating the effects the end Ordovician mass extinction had on the evolutionary and biogeographic history of the group. METHODOLOGY/PRINCIPAL FINDINGS: Cladistic parsimony analysis of cheirurid trilobites assigned to the subfamily Sphaerexochinae was conducted to evaluate phylogenetic patterns and produce a hypothesis of relationship for the group. This study utilized the program TNT, and the analysis included thirty-one taxa and thirty-nine characters. The results of this analysis were then used in a Lieberman-modified Brooks Parsimony Analysis to analyze biogeographic patterns during the Ordovician-Silurian. CONCLUSIONS/SIGNIFICANCE: The genus Sphaerexochus was found to be monophyletic, consisting of two smaller clades (one composed entirely of Ordovician species and another composed of Silurian and Ordovician species. By contrast, the genus Kawina was found to be paraphyletic. It is a basal grade that also contains taxa formerly assigned to Cydonocephalus. Phylogenetic patterns suggest Sphaerexochinae is a relatively distinctive trilobite clade because it appears to have been largely unaffected by the end Ordovician mass extinction. Finally, the biogeographic analysis yields two major conclusions about Sphaerexochus biogeography: Bohemia and Avalonia were close enough during the Silurian to exchange taxa; and during the Ordovician there was dispersal between Eastern Laurentia and

  1. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  2. HIGEDA: a hierarchical gene-set genetics based algorithm for finding subtle motifs in biological sequences.

    Science.gov (United States)

    Le, Thanh; Altman, Tom; Gardiner, Katheleen

    2010-02-01

    Identification of motifs in biological sequences is a challenging problem because such motifs are often short, degenerate, and may contain gaps. Most algorithms that have been developed for motif-finding use the expectation-maximization (EM) algorithm iteratively. Although EM algorithms can converge quickly, they depend strongly on initialization parameters and can converge to local sub-optimal solutions. In addition, they cannot generate gapped motifs. The effectiveness of EM algorithms in motif finding can be improved by incorporating methods that choose different sets of initial parameters to enable escape from local optima, and that allow gapped alignments within motif models. We have developed HIGEDA, an algorithm that uses the hierarchical gene-set genetic algorithm (HGA) with EM to initiate and search for the best parameters for the motif model. In addition, HIGEDA can identify gapped motifs using a position weight matrix and dynamic programming to generate an optimal gapped alignment of the motif model with sequences from the dataset. We show that HIGEDA outperforms MEME and other motif-finding algorithms on both DNA and protein sequences. Source code and test datasets are available for download at http://ouray.cudenver.edu/~tnle/, implemented in C++ and supported on Linux and MS Windows.

  3. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  4. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    States David

    2007-01-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  5. Concepts of Classification and Taxonomy Phylogenetic Classification

    Science.gov (United States)

    Fraix-Burnet, D.

    2016-05-01

    Phylogenetic approaches to classification have been heavily developed in biology by bioinformaticians. But these techniques have applications in other fields, in particular in linguistics. Their main characteristics is to search for relationships between the objects or species in study, instead of grouping them by similarity. They are thus rather well suited for any kind of evolutionary objects. For nearly fifteen years, astrocladistics has explored the use of Maximum Parsimony (or cladistics) for astronomical objects like galaxies or globular clusters. In this lesson we will learn how it works.

  6. Phylogenetic analysis of cubilin (CUBN) gene

    OpenAIRE

    Shaik, Abjal Pasha; Alsaeed, Abbas H; Kiranmayee, S; Bammidi, VK; Sultana, Asma

    2013-01-01

    Cubilin, (CUBN; also known as intrinsic factor-cobalamin receptor [Homo sapiens Entrez Pubmed ref NM_001081.3; NG_008967.1; GI: 119606627]), located in the epithelium of intestine and kidney acts as a receptor for intrinsic factor – vitamin B12 complexes. Mutations in CUBN may play a role in autosomal recessive megaloblastic anemia. The current study investigated the possible role of CUBN in evolution using phylogenetic testing. A total of 588 BLAST hits were found for the cubilin query seque...

  7. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  8. Transduction motif analysis of gastric cancer based on a human signaling network

    Directory of Open Access Journals (Sweden)

    G. Liu

    2014-05-01

    Full Text Available To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  9. The discodermolide hairpin structure flows from conformationally stable modular motifs.

    Science.gov (United States)

    Jogalekar, Ashutosh S; Kriel, Frederik H; Shi, Qi; Cornett, Ben; Cicero, Daniel; Snyder, James P

    2010-01-14

    (+)-Discodermolide (DDM), a polyketide macrolide from marine sponge, is a potent microtubule assembly promoter. Reported solid-state, solution, and protein-bound DDM conformations reveal the unusual result that a common hairpin conformational motif exists in all three microenvironments. No other flexible microtubule binding agent exhibits such constancy of conformation. In the present study, we combine force-field conformational searches with NMR deconvolution in different solvents to compare DDM conformers with those observed in other environments. While several conformational families are perceived, the hairpin form dominates. The stability of this motif is dictated primarily by steric factors arising from repeated modular segments in DDM composed of the C(Me)-CHX-C(Me) fragment. Furthermore, docking protocols were utilized to probe the DDM binding mode in beta-tubulin. A previously suggested pose is substantiated (Pose-1), while an alternative (Pose-2) has been identified. SAR analysis for DDM analogues differentiates the two poses and suggests that Pose-2 is better able to accommodate the biodata.

  10. A simple motif for protein recognition in DNA secondary structures.

    Science.gov (United States)

    Landt, Stephen G; Ramirez, Alejandro; Daugherty, Matthew D; Frankel, Alan D

    2005-09-02

    DNA in a single-stranded form (ssDNA) exists transiently within the cell and comprises the telomeres of linear chromosomes and the genomes of some DNA viruses. As with RNA, in the single-stranded state, some DNA sequences are able to fold into complex secondary and tertiary structures that may be recognized by proteins and participate in gene regulation. To better understand how such DNA elements might fold and interact with proteins, and to compare recognition features to those of a structured RNA, we used in vitro selection to identify ssDNAs that bind an RNA-binding peptide from the HIV Rev protein with high affinity and specificity. The large majority of selected binders contain a non-Watson-Crick G.T base-pair and an adjacent C:G base-pair and both are essential for binding. This GT motif can be presented in different DNA contexts, including a nearly perfect duplex and a branched three-helix structure, and appears to be recognized in large part by arginine residues separated by one turn of an alpha-helix. Interestingly, a very similar GT motif is necessary also for protein binding and function of a well-characterized model ssDNA regulatory element from the proenkephalin promoter.

  11. The Origin of Motif Families in Food Webs

    CERN Document Server

    Klaise, Janis

    2016-01-01

    Food webs have been found to exhibit remarkable motif profiles, patterns in the relative prevalences of all possible three-species sub-graphs, and this has been related to ecosystem properties such as stability and robustness. Analysing 46 food webs of various kinds, we find that most food webs fall into one of two distinct motif families. The separation between the families is well predicted by a global measure of hierarchical order in directed networks - trophic coherence. We find that trophic coherence is also a good predictor for the extent of omnivory, defined as the tendency of species to feed on multiple trophic levels. We compare our results to a network assembly model that admits tunable trophic coherence via a single free parameter. The model is able to generate food webs in either of the two families by varying this parameter, and correctly classifies almost all the food webs in our database. This establishes a link between global order and local preying patterns in food webs.

  12. Synchronization patterns: from network motifs to hierarchical networks

    Science.gov (United States)

    Krishnagopal, Sanjukta; Lehnert, Judith; Poel, Winnie; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    We investigate complex synchronization patterns such as cluster synchronization and partial amplitude death in networks of coupled Stuart-Landau oscillators with fractal connectivities. The study of fractal or self-similar topology is motivated by the network of neurons in the brain. This fractal property is well represented in hierarchical networks, for which we present three different models. In addition, we introduce an analytical eigensolution method and provide a comprehensive picture of the interplay of network topology and the corresponding network dynamics, thus allowing us to predict the dynamics of arbitrarily large hierarchical networks simply by analysing small network motifs. We also show that oscillation death can be induced in these networks, even if the coupling is symmetric, contrary to previous understanding of oscillation death. Our results show that there is a direct correlation between topology and dynamics: hierarchical networks exhibit the corresponding hierarchical dynamics. This helps bridge the gap between mesoscale motifs and macroscopic networks. This article is part of the themed issue 'Horizons of cybernetical physics'.

  13. Graph animals, subgraph sampling and motif search in large networks

    CERN Document Server

    Baskerville, Kim; Paczuski, Maya

    2007-01-01

    We generalize a sampling algorithm for lattice animals (connected clusters on a regular lattice) to a Monte Carlo algorithm for `graph animals', i.e. connected subgraphs in arbitrary networks. As with the algorithm in [N. Kashtan et al., Bioinformatics 20, 1746 (2004)], it provides a weighted sample, but the computation of the weights is much faster (linear in the size of subgraphs, instead of super-exponential). This allows subgraphs with up to ten or more nodes to be sampled with very high statistics, from arbitrarily large networks. Using this together with a heuristic algorithm for rapidly classifying isomorphic graphs, we present results for two protein interaction networks obtained using the TAP high throughput method: one of Escherichia coli with 230 nodes and 695 links, and one for yeast (Saccharomyces cerevisiae) with roughly ten times more nodes and links. We find in both cases that most connected subgraphs are strong motifs (Z-scores >10) or anti-motifs (Z-scores <-10) when the null model is the...

  14. Prevalent RNA recognition motif duplication in the human genome.

    Science.gov (United States)

    Tsai, Yihsuan S; Gomez, Shawn M; Wang, Zefeng

    2014-05-01

    The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner.

  15. Thio-sugar motif of functional CARB-pharmacophore for antineoplastic activity. Part 2.

    Science.gov (United States)

    Witczak, Zbigniew J; Sarnik, Joanna; Czubatka, Anna; Forma, Ewa; Poplawski, Tomasz

    2014-12-15

    Diverse functionalized representatives of (1-4)-S-thiodisaccharides, 6-9 were synthesized and assessed for cytotoxicity and apoptosis against human cancer cell lines (A549, LoVo, MCF-7 and HeLa). The FCP 6 was more active against MCF-7 cells (i.e., an estrogen-dependent breast cancer line), whereas other (1-4)-S-thiodisaccharides showed strongest activity against A549 cells (i.e., a lung adenocarcinoma line). We propose to use a concept of functional 'CARB-pharmacophores' when evaluating a potential for the compounds' general antineoplastic activity. Future studies will determine the reasons for cell-type specificity of these compounds. The thio-sugar motif appears to be a promising lead for future developments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes.

    Science.gov (United States)

    Pujato, Mario; Kieken, Fabien; Skiles, Amanda A; Tapinos, Nikos; Fiser, Andras

    2014-12-16

    Proper cell functioning depends on the precise spatio-temporal expression of its genetic material. Gene expression is controlled to a great extent by sequence-specific transcription factors (TFs). Our current knowledge on where and how TFs bind and associate to regulate gene expression is incomplete. A structure-based computational algorithm (TF2DNA) is developed to identify binding specificities of TFs. The method constructs homology models of TFs bound to DNA and assesses the relative binding affinity for all possible DNA sequences using a knowledge-based potential, after optimization in a molecular mechanics force field. TF2DNA predictions were benchmarked against experimentally determined binding motifs. Success rates range from 45% to 81% and primarily depend on the sequence identity of aligned target sequences and template structures, TF2DNA was used to predict 1321 motifs for 1825 putative human TF proteins, facilitating the reconstruction of most of the human gene regulatory network. As an illustration, the predicted DNA binding site for the poorly characterized T-cell leukemia homeobox 3 (TLX3) TF was confirmed with gel shift assay experiments. TLX3 motif searches in human promoter regions identified a group of genes enriched in functions relating to hematopoiesis, tissue morphology, endocrine system and connective tissue development and function. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Results of de-novo and Motif activity analyses - FANTOM5 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us FANTOM5 Results of de-novo and Motif activity analyses Data detail Data name Results of de-n...S motif near TSS de-novo motif analysis with HOMER etc. Significance of the corre.../extra/Motifs/ File size: 6.2 GB Simple search URL - Data acquisition method - Data anal...ysis method JASPER motif search HOMER motif analysis Number of data entries 400 files - About This Da...tabase Database Description Download License Update History of This Database Site Policy | Contact Us Results of de-novo and Motif activity analyses - FANTOM5 | LSDB Archive ...

  18. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Science.gov (United States)

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  19. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.

    Science.gov (United States)

    Quach, Bryan; Furey, Terrence S

    2017-04-01

    Identifying the locations of transcription factor binding sites is critical for understanding how gene transcription is regulated across different cell types and conditions. Chromatin accessibility experiments such as DNaseI sequencing (DNase-seq) and Assay for Transposase Accessible Chromatin sequencing (ATAC-seq) produce genome-wide data that include distinct 'footprint' patterns at binding sites. Nearly all existing computational methods to detect footprints from these data assume that footprint signals are highly homogeneous across footprint sites. Additionally, a comprehensive and systematic comparison of footprinting methods for specifically identifying which motif sites for a specific factor are bound has not been performed. Using DNase-seq data from the ENCODE project, we show that a large degree of previously uncharacterized site-to-site variability exists in footprint signal across motif sites for a transcription factor. To model this heterogeneity in the data, we introduce a novel, supervised learning footprinter called Detecting Footprints Containing Motifs (DeFCoM). We compare DeFCoM to nine existing methods using evaluation sets from four human cell-lines and eighteen transcription factors and show that DeFCoM outperforms current methods in determining bound and unbound motif sites. We also analyze the impact of several biological and technical factors on the quality of footprint predictions to highlight important considerations when conducting footprint analyses and assessing the performance of footprint prediction methods. Finally, we show that DeFCoM can detect footprints using ATAC-seq data with similar accuracy as when using DNase-seq data. Python code available at https://bitbucket.org/bryancquach/defcom. bquach@email.unc.edu or tsfurey@email.unc.edu. Supplementary data are available at Bioinformatics online.

  20. Epitope discovery with phylogenetic hidden Markov models.

    LENUS (Irish Health Repository)

    Lacerda, Miguel

    2010-05-01

    Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epitopes can be used to enhance epitope identification. We have developed a mutation-selection model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolutionary process. This is one of the first examples of the incorporation of environmental parameters into a phylogenetic model and has many other potential applications where the selection pressures exerted on an organism can be related directly to environmental factors. We combine this novel evolutionary model with a hidden Markov model to identify contiguous amino acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that therefore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.

  1. A Distance Measure for Genome Phylogenetic Analysis

    Science.gov (United States)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  2. Phylogenetic diversity of Mesorhizobium in chickpea

    Indian Academy of Sciences (India)

    Dong Hyun Kim; Mayank Kaashyap; Abhishek Rathore; Roma R Das; Swathi Parupalli; Hari D Upadhyaya; S Gopalakrishnan; Pooran M Gaur; Sarvjeet Singh; Jagmeet Kaur; Mohammad Yasin; Rajeev K Varshney

    2014-06-01

    Crop domestication, in general, has reduced genetic diversity in cultivated gene pool of chickpea (Cicer arietinum) as compared with wild species (C. reticulatum, C. bijugum). To explore impact of domestication on symbiosis, 10 accessions of chickpeas, including 4 accessions of C. arietinum, and 3 accessions of each of C. reticulatum and C. bijugum species, were selected and DNAs were extracted from their nodules. To distinguish chickpea symbiont, preliminary sequences analysis was attempted with 9 genes (16S rRNA, atpD, dnaJ, glnA, gyrB, nifH, nifK, nodD and recA) of which 3 genes (gyrB, nifK and nodD) were selected based on sufficient sequence diversity for further phylogenetic analysis. Phylogenetic analysis and sequence diversity for 3 genes demonstrated that sequences from C. reticulatum were more diverse. Nodule occupancy by dominant symbiont also indicated that C. reticulatum (60%) could have more various symbionts than cultivated chickpea (80%). The study demonstrated that wild chickpeas (C. reticulatum) could be used for selecting more diverse symbionts in the field conditions and it implies that chickpea domestication affected symbiosis negatively in addition to reducing genetic diversity.

  3. Sequence Length Limits for Controlling False Positives in Discovering Nucleotide Sequence Motifs

    Institute of Scientific and Technical Information of China (English)

    CHEN Lei; QiAN Zi-liang

    2008-01-01

    In the study of motif discovery, especially the transcription factor DNA binding sites discovery, a too long input sequence would return non-informative motifs rather than those biological functional motifs. This paper gave theoretical analyses and computational experiments to suggest the length limits of the input sequence. When the sequence length exceeds a certain critical point, the probability of discovering the motif decreases sharply. The work not only gave an explanation on the unsatisfying results of the existed motif discovery problems that the input sequence length might be too long and exceed the point, but also provided an estimation of input sequence length we should accept to get more meaningful and reliable results in motif discovery.

  4. Exhaustive Search for Over-represented DNA Sequence Motifs with CisFinder

    Science.gov (United States)

    Sharov, Alexei A.; Ko, Minoru S.H.

    2009-01-01

    We present CisFinder software, which generates a comprehensive list of motifs enriched in a set of DNA sequences and describes them with position frequency matrices (PFMs). A new algorithm was designed to estimate PFMs directly from counts of n-mer words with and without gaps; then PFMs are extended over gaps and flanking regions and clustered to generate non-redundant sets of motifs. The algorithm successfully identified binding motifs for 12 transcription factors (TFs) in embryonic stem cells based on published chromatin immunoprecipitation sequencing data. Furthermore, CisFinder successfully identified alternative binding motifs of TFs (e.g. POU5F1, ESRRB, and CTCF) and motifs for known and unknown co-factors of genes associated with the pluripotent state of ES cells. CisFinder also showed robust performance in the identification of motifs that were only slightly enriched in a set of DNA sequences. PMID:19740934

  5. Phylogenetics of early branching eudicots: Comparing phylogenetic signal across plastid introns, spacers, and genes

    Institute of Scientific and Technical Information of China (English)

    Anna-Magdalena BARNISKE; Thomas BORSCH; Kai M(U)LLER; Michael KRUG; Andreas WORBERG; Christoph NEINHUIS; Dietmar QUANDT

    2012-01-01

    Recent phylogenetic analyses revealed a grade with Ranunculales,Sabiales,Proteales,Trochodendrales,and Buxales as first branching eudicots,with the respective positions of Proteales and Sabiales still lacking statistical confidence.As previous analyses of conserved plastid genes remain inconclusive,we aimed to use and evaluate a representative set of plastid introns (group Ⅰ:trnL; group Ⅱ:petD,rpll6,trnK) and intergenic spacers (trnL-F,petB-petD,atpB-rbcL,rps3-rpll6) in comparison to the rapidly evolving matK and slowly evolving atpB and rbcL genes.Overall patterns of microstructural mutations converged across genomic regions,underscoring the existence of a general mutational pattern throughout the plastid genome.Phylogenetic signal differed strongly between functionally and structurally different genomic regions and was highest in matK,followed by spacers,then group Ⅱ and group Ⅰ introns.The more conserved atpB and rbcL coding regions showed distinctly lower phylogenetic information content.Parsimony,maximum likelihood,and Bayesian phylogenetic analyses based on the combined dataset of non-coding and rapidly evolving regions (>14 000 aligned characters) converged to a backbone topology ofeudicots with Ranunculales branching first,a Proteales-Sabiales clade second,followed by Trochodendrales and Buxales.Gunnerales generally appeared as sister to all remaining core eudicots with maximum support.Our results show that a small number of intron and spacer sequences allow similar insights into phylogenetic relationships of eudicots compared to datasets of many combined genes.The non-coding proportion of the plastid genome thus can be considered an important information source for plastid phylogenomics.

  6. Phylogenetic positions of several amitochondriate protozoa-Evidence from phylogenetic analysis of DNA topoisomerase II

    Institute of Scientific and Technical Information of China (English)

    HE De; DONG Jiuhong; WEN Jianfan; XIN Dedong; LU Siqi

    2005-01-01

    Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, Entamoeba and Microsporida, were once widely considered to be the most primitive extant eukaryotic group―Archezoa. The main evidence for this is their 'lacking mitochondria' and possessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase II in G. lamblia, T. vaginalis and E. histolytica were identified first by PCR and sequencing, then combining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase II make it avoid the defect of 'long-branch attraction' appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplomonads, as represented

  7. Application of multigene phylogenetics and site-stripping to resolve intraordinal relationships in the Rhodymeniales (Rhodophyta).

    Science.gov (United States)

    Filloramo, Gina V; Saunders, Gary W

    2016-06-01

    Previous molecular assessments of the red algal order Rhodymeniales have confirmed its monophyly and distinguished the six currently recognized families (viz. Champiaceae, Faucheaceae, Fryeellaceae, Hymenocladiaceae, Lomentariaceae, and Rhodymeniaceae); however, relationships among most of these families have remained unresolved possibly as a result of substitution saturation at deeper phylogenetic nodes. The objective of the current study was to improve rhodymenialean systematics by increasing taxonomic representation and using a more robust multigene dataset of mitochondrial (COB, COI/COI-5P), nuclear (LSU, EF2) and plastid markers (psbA, rbcL). Additionally, we aimed to prevent phylogenetic inference problems associated with substitution saturation (particularly at the interfamilial nodes) by removing fast-evolving sites and analyzing a series of progressively more conservative alignments. The Rhodymeniales was resolved as two major lineages: (i) the Fryeellaceae as sister to the Faucheaceae and Lomentariaceae; and (ii) the Rhodymeniaceae allied to the Champiaceae and Hymenocladiaceae. Support at the interfamilial nodes was highest when 20% of variable sites were removed. Inclusion of Binghamiopsis, Chamaebotrys, and Minium, which were absent in previous phylogenetic investigations, established their phylogenetic affinities while assessment of two genera consistently polyphyletic in phylogenetic analyses, Erythrymenia and Lomentaria, resulted in the proposition of the novel genera Perbella and Fushitsunagia. The taxonomic position of Drouetia was reinvestigated with re-examination of holotype material of D. coalescens to clarify tetrasporangial development in this genus. In addition, we added three novel Australian species to Drouetia as a result of ongoing DNA barcoding assessments-D. aggregata sp. nov., D. scutellata sp. nov., and D. viridescens sp. nov.

  8. The value of position-specific priors in motif discovery using MEME.

    Science.gov (United States)

    Bailey, Timothy L; Bodén, Mikael; Whitington, Tom; Machanick, Philip

    2010-04-09

    Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs sampler-based motif discovery algorithms. Information of many types-including sequence conservation, nucleosome positioning, and negative examples-can be converted into a prior over the location of motif sites, which then guides the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, but has not previously been studied with methods based on expectation maximization (EM). We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their effectiveness for discovering transcription factor (TF) motifs in yeast and mouse DNA sequences. Utilizing a discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior. We conclude that using position-specific priors can substantially increase the power of EM-based motif discovery algorithms such as MEME algorithm.

  9. The value of position-specific priors in motif discovery using MEME

    Directory of Open Access Journals (Sweden)

    Whitington Tom

    2010-04-01

    Full Text Available Abstract Background Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs sampler-based motif discovery algorithms. Information of many types–including sequence conservation, nucleosome positioning, and negative examples–can be converted into a prior over the location of motif sites, which then guides the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, but has not previously been studied with methods based on expectation maximization (EM. Results We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their effectiveness for discovering transcription factor (TF motifs in yeast and mouse DNA sequences. Utilizing a discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior. Conclusions We conclude that using position-specific priors can substantially increase the power of EM-based motif discovery algorithms such as MEME algorithm.