WorldWideScience

Sample records for assessing nuclear waste

  1. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  2. Assessment of the important radionuclides in nuclear waste

    International Nuclear Information System (INIS)

    Kerrisk, J.F.

    1985-10-01

    The relative importance of the various radionuclides contained in nuclear waste has been assessed by consideration of (1) the quantity of each radionuclide present, (2) the Environmental Protection Agency's release limits for radionuclides, (3) how retardation processes such as solubility and sorption affect radionuclie transport, and (4) the physical and chemical forms of radionuclides in the waste. Three types of waste were reviewed: spent fuel, high-level waste, and defense high-level waste. Conditions specific to the Nevada Nuclear Waste Storage Investigations project potential site at Yucca Mountain were used to describe radionuclide transport. The actinides Am, Pu, Np, and U were identified as the waste elements for which solubility and sorption data were most urgently needed. Other important waste elements were identified as Sr, Cs, C, Ni, Zr, Tc, Th, Ra, and Sn. Under some conditions, radionuclides of three elements (C, Tc, and I) may have high solubility and negligible sorption. The potential for transport of some waste elements (C and I) in the gas phase must also be evaluated for the Yucca Mountain Site. 12 refs., 17 tabs

  3. Radioactive waste assessment using 'moderate growth in nuclear electricity generation' scenario

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1985-05-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation scenario -Scheme 3. Scheme 3 assumes a moderate growth in nuclear generation scenario with raw waste arisings from 3 main groups: (i) existing and committed commercial reactors; (ii) fuel reprocessing plants; (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment, and indicates the type of information that can be generated. (author)

  4. Nuclear Waste Fund fee adequacy: An assessment: Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1987-06-01

    The estimated long-term impact of the costs and fees associated with disposal of defense high-level wastes (DHLW) in the Office of Civilian Radioactive Waste Management (OCRWM) repository system is assessed. It is assumed that the DHLW disposal fees paid will provide funds equivalent to the OCRWM costs for disposing of this waste, including interest on costs incurred before the payment of the fee(s) to cover these costs, and the appropriate share of the common costs of the OCRWM waste disposal system. The DHLW disposal fee payments into the Nuclear Waste Fund will be subject to Congressional appropriations. This report is based on the assumptions that the first repository will open in 2003 and the second repository in 2023. In addition, this analysis features an Improved Performance System (IPS), a major component of which is a proposed (but currently unauthorized) Monitored Retrievable Storage (MRS) facility that is assumed to open in 1998. The possibility of adverse developments in inflation and real interest rates should be considered in assessing the findings of this analysis which are based on a cash flow analysis that utilized methods very similar to those employed in previous fee adequacy studies. Revisions were made in the areas of system logistics, repository schedules, real interest rates, inflation rates, and the estimation of costs for design and evaluation work, transportation, and repositories in differing host rocks. The principal recommendation is that the ongoing disposal fee should remain at 1.0 mill per (net) kilowatt-hour (kWh) for 1987 based on the assumption that defense waste fees will be adequate to cover the defense share of the program costs

  5. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The NEA Nuclear Waste Bulletin has been prepared by the Radiation Protection and Waste Management Division of the OECD Nuclear Energy Agency to provide a means of communication amongst the various technical and policy groups within the waste management community. In particular, it is intended to provide timely and concise information on radioactive waste management activities, policies and programmes in Member countries and at the NEA. It is also intended that the Bulletin assists in the communication of recent developments in a variety of areas contributing to the development of acceptable technology for the management and disposal of nuclear waste (e.g., performance assessment, in-situ investigations, repository engineering, scientific data bases, regulatory developments, etc)

  6. Performance Assessments of Generic Nuclear Waste Repositories in Shale

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.

    2017-12-01

    Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National

  7. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 2

    International Nuclear Information System (INIS)

    Gillespie, P.A.; Wuschke, D.M.; Guvanasen, V.M.; Mehta, K.K.; McConnell, D.B.; Tamm, J.A.; Lyon, R.B.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the burial of corrosion-resistant containers of waste in a vault located deep in plutonic rock in the Canadian Shield. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluatin of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have if the concept were implemented. The second assessment was performed in 1984 and is documented in Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1 to 4. This volume, entitled Background, discusses Canadian nuclear fuel wastes and the desirable features of a waste disposal method. It outlines several disposal options being considered by a number of countries, including the option chosen for development and assessment in Canada. The reference disposal systems assumed for the second assessment are described, and the approach used for concept assessment is discussed briefly. 79 refs

  8. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  9. Final report of the project performance assessment and economic evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Rasilainen, K.; Anttila, M.; Hautojaervi, A.

    1993-05-01

    The publication is the final report of project Performance Assessment and Economic Evaluation of Nuclear Waste Management (TOKA) at the Nuclear Engineering Laboratory of VTT (Technical Research Centre of Finland), forming part of the Publicly Financed Nuclear Waste Management Research Programme (JYT). The project covers safety and cost aspects of all phases of nuclear waste management. The main emphasis has been on developing an integrated system of models for performance assessment of nuclear waste repositories. During the four years the project has so far been in progress, the total amount of work has been around 14 person-years. Computer codes are the main tools in the project, they are either developed by the project team or acquired from abroad. In-house model development has been especially active in groundwater flow, near-field and migration modelling. The quantitative interpretation of Finnish tracer experiments in the laboratory and natural analogue studies at Palmottu support performance assessments via increased confidence in the migration concepts used. The performance assessment philosophy adopted by the team consists of deterministic modelling and pragmatic scenario analysis. This is supported by the long-term experience in practical performance assessment of the team, and in theoretical probabilistic modelling exercises. The radiological risks of spent fuel transportation from the Loviisa nuclear power plant to Russia have been analysed using a probabilistic computer code and Finnish traffic accident statistics. The project assists the authorities in the annual assessment of utility estimates of funding needs for future nuclear waste management operations. The models and methods used within the project are tested in international verification/validation projects

  10. The problematic of nuclear wastes

    International Nuclear Information System (INIS)

    Rozon, D.

    2004-01-01

    Within the frame of a project of modification of radioactive waste storage installations, and of refurbishing the Gentilly-2 nuclear plant (Quebec, Canada), the author first gives an overview and comments assessments of the volume and nature of nuclear wastes produced by Canadian nuclear power plants. He presents the Canadian program of nuclear waste management (history, Seaborn assessment Commission, mission of the SGDN-NWMO). He discusses the relationship between risk and dose, the risk duration, and the case of non radioactive wastes. He discusses energy challenges in terms of CO 2 emissions and with respect to climate change, proposes an alternative scenario on a long term, compares nuclear energy and wind energy, and discusses the nuclear technology evolution

  11. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 1

    International Nuclear Information System (INIS)

    Wuschke, D.M.; Gillespie, P.A.; Main, D.E.

    1985-07-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second assessment was performed in 1984 and is documented in the Second Interim assessment of the Canadian Concept for Nuclear Fuel Waste Disposal Volumes 1 to 4. This volume, entitled Summary, is a condensation of Volumes 2, 3 and 4. It briefly describes the Canadian nuclear fuel waste disposal concept, and the methods and results of the second interim pre-closure and post-closure assessments of that concept. 46 refs

  12. Climate Considerations in Long-Term Safety Assessments for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove; Brandefelt, Jenny; Claesson Liljedahl, Lillemor [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)], E-mail: jens-ove.naslund@skb.se

    2013-05-15

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  13. Climate considerations in long-term safety assessments for nuclear waste repositories.

    Science.gov (United States)

    Näslund, Jens-Ove; Brandefelt, Jenny; Liljedahl, Lillemor Claesson

    2013-05-01

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  14. Nuclear waste issue

    International Nuclear Information System (INIS)

    Ryhanen, V.

    2000-01-01

    A prerequisite for future use of nuclear energy in electricity production is safe management of the radioactive wastes generated by nuclear power industry. A number of facilities have been constructed for different stages of nuclear waste management around the world, for example for conditioning of different kind of process wastes and for intermediate storage of spent nuclear fuel. Difficulties have often been encountered particularly when trying to advance plans for final stage of waste management, which is permanent disposal in stable geological formations. The main problems have not been technical, but poor public acceptance and lack of necessary political decisions have delayed the progress in many countries. However, final disposal facilities are already in operation for low- and medium-level nuclear wastes. The most challenging task is the development of final disposal solutions for long-lived high-level wastes (spent fuel or high-level reprocessing waste). The implementation of deep geological repositories for these wastes requires persistent programmes for technology development, siting and safety assessments, as well as for building public confidence in long-term safety of the planned repositories. Now, a few countries are proceeding towards siting of these facilities, and the first high-level waste repositories are expected to be commissioned in the years 2010 - 2020. (author)

  15. Environmental impact assessment and socio political issues of nuclear waste management

    International Nuclear Information System (INIS)

    Harmaajaervi, I.; Tolsa, H.

    1997-09-01

    The study is a part of the Publicly Administrated Nuclear Waste Management Research Programme (JYT2) which was carried out in 1994-1996. The principal goal of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management in order to support the various activities of the authorities. The main emphasis of the research programme focuses on the disposal of spent fuel. In addition to nuclear waste research in the field of natural sciences and technology, the research program- me has focused mostly on societal issues associated with nuclear waste disposal facilities and on the non-radiological environmental effects in the environs of the disposal site. Some of the local effects are already revealed in the research phase, before any final decisions are made as to the selection of the disposal site. The study has focused primarily on local and regional issues. The statutory requirement to conduct environ- mental impact assessment (EIA) chiefly concerns those who are responsible for waste management, but the authorities also need to acquire systematic information in the field to support developing requirements for the content and scope of EIA procedure and preparedness to check the assessments made. This is a report of the first parts of the study in 1994-1995. The report deals with the subject matter generally based on earlier studies in Finland and other countries. The results of the study will be reported later

  16. Nuclear waste management: a perspective

    International Nuclear Information System (INIS)

    Leuze, R.E.

    1980-01-01

    The scope of our problems with nuclear waste management is outlined. Present and future inventories of nuclear wastes are assessed for risk. A discussion of what is presently being done to solve waste management problems and what might be done in the future are presented

  17. Case histories of environmental assessment documents for nuclear waste

    International Nuclear Information System (INIS)

    Vocke, R.W.

    1985-01-01

    Nuclear power programs and policies in the United States have been subject to environmental assessment under the National Environmental Policy Act (NEPA) since 1971. NEPA documentation prepared for programmatic policy decision-making fuel cycle and concurrent federal policy are examined as they relate to radioactive waste management in this paper. Key programmatic environmental impact statements that address radioactive waste management include: the Atomic Energy Commission document on management of commercial high level and transuranium-contaminated radioactive waste, which focussed on development of engineered retrievable surface storage facilities (RSSF); the Nuclear Regulatory Commission (NRC) document on use of recycled plutonium in mixed oxide fuel in light water cooled reactors, which focussed on plutonium recycle and RSSF; the NRC statement on handling of spent light water power reactor fuel, which focussed on spent fuel storage; and the Department of Energy (DOE) statement on management of commercially generated radioactive wastes, which focussed on development of deep geologic repositories. DOE is currently pursuing the deep geologic repository option, with monitored retrievable storage as a secondary option

  18. Safety and performance assessment of geologic disposal systems for nuclear wastes

    International Nuclear Information System (INIS)

    Peltonen, E.

    1987-01-01

    This thesis presents a methodology for the safety and performance assesment of final disposal of nuclear wastes into crystalline bedrock. The applicability of radiation protection objectives is discussed, as well as the goals of the assessment in the various repository system development phases. Due consideration is given to the description of the pertinent analysis methods and to the comprehensive model system. The methodology has been applied to assess the acceptability of the basic disposal concepts and to study the possibilities for the optimization of protection. Furthermore, performance of different components in the multiple barrier disposal systems is estimated. The waste types dealt with are low- and intermediate-level waste as well as high-level spent nuclear fuel from a nuclear power plant. In addition, an option of high-level vitrified waste from reprocessing of spent fuel is taken into account. On the basis of the various analyses carried out it can be concluded that the disposal of different nuclear wastes in the Finnish bedrock in properly designed repositories meets the radiation protection objectives with good confidence. In addition, the studies indicate that the safety margins are considerable. This is due to the fact that the overall performance of the multiple barrier disposal systems analysed is not sensitive to possible unfavourable changes in barrier properties. From the optimization of protection point of view it can be concluded that there is no need to develop more effective repository designs than those analysed in this thesis. In fact, the results indicate that the most sophisticated designs have already gone beyond an optimal level of safety

  19. Assessing Technical and Programmatic Viability of Nuclear Waste and Material Stream Disposition Plans

    International Nuclear Information System (INIS)

    R. S. Hill; B. Griebenow

    1999-01-01

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) has responsibility for cleanup and disposition of nuclear wastes and excess materials that are a legacy of the nuclear arms race. In fulfilling this responsibility, EM applies a systems engineering approach to identify baseline disposition plans for the wastes and materials (storage, stabilization, treatment, and disposal), assess the path viability, and develop integration opportunities to improve the disposition viability or to combine, eliminate, and/or simplify activities, technologies, and facilities across the DOE Complex, evaluate the baseline and alternatives to make informed decisions, and implement and track selected opportunities. This paper focuses on processes used to assess the disposition path viability - the likelihood that current planning for disposition of nuclear waste and materials can be implemented

  20. Nuclear waste

    International Nuclear Information System (INIS)

    1990-06-01

    DOE estimates that disposing of radioactive waste from civilian nuclear power plants and its defense-related nuclear facilities could eventually end up costing $32 billion. To pay for this, DOE collects fees from utilities on electricity generated by nuclear power plants and makes payments from its defense appropriation. This report states that unless careful attention is given to its financial condition, the nuclear waste program is susceptible to future shortfalls. Without a fee increase, the civilian-waste part of the program may already be underfunded by at least $2.4 billion (in discounted 1988 dollars). Also, DOE has not paid its share of cost-about $480 million-nor has it disclosed this liability in its financial records. Indexing the civilian fee to the inflation rate would address one major cost uncertainty. However, while DOE intends to do this at an appropriate time, it does not use a realistic rate of inflation as its most probable scenario in assessing whether that time has arrived

  1. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 4

    International Nuclear Information System (INIS)

    Wuschke, D.M.; Gillespie, P.A.; Mehta, K.K.; Henrich, W.F.; LeNeveu, D.M.; Guvanasen, V.M.; Sherman, G.R.; Donahue, D.C.; Goodwin, B.W.; Andres, T.H.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second such assessment was performed in 1984 and is documented in the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1-4. This volume, entitled Post-Closure Assessment, describes the methods, models and data used to perform the second post-closure assessment. The results are presented and their significance is discussed. Conclusions and planned improvements are listed. 72 refs

  2. Nuclear waste and nuclear ethics. Societal and ethical aspects of retrievable storage of nuclear waste

    International Nuclear Information System (INIS)

    Damveld, H.; Van den Berg, R.J.

    2000-01-01

    The aim of the literature study on the title subject is to provide information to researchers, engineers, decision makers, administrators, and the public in the Netherlands on the subject of retrievable storage of nuclear waste, mainly from nuclear power plants. Conclusions and recommendations are formulated with respect to retrievability and ethics, sustainability, risk assessment, information transfer, environmental impacts, and discussions on radioactive waste storage. 170 refs

  3. Second interim assessment of the Canadian concept for nuclear fuel waste disposal. Volume 3

    International Nuclear Information System (INIS)

    Johansen, K.; Donnelly, K.J.; Gee, J.H.; Green, B.J.; Nathwani, J.S.; Quinn, A.M.; Rogers, B.G.; Stevenson, M.A.; Dunford, W.E.; Tamm, J.A.

    1985-12-01

    The nuclear fuel waste disposal concept chosen for development and assessment in Canada involves the isolation of corrosion-resistant containers of waste in a vault located deep in plutonic rock. As the concept and the assessment tools are developed, periodic assessments are performed to permit evaluation of the methodology and provide feedback to those developing the concept. The ultimate goal of these assessments is to predict what impact the disposal system would have on man and the environment if the concept were implemented. The second such assessment was completed in 1984 and is documented in the Second Interim Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal - Volumes 1-4. This, the third volume of the report, summarizes the pre-closure environmental and safety assessments completed by Ontario Hydro for Atomic Energy of Canada Limited. The preliminary results and their sigificance are discussed. 85 refs

  4. Politics of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Colglazier, E.W. Jr. (eds.)

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)

  5. Politics of nuclear waste

    International Nuclear Information System (INIS)

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administration as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments

  6. Overview assessment of nuclear-waste management

    International Nuclear Information System (INIS)

    Burton, B.W.; Gutschick, V.P.; Perkins, B.A.

    1982-08-01

    After reviewing the environmental control technologies associated with Department of Energy nuclear waste management programs, we have identified the most urgent problems requiring further action or follow-up. They are in order of decreasing importance: (1) shallow land disposal technology development; (2) active uranium mill tailings piles; (3) uranium mine dewatering; (4) site decommissioning; (5) exhumation/treatment of transuranic waste at Idaho National Engineering Laboratory; (6) uranium mine spoils; and (7) medical/institutional wastes. 7 figures, 33 tables

  7. Nuclear waste

    International Nuclear Information System (INIS)

    1988-01-01

    As required by the Nuclear Waste Policy Act of 1982, the Department of Energy is to annually determine whether the waste disposal fee will produce sufficient revenues to offset the total estimated costs of the waste disposal program. In its June 1987 assessment, DOE recommended that the fee remain unchanged even though its analysis showed that at an inflation rate of 4 percent the current fee would result in end-of-program deficits ranging from $21 billion to $76 billion in 2085. The 1988 assessment calls for reduced total costs because of program changes. Thus, DOE may be able to begin using a realistic inflation rate in determining fee adequacy in 1988 without proposing a major fee increase

  8. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  9. The IAEA project on nuclear and non-nuclear wastes

    International Nuclear Information System (INIS)

    Seitz, Roger

    1998-01-01

    Radioactive and chemotoxic agents are common in electricity generation waste. Data and assessments illustrate that nuclear and non-nuclear fuel chains result in waste posing potential long-term hazards. Efforts are focussed on filling data gaps and approaches for comparing impacts of radioactive and chemotoxic agents

  10. Chemical risks from nuclear waste repositories

    International Nuclear Information System (INIS)

    Persson, L.

    1988-01-01

    Studies concerning the chemical risks of nuclear waste are reviewed. The radiological toxicity of the material is of primary concern but the potential nonradiological toxicity should not be overlooked as the chemotoxic substances may reach the biosphere from a nuclear waste repository. In the report is concluded that the possible chemotoxic effects of a repository for nuclear waste should be studied as a part of the formal risk assessment of the disposal concept. (author)

  11. Storage - Nuclear wastes are overflowing

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2016-01-01

    This article highlights that the dismantling of French nuclear installations will generate huge volumes of radioactive wastes and that France may lack space to store them. The Cigeo project (underground storage) only concerns 0.2 per cent of the nuclear waste volume produced by France in 50 years. If storage solutions exist for less active wastes, they will soon be insufficient, notably because of the quantity of wastes produced by the dismantling of existing reactors and fuel processing plants. Different assessments of these volumes are evoked. In order to store them, the ANDRA made a second call for innovating projects which would enable a reduction of this volume by 20 to 30 per cent. The article also evokes projects selected after the first call for projects. They mainly focus on nuclear waste characterization which will result in a finer management of wastes regarding their storage destination. Cost issues and the opposition of anti-nuclear NGOs are still obstacles to the development of new sites

  12. Waste isolation safety assessment program

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.

    1979-05-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE), through the National Waste Terminal Storage (NWTS) Program, is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Among the analyses required for isolation system evaluation is the detailed assessment of the post-closure performance of nuclear waste repositories in geologic formations. This assessment is essential, since it is concerned with aspects of the nuclear power program which previously have not been addressed. Specifically, the nature of the isolation systems (e.g., involving breach scenarios and transport through the geosphere), and the time-scales necessary for isolation, dictate the development, demonstration and application of novel assessment capabilities. The assessment methodology needs to be thorough, flexible, objective, and scientifically defensible. Further, the data utilized must be accurate, documented, reproducible, and based on sound scientific principles

  13. Nuclear fuel waste management and disposal concept: Report. Federal environmental assessment review process

    International Nuclear Information System (INIS)

    1998-01-01

    The Canadian concept for disposing CANDU reactor waste or high-level nuclear wastes from reprocessing involves underground disposal in sealed containers emplaced in buffer-filled and sealed vaults 500--1,000 meters below ground, in plutonic rock of the Canadian Shield. This document presents the report of a panel whose mandate was to review this concept (rather than a specific disposal project at a specific site) along with a broad range of related policy issues, and to conduct that review in five provinces (including reviews with First Nations groups). It first outlines the review process and then describes the nature of the problem of nuclear waste management. It then presents an overview of the concept being reviewed, its implementation stages, performance assessment analyses performed on the concept, and implications of a facility based on that concept (health, environmental, social, transportation, economic). The fourth section examines the criteria by which the safety and acceptability of the concept should be evaluated. This is followed by a safety and acceptability evaluation from both technical and social perspectives. Section six proposes future steps for building and determining acceptability of the concept, including an Aboriginal participation process, creation of a Nuclear Fuel Waste Management Agency, and a public participation process. The final section discusses some issues outside the panel's mandate, such as energy policy and renewable energy sources. Appendices include a chronology of panel activities, a review of radiation hazards, comparison between nuclear waste management and the management of other wastes, a review of other countries' approaches to long-term management of nuclear fuel wastes, and details of a siting process proposed by the panel

  14. EUROSAFE forum 2013. Safe disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The proceedings of the EUROSAFE forum 2013 - safe disposal of nuclear waste include contributions to the following topics: Nuclear installation safety - assessment; nuclear installation safety - research; waste and decommissioning - dismantling; radiation protection, 3nvironment and emergency preparedness; security of nuclear installations and materials.

  15. Probabilistic assessment of nuclear waste fund fee adequacy

    International Nuclear Information System (INIS)

    Hoskins, R.E.

    1988-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 establishes a waste fund into which nuclear plant owners pay a fee based on electrical generation intended to recover fully the cost of commercial high level waste disposal. The Department of Energy (DOE) is required to conduct an analysis of the adequacy of the fee each year and to recommend changes that are appropriate. Due to uncertainties, it is difficult to ascertain the adequacy of the fee based on the type of analysis that DOE performs. This study demonstrates the use of decision analysis methods to examine fee adequacy taking into account uncertainty in disposal date, nuclear power outlook, and cost estimates. Fee requirements are examined for parallel site characterization as prescribed by the original NWPA and serial site characterization as required by 1987 NWPA amendments. The study shows that serial site characterization has a high probability of reducing program cost

  16. Nuclear waste repository design and construction

    International Nuclear Information System (INIS)

    Bohlke, B.M.; Monsees, J.E.

    1987-01-01

    Extensive underground excavation will be required for construction of a mined geologic repository for nuclear waste. Hundreds of thousands of feet of drift will be required based on the conceptual layout design for each candidate nuclear waste repository. Comparison of boring and blasting excavation methods are discussed, as are special design and construction requirements (e.g., quality assurance procedures and performance assessment) for the nuclear waste repository. Comparisons are made between boring and blasting construction methods for the repository designs proposed for salt, volcanic tuff, and basalt

  17. Managing the nation's nuclear waste. Overview: Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1985-10-01

    Signed into law by the President on January 7, 1983, the Nuclear Waste Policy Act established a national policy for safely storing, transporting, and disposing of spent nuclear fuel and high-level radioactive waste. This overview presents the following information on the Nuclear Waste Policy Act: (1) background; (2) permanent repository; (3) siting guidelines and mission plan; (4) monitored retrievable storage; and (5) nuclear waste funds. (DT)

  18. An introduction to nuclear waste immobilisation

    International Nuclear Information System (INIS)

    Ojovan, M.I.; Lee, W.E.

    2005-08-01

    Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in this book cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies

  19. Nuclear waste disposal: Gambling on Yucca Mountain

    International Nuclear Information System (INIS)

    Ginsburg, S.

    1995-01-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography

  20. Scientific basis for nuclear waste management XX

    International Nuclear Information System (INIS)

    Gray, W.J.; Triay, I.R.

    1997-01-01

    The proceedings are divided into the following topical sections: Glass formulations and properties; Glass/water interactions; Cements in radioactive waste management; Ceramic and crystalline waste forms; Spent nuclear fuel; Waste processing and treatment; Radiation effects in ceramics, glasses, and nuclear waste materials; Waste package materials; Radionuclide solubility and speciation; Radionuclide sorption; Radionuclide transport; Repository backfill; Performance assessment; Natural analogues; Excess plutonium dispositioning; and Chernobyl-related waste disposal issues. Papers within scope have been processed separately for inclusion on the data base

  1. Safeguards on nuclear waste

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1995-01-01

    Safeguards and security policies within the Department of Energy (DOE) have been implemented in a graded fashion for the protection, control and accountability of nuclear materials. This graded philosophy has meant that safeguards on low-equity nuclear materials, typically considered of low diversion attractiveness such as waste, has been relegated to minimal controls. This philosophy has been and remains today an acceptable approach for the planning and implementation of safeguards on this material. Nuclear waste protection policy and guidance have been issued due to a lack of clear policy and guidance on the identification and implementation of safeguards controls on waste. However, there are issues related to safe-guarding waste that need to be clarified. These issues primarily stem from increased budgetary and resource pressures to remove materials from safeguards. Finally, there may be an unclear understanding, as to the scope and content of vulnerability assessments required prior to terminating safeguards on waste and other discardable materials and where the authority should lie within the Department for making decisions regarding safeguards termination. This paper examines these issues and the technical basis for Departmental policy for terminating safeguards on waste

  2. Civil nuclear and responsibilities related to radioactive wastes. The 'cumbersome' wastes of the civil nuclear; The Parliament and the management of wastes from the civil nuclear; The Swiss legal framework related to the shutting down of nuclear power stations and to the management of radioactive wastes; Economic theory and management of radioactive wastes: to dare the conflict

    International Nuclear Information System (INIS)

    Rambour, Muriel; Pauvert, Bertrand; Zuber-Roy, Celine; Thireau, Veronique

    2015-01-01

    This publication presents the contributions to a research seminar organised by the European Centre of research on Risk, Collective Accident and Disasters Law (CERDACC) on the following theme: civil nuclear and responsibilities related to radioactive wastes. Three main thematic issues have been addressed: the French legal framework for waste processing, the comparison with the Swiss case, and the controversy about the exposure of societies to waste-induced risks. The first contribution addressed the cumbersome wastes of the civil nuclear industry: characterization and management solutions, the hypothesis of reversibility of the storage of radioactive wastes. The second one comments the commitment of the French Parliament in the management of wastes of the civil nuclear industry: role of Parliamentary Office of assessment of scientific and technological choices (OPECST) to guide law elaboration, assessment by the Parliament of the management of nuclear wastes (history and evolution of legal arrangements). The next contribution describes the Swiss legal framework for the shutting down of nuclear power stations (decision and decommissioning) and for the management of radioactive wastes (removal, financing). The last contribution discusses the risk related to nuclear waste management for citizen and comments how economists address this issue

  3. A Nuclear Waste Management Cost Model for Policy Analysis

    Science.gov (United States)

    Barron, R. W.; Hill, M. C.

    2017-12-01

    Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost

  4. A program to assess microbial impacts on nuclear waste containment

    International Nuclear Information System (INIS)

    Horn, J.; Meike, A.

    1996-01-01

    In this paper we discuss aspects of a comprehensive program to identify and bound potential effects of microorganisms on long-term nuclear waste containment, using as examples, studies conducted within the Yucca Mountain Project. A comprehensive program has been formulated which cuts across standard disciplinary lines to address the specific concerns of microbial activity in a radioactive waste repository. Collectively, this program provides bounding parameters of microbial activities that modify the ambient geochemistry and hydrology, modify corrosion rates, and transport and transform radionuclides under conditions expected to be encountered after geological waste emplacement. This program is intended to provide microbial reaction rates and bounding conditions in a form that can be integrated into existing chemical and hydrological models. The inclusion of microbial effects will allow those models to more accurately assess long term repository integrity

  5. The waste isolation safety assessment programme

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.

    1980-01-01

    Associated with commercial nuclear power production in the USA is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE), through the National Waste Terminal Storage (NWTS) Programme, is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Programme (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Among the analyses required for isolation system evaluation is the detailed assessment of the post-closure performance of nuclear waste repositories in geologic formations. This assessment is essential, since it is concerned with aspects of the nuclear power programme which previously have not been addressed. Specifically, the nature of the isolation systems (e.g. involving breach scenarios and transport through the geosphere), and the time-scales necessary for isolation, dictate the development, demonstration and application of novel assessment capabilities. The assessment methodology needs to be thorough, flexible, objective, and scientifically defensible. Further, the data utilized must be accurate, documented, reproducible, and based on sound scientific principles. (author)

  6. Legal aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Hofmann, H.

    1981-01-01

    The result of the study is that the nuclear waste management defined by sect. 9a of the Atomic Energy Law cannot be realized without violating the constitution or other relevant laws. This evaluation of the nuclear waste management concept is based on an in-depth discussion of technological difficulties involved in nuclear waste management, and on the examination of all existing rules and regulations (Radiation Protection Ordinance, intermediate storage and burial, and reprocessing) at home and abroad, which lead to legal aspects of nuclear waste management which, according to established German law, are to be characterized as being 'unclear'. The author demonstrates especially the lack of precision in law of the term 'radioactive waste'. He points out that a sufficient regulation on the dismantlement of nuclear reactors is missing and he sets forth uncertainties relating to administrative law which are involved in bringing in private companies for burial as it is provided by law. The concluding constitutional assessment of the nuclear waste management regulation of the Atomic Energy Law shows that sect. 9a of the Atomic Energy Law does not meet completely constitutional requirements. (orig./HP) [de

  7. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  8. A Post Closure Safety Assessment for Radioactive Wastes from Advanced nuclear fuel Cycle

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Hwang, Yong Soo

    2010-01-01

    KAERI has developed the KIEP-21 (Korean, Innovative, Environmentally Friendly, and Proliferation Resistant System for the 21st Century). It is an advanced nuclear fuel cycle option with a pyro-process and a GEN-IV SFR. A pyro-process consists of two distinctive processes, an electrolytic reduction process and an electro-refining and winning process. When the pyro-process is applied, it generates five streams of wastes. To compare pyro-process advantage over the direct disposal of Spent Nuclear Fuel (SNF), the PWR SNF of the 45,000 MWD burn-up has been assumed. A safety assessment model for pyro-process wastes and representative results are presented in this report

  9. Ethical aspects on Nuclear Waste

    International Nuclear Information System (INIS)

    Persson, Lars

    1989-01-01

    In an ethical assessment of how we shall deal with nuclear waste, one of the chief questions that arises is how to initiate action while at the same time taking into consideration uncertainties which are unavoidable seen from a long-term perspective. By means of different formulation and by proceeding from various starting-points, a two edged objective is established vis-a-vis repository facilities: safety in operation combined with reparability, with controls not necessary, but not impossible. Prerequisites for the realization of this objective are the continued advancement of knowledge and refinement of the qualifications required to deal with nuclear waste. The ethical considerations above could be the bases for the future legislation in the field of nuclear energy waste. (author)

  10. Nuclear Waste Fund fee adequacy: An assessment

    International Nuclear Information System (INIS)

    1990-11-01

    The purpose of this report is to present the Department of Energy's (the Department) analysis of the adequacy of the 1.00 mill per kilowatt-hour (kWh) fee being paid by the utilities generating nuclear power for the permanent disposal of their spent nuclear fuel (SNF). In accordance with the Nuclear Waste Policy Act (NWPA), the SNF would be disposed of in a geologic repository to be developed by the Department. An annual analysis of the fee's adequacy is required by the NWPA

  11. Assessments of conditioned radioactive waste arisings from existing and committed nuclear installations and assuming a moderate growth in nuclear electricity generation - June 1985

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Goodill, D.R.; Tymons, B.J.

    1985-03-01

    This report describes an assessment of conditioned radioactive waste arisings from existing and committed nuclear installations, DOE Revised Scheme 1, and from an assumed nuclear power generation scenario, DOE Revised Scheme 3, representing a moderate growth in nuclear generation. Radioactive waste arise from 3 main groups of installations and activities: i. existing and committed commercial reactors; ii. fuel reprocessing plants, iii. research, industrial and medical activities. Stage 2 decommissioning wastes are considered together with WAGR decommissioning and the 1983 Sea Dump Consignment. The study uses the SIMULATION 2 code which models waste material flows through a system of waste treatment and packaging to disposal. With a knowledge of the accumulations and average production rates of untreated wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data for the inventory calculations have previously been documented. Some recent revisions and assumptions concerning future operation of nuclear facilities are presented in this report. (author)

  12. Science, society, and America's nuclear waste: Unit 1, Nuclear waste

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 1 in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  13. Comments on: ''The use of conditional simulation in nuclear waste site performance assessment''

    International Nuclear Information System (INIS)

    Wendelberger, J.; Beckman, R.

    1993-01-01

    In the assessment of underground storage of nuclear waste, at locations like the Waste Isolation Pilot Plan (WIPP) one of the greatest concerns is encroachment of the repository and transportation of radionuclides from the repository to the surrounding environment by the groundwater. This paper demonstrates the contribution that can be made in the studies of this important problem and similar problems of national importance by the application of modern statistical techniques

  14. Mathematical simulation for safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Brandstetter, A.; Raymond, J.R.; Benson, G.L.

    1979-01-01

    Mathematical models are being developed as part of the Waste Isolation Safety Assessment Program (WISAP) for assessing the post-closure safety of nuclear waste storage in geologic formations. The objective of this program is to develop the methods and data necessary to determine potential events that might disrupt the integrity of a waste repository and provide pathways for radionuclides to reach the bioshpere, primarily through groundwater transport. Four categories of mathematical models are being developed to assist in the analysis of potential release scenarios and consequences: (1) release scenario analysis models; (2) groundwater flow models; (3) contaminant transport models; and (4) radiation dose models. The development of the release scenario models is in a preliminary stage; the last three categories of models are fully operational. The release scenario models determine the bounds of potential future hydrogeologic changes, including potentially disruptive events. The groundwater flow and contaminant transport models compute the flowpaths, travel times, and concentrations of radionuclides that might migrate from a repository in the event of a breach and potentially reach the biosphere. The dose models compute the radiation doses to future populations. Reference site analyses are in progress to test the models for application to different geologies, including salt domes, bedded salt, and basalt

  15. Nuclear waste

    International Nuclear Information System (INIS)

    1992-05-01

    The Nuclear Waste Policy Act of 1982, as amended in 1987, directed the Secretary of Energy to, among other things, investigate Yucca Mountain, Nevada, as a potential site for permanently disposing of highly radioactive wastes in an underground repository. In April 1991, the authors testified on Yucca Mountain project expenditures before your Subcommittee. Because of the significance of the authors findings regrading DOE's program management and expenditures, you asked the authors to continue reviewing program expenditures in depth. As agreed with your office, the authors reviewed the expenditures of project funds made available to the Department of Energy's (DOE) Lawrence Livermore National Laboratory, which is the lead project contractor for developing a nuclear waste package that wold be used for disposing of nuclear waste at Yucca Mountain. This report discusses the laboratory's use of nuclear waste funds to support independent research projects and to manage Yucca Mountain project activities. It also discusses the laboratory's project contracting practices

  16. Nuclear waste

    International Nuclear Information System (INIS)

    Pligt, J. van der

    1989-01-01

    This chapter present a brief overview of the current situation of siting radioactive wastes. This is followed by an overview of various psychological approaches attempting to analyse public reactions to nuclear facilities. It will be argued that public reactions to nuclear waste factilities must be seen in the context of more general attitudes toward nuclear energy. The latter are not only based upon perceptions of the health and environmental risks but are built on values, and sets of attributes which need not be similar to the representations o the experts and policy-makers. The issue of siting nuclear waste facilities is also embedded in a wider moral and political domain. This is illustrated by the importance of equity issues in siting radioactive wastes. In the last section, the implications of the present line of argument for risk communication and public participation in decisions about siting radioactive wastes will be briefly discussed. (author). 49 refs

  17. Factors influencing chemical durability of nuclear waste glasses

    International Nuclear Information System (INIS)

    Feng, Xiangdong; Bates, J.K.

    1993-01-01

    A short summary is given of our studies on the major factors that affect the chemical durability of nuclear waste glasses. These factors include glass composition, solution composition, SA/V (ratio of glass surface area to the volume of solution), radiation, and colloidal formation. These investigations have enabled us to gain a better understanding of the chemical durability of nuclear waste glasses and to accumulate.a data base for modeling the long-term durability of waste glass, which will be used in the risk assessment of nuclear waste disposal. This knowledge gained also enhances our ability to formulate optimal waste glass compositions

  18. Japanese Nuclear Waste Avatars

    International Nuclear Information System (INIS)

    Wynn Kirby, Peter; Stier, Daniel

    2016-01-01

    Japan's cataclysmic 2011 tsunami has become a vast, unwanted experiment in waste management. The seismic event and resulting Fukushima Daiichi radiation crisis created an awkwardly fortuitous rupture in Japanese nuclear practice that exposed the lax and problematic management of nuclear waste in this country to broader scrutiny, as well as distortions in its very conception. This article looks at the full spectrum of nuclear waste in post-tsunami Japan, from spent fuel rods to contorted reactor containment, and the ways that nuclear waste mirrors or diverges from more quotidian waste practices in Japanese culture. Significantly, the Fukushima Daiichi plant itself and its erstwhile banal surroundings have themselves transmuted into an unwieldy form of nuclear waste. The immense challenges of the Fukushima Daiichi site have stimulated a series of on-the-fly innovations that furnish perspective on more everyday nuclear waste practices in the industry. While some HLW can be reprocessed for limited use in today's reactors, it cannot be ignored that much of Japan's nuclear waste is simply converted into other forms of waste. In a society that has long been fixated on segregating filth, maintaining (imagined) purity, and managing proximity to pollution, the specter of nuclear waste looms over contemporary Japan and its ongoing debates over resources, risk, and Japanese nuclear identity itself

  19. The importance of independent research and evaluation in assessing nuclear fuel cycle and waste management facility safety

    International Nuclear Information System (INIS)

    Downing, Walter D.; Patrick, Wesley C.; Sagar, Budhi

    2009-01-01

    In 1987, the United States Nuclear Regulatory Commission (NRC) established at Southwest Research Institute (SwRI) a federally funded research and development center. Known as the Center for Nuclear Waste Regulatory Analyses (CNWRA), its overall mission is to provide NRC with an independent assessment capability on technical and regulatory issues related to a potential geologic repository for spent nuclear fuel and high-level radioactive waste, as well as interim storage and other nuclear fuel-cycle facilities. For more than 20 years, the CNWRA has supported NRC through an extensive pre-licensing period of establishing the framework of regulations and guidance documents, developing computer codes and other review tools, and conducting independent laboratory, field, and numerical analyses. In June 2008, the United States Department of Energy (DOE) submitted a license application and final environmental impact statement to NRC seeking authorization to construct the nation's first geologic repository at Yucca Mountain, Nevada. The CNWRA will assist NRC in conducting a detailed technical review to critically evaluate the DOE license application to assess whether the potential repository has been designed and can be constructed and operated to safely dispose spent nuclear fuel and high-level radioactive waste. NRC access to independent, unbiased, technical advice from the CNWRA is an important aspect of the evaluation process. This paper discusses why an independent perspective is important when dealing with nuclear fuel cycle and waste management issues. It addresses practical considerations such as avoiding conflicts of interest while at the same time maintaining a world-class research program in technical areas related to the nuclear fuel cycle. It also describes an innovative approach for providing CNWRA scientists and engineers a creative outlet for professional development through an internally funded research program that is focused on future nuclear waste

  20. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1992-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  1. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1993-06-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  2. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1991-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  3. Nuclear wastes: where is the problem?

    International Nuclear Information System (INIS)

    Sorin, Francis

    2015-01-01

    While addressing societal as well as ethical aspects, the author proposes a presentation of the different management modes which are applied to the different categories of nuclear wastes. He describes the strategy adopted in France with the deep storage, and discusses its safety by assessing its impact on health and on the environment in time. In the first chapter, the author presents the different types of nuclear wastes, their origin, and the related problem of exposure to radioactivity for the most dangerous ones. In the second chapter, he presents the French sector of nuclear waste management, outlines the role of the ANDRA, and the acknowledged know-how and expertise. The third chapter describes the different management modes for the five different waste categories. The author recalls and outlines the legal background, the strategic choices and the importance of the underground laboratory for the storage of high-level wastes. He discusses the challenges, safety approaches and cost issues associated with the geologic storage. He discusses the future of such storage, its possible evolutions and radioactive impact. He discusses issues related to dysfunctions, failures, altered scenarios. He finally gives its opinion on the current debate about radioactive nuclear wastes

  4. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    Science.gov (United States)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia

  5. The socio-economic impact assessment for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Tamm, J.; Wlodarczyk, T.

    1992-01-01

    The concept for disposal of Canada's nuclear fuel waste will undergo public scrutiny as it is examined under the Canadian Environmental Assessment and Review Process (EARP). This process presents a number of challenges in preparing the socio-economic impact assessment (SEIA) component of an Environment Impact Statement. These challenges relate to defining the scope of the SEIA, adapting site-specific methodologies to an assessment of a concept, and addressing evolving public concerns and issues. This paper reports that in meeting these challenges a generic process-oriented SEIA has been developed that emphasizes the importance of defining policies and processes to manage socio-economic impacts. In addition, public involvement and attitude research has facilitated the assessment of the concept at the societal level

  6. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  7. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  8. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  9. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency's Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  10. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1983-05-01

    The Canadian Nuclear Fuel Waste Management Program is now well established. This report outlines the generic research and technological development underway in this program to assess the concept of immobilization and subsequent disposal of nuclear fuel waste deep in a stable plutonic rock in the Canadian Shield. The program participants, funding, schedule and associated external review processes are briefly outlined. The major scientific and engineering components of the program, namely, immobilization studies, geoscience research and environmental and safety assessment, are described in more detail

  11. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  12. Nuclear waste management

    International Nuclear Information System (INIS)

    Wyatt, A.

    1978-01-01

    The Canadian Nuclear Association has specific views on the following aspects of waste management: a) public information and public participation programs should be encouraged; b) positive political leadership is essential; c) a national plan and policy are necessary; d) all hazardous materials should receive the same care as radioactive wastes; e) power plant construction need not be restricted as long as there is a commitment to nuclear waste management; f) R and D should be funded consistently for nuclear waste management and ancillary topics like alternative fuel cycles and reprocessing. (E.C.B.)

  13. Radioactive waste assessment using 'minimum waste generation' scenario - summary report March 1984

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1984-11-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation - Scheme 1. Scheme 1 assumes a minimum waste generation scenario with raw waste arisings from 3 main groups; (i) existing and committed commercial reactors; (ii) fuel reprocessing plants, (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment and indicates the type of information that can be generated. (author)

  14. Nuclear waste - a fresh perspective

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.

    1996-01-01

    Rather than looking at the nuclear waste problem in isolation, it should be viewed in the broader context of how society disposes of all of its wastes. A comparison of radioactive and non-radioactive wastes shows, contrary to popular perception, that the properties of these two waste types are actually very similar. However, the methods of regulation and management of the two waste types are very different. It is time that these differences were reconciled - both the nuclear and the non-nuclear waste industries have a lot to gain. There are three main categories of (non-nuclear) waste: municipal wastes, hazardous wastes, and industrial wastes. Rather than treating each of these waste types in separate, isolated compartments, there should be an integration of the principles and regulations involved in their management. The non-nuclear waste industry has much to learn from the nuclear approach

  15. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1983 are described in this report

  16. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  17. Nuclear waste. Last stop Siberia?

    International Nuclear Information System (INIS)

    Popova, L.

    2006-01-01

    Safe and environmentally sound management of nuclear waste and spent fuel is an unresolved problem of nuclear power. But unlike other nuclear nations, Russia has much more problems with nuclear waste. Russia inherited these problems from the military programs and decades of nuclear fuel cycle development. Nuclear waste continue to mount, while the government does not pay serious enough attention to the solution of the waste problem and considers to increase the capacity of nuclear power plants (NPPs). There are more than 1000 nuclear waste storages in Russia.1 More than 70 million tons of the solid waste has been accumulated by the year 2005, including 14 million tons of tails of the decommissioned uranium mine in the North Caucasus. President Putin said that ''infrastructure of the waste processing is extremely insufficient''. (orig.)

  18. Program SYVAC, for stochastic assessment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Sherman, G.R.; Hoffman, K.J.; Donahue, D.C.

    1985-01-01

    In this paper, the computer program SYVAC, used to assess concepts for the disposal of nuclear fuel waste, is described with regard to the development approach, the basic program structure, and quality assurance. The interrelationships of these aspects are illustrated by detailed descriptions of two concepts of fundamental importance to the program: the method of selecting parameter values from input probability density functions, and the numerical evaluation of the convolution integral. Quality assurance procedures, including different types of comparisons and peer review, are presented

  19. Environmental impact assessment and socio political issues of nuclear waste management; Ydinjaetehuollon ympaeristoevaikutusten arviointi ja sosiopoliittiset kysymykset

    Energy Technology Data Exchange (ETDEWEB)

    Harmaajaervi, I; Tolsa, H [VTT Communities and Infrastructure, Espoo (Finland). Urban Planning; Vuori, S [VTT Energy, Espoo (Finland). Nuclear Energy; Litmanen, T [Jyvaeskylae Univ. (Finland)

    1997-09-01

    The study is a part of the Publicly Administrated Nuclear Waste Management Research Programme (JYT2) which was carried out in 1994-1996. The principal goal of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management in order to support the various activities of the authorities. The main emphasis of the research programme focuses on the disposal of spent fuel. In addition to nuclear waste research in the field of natural sciences and technology, the research program- me has focused mostly on societal issues associated with nuclear waste disposal facilities and on the non-radiological environmental effects in the environs of the disposal site. Some of the local effects are already revealed in the research phase, before any final decisions are made as to the selection of the disposal site. The study has focused primarily on local and regional issues. The statutory requirement to conduct environ- mental impact assessment (EIA) chiefly concerns those who are responsible for waste management, but the authorities also need to acquire systematic information in the field to support developing requirements for the content and scope of EIA procedure and preparedness to check the assessments made. This is a report of the first parts of the study in 1994-1995. The report deals with the subject matter generally based on earlier studies in Finland and other countries. The results of the study will be reported later. 101 refs.

  20. Development of performance assessment methodology for nuclear waste isolation in geologic media

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Cranwell, R.M.; Davis, P.A.

    1986-01-01

    The analysis of the processes involved in the burial of nuclear wastes can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the US Nuclear Regulatory Commission

  1. Nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The Koeberg nuclear power station, planned to come on stream in 1984, is expected to save South Africa some six million t/annum of coal, and to contribute some 10 per cent of the country's electricity requirements. The use of nuclear energy will provide for growing national energy needs, and reduce high coal transport costs for power generation at the coast. In the long term, however, it gives rise to the controversial question of nuclear waste storage. The Atomic Energy Corporation of South Africa Ltd (AEC) recently announced the purchase of a site in Namaqualand (NW Cape) for the storage of low-level radioactive waste. The Nuclear Development Corporation of South Africa (Pty) Ltd, (NUCOR) will develop and operate the site. The South African Mining and Engineering Journal interviewed Dr P.D. Toens, manager of the Geology Department and Mr P.E. Moore, project engineer, on the subject of nuclear waste, the reasons behind Nucor's choice of site and the storage method

  2. Nuclear Waste Fund fee adequacy: an assessment. Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1985-02-01

    The principal recommendation of this year's analysis is that the ongoing disposal fee should remain at 1.0 mill per kilowatt-hour (kWh) for 1985, based on the following findings: The current 1.0 mill per kWh fee is projected to produce revenues sufficient to offset estimated total system life-cycle costs for a reasonable range of program cost, nuclear generation, and economic environment forecases, as detailed later in this report. For the near term, program indebtedness due to 1983 appropriations cannot be repaid until payment of a substantial fraction of the utilities' $2.3 billion debt from the one-time fee is received. Many of the cost and revenue forecasts analyzed, particularly those for the US Energy Information Administration's (EIA) Mid Case generation forecast, show margins of revenues over costs. Future program cost increases due to general inflation or real price increases could be recovered by indexing the fee to the inflation rate or another cost index. These findings are based on a cash flow analysis that utilized methods very similar to those employed in previous fee adequacy studies. Refinements were made in the areas of system logistics, repository acceptance schedules, repository operating profiles, real interest rates, and treatment of real cost increases. Nuclear wastes produced from defense activities are not considered quantitatively in this report. Preliminary analyses have indicated that economies of co-emplacing defense and civilian wastes could be beneficial to both, but methods of allocating common costs appropriately will not be recommended until cost impacts have been determined more accurately

  3. Public attitudes regarding nuclear wastes

    International Nuclear Information System (INIS)

    Rankin, W.L.

    1978-01-01

    This paper traces the history of public attitudes regarding nuclear waste issues. A majority of the public has recently developed the attitude that nuclear wastes are a serious problem, and a small percentage of the public opposes nuclear power mainly because of nuclear waste issues. However, a majority of the public has confidence in the ability of technologists to solve the problems associated with nuclear waste disposal. Finally, the attitudes of nuclear technologists regarding waste disposal differed greatly from the attitudes of other groups, especially environmentalists

  4. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    International Nuclear Information System (INIS)

    Dahl, Megan M.; Pikas, Joseph; Edgemon, Glenn L.; Philo, Sarah

    2013-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines

  5. America's nuclear waste backlog

    International Nuclear Information System (INIS)

    Benenson, R.

    1981-01-01

    This report discusses three topics: concern and controversy relating to nuclear waste; high-level waste storage and politics of waste disposal. The most pressing waste disposal problem concerns spent fuel assemblies from commercial nuclear power plants. It was expected that commercial spent fuel would be sent to commercial reprocessing plants. The feasibility of commercial reprocessing in the United States is contingent on the expansion of the nuclear power industry. The current high-level liquid waste inventory is about 77 million gallons. These are stored at Richland, Washington; Aiken, South Carolina; and Idaho Falls, Idaho. The only commercial high-level wastes ever produced are stored at the defunct reprocessing facility at West Valley, New York. A high-level waste repository must be capable of isolating wastes that will remain dangerous for thousands of years. Salt has long been considered the most suitable medium for high-level and transuranic waste disposal. The timetable for opening a deep geological repository is one of the issues that will have to be dealt with by Congress. The 97th Congress appears ready to act on high-level nuclear waste legislation. Even opponents of nuclear expansion admit the necessity of legislation. Even if Congress gets its act together, it does not mean that the nuclear waste issue is gone. There are still unknowns - future of reprocessing, the needs and demands of the military; the health of the nuclear power industry; the objections of residents in potential site areas; the possibility of a state veto, and the unsolved technological problems in geologic site selection

  6. Nuclear waste landscapes

    International Nuclear Information System (INIS)

    Solomon, B.D.; Cameron, D.M.

    1990-01-01

    In this paper the authors explore the time dimension in nuclear waste disposal, with the hope of untangling future land use issues for a full range of radioactive waste facilities. The longevity and hazards presented by nuclear reactor irradiated (spent) fuel and liquid reprocessing waste are well known. Final repositories for these highly radioactive wastes, to be opened early in the 21st Century, are to be located deep underground in rural locations throughout the developed world. Safety concerns are addressed by engineered and geological barriers containing the waste containers, as well as through geographic isolation from heavily populated areas. Yet nuclear power plants (as well as other applications of atomic energy) produce an abundance of other types of radioactive wastes. These materials are generally known as low level wastes (LLW) in the United States, though their level of longevity and radioactivity can vary dramatically

  7. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  8. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  9. Development of performance assessment methodology for nuclear waste isolation in geologic media

    Science.gov (United States)

    Bonano, E. J.; Chu, M. S. Y.; Cranwell, R. M.; Davis, P. A.

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are ground-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the U.S. Nuclear Regulatory Commission.

  10. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  11. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  12. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D. (eds.)

    2016-07-01

    secondary phases for the long-term safety assessment is one of the major research topics in the institute. The fundamental understanding of a long-standing open issue regarding the thermodynamics of radium-barium-sulfate solid solutions and its applicability in long-term safety assessments for nuclear waste disposal could be resolved. This was achieved by a novel approach combining atomistic simulations, radiochemical batch-type laboratory experiments and modern analytical techniques supported by thermodynamic modelling allowing a reliable description of Ra solubility control by a (Ba,Ra)SO{sub 4} solid solution. This research is supported by the Swedish waste management agency SKB. (2) A major step forward was achieved regarding the prediction of actinide- and lanthanide-bearing materials properties by atomistic simulations. Performance tests of the DFT+U method for calculations of f-element-bearing systems (the Hubbard U parameter derived from first principle methods) showed that this method, in contrast to standard DFT, results in exceptionally good predictions of the formation and reaction enthalpies as well as the structures of lanthanide- and actinide-bearing materials. (3) The actinide solid state chemistry group has been very active in recent years to unravel the crystal structure of actinide containing oxo-salts. From the 1101 new crystal structure entries in the ICSD crystal structure database between 2005 and 2012, Prof. Evgeny Alekseev has contributed to 98 entries (almost 10%).

  13. Institute of Energy and Climate Research IEK-6. Nuclear waste management report 2013/2014. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Neumeier, S.; Klinkenberg, M.; Bosbach, D.

    2016-01-01

    secondary phases for the long-term safety assessment is one of the major research topics in the institute. The fundamental understanding of a long-standing open issue regarding the thermodynamics of radium-barium-sulfate solid solutions and its applicability in long-term safety assessments for nuclear waste disposal could be resolved. This was achieved by a novel approach combining atomistic simulations, radiochemical batch-type laboratory experiments and modern analytical techniques supported by thermodynamic modelling allowing a reliable description of Ra solubility control by a (Ba,Ra)SO_4 solid solution. This research is supported by the Swedish waste management agency SKB. (2) A major step forward was achieved regarding the prediction of actinide- and lanthanide-bearing materials properties by atomistic simulations. Performance tests of the DFT+U method for calculations of f-element-bearing systems (the Hubbard U parameter derived from first principle methods) showed that this method, in contrast to standard DFT, results in exceptionally good predictions of the formation and reaction enthalpies as well as the structures of lanthanide- and actinide-bearing materials. (3) The actinide solid state chemistry group has been very active in recent years to unravel the crystal structure of actinide containing oxo-salts. From the 1101 new crystal structure entries in the ICSD crystal structure database between 2005 and 2012, Prof. Evgeny Alekseev has contributed to 98 entries (almost 10%).

  14. Nuclear waste management; La gestion des dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H.

    2008-07-01

    The author gives an overview of the main issues related to the use of nuclear energy: the management and the environmental impact of wastes. After having outlined the different radiological consequences of different radionuclides, he proposes an approximate assessment of waste production which may depend on reactor technology, and which needs a distinction between low level, intermediate level, and high level wastes. He discusses the differences between primary energies and final energies, and how to consider nuclear energy and its wastes within this classification. Then, considering the deep geological storage, he describes how contamination may occur and the risks for the population as well as for the environment. After having evoked the use of breeder reactors and its separation-transmutation issues, the author briefly comments the nuclear waste financing issue

  15. Thermochemical modeling of nuclear waste glass

    International Nuclear Information System (INIS)

    Spear, K.E.; Besmann, T.M.; Beahm, E.C.

    1998-06-01

    The development of assessed and consistent phase equilibria and thermodynamic data for major glass constituents used to incorporate high-level nuclear waste is discussed in this paper. The initial research has included the binary Na 2 O-SiO 2 , Na 2 O-Al 2 O 3 , and SiO 2 -Al 2 O 3 systems. The nuclear waste glass is assumed to be a supercooled liquid containing the constituents in the glass at temperatures of interest for nuclear waste storage. Thermodynamic data for the liquid solutions were derived from mathematical comparisons of phase diagram information and the thermodynamic data available for crystalline solid phases. An associate model is used to describe the liquid solution phases. Utilizing phase diagram information provides very stringent limits on the relative thermodynamic stabilities of all phases which exist in a given system

  16. Plan for spent fuel waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Shaw, H.F.

    1987-11-01

    The purpose of spent fuel waste form testing is to determine the rate of release of radionuclides from failed disposal containers holding spent fuel, under conditions appropriate to the Nevada Nuclear Waste Storage Investigations (NNWSI) Project tuff repository. The information gathered in the activities discussed in this document will be used: to assess the performance of the waste package and engineered barrier system (EBS) with respect to the containment and release rate requirements of the Nuclear Regulatory Commission, as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate the cumulative releases to the accessible environment over 10,000 years to determine compliance with the Environmental Protection Agency, and as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate cumulative releases over 100,000 years as required by the site evaluation process specified in the DOE siting guidelines. 34 refs

  17. Nuclear wastes: lets talk about

    International Nuclear Information System (INIS)

    1995-01-01

    This colloquium is entirely devoted to the problem of nuclear wastes management and to the anxiety of the French public opinion with respect to radioactive wastes in general. Nuclear wastes, generally are perceived as the unique problem of nuclear industry and as a new and unknown problem for which no solutions have been proposed so far. The aim of this colloquium is to demonstrate that such solutions exist and that, probably, they have been more thoroughly examined than in other industrial sectors. The two first talks give the inventory of possible solutions and the policy followed by nuclear operators for the conditioning and packaging of radioactive wastes. The other talks give the point of view of the producers and of the managers of nuclear wastes and the legal aspects of the management and storage of nuclear wastes, in particular the December 30, 1991 law. A particular attention is given to the importance of communication and public information in the successful management of nuclear wastes. (J.S.)

  18. NUCLEAR WASTE state-of-the-art reports 2004

    International Nuclear Information System (INIS)

    2004-01-01

    The report is organized in three parts. First part: 'The nuclear waste question in international and Swedish perspective' takes up questions about how the handling of nuclear waste is organized. This part starts with an international overview of nuclear waste handling in several countries. The overview gives a hint about how countries look for solutions that are judged to be appropriate in the own country. The overview shows clearly that the responsibility for the nuclear waste includes both private and public operators, in varying degrees from country to country. A detailed review is presented of the Swedish process in the chapter 'The municipalities - major stakeholders in the nuclear waste issue'. In the light of the the international overview it is shown that great efforts are spent in order to reach mutual understanding and agreement at the local basis in the Swedish consultation procedure. Part two 'To handle nuclear waste risks: An overview over methods, problems and possibilities' contains an overview of our knowledge in estimating and handling risks and about methods to produce data for assessments associated with the disposal of nuclear waste from a scientific perspective. This part first presents two geoscientific methods that are used to calculate stability and hydraulic conductivity of the bedrock. In the chapter 'Fractioning of different isotopes' the possibility to consider properties of different isotopes for estimation of transport velocities of radioactive substances is discussed, for a repository for spent nuclear fuel or other radioactive wastes. In the chapter 'Copper canisters - production, sealing, durability' an overview is given of the methods used for manufacture and control of those copper canisters that constitute one of the protective barriers around the waste at geologic disposal according to the KBS-3-method. In the last chapter, an experiment to compare classification of radioactive wastes and chemical wastes, is discussed. 'The

  19. Radioactive wastes of Nuclear Industry

    International Nuclear Information System (INIS)

    1995-01-01

    This conference studies the radioactive waste of nuclear industry. Nine articles and presentations are exposed here; the action of the direction of nuclear installations safety, the improvement of industrial proceedings to reduce the waste volume, the packaging of radioactive waste, the safety of radioactive waste disposal and environmental impact studies, a presentation of waste coming from nuclear power plants, the new waste management policy, the international panorama of radioactive waste management, the international transport of radioactive waste, finally an economic analysis of the treatment and ultimate storage of radioactive waste. (N.C.)

  20. Defence nuclear waste disposal in Russia. International perspective

    International Nuclear Information System (INIS)

    Stenhouse, M.J.; Kirko, V.I.

    1998-01-01

    Significant amounts of liquid and solid radioactive waste have been generated in Russia during the production of nuclear weapons, and there is an urgent need to find suitable ways to manage these wastes in a way that protects both the current population and future generations. This book contains contributions from pure and applied scientists and other representatives from Europe, North America, and Russia, who are, or have been, actively involved in the field of radioactive waste management and disposal. First-hand experience of specific problems associated with defence-related wastes in the USA and the Russian Federation is presented, and current plans are described for the disposal of solid wastes arising from civilian nuclear power production programmes in other countries, including Belgium, Bulgaria, Canada, Germany and the UK. The book provides a good insight into ongoing research at local and national level within Russia, devoted to the safe disposal of defence-related radioactive waste. It also demonstrates how existing expertise and technology from civilian nuclear waste management programmes can be applied to solving the problems created by nuclear defence programmes. Contributions address methods of immobilisation, site selection methodology, site characterisation techniques and data interpretation, the key elements of safety/performance assessments of planned deep (geological) repositories for radioactive waste, and radionuclide transport modelling. Concerns associated with certain specific nuclear waste disposal concepts and repository sites are also presented. refs

  1. Answers to your questions on high-level nuclear waste

    International Nuclear Information System (INIS)

    1987-11-01

    This booklet contains answers to frequently asked questions about high-level nuclear wastes. Written for the layperson, the document contains basic information on the hazards of radiation, the Nuclear Waste Management Program, the proposed geologic repository, the proposed monitored retrievable storage facility, risk assessment, and public participation in the program

  2. Proceedings of the symposium on Scientific Basis for Nuclear Waste Management XXX

    International Nuclear Information System (INIS)

    Dunn, Darrell; Poinssot, Christophe; Begg, Bruce

    2007-01-01

    Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complex issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation

  3. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  4. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  5. Nuclear waste for NT

    International Nuclear Information System (INIS)

    Nelson, Brendan

    2005-01-01

    The Northern Territory may be powerless to block the dumping of low-level nuclear waste in the Territory under legislation introduced into Parliament by Minister for Education Science and Training, Dr Brendan Nelson, in October. Despite strong opposition to the dumping of nuclear waste in the NT, the Australian Government will be able to send waste to one of the three nominated Commonwealth-owned Defence sites within the NT under the Commonwealth Radioactive Waste Management Bill 2005 and the Commonwealth Radioactive Waste Management (Related Amendment) Bill 2005. The Bills veto recently drafted NT legislation designed to scuttle the plans. Low-level nuclear waste is stored at more than 100 sites around Australia, including hospitals, factories, universities and defence facilities. Medical isotopes produced at Lucas Heights and provided for medical procedures are the source of much of this waste, including some 16 cubic metres currently held at Darwin Hospital. Dr Nelson stressed that the Government would take all die necessary steps to comply with safety and regulatory precautions, including handling waste in line with relevant environmental, nuclear safety and proliferation safeguards

  6. Waste minimization assessment procedure

    International Nuclear Information System (INIS)

    Kellythorne, L.L.

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative

  7. Development of performance assessment methodology for nuclear waste isolation in geologic media

    International Nuclear Information System (INIS)

    Bonano, E.J.; Chu, M.S.Y.; Cranwell, R.M.; Davis, P.A.

    1985-01-01

    The burial of nuclear wastes in deep geologic formations as a means for their disposal is an issue of significant technical and social impact. The analysis of the processes involved can be performed only with reliable mathematical models and computer codes as opposed to conducting experiments because the time scales associated are on the order of tens of thousands of years. These analyses are concerned primarily with the migration of radioactive contaminants from the repository to the environment accessible to humans. Modeling of this phenomenon depends on a large number of other phenomena taking place in the geologic porous and/or fractured medium. These are gound-water flow, physicochemical interactions of the contaminants with the rock, heat transfer, and mass transport. Once the radionuclides have reached the accessible environment, the pathways to humans and health effects are estimated. A performance assessment methodology for a potential high-level waste repository emplaced in a basalt formation has been developed for the US Nuclear Regulatory Commission. The approach followed consists of a description of the overall system (waste, facility, and site), scenario selection and screening, consequence modeling (source term, ground-water flow, radionuclide transport, biosphere transport, and health effects), and uncertainty and sensitivity analysis

  8. Nuclear wastes, a questionnaire

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Questionnaire giving basic information for the public on nuclear wastes and radioactive waste management. Risk and regulations to reduce the risk to permissible limits are more particularly developed. A survey of radioactive wastes is made along the fuel cycle: production, processing, transport, disposal to end on effect of waste management on the cost of nuclear kWh [fr

  9. Preliminary risk benefit assessment for nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  10. Comparative assessment of the environmental impact of wastes from electricity generation systems

    International Nuclear Information System (INIS)

    Torres, C.; Smith, G.M.; Linsley, G.; Hossain, S.

    1994-01-01

    The paper describes an outline methodology for assessing and comparing the environmental impact arising from management of the wastes from nuclear and other electricity generation systems. The assessment framework is applicable to wastes from all generation systems, including nuclear, fossil and renewable fuel systems, and can also be applied to the management of mixed hazardous waste. The major energy technologies in terms of waste production can be classified according to three major categories of fuels: fossil, nuclear and renewable. The emphasis in this description is on nuclear utility low-level and mixed wastes and waste streams. The methodology may be used to support the project on Data Bases and Methodologies for Comparative Assessment of Different Energy Sources for Electricity Generation (DECADES project, (2)) which is being developed by the International Atomic Energy Agency in collaboration with other international agencies. The DECADES project has the overall objective to improve the abilities for comparative assessment of energy chains for electricity generation. The objective of a methodology such as that described here is to ensure that waste management aspects are included effectively in comparative assessments of energy systems. This paper discusses the waste strams arising from nuclear power plants

  11. Waste degradation and mobilization in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Stockman, Christine T.

    2014-01-01

    This paper summarizes modeling of waste degradation and mobilization in performance assessments (PAs) conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. As understanding of the Yucca Mountain disposal system increased, the waste degradation module, or succinctly called the source-term, evolved from initial assumptions in 1984 to results based on process modeling in 2008. In early PAs, waste degradation had significant influence on calculated behavior but as the robustness of the waste container was increased and modeling of the container degradation improved, waste degradation had much less influence in later PAs. The variation of dissolved concentrations of radionuclides progressed from simple probability distributions in early PAs to functions dependent upon water chemistry in later PAs. Also, transport modeling of radionuclides in the waste, container, and invert were added in 1995; and, colloid-facilitated transport of radionuclides was added in 1998. - Highlights: • Progression of modeling of waste degradation in performance assessments is discussed for the proposed repository at Yucca Mountain. • Progression of evaluating dissolved concentrations of radionuclides in the source-term is discussed. • Radionuclide transport modeling in the waste, container, and invert in 1995 and thereafter is discussed. • Colloid-facilitated transport in the waste, container, and invert in 1998 and thereafter is discussed

  12. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  13. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs.

  14. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    International Nuclear Information System (INIS)

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs

  15. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Rosselli, R.

    1984-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) established two separate special bank accounts: the Nuclear Waste Fund (NWF) was established to finance all of the Federal Government activities associated with the disposal of High-Level Waste (HLW) or Spent Nuclear Fuel (SNF). The Interim Storage Fund (ISF) is the financial mechanism for the provision of Federal Interim Storage capacity, not to exceed 1900 metric tons of SNF at civilian power reactors. The management of these funds is discussed. Since the two funds are identical in features and the ISF has not yet been activated, the author's remarks are confined to the Nuclear Waste Fund. Three points discussed include legislative features, current status, and planned activities

  16. Assessment of national systems for obtaining local siting acceptance of nuclear-waste-management facilities (1981). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    There is a rich mixture of formal and informal approaches being used in our sister nuclear democracies in their attempts to deal with the difficulties in obtaining local siting acceptance of national waste management facilities. Some of these are meeting with a degree of success not yet achieved in the US. Although this survey documents and assesses many of these approaches, the scope of the study did not include an assessment of their relevance to common problems in the US. It would appear that in addition to a periodic updating of the approaches and progress of other countries in dealing with the siting of nuclear waste facilities, an assessment of the applicability of the more successful of these approaches to the US political system could make good use of the information developed in the preparation of this report

  17. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  18. Vault submodel for the second interim assessment of the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    LeNeveu, D.M.

    1986-02-01

    The consequences to man and the environment of the disposal of nuclear fuel waste are being studied within the Canadian Nuclear Fuel Waste Management Program. The concept being assessed is that of a sealed disposal vault at a depth of 1000 m in plutonic rock in the Canadian Shield. To determine the consequences, the vault and its environment are simulated using a SYstem Variability Analysis Code (SYVAC), a stochastic model of the disposal system. SYVAC contains three submodels that represent the three major parts of the disposal system: the vault, the geosphere and the biosphere. This report documents the conceptual and mathematical framework of the vault submodel

  19. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  20. Nuclear waste management. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  1. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  2. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  3. Use of comparative assessment framework for comparison of geological nuclear waste and CO2 disposal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia

    2010-09-15

    Comparative assessment of few future energy and climate change mitigation options for Lithuania in 2020 performed indicated that nuclear and combined cycle gas turbine technologies are very similar energy options in terms of costs taking into account GHG emission reduction costs. Comparative assessment of these energy options requires evaluation of the potentials and costs for geological CO2 and nuclear waste storage as the main uncertainties in comparative assessment of electricity generation technologies are related with these back-end technologies. The paper analyses the main characteristics of possible geological storage of CO2 and NW options in Lithuania.

  4. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  5. Nuclear wastes: overview

    International Nuclear Information System (INIS)

    Billard, Isabelle

    2006-01-01

    Nuclear wastes are a major concern for all countries dealing with civil nuclear energy, whatever these countries have decided yet about reprocessing/storage options. In this chapter, a (exact) definition of a (radioactive) waste is given, together with definitions of waste classes and their characteristics (volumes, types etc.). The various options that are currently experienced in the world will be presented but focus will be put on the French case. Envision evolutions will be briefly presented. (author)

  6. Disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  7. Nuclear waste: the political realities

    International Nuclear Information System (INIS)

    Arnott, D.

    1983-01-01

    The land dumping of nuclear waste has again come to the attention of anti-nuclear groups, environmentalists and the media, following the announcement of the proposed sites for intermediate-level nuclear waste at Billingham and Bedford. Opposition has already surfaced on a large scale, with public meetings in both areas and a revitalisation of the waste dumping network. This article explains some of the political realities in the nuclear debate, and suggests how we can tackle the issue of waste dumping, remembering that, even if the industry closes tomorrow, there are vast quantities of waste which must be safely and democratically dealt with. (author)

  8. Nuclear waste - perceptions and realities

    International Nuclear Information System (INIS)

    Wilkinson, D.

    1984-01-01

    This paper discusses the complex scientific, sociological, political and emotive aspects of nuclear waste. The public perception of the hazards and risks, to present and future generations, in the management of nuclear wastes are highlighted. The cost of nuclear waste management to socially acceptable and technically achievable standards is discussed. (UK)

  9. Risk assessment of natural disasters in the course of selection of nuclear waste disposal

    International Nuclear Information System (INIS)

    Wu Weicheng; Ai Guigen

    1995-01-01

    Natural disasters are calamities which bring about enormous damage to human beings and their accommodations and equipment. Based on the research of disaster risk and example study of volcanism, we tried to carry out the risk assessment of natural disasters which potentially occur in the candidate area of nuclear waste disposal by three steps of analyses, defining the most frequent occurring area of disasters, determining the parameters of risk assessment and dividing the most dangerous site and risk grades

  10. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  11. Public values associated with nuclear waste disposal

    International Nuclear Information System (INIS)

    Maynard, W.S.; Nealey, S.M.; Hebert, J.A.; Lindell, M.K.

    1976-06-01

    This report presents the major findings from a study designed to assess public attitudes and values associated with nuclear waste disposal. The first objective was to obtain from selected individuals and organizations value and attitude information which would be useful to decision-makers charged with deciding the ultimate disposal of radioactive waste materials. A second research objective was to obtain information that could be structured and quantified for integration with technical data in a computer-assisted decision model. The third general objective of this research was to test several attitude-value measurement procedures for their relevance and applicability to nuclear waste disposal. The results presented in this report are based on questionnaire responses from 465 study participants

  12. Performance assessment of nuclear waste isolation systems

    International Nuclear Information System (INIS)

    Lee, W.L.

    1984-01-01

    A number of concepts have been proposed for the isolation of highly radioactive wastes, and it will be necessary to demonstrate the safety of such systems. In many countries including the U.S., the waste isolation system of choice is deep mined geologic repositories. Because of the complex nature of the multiple isolation barriers afforded by mined geologic disposal systems, and the long isolation periods involved, this demonstration can only be indirect. In recent years this indirect demonstration, mostly through mathematical modeling, is called performance assessment. Performance Assessment can be defined to mean the development, testing, and application of a series of mathematical models and computer codes which traces the movement of radionuclides from a waste isolation system to the biosphere and any resultant dose to man. In modeling such a repository system, it is often convenient to divide it into a number of subsystems, there may be several different processes that need to be modeled, individually and interactively. For instance, this waste package will probably consist of a waste form such as borosilicate glass containing the radioisotopes, a canister, an overpack material such as steel or copper, and a buffer material such as bentonite. The processes to be modeled at the waste package scale include radioisotope inventory and decay, thermal radiation, radiolysis effects, corrosion, leading and fluid flow. In tracing radionuclide transport through rock, the processes of importance are probably groundwater flow, and sorption and retardation of radionuclide movement

  13. Radioactivity and nuclear waste

    International Nuclear Information System (INIS)

    Saas, A.

    1996-01-01

    Radioactive wastes generated by nuclear activities must be reprocessed using specific treatments before packaging, storage and disposal. This digest paper gives first a classification of radioactive wastes according to their radionuclides content activity and half-life, and the amount of wastes from the different categories generated each year by the different industries. Then, the radiotoxicity of nuclear wastes is evaluated according to the reprocessing treatments used and to their environmental management (surface storage or burial). (J.S.)

  14. Nuclear waste management

    International Nuclear Information System (INIS)

    1982-12-01

    The subject is discussed, with special reference to the UK, under the headings: radiation; origins of the waste (mainly from nuclear power programme; gas, liquid, solid; various levels of activity); dealing with waste (methods of processing, storage, disposal); high-active waste (storage, vitrification, study of means of eventual disposal); waste management (UK organisation to manage low and intermediate level waste). (U.K.)

  15. Nuclear Waste and Ethics

    International Nuclear Information System (INIS)

    Damveld, Herman

    2003-01-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible

  16. Nuclear Waste and Ethics

    Energy Technology Data Exchange (ETDEWEB)

    Damveld, Herman [Groningen (Netherlands)

    2003-10-01

    In the past years in almost all conferences on storage of nuclear waste, ethics has been considered as an important theme. But what is ethics? We will first give a sketch of this branch of philosophy. We will then give a short explanation of the three principal ethical theories. In the discussion about storage of nuclear waste, the ethical theory of utilitarianism is often implicitly invoked. In this system future generations weigh less heavily than the present generation, so that people of the future are not considered as much as those now living. We reject this form of reasoning. The discussion about nuclear waste is also sometimes pursued from ethical points of departure such as equality and justice. But many loose ends remain in these arguments, which gives rise to the question of whether the production and storage of nuclear waste is responsible.

  17. World Nuclear Association position statement: Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, Sylvain

    2006-01-01

    This WNA Position Statement summarises the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The paper's conclusion is that the safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating

  18. Nuclear waste management. Quarterly progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  19. Agency for Nuclear Projects/Nuclear Waste Project Office final progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) was formally established by Executive Policy in 1983 following passage of the federal Nuclear Waste Policy Act of 1982 (Act). That Act provides for the systematic siting, construction, operation, and closure of high-level radioactive defense and research by-products and other forms of high-level radioactive waste from around the country which will be stored at such repositories. In 1985 the Nevada legislature formally established the NWPO as a distinct and statutorily authorized agency to provide support to the Governor and State Legislature on matters concerning the high-level nuclear waste programs. The NWPO utilized a small, central staff supplemented by contractual services for needed technical and specialized expertise in order to provide high quality oversight and monitoring of federal activities, to conduct necessary independent studies, and to avoid unnecessary duplication of efforts. This report summarizes the results of this ongoing program to ensure that risks to the environment and to human safety are minimized. It includes findings in the areas of hydrogeology, geology, quality assurance activities, repository engineering, legislature participation, socioeconomic affects, risk assessments, monitoring programs, public information dissemination, and transportation activities. The bulk of the reporting deals with the Yucca Mountain facility

  20. Materials aspects of nuclear waste isolation

    International Nuclear Information System (INIS)

    Bennett, J.W.

    1984-01-01

    This paper is intended to provide an overview of the nuclear waste repository performance requirements and the roles which we expect materials to play in meeting these requirements. The objective of the U.S. Dept. of Energy's (DOE) program is to provide for the safe, permanent isolation of high-level radioactive wastes from the public. The Nuclear Waste Policy Act of 1982 (the Act) provides the mandate to accomplish this objective by establishing a program timetable, a schedule of procedures to be followed, and program funding (1 mil/kwhr for all nuclear generated electricity). The centerpiece of this plan is the design and operation of a mined geologic repository system for the permanent isolation of radioactive wastes. A nuclear waste repository contains several thousand acres of tunnels and drifts into which the nuclear waste will be emplaced, and several hundred acres for the facilities on the surface in which the waste is received, handled, and prepared for movement underground. With the exception of the nuclear material-related facilities, a repository is similar to a standard mining operation. The difference comes in what a repository is supposed to do - to contain an isolate nuclear waste from man and the environment

  1. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    Energy Technology Data Exchange (ETDEWEB)

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory (Raytheon Ktech, Albuquerque, NM)

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems

  2. A reaction-transport model and its application to performance assessment of nuclear waste disposal

    International Nuclear Information System (INIS)

    Chen, Y.; McGrail, B.P.; Engel, D.W.

    1996-01-01

    One important issue in assessing the performance of a geological repository for nuclear waste disposal is to project the migration behaviour of radionuclides in subsurface environments over long time scales of 10,000 years or even longer. Obviously such projections cannot be achieved by laboratory measurements alone. Instead, scientists must rely on sophisticated predictive models that are built on a sound physico-chemical basis. The most important processes affecting the migration of radionuclides are usually classified into two types: 1) transport processes, including advection, diffusion and dispersion and 2) chemical reactions, including corrosion of waste forms and waste packages, precipitation of secondary phases, adsorption of radionuclides on the surface of solids, aqueous complexation etc. Typically the migration behaviour of radionuclides in geologic environments has been simulated by two types of models, hydrogeological and geochemical

  3. Status of nuclear waste management

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1980-01-01

    This paper discusses what nuclear waste is and where it comes from, what the technical strategies are for disposing of this waste, compares the toxicity of nuclear waste to other materials that are more familiar to us, and finally, comments on why it is taking so long to get on with the job of isolating nuclear waste permanently. The author believes that the technical solutions for the management and disposal of high-level and low-level nuclear waste are adequately in hand. The issues that are delaying the implementation of this technology are almost entirely related to sociological and political considerations. High-level nuclear waste can be safely stored and isolated through a multiple barrier approach. Although it is a hazardous material and must be handled properly, its toxicity diminishes rapidly. It then becomes less hazardous than other materials that we deal with everyday in routine industrial or household operations. The disposal of low-level waste has not attracted as much public attention as high-level waste management. Nevertheless, it is just as important to the public. For example, the use of radioactive isotopes in medicine, and the many lives that are saved as a result, would be very greatly reduced if medical institutions had no place to dispose of their radioactive waste. The management of uranium mill tailings is similar in many technical aspects to low-level waste management. Institutional issues, however, have not become as important in the case of mill tailings disposal

  4. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The article cites and summarizes the papers on the topics: economic and ecological importance of waste management, reprocessing of nuclear fuel and recycling of uranium and plutonium, waste management and final storage, transports and organizational aspects of waste management, presented at this symposium. (HR/AK) [de

  5. Ten questions on nuclear wastes

    International Nuclear Information System (INIS)

    Guillaumont, R.; Bacher, P.

    2004-01-01

    The authors give explanations and answers to ten issues related to nuclear wastes: when a radioactive material becomes a waste, how radioactive wastes are classified and particularly nuclear wastes in France, what are the risks associated with radioactive wastes, whether the present management of radioactive wastes is well controlled in France, which wastes are raising actual problems and what are the solutions, whether amounts and radio-toxicity of wastes can be reduced, whether all long life radionuclides or part of them can be transmuted, whether geologic storage of final wastes is inescapable, whether radioactive material can be warehoused over long durations, and how the information on radioactive waste management is organised

  6. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories

  7. Nuclear waste - the unsolved problem

    International Nuclear Information System (INIS)

    Boyle, S.

    1986-01-01

    Nuclear waste is identified and the problems created by reprocessing are mentioned. The disposal option for low, intermediate and high-level radioactive wastes are discussed. Sites where disposal has taken place have been found to be unsatisfactory because of contamination and radionuclide migration. The Nuclear Industry Radioactive Waste Executive (NIREX) is not seen as having any more credibility than the other nuclear authorities involved (BNFL, UKAEA, CEGB). Until an adequate, publically acceptable, method of disposing of the wastes already created has been found the author states that no more should be created. (U.K.)

  8. The disposal of Canada's nuclear fuel waste: postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Goodwin, B.W.; McConnell, D.B.; Andres, T.H.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste is based on a vault located deep in plutonic rock of the Canadian Shield. We document in this report a method to assess the long-term impacts of a disposal facility for nuclear fuel waste. The assessment integrates relevant information from engineering design studies, site investigations, laboratory studies, expert judgment and detailed mathematical analyses to evaluate system performance in terms of safety criteria, guidelines and standards. The method includes the use of quantitative tools such as the Systems Variability Analysis computer Code (SYVAC) to deal with parameter uncertainty and the use of reasoned arguments based on well-established scientific principles. We also document the utility of the method by describing its application to a hypothetical implementation of the concept called the reference disposal system. The reference disposal system generally conforms to the overall characteristics of the concept, except we have made some specific site and design choices so that the assessment would be more realistic. To make the reference system more representative of a real system, we have used the geological observations of the AECL's Whiteshell Research Area located near Lac du Bonnet, Manitoba, to define the characteristics of the geosphere and the groundwater flow system. This research area has been subject to more than a decade of geological and hydrological studies. The analysis of the reference disposal system provides estimates of radiological and chemical toxicity impacts on members of a critical group and estimates of possible impacts on the environment. The latter impacts include estimates of radiation dose to nonhuman organisms. Other quantitative analyses examine the use of derived constraints to improve the margin of safety, the effectiveness of engineered and natural barriers, and the sensitivity of the results to influential features, events, and processes of the reference disposal

  9. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  10. SUMO, System performance assessment for a high-level nuclear waste repository: Mathematical models

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Miley, T.B.; Engel, D.W.; Chamberlain, P.J. II.

    1992-09-01

    Following completion of the preliminary risk assessment of the potential Yucca Mountain Site by Pacific Northwest Laboratory (PNL) in 1988, the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE) requested the Performance Assessment Scientific Support (PASS) Program at PNL to develop an integrated system model and computer code that provides performance and risk assessment analysis capabilities for a potential high-level nuclear waste repository. The system model that has been developed addresses the cumulative radionuclide release criteria established by the US Environmental Protection Agency (EPA) and estimates population risks in terms of dose to humans. The system model embodied in the SUMO (System Unsaturated Model) code will also allow benchmarking of other models being developed for the Yucca Mountain Project. The system model has three natural divisions: (1) source term, (2) far-field transport, and (3) dose to humans. This document gives a detailed description of the mathematics of each of these three divisions. Each of the governing equations employed is based on modeling assumptions that are widely accepted within the scientific community

  11. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rummery, T.E.; Rosinger, E.L.J.

    1984-12-01

    The Canadian Nuclear Fuel Waste Management Program is in the fourth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are described. Program funding, scheduling and associated external review processes are briefly outlined

  12. Attitudes of the public about nuclear wastes

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1978-01-01

    The disposal of nuclear wastes has become an important public issue in the past few years. In 1960, only a very small percentage of the American public questioned the safety of waste disposal methods, and no one opposed nuclear power for waste disposal reasons. By 1974, however, a slight majority of the public believed that the disposal of nuclear wastes was a serious problem associated with nuclear power, and from 1975 on, a small percentage of the public has opposed nuclear power for waste disposal reasons. More individuals believe that the technology is not available for acceptable waste management compared to the number of individuals who believe that the technology does exist. However, a majority of the public believe that modern technology can solve the waste disposal problem. Finally, nuclear technologists evaluate waste disposal problems differently from other groups. For instance, nuclear technologists believe that short-term safety is more important than long-term safety regarding waste disposal, while other groups, especially environmentalists, believe that long-term safety is more important than short-term safety. Nuclear technologists are willing to accept a higher level of waste management-related risk than other groups and evaluate waste disposal problems as being less severe than other societal problems

  13. Some concepts of model uncertainty for performance assessments of nuclear waste repositories

    International Nuclear Information System (INIS)

    Eisenberg, N.A.; Sagar, B.; Wittmeyer, G.W.

    1994-01-01

    Models of the performance of nuclear waste repositories will be central to making regulatory decisions regarding the safety of such facilities. The conceptual model of repository performance is represented by mathematical relationships, which are usually implemented as one or more computer codes. A geologic system may allow many conceptual models, which are consistent with the observations. These conceptual models may or may not have the same mathematical representation. Experiences in modeling the performance of a waste repository representation. Experiences in modeling the performance of a waste repository (which is, in part, a geologic system), show that this non-uniqueness of conceptual models is a significant source of model uncertainty. At the same time, each conceptual model has its own set of parameters and usually, it is not be possible to completely separate model uncertainty from parameter uncertainty for the repository system. Issues related to the origin of model uncertainty, its relation to parameter uncertainty, and its incorporation in safety assessments are discussed from a broad regulatory perspective. An extended example in which these issues are explored numerically is also provided

  14. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  15. Limitation of the EIA Process for the assessment of nuclear fuel waste disposal in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.L.; Kuhn, R.G. [Guelph Univ., ON (Canada). Dept. of Geography

    1999-12-01

    The Canadian environmental impact assessment process for the Nuclear Fuel Waste Management and Disposal Concept was completed in 1994. Almost four years later, in February 1998, the Review Panel released its report. The viewpoints of those who participated in the assessment process is archived in the thousands of pages of hearing testimony, meeting transcripts and written briefs. One of the most contentious issues raised, and one that continues to plague management in Canada, is the debate surrounding how the problem of NFW waste management should be defined. The purpose of this paper is to critically assess the problem frame of the Canadian NFW management disposal concept EIS. This will be accomplished through an analysis of stakeholder participation and views, and through an evaluation of the range and nature of the information considered legitimate or constrained in the Canadian process.

  16. Limitation of the EIA Process for the assessment of nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Murphy, B.L.; Kuhn, R.G.

    1999-01-01

    The Canadian environmental impact assessment process for the Nuclear Fuel Waste Management and Disposal Concept was completed in 1994. Almost four years later, in February 1998, the Review Panel released its report. The viewpoints of those who participated in the assessment process is archived in the thousands of pages of hearing testimony, meeting transcripts and written briefs. One of the most contentious issues raised, and one that continues to plague management in Canada, is the debate surrounding how the problem of NFW waste management should be defined. The purpose of this paper is to critically assess the problem frame of the Canadian NFW management disposal concept EIS. This will be accomplished through an analysis of stakeholder participation and views, and through an evaluation of the range and nature of the information considered legitimate or constrained in the Canadian process

  17. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    Science.gov (United States)

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  18. Swedish nuclear waste efforts

    International Nuclear Information System (INIS)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981

  19. Nuclear Waste Fund fee adequacy: an assessment. Second annual report

    International Nuclear Information System (INIS)

    1984-07-01

    This is the second report of an annual series that evaluates whether the revenues collected from the waste disposal fees established under Section 302 of the Nuclear Waste Policy Act of 1982 (Public Law 97-425) are sufficient to offset the federal government's costs for the disposal of commercially generated spent nuclear fuel (SNF) and high-level radioactive waste. Nuclear wastes produced from defense activities are not considered in this report. The principal findings of this year's analysis are: The current 1.0 mill per kilowatt-hour (kWh) fee is projected to produce revenues sufficient to offset total system life cycle costs associated with the cases specified later in the report, assuming that the average annual rate of inflation does not exceed 2 to 3%. Higher average annual rates of inflation, or unanticipated real cost growth, would cause cumulative program costs to approach and then surpass cumulative revenues generated from the current 1.0 mill per kWh fee. Based on an analysis of different inflation rates and program cost growth projections discussed herein, indexing of the fee to correct for inflation would not need to begin until 1985, at the earliest, or perhaps as late as the year 2000. There is substantial uncertainty about both the program cost and revenue projections. However, more reliable data are expected to become available in the late 1980s as the program evolves from its present conceptual design phase to the engineering phase. Hence, any recommendation to raise the 1.0 mill per kWh fee before that time should be measured against the uncertainties that attend the present program. 4 references, 4 tables

  20. The political challenges of nuclear waste

    International Nuclear Information System (INIS)

    Andren, Mats; Strandberg, Urban

    2005-01-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review , 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'

  1. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  2. Public sector's research programme on nuclear waste management

    International Nuclear Information System (INIS)

    Vuori, S.

    2000-06-01

    According to the Finnish nuclear energy legislation, each producer of nuclear waste is responsible for the safe handling, management and disposal of the waste as well as for the arising costs. Authorities supervise and control the implementation of the national waste management programme and set the necessary safety and other requirements. In these tasks the authorities are supported by a research programme on nuclear waste management that is independent of the implementing organisations and power companies. The main objective of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into the following main topic areas: (1) Behaviour of bedrock (2) Geohydrology and geochemistry, (3) Release of radionuclides from repository and subsequent transport in bedrock, (4) Engineered safety barriers of the repository, system, (5) Performance and safety assessment of spent fuel disposal facilities, (6) Waste management technology and costs (7) Evaluation of the contents and scope of and observation of the realisation of the environmental impact assessment procedure for the siting of spent nuclear fuel disposal facility, and research on other societal and sociopolitical issues, and (8) Public information, attitude, and image issues for waste management facilities. The research programme has generated considerably increased information on the behaviour of the natural and technical release barriers of the disposal system and thereby contributed to building of confidence on the long-term safety of geological disposal of spent fuel. Furthermore, increased confidence among the public in the affected candidate municipalities has probably been achieved by the complementary studies conducted within the research programme on topics

  3. Minerals and design of new waste forms for conditioning nuclear waste

    Science.gov (United States)

    Montel, Jean-Marc

    2011-02-01

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.

  4. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  5. Risk-informed assessment of radionuclide release from dissolution of spent nuclear fuel and high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae M., E-mail: tae.ahn@nrc.gov

    2017-06-15

    Highlights: • Dissolution of HLW waste form was assessed with long-term risk informed approach. • The radionuclide release rate decreases with time from the initial release rate. • Fast release radionuclides can be dispersed with discrete container failure time. • Fast release radionuclides can be restricted by container opening area. • Dissolved radionuclides may be further sequestered by sorption or others means. - Abstract: This paper aims to detail the different parameters to be considered for use in an assessment of radionuclide release. The dissolution of spent nuclear fuel and high-level nuclear waste glass was considered for risk and performance insights in a generic disposal system for more than 100,000 years. The probabilistic performance assessment includes the waste form, container, geology, and hydrology. Based on the author’s previous extended work and data from the literature, this paper presents more detailed specific cases of (1) the time dependence of radionuclide release, (2) radionuclide release coupled with container failure (rate-limiting process), (3) radionuclide release through the opening area of the container and cladding, and (4) sequestration of radionuclides in the near field after container failure. These cases are better understood for risk and performance insights. The dissolved amount of waste form is not linear with time but is higher at first. The radionuclide release rate from waste form dissolution can be constrained by container failure time. The partial opening area of the container surface may decrease radionuclide release. Radionuclides sequestered by various chemical reactions in the near field of a failed container may become stable with time as the radiation level decreases with time.

  6. Promethean ethics and nuclear waste management

    International Nuclear Information System (INIS)

    Brown, J.B. Jr.

    1985-01-01

    The proposed safety standards for commercial nuclear waste management are examined and shown to be Promethean; that is, they are shown to be dominated by time and care for future generations. Some of the long-term environmental impact assessment methodologies being developed in commmercial waste management are examined. They are aimed at demonstrating repository isolation integrity over a 10,000-year period or 300 human generations, a truly Promethean period of examination unknown in other 20th Century technical analyses

  7. Recent Developments in Nuclear Waste Management in Canada

    International Nuclear Information System (INIS)

    King, F.

    2002-01-01

    This paper describes recent developments in the field of nuclear waste management in Canada with a focus on management of nuclear fuel waste. Of particular significance is the April 2001 tabling in the Canadian House of Commons of Bill C-27, An Act respecting the long-term management of nuclear fuel waste. At the time of finalizing this paper (January 15, 2002), Bill C-27 is in Third Reading in the House of Commons and is expected to move to the Senate in February. The Nuclear Fuel Waste Act is expected to come into force later in 2002. This Act requires the three nuclear utilities in Canada owning nuclear fuel waste to form a waste management organization and deposit funds into a segregated fund for nuclear fuel waste long-term management. The waste management organization is then required to perform a study of long-term management approaches for nuclear fuel waste and submit the study to the federal government within three years. The federal government will select an approach for implementation by the waste management organization. The paper discusses the activities that the nuclear fuel waste owners currently have underway to prepare for the formation of the waste management organization. As background, the paper reviews the status of interim storage of nuclear fuel waste in Canada, and describes previous initiatives related to the development of a national strategy for nuclear fuel waste long-term management

  8. Risk assessment and radioactive waste management

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1979-01-01

    Problems of radioactive waste management, both real and apparent, have provided a serious constraint in the development of nuclear power. Several studies have been conducted in an attempt to evaluate the actual (quantifiable) risks of radioactive waste management and place them in a reasonable perspective. These studies are reviewed and discussed. Generally, the studies indicate the risks to be of a level of seriousness which might normally be considered acceptable in current society. However, it is apparent that this acceptability has not been attained and public apprehension prevails. To understand the reasons for this apprehension requires an assessment of those factors of ''perceived'' risks which play a major role in determining public attitudes toward radioactive waste management programs and nuclear power, in general. Such factors might include the spector of legacies of harm to future generations, genetic effects, nuclear garbage dumps, proliferation of plutonium inventories, nuclear terrorism, etc. A major problem in development of acceptable waste management policies and programs requires not only the recognition of the importance of perceived risk factors but development of a methodology for their incorporation in planning and conduct of such activities. Some approaches to the development of this methodology are discussed

  9. Commercial nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Hardy, M.P.; Patricio, J.G.; Heley, W.H.

    1980-06-01

    The Basalt Waste Isolation Project (BWIP) is an ongoing research and engineering effort being conducted by Rockwell Hanford Operations (Rockwell), which is under contract to the US Department of Energy. The objectives of this program are to assess the feasibility of and to provide the technology needed to design and construct a licensed commercial nuclear waste repository in the deep basalt formations underlying the Hanford Site. An extensive preconceptual design effort was undertaken during 1979 to develop a feasible concept that could serve as a reference design for both surface and underground facilities. The preconceptual design utilized existing technology to the greatest extent possible to offer a system design that could be utilized in establishing schedule and cost baseline data, recommend alternatives that require additional study, and develop basic design requirements that would allow evolution of the design process prior to the existence of legislated criteria. This paper provides a description of the concept developed for the subsurface aspects of this nuclear waste repository

  10. Nuclear waste management

    International Nuclear Information System (INIS)

    Rodger, W.A.

    1985-01-01

    Most of our activities have always produced waste products of one sort or another. Huxley gives a humorous account of wastes throughout antiquity. So it should come as no surprise that some radioactive materials end up as waste products requiring management and disposal. Public perception of nuclear waste hazards places them much higher on the ''worry scale'' than is justified by the actual hazard involved. While the public perception of these hazards appears to revolve mostly around high-level wastes, there are several other categories of wastes that must also be controlled and managed. The major sources of radioactive wastes are discussed

  11. Nuclear waste. Storage at Vaalputs

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Vaalputs nuclear waste dump site in Namaqualand is likely to be used to store used fuel from Koeberg, as well as low and intermediate waste. It is argued that Vaalputs is the most suitable site in the world for the disposal of nuclear waste. The Vaalputs site is sparsely populated, there are no mineral deposits of any value, the agricultural potential is minimal. It is a typical semi-desert area. Geologically it lend itself towards the ground-storage of used nuclear fuel

  12. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  13. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  14. Scenario Analysis for the Safety Assessment of Nuclear Waste Repositories: A Critical Review.

    Science.gov (United States)

    Tosoni, Edoardo; Salo, Ahti; Zio, Enrico

    2018-04-01

    A major challenge in scenario analysis for the safety assessment of nuclear waste repositories pertains to the comprehensiveness of the set of scenarios selected for assessing the safety of the repository. Motivated by this challenge, we discuss the aspects of scenario analysis relevant to comprehensiveness. Specifically, we note that (1) it is necessary to make it clear why scenarios usually focus on a restricted set of features, events, and processes; (2) there is not yet consensus on the interpretation of comprehensiveness for guiding the generation of scenarios; and (3) there is a need for sound approaches to the treatment of epistemic uncertainties. © 2017 Society for Risk Analysis.

  15. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  16. Nuclear waste

    International Nuclear Information System (INIS)

    1990-01-01

    Each year, nuclear power plants, businesses, hospitals, and universities generate more than 1 million cubic feet of hardware, rags, paper, liquid waste, and protective clothing that have been contaminated with radioactivity. While most of this waste has been disposed of in facilities in Nevada, South Carolina, and Washington state, recent legislation made the states responsible - either individually, or through groups of states called compacts - for developing new disposal facilities. This paper discusses the states' progress and problems in meeting facility development milestones in the law, federal and state efforts to resolve issues related to mixed waste (low-level waste that also contains hazardous chemicals) and waste with very low levels of radioactivity, and the Department of Energy's progress in discharging the federal government's responsibility under the law to manage the most hazardous low-level waste

  17. Nuclear waste: The 10,000-year challenge

    International Nuclear Information System (INIS)

    Dolan, E.F.; Scariano, M.M.

    1993-01-01

    Treatment, storage, and disposal of nuclear waste has a long history and presents immediate issues to be resolved. This book attempts to inform a broadly based readership of the complexities of nuclear waste management by summarizing (1) physics of radioactive energy; (2) its potential health and environmental effects; and (3) the treatment, storage, and disposal options for different types of radioactive waste. However, the longest section in the book deals with DOE's plans for transportation and permanent storage of nuclear powerplant wastes under the Nuclear Waste Policy Act of 1982. The book's presentation of the problem of nuclear waste is uncritical and based primarily on dramatic anecdotes and confidently worded DOE documents

  18. Managing nuclear waste from power plants

    International Nuclear Information System (INIS)

    Keeney, R.L.; Winterfeldt, D. von

    1994-01-01

    National strategies to manage nuclear waste from commercial nuclear power plants are analyzed and compared. The current strategy is to try to operate a repository at Yucca Mountain, Nevada, to dispose storage at a centralized facility or next to nuclear power plants. If either of these is pursued now, the analysis assumes that a repository will be built in 2100 for waste not subsequently put to use. The analysis treats various uncertainties: whether a repository at Yucca Mountain would be licensed, possible theft and misuse of the waste, innovations in repository design and waste management, the potential availability of a cancer cure by 2100, and possible future uses of nuclear waste. The objectives used to compare alternatives include concerns for health and safety, environmental and socioeconomic impacts, and direct economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs to electricity ratepayers, federal government responsibility to manage nuclear waste, and implications of theft and misuse of nuclear waste. The analysis shows that currently building an underground repository at Yucca Mountain is inferior to other available strategies by the equivalent of $10,000 million to $50,000 million. This strongly suggests that this policy should be reconsidered. A more detailed analysis using the framework presented would help to define a new national policy to manage nuclear waste. 36 refs., 3 figs., 17 tabs

  19. The safety and environmental impact of nuclear wastes

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2001-01-01

    Radioactive matters were discovered in 1989. Exploitation and using of nuclear energy and nuclear technologies bring mankind huge benefits, but the disposal of radioactive wastes is becoming one of the safety and environmental problems. The author describes six issues related to nuclear wastes. They are as follows: (1) The origin and characteristics of the nuclear wastes; (2) The principles of management of nuclear wastes established by the International Atomic Energy Agency (IAEA) as well as the Chinese '40 words principles' and the major tasks of Chinese nuclear waste management; (3) The treatment and disposal technologies of nuclear wastes and the emphasis on new technologies, waste minimization and exemption and clean release; (4) The safety management of spent radiation sources including technical and administrative measures; (5) The safety management of spent nuclear fuel and the emphasis on high level radioactive wastes to be safety disposed of; (6) The environmental impact of nuclear waste. The author takes the Qinshan Nuclear Power Plant and the Daya bay Nuclear Power Plant I, China, as two examples to prove that nuclear wastes can be safely controlled and managed to ensure environmental safety. The Chinese north-west disposal land of nuclear wastes under operation recently is also discussed. It is believed that the suggested disposal land can ensure the isolation of radioactive wastes and the surrounding environment according to the present standards. The north-west disposal land and the Beilong disposal land, Guangdong province, China, are built according to the international standard and advanced technologies

  20. Case histories of EA documents for nuclear waste

    International Nuclear Information System (INIS)

    Vocke, R.W.

    1985-01-01

    Nuclear power programs and policies in the United States have been subject to environmental assessment under the National Environmental Policy Act (NEPA) since 1971. NEPA documentation prepared for programmatic policy decision-making within the nuclear fuel cycle and concurrent federal policy are examined as they relate to radioactive waste management in this paper. Key programmatic environmental impact statements that address radioactive waste management include: the Atomic Energy Commission document on management of commercial high-level and transuranium-contaminated radioactive waste, which focussed on development of engineered retrievable surface storage facilities (RSSF); the Nuclear Regulatory Commission (NRC) document on use of recycled plutonium in mixed oxide fuel in light water cooled reactors, which focussed on plutonium recycle and RSSF; the NRC statement on handling of spent light water power reactor fuel, which focussed on spent fuel storage; and the Department of Energy (DOE) statement on management of commercially generated radioactive wastes, which focussed on development of deep geologic repositories. DOE is currently pursuing the deep geologic repository option, with monitored retrievable storage as a secondary option

  1. Addressing ethical considerations about nuclear fuel waste management

    International Nuclear Information System (INIS)

    Greber, M.A.

    1996-01-01

    Ethical considerations will be important in making decisions about the long-term management of nuclear fuel waste. Public discussions of nuclear fuel waste management are dominated by questions related to values, fairness, rights and responsibilities. To address public concerns, it is important to demonstrate that ethical responsibilities associated with the current management of the waste are being fulfilled. It is also important to show that our responsibilities to future generations can be met, and that ethical principles will be applied to the implementation of disposal. Canada's nuclear fuel waste disposal concept, as put forward in an Environmental Impact Statement by Atomic Energy of Canada Limited (AECL), is currently under public review by a Federal Environmental Assessment Panel. Following this review, recommendations will be made about the direction that Canada should take for the long-term management of this waste. This paper discusses the ethical principles that are seen to apply to geological disposal and illustrates how the Canadian approach to nuclear fuel waste management can meet the challenge of fulfilling these responsibilities. The author suggests that our ethical responsibilities require that adaptable technologies to site, design, construct, operate decommission and close disposal facilities should de developed. We cannot, and should not, present future generations from exercising control over what they inherit, nor control whether they modify or even reverse today's decisions if that is what they deem to be the right thing to do. (author)

  2. The disposal of Canada's nuclear fuel waste: the vault model for postclosure assessment

    International Nuclear Information System (INIS)

    Johnson, L.H.; LeNeveu, D.M.; Shoesmith, D.W.; Oscarson, D.W.; Gray, M.N.; Lemire, R.J.; Garisto, N.C.

    1994-01-01

    The concept for disposal of Canada's nuclear fuel waste involves emplacing the waste in a vault excavated at a depth of 500 to 1000 m in plutonic rock of thc Canadian Shield. The solid waste would be isolated from the biosphere by a multibarrier system consisting of engineered barriers, including corrosion-resistant containers and clay- and cement-based sealing materials, and the natural barrier provided by the massive geological formation. The technical feasibility of this concept, and its impact on the environment and human health, is being documented in an Environmental Impact Statement (EIS) that will be submitted for review under the federal Environmental Assessment and Review Process. The present report is one of nine EIS primary references. The report describes the vault model, which is used to calculate the time-dependent release of radioactive and non-radioactive contaminants from the engineered barrier system (vault) into the surrounding rock (geosphere). The model calculations presented are for a specific reference vault design that comprises used CANDU (CANada Deuterium Uranium) fuel bundles in Grade-2 titanium containers, which would be emplaced in boreholes in the floor of a mined excavation located at a depth of 500 m in plutonic rock. The containers would be surrounded by a compacted buffer material that is a mixture of 50 wt. % sand and 50 wt. % bentonite. Disposal rooms and tunnels would be sealed with a layer of backfill mixture composed of 25 % glacial lake clay and 75% crushed granite and an overlying layer of buffer material. The vault model is a computer code that calculates the failure times of titanium containers, the rate of release of radionuclides from used-fuel bundles into the groundwater that would flow into the failed containers, and the rate of transport of radionuclides from the fuel through the groundwater-saturated buffer and backfill materials and into the surrounding rock. The vault model uses distributed or probabilistic

  3. Nuclear fuel waste policy in Canada

    International Nuclear Information System (INIS)

    Brown, P.A.; Letourneau, C.

    1999-01-01

    The 1996 Policy Framework for Radioactive Waste established the approach in Canada for dealing with all radioactive waste, and defined the respective roles of Government and waste producers and owners. The Policy Framework sets the stage for the development of institutional and financial arrangements to implement long-term waste management solutions in a safe, environmentally sound, comprehensive, cost-effective and integrated manner. For nuclear fuel waste, a 10-year environmental review of the concept to bury nuclear fuel waste bundles at a depth of 500 m to 1000 m in stable rock of the Canadian Shield was completed in March 1998. The Review Panel found that while the concept was technically safe, it did not have the required level of public acceptability to be adopted at this time as Canada's approach for managing its nuclear fuel waste. The Panel recommended that a Waste Management Organization be established at arm's length from the nuclear industry, entirely funded by the waste producers and owners, and that it be subject to oversight by the Government. In its December 1998 Response to the Review Panel, the Government of Canada provided policy direction for the next steps towards developing Canada's approach for the long-term management of nuclear fuel waste. The Government chose to maintain the responsibility for long-term management of nuclear fuel waste close with the producers and owners of the waste. This is consistent with its 1996 Policy Framework for Radioactive Waste. This approach is also consistent with experience in many countries. In addition, the federal government identified the need for credible federal oversight. Cabinet directed the Minister of NRCan to consult with stakeholders, including the public, and return to ministers within 12 months with recommendations on means to implement federal oversight. (author)

  4. Nuclear waste solutions

    Science.gov (United States)

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  5. Methodology for estimating accidental radioactive releases in nuclear waste management

    International Nuclear Information System (INIS)

    Levy, H.B.

    1979-01-01

    Estimation of the risks of accidental radioactive releases is necessary in assessing the safety of any nuclear waste management system. The case of a radioactive waste form enclosed in a barrier system is considered. Two test calculations were carried out

  6. Sedimentary modelling and nuclear-waste disposal

    International Nuclear Information System (INIS)

    Van Loon, A.J.

    1982-01-01

    Nuclear energy is an important source of energy. Recently a slow down is experienced in its growth rate, due to the following factors: a) the supposed shortage of uranium; b) the fear for the consequences of nuclear accident, and c) the problem of nuclear wastes. Two types of waste are distinguished: a) fission products and actinides, and b) operational waste. The United States have started a program that must lead in 1989 to the first final storage of such waste in salt. Open-pit mines and oil-well drilling are discussed as possible solutions for operational waste storage

  7. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.; Rosinger, E.L.J.

    1984-04-01

    This report, the fifth of a series of annual reports, reviews the progress that has been made in the research and development program for the safe management and disposal of Canada's nuclear fuel waste. The report summarizes activities over the past year in the following areas: public interaction; used fuel storage and transportation; immobilization of used fuel and fuel recycle waste; geoscience research related to deep underground disposal; environmental research; and environmental and safety assessment

  8. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  9. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  10. Salvaging of nuclear waste by nuclear-optical converters

    Science.gov (United States)

    Karelin, A. V.; Shirokov, R. V.

    2007-06-01

    In modern conditions of power consumption growing in Russia, apparently, it is difficult to find alternative to further development of nuclear power engineering. The negative party of nuclear power engineering is the spent fuel of nuclear reactors (radioactive waste). The gaseous and fluid radioactive waste furbished of highly active impurity, dumps in atmosphere or pools. The highly active fluid radioactive waste stores by the way of saline concentrates in special tanks in surface layers of ground, above the level of groundwaters. A firm radioactive waste bury in pods from a stainless steel in underground workings, salt deposits, at the bottom of oceans. However this problem can be esteemed in a positive direction, as irradiation is a hard radiation, which one can be used as a power source in nuclear - optical converters with further conversion of optical radiation into the electric power with the help of photoelectric converters. Thus waste at all do not demand special processing and exposure in temporary storehouses. And the electricity can be worked out in a constant mode within many years practically without gang of a stimulus source, if a level of a residual radioactivity and the half-lives of component are high enough.

  11. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  12. Nuclear power and radioactive waste

    International Nuclear Information System (INIS)

    Grimston, M.

    1991-03-01

    The gap between the relative perceptions in the area of nuclear waste is wide. The broad view of the industry is that the disposal of nuclear waste is not a serious technical problem, and that solutions are already available to provide safe disposal of all our waste. The broad view of those who oppose the industry is that radioactive waste is so unpleasant, and will remain lethal for so long, that no acceptable policy will ever be developed, and so production of such waste (except, oddly, the significant amounts arising from uses of radioactive materials in medicine, agriculture, industrial safety research, etc) should stop immediately. This booklet will not attempt to describe in great detail the technicalities of the United Kingdom nuclear industry's current approach to radioactive waste: such issues are described in detail in other publications, especially those by Nirex. It is our intention to outline some of the main issues involved, and to associate these issues with the divergence in perceptions of various parties. (author)

  13. Public attitudes about nuclear waste

    International Nuclear Information System (INIS)

    Bisconti, A.S.

    1991-01-01

    There is general agreement that nuclear waste is an important national issue. It certainly is important to the industry. congress, too, gives high priority to nuclear waste disposal. In a recent pool by Reichman, Karten, Sword, 300 congressional staffers named nuclear waste disposal as the top nuclear energy-related legislative issue for Congress to address. In this paper most of the data the author discusses are from national polls that statistically represent the opinions of all American adults all across the country, as well as polls conducted in Nevada that statistically represent the opinions of all adults in that state. All the polls were by Cambridge Reports and have a margin of error of ± 3%

  14. Attitudes to nuclear waste

    International Nuclear Information System (INIS)

    Sjoeberg, L.; Drottz-Sjoeberg, B.M.

    1993-08-01

    This is a study of risk perception and attitudes with regard to nuclear waste. Two data sets are reported. In the first set, data were obtained from a survey of the general population, using an extensive questionnaire. The second set constituted a follow-up 7 years later, with a limited number of questions. The data showed that people considered the topic of nuclear waste risks to be very important and that they were not convinced that the technological problems had been solved. Experts associated with government agencies were moderately trusted, while those employed by the nuclear industry were much distrusted by some respondents, and very much trusted by others. Moral obligations to future generations were stressed. A large portion (more than 50 per cent) of the variances in risk perception could be explained by attitude to nuclear power, general risk sensitivity and trust in expertise. Most background variables, except gender, had little influence on risk perception and attitudes. The follow-up study showed that the attitude to nuclear power had become more positive over time, but that people still doubted that the problems of nuclear waste disposal had been solved. 49 refs

  15. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    Doubre, H.

    2005-01-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  16. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  17. Geoscience research for the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Whitaker, S.H.

    1987-01-01

    The Canadian Nuclear Fuel Waste Management Program is assessing the concept of deep disposal of nuclear fuel waste in plutonic rock. As part of that assessment, a broad program of geoscience and geotechnical work has been undertaken to develop methods for characterizing sites, incorporating geotechnical data into disposal facility design, and incorporating geotechnical data into environmental and safety assessment of the disposal system. General field investigations are conducted throughout the Precambrian Shield, subsurface investigations are conducted at designated field research areas, and in situ rock mass experiments are being conducted in an Underground Research Laboratory. Samples from the field research areas and elsewhere are subjected to a wide range of tests and experiments in the laboratory to develop an understanding of the physical and chemical processes involved in ground-water-rock-waste interactions. Mathematical models to simulate these processes are developed, verified and validated. 114 refs.; 13 figs

  18. Nuclear waste management programme 2003 for the Loviisa and Olkiluoto nuclear power plants

    International Nuclear Information System (INIS)

    2002-09-01

    A joint company Posiva Oy founded by nuclear energy producing Teollisuuden Voima Oy (TVO) and Fortum Power and Heat Oy coordinates the research work of the companies on nuclear waste management in Finland. In Posiva's Nuclear Waste Management Programme 2003, an account of the nuclear waste management measures of TVO and Fortum is given as required by the sections 74 and 75 of the Finnish Nuclear Energy Degree. At first, nuclear waste management situation and the programme of activities are reported. The nuclear waste management research for the year 2003 and more generally for the years 2003-2007 is presented

  19. Concepts and strategies for management of nuclear wastes

    International Nuclear Information System (INIS)

    1979-11-01

    Three modes of reactor strategies are chosen and discussed; (1) Once-through type light water reactor, (2) U-Pu cycle light water reactor, and (3) U-Pu cycle fast breeder reactor. The arising of wastes in each mode of nuclear fuel cycle is first estimated for unit nuclear power generation of 1 GWe.year and the amount of wastes to be managed in each year is then calculated. Assuming the 2nd and the 3rd reprocessing plants are not operative, the decrease of waste arising is also estimated, which, nevertheless, claims the need for spent fuel storage pools. In addition, the arisings of decommissioning wastes are evaluated to identify their effect on waste management. Based on above fact, a generic logic of waste management is brought about, placing major emphasis on volume reduction, barrier- and decay-effects. According to the characteristics, the wastes arisen at each stage of nuclear fuel cycle can be categorized into (1) extremely low-level waste, (2) low- and intermediate-level waste, (3) alpha-waste and (4) high-level waste, and the suitable isolation periods for the specified categories can be set by the aid of hazard index, suggesting that the disposal options may possibly be selected. The waste disposal gives environmental impacts through dispersion and migration of contained nuclides into biosphere; the dispersion and migration paths are investigated and a mathematical expression to evaluate the impacts as dose commitment is presented. A multi-barrier concept is proposed since combined artificial and natural barriers have possibility of lengthening the migration path to enable safe disposal. Finally, items of research/development in waste management are represented from the viewpoints of (1) establishment of management system, (2) safety assessment covering verification of technology and system, and (3) regulation, giving recommendations for national policy making as well as for international co-operation. (JPN)

  20. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  1. Nuclear waste in Seibersdorf

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Forschungszentrum Seibersdorf (short: Seibersdorf) is the company operating the research reactor ASTRA. A controversy arose, initied by the Greens and some newspapers on the fact that the waste conditioning plant in Seibersdorf treated not only Austrian waste (from hospitals etc.) but also a large quantity of ion exchange resins from the Caorso nuclear power station, against payment. The author argues that it is untenable that an Austrian institution (peaceful use of nuclear energy in Austria being abandoned by a referendum) should support nuclear power abroad. There is also a short survey on nuclear waste conditioning and an account of an exchange of letters, between the Seibersdorf and the Ecology Institute on the claim of being an 'independent measuring institution' of food, soil, etc. samples. The author argues that the Ecology Institute is the sole independent institution in Austria because it is part of the ecology- and antinuclear movement, whereas Seibersdorf is dependent on the state. (qui)

  2. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  3. Radiation damage in nuclear waste materials

    International Nuclear Information System (INIS)

    Jencic, I.

    2000-01-01

    Final disposal of high-level radioactive nuclear waste is usually envisioned in some sort of ceramic material. The physical and chemical properties of host materials for nuclear waste can be altered by internal radiation and consequently their structural integrity can be jeopardized. Assessment of long-term performance of these ceramic materials is therefore vital for a safe and successful disposal. This paper presents an overview of studies on several possible candidate materials for immobilization of fission products and actinides, such as spinel (MgAl 2 O 4 ), perovskite (CaTiO 3 ), zircon (ZrSiO 4 ), and pyrochlore (Gd 2 Ti 2 O 7 and Gd 2 Zr 2 O 7 ). The basic microscopic picture of radiation damage in ceramics consists of atomic displacements and ionization. In many cases these processes result in amorphization (metaminctization) of irradiated material. The evolution of microscopic structure during irradiation leads to various macroscopic radiation effects. The connection between microscopic and macroscopic picture is in most cases at least qualitatively known and studies of radiation induced microscopic changes are therefore an essential step in the design of a reliable nuclear waste host material. The relevance of these technologically important results on our general understanding of radiation damage processes and on current research efforts in Slovenia is also addressed. (author)

  4. Review of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Poch, L.A.; Wolsko, T.D.

    1979-10-01

    Regardless of future nuclear policy, a nuclear waste disposal problem does exist and must be dealt with. Even a moratorium on new nuclear plants leaves us with the wastes already in existence and wastes yet to be generated by reactors in operation. Thus, technologies to effectively dispose of our current waste problem must be researched and identified and, then, disposal facilities built. The magnitude of the waste disposal problem is a function of future nuclear policy. There are some waste disposal technologies that are suitable for both forms of HLW (spent fuel and reprocessing wastes), whereas others can be used with only reprocessed wastes. Therefore, the sooner a decision on the future of nuclear power is made the more accurately the magnitude of the waste problem will be known, thereby identifying those technologies that deserve more attention and funding. It is shown that there are risks associated with every disposal technology. One technology may afford a higher isolation potential at the expense of increased transportation risks in comparison to a second technology. Establishing the types of risks we are willing to live with must be resolved before any waste disposal technology can be instituted for widespread commercial use

  5. OCRWM International Cooperation in Nuclear Waste Management

    International Nuclear Information System (INIS)

    Jackson, R.; Levich, R.; Strahl, J.

    2002-01-01

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste

  6. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  7. Final disposal of nuclear waste. An investigated issue

    International Nuclear Information System (INIS)

    Palmu, J.; Nikula, A.

    1996-01-01

    Since 1978, the nuclear power companies have co-ordinated joint studies of nuclear waste disposal through the Nuclear Waste Commission of Finnish Power Companies. The studies are done primarily to gather basic data, with a view to implementing nuclear waste management in a safe, economical and timely way. The power companies' research, development and design work with regard to nuclear waste has been progressing according to the schedule set by the Government, and Finland has received international recognition for its advanced nuclear waste management programme. Last year, the nuclear power companies set up a joint company, Posiva Oy, to manage the final disposal of spent uranium fuel. (orig.)

  8. Mobile fission and activation products in nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Umeki, H; Evans, N; Czervinski, K; Bruggeman, Ch; Poineau, F; Breynaert, A; Reiler, P; Pablo, J de; Pipon, Y; Molnar, M; Nishimura, T; Kienzler, B; Van Iseghem, P; Crovisier, J L; Wieland, E; Mace, N; Pablo, J de; Spahiu, K; Cui, D; Lida, Y; Charlet, L; Liu, X; Sato, H; Goutelard, F; Savoye, S; Glaus, M; Poinssot, C; Seby, F; Sato, H; Tournassat, Ch; Montavon, G; Rotenberg, B; Spahiu, K; Smith, G; Marivoet, J; Landais, P; Bruno, J; Johnson, H; Umeki, L; Geckeis, H; Giffaut, E; Grambow, B; Dierckx, A

    2007-07-01

    This document gathers 33 oral presentations that were made at this workshop dedicated to the mobility of some radionuclides in nuclear waste disposal. The workshop was organized into 6 sessions: 1) performance assessment, 2) speciation/interaction in aqueous media, 3) radioactive wastes, 4) redox processes at interfaces, 5) diffusion processes, and 6) retention processes.

  9. Mobile fission and activation products in nuclear waste disposal

    International Nuclear Information System (INIS)

    Umeki, H.; Evans, N.; Czervinski, K.; Bruggeman, Ch.; Poineau, F.; Breynaert, A.; Reiler, P.; Pablo, J. de; Pipon, Y.; Molnar, M.; Nishimura, T.; Kienzler, B.; Van Iseghem, P.; Crovisier, J.L.; Wieland, E.; Mace, N.; Pablo, J. de; Spahiu, K.; Cui, D.; Lida, Y.; Charlet, L.; Liu, X.; Sato, H.; Goutelard, F.; Savoye, S.; Glaus, M.; Poinssot, C.; Seby, F.; Sato, H.; Tournassat, Ch.; Montavon, G.; Rotenberg, B.; Spahiu, K.; Smith, G.; Marivoet, J.; Landais, P.; Bruno, J.; Johnson, H.; Umeki, L.; Geckeis, H.; Giffaut, E.; Grambow, B.; Dierckx, A.

    2007-01-01

    This document gathers 33 oral presentations that were made at this workshop dedicated to the mobility of some radionuclides in nuclear waste disposal. The workshop was organized into 6 sessions: 1) performance assessment, 2) speciation/interaction in aqueous media, 3) radioactive wastes, 4) redox processes at interfaces, 5) diffusion processes, and 6) retention processes

  10. Plasma filtering techniques for nuclear waste remediation.

    Science.gov (United States)

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  12. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  13. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  14. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  15. Nuclear waste problem: does new Europe need new nuclear energy?

    International Nuclear Information System (INIS)

    Alekseev, P.; Dudnikov, A.; Subbotin, S.

    2003-01-01

    Nuclear Energy for New Europe - what does it mean? New Europe - it means in first order joined Europe. And it is quite clear that also efforts in nuclear energy must be joined. What can be proposed as a target of joint efforts. Improvement of existing plants, technologies, materials? - Certainly, but it is performed already by designers and industry themselves. There exists a problem, which each state using nuclear energy faces alone. It is nuclear waste problem. Nowadays nuclear waste problem is not completely solved in any country. It seems reasonable for joining Europe to join efforts in solving this problem. A satisfactory solution would reduce a risk connected with nuclear waste. In addition to final disposal problem solution it is necessary to reduce total amount of nuclear waste, that means: reducing the rates of accumulation of long-lived dangerous radionuclides; reducing the existing amounts of these radionuclides by transmutation. These conditions can be satisfied in reasonable time by burning of minor actinides and, if possible, by transmutation of long-lived fission products. However we can use this strategy effectively if we will design and construct nuclear energy as a system of which components are united by nuclear fuel cycle as a system-forming factor. The existing structures and approaches may become insufficient for new Europe. Therefore among the initial steps in considering nuclear waste problem must be considering possible promising fuel cycles for European nuclear energy. So, does new Europe need new nuclear energy? It seems, yes. (author)

  16. Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.

    Science.gov (United States)

    Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn

    2010-01-01

    This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. A plan for Soviet nuclear waste

    International Nuclear Information System (INIS)

    Stone, R.

    1992-01-01

    If environmentalist forces are successful, the Russian government may soon establish the country's first comprehensive program for dealing with nuclear waste. Later this month the Russian parliament, back from its summer recess, is expected to begin considering a bill on this topic. A draft copy indicates that Russia is starting with the basics: It orders the government to develop a means of insulting waste from the environment, to form a national waste processing program, and to create a registry for tracking where spent atomic fuel is stored or buried. The bill comes on the heels of a November 1991 decree by Russian President Boris Yeltsin to step up efforts to deal with nuclear waste issues and to create a government registry of nuclear waste disposal sites by 1 January 1993. The former Soviet Union has come under fire from environmentalists for dumping low- and intermediate-level nuclear wastes in the Arctic Ocean and for improperly storing waste at sites in the southern Urals and Belarus. Adding to the bill's urgency is the fact that Russia is considering sites for underground repositories for high-level waste at Tomsk, Krasnoyarsk, Chelyabinsk, and on the Kola Peninsula

  18. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  19. Uncertainty propagation in a 3-D thermal code for performance assessment of a nuclear waste disposal

    International Nuclear Information System (INIS)

    Dutfoy, A.; Ritz, J.B.

    2001-01-01

    Given the very large time scale involved, the performance assessment of a nuclear waste repository requires numerical modelling. Because we are uncertain of the exact value of the input parameters, we have to analyse the impact of these uncertainties on the outcome of the physical models. The EDF Division Research and Development has set a reliability method to propagate these uncertainties or variability through models which requires much less physical simulations than the usual simulation methods. We apply the reliability method MEFISTO to a base case modelling the heat transfers in a virtual disposal in the future site of the French underground research laboratory, in the East of France. This study is led in collaboration with ANDRA which is the French Nuclear Waste Management Agency. With this exercise, we want to evaluate the thermal behaviour of a concept related to the variation of physical parameters and their uncertainty. (author)

  20. Guidelines on the scope, content, and use of comprehensive risk assessment in the management of high-level nuclear waste transportation

    International Nuclear Information System (INIS)

    Golding, D.; White, A.

    1990-12-01

    This report discusses the scope of risk assessment strategies in the management of the transport of high-level radioactive wastes. In spite of the shortcomings of probabilistic risk assessment(PRA), the Transportation Needs Assessment recommended this as the preferred methodology to assess the risks of high level nuclear waste (HLNW) transportation. A PRA also will need to heed the lessons learned from the development and application of PRA elsewhere, such as in the nuclear power industry. A set of guidelines will aid this endeavor by outlining the appropriate scope, content, and use of a risk assessment which is more responsive to the uncertainties, human-technical interactions, social forces, and iterative relationship with risk management strategies, than traditional PRAS. This more expansive definition, which encompasses but is not totally reliant on rigorous data requirements and quantitative probability estimates, we term Comprehensive Risk Assessment (CRA) Guidelines will be developed in three areas: the limitations of existing methodologies and suggested modifications; CRA as part of a flexible, effective, adaptive risk management system for HLNW transportation; and, the use of CRA in risk communication

  1. Nuclear waste management. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Platt, A.M.; Powell, J.A. (comps.)

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  2. Proceedings of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste

    International Nuclear Information System (INIS)

    Zafiropoulos, Demetre; Dilday, Daniel; Siemann, Michael; Ciambrella, Massimo; Lazo, Edward; Sartori, Enrico; ); Dionisi, Mario; Long, Juliet; Nicholson, David; Chambers, Douglas; Garcia Alves, Joao Henrique; McMahon, Ciara; Bruno, Gerard; Fan, Zhiwen; ); Ripani, Marco; Nielsen, Mette; Solente, Nicolas; Templeton, John; Paratore, Angelo; Feinhals, Joerg; Pandolfi, Dana; Sarchiapone, Lucia; Picentino, Bruno; Simms, Helen; Beer, Hans-Frieder; Deryabin, Sergey; Ulrici, Luisa; Bergamaschi, Carlo; Nottestad, Stacy; Anagnostakis, Marios

    2017-05-01

    All NEA member countries, whether or not they have nuclear power plants, are faced with appropriately managing non-nuclear radioactive waste produced through industrial, research and medical activities. Sources of such waste can include national laboratory and university research activities, used and lost industrial gauges and radiography sources, hospital nuclear medicine activities and in some circumstances, naturally occurring radioactive material (NORM) activities. Although many of these wastes are not long-lived, the shear variety of sources makes it difficult to generically assess their physical (e.g. volume, chemical form, mixed waste) or radiological (e.g. activity, half-life, concentration) characteristics. Additionally, the source-specific nature of these wastes poses questions and challenges to their regulatory and practical management at a national level. This had generated interest from both the radiological protection and radioactive waste management communities, and prompted the Committee on Radiological Protection and Public Health (CRPPH) to organise, in collaboration with the Radioactive Waste Management Committee (RWMC), a workshop tackling some of the key issues of this challenging topic. The key objectives of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste were to address the particularities of managing non-nuclear waste in all its sources and forms and to share and exchange national experiences. Presentations and discussions addressed both technical aspects and national frameworks. Technical aspects included: - the range of non-nuclear waste sources, activities, volumes and other relevant characteristics; - waste storage and repository capacities and life cycles; - safety considerations for mixed wastes management; - human resources and knowledge management; - legal, regulatory and financial assurance, and liability issues. Taking into account the entire non-nuclear waste life-cycle, the workshop covered planning and

  3. State of nuclear waste management of German nuclear power stations

    International Nuclear Information System (INIS)

    1983-01-01

    The waste management of nuclear power plants in the Federal Republic of Germany is today prevailing in the public discussion. Objections raised in this connection, e.g. that the nuclear waste management has been omitted from the development of peaceful utilization of nuclear energy or remained insolved, are frequently accepted without examination, and partly spread as facts. This is, however, not the truth: From the outset in 1955 the development of nuclear technology in the Federal Republic of Germany has included investigations of the problems of reprocessing and non-detrimental disposal of radioactive products, and the results have been compiled in a national nuclear waste management concept. (orig.) [de

  4. Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment

    International Nuclear Information System (INIS)

    Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.; Harrison, W.; Herzenberg, C.L.

    1983-10-01

    Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advise SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables

  5. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Hobart, L.

    1984-01-01

    The Nuclear Waste Fund involves a number of features which make it a unique federal program. Its primary purpose is to finance one of the largest and most controversial public works programs in the history of the United States. Despite the program's indicated size and advance publicity, no one knows exactly where the anticipated projects will be built, who will construct them, what they will look like when they are done or how they will be operated and by whom. Implimentation of this effort, if statutory targets are actually met, covers a 16-year period. To cover the costs of the program, the Federal Government will tax nuclear power at the rate of 1 mil per kilowatt hour generated. This makes it one of the biggest and longest-lived examples of advance collections for construction work in progress in the history of the United States. While the Department of Energy is authorized to collect funds for the program the Nuclear Regulatory Commission has the authority to cut off this revenue stream by the shutdown of particular reactors or particular reactor types. If all goes well, the Federal Government will begin receiving spent nuclear fuel by 1998, continuing to assess a fee which will cover operating and maintenance costs. If all does not go well, the Federal Government and/or utilities will have to take other steps to solve the problem of permanent disposal. Should the latter circumstance prevail, presumably not only used to date but the $7.5 billion would be spent. The Nuclear Waste Policy Act of 1982, contains no clear provision for utility refunds in that case

  6. Status of the Canadian Nuclear Fuel Waste Management Program

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1985-10-01

    The Canadian Nuclear Fuel Waste Management Program is in the fifth year of a ten-year generic research and development phase. The major objective of this phase of the program is to assess the basic safety and environmental aspects of the concept of isolating immobilized fuel waste by deep underground disposal in plutonic rock. The major scientific and engineering components of the program, namely immobilization studies, geoscience research, and environmental and safety assessment, are well established

  7. The waste bin: nuclear waste dumping and storage in the Pacific

    International Nuclear Information System (INIS)

    Branch, J.B.

    1984-01-01

    Relatively small amounts of nuclear waste have been stored on Pacific islands and dumped into the Pacific Ocean since 1945. Governments of Pacific countries possessing nuclear power plants are presently seeking permanent waste storage and disposal solutions at Pacific sites including subseabed emplacement of high-level nuclear wastes and ocean dumping of low-level wastes. This article examines these plans and the response of Pacific islanders in their development of policies and international strategies to ban the proposed dumping on a regional basis. Island governments are preparing for a Regional Convention during which a treaty concerned with radioactive waste storage and disposal will be signed. (Author)

  8. The waste management program VUB-AZ: An integrated solution for nuclear biomedical waste management

    International Nuclear Information System (INIS)

    Covens, P.; Sonck, M.; Eggermont, G.; Meert, D.

    2001-01-01

    Due to escalating costs and the lack of acceptance of near-surface disposal facilities, the University of Brussels (VUB) and its Academic hospital (AZ) have developed an on-site waste storage program in collaboration with Canberra Europe. This programme is based on selective collection, measurement before decay, storage for decay of short-lived radionuclides, measurement after decay and eventual clearance as non-nuclear waste. It has proved its effectiveness over the past 5 years. Effective characterisation for on-site storage for decay of short-lived radionuclides makes selective collection of waste streams mandatory and requires motivated and trained laboratory staff. Dynamic optimisation of this selective collection increases the efficiency of the storage for decay programme. The accurate qualitative and quantitative measurement of nuclear biomedical waste before decay has several advantages such as verification of correct selective collection, optimisation of the decay period and possibility of clearance below the minimal detectable activity. In the research phase of the program several measurement techniques were investigated. The following measurement concept was selected. Closed PE drums containing low density solid waste materials contaminated with small amounts of β/γ-or pure β-emitting radionuclides are assessed for specific activity by the Canberra measurement unit for nuclear biomedical waste, based on a HPGe-detector. Liquid waste containing (β/γ-emitters are characterised by the same technique while for pure β-emitting liquid waste a Packard liquid scintillation counter is used. Measurement results are obtained by using the gamma-spectroscopy software Genie-2000. A user-friendly interface, based on Procount-2000 and optimised by Canberra for the characterisation of nuclear biomedical waste, has increased the sample throughput of the measurement concept. The MDA (minimal detectable activity) of different radionuclides obtained by the measurement

  9. Building world-wide nuclear industry success stories - Safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2005-01-01

    Full text: This WNA Position Statement summarizes the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the WNA will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations. Accumulating experience and

  10. Waste management in the nuclear engineering curriculum

    International Nuclear Information System (INIS)

    Tulenko, J.S.

    1989-01-01

    One of the most significant challenges facing the nuclear industry is to successfully close the nuclear fuel cycle and effectively demonstrate to the public that nuclear wastes do not present a health risk. This issue is currently viewed by many as the most important issue affecting public acceptance of nuclear power, and it is imperative that nuclear engineers be able to effectively address the question of nuclear waste from both a generation and disposal standpoint. To address the issue, the area of nuclear waste management has been made one of the fields of specialized study in the Department of Nuclear Engineering Sciences at the University of Florida. The study of radioactive waste management at the University of Florida is designed both for background for the general nuclear engineering student and for those wishing to specialize in it as a multidiscipline study area involving the Departments of Nuclear Engineering Sciences, Environmental Sciences, Material Science and Engineering, Geology, Civil Engineering, and Industrial Engineering

  11. Nuclear Waste Fund management

    International Nuclear Information System (INIS)

    Mills, L.

    1984-01-01

    The Nuclear Waste Policy Acts requires that DOE enter into contracts with nuclear utilities and others to accept their nuclear wastes at some unspecified date, at some unspecified rate, hopefully starting in 1998. Contracts between DOE and the states, and with civilian and other government agencies must be sufficiently detailed to secure competitive bids on definable chunks of work at a fixed-cost basis with incentives. The need is stressed for a strong central program for the selection of contractors on the basis of competitive bidding on a fixed price basis to perform the task with defined deliverables

  12. Nuclear waste: Quarterly report on DOE's Nuclear Waste Program as of March 31, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The Nuclear Waste Policy Act established a national program and policy for safely storing, transporting, and disposing of nuclear waste. This fact sheet provides the status of the Department of Energy's program activities. They include (1) the release of a draft amendment to the mission plan in which DOE extends by 5 years its target date for beginning first repository operations and information on DOE's decision to postpone site-specific activities for the second repository; (2) a monitored retrievable storage proposal and related documents; (3) receipts of comments from utilities, state regulators, and others on its Notice of Inquiry on proposals for the calculation of fees for defense waste disposal; and (4) information on the Nuclear Waste Fund collection of over /135.4 million in fees and investment income and obligations of $139 million for program activities. The fund balance as of March 31, 1987, was about $1.5 billion

  13. Comments on ''Use of conditional simulation in nuclear waste site performance assessment'' by Carol Gotway

    International Nuclear Information System (INIS)

    Downing, D.J.

    1993-01-01

    This paper discusses Carol Gotway's paper, ''The Use of Conditional Simulation in Nuclear Waste Site Performance Assessment.'' The paper centers on the use of conditional simulation and the use of geostatistical methods to simulate an entire field of values for subsequent use in a complex computer model. The issues of sampling designs for geostatistics, semivariogram estimation and anisotropy, turning bands method for random field generation, and estimation of the comulative distribution function are brought out

  14. Development of nuclear waste concrete drum

    International Nuclear Information System (INIS)

    Wen Yinghui

    1995-06-01

    The raw materials selection and the properties for nuclear waste concrete drum, the formula and properties of the concrete, the specification and technical quality requirement of the drum were described. The manufacture essentials and technology, the experiments and checks as well as the effective quality control and quality assurance carried out in the course of production were presented. The developed nuclear waste drum has a simple structure, easily available raw materials and rational formula for concrete. The compressive strength of the drum is more than 70 MPa, the tensile strength is more than 5 MPa, the nitrogen permeability is (2.16∼3.6) x 10 -18 m 2 . The error of the drum in dimensions is +-2 mm. The external surface of the drum is smooth. The drum accords with China standards in the sandy surface, void and crack. The results shows China has the ability to develop and manufacture nuclear waste concrete container and lays the foundation for standardization and series of the nuclear waste container for packing and transporting nuclear wastes in China. (5 figs., 10 tabs.)

  15. Nuclear waste management. Quarterly progress report, April-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  16. Publicly administrated nuclear waste management research programme 1994-1996. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, S. [ed.] [VTT Energy, Espoo (Finland)

    1997-09-01

    The main objective of the JYT-programme has been to provide the authorities with independent information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into following main topic areas: (1) bedrock structure and stability, rock investigation methods and characteristics and flow of ground water, (2) release of radionuclides from a repository and subsequent transport in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management, (4) natural analogue studies, (5) waste management technology and costs and (6) socio political and other societal issues and environmental impact assessment.

  17. Publicly administrated nuclear waste management research programme 1994-1996. Final report

    International Nuclear Information System (INIS)

    Vuori, S.

    1997-09-01

    The main objective of the JYT-programme has been to provide the authorities with independent information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into following main topic areas: (1) bedrock structure and stability, rock investigation methods and characteristics and flow of ground water, (2) release of radionuclides from a repository and subsequent transport in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management, (4) natural analogue studies, (5) waste management technology and costs and (6) socio political and other societal issues and environmental impact assessment

  18. Risk management of onsite transportation of nuclear waste

    International Nuclear Information System (INIS)

    Field, J.G.; Wang, O.S.; Mercado, J.E.

    1993-01-01

    The United States Department of Energy (DOE) Hanford Site recently has undergone a significant change in mission. The focus of operations has shifted from plutonium production to environmental restoration. This transition has caused a substantial increase in quantities of nuclear waste and other hazardous materials packaged and transported onsite. In response to the escalating transportation activity, Westinghouse Hanford Company (Westinghouse Hanford), the Hanford Site operations and engineering contractor, is proposing an integrated risk assessment methodology and risk management strategy to enhance the safety of onsite packaging and transportation operations involving nuclear waste. The proposed methodology consists of three integral parts: risk assessment, risk acceptance criteria, and risk minimization. The purpose of the methodology is to ensure that the risk for each ongoing transportation activity is acceptable and to minimize the overall risk for current and future onsite operations. (authors). 2 figs., 6 refs

  19. Risk management of onsite transportation of nuclear waste

    International Nuclear Information System (INIS)

    Field, J.G.; Wang, O.S.; Mercado, J.E.

    1993-03-01

    The United States Department of Energy (DOE) Hanford Site recently has undergone a significant change in mission. The focus of operations has shifted from plutonium production to environmental restoration. This transition has caused a substantial increase in quantities of nuclear waste and other hazardous materials packaged and transported onsite. In response to the escalating transportation activity, Westinghouse Hanford Company (Westinghouse Hanford), the Hanford Site operations and engineering contractor, is proposing an integrated risk assessment methodology and risk management strategy to enhance the safety of onsite packaging and transportation operations involving nuclear waste. The proposed methodology consists of three integral parts: risk assessment, risk acceptance criteria, and risk minimization. The purpose of the methodology is to ensure that the risk for each ongoing transportation activity is acceptable and to minimize the overall risk for current and future onsite operations

  20. Nuclear wastes

    International Nuclear Information System (INIS)

    2002-01-01

    This scientific document presents an introduction to the nuclear wastes problems, the separation process and the transmutation, the political and technical aspects of the storage, the radioprotection standards and the biological effects. (A.L.B.)

  1. Nuclear waste: good news

    International Nuclear Information System (INIS)

    Gay, Michel

    2014-01-01

    The author states that the problem of nuclear wastes is solved. He states that 90 per cent of radioactive wastes are now permanently managed and that technical solutions for deep geological storage and for transmutation will soon solve the problem for the remaining 10 pc. He states that geological storage will be funded (it is included in electricity price). He denounces why these facts which he consider as good news, do not prevail. He proposes several documents in appendix: a text explaining the nuclear fuel cycle in France, and an extract of a report made by the national inventory of radioactive materials and wastes

  2. Nuclear waste management policy in France

    International Nuclear Information System (INIS)

    Lefevre, J.F.

    1983-01-01

    The object of the nuclear waste management policy in France has always been to protect the worker and the public from unacceptable risks. The means and the structures developed to reach this objective, however, have evolved with time. One fact has come out ever more clearly over the years: Nuclear waste problems cannot be considered in a piecemeal fashion. The French nuclear waste management structure and policy aim at just this global approach. Responsibilities have been distributed between the main partners: the waste producers and conditioners, the research teams, the safety authorities, and the long-term waste manager, National Radioactive Waste Management Agency. The main technical options adopted for waste forms are embedding in hydraulic binders, bitumen, or thermosetting resins for low-level waste (LLW) and medium-level waste (MLW), and vitrification for high-level, liquid wastes. One shallow land disposal site for LLW and MLW has been in operation since 1969, the Centre of La Manche. Alpha-bearing and high-level waste will be disposed of by deep geological storage, possibly in granite formations. Further RandD aims mainly at improving present-day practices, developing more durable, long-term, alpha-bearing waste for all solid waste forms and going into all aspects of deep geological disposal characterization

  3. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  4. Nuclear waste management. Pioneering solutions from Finland

    International Nuclear Information System (INIS)

    Rasilainen, Kari

    2016-01-01

    Presentation outline: Background: Nuclear energy in Finland; Nuclear Waste Management (NWM) Experiences; Low and Intermediate Level Waste (LILW); High Level Waste - Deep Geological Repository (DGR); NWM cost estimate in Finland; Conclusions: World-leading expert services

  5. Questioning nuclear waste substitution: a case study.

    Science.gov (United States)

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  6. The disposal of Canada's nuclear fuel waste: comments on the postclosure assessment of a reference system

    International Nuclear Information System (INIS)

    Allan, C.J.; Goodwin, B.W.

    1996-07-01

    Canada, like other countries, is developing technology for disposal of its nuclear fuel waste , based on the concept of geological disposal in stable plutonic rock of the Canadian Shield. The choice of methods, materials, and designs for a disposal system will ultimately be made on the basis of safety, taking into account the characteristics of the specific site on which the facility is to be developed, costs and practicality. As part of its work in developing the technology for the disposal of Canada's nuclear fuel waste, AECL analyzed the performance of a hypothetical disposal facility that incorporates specific design choices for the engineered barriers and that assumes a specific geological setting. This system, comprising the disposal facility and the geological setting, and the results of the performance analysis, is described in an Environmental Impact Statement that AECL submitted in 1994 and in a Primary Reference for the EIS 'The Disposal of Canada's Nuclear Fuel Waste: Postclosure Assessment of a Reference System.' The performance analysis was not intended to be a general proof of the safety of disposal, but rather it presents a safety analysis of one specific system to illustrate the postclosure assessment methodology and to demonstrate that safety could be achieved for the system in question. Although the design of the disposal facility analyzed and the geological setting have specific features, the results obtained from the safety analysis can, however, be used to provide considerable insight into the performance of the various components that comprise the multibarrier geological disposal system. Moreover, the results can show how changes in the performance of specific components can affect the overall performance of the system. This report discusses these aspects of the postclosure analysis. (author)

  7. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    International Nuclear Information System (INIS)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.; Benson, G.L.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.; Schilling, A.H.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis

  8. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  9. Organic diagenesis in commercial nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lechner-Fish, T.J.

    1988-01-01

    The nuclear industry currently faces numerous challenges. Large volumes of already existing wastes must be permanently disposed using environmentally acceptable technologies. Numerous criteria must be addressed before wastes can be permanently disposed. Waste characterization is certainly one of the key criteria for proper waste management. some wastes are complex melting pots of inorganics, radiochemicals, and, occasionally, organics. It is clear, for example, that organics have been used extensively in nuclear operations, such as waste reprocessing, and continue to be used widely as solvents, decontamination agents, etc. The authors have analyzed the organic content of many kinds of nuclear wastes, ranging from commercial to defense wastes. In this paper, the finale analyses are described of three commercial wastes: one waste from a pressurized water reactor (PWR) and two wastes from a boiling water reactor (BWR). The PWR waste is a boric acid concentrate waste. The two BWR wastes, BWR wastes Nos. 1 and 2, are evaporator concentrates of liquid wastes produced during the regeneration of ion-exchange resins used to purify reactor process water. In preliminary analyses, which were reported previously, a few know organics and myriad unknowns were detected. Recent reexamination of mass-spectral data, coupled with reanalysis of the wastes, has resulted in the firm identification of the unknowns. Most of the compounds, over thirty distinct organics, are derived from the degradation, or diagenesis, of source-term organics, revealing, for the first time, that organic diagenesis in commercial wastes is both vigorous and varied

  10. LISA. A code for safety assessment in nuclear waste disposals program description and user guide

    International Nuclear Information System (INIS)

    Saltelli, A.; Bertozzi, G.; Stanners, D.A.

    1984-01-01

    The code LISA (Long term Isolation Safety Assessment), developed at the Joint Research Centre, Ispra is a useful tool in the analysis of the hazard due to the disposal of nuclear waste in geological formations. The risk linked to preestablished release scenarios is assessed by the code in terms of dose rate to a maximum exposed individual. The various submodels in the code simulate the system of barriers -both natural and man made- which are interposed between the contaminants and man. After a description of the code features a guide for the user is supplied and then a test case is presented

  11. Radioactive waste from nuclear power stations and other nuclear facilities

    International Nuclear Information System (INIS)

    Jelinek-Fink, P.

    1976-01-01

    After estimating the amounts of liquid and solid radioactive wastes that will be produced in nuclear power plants, reprocessing plants, by the fuel cycle industry, and in the nuclear research centers in the FRG until 1990, it is reported on the state of technology and on the tendencies in the development of processing radioactive waste. The paper also describes, how waste disposal is managed by those producing radioactive waste (see above), and discusses the future development of the complex of waste disposal from the industry's point of view. (HR/LN) [de

  12. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  13. Nordic nuclear safety research 1994-1997. Project on disposal of radioactive waste

    International Nuclear Information System (INIS)

    Broden, Karin

    1999-01-01

    This presentation describes the Nordic Nuclear Safety Research (NKS) programme, which is a scientific co-operation programme in nuclear safety, radiation protection and emergence preparedness. The purpose of the programme is to carry out cost-effective Nordic projects, thus producing research results, exercises, information, manuals, recommendations, and other types of background material. This material is to serve decision-makers and other concerned staff members at authorities, research establishments and enterprises in the nuclear field. Three waste disposal projects under NKS are briefly described: (1) Waste characterisation, (2) Performance analysis of the engineered barrier system of the repositories for low- and intermediate-level waste, (3) Environmental impact assessment

  14. Nuclear waste management news

    International Nuclear Information System (INIS)

    Stoeber, H.

    1987-01-01

    In view of the fact that nuclear waste management is an important factor determining the future perspectives of the peaceful uses of nuclear energy, it seems suitable to offer those who are interested in this matter a source of well-founded, concise information. This first newsletter will be followed by others at irregular intervals, reviewing the latest developments and the state of the art in West Germany and abroad. The information presented in this issue reports the state of the art of nuclear waste management in West Germany and R and D activities and programmes, refers to conferences or public statements, and reviews international relations and activities abroad. (orig.) [de

  15. Nuclear waste

    International Nuclear Information System (INIS)

    1988-01-01

    The Department of Energy has proposed a draft plan for investigating the Yucca Mountain, Nevada, site to determine if it suitable for a waste repository. This fact sheet provides information on the status of DOE's and the Nuclear Regulatory Commission's efforts to streamline what NRC expects will be the largest and most complex nuclear-licensing proceeding in history, including the development of an electronic information management system called the Licensing Support System

  16. Ceramics in nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T D; Mendel, J E [eds.

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  17. Nuclear Waste Education Project

    International Nuclear Information System (INIS)

    1989-01-01

    In summary, both the Atlanta and Albuquerque pilot seminars achieved the Nuclear Waste Education Project's goal of informing citizens on both the substance and the process of nuclear waste policy so that they can better participate in future nuclear waste decisions. Nuclear waste issues are controversial, and the seminars exposed the nature of the controversy, and utilized the policy debates to create lively and provocative sessions. The format and content of any citizen education curriculum must be made to fit the particular goal that has been chosen. If the Department of Energy and the LWVEF decide to continue to foster an informed dialogue among presenters and participants, the principles of controversial issues education would serve this goal well. If, however, the Department of Energy and/or the LWVEF decide to go beyond imparting information and promoting a lively discussion of the issues, towards some kind of consensus-building process, it would be appropriate to integrate more interactive sessions into the format. As one evaluator wrote, ''In-depth participation in finding solutions or establishing policy -- small group discussion'' would have been preferable to the plenary sessions that mostly were in the form of lectures and expert panel discussion. The evaluator continued by saying, ''Since these [small group discussions] would require more time commitment, they might be part of follow-up workshops focused on particular topics.''

  18. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  19. Safety Aspects of Nuclear Waste Treatment

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1986-01-01

    In the nuclear fuel cycle - like in most other industrial processes - some waste is produced which can be harmful to the environment and has to be stored safely and isolated from the Biosphere. This radioactive waste can be compared with toxic chemical waste under many aspects, but it has some special features, some of which make its handling more difficult, others make it easier. The difficulties are that radioactive waste does not only affect living organisms after incorporation, but also from some distance through its radiation. Therefore this waste has not only to be encapsuled, but also shielded. At higher concentrations radioactive waste produces heat and this has to be continuously derived from the storage area. On the other hand the control of even extremely small amounts of radioactive waste is very much easier than that of toxic chemical waste due to the high sensitivity of radiation detection methods. Furthermore radioactive waste is not persistent like most of the chemical waste. Of course some components will decay only after millennia, but a high percentage of radioactive waste becomes inactive after days, weeks or years. An important feature of safety aspects related to nuclear waste is the fact that problems of its treatment and storage have been discussed from the very beginning of Nuclear Energy Technology - what has not been the case in relation to most other industrial wastes

  20. Specifications of the International Atomic Energy Agency's international project on safety assessment driven radioactive waste management solutions

    International Nuclear Information System (INIS)

    Ghannadi, M.; Asgharizadeh, F.; Assadi, M. R.

    2008-01-01

    Radioactive waste is produced in the generation of nuclear power and the production and use of radioactive materials in the industry, research, and medicine. The nuclear waste management facilities need to perform a safety assessment in order to ensure the safety of a facility. Nuclear safety assessment is a structured and systematic way of examining a proposed facility, process, operation and activity. In nuclear waste management point of view, safety assessment is a process which is used to evaluate the safety of radioactive waste management and disposal facilities. In this regard the International Atomic Energy Agency is planed to implement an international project with cooperation of some member states. The Safety Assessment Driving Radioactive Waste Management Solutions Project is an international programme of work to examine international approaches to safety assessment in aspects of p redisposal r adioactive waste management, including waste conditioning and storage. This study is described the rationale, common aspects, scope, objectives, work plan and anticipated outcomes of the project with refer to International Atomic Energy Agency's documents, such as International Atomic Energy Agency's Safety Standards, as well as the Safety Assessment Driving Radioactive Waste Management Solutions project reports

  1. Historical relationship between performance assessment for radioactive waste disposal and other types of risk assessment

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1999-01-01

    This article describes the evolution of the process for assessing the hazards of a geologic disposal system for radioactive waste and, similarly, nuclear power reactors, and the relationship of this process with other assessments of risk, particularly assessments of hazards from manufactured carcinogenic chemicals during use and disposal. This perspective reviews the common history of scientific concepts for risk assessment developed until the 1950s. Computational tools and techniques developed in the late 1950s and early 1960s to analyze the reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic risk assessment of nuclear power reactors, a technology for which behavior was unknown. In turn, these analyses became an important foundation for performance assessment of nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the environment from chemical hazards is built on methods for assessing the dose response of radionuclides in the 1950s. Despite a shared background, however, societal events, often in the form of legislation, have affected the development path for risk assessment for human health, producing dissimilarities between these risk assessments and those for nuclear facilities. An important difference is the regulator's interest in accounting for uncertainty

  2. Nuclear waste repository in basalt: preliminary socioeconomic assessment

    International Nuclear Information System (INIS)

    Cluett, C.; Bolton, P.A.; Malhotra, S.; McStay, J.R.; Slingsby, J.A.

    1984-06-01

    This report was prepared as a part of the continuing site characterization activities for a proposed nuclear waste repository in basalt (NWRB) to be located on the Hanford Site near Richland, Washington. The purpose of this study is to assess the social and economic impacts that could be caused by the construction and operation of the proposed NWRB facility. The specific objectives of this study are to describe historical socioeconomic trends in the study area, to describe current conditions, to project future baseline conditions without the NWRB, to project potential impacts due to the proposed NWRB under two alternative regional development scenarios and assess their significance, and to suggest an overall impact management and mitigation strategy. A closely related objective is to assemble a comprehensive socioeconomic data base that can be easily updated for future analyses. This study examines employment, labor supply, population change, housing, local transportation, revenues, and expenditures for public services. This report documents the marked demographic and economic decline that has occurred in the study area since 1981 and concludes that future baseline growth will resume at a relatively slower pace after further expected declines have been experienced through about 1985. The projected socioeconomic impacts of the NWRB development are assessed under two alternative baseline scenarios and are not expected to be significant in either case. With careful planning and attention to impact mitigation, including public participation and interaction with local and regional planning agencies, potential socioeconomic impacts can be anticipated and managed effectively. Recommendations are made for providing frequent updating of the data base and for improving the analysis of socioeconomic impacts. 68 references, 19 figures, 38 tables

  3. Organic analyses of mixed nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lucke, R.B.; Lechner-Fish, T.J.; Hendren, D.J.; Myers, R.B.

    1987-04-01

    Analytical methods are being developed for the organic analysis of nuclear wastes. Our laboratory analyzed the organic content of three commercial wastes and an organic-rich, complex concentrate waste. The commercial wastes contained a variety of hydrophobic and hydrophilic organics, at concentrations ranging from nanomolar to micromolar. Alkyl phenols, chelating and complexing agents, as well as their degradation products, and carboxylic acids were detected in the commercial wastes. The complex concentrate waste contained chelating and complexing agents, as well as numerous degradation products, at millimolar concentrations. 75.1% of the complex concentrate waste's total organic carbon content has been identified. The presence of chelator fragments in all of the wastes analyzed, occasionally at elevated concentrations, indicates that organic diagenesis, or degradation, in nuclear wastes is both widespread and quite vigorous. 23 refs., 3 tabs

  4. WNA position statement on safe management of nuclear waste and used nuclear fuel

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2006-01-01

    This World nuclear association (W.N.A.) Position Statement summarizes the worldwide nuclear industry's record, progress and plans in safely managing nuclear waste and used nuclear fuel. The global industry's safe waste management practices cover the entire nuclear fuel-cycle, from the mining of uranium to the long-term disposal of end products from nuclear power reactors. The Statement's aim is to provide, in clear and accurate terms, the nuclear industry's 'story' on a crucially important subject often clouded by misinformation. Inevitably, each country and each company employs a management strategy appropriate to a specific national and technical context. This Position Statement reflects a confident industry consensus that a common dedication to sound practices throughout the nuclear industry worldwide is continuing to enhance an already robust global record of safe management of nuclear waste and used nuclear fuel. This text focuses solely on modern civil programmes of nuclear-electricity generation. It does not deal with the substantial quantities of waste from military or early civil nuclear programmes. These wastes fall into the category of 'legacy activities' and are generally accepted as a responsibility of national governments. The clean-up of wastes resulting from 'legacy activities' should not be confused with the limited volume of end products that are routinely produced and safely managed by today's nuclear energy industry. On the significant subject of 'Decommissioning of Nuclear Facilities', which is integral to modern civil nuclear power programmes, the W.N.A. will offer a separate Position Statement covering the industry's safe management of nuclear waste in this context. The safe management of nuclear waste and used nuclear fuel is a widespread, well-demonstrated reality. This strong safety record reflects a high degree of nuclear industry expertise and of industry responsibility toward the well-being of current and future generations

  5. Nuclear Facility Isotopic Content (NFIC) Waste Management System to provide input for safety envelope definition

    International Nuclear Information System (INIS)

    Genser, J.R.

    1992-01-01

    The Westinghouse Savannah River Company (WSRC) is aggressively applying environmental remediation and radioactive waste management activities at the US Department of Energy's Savannah River Site (SRS) to ensure compliance with today's challenging governmental laws and regulatory requirements. This report discusses a computer-based Nuclear Facility Isotopic Content (NFIC) Waste Management System developed to provide input for the safety envelope definition and assessment of site-wide facilities. Information was formulated describing the SRS ''Nuclear Facilities'' and their respective bounding inventories of nuclear materials and radioactive waste using the NFIC Waste Management System

  6. 10 CFR 1.18 - Advisory Committee on Nuclear Waste.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18... Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on Nuclear Waste (ACNW) provides advice to the Commission on all aspects of nuclear waste management, as...

  7. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  8. Waste management, decommissioning and environmental restoration for Canada's nuclear activities. Proceedings

    International Nuclear Information System (INIS)

    2011-01-01

    The Canadian Nuclear Society conference on Waste Management, Decommissioning and Environmental Restoration for Canada's Nuclear Activities was held in Toronto, Ontario, Canada on September 11-14, 2011. The conference provided a forum for discussion of the status and proposed future directions of technical, regularly, environmental, social and economic aspects of radioactive waste management, nuclear facility decommissioning, and environmental restoration activities for Canadian nuclear facilities. The conference included both plenary sessions and sessions devoted to more detailed technical issues. The plenary sessions were focussed on three broad themes: the overall Canadian program; low and intermediate waste; and, international perspectives. Topics of the technical sessions included: OPG's deep geologic repository for low and intermediate level waste; stakeholder interactions; decommissioning projects; uranium mine waste management; used fuel repository - design and safety assessment; federal policies, programs and oversight; regulatory considerations; aboriginal traditional knowledge; geological disposal - CRL site classification; geological disposal - modelling and engineered barriers; Port Hope Area Initiative; waste characterization; LILWM - treatment and processing; decommissioning projects and information management; international experience; environmental remediation; fuel cycles and waste processing.

  9. Plasma Mass Filters For Nuclear Waste Reprocessing

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  10. Workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories, July 27-28, 1977

    International Nuclear Information System (INIS)

    Jacobson, J.J.

    1977-01-01

    The workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories brought together experts in the geosciences to identify and evaluate potentially disruptive events and processes and to contribute ideas on how to extrapolate data from the past into the next one million years. The analysis is to be used to model a repository in geologic media for long-term safety assessments of nuclear waste storage. The workshop included invited presentations on the following items: an overview of the Waste Isolation Safety Assessment Program (WISAP), simulation techniques, subjective probabilities and methodology of obtaining data, similar modeling efforts at Lawrence Livermore and Sandia Laboratories, and geologic processes or events

  11. Waste Isolation Safety Assessment Program. Technical progress report for FY-1978

    Energy Technology Data Exchange (ETDEWEB)

    Brandstetter, A.; Harwell, M.A.; Howes, B.W.; Benson, G.L.; Bradley, D.J.; Raymond, J.R.; Serne, R.J.; Schilling, A.H.

    1979-07-01

    Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of making those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis. (DC)

  12. The Next Nuclear Gamble. Transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1985-01-01

    The Next Nuclear Gamble examines risks, costs, and alternatives in handling irradiated nuclear fuel. The debate over nuclear power and the disposal of its high-level radioactive waste is now nearly four decades old. Ever larger quantities of commercial radioactive fuel continue to accumulate in reactor storage pools throughout the country and no permanent storage solution has yet been designated. As an interim solution, the government and utilities prefer that radioactive wastes be transported to temporary storage facilities and subsequently to a permanent depository. If this temporary and centralized storage system is implemented, however, the number of nuclear waste shipments on the highway will increase one hundredfold over the next fifteen years. The question directly addressed is whether nuclear transport is safe or represents the American public's domestic nuclear gamble. This Council on Economic Priorities study, directed by Marvin Resnikoff, shows on the basis of hundreds of government and industry reports, interviews and surveys, and original research, that transportation of nuclear materials as currently practiced is unsafe

  13. Next nuclear gamble: transportation and storage of nuclear waste

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1983-01-01

    Accidents during transport of nuclear waste are more threatening - though less likely - than a reactor meltdown because transportation accidents could occur in the middle of a populous city, affecting more people and property than a plant accident, according to the Council on Economic Priorities, a non-profit public service research organization. Transportation, as presently practiced, is unsafe. Shipping containers, called casks, are poorly designed and constructed, CEP says. The problem needs attention because the number of casks filled with nuclear waste on the nation's highways could increase a hundred times during the next 15 years under the Nuclear Waste Policy Act of 1982, which calls for storage areas. Recommendations, both technical and regulatory, for reducing the risks are presented

  14. Managing nuclear wastes: an overview of the issues

    International Nuclear Information System (INIS)

    Cummings, R.G.; Utton, A.E.

    1981-01-01

    The issues involving nuclear waste management are reviewed. The author points out the need for a critical overview of research priorities concerning nuclear waste management (NWM), and he discusses the uncertainties surrounding the scope of the problem (i.e., the controversy concerning the extent of dangers to public health and safety associated with the transport and storage of nuclear wastes). This article, intended as a introdution to the other nuclear waste management papers in the journal, also briefly discusses the papers

  15. Radioactive Waste as an Argument against Nuclear Energy

    International Nuclear Information System (INIS)

    Kowalski, E.

    1996-01-01

    The issue of safe radioactive waste is commonly regarded as the Achilles Heel of nuclear energy production. To add strength to the 'unsolved' waste problem as an argument in favour of abandoning nuclear energy production, anti-nuclear groups systematically seek to discredit waste management projects and stand in the way of progress in this field. The paradox in this situation is that it is exactly in the field of waste management that nuclear energy production allows ecologically sound procedures to be followed. (author)

  16. Geologic factors in nuclear waste disposal

    International Nuclear Information System (INIS)

    Towse, D.

    1978-07-01

    The study of geosciences and their relation to nuclear waste disposal and management entails analyzing the hydrology, chemistry, and geometry of the nuclear waste migration process. Hydrologic effects are determined by analyzing the porosity and permeability (natural and induced) of rock as well as pressures and gradients, dispersion, and aquifer length of the system. Chemistry parameters include radionuclide retardation factors and waste dissolution rate. Geometric parameters (i.e., parameters with dimension) evaluated include repository layer thickness, fracture zone area, tunnel length, and aquifer length. The above parameters act as natural barriers or controls to nuclear waste migration, and are evaluated in three potential geologic media: salt, shale, and crystalline rock deposits. Parametric values are assigned that correspond to many existing situations. These values, in addition to other important inputs, are lumped as a hydrology input into a computer simulation program used to model and calculate nuclear waste migration from the repository to the biosphere, and potential individual and population dose and radiation effects. These results are preliminary and show trends only; they do not represent an actual risk analysis

  17. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  18. PIME '98, proposal for opening contribution: Nuclear waste

    International Nuclear Information System (INIS)

    Raurnolin, Heikki

    1998-01-01

    Full text: Would a debate about an international nuclear waste repository help us win greater public acceptance for our disposal plans? My opening points will be: - International nuclear waste repositories can be accepted by the public only after the acceptance of national repositories. If there are no accepted national plans or existing national repositories, nobody is accepting any international repository in his or her own country; - The focus of gaining public acceptance should therefore be on the national programmes and on the technology itself, i.e. 'Deep disposal is a safe solution independent on the type of rock formations, crystalline, salt, clay etc.'; - The Finnish situation is quite clear. Our people are rather confident on the stability of our old crystalline granite bedrock. Finnish politicians and ordinary people are very much against accepting high-level waste or spent nuclear fuel of foreign origin to be disposed of in Finland. This was one of the reasons why the Finnish Nuclear Act was amended before Finland joined to EU, so that the import and export of nuclear waste are forbidden; - Our site selection programme in Finland is in a very sensitive phase. The Government has just confirmed the target, site selection at the end of year 2000, and the statutory Environmental Impact Assesment process has just been initiated in four candidate sites. Certain opponents try to frighten people by claiming that accepting the site and the deep disposal of our domestic waste means also definitely accepting the same for foreign waste, in any case for any nuclear waste from other EU countries; - So, all news on discussion about international nuclear waste repositories will create more suspicions against the Finnish nuclear authorities, waste company and utilities. Summary: The answer is no, the debate about international nuclear waste repository does not help us to win greater public acceptance for our disposal plans. (author)

  19. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    International Nuclear Information System (INIS)

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., 108m Ag, 93 Mo, 36 Cl, 10 Be, 113m Cd, 121m Sn, 126 Sn, 93m Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., 14 C, 129 I, and 99 Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments

  20. Corrosion of simulated nuclear waste glass

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Gotic, M.; Foric, J.

    1988-01-01

    In this study the preparation and characterization of borosilicate glasses of different chemical composition were investigated. Borosilicate glasses were doped with simulated nuclear waste oxides. The chemical corrosion in water of these glasses was followed by measuring the leach rates as a function of time. It was found that a simulated nuclear waste glass with the chemical composition (weight %), 15.61% Na 2 O, 10.39% B 2 O 3 , 45.31% SiO 2 , 13.42% ZnO, 6.61% TiO 2 and 8.66% waste oxides, is characterized by low melting temperature and with good corrosion resistance in water. Influence of passive layers on the leaching behaviour of nuclear waste glasses is discussed. (author) 20 refs.; 7 figs.; 4 tabs

  1. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  2. The crucial role of nomothetic and idiographic conceptions of time: interdisciplinary collaboration in nuclear waste management.

    Science.gov (United States)

    Moser, Corinne; Stauffacher, Michael; Krütli, Pius; Scholz, Roland W

    2012-01-01

    The disposal of nuclear waste involves extensive time scales. Technical experts consider up to 1 million years for the disposal of spent fuel and high-level waste in their safety assessment. Yet nuclear waste is not only a technical but also a so-called sociotechnical problem and, therefore, requires interdisciplinary collaboration between technical, natural, social sciences, and the humanities in its management. Given that these disciplines differ in their language, epistemics, and interests, such collaboration might be problematic. Based on evidence from cognitive psychology, we suggest that, in particular, a concept like time is presumably critical and can be understood differently. This study explores how different scientific disciplines understand extensive time scales in general and then focuses on nuclear waste. Eighteen qualitative exploratory interviews were conducted with experts for time-related phenomena of different disciplines, among them experts working in nuclear waste management. Analyses revealed two distinct conceptions of time corresponding to idiographic and nomothetic research approaches: scientists from the humanities and social sciences tend to have a more open, undetermined conception of time, whereas natural scientists tend to focus on a more determined conception that includes some undetermined aspects. Our analyses lead to reflections on potential difficulties for interdisciplinary teams in nuclear waste management. We focus on the understanding of the safety assessment, on potential implications for communication between experts from different disciplines (e.g., between experts from the humanities and engineering for risk assessment and risk communication), and we reflect on the roles of different disciplines in nuclear waste management. © 2011 Society for Risk Analysis.

  3. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  4. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M; Neumeier, S; Bosbach, D [eds.

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  5. Waste canister for storage of nuclear wastes

    International Nuclear Information System (INIS)

    Duffy, J.B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall. 4 claims, 4 figures

  6. Partitioning-transmutation technology: a potential future nuclear waste management option

    International Nuclear Information System (INIS)

    Nakayama, S.; Morita, Y.; Nishihara, K.; Oigawa, H.

    2005-01-01

    Partitioning-transmutation technology (PT) will produce radioactive wastes of different physical and chemical properties and in different amounts from those generated in the current nuclear fuel cycle. To assess quantitatively the effects of PT on waste disposal, we first analyzed the amounts of the PT wastes, assumed conditioning for each type of the waste, and then made an attempt to estimate the repository area for disposal of the PT wastes. The properties of the hot Sr-Cs waste form are controlling factors in determining the size of the geologic repository. The disposal area could be reduced if the Sr-Cs fraction is disposed in a different subsurface repository or by long-term storage of the waste under institutional control. Disposal in a subsurface repository was found to comply with the Japanese law in terms of radioactivity constraint, through a performance assessment for disposal of the Sr-Cs fraction. (authors)

  7. Nuclear waste: The problem that won't go away

    International Nuclear Information System (INIS)

    Lenssen, N.

    1991-01-01

    This book presents an overview of the problems of permanent and safe disposal of nuclear waste. The introduction has a brief history of the politics of nuclear waste. Major sections of the book include the following: permanent hazards of nuclear waste, including examples and the politics; health and radiation (history of recommended dosages, health risks, and problems of environmental transport are included); They call it disposal talks about technical options for dealing with nuclear waste, the actual number of sites in different countries, and the inadequacies of scientific knowledge in this area; Technical Fixes? Includes a discussion of other suggested ways of handling nuclear waste; The politics of nuclear waste and beyond illusion conclude the book. 105 refs., 5 tabs

  8. Geotechnical assessment and instrumentation needs for isolation of nuclear waste in crystalline rocks: symposium proceedings

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Duguid, J.O.

    1985-09-01

    On October 15-19, 1984, the Geotechnical Assessment and Instrumentation Needs (GAIN) Symposium was convened to examine the status of technology for the isolation of nuclear waste in crystalline rock. The objective of the 1984 GAIN Symposium was to provide technical input to the Crystalline Repository Project concerning: critical issues and information needs associated with development and assessment of a repository in crystalline rock; appropriate techniques and instrumentation for determining the information needed; and technology required to provide the measurement techniques and instrumentation for application in an exploratory shaft in crystalline rock. The findings and recommendations of the symposium are presented in these proceedings

  9. Volume reduction technology development for solid wastes from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, Kune Woo; Song, Kee Chan; Choi, Wang Kyu; Kim, Young Min

    1998-07-01

    A great deal of solid wastes, which have various physical, chemical, and radiological characteristics, are generated from the nuclear fuel cycle facility as well as radioactive gaseous and liquid wastes. The treatment of the large quantity of solid wastes from the nuclear fuel cycle have great technical, economical and social effects on the domestic policy decision on the nuclear fuel cycle, such as operation and maintenance of the facility, waste disposal, etc. Cement immobilization, super compaction, and electrochemical dissolution were selected as the volume reduction technologies for solid wastes, which will generated from the domestic nuclear fuel cycle facility in the future. And the assessment of annual arisings and the preliminary conceptual design of volume reduction processes were followed. Electrochemical decontamination of α-radionuclides from the spent fuel hulls were experimentally investigated, and showed the successful results. However, β/γ radioactivity did not reduce to the level below which hulls can be classified as the low-level radioactive waste and sent to the disposal site for the shallow land burial. The effects of the various process variables in the electrochemical decontamination were experimentally analysed on the process. (author). 32 refs., 32 tabs., 52 figs

  10. Radioactive waste management policy for nuclear power

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Simionov, V.

    1998-01-01

    Nuclear power is part of energy future as a clean and environmental friendly source of energy. For the case of nuclear power, two specific aspects come more often in front of public attention: how much does it cost and what happens with radioactive waste. The competitiveness of nuclear power vs other sources of energy is already proved in many developed and developing countries. As concerns the radioactive wastes treatment and disposal, industrial technologies are available. Even final solutions for disposal of high level radioactive waste, including spent fuel, are now fully developed and ready for large scale implementation. Policies and waste management strategies are established by all countries having nuclear programs. Once, the first nuclear power reactor was commissioned in Romania, and based on the national legal provisions, our company prepared the first issue of a general strategy for radioactive waste management. The general objective of the strategy is to dispose the waste according to adequate safety standards protecting the man and the environment, without undue burden on future generations. Two target objectives were established for long term: an interim spent fuel dry storage facility and a low and intermediate level waste repository. A solution for spent fuel disposal will be implemented in the next decade, based on international experience. Principles for radioactive waste management, recommended by IAEA are closely followed in the activities of our company. The continuity of responsibilities is considered to be very important. The radioactive waste management cost will be supported by the company. A tax on unit price of electricity will be applied. The implementation of radioactive waste management strategy includes as a major component the public information. A special attention will be paid by the company to an information program addressed to different categories of public in order to have a better acceptance of our nuclear power projects

  11. Nuclear waste

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews the Department of Energy's management of underground single-shell waste storage tanks at its Hanford, Washington, site. The tanks contain highly radioactive and nonradioactive hazardous liquid and solid wastes from nuclear materials production. Hundreds of thousands of gallons of these wastes have leaked, contaminating the soil, and a small amount of leaked waste has reached the groundwater. DOE does not collect sufficient data to adequately trace the migration of the leaks through the soil, and studies predicting the eventual environmental impact of tank leaks do not provide convincing support for DOE's conclusion that the impact will be low or nonexistent. DOE can do more to minimize the environmental risks associated with leaks. To reduce the environmental impact of past leaks, DOE may be able to install better ground covering over the tanks to reduce the volume of precipitation that drains through the soil and carries contaminants toward groundwater

  12. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  13. Future Shock in Nuclear Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Frishman, Steve [Nevada Agency for Nuclear Projects, Carson City, NV (United States)

    2006-09-15

    The United States Environmental Protection Agency (EPA) astonished many in the high-level nuclear waste management community when it proposed, in August 2005, new Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada. The new standards set a compliance period of one million years for a Yucca Mountain high-level nuclear waste repository. The first 10,000 years after repository closure would be governed by a health-based individual dose limit of 15 millirems per year (0.15 mSv/year), with the remaining time period subject to a background-based individual dose limit of 350 millirems per year (3.5 mSv/year). EPA's proposed standards for a Yucca Mountain nuclear waste repository represent an astonishing break with principles embedded in regulatory policies for protection of the public from radiation effects imposed by activities such as generation of electricity from nuclear power reactors and storage and disposal of radioactive wastes.

  14. Nuclear waste in the Pacific: perceptions of the risks

    International Nuclear Information System (INIS)

    Childs, I.R.W.

    1984-01-01

    This dissertation examines the problem of the disposal of high-level nuclear waste in the Pacific region. There is a consensus of scientific opinion that the technical difficulties in waste disposal can be overcome. The most acceptable solution seems to be the multi-barrier approach for deep land-based geologic disposal. A questionnaire survey on the perception of nuclear and other hazards, conducted with student populations in Japan and Australia, and a survey of reporting of nuclear events in Pacific newspapers over the period 1946 to the 1980s, reveal that the image of nuclear weapons dominates public views on the risks associated with waste disposal in Australia, Japan, and the Pacific Islands. The problem of finding a suitable site for a nuclear waste disposal facility is to a large extent political. The capacity of anti-nuclear groups to influence waste disposal policies in Australia, Japan, and the Pacific Islands is examined. Current public attitudes toward nuclear waste disposal will delay the further development of activities connected with the nuclear fuel cycle, but this may change over time if the connection between commercial nuclear power and nuclear weapons can be severed more effectively. The most urgent problem in the region is the waste from the ambitious nuclear power programs of Japan, South Korea, and Taiwan

  15. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  16. Tergiversating the price of nuclear waste storage

    International Nuclear Information System (INIS)

    Mills, R.L.

    1984-01-01

    Tergiversation, the evasion of straightforward action of clearcut statement of position, was a characteristic of high-level nuclear waste disposal until the US Congress passed the Nuclear Waste Policy Act of 1982. How the price of waste storage is administered will affect the design requirements of monitored retrievable storage (MRS) facilities as well as repositories. Those decisions, in part, are internal to the Department of Energy. From the utility's viewpoint, the options are few but clearer. Reprocessing, as performed in Europe, is not a perfect substitute for MRS. The European reprocess-repository sequence will not yield the same nuclear resource base as the American MRS-repository scheme. For the future price of the energy resource represented by nuclear waste, the author notes that tergiversation continues. 3 references

  17. Safety and cost evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Vieno, T.; Hautojaervi, A.; Korhonen, R.

    1989-11-01

    The report introduces the results of the nuclear waste management safety and cost evaluation research carried out in the Nuclear Engineering Laboratory of the Technical Research Centre of Finland (VTT) during the years 1984-1988. The emphasis is on the description of the state-of-art of performance and cost evaluation methods. The report describes VTT's most important assessment models. Development, verification and validation of the models has largely taken place within international projects, including the Stripa, HYDROCOIN, INTRACOIN, INTRAVAL, PSACOIN and BIOMOVS projects. Furthermore, VTT's other laboratories are participating in the Natural Analogue Working Group,k the CHEMVAL project and the CoCo group. Resent safety analyses carried out in the Nuclear Engineering Laboratory include a concept feasibility study of spent fuel disposal, safety analyses for the Preliminary Safety Analysis Reports (PSAR's) of the repositories to be constructed for low and medium level operational reactor waste at the Olkiluoto and Loviisa power plants as well as safety analyses of disposal of decommissioning wastes. Appendix 1 contains a comprehensive list of the most important publications and technical reports produced. They present the content and results of the research in detail

  18. Scenarios for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Scenarios describing representative exposure cases associated with the disposal of low activity waste from the Hanford Waste Tanks have been defined. These scenarios are based on guidance from the Department of Energy, the U.S. Nuclear Regulatory Commission, and previous Hanford waste disposal performance assessments

  19. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  20. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  1. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  2. Thirty years nuclear energy. 240,000 years of nuclear waste. Why Greenpeace campaigns against nuclear energy

    International Nuclear Information System (INIS)

    Teule, R.

    2004-01-01

    A brief overview is given of the arguments that Greenpeace has against nuclear energy, and why this environmental organization campaigns against the processing of nuclear waste and transportation of Dutch nuclear waste to France [nl

  3. The future of the civil nuclear industry: the challenge of nuclear wastes

    International Nuclear Information System (INIS)

    2001-01-01

    This research thesis first gives an overview of the nuclear waste processing and storage in France (reasons and future of this political choice, legal framework, storage means and sites, weaknesses of waste storage). Then it comments various aspects of the processing of foreign nuclear wastes in France: economy and media impact, law and contracts, waste transport, temporary storage in France

  4. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  5. Scenario analysis for the postclosure assessment of the Canadian concept for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, B W; Stephens, M E; Davison, C C; Johnson, L H; Zach, R

    1994-12-01

    AECL Research has developed and evaluated a concept for disposal of Canada`s nuclear fuel waste involving deep underground disposal of the waste in intrusive igneous rock of the Canadian Shield. The postclosure assessment of this concept focusses on the effects on human health and the environment due to potential contaminant releases into the biosphere after the disposal vault is closed. Both radiotoxic and chemically toxic contaminants are considered. One of the steps in the postclosure assessment process is scenario analysis. Scenario analysis identifies factors that could affect the performance of the disposal system and groups these factors into scenarios that require detailed quantitative evaluation. This report documents a systematic procedure for scenario analysis that was developed for the postclosure assessment and then applied to the study of a hypothetical disposal system. The application leads to a comprehensive list of factors and a set of scenarios that require further quantitative study. The application also identifies a number of other factors and potential scenarios that would not contribute significantly to environmental and safety impacts for the hypothetical disposal system. (author). 46 refs., 3 tabs., 3 figs., 2 appendices.

  6. Scenario analysis for the postclosure assessment of the Canadian concept for nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Stephens, M.E.; Davison, C.C.; Johnson, L.H.; Zach, R.

    1994-12-01

    AECL Research has developed and evaluated a concept for disposal of Canada's nuclear fuel waste involving deep underground disposal of the waste in intrusive igneous rock of the Canadian Shield. The postclosure assessment of this concept focusses on the effects on human health and the environment due to potential contaminant releases into the biosphere after the disposal vault is closed. Both radiotoxic and chemically toxic contaminants are considered. One of the steps in the postclosure assessment process is scenario analysis. Scenario analysis identifies factors that could affect the performance of the disposal system and groups these factors into scenarios that require detailed quantitative evaluation. This report documents a systematic procedure for scenario analysis that was developed for the postclosure assessment and then applied to the study of a hypothetical disposal system. The application leads to a comprehensive list of factors and a set of scenarios that require further quantitative study. The application also identifies a number of other factors and potential scenarios that would not contribute significantly to environmental and safety impacts for the hypothetical disposal system. (author). 46 refs., 3 tabs., 3 figs., 2 appendices

  7. Survey on non-nuclear radioactive waste

    International Nuclear Information System (INIS)

    2003-11-01

    On request from the Swedish Radiation Protection Authority, the Swedish government has in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The committee will deliver its proposals to the government 1 December 2003. SSI has assisted the committee to the necessary extent to fulfill the investigation. This report is a summery of SSI's background material concerning non-nuclear radioactive waste in Sweden

  8. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (eds.)

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  9. Public perception on nuclear energy and radioactive waste - The second opinion poll

    International Nuclear Information System (INIS)

    Diaconu, Stela; Covreag Ilinca

    2009-01-01

    In 2008 ANDRAD started the second national opinion poll which had the purpose to identify the support of Romanian citizen for energy production by nuclear power stations, which is perceived as a less expensive energy, that could reduces the oil dependence of our country. The questionnaire consisted in 22 questions aiming to assess: the level of information about radioactive waste, the actual knowledge about radioactive waste management, the support and the opinion on nuclear energy, the public attitude regarding radioactive waste disposal, the trust in information sources and the public involvement in the decision-making process. (authors)

  10. Chapter 4. Assessment and inspection of nuclear installations

    International Nuclear Information System (INIS)

    2001-01-01

    Supervisory activity of Nuclear Regulatory Authority of the Slovak Republic (UJD) upon the safety of nuclear installations in compliance with the 'Atomic Act' and other legal regulations includes also inspection and assessment activities of UJD. Assessment activity of UJD in relation to nuclear installations lies in assessment of safety documentation for constructions realised as nuclear installations, or constructions through which changes are realised on nuclear installations. The scope of safety documentation required for the assessment is stipulated in the Atomic Act. In 2000 the assessment activity focused first of all on Unit 1 of NPP Bohunice after completing its Gradual Reconstruction Programme, on National Repository of Radioactive waste in Mochovce and on radioactive waste conditioning and treatment technology in Jaslovske Bohunice. Activities of UJD in assessment focused mainly on control of compliance with requirements for nuclear safety, assessment of commissioning programmes, operating procedures, limits and conditions, etc. The assessment of changes, which influence nuclear safety of nuclear installations in operation, realisation of which is conditioned by the approval from UJD, is a significant part of the assessment activity of UJD. Mainly it is the assessment of design changes, changes in limits and conditions, operating procedures, changes in programmes of periodical testing of equipment important in terms of nuclear safety, changes in physical protection of nuclear equipment, etc. The assessment of nuclear installations operational safety, based on assessment of operational events, on maintaining limits and conditions of safe operation, on operational safety performance indicators and on inspection results is a separate category in the assessment activity of UJD. Inspection activity specified in the 'Atomic Act' is governed by an internal guideline, an important part of which is an annual inspection plan that considers the following types of

  11. The enactment of the Nuclear Waste Policy Act of 1982: A multiple perspectives explanation

    International Nuclear Information System (INIS)

    Clary, B.B.

    1991-01-01

    The Nuclear Waste Policy Act (NWPA) is generally analyzed from the distinct perspective of any given actor involved in the nuclear waste policymaking process. Yet, these perspectives often rest on totally different models of decisionmaking. This article applies a multiple perspective explanation as developed by Allison (1971) and Linstone (1984) to the NWPA and explains policy outcomes by reference to three models of decisionmaking: rational actor, organizational processes and governmental politics. Commonalities and points of disjointure in the three models are highlighted and prospects for future nuclear waste disposal policy development are assessed using an integrated decisionmaking framework

  12. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  13. Regulation imposed to nuclear facility operators for the elaboration of 'waste studies' and 'waste statuses'

    International Nuclear Information System (INIS)

    2001-01-01

    This decision from the French authority of nuclear safety (ASN) aims at validating the new versions of the guidebook for the elaboration of 'waste studies' for nuclear facilities and of the specifications for the elaboration of 'waste statuses' for nuclear facilities. This paper includes two documents. The first one is a guidebook devoted to nuclear facility operators which fixes the rules of production of waste studies according to the articles 20 to 26 of the inter-ministry by-law from December 31, 1999 (waste zoning conditions and ASN's control modalities). The second document concerns the specifications for the establishment of annual waste statuses according to article 27 of the inter-ministry by-law from December 31, 1999 (rational management of nuclear wastes). (J.S.)

  14. Nuclear safety requirements for upgrading the National Repository for Radioactive Wastes-Baita Bihor

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Necula, Daniela

    2000-01-01

    The upgrading project of National Repository for Radioactive Wastes-Baita Bihor is based on the integrated concept of nuclear safety. Its ingredients are the following: A. The principles of nuclear safety regarding the management of radioactive wastes and radioprotection; B. Safety objectives for final disposal of low- and intermediate-level radioactive wastes; C. Safety criteria for final disposal of low- and intermediate-level radioactive wastes; D. Assessment of safety criteria fulfillment for final disposal of low- and intermediate-level radioactive wastes. Concerning the nuclear safety in radioactive waste management the following issues are considered: population health protection, preventing transfrontier contamination, future generation radiation protection, national legislation, control of radioactive waste production, interplay between radioactive waste production and management, radioactive waste repository safety. The safety criteria of final disposal of low- and intermediate-level radioactive wastes are discussed by taking into account the geological and hydrogeological configuration, the physico-chemical and geochemical characteristics, the tectonics and seismicity conditions, extreme climatic potential events at the mine location. Concerning the requirements upon the repository, the following aspects are analyzed: the impact on environment, the safety system reliability, the criticality control, the filling composition to prevent radioactive leakage, the repository final sealing, the surveillance. Concerning the radioactive waste, specific criteria taken into account are the radionuclide content, the chemical composition and stability, waste material endurance to heat and radiation. The waste packaging criteria discussed are the mechanical endurance, materials toughness and types as related to deterioration caused by handling, transportation, storing or accidents. Fulfillment of safety criteria is assessed by scenarios analyses and analyses of

  15. Assessment of national systems for obtaining local acceptance of nuclear waste management siting activities

    International Nuclear Information System (INIS)

    Paige, H.W.; Owens, J.E.

    1984-01-01

    On behalf of the United States Department of Energy (DOE), International Energy Associates Limited (IEAL) of Washington, D.C. has conducted surveys and analyses of fourteen countries' plans and approaches for dealing with the problems of obtaining local siting acceptance for nuclear waste management facilities. It was determined that the following elements of the formal systems generally facilitate and/or expedite waste management siting decisions: (1) a clear-cut pro-nuclear power position on the part of the government; (2) a willingness on the part of the central government to exert (with prudence and restraint) its pre-emptive rights in nuclear matters; (3) political structures in which the heads of regional or provincial governments are appointed by the central government; (4) national laws that link reactor licensing with a detailed plan for waste management; (5) an established and stable policy with regard to reprocessing. In contrast, it was determined that the following elements of the formal system generally hinder waste management siting activities: (1) historically strong local land used veto laws; (2) the use of national referenda for making nuclear decisions; (3) requirements for public hearings. The informal approaches fall into the following five categories: (1) political: e.g. assertion of will by political leaders, activities to enlist support of local politicians, activities to broaden involvement in decision-making; (2) economic: e.g. emphasis on normal benefits, provision for additional economic benefits; (3) siting: e.g. at or near existing nuclear facilities, on government or utility property, at multiple locations to spread the political burden; (4) timing: e.g. decoupling drilling activities from ultimate repository site decision, deliberate deferral to (long-range) future; (5) education: e.g. creation of special government programmes, enlisting of media support

  16. The Nuclear Waste Fund Inquiry. Financing of nuclear waste management in Sweden and Finland and the cost control system in Sweden

    International Nuclear Information System (INIS)

    1994-01-01

    The report describes the Finnish system for financing nuclear waste management, and compares it to the swedish one. It gives an analysis of the economic effects for the waste management financing of an early shut-down of a nuclear power plant, and of a change to a new system for financing the waste management, more like the Finnish one. Finally the cost for the Swedish nuclear waste management, as estimated by SKB, is scrutinized. 25 refs

  17. Nuclear waste vs. democracy

    International Nuclear Information System (INIS)

    Treichel, J.

    1999-01-01

    In the United States the storage and disposal of high-level nuclear waste is a highly contentious issue because under current plans the public is subjected to unaccepted, involuntary risks. The proposed federal policy includes the forced siting of a repository and interim storage facilities in Nevada, and the transport of waste across the entire nation through large cities and within 2 mile of over 50 million people. At its destination in Nevada, the residents would face coexistence with a facility housing highly radioactive wastes that remain dangerous for many thousands of years. Scientific predictions about the performance and safety of these facilities is highly uncertain and the people foresee possibly catastrophic threats to their health, safety and economic well-being for generations to come. The public sees this currently proposed plan as one that seeks to maximise the profits of the commercial nuclear industry through imposing risk and sacrifice to communities who reap no benefit. And there is no evidence that this plan is actually a solution to the problem. The American public has never had the opportunity to participate in the nuclear waste debate and government plans are presented to people as being necessary and inevitable. To allow democracy into the decisions could be costly to the nuclear industry and it might thwart the government program, but that is the nature of democracy. If the utilities are established to provide a public service, and the government is founded on the principle of public representation, then the nuclear waste debate must conform to those requirements. What we see in this case is a continuing change of rule and law to accommodate a corporate power and the subrogation of national principle. The result of this situation has been that the public exercises its only option - which is obstructing the federal plan. Because the odds are so heavily stacked in favour of government and industry and average citizens have so little access

  18. Methodology Used for Total System Performance Assessment of the Potential Nuclear Waste Repository at Yucca Mountain (USA)

    International Nuclear Information System (INIS)

    E. Devibec; S.D. Sevougian; P.D. Mattie; J.A. McNeish; S. Mishra

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model [1]. Process models included in the TSPA model are unsaturated zone flow and transport, thermal hydrology, in-drift geochemistry, waste package degradation, waste form degradation, engineered barrier system transport, saturated zone flow and transport, and biosphere transport. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. The environmental impact is measured primarily by the annual dose received by an average member of a critical population group residing 20 km down-gradient of the potential repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates

  19. Safety analysis of the proposed Canadian geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Prowse, D.R.

    1977-01-01

    The Canadian program for development and qualification of a geologic repository for emplacement of high-level and long-lived, alpha-emitting waste from irradiated nuclear fuel has been inititiated and is in its initial development stage. Fieldwork programs to locate candidate sites with suitable geological characteristics have begun. Laboratory studies and development of models for use in safety analysis of the emplaced nuclear waste have been initiated. The immediate objective is to complete a simplified safety analysis of a model geologic repository by mid-1978. This analysis will be progressively updated and will form part of an environmental Assessment Report of a Model Fuel Center which will be issued in mid-1979. The long-term objectives are to develop advanced safety assessment models of a geologic repository which will be available by 1980

  20. Hanford immobilized low-activity tank waste performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  1. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  2. Draft environmental assessment: Swisher County site, Texas. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified a location in Swisher County, Texas, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The potentially acceptable site was subsequently narrowed to an area of 9 square miles. To determine their suitability, the Swisher site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Swisher site is not disqualified under the guidelines. The site is contained in the Permian Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Deaf Smith site. Although the Swisher site appears to be suitable for site characterization, the DOE has concluded that the Deaf Smith site is the preferred site in the Permian Basin and is proposing to nominate the Deaf Smith site rather than the Swisher site as one of the five sites suitable for characterization

  3. Draft environmental assessment: Lavender Canyon site, Utah. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Lavender Canyon site is not disqualified under the guidelines. The site is contained in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Davis Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site rather than the Lavender Canyon site as one of the five sites suitable for characterization

  4. Office of the US Nuclear Waste Negotiator

    International Nuclear Information System (INIS)

    Leroy, D.H.

    1991-01-01

    The Office of the US Nuclear Waste Negotiator was created as an independent federal agency by the US Congress pursuant to the 1987 amendments to the Nuclear Waste Policy Act of 1982. The office, which was authorized by Congress for 5 years following the enactment of the 1987 amendments, is headquartered in Boise, Idaho, and maintains a liaison office in Washington DC. The negotiator is charged with the responsibility of attempting to find a state or Indian tribe willing to host a repository or monitored retrievable storage (MRS) facility at a technically qualified site on reasonable terms. The negotiator is instructed to negotiate with any state or Indian tribe that expresses an interest in hosting a repository or MRS facility. The negotiator will formally submit the negotiated agreement and environmental assessment to Congress, and the agreement will become effective when acted on by Congress and signed by the President into law

  5. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  6. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  7. International Nuclear Waste Management Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1994-05-01

    International Nuclear Waste Management Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R ampersand D programs, and key personnel in 24 countries, including the US, four multinational agencies and 21 nuclear societies. This publication succeeds the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 13 years. While the title is different, there are no substantial changes in the content

  8. Transmuting nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With the problems of disposing of nuclear waste material increasingly the cause for widespread concern, attention is turning to possible new techniques for handling discarded radioactive material and even putting it to good use

  9. Transmuting nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-04-15

    With the problems of disposing of nuclear waste material increasingly the cause for widespread concern, attention is turning to possible new techniques for handling discarded radioactive material and even putting it to good use.

  10. Residual radioactivity investigation and radiological assessments for self-disposal of concrete waste in nuclear fuel processing facility

    International Nuclear Information System (INIS)

    Seol, Jeung Gun; Ryu, Jae Bong; Cho, Suk Ju; Yoo, Sung Hyun; Song, Jung Ho; Baek, Hoon; Kim, Seong Hwan; Shin, Jin Seong; Park, Hyun Kyoun

    2007-01-01

    In this study, domestic regulatory requirement was investigated for self-disposal of concrete waste from nuclear fuel processing facility. And after self-disposal as landfill or recycling/reuse, the exposure dose was evaluated by RESRAD Ver. 6.3 and RESRAD BUILD Ver. 3.3 computing code for radiological assessments of the general public. Derived clearance level by the result of assessments for the exposure dose of the general public is 0.1071Bq/g (3.5% enriched uranium) for landfill and 0.05515 Bq/cm 2 (5% enriched uranium) for recycling/reuse respectively. Also, residual radioactivity of concrete waste after decontamination was investigated in this study. The result of surface activity is 0.01Bq/cm 2 for emitter and the result of radionuclide analysis for taken concrete samples from surface of concrete waste is 0.0297Bq/g for concentration of 238 U, below 2w/o for enrichment of 235 U and 0.0089Bq/g for artificial contamination of 238 U respectively. Therefore, radiological hazard of concrete waste by self-disposal as landfill and recycling/reuse is below clearance level to comply with clearance criterion provided for Notice No. 2001-30 of the MOST and Korea Atomic Energy Act

  11. Nuclear waste treatment program: Annual report for FY 1987

    International Nuclear Information System (INIS)

    Brouns, R.A.; Powell, J.A.

    1988-09-01

    Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs

  12. Goals for nuclear waste management

    International Nuclear Information System (INIS)

    Watson, R.A.

    1978-01-01

    Establishing a publicly, politically, economically, and technologically acceptable waste management system for the fuel cycle is a necessary condition for accepting the nuclear program as a national energy option. Findings are given on the technology, politics, economics, morality, aesthetics, and societal impact of waste management. Proposed goals are outlined for the regulation of waste management

  13. The nuclear waste primer: A handbook for citizens

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A sourcebook of facts about the production of nuclear waste and radioactive materials, this volume looks at the debate over safe storage, transportation, and disposal of hazardous radioactive materials. Addressing such concerns as the dangers of nuclear waste, protecting the public, and affecting the decision-making process at all levels of government, this book explores the issues central to the handling and disposal of nuclear waste

  14. Vitrification chemistry and nuclear waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting

  15. Nuclear Waste Management Program summary document, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  16. Nuclear Waste Management Program summary document, FY 1981

    International Nuclear Information System (INIS)

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel

  17. Safety assessment of geologic repositories for nuclear waste

    International Nuclear Information System (INIS)

    Bartlett, J.W.; Burkholder, H.C.; Winegardner, W.K.

    1977-01-01

    Consideration of geologic isolation for final disposition of radioactive wastes has led to the need for evaluation of the safety of the concept. Such evaluations require consideration of factors not encountered in conventional risk analysis: consequences at times and places far removed from the repository site; indirect, complex, and alternative pathways between the waste and the point of potential consequences; a highly limited data base; and limited opportunity for experimental verification of results. R and D programs to provide technical safety evaluations are under way. Three methods are being considered for the probabilistic aspects of the evaluations: fault tree analysis, repository simulation analysis, and system stability analysis. Nuclide transport models, currently in a relatively advanced state of development, are used to evaluate consequences of postulated loss of geologic isolation. This paper outlines the safety assessment methods, unique features of the assessment problem that affect selection of methods and reliability of results, and available results. It also discusses potential directions for future work

  18. Technical conservatism in the design and analysis of a nuclear-waste repository in basalt

    International Nuclear Information System (INIS)

    Jones, K.A.

    1982-01-01

    The US Department of Energy's National Waste Terminal Storage Program has adopted a policy of technical conservatism to guide the design and analysis of geologic disposal systems for commercial high-level radioactive waste. Technical conservatism serves as the programmatic philosophy for managing uncertainty in the performance of the disposal system. The implementation of technical conservatism as applied to a nuclear waste repository in basalt is discussed. Preliminary assessments of the performance of the waste package, repository, and site subsystems are compared to key proposed regulatory criteria. The comparison shows that there are substantial safety margins in the predicted performance of the nuclear waste repository in basalt

  19. Role of natural analogs in performance assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Sagar, B.; Wittmeyer, G.W.

    1995-01-01

    Mathematical models of the flow of water and transport of radionuclides in porous media will be used to assess the ability of deep geologic repositories to safely contain nuclear waste. These models must, in some sense, be validated to ensure that they adequately describe the physical processes occurring within the repository and its geologic setting. Inasmuch as the spatial and temporal scales over which these models must be applied in performance assessment are very large, validation of these models against laboratory and small-scale field experiments may be considered inadequate. Natural analogs may provide validation data that are representative of physico-chemical processes that occur over spatial and temporal scales as large or larger than those relevant to repository design. The authors discuss the manner in which natural analog data may be used to increase confidence in performance assessment models and conclude that, while these data may be suitable for testing the basic laws governing flow and transport, there is insufficient control of boundary and initial conditions and forcing functions to permit quantitative validation of complex, spatially distributed flow and transport models. The authors also express their opinion that, for collecting adequate data from natural analogs, resources will have to be devoted to them that are much larger than are devoted to them at present

  20. Finnish Research Programme on Nuclear Waste Management (KYT). Framework Programme for 2002-2005

    International Nuclear Information System (INIS)

    Rasilainen, K.

    2002-12-01

    The new Finnish research programme on nuclear waste management (KYT) will be conducted in 2002 - 2005. This framework programme describes the starting point, the basic aims and the organisation of the research programme. The starting point of the KYT programme is derived from the present state and future challenges of Finnish nuclear waste management. The research programme is funded mainly by the Ministry of Trade and Industry (KTM), the Radiation and Nuclear Safety Authority (STUK), Posiva Oy, Fortum Oyj, Teollisuuden Voima Oy (TVO), and the National Technology Agency (Tekes). As both regulators and implementors are involved, the research programme concentrates on neutral research topics that must be studied in any case. Methods and tools for experimental and theoretical studies fall in this category. State of the art -reviews on relevant topics also create national know-how. Topics that directly belong to licensing activities of nuclear waste management are excluded from the research programme. KYT carries out technical studies that increase national know-how in the area of nuclear waste management. The aim is to maintain and develop basic expertise needed in the operations derived from the national nuclear waste management plan. The studies have been divided into strategic studies and studies enhancing the long-term safety of spent nuclear fuel disposal. Strategic studies support the overall feasibility of Finnish nuclear waste management. These studies include basic options and overall safety principles related to nuclear fuel cycle and nuclear waste management. In addition, general cost estimates as well as general safety considerations related to transportations, low- and medium level wastes, and decommissioning are included in strategic studies. Studies supporting the long-term safety of spent fuel disposal include issues related to performance assessment methodology, release of radionuclides from the repository, behaviour of bedrock and groundwater

  1. UK safety and standards for radioactive waste management and decommissioning on nuclear licensed sites

    International Nuclear Information System (INIS)

    Mason, D.J.

    2001-01-01

    This paper discusses the regulation of radioactive waste and decommissioning in the United Kingdom and identifies the factors considered by HM Nuclear Installations Inspectorate in examining the adequacy arrangements for their management on nuclear licensed sites. The principal requirements are for decommissioning to be undertaken as soon as reasonably practicable and that radioactive wastes should be minimised, disposed of or contained and controlled by storage in a passively safe form. However, these requirements have to be considered in the context of major organisational changes in the UK nuclear industry and the non-availability of disposal routes for some decommissioning wastes. The legislative framework used to regulate decommissioning of nuclear facilities in the UK is described. Reference is made to radioactive waste and decommissioning strategies, quinquennial reviews criteria for delicensing and the forthcoming Environmental Impact Assessment Regulations. (author)

  2. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  3. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Murphy, W.M.; Kovach, L.A.

    1995-01-01

    A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research related to geologic disposal of HLW

  4. Waste from nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    The report presents proposals for organizing and financing of the treatment and deposition of spent fuel and radioactive waste. Decommissioning of plants is taken into consideration. The proposals refer to a program of twelve reactors. A relatively complete model for the handling of radioactive waste in Sweden is at hand. The cost for the years 1980 to 2000 is estimated at approx 1040 million SKr. Also the expense to dispose of the rest of the waste is calculated up to the year 2060, when the waste is planned to be put into final deposit. The state must have substantial influence over the organization which should be closely connected to the nuclear industry. Three different types of organization are discussed, namely (i) a company along with a newly created authority, (ii) a company along with the existing Nuclear Power Inspectorate or (iii) a company along with a board of experts. The proposals for financing the cost of handling nuclear waste are given in chief outlines. The nuclear industry should reserve means to special funds. The allocations are calculated to 1.4 oere per delivered kWh up to and including the year 1980. The accumulated allocations for 1979 should thus amount to 1310 million SKr. The charge for supervision and for certain research and development is recommended to be 0.1 oere per kWh which corresponds to approx 23 million SKr for 1980. The funds should be assured by binding agreements which must be approved by the state. The amounts are given in the monetary value of the year 1979. (G.B.)

  5. Processing of nuclear waste

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1981-01-01

    The processing of nuclear waste to transform the liquid waste from fuel reprocessing activities is well defined. Most solid waste forms, if they are cooled and contain diluted waste, are compatible with many permanent storage environments. The public acceptance of methods for disposal is being delayed in the US because of the alternatives studies of waste forms and repositories now under way that give the impression of indecision and difficulty for the disposal of HLW. Conservative programs that dilute and cool solid waste are under way in France and Sweden and demonstrate that a solution to the problem is available now. Research and development should be directed toward improving selected methods rather than seeking a best method, which at best, may always be illusory

  6. Global Nuclear Energy Partnership Waste Treatment Baseline

    International Nuclear Information System (INIS)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John

    2008-01-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  7. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  8. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  9. Institute of Energy and Climate Research IEK-6. Nuclear Waste Management report 2011/2012. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2013-01-01

    The nuclear waste management section of the Institute of Energy and Climate Research IEK-6 in Juelich is focused on research on radiochemistry aspects/materials science relevant for the long-term safety of nuclear waste storage and disposal. Studies on innovative waste management strategies include partitioning o actinides and the development of ceramic waste forms. Structural research is covering solid state chemistry, crystallography and computational science to model actinide containing compounds. With respect to waste management concepts nondestructive essay techniques, waste treatment procedures and product quality control strategies were developed.

  10. Considerations in managing the assessment of the Canadian nuclear fuel waste disposal concept

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.; Whitaker, S.H.

    1992-01-01

    This paper reports that in developing a concept for disposal of Canada's nuclear fuel waste, AECL has faced challenges because the acceptability of the concept must be established before a site is selected, no agency has been made responsible for implementing the concept if it is selected, and many stakeholders in the review must be satisfied if the concept is to be accepted. The challenges have thus far been met by a program that is well-integrated technically and administratively. However, interactions with stakeholders reviewing the concept present a problem in communication. The authors believe the nature of the nuclear fuel waste disposal issue calls for a cooperative rather than an adversarial approach to problem solving to efficiently deal with the requirements of all the stakeholders

  11. Nuclear waste information made accessible: A case study

    International Nuclear Information System (INIS)

    Willis, Y.A.; Morris, W.R.

    1987-01-01

    The Nuclear Industry has made great technical strides toward the safe and efficient management of nuclear waste but public acceptance and cooperation lag far behind. The challenge is to better inform the public of the technical options available to safely manage the various types of nuclear wastes. Westinghouse responded to this challenge by creating the Nuclear Waste Management Outreach Program with the goal to make nuclear waste information accessible as well as available. The Outreach Program is an objective informational seminar series comprises of modules which may be adopted to various audiences. The seminars deal with radioactive wastes and the legislative and regulatory framework within which the Industry must function. The Outreach Program provides a forum to present relevant information, encourage an interchange of ideas and experiences, elicit feedback, and it provides for field site visits where feasible and appropriate. The program has been well received by the participants including technologists, government officials, educators, and the general public

  12. Fewer can be More: Nuclear Safety and Security Culture Self-Assessment in the Hungarian Public Ltd. for Radioactive Waste Management

    International Nuclear Information System (INIS)

    Horváth, K.; Solymosi, M.; Vass, G.

    2016-01-01

    The Hungarian regulator and operators show strong commitment towards robust nuclear safety and security culture. The paper discusses the evolution and the basis of the regulation of Hungarian safety and security culture. Because of security considerations nuclear safety incidents have always received and for sure will receive more publicity than malicious acts. That is probably the main reason behind that mostly nuclear safety incidents influence the common beliefs. This kind of primacy is noticeable as well in regulations and also in practice. Although there is a strong connection nuclear safety and security culture, their relationship has not been researched for a long time. The paper also presents an already achieved, combined nuclear safety and security culture survey type assessment. Survey is a well known type of organizational culture self assessment. The applied methods, relationship between these two cultures and of course some difficulties of the process are summarized. The presented method is appropriate to combine different guidance and characteristics to measure different attitude in a single survey. The method in practice is shown through the nuclear safety and security culture assessment conducted at Hungarian Public Ltd. Of Radioactive Waste Management. (author)

  13. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  14. Nuclear waste disposal: perspective of a geochemist

    International Nuclear Information System (INIS)

    Sengupta, Pranesh; Dey, G.K.

    2011-01-01

    Satisfying the growing requirement in an environment friendly way is one of the most important tasks we need to accomplish these days. Considering the restricted non-renewable energy resources and limited technological progresses achieved in the renewable energy sectors in India, nuclear energy appears to be one of the most lucrative solutions towards the forthcoming energy crisis. Successful implementation of nuclear energy program however requires careful execution of high level nuclear waste management activities. One very important aspect of this process is to identify and develop suitable inert matrix(ces) for conditioning of nuclear waste(s) using natural analogue studies. And this establishes the very vital linkage between geochemical studies and nuclear waste immobilization. One good example of such an interdisciplinary approach can be seen in the methodologies adopted for immobilization of sulfate bearing high level nuclear wastes (SO 4 -HLW). It has been reported on several occasions that sulfur-rich melt get separated from silicate melt within magma chamber. Similar process has also been witnessed within vitrification furnaces whenever an attempt has been made to condition SO 4 -HLW within borosilicate glass matrices. Since such liquid-liquid phase separation leads to multiple difficulties in connection to radionuclide immobilization and plant scale vitrification processes, solutions were sought from natural analogue studies. Such as integrated approach ultimately resulted in establishing two different methodologies e.g. (i) modifying the borosilicate network through introduction of Ba 2+ cation; a process being followed in India and (ii) using phosphatic melt as a host instead of borosilicate melt; a process being followed in Russia. Detail of these two routes and the geochemical linkage in nuclear waste immobilization will be discussed.(author)

  15. Review of nuclear waste isolation

    International Nuclear Information System (INIS)

    Richard, B.H.

    1978-06-01

    On Jun 22 and 23, 1978, Rockwell Hanford Operations assembled a committee of their personnel, subcontractors, and representatives of other waste isolation programs for a review of nuclear waste isolation. Appendix A lists the participants and their affiliations; Appendix B indicates the agenda. The purpose of the review was to gather experts in the areas pertaining to isolation of nuclear waste to discuss three basic issues that must be addressed in isolation studies. These were: the paths of transport to the biosphere; the barriers needed for containment; and the isolation time necessary for each radioactive isotope. In that these issues are media dependent, the basalt medium was emphasized. Conclusions of the review are described

  16. Nuclear waste management. Quarterly progress report, January-March, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comp.)

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  17. NEAMS Nuclear Waste Management IPSC: evaluation and selection of tools for the quality environment

    International Nuclear Information System (INIS)

    Bouchard, Julie F.; Stubblefield, William Anthony; Vigil, Dena M.; Edwards, Harold Carter

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) is to provide an integrated suite of computational modeling and simulation (M and S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. These M and S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M and S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V and V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V and V activities. This report documents an evaluation of the needs, options, and tools selected for the NEAMS Nuclear Waste Management IPSC quality environment. The objective of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) program element is to provide an integrated suite of computational modeling and simulation (M and S) capabilities to assess quantitatively the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. This objective will be fulfilled by acquiring and developing M and S capabilities, and establishing a defensible level of confidence in these M and S capabilities. The foundation for assessing the

  18. Risks from nuclear waste

    International Nuclear Information System (INIS)

    Liljenzin, J.O.; Rydberg, J.

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs

  19. Risks from nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Liljenzin, J.O.; Rydberg, J. [Radiochemistry Consultant Group, Vaestra Froelunda (Sweden)

    1996-11-01

    The first part of this review discusses the importance of risk. If there is any relation between the emotional and rational risk perceptions (for example, it is believed that increased knowledge will decrease emotions), it will be a desirable goal for society, and the nuclear industry in particular, to improve the understanding by the laymen of the rational risks from nuclear energy. This review surveys various paths to a more common comprehension - perhaps a consensus - of the nuclear waste risks. The second part discusses radioactivity as a risk factor and concludes that it has no relation in itself to risk, but must be connected to exposure leading to a dose risk, i.e. a health detriment, which is commonly expressed in terms of cancer induction rate. Dose-effect relations are discussed in light of recent scientific debate. The third part of the report describes a number of hazard indexes for nuclear waste found in the literature and distinguishes between absolute and relative risk scales. The absolute risks as well as the relative risks have changed over time due to changes in radiological and metabolic data and by changes in the mode of calculation. To judge from the literature, the risk discussion is huge, even when it is limited to nuclear waste. It would be very difficult to make a comprehensive review and extract the essentials from that. Therefore, we have chosen to select some publications, out of the over 100, which we summarize rather comprehensively; in some cases we also include our remarks. 110 refs, 22 figs.

  20. Why partition nuclear waste

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1976-01-01

    A cursory review of literature dealing with various separatory processes involved in the handling of high-level liquid nuclear waste discloses that, for the most part, discussion centers on separation procedures and methodology for handling the resulting fractions, particularly the actinide wastes. There appears to be relatively little discussion on the incentives or motivations for performing these separations in the first place. Discussion is often limited to the assumption that we must separate out ''long-term'' from our ''short-term'' management problems. This paper deals with that assumption and devotes primary attention to the question of ''why partition waste'' rather than the question of ''how to partition waste'' or ''what to do with the segregated waste.''

  1. The politics of nuclear-waste disposal

    International Nuclear Information System (INIS)

    Tarricone, P.

    1994-01-01

    After 72 days of public hearings and testimony from more than 100 witnesses, the first commission of its kind in the US found that politics--not science and engineering--led to the selection of Martinsville, Ill. as the host site for a nuclear-waste-disposal facility. This article examines how the plan to dispose of nuclear waste in Martinsville ultimately unraveled

  2. Radioactive waste management of the nuclear medicine services

    International Nuclear Information System (INIS)

    Barboza, Alex

    2009-01-01

    Radioisotope applications in nuclear medicine services, for diagnosis and therapy, generate radioactive wastes. The general characteristics and the amount of wastes that are generated in each facility are function of the number of patients treated, the procedures adopted, and the radioisotopes used. The management of these wastes embraces every technical and administrative activity necessary to handle the wastes, from the moment of their generation, till their final disposal, must be planned before the nuclear medicine facility is commissioned, and aims at assuring people safety and environmental protection. The regulatory framework was established in 1985, when the National Commission on Nuclear Energy issued the regulation CNEN-NE-6.05 'Radioactive waste management in radioactive facilities'. Although the objective of that regulation was to set up the rules for the operation of a radioactive waste management system, many requirements were broadly or vaguely defined making it difficult to ascertain compliance in specific facilities. The objective of the present dissertation is to describe the radioactive waste management system in a nuclear medicine facility and provide guidance on how to comply with regulatory requirements. (author)

  3. Nuclear waste repository in basalt: a design description

    International Nuclear Information System (INIS)

    Ritchie, J.S.; Schmidt, B.

    1982-01-01

    The conceptual design of a nuclear waste repository in basalt is described. Nuclear waste packages are placed in holes drilled into the floor of tunnels at a depth of 3700 ft. About 100 miles of tunnels are required to receive 35,000 packages. Five shafts bring waste packages, ventilation air, excavated rock, personnel, material, and services to and from the subsurface. The most important surface facility is the waste handling building, located over the waste handling shaft, where waste is received and packaged for storage. Two independent ventilation systems are provided to avoid potential contamination of spaces that do not contain nuclear waste. Because of the high temperatures at depth, an elaborate air chilling system is provided. Because the waste packages deliver a considerable amount of heat energy to the rock mass, particular attention is paid to heat transfer and thermal stress studies. 3 references, 31 figures, 3 tables

  4. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  5. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  6. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    International Nuclear Information System (INIS)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon

    2016-01-01

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  7. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  8. Overview of the NRC nuclear waste management program

    International Nuclear Information System (INIS)

    Malaro, J.C.

    1976-01-01

    The NRC has firmly established waste management as a high-priority effort and has made the commitment to act rapidly and methodically to establish a sound regulatory base for licensing waste management activities. We believe the priorities for NRC work in waste management are consistent with the needs of the overall national waste management program. Present licensing procedures and criteria are adequate for the short term, and priority attention is being given to the longer term, when the quantities of waste to be managed will be greater and licensing demands will increase. Recognizing that its decision will affect industry, other governmental jurisdictions, private interest groups, and the public at large, NRC has encouraged and will continue to encourage their participation in planning our program. We also recognize that the problems of nuclear waste management are international in scope. Many waste management problems (e.g., potential for contamination of oceans and atmosphere, need for isolation of some wastes for longer periods than governments and political boundaries have remained stable in the past), require a set of internationally acceptable and accepted solutions. The wastes from the U.S. nuclear industry will account for only about one third of the nuclear waste generated in the world. Therefore, we propose to cooperate and where appropriate take the lead in establishing acceptable worldwide policies, standards and procedures for handling nuclear wastes

  9. Nuclear waste glass corrosion mechanisms

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1987-04-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of other solids, e.g., metallurgical and mineralogic systems. Metallurgical phenomena such as active corrosion, passivation and immunity have been observed to be a function of the glass composition and the solution pH. Hydration thermodynamics was used to quantify the role of glass composition and its effect on the solution pH during dissolution. A wide compositional range of natural, lunar, medieval, and nuclear waste glasses, as well as some glass-ceramics were investigated. The factors observed to affect dissolution in deionized water are pertinent to the dissolution of glass in natural environments such as the groundwaters anticipated to interact with nuclear waste glass in a geologic repository. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on glass dissolution is described in the context of Pourbaix diagrams, pH potential diagrams, for glass

  10. Nuclear waste : Is everthing under control ?

    OpenAIRE

    Giuliani, Gregory; De Bono, Andréa; Kluser, Stéphane; Peduzzi, Pascal

    2007-01-01

    50 years after the opening of the world's first civil nuclear power station, very little radioac- tive waste produced has been permanently disposed of. Moreover, the average age of today's reactors is approximately 22 years, meaning most of them will be decommissioned over the next decades. All of these wastes will have to be disposed of even if no more nuclear reactors are built. But is it wise to take further advantage of the “nuclear path”, without proven and widely-utilized solutions to t...

  11. Risk perception as it applies to nuclear power and nuclear waste disposal

    International Nuclear Information System (INIS)

    Sprecher, W.M.

    1988-01-01

    Disparate perceptions of risk have emerged as one of the critical issues confronting the future of commercial nuclear power. This paper explores the origins and possible ramifications of the public's perception of risks associated with commercial nuclear power and related high-level nuclear waste disposal programs. This paper summarizes the results of numerous psychometric studies and public opinion polls that analyze the relationship of risk to nuclear power and waste management

  12. Demonstration of a performance assessment methodology for nuclear waste isolation in basalt formations

    International Nuclear Information System (INIS)

    Bonano, E.J.; Davis, P.A.

    1988-01-01

    This paper summarizes the results of the demonstration of a performance assessment methodology developed by Sandia National Laboratories, Albuquerque for the US Nuclear Regulatory Commission for use in the analysis of high-level radioactive waste disposal in deep basalts. Seven scenarios that could affect the performance of a repository in basalts were analyzed. One of these scenarios, normal ground-water flow, was called the base-case scenario. This was used to demonstrate the modeling capabilities in the methodology necessary to assess compliance with the ground-water travel time criterion. The scenario analysis consisted of both scenario screening and consequence modeling. Preliminary analyses of scenarios considering heat released from the waste and the alteration of the hydraulic properties of the rock mass due to loads created by a glacier suggested that these effects would not be significant. The analysis of other scenarios indicated that those changing the flow field in the vicinity of the repository would have an impact on radionuclide discharges, while changes far from the repository may not be significant. The analysis of the base-case scenario was used to show the importance of matrix diffusion as a radionuclide retardation mechanism in fractured media. The demonstration of the methodology also included an overall sensitivity analysis to identify important parameters and/or processes. 15 refs., 13 figs., 2 tabs

  13. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  14. Nuclear waste management in Finland. Final report of public sector's research programme JYT2001 (1997-2001)

    International Nuclear Information System (INIS)

    Rasilainen, K.

    2002-05-01

    According to Finnish nuclear energy legislation, each producer of nuclear waste is responsible for the safe handling, management, and disposal of its waste, as well as for the costs arising. The Posiva company, owned by the nuclear energy-producing power companies, is in charge of spent nuclear fuel management in Finland. The authorities supervise the management of nuclear waste and issue regulations for this purpose. In these demanding tasks the authorities have been supported by the Public Sector's Research Programme on Nuclear Waste Management (JYT2001). The objective of JYT2001 was to provide the authorities with independent expertise and research results relevant to the safety of nuclear waste management. Emphasis was placed on the geological disposal of spent nuclear fuel. The research area was divided into (1) technical studies on the safety of spent fuel disposal, and (2) social science studies related to nuclear waste management. The technical studies covered bedrock behaviour, the hydrogeology and geochemistry of the bedrock, the stability of the bentonite buffer, and the migration of radionuclides in the bedrock. In addition, performance assessment methodology was covered, as well as waste management technologies and costs. The social science studies were focussed on observing the Decision in Principle (DiP) process including the Environmental Impact Assessment (EIA), and media issues related to the spent fuel disposal facility. JYT2001 provided considerable support to the authorities in helping them deal with technical and social science questions. The Government's positive Decision in Principle (DiP) on Posiva's application for a spent fuel disposal facility in Eurajoki was ratified by Parliament in May 2001. The existence of a credible JYT2001 programme, independent of Posiva, obviously contributed to the high level of public confidence in the Finnish nuclear waste management programme. According to the schedule of the Finnish nuclear waste management

  15. Concerning enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material

    International Nuclear Information System (INIS)

    1988-01-01

    The Atomic Safety Commission of Japan, after examining a report submitted by the Science and Technology Agency concerning the enactment of regulations on burying of waste of nuclear fuel material or waste contaminated with nuclear fuel material, has approved the plan given in the report. Thus, laws and regulations concerning procedures for application for waste burying business, technical standards for implementation of waste burying operation, and measures to be taken for security should be established to ensure the following. Matters to be described in the application for the approval of such business and materials to be attached to the application should be stipulated. Technical standards concerning inspection of waste burying operation should be stipulated. Measures to be taken for the security of waste burying facilities and security concerning the transportation and disposal of nuclear fuel material should be stipulated. Matters to be specified in the security rules should be stipulated. Matters to be recorded by waste burying business operators, measures to be taken to overcome dangers and matters to be reported to the Science and Technology Agency should be stipulated. (Nogami, K.)

  16. Science, society, and America's nuclear waste: Unit 2, Ionizing radiation

    International Nuclear Information System (INIS)

    1992-01-01

    ''Science, Society and America's Nuclear Waste'' is a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  17. Extraction of cesium and strontium from nuclear waste

    Science.gov (United States)

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  18. Nuclear waste package fabricated from concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400 0 C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs

  19. Will America's nuclear waste be laid to rest

    Energy Technology Data Exchange (ETDEWEB)

    Charles, D

    1991-12-14

    The Waste Isolation Pilot Plant (WIPP) in New Mexico, was designed to store waste from the United States (U.S.) nuclear weapons production in deep repositories under the naturally occurring salt beds. However no waste can be put into the repository until safety checks, designed as nuclear reactor safety standards, have been satisfactorily completed to the U.S. congress's satisfaction. While political controversy reigns the WIPP structure stands empty and steel drums of radioactive waste remain at the U.S. nuclear weapons factories. Proponents say costly capital investment is being wasted, opponents that people and the environment would be at risk of contamination if safety standards were not understood and adhered to. (UK).

  20. Underground nuclear waste storage backed

    International Nuclear Information System (INIS)

    Long, J.R.

    1978-01-01

    Latest to hold hearings on nuclear waste disposal problems is the Senate Commerce Subcommittee on Science, Technology and Space. Testimonies by John M. Deutch, Rustum Roy (presenting results of National Research Council panel on waste solidification), and Darleane C. Hoffman are summarized

  1. A comparative assessment of alternative waste management procedures for selected reprocessing wastes

    International Nuclear Information System (INIS)

    Hickford, G.E.; Plews, M.J.

    1983-07-01

    This report, which has been prepared by Associated Nuclear Services for the Department of the Environment, presents the results of a study and comparative assessment of management procedures for low and intermediate level solid waste streams arising from current and future fuel reprocessing operations on the Sellafield site. The characteristics and origins of the wastes under study are discussed and a reference waste inventory is presented, based on published information. Waste management strategy in the UK and its implications for waste conditioning, packaging and disposal are discussed. Wastes currently arising which are not suitable for Drigg burial or sea dumping are stored in an untreated form. Work is in hand to provide additional and improved disposal facilities which will accommodate all the waste streams under study. For each waste stream viable procedures are identified for further assessment. The procedures comprise a series of on-site operations-recovery from storage, pre-treatment, treatment, encapsulation, and packaging, prior to storage or disposal of the conditioned waste form. Assessments and comparisons of each procedure for each waste are presented. These address various process, operational, economic, radiological and general safety factors. The results are presented in a series of tables with supporting text. For the majority of wastes direct encapsulation with minimal treatment appears to be a viable procedure. Occupational exposure and general safety are not identified as significant factors governing the choice of procedures. The conditioned wastes meet the general requirements for safe handling during storage and transportation. The less active wastes suitable for disposal by currently available routes meet the appropriate disposal criteria. It is not possible to consider in detail the suitability for disposal of the more active wastes for which disposal facilities are not yet available. (Author)

  2. The Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1987-01-01

    Canada has established an extensive research program to develop and demonstrate the technology for safely disposing of nuclear fuel waste from Canadian nuclear electric generating stations. The program focuses on the concept of disposal deep in plutonic rock, which is abundant in the province of Ontario, Canada's major producer of nuclear electricity. Research is carried out at field research areas in the Canadian Precambrian Shield, and in government and university laboratories. The schedule calls for a document assessing the disposal concept to be submitted to regulatory and environmental agencies in late 1988. This document will form the basis for a review of the concept by these agencies and by the public. No site selection will be carried out before this review is completed. 10 refs.; 2 figs

  3. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992

    International Nuclear Information System (INIS)

    1992-01-01

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada's responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency's oversight responsibilities: (1) Assure that the health and safety of Nevada's citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository

  4. A ratepayers' perspective on implementation of the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Callen, R.C.

    1986-01-01

    After more than three years of continuing DOE response to the Congressional mandate it is reasonable to assess what progress has been made and what success has been achieved. The NARUC's past conclusions and recommendations should also be put to the test for critical accuracy and relevance. This paper constitutes a current assessment of NARUC observations and conclusions in several areas; waste program management; cost control; repository licensing by the U.S. Nuclear Regulatory Commission; funding for disposal of defense wastes; the decision by DOE to discontinue second repository site selection; the credibility achieved by the DOE; and the effectiveness of the Congress in overseeing the waste program

  5. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  6. Publicly administrated nuclear waste management research programme 1994-1996. General plan for the research programme and research plan for 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy legislation of Finland includes detailed stipulations concerning nuclear waste management. Each producer of nuclear waste is responsible for the safe handling, management and disposal of the waste, and for the financing of these operations. The authorities supervise and control the implementation of the national waste management programme and set the necessary safety and other requirements. The principal goal of the JYT programme is to provide the authorities with information and research results relevant for the safety of nuclear waste management in order to support the various activities of the authorities. The whole field of the research programme is subdivided into the following main topic areas: (1) bedrock structure and stability, rock investigation methods, and characteristics and flow of groundwater, (2) release of radionuclides from a repository and subsequent migration in the bedrock, (3) performance and safety assessment of repositories and other phases of nuclear waste management (4) natural analogue studies, (5) waste management technology and costs and (6) sociopolitical and other societal issues and environmental impact assessment

  7. Management of abnormal radioactive wastes at nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    As with any other industrial activity, a certain level of risk is associated with the operation of nuclear power plants and other nuclear facilities. That is, on occasions nuclear power plants or nuclear facilities may operate under conditions which were not specifically anticipated during the design and construction of the plant. These abnormal conditions and situations may cause the production of abnormal waste, which can differ in character or quantity from waste produced during normal routine operation of nuclear facilities. Abnormal waste can also occur during decontamination programmes, replacement of a reactor component, de-sludging of storage ponds, etc. The management of such kinds of waste involves the need to evaluate existing waste management systems in order to determine how abnormal wastes should best be handled and processed. There are no known publications on this subject, and the IAEA believes that the development and exchange of such information among its Member States would be useful for specialists working in the waste management area. The main objective of this report is to review existing waste management practices which can be applied to abnormal waste and provide assistance in the selection of appropriate technologies and processes that can be used when abnormal situations occur. Naturally, the subject of abnormal waste is complex and this report can only be considered as a guide for the management of abnormal waste. Refs, figs and tabs.

  8. Radioactive wastes. The management of nuclear wastes. Waste workshop, first half-year - Year 2013-2014

    International Nuclear Information System (INIS)

    Esteoulle, Lucie; Rozwadowski, Elodie; Duverger, Clara

    2014-01-01

    The first part of this report first presents radioactive wastes with their definition, and their classification (radioactivity level, radioactive half-life). It addresses the issue of waste storage by presenting the different types of storage used since the 1950's (offshore storage, surface warehousing, storage in deep geological layer), and by discussing the multi-barrier approach used for storage safety. The authors then present the French strategy which is defined in the PNGMDR to develop new management modes on the long term, to improve existing management modes, and to take important events which occurred between 2010 and 2012 into account. They also briefly present the Cigeo project (industrial centre of geological storage), and evoke controversies related to the decision to locate this project in Bure (existence of geological cracks and defects, stability and tightness of the clay layer, geothermal potential of the region, economic cost). The second part proposes an overview of the issue of nuclear waste management. The author recalls the definition of a radioactive waste, indicates the origins of these wastes and their classification. She proposes a history of the radioactive waste: discovery of radioactivity, military industrialisation and awareness of the dangerousness of radioactive wastes, nuclear wastes and recent incidents (West Valley, La Hague, Windscale). An overview of policies of nuclear waste management is given: immersion of radioactive wastes, major accidental releases, solutions on the short term and on the medium term

  9. Identification of key radionuclides in a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Barney, G.S.; Wood, B.J.

    1980-05-01

    Radionuclides were identified which appear to pose the greatest potential hazard to man during long-term storage of nuclear waste in a repository mined in the Columbia Plateau basalt formation. The criteria used to select key radionuclides were as follows: quantity of radionuclide in stored waste; biological toxicity; leach rate of the wastes into groundwater; and transport rate via groundwater flow. The waste forms were assumed to be either unreprocessed spent fuel or borosilicate glass containing reprocessed high-level waste. The nuclear waste composition was assumed to be that from a light water reactor. Radionuclides were ranked according to quantity, toxicity, and release rate from the repository. These rankings were combined to obtain a single list of key radionuclides. The ten most important radionuclides in order of decreasing hazard are: 99 Tc, 129 I, 237 Np, 226 Ra, 107 Pd, 230 Th, 210 Pb, 126 Sn, 79 Se, and 242 Pu. Safety assessment studies and the design of engineered barriers should concentrate on containment of radionuclides in this list

  10. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  11. Nuclear Waste Management, Nuclear Power, and Energy Choices Public Preferences, Perceptions, and Trust

    CERN Document Server

    Greenberg, Michael

    2013-01-01

    Hundreds of studies have investigated public perceptions and preferences about nuclear power, waste management, and technology. However there is clear lack of uniformity in the style, aims and methods applied.  Consequently, the body of results is inconsistent and it is difficult to isolate relevant patterns or interpretations. Nuclear Waste Management, Nuclear Power and Energy Choices: Public Preferences, Perceptions and Trust presents a theoretical base for public reactions then classifies and reviews the large body of surveys carried out over the past decade.   Particular focus is placed on residents within 50 miles US nuclear waste facilities due to the disproportionate presence of nuclear factors in their lives such as the legacy of nuclear waste disposal and job dependency. The motivations and reasons for their views such as fear, attraction to the economic benefits, trust of site managers and federal agencies, cultural views, personal history, and demographic attributes of the people are also conside...

  12. Draft environmental assessment: Vacherie Dome site, Louisiana. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Vacherie dome in Louisiana as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Vacherie dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Vacherie dome site is not disqualified under the guidelines. The site is contained in the Gulf Interior Region of the Gulf Coastal Plain, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites - the Cypress Creek dome site and the Richton dome site. Although the Vacherie dome site appears to be suitable for site characterization, the DOE has concluded that the Richton dome site is the preferred site in the Gulf Interior Region. On the basis of these findings, the DOE is proposing to nominate the Richton dome site rather than the Vacherie dome site as one of the five sites suitable for characterization

  13. Geotechnical assessment and instrumentation needs for nuclear waste isolation in crystalline and argillaceous rocks

    International Nuclear Information System (INIS)

    1979-01-01

    To evaluate the state-of-the-art, research needs, and research priorities related to waste disposal in largely impermeable rocks, scientists and engineers working on geologic aspects of nuclear waste disposal were brought together. This report and recommendations are the proceedings from that symposium. Three panels were organized on rock properties, fracture hydrology, and geochemistry. Panel discussions and recommendations are presented

  14. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  15. Institute for Nuclear Waste Disposal. Annual Report 2011

    International Nuclear Information System (INIS)

    Geckeis, H.; Stumpf, T.

    2012-01-01

    The R and D at the Institute for Nuclear Waste Disposal, INE, (Institut fuer Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  16. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  17. Diffusion processes in nuclear waste glasses

    International Nuclear Information System (INIS)

    Serruys, Y.; Limoge, Y.; Brebec, G.

    1992-01-01

    Problems concerning the containment of nuclear wastes are presented. Different materials which have been considered for this purpose are briefly reviewed and we see why glass is one of the favorite candidates. It is focussed on what is known about diffusion in 'simple enough' glasses. After a recall concerning the structure and possible defects, the main results on diffusion in 'simple' glasses are given and it is shown what these results involve for the mechanisms of diffusion. The diffusion models are presented which can account for transport in random media: percolation and random walk models. Specific phenomena for the nuclear waste glasses are considered: the effect of irradiation on diffusion and leaching (i.e. corrosion by water). Finally diffusion data in nuclear waste glasses are presented. (author). 199 refs., 6 figs., 1 tab

  18. Effects on the environment of the dumping of nuclear wastes

    International Nuclear Information System (INIS)

    1990-07-01

    Nationally and internationally accepted procedures and technologies are available for the safe handling and disposal of radioactive wastes. Authorized waste disposal practices are designed to ensure that there will be no significant impacts on man and his environment. 'Dumping' of nuclear wastes may result in the elimination of one or more of the multibarriers of protection inherent in an effective radioactive waste management system, thereby increasing the risk of radiological exposure to man and his environment. Quantitative assessments of the degree of environmental contamination and of the resulting hazards to man depend on the specific conditions surrounding the 'uncontrolled disposal' of radioactive waste. These include the nature and activity level of the waste, the physical form of the waste, the package that the waste is contained in and the characteristics of the dumping site. Depending on the scenario envisaged, the consequences of 'uncontrolled disposal' could vary from being insignificant to a situation where there is a significant hazard to an exposed population group. International transactions involving nuclear wastes are taking place between countries on the basis of bilateral agreements and under strict regulatory supervision so that radioactive wastes are transferred safely from one controlled area to another. Such transactions may increase in the future with increased international co-operation in sharing common waste repositories. No evidence exists that confirms that transboundary dumping of radioactive waste has occurred. Investigation of alleged dumping of radioactive wastes by the International Atomic Energy Agency has revealed that the 'suspect wastes' did not contain radioactive material. 2 tabs

  19. Nuclear waste vault sealing

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded, it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating groundwater. Vault sealing entails four major aspects, i.e.: (a) vault grouting; (b) borehole sealing; (c) buffer packing; and (d) backfilling. Of particular concern in vault sealing are the physical and chemical properties of the sealing material, its long-term durability and stability, and the techniques used for its emplacement. Present sealing technology and sealing materials are reviewed in terms of the particular needs of vault sealing. Areas requiring research and development are indicated

  20. Nuclear Power, its Waste in the World and in Turkey

    OpenAIRE

    Temiz, Fatih

    2017-01-01

    Nuclear power plants were born in 1950s. Taking only 30 grams of used fuel annually for a person’s energy consumption many countries built their own nuclear power plants. In this story, there is the fuel on one hand and the waste on the other. In general sense, used up fuel rods from nuclear reactors and the waste from reprocessing plants are referred to as nuclear waste. These wastes can be stored for decades in the cooling pools of nuclear reacto...

  1. Congressional-executive interaction and the nuclear waste repository site selection process

    International Nuclear Information System (INIS)

    Thurber, J.A.; Evanson, T.C.

    1993-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) (P.L. 97-425) and the Nuclear Waste Policy Amendments Act of 1987 (NWPAA) (Title V of P.L. 100-203) provide the framework for the DOE Office of Civilian Radioactive Waste Management (OCRWM) to find a permanent means for disposing of high-level nuclear waste in the US. The focus of this study is the congressional decision-making process associated with passage of the Nuclear Waste Policy Amendments Act of 1987. The passage of NWPAA was a direct result of the failure of the policy adopted in the Nuclear Waste Policy Act of 1982. This study analyzes the nature of congressional nuclear waste policy-making through the lens of subsystems theory. The data analysis is primarily based on confidential interviews with over fifty key actors in the nuclear waste policy subsystem as well as an analysis of primary source documents

  2. Source study for a concept of spent nuclear fuel and radioactive waste management in the Czech Republic

    International Nuclear Information System (INIS)

    Vokal, A.; Trtilek, R.; Tarasova, J.; Popelova, E.; Podlaha, J.; Krmela, J.; Vojtechova, H.; Uhlir, J.

    2013-02-01

    The sections of the study are as follows: Purpose of the study; Basic principles of peaceful uses of nuclear energy and spent nuclear fuel and radioactive waste management; Basic starting facts and assumptions and assessment of the fulfilment of the targets; Low-level and medium-level radioactive waste management; Management of spent nuclear fuels and wastes not admitted to near-surface repositories; Description of / proposal for the methodology of transparency policy and proposal for a method to involve the entities affected, including municipalities and the public; Current financial arrangements (reserves for decommissioning, nuclear account); Refinement/modification of the plans and technical solutions; Proposed schedule and milestones for attaining the targets; Proposal for a research and development programme; Assessment of the costs of implementation of the targets. (P.A.)

  3. Nuclear waste management plan of the Finnish TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 - reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The BNCT work dominates the current utilization of the reactor. The weekly schedule allows still one or two days for other purposes such as isotope production and neutron activation analysis. According to the Finnish legislation the research reactor must have a nuclear waste management plan. The plan describes the methods, the schedule and the cost estimate of the whole decommissioning waste and spent fuel management procedure starting from the removal of the spent fuel, the dismantling of the reactor and ending to the final disposal of the nuclear wastes. The cost estimate of the nuclear waste management plan has to be updated annually and every fifth year the plan will be updated completely. According to the current operating license of our reactor we have to achieve a binding agreement, in 2005 at the latest, between our Research Centre and the domestic nuclear power companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel. There is also the possibility to make the agreement with USDOE about the return of our spent fuel back to USA. If we want, however, to continue the reactor operation beyond the year 2006, the domestic final disposal is the only possibility. In Finland the producer of nuclear waste is fully responsible for its nuclear waste management. The financial provisions for all nuclear waste management have been arranged through the State Nuclear Waste Management Fund. The main objective of the system is that at any time there shall be sufficient funds available to take care of the nuclear waste management measures caused by the waste produced up to that time. The system is applied also to the government institutions like FiR 1 research reactor. (author)

  4. The political challenges of nuclear waste; Kaernavfallets politiska utmaningar

    Energy Technology Data Exchange (ETDEWEB)

    Andren, Mats; Strandberg, Urban (eds.)

    2005-07-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review{sup ,} 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'.

  5. Proceedings of the Task 2 workshop Waste Isolation Safety Assessment Program

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1979-01-01

    The reports from the workshop on waste form release rate analysis are presented. The workshop started with overview presentations on the Office of Nuclear Waste Isolation (ONWI), the Waste Isolation Safety Assessment Program (WISAP), WISAP Task 2 (Waste Form Release Rate Analysis), and WISAP Task 4 (Sorption/Desorption Analysis). Technical presentations followed in these areas: leaching studies on spent fuels, leaching studies on high-level waste glass, waste form surface science experiments, radiation effects, and leach modeling. Separate abstracts were prepared for each

  6. Proceedings of the Task 2 workshop Waste Isolation Safety Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.J.

    1979-01-01

    The reports from the workshop on waste form release rate analysis are presented. The workshop started with overview presentations on the Office of Nuclear Waste Isolation (ONWI), the Waste Isolation Safety Assessment Program (WISAP), WISAP Task 2 (Waste Form Release Rate Analysis), and WISAP Task 4 (Sorption/Desorption Analysis). Technical presentations followed in these areas: leaching studies on spent fuels, leaching studies on high-level waste glass, waste form surface science experiments, radiation effects, and leach modeling. Separate abstracts were prepared for each.

  7. The Challenge of Development of a Holistic Waste Management Approach to Support the Nuclear Renaissance

    International Nuclear Information System (INIS)

    Makino, H.; Umeki, H.; Hioki, K.; McKinley, I.G.

    2009-01-01

    The recent growth of interest in atomic power, the 'nuclear renaissance', is undoubtedly driven by environmental concerns. Nevertheless, there are many opponents to such a move and, increasingly, their arguments focus on the back-end of the nuclear cycle, with waste disposal claimed to be the 'Achilles Heel' of nuclear power. It is clear that nuclear expansion - and introduction of advanced fuel cycles - will face intense scrutiny and a clear case must be made for its advantages, which will require an improved, integrated approach to waste management. Unlike the present, dispersed system that focuses only on disposal of individual waste streams, a holistic waste management approach needs to be developed for the entire back-end. In this paper, the technical challenges associated with the development of such a holistic waste management approach will be discussed in the context of recent progress in relevant technical areas, especially introduction of optimized approaches for repository design and safety assessment. (authors)

  8. Nuclear-waste-management. Quarterly progress report, July-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Chikalla, T.D.; Powell, J.A. (comps.)

    1981-12-01

    Progress reports and summaries are presented for the following: high-level waste process development, alternate waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and fuel pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  9. Methodologies for assessing long-term performance of high-level radioactive waste packages

    International Nuclear Information System (INIS)

    Stephens, K.; Boesch, L.; Crane, B.; Johnson, R.; Moler, R.; Smith, S.; Zaremba, L.

    1986-01-01

    Several methods the Nuclear Regulatory Commission (NRC) can use to independently assess Department of Energy (DOE) waste package performance were identified by The Aerospace Corporation. The report includes an overview of the necessary attributes of performance assessment, followed by discussions of DOE methods, probabilistic methods capable of predicting waste package lifetime and radionuclide releases, process modeling of waste package barriers, sufficiency of the necessary input data, and the applicability of probability density functions. It is recommended that the initial NRC performance assessment (for the basalt conceptual waste package design) should apply modular simulation, using available process models and data, to demonstrate this assessment method

  10. Biosphere model for assessing doses from nuclear waste disposal

    International Nuclear Information System (INIS)

    Zach, R.; Amiro, B.D.; Davis, P.A.; Sheppard, S.C.; Szekeley, J.G.

    1994-01-01

    The biosphere model, BIOTRAC, for predicting long term nuclide concentrations and radiological doses from Canada's nuclear fuel waste disposal concept of a vault deep in plutonic rock of the Canadian Shield is presented. This generic, boreal zone biosphere model is based on scenario analysis and systems variability analysis using Monte Carlo simulation techniques. Conservatism is used to bridge uncertainties, even though this creates a small amount of extra nuclide mass. Environmental change over the very long assessment period is mainly handled through distributed parameter values. The dose receptors are a critical group of humans and four generic non-human target organisms. BIOTRAC includes six integrated submodels and it interfaces smoothly with a geosphere model. This interface includes a bedrock well. The geosphere model defines the discharge zones of deep groundwater where nuclides released from the vault enter the biosphere occupied by the dose receptors. The size of one of these zones is reduced when water is withdrawn from the bedrock well. Sensitivity analysis indicates 129 I is by far the most important radionuclide. Results also show bedrock-well water leads to higher doses to man than lake water, but the former doses decrease with the size of the critical group. Under comparable circumstances, doses to the non-human biota are greater than those for man

  11. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  12. Nuclear waste management: A review of issues

    International Nuclear Information System (INIS)

    Angino, E.E.

    1985-01-01

    The subject of radioactive waste management and burial is a subject that raises strong emotional and political issues and generates sharp technical differences of opinion. The overall problem can be subdivided into the three major categories of (1) credibility and emotionalism, (2) technology, and (3) nuclear waste isolation and containment. An area of concern desperately in need of attention is that of proper public education on all aspects of the high-level radioactive-waste (rad-waste) burial problem. A major problem related to the rad-waste issue is the apparent lack of an official, all-encompassing U.S. policy for nuclear waste management, burial, isolation, and regulation. It is clear from all past technical reports that disposal of rad wastes in an appropriate geologic horizon is the best ultimate solution to the waste problem. After 25 y of dealing with the high-level radioactive waste problem, the difficulty is that no proposed plan has to date been tested properly. It is this indecision and reaction that has contributed in no small way to the public perception of inability to solve the problem. One major change that has occurred in the last few years was the enactment of the Nuclear Waste Policy Act of 1982. This act mandates deadlines, guidelines, and state involvement. It is time that strong differences of opinions be reconciled. One must get on with the difficult job of selecting the best means of isolating and burying these wastes before the task becomes impossible

  13. Nuclear waste: A problem of perspective

    International Nuclear Information System (INIS)

    Williams, I.G.K.

    1979-01-01

    In the light of the suspicion to be felt in the public towards the problem of nuclear waste management, the author in his article attempts to correct the impression created by somewhat sensational reports in the daily press by giving a more accurate description of nuclear waste management. He points out that responsible and fruitful research work has been done and should be made known to the public. (RB) [de

  14. Systems approach to nuclear waste glass development

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-01-01

    Development of a host solid for the immobilization of nuclear waste has focused on various vitreous wasteforms. The systems approach requires that parameters affecting product performance and processing be considered simultaneously. Application of the systems approach indicates that borosilicate glasses are, overall, the most suitable glasses for the immobilization of nuclear waste. Phosphate glasses are highly durable; but the glass melts are highly corrosive and the glasses have poor thermal stability and low solubility for many waste components. High-silica glasses have good chemical durability, thermal stability, and mechanical stability, but the associated high melting temperatures increase volatilization of hazardous species in the waste. Borosilicate glasses are chemically durable and are stable both thermally and mechanically. The borosilicate melts are generally less corrosive than commercial glasses, and the melt temperature miimizes excessive volatility of hazardous species. Optimization of borosilicate waste glass formulations has led to their acceptance as the reference nuclear wasteform in the United States, United Kingdom, Belgium, Germany, France, Sweden, Switzerland, and Japan

  15. Third Finnish-German seminar on nuclear waste management 1986

    International Nuclear Information System (INIS)

    Lamberg, L.

    1988-01-01

    The scope of the seminar was to provide an interdisciplinary forum for exchange of information and experiences in the field of nuclear waste management. The highlights of the seminar focused on the following topics: overall reviews, waste products, nearfield phenomena, site investigations, performance assessment and decommissioning. All together 20 papers were presented. Reviews, status reports and experimental studies dealt with general research programs and current research and development activities including regulatory aspects. Extensive discussions provided and opportunity to identify issues and options for further research

  16. Equity and nuclear waste disposal

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1994-01-01

    Following the recommendations of the US National Academy of Sciences and the mandates of the 1987 Nuclear Waste Policy Amendments Act, the US Department of Energy has proposed Yucca Mountain, Nevada as the site of the world's first permanent repository for high-level nuclear waste. The main justification for permanent disposal (as opposed to above-ground storage) is that it guarantees safety by means of waste isolation. This essay argues, however, that considerations of equity (safer for whom?) undercut the safety rationale. The article surveys some prima facie arguments for equity in the distribution of radwaste risks and then evaluates four objections that are based, respectively, on practicality, compensation for risks, scepticism about duties to future generations, and the uranium criterion. The conclusion is that, at least under existing regulations and policies, permanent waste disposal is highly questionable, in part, because it fails to distribute risk equitably or to compensate, in full, for this inequity

  17. French people and nuclear wastes

    International Nuclear Information System (INIS)

    D'Iribarne, Ph.

    2005-01-01

    On March 21, 2005, the French minister of industry gave to the author of this document, the mission to shade a sociological light on the radioactive wastes perception by French people. The objective of this study was to supply an additional information before the laying down in 2006 of the decisions about the management of high-level and long-lived radioactive wastes. This inquiry, carried out between April 2004 and March 2005, stresses on the knowledge and doubts of the questioned people, on the vision they have of radioactive wastes and of their hazards, and on their opinion about the actors in concern (experts, nuclear companies, government, anti-nuclear groups, public). The last two parts of the report consider the different ways of waste management under study today, and the differences between the opinion of people living close to the Bure site and the opinion of people living in other regions. (J.S.)

  18. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  19. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    Energy Technology Data Exchange (ETDEWEB)

    Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic

  20. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  1. Dossier: management of nuclear wastes. Research, results

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The researches carried out since many years on nuclear wastes have led to two main ways of management: the long-term conditioning of radio-elements and their advanced separation. The French atomic energy commission (CEA) has chosen to take up also the transmutation challenge, a way to transform long-living radioactive wastes into short-living radioactive wastes or stable compounds. The transmutation programs are based both on simulation and experiments with a huge international collaboration. This dossier presents in a digest way the research activity carried out on nuclear wastes processing and management at the CEA. (J.S.)

  2. Discussion of some issues in assessing nuclear and radiation environmental impacts and in related assessment

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1998-01-01

    The author discusses some noticeable issues in drafting assessment report of nuclear and radiation environmental impacts and relevant aspects needed to be considered from the point of view of comprehensive environmental assessment. The considerable issue are principles of radioactive waste management, optimization of radiation protection and collective dose, and uncertainty of the assessment. Implementing reporting system on assessment of nuclear and radiation environmental impacts would improve environmental protection for nuclear and radiation facilities. However, trade's, regional , country and global assessment of environmental impacts has to be enhanced. For this purpose, it is necessary to develop methodology of qualitative and quantitative comprehensive assessment

  3. Radioactive waste management for German nuclear power plants

    International Nuclear Information System (INIS)

    Weh, R.; Methling, D.; Sappok, M.

    1996-01-01

    In Germany, back-end fuel cycle provisions must be made for the twenty nuclear power plants currently run by utilities with an aggregate installed power of 23.4 GWe, and the four nuclear power plants already shut down. In addition, there are the shut down nuclear power plants of the former German Democratic Republic, and a variety of decommissioned prototype nuclear power plants built with the participation of the federal government and by firms other than utilities. The nuclear power plants operated by utilities contribute roughly one third of the total electricity generation in public power plants, thus greatly ensuring a stable energy supply in Germany. The public debate in Germany, however, focuses less on the good economic performance of these plants, and the positive acceptance at their respective sites, but rather on their spent fuel and waste management which, allegedly, is not safe enough. The spent fuel and waste management of German nuclear power plants is planned on a long-term basis, and executed in a responsible way by proven technical means, in the light of the provisions of the Atomic Act. Each of the necessary steps of the back end of the fuel cycle is planned and licensed in accordance with German nuclear law provisions. The respective facilities are built, commissioned, and monitored in operation with the dedicated assistance of expert consultants and licensing authorities. Stable boundary conditions are a prerequisite in ensuring the necessary stability in planning and running waste management schemes. As producers of waste, nuclear power plants are responsible for safe waste management and remain the owners of that waste until it has been accepted by a federal repository. (orig./DG) [de

  4. Radioactive wastes in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Sakata, Sadahiro; Nagaike, Tadakatsu; Emura, Satoru; Matsumoto, Akira; Morisawa, Shinsuke.

    1978-01-01

    Recent topics concerning radioactive water management and disposal are widely reviewed. As the introduction, various sources of radioactivity including uranium mining, fuel fabrication, reactor operation and fuel reprocessing and their amount of wastes accumulated per 1000 MWe year operation of a LWR are presented together with the typical methods of disposal. The second section discusses the problems associated with uranium fuel fabrication and with nuclear power plants. Typical radioactive nuclides and their sources in PWRs and BWRs are discussed. The third section deals with the problems associated with reprocessing facilities and with mixed oxide fuel fabrication. Solidification of high-level wastes and the methods of the disposal of transuranic nuclides are the main topics in this section. The fourth section discusses the methods and the problems of final disposal. Various methods being proposed or studied for the final disposal of low- and high-level wastes and transuranic wastes are reviewed. The fifth section concerns with the risk analysis of waste disposal. Both deterministic and probabilistic methods are treated. As the example, the assessment of the risk due to floods is explained. The associated event tree and fault three are presented together with the estimated probability of the occurrence of each constituent failure. In the final section, the environmental problems of radioactive wastes are widely reviewed. (Aoki, K.)

  5. For Sale: Nuclear Waste Sites--Anyone Buying?

    Science.gov (United States)

    Hancock, Don

    1992-01-01

    Explores why the United States Nuclear Waste Program has been unable to find a volunteer state to host either a nuclear waste repository or monitored retrieval storage facility. Discusses the Department of Energy's plans for Nevada's Yucca Mountain as a repository and state and tribal responses to the plan. (21 references) (MCO)

  6. Quantitative assessment of in situ microbial communities affecting nuclear waste disposal

    International Nuclear Information System (INIS)

    White, D.C.

    1996-01-01

    Microbes in the environments surrounding nuclear waste depositories pose several questions regarding the protection of the surrounding communities. microbes can facilitate microbially influenced corrosion (MIC), mobilize and facilitate the transport of nuclides as well as produce gaseous emissions which can compromise containment. We have developed an analysis of the extant microbiota that is independent of quantitative recovery and subsequent growth, based on signature biomarkers analysis (SBA)

  7. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  8. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM

  9. Gamma radiation scanning of nuclear waste storage tile holes

    International Nuclear Information System (INIS)

    Das, A.; Yue, S.; Sur, B.; Johnston, J.; Gaudet, M.; Wright, M.; Burton, N.

    2010-01-01

    Nuclear waste management facilities at Chalk River Laboratories use below-ground 'tile holes' to store solid waste from various activities such as medical radioisotope production. A silicon PIN (p-type-intrinsic-n-type semiconductor) diode based gamma radiation scanning system has been developed and used to profile the gamma radiation fields along the depth of waste storage tile holes by deploying the sensor into verification tubes adjacent to the tile holes themselves. The radiation field measurements were consistent with expected radiation fields in the tile holes based on administrative knowledge of the radioactive contents and their corresponding decay rates. Such measurements allow non-invasive verification of tile hole contents and provide input to the assessment of radiological risk associated with removal of the waste. Using this detector system, radioactive waste that has decayed to very low levels may be identified based on the radiation profile. This information will support planning for possible transfer of this waste to a licensed waste storage facility designed for low level waste, thus freeing storage space for possible tile hole re-use for more highly radioactive waste. (author)

  10. Should high-level nuclear waste be disposed of at geographically dispersed sites?

    International Nuclear Information System (INIS)

    Bassett, G.W. Jr.

    1992-01-01

    Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy

  11. Evaluation of bitumens for nuclear facilities radioactive waste immobilization

    International Nuclear Information System (INIS)

    Guzella, Marcia F.R.; Silva, Tania V. da; Loiola, Roberto; Monte, Lauro J.B.

    2000-01-01

    The activities developed at the Nuclear Technology Development Centre, Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, include the research and development work of the radioactive wastes immobilization in different kind of bitumen. The present work describes the bituminization of simulated low level wastes of evaporator concentrates.Two types of bitumen are used for incorporation of the simulated wastes generated by nuclear power plants. Studies on rheological properties, leaching data, differential thermoanalysis and water content of the waste-products have been carried out. (author)

  12. Scientific basis for nuclear waste management

    International Nuclear Information System (INIS)

    Topp, S.V.

    1982-01-01

    This volume contains the proceedings of the fourth International Symposium on the Scientific Basis for Nuclear Waste Management, held in Boston, Massachusetts, on November 16-19, 1981, as part of the Annual Meeting of the Materials Research Society. The purpose of this Symposium was to provide an interdisciplinary forum for the discussion of scientific research dealing with all levels and types of radioactive wastes and their management. These symposia have been held annually since 1978. The proceedings of the first three meetings were published as Volumes 1, 2, and 3 in a series. With this, the fourth meeting, the volume numbering system is changed to coincide with the system used to number Materials Research Society Annual Meeting Proceedings. The reports presented here give the results of research and development activities from a large number of universities, government laboratories and private industry in nine countries. The 92 papers published in these proceedings have been divided into 92 chapters. These encompass various aspects of high-level and non-high-level radioactive waste management ranging from repository characterization and waste form production to product and performance assessment. All of the papers have been abstracted and indexed for the data base

  13. Thermodynamic tables for nuclear waste isolation

    International Nuclear Information System (INIS)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.; Siegel, M.D.

    1988-05-01

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation, enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25 degree C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given. 13 figs., 23 tabs

  14. Waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Molinari, J.

    1982-01-01

    The present lecture deals with energy needs and nuclear power, the importance of waste and its relative place in the fuel cycle, the games of controversies over nuclear waste in the strategies of energy and finally with missions and functions of the IAEA for privileging the rational approach and facilitating the transfer of technology. (RW)

  15. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang

    1994-01-01

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP)

  16. Time depending assessment of low and intermediate radioactive waste characteristics from Cernavoda NPP

    International Nuclear Information System (INIS)

    Mateescu, S.; Pantazi, D.; Stanciu, M.

    2002-01-01

    Low and intermediate radioactive gaseous, liquid and solid waste produced at Cernavoda Nuclear Power Plant must be well known from the point of view of contained radionuclide activity, during all steps of their processing, storage and transport, to ensure the nuclear safety of radioactive waste management. As in intermediate storage stage, the waste activity changes by radioactive decay and nuclear transmutation, the evolution in time of these sources is necessary to be assessed, for the purpose of biological shielding determination at any time. On the other hand, during the transport of waste package at the repository, the external dose rates must meet the national and international requirements concerning radioactive materials transportation on public roads. In this paper, a calculation methodology for waste characterization based on external exposure rate measurement and on sample analysis results is presented. The time evolution of waste activity, as well as the corresponding shielding at different moments of management process, have been performed using MICROSHIELD-5 code. The spent resins proceeded from clean-up and purification systems and solutions from decontamination have been analyzed. The proposed methodology helps us to assess radiation protection during the handling of low and intermediate - level radioactive waste drums, ensuring safety conditions for the public and environment.(author)

  17. Nuclear waste: Quarterly report on DOE's nuclear waste program as of March 31, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    As part of the Department of Energy's implementation of the Nuclear Waste Policy Act of 1982, DOE is required to investigate a site at Yucca Mountain, Nevada and, if it determines that the site is suitable, recommended to the President its selection for a nuclear waste repository. The Nuclear Regulatory Commission, in considering development of the plan, issued five objections, one of which is DOE's failure to recognize the range of alternative conceptual models of the Yucca Mountain site that can be supported by the limited existing technical data. At the end of the quarter DOE directed its project offices in Washington and Texas to begin an orderly phase-out of all site-specific repository activities. Costs for this phase-out are $53 million of the Deaf Smith site and $85 million for the Hanford site

  18. The role of the operator of nuclear power plants in disposal of nuclear waste

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1995-01-01

    Public opinion polls show that the French have largely understood the importance of our nuclear programme in maintaining French independence with regard to power supply and its security and that they have confidence in the technicians for the proper construction and operation of these power plants, but that they retain many questions concerning the disposal of nuclear waste. They have the impression that solutions remain to be found, and especially that the Electricite de France (EDF) devised the nuclear power programme without concern for the disposal of waste. This lack of information is fortunately far from reality, EDF, under the supervision of the security authorities, manages the waste produced in the nuclear power plants. Final stocking of waste is handled by a body that is independent of the waste producer, the ''Agence nationale pour la gestion des dechets radioactifs'' (Andra) (National Agency for the Management of Radioactive Waste). (author). 7 refs., 1 tab

  19. Radiological protection criteria risk assessments for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1982-01-01

    Radiological protection criteria for waste disposal options are currently being developed at the National Radiological Protection Board (NRPB), and, in parallel, methodologies to be used in assessing the radiological impact of these options are being evolved. The criteria and methodologies under development are intended to apply to all solid radioactive wastes, including the high-level waste arising from reprocessing of spent nuclear fuel (because this waste will be solidified prior to disposal) and gaseous or liquid wastes which have been converted to solid form. It is envisaged that the same criteria will be applied to all solid waste disposal options, including shallow land burial, emplacement on the ocean bed (sea dumping), geological disposal on land and sub-seabed disposal

  20. Historical Relationship Between Performance Assessment for Radioactive Waste Disposal and Other Types of Risk Assessment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    RECHARD,ROBERT P.

    2000-07-14

    This paper describes the evolution of the process for assessing the hazards of a geologic disposal system for radioactive waste and, similarly, nuclear power reactors, and the relationship of this process with other assessments of risk, particularly assessments of hazards from manufactured carcinogenic chemicals during use and disposal. This perspective reviews the common history of scientific concepts for risk assessment developed to the 1950s. Computational tools and techniques developed in the late 1950s and early 1960s to analyze the reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic risk assessment of nuclear power reactors, a technology for which behavior was unknown. In turn, these analyses became an important foundation for performance assessment of nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the environment from chemical hazards is built upon methods for assessing the dose response of radionuclides in the 1950s. Despite a shared background, however, societal events, often in the form of legislation, have affected the development path for risk assessment for human health, producing dissimilarities between these risk assessments and those for nuclear facilities. An important difference is the regulator's interest in accounting for uncertainty and the tools used to evaluate it.

  1. Historical Relationship Between Performance Assessment for Radioactive Waste Disposal and Other Types of Risk Assessment in the United States

    International Nuclear Information System (INIS)

    Rechard, Robert P.

    2000-01-01

    This paper describes the evolution of the process for assessing the hazards of a geologic disposal system for radioactive waste and, similarly, nuclear power reactors, and the relationship of this process with other assessments of risk, particularly assessments of hazards from manufactured carcinogenic chemicals during use and disposal. This perspective reviews the common history of scientific concepts for risk assessment developed to the 1950s. Computational tools and techniques developed in the late 1950s and early 1960s to analyze the reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic risk assessment of nuclear power reactors, a technology for which behavior was unknown. In turn, these analyses became an important foundation for performance assessment of nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the environment from chemical hazards is built upon methods for assessing the dose response of radionuclides in the 1950s. Despite a shared background, however, societal events, often in the form of legislation, have affected the development path for risk assessment for human health, producing dissimilarities between these risk assessments and those for nuclear facilities. An important difference is the regulator's interest in accounting for uncertainty and the tools used to evaluate it

  2. Nuclear wastes and public trust

    International Nuclear Information System (INIS)

    Flynn, J.; Slovic, P.

    1993-01-01

    Citing public fear and mistrust, strong opposition to the proposed Yucca Mountain repository site, and less-than-exemplary performance by the Department of Energy (DOE), two private researchers believe present high-level radioactive waste-disposal plans may have to be scrapped. Government and the nuclear industry may have to start over. Policy makers should seek to develop new relationships with communities and states where suitable disposal sites exist. These relationships may require that citizen groups and local institutions be given unprecedented authority in locating and operating such facilities. Contrary to popular impressions, there is still time to take a new approach. The US Nuclear Regulatory Commission says present on-site storage arrangements offer a safe alternative for 100 years or more. The sense of immediate crisis and cries for immediate solutions should be calmed and a more considered strategy brought to the public debate. For starters, the researchers propose that the problems of defense waste be separated from the problems of commercial waste. They also suggest that DOE be assigned responsibility for defense waste and a new agency be created to handle high-level commercial waste

  3. Nuclear waste management and implication for geological disposals in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho; Chang, Kyung Bae [The Cyber Univ. of Korea, Seoul (Korea, Republic of). Dept. of Mechanical and Control Engineering

    2017-10-15

    The master plan of permanent nuclear waste repository had been published in South Korea. The high-level nuclear waste repository should be available in 2053. In this study, six possible nuclear waste forms are simulated by Helium ions. The geological repository is comparative easy and cheap considering the international nuclear act of the nuclear nonproliferation treaty (NPT). How ever, there could be some new technologies of the nuclear waste treatment like the pyroprocessing. Transmutation is another option, which is very expensive with current technology.

  4. Global nuclear waste repository proposal highlights Australia's nuclear energy vacuum

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  5. Study 2: the precaution applied to long-life nuclear wastes

    International Nuclear Information System (INIS)

    Marignac, Y.

    2000-01-01

    Among the problems bonded to the energy development, some risks take a global aspect. These risks concerned the resources management, the safety and by-products accumulation (greenhouse gases or nuclear wastes). This document deals with the nuclear wastes problem, which is not studied today on at international scale. A first part presents the general problem of the long-life wastes in France to define an indicator for the nuclear wastes production. This criteria allows to measure the prevention strategy efficiency. A second part deals with financial aspects and calculates the cost-efficiency factor of the nuclear wastes storage facing their processing. (A.L.B.)

  6. Nuclear Waste State-of-the-Art Report 2007 - responsibility of current generation, freedom of future generations. Main report from the Swedish National Council for Nuclear Waste (KASAM)

    International Nuclear Information System (INIS)

    2007-01-01

    The state-of-the-art report presented by the Swedish National Council for Nuclear Waste (KASAM) in 2007 is of a slightly different character than the state-of-the-art reports published previously. This year KASAM felt the need to provide an overall picture in relatively easily accessible form of all its assessments since the first state-of-the-art report in 1986. Some of it has of course been rendered obsolete by subsequent events, but surprisingly much is still relevant. The purpose of this main report to provide an overall picture in relatively easily accessible form of all our assessments since the first state-of-the-art report in 1986. Some of it has of course been rendered obsolete by subsequent events, but surprisingly much is still relevant. Another purpose is to describe in general terms the course of events within which these assessments were made in order to contribute to a fundamental understanding of the complexity of managing the nuclear waste issue

  7. Californium-252 neutron activation analysis of high-level processed nuclear tank waste

    International Nuclear Information System (INIS)

    Troyer, G.L.; Purcell, M.A.

    2000-01-01

    The basis for production assessment of the vitrification of Hanford nuclear fuel reprocessing wastes will be high-precision measurements of the elemental sodium content. However, the chemical analysis of both radioactive and nonradioactive components in nuclear waste can be challenged by high radiation dose rates. The dose rates compromise many analytical techniques as well as pose personnel dosimetry risks. In many cases, reduction of dose rates through dilution compromises the precision and sensitivity for certain key components. The use of neutron activation analysis (NAA) provides a method of analysis that avoids the need for dilutions or extensive sample preparation. These waste materials also contain trace quantities of fissionable isotopes, which, through neutron activation, can be estimated by delayed neutron counting of fissioned fragments

  8. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  9. The atmosphere submodel for the assessment of Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1992-09-01

    Canada's Nuclear Fuel Waste Management Program is researching a concept for disposal of immobilized nuclear fuel waste in a vault mined deep in stable plutonic rock. When protective barriers are eventually breached, radioactive and chemically toxic nuclides, carried by groundwater, may migrate from the vault to the biosphere. They may cycle through surface waters, soil, the atmosphere and the food chain. One of the objectives of the program is to assess the movement of nuclides using modelling techniques to calculate the radiological dose to humans and concentrations of contaminants in the environment. To achieve these goals a biosphere model, comprising four submodels, has been developed. This report describes the atmosphere submodel and the pathways through which nuclides may move through the atmosphere. The model describes the processes of nuclide suspension, dispersion and deposition. Surface water and soil are considered as primary sources of nuclide fluxes to the atmosphere. Some nuclides may be attached to contaminated suspended particulate matter, whereas others are mobile as gases. The model considers natural phenomena such as wind erosion of soil, forest fires, gaseous emissions from soil, and bubble bursting at lake surfaces. Anthropogenic processes such as wood burning for energy are also modelled, and nuclide concentrations in both outdoor and indoor air are calculated. The model combines a variety of techniques, including mass loading concepts, flux density estimates, numerical dispersion models and specific activity relationships. The model is probabilistic; transport is modelled using simple mass transfer equations, and variability is incorporated by distributing values for parameters. This report documents the model equations, the parameter values, and comparisons of pathways. (Author)

  10. Managing nuclear waste: the underground perspective

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A simplified, very-general overview of the history of nuclear waste management is presented. The sources of different wastes of different levels of radioactivity are discussed. The current governmental program, including three DOE programs currently studying the problems of isolating waste in geological repositories, is discussed briefly. The general thrust of ensuing articles in the same magazine dealing with different facets of the waste-management program is outlined. (BLM)

  11. Development of comprehensive waste acceptance criteria for commercial nuclear waste

    International Nuclear Information System (INIS)

    O'Hara, F.A.; Miller, N.E.; Ausmus, B.S.; Yates, K.R.; Means, J.L.; Christensen, R.N.; Kulacki, F.A.

    1979-01-01

    A detailed methodology is presented for the identification of the characteristics of commercial nuclear waste which may require criteria. This methodology is analyzed as a six-step process which begins with identification of waste operations and proceeds until the waste characteristics affecting the potential release of radionuclides are determined. All waste types and operations were analyzed using the methodology presented. Several illustrative example are included. It is found that thirty-three characteristics can be identified as possibly requiring criteria

  12. Low-risk alternative waste forms for problematic high-level and long-lived nuclear wastes

    International Nuclear Information System (INIS)

    Stewart, M.W.A.; Begg, B.D.; Moricca, S.; Day, R.A.

    2006-01-01

    Full text: The highest cost component the nuclear waste clean up challenge centres on high-level waste (HLW) and consequently the greatest opportunity for cost and schedule savings lies with optimising the approach to HLW cleanup. The waste form is the key component of the immobilisation process. To achieve maximum cost savings and optimum performance the selection of the waste form should be driven by the characteristics of the specific nuclear waste to be immobilised, rather than adopting a single baseline approach. This is particularly true for problematic nuclear wastes that are often not amenable to a single baseline approach. The use of tailored, high-performance, alternative waste forms that include ceramics and glass-ceramics, coupled with mature process technologies offer significant performance improvements and efficiency savings for a nuclear waste cleanup program. It is the waste form that determines how well the waste is locked up (chemical durability), and the number of repository disposal canisters required (waste loading efficiency). The use of alternative waste forms for problematic wastes also lowers the overall risk by providing high performance HLW treatment alternatives. The benefits tailored alternative waste forms bring to the HLW cleanup program will be briefly reviewed with reference to work carried out on the following: The HLW calcines at the Idaho National Laboratory; SYNROC ANSTO has developed a process utilising a glass-ceramic combined with mature hot-isostatic pressing (HIP) technology and has demonstrated this at a waste loading of 80 % and at a 30 kg HIP scale. The use of this technology has recently been estimated to result in a 70 % reduction in waste canisters, compared to the baseline borosilicate glass technology; Actinide-rich waste streams, particularly the work being done by SYNROC ANSTO with Nexia Solutions on the Plutonium-residues wastes at Sellafield in the UK, which if implemented is forecast to result in substantial

  13. Chemical aspects of nuclear waste treatment

    International Nuclear Information System (INIS)

    Bond, W.D.

    1980-01-01

    The chemical aspects of the treatment of gaseous, liquid, and solid wastes are discussed in overview. The role of chemistry and the chemical reactions in waste treatment are emphasized. Waste treatment methods encompass the chemistry of radioactive elements from every group of the periodic table. In most streams, the radioactive elements are present in relatively low concentrations and are often associated with moderately large amounts of process reagents, or materials. In general, it is desirable that waste treatment methods are based on chemistry that is selective for the concentration of radionuclides and does not require the addition of reagents that contribute significantly to the volume of the treated waste. Solvent extraction, ion exchange, and sorbent chemistry play a major role in waste treatment because of the high selectivity provided for many radionuclides. This paper deals with the chemistry of the onsite treatment methods that is typically used at nuclear installations and is not concerned with the chemistry of the various alternative materials proposed for long-term storage of nuclear wastes. The chemical aspects are discussed from a generic point of view in which the chemistry of important radionuclides is emphasized

  14. Alternative solidified forms for nuclear wastes

    International Nuclear Information System (INIS)

    McElroy, J.L.; Ross, W.A.

    1976-01-01

    Radioactive wastes will occur in various parts of the nuclear fuel cycle. These wastes have been classified in this paper as high-level waste, intermediate and low-level waste, cladding hulls, and residues. Solidification methods for each type of waste are discussed in a multiple barrier context of primary waste form, applicable coatings or films, matrix encapsulation, canister, engineered structures, and geological storage. The four major primary forms which have been most highly developed are glass for HLW, cement for ILW, organics for LLW, and metals for hulls

  15. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  16. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rechard, Robert P.; Sanchez, Lawrence C.; Stockman, Christine T.; Trellue, Holly R.

    2000-01-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low

  17. Who wants nuclear waste

    International Nuclear Information System (INIS)

    Fernie, John; Openshaw, Stanley

    1986-01-01

    The criteria involved in selecting sites for disposal of low and short-lived intermediate-level radioactive wastes are explained. The wastes and the sources are identified and the current procedure for their disposal, at Drigg, next to the Sellafield reprocessing plant, is given. If alternative sites could be found for non-Sellafield-produced wastes the lifetime of the Drigg site could be extended. The sites chosen by NIREX (Nuclear Industry Radioactive Waste Executive) have to be cost effective. Indeed, those identified are conveniently situated and would not incur excessive transport costs. However, more remote sites may have to be chosen, even at greater transport cost, because of public protests. Even this may not be satisfactory because the transportation itself incurs risks. (UK)

  18. The puzzle of nuclear wastes. Radioactive threat to your health..

    International Nuclear Information System (INIS)

    2007-01-01

    This document, published by the French association 'Sortir du nucleaire' (Get out of nuclear), gives some information on what is radioactivity, the radioactive materials as a risk for living organisms, nuclear wastes all over France (list and map of the storage sites, power plants and fuel cycle centers), nuclear wastes at every step of the nuclear connection, the insolvable problem of high activity wastes, burying nuclear wastes in order to better forget them, radioactivity as a time bomb for our health, radioactive effluents as an under-estimated risk, artificial radioactivity already responsible for the death of 61 million people in the world, and so on

  19. Public concerns and choices regarding nuclear-waste repositories

    International Nuclear Information System (INIS)

    Rankin, W.L.; Nealey, S.M.

    1981-06-01

    Survey research on nuclear power issues conducted in the late 1970's has determined that nuclear waste management is now considered to be one of the most important nuclear power issues both by the US public and by key leadership groups. The purpose of this research was to determine the importance placed on specific issues associated with high-level waste disposal. In addition, policy option choices were asked regarding the siting of both low-level and high-level nuclear waste repositories. A purposive sampling strategy was used to select six groups of respondents. Averaged across the six respondent groups, the leakage of liquid wastes from storage tanks was seen as the most important high-level waste issue. There was also general agreement that the issue regarding water entering the final repository and carrying radioactive wastes away was second in importance. Overall, the third most important issue was the corrosion of the metal containers used in the high-level waste repository. There was general agreement among groups that the fourth most important issue was reducing safety to cut costs. The fifth most important issue was radioactive waste transportation accidents. Overall, the issues ranked sixth and seventh were, respectively, workers' safety and earthquakes damaging the repository and releasing radioactivity. The eighth most important issue, overall, was regarding explosions in the repository from too much radioactivity, which is something that is not possible. There was general agreement across all six respondent groups that the two least important issues involved people accidentally digging into the site and the issue that the repository might cost too much and would therefore raise electricity bills. These data indicate that the concerns of nuclear waste technologists and other public groups do not always overlap

  20. Financial provision for future nuclear waste management in Finland

    International Nuclear Information System (INIS)

    Vaeaetaeinen, Anne

    2003-01-01

    The main principle as regards nuclear waste management in Finland is that the operator that has produced nuclear waste is responsible for the management of all such nuclear waste. It has to take care of its waste (including that of decommissioning) until it has been disposed of in a manner accepted by the authorities. Spent nuclear fuel is considered to be nuclear waste subject to disposal into a final repository. According to the Nuclear Energy Act, all nuclear waste produced in Finland must be handled, stored and disposed of in Finland. The spent fuel and other nuclear wastes are stored at the power plant sites until they are disposed of. At the both two sites there already are the final repositories for low and intermediate level waste. The funding system is based on the principle that, if a nuclear facility would stop its operation and also stop to produce more waste, the money in the Fund and the securities given to the State would, together, always suffice to handle the situation and take care of the management of all the existing waste and dismantling and decommissioning of the plant. As the actual waste management measures would not be taken immediately, the interest accrued, in the meantime, by this existing capital is used to compensate for the inflation and cost escalation. The critical question is how the system takes into account the difficulty of arriving at reliable estimates. The Finnish funding system contains some built-in features to minimise the risk of the State having to contribute additional funds to carrying out these operations. The system continuously requires new updated estimates that must take into account the practical experience accumulating world-wide. The estimates must, however, always be based on technology currently available. Additionally, the law also requires that the uncertainty of available information about prices and costs shall be taken into account, in a reasonable manner, as raising the estimated liability. In the case

  1. Disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Albrecht, E.; Kuehn, K.

    1977-01-01

    Final storage of nuclear wastes in the salt mine at Asse is described. Until the end of 1976, all in all 73,000 containers with slightly radioactive wastes were deposited there within the framework of a test programme - the Asse pit is a pilot plant. Final storage of medium active waste was started in 1972. So far, about 1,150 barrels with medium active waste were deposited. Storage techniques applied, radiation exposure of the personnel and experience gained so far are reported on in this context. Final storage at Asse of highly active wastes developing decay heat is still in a preparatory stage, as here radiation as well as heat problems have to be mastered. Technical mining activities for the recoverable storage of highly-active, heat-developing wastes in the form of ceramic glasses are still in a planning phase, whereas advance work, e.g. cutting storage chambers out of seams 775 m thick have already begun. (HPH) [de

  2. Analysis of some nuclear waste management options. Volume II. Appendices

    International Nuclear Information System (INIS)

    Berman, L.E.; Ensminger, D.A.; Giuffre, M.S.; Koplik, C.M.; Oston, S.G.; Pollak, G.D.; Ross, B.I.

    1978-01-01

    This report describes risk analyses performed on that portion of a nuclear fuel cycle which begins following solidification of high-level waste. Risks associated with handling, interim storage and transportation of the waste are assessed, as well as the long term implications of disposal in deep mined cavities. The risk is expressed in terms of expected dose to the general population and peak dose to individuals in the population. This volume consists of appendices which provide technical details of the work performed

  3. Analysis of some nuclear waste management options. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Berman, L.E.; Ensminger, D.A.; Giuffre, M.S.; Koplik, C.M.; Oston, S.G.; Pollak, G.D.; Ross, B.I.

    1978-10-10

    This report describes risk analyses performed on that portion of a nuclear fuel cycle which begins following solidification of high-level waste. Risks associated with handling, interim storage and transportation of the waste are assessed, as well as the long term implications of disposal in deep mined cavities. The risk is expressed in terms of expected dose to the general population and peak dose to individuals in the population. This volume consists of appendices which provide technical details of the work performed.

  4. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  5. Review of the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Hatcher, S.R.

    1980-06-01

    Progress over the previous year in the nuclear fuel waste management program is reviewed. Universities, industry and consultants have become increasingly involved, and the work is being overseen by a Technical Advisory Committee. The program has also been investigated by Ontario's Porter Commission and Select Committe on Ontario Hydro Affairs. A public information program has been extended to cover most of the Canadian Shield region of Ontario. Ontario Hydro is studying spent fuel storage and transportation, while AECL is covering immobilization of spent fuel or processing wastes, geotechnical and geochemical research in the laboratory and in the field, design of disposal facilities, and environmental and safety assessments. (L.L.)

  6. Nuclear waste repository in basalt: preconceptual design guidelines

    International Nuclear Information System (INIS)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation

  7. Nuclear waste repository in basalt: preconceptual design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The development of the basalt waste isolation program parallels the growing need for permanent, environmentally safe, and secure means to store nuclear wastes. The repository will be located within the Columbia Plateau basalt formations where these ends can be met and radiological waste can be stored. These wastes will be stored such that the wastes may be retrieved from storage for a period after placement. After the retrieval period, the storage locations will be prepared for terminal storage. The terminal storage requirements will include decommissioning provisions. The facility boundaries will encompass no more than several square miles of land which will be above a subsurface area where the geologic makeup is primarily deep basaltic rock. The repository will receive, from an encapsulation site(s), nuclear waste in the form of canisters (not more than 18.5 feet x 16 inches in diameter) and containers (55-gallon drums). Canisters will contain spent fuel (after an interim 5-year storage period), solidified high-level wastes (HLW), or intermediate-level wastes (ILW). The containers (drums) will package the low-level transuranic wastes (LL-TRU). The storage capacity of the repository will be expanded in a time-phased program which will require that subsurface development (repository expansion) be conducted concurrently with waste storage operations. The repository will be designed to store the nuclear waste generated within the predictable future and to allow for reasonable expansion. The development and assurance of safe waste isolation is of paramount importance. All activities will be dedicated to the protection of public health and the environment. The repository will be licensed by the US Nuclear Regulatory Commission (NRC). Extensive efforts will be made to assure selection of a suitable site which will provide adequate isolation.

  8. Radioactive waste management in the VS military nuclear industry

    International Nuclear Information System (INIS)

    Kobal'chuk, O.V.; Kruglov, A.K.; Sokolova, I.D.; Smirnov, Yu.V.

    1989-01-01

    Organization and plans of radioactive waste management in the US military nuclear industry, determining transition from the policy of temporal waste storage to their final and safe disposal are presented. Programs of long-term management of high-level, transuranium and low-level wastes, the problems of the work financing and the structure of management activities related to the radioactive waste processing military nuclear industry enterprises are considered

  9. Project safety studies - nuclear waste management (PSE)

    International Nuclear Information System (INIS)

    1981-10-01

    The project 'Safety Studies-Nuclear Waste Management' (PSE) is a research project performed by order of the Federal Minister for Research and Technology, the general purpose of which is to deepen and ensure the understanding of the safety aspects of the nuclear waste management and to prepare a risk analysis which will have to be established in the future. Owing to this the project is part of a series of projects which serve the further development of the concept of nuclear waste management and its safety, and which are set up in such a way as to accompany the realization of that concept. This report contains the results of the first stage of the project from 1978 to mid-1981. (orig./RW) [de

  10. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  11. Nuclear and toxic waste recycling process

    International Nuclear Information System (INIS)

    Bottillo, T.V.

    1988-01-01

    This patent describes the process for the safe and convenient disposal of nuclear and/or toxic wastes which comprises the steps of (a) collecting nuclear and/or toxic wastes which pose a danger to health; (b) packaging the wastes within containers for the safe containment thereof to provide filled containers having a weight sufficient to sink into the molten lava present within an active volcano; and (c) depositing the filled containers directly into the molten lava present within a volcano containing same to cause the containers to sink therein end to be dissolved or consumed by the heat, whereby the contents thereof are consumed to become a part of the mass of molten lava present within the volcano

  12. Nuclear waste issues: a perspectives document

    International Nuclear Information System (INIS)

    Cohen, J.J.; Smith, C.F.; Ciminese, F.J.

    1983-02-01

    This report contains the results of systematic survey of perspectives on the question of radioactive waste management. Sources of information for this review include the scientific literature, regulatory and government documents, pro-nuclear and anti-nuclear publications, and news media articles. In examining the sources of information, it has become evident that a major distinction can be made between the optimistic or positive viewpoints, and the pessimistic or negative ones. Consequently, these form the principal categories for presentation of the perspectives on the radioactive waste management problem have been further classified as relating to the following issue areas: the physical aspects of radiation, longevity, radiotoxicity, the quantity of radioactive wastes, and perceptual factors

  13. Nuclear waste issues: a perspectives document

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; Smith, C.F.; Ciminese, F.J.

    1983-02-01

    This report contains the results of systematic survey of perspectives on the question of radioactive waste management. Sources of information for this review include the scientific literature, regulatory and government documents, pro-nuclear and anti-nuclear publications, and news media articles. In examining the sources of information, it has become evident that a major distinction can be made between the optimistic or positive viewpoints, and the pessimistic or negative ones. Consequently, these form the principal categories for presentation of the perspectives on the radioactive waste management problem have been further classified as relating to the following issue areas: the physical aspects of radiation, longevity, radiotoxicity, the quantity of radioactive wastes, and perceptual factors.

  14. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  15. Federalist strategy for nuclear waste management

    International Nuclear Information System (INIS)

    Lee, K.N.

    1980-01-01

    The federal government plans to rely on a policy of consultation and concurrence with state governments in developing nuclear waste repositories. The weaknesses of the concurrence approach are analyzed, and an alternative institutional framework for locating a waste repository is proposed: a siting jury that provides representation for state and local interests, while maintaining a high level of technical review. The proposal could be tested in the siting of away-from-reactor storage facilities for spent nuclear fuel. 1 table

  16. Problems and prospects for nuclear waste disposal policy

    International Nuclear Information System (INIS)

    Herzik, E.B.; Mushkatel, A.H.

    1996-01-01

    This book is a collection of articles examining legal, organizational, and public-interest issues involving the transportation, storage, treatment, and disposal of radioactive wastes. The introductions examines the unresolved issues of nuclear-waste policy-making in the USA and then presents essays covering the disposal of commercial power plant fuel, low level radioactive wastes, the by-products of nuclear weapons production, and the challenges of transporting radiological materials

  17. What is to be done with nuclear waste?

    International Nuclear Information System (INIS)

    Seshadri, B.

    1992-01-01

    Problems of radioactive waste management, particularly the problem of disposal, are illustrated by describing waste management operations of British Nuclear Fuels Ltd. at its nuclear complex at Sellafield. The major problem, so far not satisfactorily solved, is disposal of high-level radioactive wastes some portions of which remain radioactive for many millions of years. Studies so far made have established a positive link between radiation and cancer. (M.G.B.)

  18. Discharged of the nuclear wastes by health service centres

    International Nuclear Information System (INIS)

    Mazur, G.; Jednorog, S.

    1993-01-01

    In this paper Polish national regulation in radiation protection on nuclear medical domain was discussed. The method of utilized nuclear wastes in medical and science centres was deliberate. From many years activity of wastes from Nuclear Medicine Department of Central Clinical Hospital Armed Forces Medical Academy and Radiation Protection Department of Armed Forces Institute of Hygiene and Epidemiology was measured. In debate centres radiation monitoring was performed. In this purpose the beta global activity and gamma spectrometry measurement of discharged wastes occurred. From last year in discussed centres wastes activity do not increased permissible levels. (author). 3 refs, 5 tabs

  19. Crystallization behavior of nuclear waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.; Lokken, R.O.; May, R.P.; Wald, J.W.

    1981-09-01

    Several waste form options have been or are being developed for the immobilization of high-level wastes. The final selection of a waste form must take into consideration both waste form product as well as process factors. Crystallization behavior has an important role in nuclear waste form technology. For glass or vitreous waste forms, crystallization is generally controlled to a minimum by appropriate glass formulation and heat treatment schedules. With glass ceramic waste forms, crystallization is essential to convert glass products to highly crystalline waste forms with a minimum residual glass content. In the case of ceramic waste forms, additives and controlled sintering schedules are used to contain the radionuclides in specific tailored crystalline phases

  20. National briefing summaries: Nuclear fuel cycle and waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Harmon, K.M.; Lakey, L.T.; Silviera, D.J.; Leigh, I.W.

    1987-09-01

    This report is a compilation of publicly-available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 20 nations and three international agencies that have publicized their activities in this field. The information in this document is compiled to provide summary information on radioactive waste management activities in other countries. This document indicates what is occurring in other countries with regard to strategies, activities, and facilities. This document first presents a short overview of the activities and trends for managing low- to high-level radioactive waste and spent fuel by the entities covered in this review. This is followed by information for each country for nuclear power; fuel cycle and waste management strategy/policy; highlights and major milestones; institutional considerations/organizations; nuclear fuel production; fuel recycle; spent fuel storage and transport; waste conditioning, storage and transport; surface and near-surface waste disposal; geologic waste disposal; management of uranium mine and mill wastes; decommissioning; international; and references. 406 refs

  1. The International Intraval project: to study validation of geosphere transport models for performance assessment of nuclear waste disposal. Phase 1, summary report

    International Nuclear Information System (INIS)

    1993-12-01

    Intraval is an international project that addresses the validation of models of transport of radionuclides through groundwater in the geosphere. Such models are used in assessment of the long-term safety of nuclear waste disposal systems. The present report summarises the results for the test cases and presents some additional remarks

  2. Radioactive waste management and the nuclear renaissance

    International Nuclear Information System (INIS)

    McCombie, C.

    2006-01-01

    Full text: Full text: For many years, nuclear supporters have been talking of a possible nuclear power renaissance. Today there are definite signs that this is finally beginning to happen. New plants are being built or planned in China, Japan, Korea, Finland, France and even the USA. Phase-out policies are being rethought in countries like Sweden, Belgium and Germany. Countries like Vietnam, Indonesia, the Baltic States and even Australia are choosing or debating initiating a nuclear programme. Support for these nuclear power developments may be strongly influenced by the progress of waste management programmes, especially final disposal. Conversely, the growing realisation of the potential global benefits of nuclear power may well lead to increased support, effort and funding for initiatives to ensure that all nations have access to safe and secure waste management facilities. This implies that large nuclear programmes must make progress with implementation of treatment, storage and disposal facilities for all of their radioactive wastes. For small nuclear programmes (and for countries with nuclear applications other than power generation) such facilities are also necessary. For economic and other reasons, these small programmes may not be able to implement all of the required national facilities. Multinational cooperation is needed. This can be realised by large countries providing back-end services such as reprocessing and disposal, or by small countries forming regional or international partnerships to implement shared facilities for storage and/or disposal. This paper will trace through the past decades the mutual interactions between programmes in nuclear power and in waste management. The relevant issues of concern for both include radiological safety, environmental impacts and, most topically, non-proliferation and security. Debates on these issues have strongly affected national efforts to implement power plants and repositories, and also influenced the

  3. Radioactive waste storage facilities, involvement of AVN in inspection and safety assessment

    International Nuclear Information System (INIS)

    Simenon, R.; Smidts, O.

    2006-01-01

    The legislative and regulatory framework in Belgium for the licensing and the operation of radioactive waste storage buildings are defined by the Royal Decree of 20 July 2001 (hereby providing the general regulations regarding to the protection of the population, the workers and the environment against the dangers of ionising radiation). This RD introduces in the Belgian law the radiological protection and ALARA-policy concepts. The licence of each nuclear facility takes the form of a Royal Decree of Authorization. It stipulates that the plant has to be in conformity with its Safety Analysis Report. This report is however not a public document but is legally binding. Up to now, the safety assessment for radioactive waste storage facilities, which is implemented in this Safety Analysis Report, has been judged on a case-by-case basis. AVN is an authorized inspection organisation to carry out the surveillance of the Belgian nuclear installations and performs hereby nuclear safety assessments. AVN has a role in the nuclear safety and radiation protection during all the phases of a nuclear facility: issuance of licenses, during design and construction phase, operation (including reviewing and formal approval of modifications) and finally the decommissioning. Permanent inspections are performed on a regular basis by AVN, this by a dedicated site inspector, who is responsible for a site of an operator with nuclear facilities. Besides the day-to-day inspections during operation there are also the periodic safety reviews. AVN assesses the methodological approaches for the analyses, reviews and approves the final studies and results. The conditioned waste in Belgium is stored on the Belgoprocess' sites (region Mol-Dessel) for an intermediate period (about 80 years). In the meantime, a well-defined inspection programme is being implemented to ensure that the conditioned waste continues to be stored safely during this temporary storage period. This programme was draw up by

  4. Third annual report of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.; Rosinger, E.L.J.

    1981-12-01

    This report, the third of a series of annual reports, reviews the progress that has been made in the research and development program for the safe management and disposal of Canada's nuclear fuel wastes. The report summarizes activities over the past year, in the areas of public interaction, irradiated fuel storage and transportation, immobilization of irradiated fuel and fuel recycle wastes, research and development associated with deep underground disposal, and environmental and safety assessment

  5. Fourth annual report of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Rosinger, E.L.J.; Dixon, R.S.

    1982-12-01

    This report, the fourth of a series of annual reports, reviews the progress that has been made in the research and development program for the safe management and disposal of Canada's nuclear fuel waste. The report summarizes activities over the past year in the following areas: public interaction, used fuel storage and transportation, immobilization of used fuel and fuel recycle waste, geoscience research associated with deep underground disposal, environmental research, environmental and safety assessment

  6. Productivity studies of the nuclear waste programme

    International Nuclear Information System (INIS)

    Lundberg, Haakan

    2002-08-01

    The Swedish Nuclear Inspectorate reviews and supplements the SKB proposal for cost estimations for the nuclear waste programme. These estimations are of great importance for the determination of annual fees to the Nuclear Waste Fund and guarantee amounts in accordance with the Financing Act. The majority of the Nuclear Waste Fund's assets are invested in real interest bonds, issued by the Swedish state. The average duration for the Nuclear Waste Fund investments was 12.8 years at the end of December 2001. From July 1, 2002 on the Nuclear waste Fund investments will consist of nominal and real bonds on the official market. The Fund is increased in line with the Consumer Price Index (KPI). If real costs within the nuclear waste programme increase at a faster rate than the KPI, there is a risk that the Nuclear Waste Fund will be 'under balanced'. SKI has developed a weighted index, the KBS-3-index, to compare the SKB cost re-estimate with. Productivity changes have however no impact on these indices. The KBS-3-index indicates that there might be a risk that the de facto, cost increases will exceed KPI. An improved productivity might however balance the cost escalations. Productivity is normally defined as production divided by the input of production factors. The production can be a quantity measurement or the value added. A common approach is calculation of the labour productivity. The productivity development within different industries in Sweden and in EU varies, and is not only positive. The so called DEA method is used for productivity and efficiency measurements in public and private operations. Efficiency evaluations based on known norms are not made with the DEA models. Instead the evaluation is performed in relation to an empirically based reference technology, a relative efficiency. A selection or an optimisation of output is difficult for the nuclear waste programme. It is not possible to change parts of the nuclear waste programme to something else

  7. Some political logistics of nuclear waste

    International Nuclear Information System (INIS)

    Pulsipher, A.G.

    1991-01-01

    The need for a centralized, federal, interim storage facility for nuclear waste, or MRS, alledgedly has become more urgent because the date for the opening of the permanent repository has been slipped from 2003 to 2010 at the earliest. However, a MRS constrained by the linkages in the Nuclear Waste Policy Act would make little sense and has no support. DOE wants to change the NWPAA linkages but unless the size of the MRS is constrained to approximately that now permitted, DOE's proposal would be so directly antithetical to the strategic vision and political aspirations of opponents of interim storage that it would seriously retard the development of the badly needed political consensus on national nuclear waste disposal policy. A new linkage, an acceptance rate limitation, is analyzed and the argument advanced that it would yield most of the benefits attributed to an MRS by DOE without aggravating the political concerns of MRS opponents

  8. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  9. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    International Nuclear Information System (INIS)

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  10. State fund of decommissioning of nuclear installations and handling of spent nuclear fuels and nuclear wastes (Slovak Republic)

    International Nuclear Information System (INIS)

    Kozma, Milos

    2006-01-01

    State Fund for Decommissioning of Nuclear Installations and Handling of Spent Nuclear Fuels and Nuclear Wastes was established by the Act 254/1994 of the National Council of the Slovak Republic as a special-purpose fund which concentrates financial resources intended for decommissioning of nuclear installations and for handling of spent nuclear fuels and radioactive wastes. The Act was amended in 2000, 2001 and 2002. The Fund is legal entity and independent from operator of nuclear installations Slovak Power Facilities Inc. The Fund is headed by Director, who is appointed and recalled by Minister of Economy of the Slovak Republic. Sources of the Fund are generated from: a) contributions by nuclear installation operators; b) penalties imposed by Nuclear Regulatory Authority of the Slovak Republic upon natural persons and legal entities pursuant to separate regulation; c) bank credits; d) interest on Fund deposits in banks; e) grants from State Budget; f) other sources as provided by special regulation. Fund resources may be used for the following purposes: a) decommissioning of nuclear installations; b) handling of spent nuclear fuels and radioactive wastes after the termination of nuclear installation operation; c) handling of radioactive wastes whose originator is not known, including occasionally seized radioactive wastes and radioactive materials stemming from criminal activities whose originator is not known, as confirmed by Police Corps investigator or Ministry of Health of the Slovak Republic; d) purchase of land for the establishment of nuclear fuel and nuclear waste repositories; e) research and development in the areas of decommissioning of nuclear installations and handling of nuclear fuels and radioactive wastes after the termination of the operation of nuclear installations; f) selection of localities, geological survey, preparation, design, construction, commissioning, operation and closure of repositories of spent nuclear fuels and radioactive wastes

  11. Problem trap final repository. Social challenges concerning nuclear waste

    International Nuclear Information System (INIS)

    Brunnengraeber, Achim

    2016-01-01

    How is it possible that there is still no final storage facility in the entire world for highly radioactive waste from nuclear power stations? How is it possible that electricity has been generated by industrial-scale nuclear installations for decades without the issue of the disposal of nuclear waste having been resolved? The events in Chernobyl in 1986 and Fukushima in 2011 have made it blatantly obvious how risky this technology is and how important it is to keep humans and the environment at a safe distance from radioactivity. This anthology examines the technological, political, social and economic dimensions of the permanent disposal of nuclear waste. It provides an insight into the emergence of the problem and the people involved and their interests. It describes and analyses the changes that are taking place in Germany (for instance, in relation to the government's commission on nuclear repositories) and other countries with regard to how they handle nuclear waste. The book deals with both questions related to socio-technical aspects of the permanent disposal of nuclear waste and calls for the democratic need for participation and new ways of doing so, without which the search for a permanent disposal site will not bear fruit. This anthology presents a comprehensive discussion of the disposal of nuclear waste and the search for a permanent repository for it. Not only will students and teachers find it extremely useful, but so will any readers who are interested in its subject matter and wish to gain a more in-depth insight into it.

  12. Draft environmental assessment: Cypress Creek Dome site, Mississippi. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Cypress Creek dome site in Mississippi as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Cypress Creek dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Cypress Creek dome site is not disqualified under the guidelines. The site is contained in the Gulf Interior Region of the Gulf Coastal Plain, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites - the Richton dome site and the Vacherie dome site. Although the Cypress Creek dome site appears to be suitable for site characterization, the DOE has concluded that the Richton dome site is the preferred site in the Gulf Interior Region and is proposing to nominate the Richton dome site rather than the Cypress Creek dome site as one of the three sites suitable for characterization

  13. Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management

    International Nuclear Information System (INIS)

    Elam, Mark; Lidberg, Maria; Soneryd, Linda; Sundqvist, Goeran

    2009-01-01

    This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience. Mediation through dialogue on the other hand, is about collective acknowledgements of uncertainty and suspensions of judgement creating room for broader discussion. In Sweden, it is the Swedish Nuclear Fuel and Waste Management Co. (SKB) that is tasked with finding a method and a site for the final disposal of the nation's nuclear waste. Two different legislative frameworks cover this process. In accordance with the Act on Nuclear Activities, SKB is required to demonstrate the safety of its planned nuclear waste management system to the government, while in respect of the Swedish Environmental Code, they are obliged to organize consultations with the public. How SKB combines these requirements is the main question under investigation in this report in relation to materials deriving from three empirical settings: 1) SKB's safety analyses, 2) SKB's public consultation activities and 3) the 'dialogue projects', initiated by other actors than SKB broadening the public arena for discussion. In conclusion, an attempt is made to characterise the long- term interplay of demonstration and dialogue in Swedish nuclear waste management

  14. Credible nuclear waste management: a legislative perspective

    International Nuclear Information System (INIS)

    Jeffords, J.M.

    1978-01-01

    The past credibility of the AEC, ERDA, and NRC, along with the present credibility of DOE and NRC, are questioned. The results of voter responses to a moratorium on expansion of nuclear power are linked to the question of past credibility of these Federal agencies. It is proposed that the future of nuclear power be linked directly to the Executive Branch of the government via a new bureaucracy, a Waste Management Authority. This new bureaucracy would be completely separated from the construction or licensing phase of nuclear power, except it would have final say over any nuclear power expansion pending an acceptable solution to the waste reprocessing question

  15. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  16. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2009-12-01

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  17. Hydrologic-geochemical modeling needs for nuclear waste disposal systems performance assessments from the NEA perspective

    International Nuclear Information System (INIS)

    Muller, A.B.

    1986-01-01

    Credible scenarios for releases from high level nuclear waste repositories require radionuclides to be mobilized and transported by ground water. The capability to predict ground water flow velocities and directions as well as radionuclide concentrations in the flow system as a function of time are essential for assessing the performance of disposal systems. The first of these parameters can be estimated by hydrologic modeling while the concentrations can be predicted by geochemical modeling. The complementary use of empirical and phenomenological approaches to the geochemical modeling, when effectively coupled with hydrologic models can provide the tools needed for realistic performance assessment. An overview of the activities of the NEA in this area, with emphasis on the geochemical data bases (ISIRS for Ksub(d) data and the thermochemical data base critical review), rock/water interaction modeling (code development and short-courses), and hydrologic-geochemical code coupling (workshop and in-house activities) is presented in this paper from the perspective of probabilistic risk assessment needs. (author)

  18. The Swedish system for funding of nuclear waste management

    International Nuclear Information System (INIS)

    Hedman, Tommy; Westerlind, Magnus

    2003-01-01

    Nuclear activities in Sweden goes back to early 1950's. Research and development on spent fuel disposal in Sweden started in earnest with the report of the AKA-commission 1976, which outlined a complete system for the management of spent fuel and associated waste, including how to handle the costs. Components of the system, mentioned in the AKA-report, such as a sea transportation (MS Sigyn), a central spent fuel storage facility (CLAB) and a final repository for operational waste (SFR) have since been constructed and taken in operation. The research and planning for the additional facilities needed for a complete system is in an advanced stage. A nuclear waste fund has also been created, based on a special fee on nuclear power production. During the 1970's the nuclear power utilities established their own internal funds for future waste management expenses. These funds were transferred to the government-run financing system established in 1981 when the Swedish parliament passed the Act on the Financing of Future Expenses for Spent Nuclear Fuel etc. The fees to be paid into the Fund are to be based on the assumption that each reactor generates electricity for 25 years. These fees, plus the interest on the money already deposited in the Fund, must meet all expenses for handling spent fuel, dismantling facilities and for dealing with radioactive decommissioning waste. A guarantee shall compensate for the eventuality of a nuclear power plant being closed before the end of the 25-year earning period. The type of guarantee must be available until all nuclear waste has been placed in a repository and must cover contingencies for the waste programme. This guarantee will be used if expenses for future nuclear waste management become higher than expected, if these expenses have to be met earlier than expected, or if the actual amount in the Fund is lower than was estimated. The process of yearly cost calculations, review and determination of fees and guarantees is well

  19. Bibliography: books and articles on nuclear waste, nuclear power and power supply during the years 1971-1987

    International Nuclear Information System (INIS)

    Djerf, M.; Hedberg, P.

    1988-06-01

    The bibliography provides a list of the supply published Swedish books and articles in periodicals on nuclear waste and nuclear power. Regarding book publication the bibliography comprises publications on questions of nuclear power and nuclear waste on the whole, whereas the bibliography on the periodical articles solely comprises nuclear waste questions. The book bibliography consists of a selective choice of publications, identified by a mapping of the total supply of information on energy- and nuclear power issues in articles and other publications in Sweden. The literature inventory as a whole is part of a grater research project aiming at a study of the role of mass media in forming public opinion about the nuclear power waste question. (O.S.)

  20. Impartial information on nuclear waste needed

    International Nuclear Information System (INIS)

    Hautakangas, H.

    1997-01-01

    Biased communication and lack of information on issues that interest the public may make it more difficult for people to absorb information on nuclear waste in the localities that are currently being studied for their suitability as disposal sites of spent nuclear fuel. This was one of the findings made by interviewing residents in these localities. The majority of the 19 interviewers considered that there has not been enough of the kind of information on nuclear waste that would easily attract the residents' interest in the localities concerned. When asked about important sources of information, the interviewers only listed the nuclear power companies and the organisations opposed to the disposal, as well as the general news media. In other words, the need for an impartial source of information was apparent. In general, the interviewers hoped to receive more information about the operations that the disposal will require above the ground, i.e. about transports and conditioning of the waste. It may be that the need for such information has been overlooked, since technical experts do not usually consider transports or conditioning to be a major safety risk. (author)