WorldWideScience

Sample records for assessing dangerous climate

  1. Explaining climate danger

    Science.gov (United States)

    Oreskes, N.

    2016-12-01

    The idea of `managing planet Earth' is traceable back at least to the 1970s. Recently, it has been reformulated in the idea of a "good Anthropocene": the idea that humans should and can try to manage our planet now that we have become a planetary force. Yet available evidence and experience suggests that our prior attempts to do so have been plagued by under-estimation of the scale of the problems and over-estimation of our capacities to address them. In any case, Earth is not at risk—our planet will survive despite what we do or fail to do. Global climate change, for example, is not a problem for the planet, it is a problem for us. As the UNFCCC articulated in the 1990s, climate change matters because it is dangerous. Yet many Americans still do not understand why this is the case. I suggest that scientists can profitably focus attention on explaining this danger—why climate represents a threat to our health, well-being, and lives—and on what kinds of steps can be taken to reduce the danger.

  2. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) "reasons for concern".

    Science.gov (United States)

    Smith, Joel B; Schneider, Stephen H; Oppenheimer, Michael; Yohe, Gary W; Hare, William; Mastrandrea, Michael D; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H D; Füssel, Hans-Martin; Pittock, A Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal

    2009-03-17

    Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that "would prevent dangerous anthropogenic interference (DAI) with the climate system." In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 "reasons for concern" (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the "burning embers diagram." In presenting the "embers" in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 "reasons for concern."

  3. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”

    Science.gov (United States)

    Smith, Joel B.; Schneider, Stephen H.; Oppenheimer, Michael; Yohe, Gary W.; Hare, William; Mastrandrea, Michael D.; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H. D.; Füssel, Hans-Martin; Pittock, A. Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal

    2009-01-01

    Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that “would prevent dangerous anthropogenic interference (DAI) with the climate system.” In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 “reasons for concern” (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the “burning embers diagram.” In presenting the “embers” in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 “reasons for concern.” PMID:19251662

  4. Dangerous climate change: the role for risk research.

    Science.gov (United States)

    Lorenzoni, Irene; Pidgeon, Nick F; O'Connor, Robert E

    2005-12-01

    The notion of "dangerous climate change" constitutes an important development of the 1992 United Nations Framework Convention on Climate Change. It persists, however, as an ambiguous expression, sustained by multiple definitions of danger. It also implicitly contains the question of how to respond to the complex and multi-disciplinary risk issues that climate change poses. The invaluable role of the climate science community, which relies on risk assessments to characterize system uncertainties and to identify limits beyond which changes may become dangerous, is acknowledged. But this alone will not suffice to develop long-term policy. Decisions need to include other considerations, such as value judgments about potential risks, and societal and individual perceptions of "danger," which are often contested. This article explores links and cross-overs between the climate science and risk communication and perception approaches to defining danger. Drawing upon nine articles in this Special Issue of Risk Analysis, we examine a set of themes: limits of current scientific understanding; differentiated public perceptions of danger from climate change; social and cultural processes amplifying and attenuating perceptions of, and responses to, climate change; risk communication design; and new approaches to climate change decision making. The article reflects upon some of the difficulties inherent in responding to the issue in a coherent, interdisciplinary fashion, concluding nevertheless that action should be taken, while acknowledging the context-specificity of "danger." The need for new policy tools is emphasised, while research on nested solutions should be aimed at overcoming the disjunctures apparent in interpretations of climate change risks.

  5. Assessing 'Dangerous Climate Change': Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Demotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; hide

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of approx.500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of approx.1000 GtC, sometimes associated with 2 C global warming, would spur "slow" feedbacks and eventual warming of 3-4 C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  6. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J; Hearty, Paul J; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  7. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    Directory of Open Access Journals (Sweden)

    James Hansen

    Full Text Available We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  8. AssessingDangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C.

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels. PMID:24312568

  9. How Can We Avert Dangerous Climate Change?

    CERN Document Server

    Hansen, J

    2007-01-01

    Recent analyses indicate that the amount of atmospheric CO2 required to cause dangerous climate change is at most 450 ppm, and likely less than that. Reductions of non-CO2 climate forcings can provide only moderate, albeit important, adjustments to the CO2 limit. Realization of how close the planet is to "tipping points" with unacceptable consequences, especially ice sheet disintegration with sea level rise out of humanity's control, has a bright side. It implies an imperative: we must find a way to keep the CO2 amount so low that it will also avert other detrimental effects that had begun to seem inevitable, e.g., ocean acidification, loss of most alpine glaciers and thus the water supply for millions of people, and shifting of climatic zones with consequent extermination of species. Here I outline from a scientific perspective actions needed to achieve low limits on CO2 and global warming. These changes are technically feasible and have ancillary benefits. Achievement of needed changes requires overcoming t...

  10. Dangerous Climate Velocities from Geoengineering Termination: Potential Biodiversity Impacts

    Science.gov (United States)

    Trisos, C.; Gurevitch, J.; Zambri, B.; Xia, L.; Amatulli, G.; Robock, A.

    2016-12-01

    Geoengineering has been suggested as a potential societal response to the impacts of ongoing global warming. If ongoing mitigation and adaptation measures do not prevent the most dangerous consequences of climate change, it is important to study whether solar radiation management would make the world less dangerous. While impacts of albedo modification on temperature, precipitation, and agriculture have been studied before, here for the first time we investigate its potential ecological impacts. We estimate the speeds marine and terrestrial ecosystems will need to move to remain in their current climate conditions (i.e., climate velocities) in response to the implementation and subsequent termination of geoengineering. We take advantage of climate model simulations conducted using the G4 scenario of the Geoengineering Model Intercomparison Project, in which increased radiative forcing from the RCP4.5 scenario is balanced by a stratospheric aerosol cloud produced by an injection of 5 Tg of SO2 per year into the lower stratosphere for 50 years, and then stopped. The termination of geoengineering is projected to produce a very rapid warming of the climate, resulting in climate velocities much faster than those that will be produced from anthropogenic global warming. Should ongoing geoengineering be terminated abruptly due to society losing the means or will to continue, the resulting ecological impacts, as measured by climate velocities, could be severe for many terrestrial and marine biodiversity hotspots. Thus, the implementation of solar geoengineering represents a potential danger not just to humans, but also to biodiversity globally.

  11. Climate change and fire danger rating in the Northern Rockies

    Science.gov (United States)

    Faith Ann Heinsch; Charles W. McHugh

    2010-01-01

    Studies have indicated that changes in wildland fire activity are, at least in part, a product of climate change. Fire danger indices, driven by climatology, should reflect these changes. Energy Release Component (ERC) is considered to be an effective indicator of drought conditions and seasonal drying of forest fuels and is often used in fire management planning....

  12. Assessment of Potentially Dangerous Glacial Lakes in Chinese Himalayas

    Science.gov (United States)

    Xiaojun, Yao; Shiyin, Liu; Xin, Wang

    2010-05-01

    Glacial lake outburst floods (GLOFs) are catastrophic discharges of water resulting primarily from melting glaciers. In the face of global warming, most Himalayan glaciers have been retreating at a rate that ranges from a few meters to several tens of meters per year, resulting in an increase in the number and size and size of glacial lakes and a concomitant increase in the threat of GLOFs. In the past 50 years, 16 GLOF events which were reported in Tibet had caused the loss of human lives as well as severe damage to local infrastructure. Based on the combination of temperature and precipitation of these 14 failed moraine-dammed lakes, the climatic background could be classified into 4 types, that is, warm-wet, warm-arid, cold-wet and near common weather condition. Under different climatic background types, the outburst mechanisms can be further divided into 5 types and 21 modes based on the analysis of 31 failed moraine-dammed lakes documented all over the world. As to a potentially dangerous moraine-dammed lake, all possible breach modes under each climatic background are firstly described and its qualitative possibilities are given by experts, then the decision-making trees are formed and the breach probability of the potentially dangerous moraine-dammed lake can be calculate. The breaching probabilities of the 143 potentially dangerous moraine-dammed lakes were calculated one by one using the decision-making trees model in Chinese Himalayas. The calculating results show that there are 44 lakes with very high breaching probability, 47 lakes with high breaching probability, 24 lakes with median breaching probability, 24 lakes with low breaching probability, 4 lakes with very low breaching probability. The 91 lakes with very high and high breaching probability rate should be requested in the next steps of detailed assessment and should be took into account in local infrastructure construction, such as road, hydropower station and residential plan, etc. Key words

  13. Dangerousness and risk assessment: the state of the art.

    Science.gov (United States)

    Bauer, Arie; Rosca, Paula; Khawalled, Razak; Gruzniewski, Adrian; Grinshpoon, Alex

    2003-01-01

    Risk or dangerousness is an issue which burdens the minds of all mental health and law enforcement professionals. Researchers have attempted to define its extent and constituent elements and to predict and assess it. Risk assessment is a complex task, influenced by the interaction of many variables, such as previous pattern of violence, biological, sociological and psychological factors, divided into facilitating and inhibiting factors. In our paper we discuss the theoretical concepts linked with dangerousness prediction and assessment, and then review the "first" and "second" generations of literature on dangerousness and risk assessment, including the actuarial instruments. We then present the current trends in the field, concentrating on the correlation between dangerousness and mental disorders, dangerousness analysis and risk management, a wider concept including prevention, treatment and communication of risk. Although great progress has been made in this field, there are still many unresolved issues, among them the development of valid instruments for the assessment of risk.

  14. The Psychohistory of Climate Change: A Clear and Present Danger.

    Science.gov (United States)

    Adams, Kenneth Alan

    2016-01-01

    The inability of contemporary society to transition from fossil fuels to green energy was engineered by the oil industry, which has worked for decades to stifle the emergence of ecological awareness. Climate change presents a clear and present danger to our society. The present dilemma is the result of the psychopathic corporate system, that pillages the earth for profit (extractivism), evades the real costs of production (externalizing costs), and pursues only self-interest (the best interests of the corporation). The well-being of the environment is thereby sacrificed for profit and our collective future is jeopardized. The corporate practice of creative destruction has gained such Thanatos-like momentum that it threatens the earth in its obsession with profit. Conservatives, under the sway of the unreality principle, dismiss climate change and block efforts to solve climate issues. For them, science is wish fulfillment based on denial. Their willingness to endanger the world results from their authoritarian upbringing. The corporal punishment they endured as children left a residue of rage—the impulse to destroy life—that underlies corporate rationality’s assault on the environment. Fearing death, they inflict death in a perverse ritual to feel alive. Compensating for the narcissistic wounds of childhood through the formation of a grandiose self, they are identified with the omnipotent parent, and alternate between suicidal impulse and escape via godlike technology. Conservative attacks on women highlight the residual wounds of relatedness to their dragon mothers, just as their relatedness to the environment involves a restaging of their encounters with their breast and toilet mothers. Solving environmental problems, however, will require more than overcoming conservative intransigence. The concept of ecological debt accentuates the importance of consumer choice for the environment. The United Nations Human Development Report 2015 regarding CO2 emissions

  15. The Moral Challenge of Dangerous Climate Change: Values, Poverty, and Policy

    DEFF Research Database (Denmark)

    Crabtree, Andrew

    2016-01-01

    Book review of: The Moral Challenge of Dangerous Climate Change: Values, Poverty, and Policy by Darrel Moellendorf. New York: Cambridge University Press, 2014, pp. 263 (paperback), ISBN 978-1-107-67850-7......Book review of: The Moral Challenge of Dangerous Climate Change: Values, Poverty, and Policy by Darrel Moellendorf. New York: Cambridge University Press, 2014, pp. 263 (paperback), ISBN 978-1-107-67850-7...

  16. Climate-induced variations in global wildfire danger from 1979 to 2013

    Science.gov (United States)

    W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman

    2015-01-01

    Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have...

  17. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes

    Science.gov (United States)

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-01-01

    The historic Paris Agreement calls for limiting global temperature rise to “well below 2 °C.” Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (∼50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend. PMID:28912354

  18. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes

    Science.gov (United States)

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-09-01

    The historic Paris Agreement calls for limiting global temperature rise to “well below 2 °C.” Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (˜50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend.

  19. Neuroscience in forensic psychiatry: From responsibility to dangerousness. Ethical and legal implications of using neuroscience for dangerousness assessments.

    Science.gov (United States)

    Gkotsi, Georgia Martha; Gasser, Jacques

    2016-01-01

    Neuroscientific evidence is increasingly being used in criminal trials as part of psychiatric testimony. Up to now, "neurolaw" literature remained focused on the use of neuroscience for assessments of criminal responsibility. However, in the field of forensic psychiatry, responsibility assessments are progressively being weakened, whereas dangerousness and risk assessment gain increasing importance. In this paper, we argue that the introduction of neuroscientific data by forensic experts in criminal trials will be mostly be used in the future as a means to evaluate or as an indication of an offender's dangerousness, rather than their responsibility. Judges confronted with the pressure to ensure public security may tend to interpret neuroscientific knowledge and data as an objective and reliable way of evaluating one's risk of reoffending. First, we aim to show how the current socio-legal context has reshaped the task of the forensic psychiatrist, with dangerousness assessments prevailing. In the second part, we examine from a critical point of view the promise of neuroscience to serve a better criminal justice system by offering new tools for risk assessment. Then we aim to explain why neuroscientific evidence is likely to be used as evidence of dangerousness of the defendants. On a theoretical level, the current tendency in criminal policies to focus on prognostics of dangerousness seems to be "justified" by a utilitarian approach to punishment, supposedly revealed by new neuroscientific discoveries that challenge the notions of free will and responsibility. Although often promoted as progressive and humane, we believe that this approach could lead to an instrumentalization of neuroscience in the interest of public safety and give rise to interventions which could entail ethical caveats and run counter to the interests of the offenders. The last part of this paper deals with some of these issues-the danger of stigmatization for brain damaged offenders because of

  20. Climate change assessments

    Science.gov (United States)

    Linda A. Joyce

    2008-01-01

    The science associated with climate and its effects on ecosystems, economies, and social systems is developing rapidly. Climate change assessments can serve as an important synthesis of this science and provide the information and context for management and policy decisions on adaptation and mitigation. This topic paper describes the variety of climate change...

  1. The Danger Assessment: Validation of a Lethality Risk Assessment Instrument for Intimate Partner Femicide

    Science.gov (United States)

    Campbell, Jacquelyn C.; Webster, Daniel W.; Glass, Nancy

    2009-01-01

    The Danger Assessment (DA) is an instrument designed to assess the likelihood of lethality or near lethality occurring in a case of intimate partner violence. This article describes the development, psychometric validation, and suggestions for use of the DA. An 11-city study of intimate partner femicide used multivariate analysis to test the…

  2. The relationship between safety climate factors and workers behavior working in potentially dangerous situations in height among construction workers

    Directory of Open Access Journals (Sweden)

    M. Ostakhan

    2011-04-01

    Full Text Available Background and Aims Falling from height is considered one of the most important risks in construction sites and many workers through non-compliance with safety tips lose their lives. This study was conducted in order to survey the relationship between safety climate factors and behavior of workers working in potentially dangerous situations in height among construction workers .   Methods For evaluation of safety climate factors a safety climate questionnaire and for behavior of workers in potentially dangerous situations behavioral questionnaire including potentially dangerous situations, work on ladders and scaffolding has been used. Factor analysis to analyze safety climate factors and Binary logistic regression using SPSS software for the influence of factors on behaviors in potentially dangerous situations are used.   Results Factors of safety attitudes of workers, the level of risk in construction site and working relationships derived from factor analysis are 57% of the total variance. Situations of working on scaffold without Guard rail and protect the edges, access to the scaffold by going up and down connections and the ladder not secure are usually seen in the most construction sites.   ConclusionResults indicate that workers have awareness of work in dangerous situations but perhaps management ignorance of safety issues and not doing engineering controls to eliminate potentially dangerous situations can be mentioned as the causes of accidents as may result safety issues to be ignored by construction workers working in dangerous situations.  

  3. Distributed Danger Assessment Model for the Internet of Things Based on Immunology

    OpenAIRE

    Run Chen; Jiliu Zhou; Caiming Liu

    2013-01-01

    The Internet of Things (IoT) confronts complicated and changeful security threats. It harms IoT and brings IoT potential danger. However, the research achievements of the danger assessment technology for IoT are rare. To calculate the danger value of IoT with many dispersive sense nodes, the theoretical model of distributed danger assessment for IoT is explored in this paper. The principles and mechanisms of Artificial Immune System (AIS) are introduced into the proposed model. Data packets i...

  4. Indoor Climate Quality Assessment -

    DEFF Research Database (Denmark)

    Ansaldi, Roberta; Asadi, Ehsan; Costa, José Joaquim

    This Guidebook gives building professionals useful support in the practical measurements and monitoring of the indoor climate in buildings. It is evident that energy consumption in a building is directly influenced by required and maintained indoor comfort level. Wireless technologies for measure...... for measurement and monitoring have allowed a significantly increased number of possible applications, especially in existing buildings. The Guidebook illustrates several cases with the instrumentation of the monitoring and assessment of indoor climate....

  5. A spatial model for assessing forest fire danger in the Sierra Madre Oriental Mountains, Mexico

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Muñoz Robles

    2012-02-01

    Full Text Available The aim of this study was to develop a model for assessing forest fire danger in a temperate forest located in the state of Nuevo León, Mexico. A spatial multicriteria analysis was conducted in order to integrate and evaluate in a Geographic Information System those variables that influence fire danger levels. The structure of the fire danger index included three components. The forest fuels component, generated through the inventory of dead surface fuels loads; the weather index, that was built trough the analysis of maximum monthly mean temperature and total monthly precipitation. The last component of the fire danger index was calculated by assessing social and economic features. The three components were integrated into a decision rule, and monthly maps were created to show the location of forest fire danger vulnerability.

  6. Dangerous human-made interference with climate: a GISS modelE study

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2007-01-01

    Full Text Available We investigate the issue of "dangerous human-made interference with climate" using simulations with GISS modelE driven by measured or estimated forcings for 1880–2003 and extended to 2100 for IPCC greenhouse gas scenarios as well as the "alternative" scenario of Hansen and Sato (2004. Identification of "dangerous" effects is partly subjective, but we find evidence that added global warming of more than 1°C above the level in 2000 has effects that may be highly disruptive. The alternative scenario, with peak added forcing ~1.5 W/m2 in 2100, keeps further global warming under 1°C if climate sensitivity is ~3°C or less for doubled CO2. The alternative scenario keeps mean regional seasonal warming within 2σ (standard deviations of 20th century variability, but other scenarios yield regional changes of 5–10σ, i.e. mean conditions outside the range of local experience. We conclude that a CO2 level exceeding about 450 ppm is "dangerous", but reduction of non-CO2 forcings can provide modest relief on the CO2 constraint. We discuss three specific sub-global topics: Arctic climate change, tropical storm intensification, and ice sheet stability. We suggest that Arctic climate change has been driven as much by pollutants (O3, its precursor CH4, and soot as by CO2, offering hope that dual efforts to reduce pollutants and slow CO2 growth could minimize Arctic change. Simulated recent ocean warming in the region of Atlantic hurricane formation is comparable to observations, suggesting that greenhouse gases (GHGs may have contributed to a trend toward greater hurricane intensities. Increasing GHGs cause significant warming in our model in submarine regions of ice shelves and shallow methane hydrates, raising concern about the potential for accelerating sea level rise and future positive feedback from methane release. Growth of non-CO2 forcings has slowed in recent years, but CO2 emissions are now surging well above the alternative scenario. Prompt

  7. Climate-induced variations in global wildfire danger from 1979 to 2013.

    Science.gov (United States)

    Jolly, W Matt; Cochrane, Mark A; Freeborn, Patrick H; Holden, Zachary A; Brown, Timothy J; Williamson, Grant J; Bowman, David M J S

    2015-07-14

    Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have lengthened across 29.6 million km(2) (25.3%) of the Earth's vegetated surface, resulting in an 18.7% increase in global mean fire weather season length. We also show a doubling (108.1% increase) of global burnable area affected by long fire weather seasons (>1.0 σ above the historical mean) and an increased global frequency of long fire weather seasons across 62.4 million km(2) (53.4%) during the second half of the study period. If these fire weather changes are coupled with ignition sources and available fuel, they could markedly impact global ecosystems, societies, economies and climate.

  8. Assessment of a Forest-fire Danger Index for Russia Using Remote Sensing Information

    Science.gov (United States)

    Sukhinin, Anatoly; McRae, Douglas; Ji-Zhong, Jin; Dubrovskaya, Olga; Ponomarev, Eugene

    2010-05-01

    Intensive exploitation of Siberian forest resources requires to increase the level of their protection. In Russia, forests annually disturbed by fire make up about 6% of the total forest area, whereas they account for hundredth or even thousandth of percent in the West European countries and Canada. Devastating forest fires associated with long draughts have become very common over recent decades in some parts of Siberia and the Russian Far East. Fires burning under these conditions disturb hundreds of thousands hectares of forest lands. Forest fires impact essentially on different biogeocenosis and on ecological situation in region as well. Thus their detrimental effects, including economic damage, are hard to overestimate. Remote sensing data using is more perspective method for forests monitoring in Russia. Moreover satellite data is only available information for non-protected Russian boreal forests and tundra also. To be efficient, modern forest fire managers require a reliable method for estimating fire danger. For large remote forested areas, such as found in Russia where a dense network of local weather station needed to calculate fire danger does not exist, this can be a major problem. However, remote sensing using satellite data can provide reasonable estimates of fire danger across Russia to allow for an understanding of the current fire situation. An algorithm has been developed that can assess current fire danger by inputting ambient weather conditions derived from remote sensing data obtained from NOAA, TERRA-series satellites. Necessary inputs for calculating fire danger, such as surface temperature, dew-point temperature, and precipitation, are obtained from AVHRR, MODIS and ATOVS satellite data. By generating the final products as maps a concise picture can be presented of fire danger across Russia. In order to understand future fire suppression needs, fire danger predictions for an advanced 7-day period can be made using meteorological forecasts

  9. Validation and adaptation of the danger assessment-5: A brief intimate partner violence risk assessment.

    Science.gov (United States)

    Messing, Jill Theresa; Campbell, Jacquelyn C; Snider, Carolyn

    2017-12-01

    The aim of this study was to assess the predictive validity of the DA-5 with the addition of a strangulation item in evaluating the risk of an intimate partner violence (IPV) victim being nearly killed by an intimate partner. The DA-5 was developed as a short form of the Danger Assessment for use in healthcare settings, including emergency and urgent care settings. Analyzing data from a sample of IPV survivors who had called the police for domestic violence, the DA-5 was tested with and without an item on strangulation, a potentially fatal and medically damaging IPV tactic used commonly by dangerous abusers. Researchers interviewed a heterogeneous sample of 1,081 women recruited by police between 2009-2013 at the scene of a domestic violence call; 619 (57.3%) were contacted and re-interviewed after an average of 7 months. The predictive validity of the DA-5 was assessed for the outcome of severe or near lethal IPV re-assault using sensitivity, specificity and ROC curve analysis techniques. The original DA-5 was found to be accurate (AUC = .68), equally accurate with the strangulation item from the original DA substituted (AUC = .68) and slightly more accurate (but not a statistically significant difference) if multiple strangulation is assessed. We recommend that the DA-5 with the strangulation item be used for a quick assessment of homicide or near homicide risk among IPV survivors. A protocol for immediate referral and examination for further injury from strangulation should be adopted for IPV survivors at high risk. © 2017 John Wiley & Sons Ltd.

  10. Integrated climate change risk assessment:

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten

    2017-01-01

    Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models....... enables the relative importance of the different factors (i.e. degree of climate change, assets value, discount rate etc.) to be determined, thus influencing the overall output of the assessment.......Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models...... to address the complex linkages between the different kinds of data required in assessing climate adaptation. It emphasizes that the availability of spatially explicit data can reduce the overall uncertainty of the risk assessment and assist in identifying key vulnerable assets. The usefulness...

  11. Mitigating the Dangers of a Single Story: Creating Large-Scale Writing Assessments Aligned With Sociocultural Theory

    National Research Council Canada - National Science Library

    Behizadeh, Nadia

    2014-01-01

    The dangers of a single story in current U.S. large-scale writing assessment are that assessment practice does not align with theory and this practice has negative effects on instruction and students...

  12. A framework for risk assessment and decision-making strategies in dangerous good transportation.

    Science.gov (United States)

    Fabiano, B; Currò, F; Palazzi, E; Pastorino, R

    2002-07-01

    The risk from dangerous goods transport by road and strategies for selecting road load/routes are faced in this paper, by developing an original site-oriented framework of general applicability at local level. A realistic evaluation of the frequency must take into account on one side inherent factors (e.g. tunnels, rail bridges, bend radii, slope, characteristics of neighborhood, etc.) on the other side factors correlated to the traffic conditions (e.g. dangerous goods trucks, etc.). Field data were collected on the selected highway, by systematic investigation, providing input data for a database reporting tendencies and intrinsic parameter/site-oriented statistics. The developed technique was applied to a pilot area, considering both the individual risk and societal risk and making reference to flammable and explosive scenarios. In this way, a risk assessment, sensitive to route features and population exposed, is proposed, so that the overall uncertainties in risk analysis can be lowered.

  13. Rapid climate change and society: assessing responses and thresholds.

    Science.gov (United States)

    Niemeyer, Simon; Petts, Judith; Hobson, Kersty

    2005-12-01

    Assessing the social risks associated with climate change requires an understanding of how humans will respond because it affects how well societies will adapt. In the case of rapid or dangerous climate change, of particular interest is the potential for these responses to cross thresholds beyond which they become maladaptive. To explore the possibility of such thresholds, a series of climate change scenarios were presented to U.K. participants whose subjective responses were recorded via interviews and surveyed using Q methodology. The results indicate an initially adaptive response to climate warming followed by a shift to maladaptation as the magnitude of change increases. Beyond this threshold, trust in collective action and institutions was diminished, negatively impacting adaptive capacity. Climate cooling invoked a qualitatively different response, although this may be a product of individuals being primed for warming because it has dominated public discourse. The climate change scenarios used in this research are severe by climatological standards. In reality, the observed responses might occur at a lower rate of change. Whatever the case, analysis of subjectivity has revealed potential for maladaptive human responses, constituting a dangerous or rapid climate threshold within the social sphere.

  14. Safety Assessment of Dangerous Goods Transport Enterprise Based on the Relative Entropy Aggregation in Group Decision Making Model

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2014-01-01

    Full Text Available Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises.

  15. Safety assessment of dangerous goods transport enterprise based on the relative entropy aggregation in group decision making model.

    Science.gov (United States)

    Wu, Jun; Li, Chengbing; Huo, Yueying

    2014-01-01

    Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises.

  16. Critical infrastructures risk and vulnerability assessment in transportation of dangerous goods transportation by road and rail

    CERN Document Server

    Vamanu, Bogdan I; Katina, Polinpapilinho F

    2016-01-01

    This book addresses a key issue in today’s society: the safer transport of dangerous goods, taking into account people, the environment and economics. In particular, it offers a potential approach to identifying the issues, developing the models, providing the methods and recommending the tools to address the risks and vulnerabilities involved. We believe this can only be achieved by assessing those risks in a comprehensive, quantifiable and integrated manner. Examining both rail and road transportation, the book is divided into three sections, covering: the mature and accepted (by both academia and practitioners) methodology of risk assessment; the vulnerability assessment – a novel approach proposed as a vital complement to risk; guidance and support to build the tools that make methods and equations to yield: the Decision Support Systems. Throughout the book, the authors do not endeavor to provide THE solution. Instead, the book offers insightful food for thought for students, researchers, practitioner...

  17. Climate Assessment for 1997.

    Science.gov (United States)

    Bell, Gerald D.; Halpert, Michael S.

    1998-05-01

    The global climate during 1997 was affected by both extremes of the El Niño-Southern Oscillation (ENSO), with weak Pacific cold episode conditions prevailing during January and February, and one of the strongest Pacific warm episodes (El Niño) in the historical record prevailing during the remainder of the year. This warm episode contributed to major regional rainfall and temperature anomalies over large portions of the Tropics and extratropics, which were generally consistent with those observed during past warm episodes. In many regions, these anomalies were opposite to those observed during 1996 and early 1997 in association with Pacific cold episode conditions.Some of the most dramatic El Niño impacts during 1997 were observed in the Tropics, where anomalous convection was evident across the entire Pacific and throughout most major monsoon regions of the world. Tropical regions most affected by excessive El Niño-related rainfall during the year included 1) the eastern half of the tropical Pacific, where extremely heavy rainfall and strong convective activity covered the region from April through December; 2) equatorial eastern Africa, where excessive rainfall during OctoberDecember led to widespread flooding and massive property damage; 3) Chile, where a highly amplified and extended South Pacific jet stream brought increased storminess and above-normal rainfall during the winter and spring; 4) southeastern South America, where these same storms produced above-normal rainfall during JuneDecember; and 5) Ecuador and northern Peru, which began receiving excessive rainfall totals in November and December as deep tropical convection spread eastward across the extreme eastern Pacific.In contrast, El Niño-related rainfall deficits during 1997 included 1) Indonesia, where significantly below-normal rainfall from June through December resulted in extreme drought and contributed to uncontrolled wildfires; 2) New Guinea, where drought contributed to large-scale food

  18. Climate change & extreme weather vulnerability assessment framework.

    Science.gov (United States)

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  19. A robust scientific workflow for assessing fire danger levels using open-source software

    Science.gov (United States)

    Vitolo, Claudia; Di Giuseppe, Francesca; Smith, Paul

    2017-04-01

    Modelling forest fires is theoretically and computationally challenging because it involves the use of a wide variety of information, in large volumes and affected by high uncertainties. In-situ observations of wildfire, for instance, are highly sparse and need to be complemented by remotely sensed data measuring biomass burning to achieve homogeneous coverage at global scale. Fire models use weather reanalysis products to measure energy release and rate of spread but can only assess the potential predictability of fire danger as the actual ignition is due to human behaviour and, therefore, very unpredictable. Lastly, fire forecasting systems rely on weather forecasts to extend the advance warning but are currently calibrated using fire danger thresholds that are defined at global scale and do not take into account the spatial variability of fuel availability. As a consequence, uncertainties sharply increase cascading from the observational to the modelling stage and they might be further inflated by non-reproducible analyses. Although uncertainties in observations will only decrease with technological advances over the next decades, the other uncertainties (i.e. generated during modelling and post-processing) can already be addressed by developing transparent and reproducible analysis workflows, even more if implemented within open-source initiatives. This is because reproducible workflows aim to streamline the processing task as they present ready-made solutions to handle and manipulate complex and heterogeneous datasets. Also, opening the code to the scrutiny of other experts increases the chances to implement more robust solutions and avoids duplication of efforts. In this work we present our contribution to the forest fire modelling community: an open-source tool called "caliver" for the calibration and verification of forest fire model results. This tool is developed in the R programming language and publicly available under an open license. We will present

  20. Climate-related change of snow contribution in the development of dangerous hydrological phenomenon on rivers

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2013-01-01

    Full Text Available Under current climate change the amount of snow plays a fundamental role in occurrence of hazardous hydrological events causing a steady growth in frequency of hazardous snow melt floods in mountain and piedmont areas in the south of Siberia and the Urals and coastal areas of the Far East. For these areas as well as for the Caucasus the following is also typical: greater influence of snow on occurrence of hazardous snow-rainfall floods, higher frequency of hazardous snowfalls and avalanching. Small amount of snow is one of the factors causing higher frequency of extreme lacks of water in summer low water periods on rivers of Asian Russia. On rivers of European Russia increased frequency of thaws and longer periods of snow melt reduce flood risk and enhance the role of snow in feeding underground waters to impede the growth in frequency of extreme lacks of water during low water periods.

  1. Regional danger assessment of Debris flow and its engineering mitigation practice in Sichuan-Tibet highway

    Science.gov (United States)

    Su, Pengcheng; Sun, Zhengchao; li, Yong

    2017-04-01

    hazard assessment model. In this paper, regional debris flows hazard assessment method with strong universality and reliable evaluation result is presented. The whole study area is divided into 1674 units by automatically extracting and artificial identification, and then 11 factors are selected as the initial assessment factors of debris flow hazard assessment in the study area. The factors of the evaluation index system are quantified using the method of standardized watershed unit amount ratio. The relationship between debris flow occurrence and each evaluation factor is simulated using logistic regression model. The weights of evaluation factors are determined, and the model of debris flows hazard assessment is established in the study area. Danger assessment result of debris flow was applied in line optimization and engineering disaster reduction of Sichuan-Tibet highway (section of Luding-Kangding).

  2. Distinct neural circuits underlie assessment of a diversity of natural dangers by American crows

    Science.gov (United States)

    Cross, Donna J.; Marzluff, John M.; Palmquist, Ila; Minoshima, Satoshi; Shimizu, Toru; Miyaoka, Robert

    2013-01-01

    Social animals encountering natural dangers face decisions such as whether to freeze, flee or harass the threat. The American crow, Corvus brachyrhynchos, conspicuously mobs dangers. We used positron emission tomography to test the hypothesis that distinct neuronal substrates underlie the crow's consistent behavioural response to different dangers. We found that crows activated brain regions associated with attention and arousal (nucleus isthmo-opticus/locus coeruleus), and with motor response (arcopallium), as they fixed their gaze on a threat. However, despite this consistent behavioural and neural response, the sight of a person who previously captured the crow, a person holding a dead crow and a taxidermy-mounted hawk activated distinct forebrain regions (amygdala, hippocampus and portion of the caudal nidopallium, respectively). We suggest that aspects of mobbing behaviour are guided by unique neural circuits that respond to differences in mental processing—learning, memory formation and multisensory discrimination—required to appropriately nuance a risky behaviour to specific dangers. PMID:23825209

  3. Distinct neural circuits underlie assessment of a diversity of natural dangers by American crows.

    Science.gov (United States)

    Cross, Donna J; Marzluff, John M; Palmquist, Ila; Minoshima, Satoshi; Shimizu, Toru; Miyaoka, Robert

    2013-08-22

    Social animals encountering natural dangers face decisions such as whether to freeze, flee or harass the threat. The American crow, Corvus brachyrhynchos, conspicuously mobs dangers. We used positron emission tomography to test the hypothesis that distinct neuronal substrates underlie the crow's consistent behavioural response to different dangers. We found that crows activated brain regions associated with attention and arousal (nucleus isthmo-opticus/locus coeruleus), and with motor response (arcopallium), as they fixed their gaze on a threat. However, despite this consistent behavioural and neural response, the sight of a person who previously captured the crow, a person holding a dead crow and a taxidermy-mounted hawk activated distinct forebrain regions (amygdala, hippocampus and portion of the caudal nidopallium, respectively). We suggest that aspects of mobbing behaviour are guided by unique neural circuits that respond to differences in mental processing-learning, memory formation and multisensory discrimination-required to appropriately nuance a risky behaviour to specific dangers.

  4. Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire Danger Assessment in Southern California USA

    Directory of Open Access Journals (Sweden)

    Boksoon Myoung

    2018-01-01

    Full Text Available The goal of the research reported here is to assess the capability of satellite vegetation indices from the Moderate Resolution Imaging Spectroradiometer onboard both Terra and Aqua satellites, in order to replicate live fuel moisture content of Southern California chaparral ecosystems. We compared seasonal and interannual characteristics of in-situ live fuel moisture with satellite vegetation indices that were averaged over different radial extents around each live fuel moisture observation site. The highest correlations are found using the Aqua Enhanced Vegetation Index for a radius of 10 km, independently verifying the validity of in-situ live fuel moisture measurements over a large extent around each in-situ site. With this optimally averaged Enhanced Vegetation Index, we developed an empirical model function of live fuel moisture. Trends in the wet-to-dry phase of vegetation are well captured by the empirical model function on interannual time-scales, indicating a promising method to monitor fire danger levels by combining satellite, in-situ, and model results during the transition before active fire seasons. An example map of Enhanced Vegetation Index-derived live fuel moisture for the Colby Fire shows a complex spatial pattern of significant live fuel moisture reduction along an extensive wildland-urban interface, and illustrates a key advantage in using satellites across the large extent of wildland areas in Southern California.

  5. Neuraminidase inhibitor resistance in influenza: assessing the danger of its generation and spread.

    Directory of Open Access Journals (Sweden)

    Andreas Handel

    2007-12-01

    Full Text Available Neuraminidase Inhibitors (NI are currently the most effective drugs against influenza. Recent cases of NI resistance are a cause for concern. To assess the danger of NI resistance, a number of studies have reported the fraction of treated patients from which resistant strains could be isolated. Unfortunately, those results strongly depend on the details of the experimental protocol. Additionally, knowing the fraction of patients harboring resistance is not too useful by itself. Instead, we want to know how likely it is that an infected patient can generate a resistant infection in a secondary host, and how likely it is that the resistant strain subsequently spreads. While estimates for these parameters can often be obtained from epidemiological data, such data is lacking for NI resistance in influenza. Here, we use an approach that does not rely on epidemiological data. Instead, we combine data from influenza infections of human volunteers with a mathematical framework that allows estimation of the parameters that govern the initial generation and subsequent spread of resistance. We show how these parameters are influenced by changes in drug efficacy, timing of treatment, fitness of the resistant strain, and details of virus and immune system dynamics. Our study provides estimates for parameters that can be directly used in mathematical and computational models to study how NI usage might lead to the emergence and spread of resistance in the population. We find that the initial generation of resistant cases is most likely lower than the fraction of resistant cases reported. However, we also show that the results depend strongly on the details of the within-host dynamics of influenza infections, and most importantly, the role the immune system plays. Better knowledge of the quantitative dynamics of the immune response during influenza infections will be crucial to further improve the results.

  6. Assessment model for the transport of dangerous goods through road tunnels

    NARCIS (Netherlands)

    Nelisse, R.M.L.; Vrouwenvelder, A.C.W.M.

    2012-01-01

    In many cases decisions have to be made with respect to the safety level that has to be maintained in tunnels. In this paper the central question is how one can decide between (a) a tunnel with limited allowance for dangerous goods and a deviation route for the prohibited goods or (b) a tunnel

  7. Climate indices for vulnerability assessments

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Gunn; Baerring, Lars; Kjellstroem, Erik; Strandberg, Gustav; Rummuk ainen, Markku

    2007-08-15

    The demand is growing for practical information on climate projections and the impacts expected in different geographical regions and different sectors. It is a challenge to transform the vast amount of data produced in climate models into relevant information for climate change impact studies. Climate indices based on climate model data can be used as means to communicate climate change impact relations. In this report a vast amount of results is presented from a multitude of indices based on different regional climate scenarios. The regional climate scenarios described in this report show many similarities with previous scenarios in terms of general evolution and amplitude of future European climate change. The broad features are manifested in increases in warm and decreases in cold indices. Likewise are presented increases in wet indices in the north and dry indices in the south. Despite the extensive nature of the material presented, it does not cover the full range of possible climate change. We foresee a continued interactive process with stakeholders as well as continued efforts and updates of the results presented in the report.

  8. Environmental quality assessment in connection with the use of dangerous soils: The case of La Carlota, Córdoba

    Directory of Open Access Journals (Sweden)

    Gilda Cristina Grandis

    2012-01-01

    Full Text Available Environmental quality refers to how the environment contributes to human well-being. The use of dangerous soils in an urban area may affect that quality. This paper analyzes and assesses urban environmental quality in connection with the uses of dangerous soils located within the urban fabric: agrochemical storage, silos, garages for land fumigating equipment, liquefied gas tube and cylinder storage, gas stations. The methodology chosen for this study entails the application of Environmental Indicator Systems under the "Pressure-State-Response" model [OECD], so as to propose and measure an Environmental Quality index. Our ultimate goal is to identify those factors increasing or reducing risk, measured by pressure, state and response indicators

  9. Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility

    Science.gov (United States)

    Tumanov, Aleksandr; Gumenyuk, Vasily; Tumanov, Vladimir

    2017-10-01

    The article is devoted to the development of mathematical model for assessing the harm accidents on potentially-dangerous sea-based energy object. Made choice of regression mathematical model that best represents the relationship of the integral indicator with a set of risk factors of emergency situations their probabilities. Shows the main parameters of the model and result indicators. A mathematical model in which risk assessment in addition to the probability of the adverse events, risk factors and possible consequences taken into account the vulnerability of the object.

  10. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    Science.gov (United States)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    warmer than today. Ice melt cooling of the North Atlantic and Southern oceans increases atmospheric temperature gradients, eddy kinetic energy and baroclinicity, thus driving more powerful storms. The modeling, paleoclimate evidence, and ongoing observations together imply that 2 C global warming above the preindustrial level could be dangerous. Continued high fossil fuel emissions this century are predicted to yield (1) cooling of the Southern Ocean, especially in the Western Hemisphere; (2) slowing of the Southern Ocean overturning circulation, warming of the ice shelves, and growing ice sheet mass loss; (3) slowdown and eventual shutdown of the Atlantic overturning circulation with cooling of the North Atlantic region; (4) increasingly powerful storms; and (5) nonlinearly growing sea level rise, reaching several meters over a timescale of 50-150 years. These predictions, especially the cooling in the Southern Ocean and North Atlantic with markedly reduced warming or even cooling in Europe, differ fundamentally from existing climate change assessments. We discuss observations and modeling studies needed to refute or clarify these assertions.

  11. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2016-03-01

    while Earth was less than 1 °C warmer than today. Ice melt cooling of the North Atlantic and Southern oceans increases atmospheric temperature gradients, eddy kinetic energy and baroclinicity, thus driving more powerful storms. The modeling, paleoclimate evidence, and ongoing observations together imply that 2 °C global warming above the preindustrial level could be dangerous. Continued high fossil fuel emissions this century are predicted to yield (1 cooling of the Southern Ocean, especially in the Western Hemisphere; (2 slowing of the Southern Ocean overturning circulation, warming of the ice shelves, and growing ice sheet mass loss; (3 slowdown and eventual shutdown of the Atlantic overturning circulation with cooling of the North Atlantic region; (4 increasingly powerful storms; and (5 nonlinearly growing sea level rise, reaching several meters over a timescale of 50–150 years. These predictions, especially the cooling in the Southern Ocean and North Atlantic with markedly reduced warming or even cooling in Europe, differ fundamentally from existing climate change assessments. We discuss observations and modeling studies needed to refute or clarify these assertions.

  12. Climate change vulnerability assessment in Georgia

    Science.gov (United States)

    Binita KC; J. Marshall Shepherd; Cassandra Johnson Gaither

    2015-01-01

    Climate change is occurring in the Southeastern United States, and one manifestation is changes in frequency and intensity of extreme events. A vulnerability assessment is performed in the state of Georgia (United States) at the county level from 1975 to 2012 in decadal increments. Climate change vulnerability is typically measured as a function of exposure to physical...

  13. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  14. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, Levi D.; Maurer, Edwin P.; Anderson, Jamie D.; Dettinger, Michael D.; Townsley, Edwin S.; Harrison, Alan; Pruitt, Tom

    2009-04-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios.

  15. Bioenergy and climate change mitigation: an assessment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Ravindranath, N. H.; Berndes, Göran

    2015-01-01

    -scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration......Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation......: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects...

  16. Seasonal fire danger forecasts for the USA

    Science.gov (United States)

    J. Roads; F. Fujioka; S. Chen; R. Burgan

    2005-01-01

    The Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (DFDRS), which include the ignition component (IC), energy release component (ER), burning...

  17. The acquisition of dangerous biological materials: Technical facts sheets to assist risk assessments of 46 potential BW agents

    Energy Technology Data Exchange (ETDEWEB)

    Aceto, Donato Gonzalo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Astuto-Gribble, Lisa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaudioso, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  18. Contesting danger

    DEFF Research Database (Denmark)

    Heathershaw, John; Megoran, Nick

    2011-01-01

    Western geopolitical discourse misrepresents and constructs Central Asia as an inherently and essentially dangerous place. This pervasive ‘discourse of danger’ obscures knowledge of the region, deforms scholarship and, because it has policy implications, actually endangers Central Asia. This arti......Western geopolitical discourse misrepresents and constructs Central Asia as an inherently and essentially dangerous place. This pervasive ‘discourse of danger’ obscures knowledge of the region, deforms scholarship and, because it has policy implications, actually endangers Central Asia....... This article identifies how the region is made knowable to a US–UK audience through three mutually reinforcing dimensions of endangerment: Central Asia as obscure, oriental, and fractious. This is evidenced in the writings of conflict resolution and security analysts, the practices of governments...

  19. Building a sustained climate assessment process

    Energy Technology Data Exchange (ETDEWEB)

    Buizer, James L.; Dow, Kirstin; Black, Mary E.; Jacobs, Katharine L.; Waple, Anne; Moss, Richard H.; Moser, Susanne; Luers, Amy; Gustafson, David I.; Richmond, T. C.; Hays, Sharon L.; Field, Christopher B.

    2015-09-21

    The leaders and authors of the Third US National Climate Assessment (NCA3) developed new modes of engaging academia, the private sector, government agencies and civil society to support their needs for usable, rigorous, and timely information and better connect science and decision-making. A strategic vision for assessment activities into the future was built during the NCA3 process, including recommendations on how to establish a sustained assessment process that would integrate evolving scientific understanding into decision making to manage the risks of climate change over time. This vision includes a collaborative assessment process that involves partnerships across a diverse and widely distributed set of non-governmental and governmental entities. The new approach to assessments would produce timely, scientifically sound climate information products and processes, rather than focusing on the production of single quadrennial synthesis reports. If properly implemented, a sustained assessment would be more efficient and cost-effective, avoiding the painful and time-consuming process of beginning the assessment process anew every 4 years. This ongoing assessment would also encourage scientific and social innovations and explore new insights and opportunities, building the capacity to advance the development and delivery of climate information to meet societal requirements and benefit from scientific opportunities.

  20. Handling Interdependencies in Climate Change Risk Assessment

    Directory of Open Access Journals (Sweden)

    Richard J. Dawson

    2015-12-01

    Full Text Available Typically, a climate change risk assessment focuses on individual sectors or hazards. However, interdependencies between climate risks manifest themselves via functional, physical, geographical, economic, policy and social mechanisms. These can occur over a range of spatial or temporal scales and with different strengths of coupling. Three case studies are used to demonstrate how interdependencies can significantly alter the nature and magnitude of risk, and, consequently, investment priorities for adaptation. The three examples explore interdependencies that arise from (1 climate loading dependence; (2 mediation of two climate impacts by physical processes operating over large spatial extents; and, (3 multiple risks that are influenced by shared climatic and socio-economic drivers. Drawing upon learning from these case studies, and other work, a framework for the analysis and consideration of interdependencies in climate change risk assessment has been developed. This is an iterative learning loop that involves defining the system, scoping interaction mechanisms, applying appropriate modelling tools, identifying vulnerabilities and opportunities, and assessing the performance of adaptation interventions.

  1. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  2. Probabilistic Climate Scenario Information for Risk Assessment

    Science.gov (United States)

    Dairaku, K.; Ueno, G.; Takayabu, I.

    2014-12-01

    Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  3. Climate change vulnerability for species-Assessing the assessments.

    Science.gov (United States)

    Wheatley, Christopher J; Beale, Colin M; Bradbury, Richard B; Pearce-Higgins, James W; Critchlow, Rob; Thomas, Chris D

    2017-09-01

    Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.e. using historical data to assign risks and more recent data for validation). Our results show that the different vulnerability assessment methods are not consistent with one another; different risk categories are assigned for both the real and simulated sets of species. Validation of the different vulnerability assessments suggests that methods incorporating historic trend data into the assessment perform best at predicting distribution trends in subsequent time periods. This study demonstrates that climate change vulnerability assessments should not be used interchangeably due to the poor overall agreement between methods when considering the same species. The results of our validation provide more support for the use of trend-based rather than purely trait-based approaches, although further validation will be required as data become available. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. NOAA's State Climate Summaries for the National Climate Assessment: A Sustained Assessment Product

    Science.gov (United States)

    Kunkel, K.; Champion, S.; Frankson, R.; Easterling, D. R.; Griffin, J.; Runkle, J. D.; Stevens, L. E.; Stewart, B. C.; Sun, L.; Veasey, S.

    2016-12-01

    A set of State Climate Summaries have been produced for all 50 U.S. states as part of the National Climate Assessment Sustained Assessment and represent a NOAA contribution to this process. Each summary includes information on observed and projected climate change conditions and impacts associated with future greenhouse gas emissions pathways. The summaries focus on the physical climate and coastal issues as a part of NOAA's mission. Core climate data and simulations used to produce these summaries have been previously published, and have been analyzed to represent a targeted synthesis of historical and plausible future climate conditions. As these are intended to be supplemental to major climate assessment development, the scope of the content remains true to a "summary" style document. Each state's Climate Summary includes its climatology and projections of future temperatures and precipitation, which are presented in order to provide a context for the assessment of future impacts. The climatological component focuses on temperature, precipitation, and noteworthy weather events specific to each state and relevant to the climate change discussion. Future climate scenarios are also briefly discussed, using well-known and consistent sets of climate model simulations based on two possible futures of greenhouse gas emissions. These future scenarios present an internally consistent climate picture for every state and are intended to inform the potential impacts of climate change. These 50 State Climate Summaries were produced by NOAA's National Centers for Environmental Information (NCEI) and the North Carolina State University Cooperative Institute for Climate and Satellites - NC (CICS-NC) with additional input provided by climate experts, including the NOAA Regional Climate Centers and State Climatologists. Each summary document also underwent a comprehensive and anonymous peer review. Each summary contains text, figures, and an interactive web presentation. A full

  5. The Physical Science behind Climate Change. Why are climatologists so highly confident that human activities are dangerously warming the earth?; Die Wissenschaft hinter dem Klimawandel

    Energy Technology Data Exchange (ETDEWEB)

    Collins, W. [California Univ., Berkeley, CA (United States); Lawrence Berkeley National Lab., CA (United States); National Center for Atmospheric Research, Boulder, CO (United States); Colman, R. [Bureau of Meteorology, Melbourne, VIC (Australia). Research Centre; Haywood, J. [Meteorological Office (Met Office), Exeter (United Kingdom); Manning, M.R. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Mote, P. [Washington Univ., Seattle, WA (United States). Dept. of Atmospheric Sciences

    2007-10-15

    For a scientist studying climate change, ''eureka'' moments are unusually rare. Instead progress is generally made by a painstaking piecing together of evidence from every new temperature measurement, satellite sounding or climate-model experiment. Data get checked and rechecked, ideas tested over and over again. Do the observations fit the predicted changes? Could there be some alternative explanation? Good climate scientists, like all good scientists, want to ensure that the highest standards of proof apply to everything they discover. And the evidence of change has mounted as climate records have grown longer, as our understanding of the climate system has improved and as climate models have become ever more reliable. Over the past 20 years, evidence that humans are affecting the climate has accumulated inexorably, and with it has come ever greater certainty across the scientific community in the reality of recent climate change and the potential for much greater change in the future. This increased certainty is starkly reflected in the latest report of the Intergovernmental Panel on Climate Change (IPCC), the fourth in a series of assessments of the state of knowledge on the topic, written and reviewed by hundreds of scientists worldwide. (orig./GL)

  6. Carbon-Neutral Energy Supply and Energy Demand-Reduction Technology Needed for Continued Economic Growth Without Dangerous Interference in the Climate System

    Science.gov (United States)

    Hoffert, M. I.; Caldeira, K.

    2007-12-01

    Stabilization of atmospheric CO2 at levels likely to avoid unacceptable climate risk will require a major transformation in the ways we produce and use energy. Most of our energy will need to come from sources that do not emit carbon dioxide to the atmosphere and that energy will need to be used efficiently. The required reduction of carbon dioxide emissions as global energy consumption and GDP grow imposes quantitative requirements on some combination of carbon-neutral primary power and energy demand reduction. (Emission reductions are expressed relative to an implicit or explicit baseline; explicit being better for policy-making. Energy demand reduction involves both efficiency improvements and lifestyle changes.) These requirements can be expressed as CO2 emission reductions needed, or as carbon-neutral primary power production needed combined with power not used by virtue of increased energy end use efficiency or lifestyle changes ("negawatts"), always subject to some reasonably well-characterized uncertainty limits. Climatic changes thus far have been closer to the more extreme zone of the climatic uncertainty envelope of global warming indicating the potential for disastrous impacts by mid-century and beyond for business-as-usual. Emission reductions needed to avoid "dangerous interference in the climate system" imply a revolutionary change in the global energy system beginning now; particularly ominous are massive conventional coal-fired electric power energy infrastructures under construction by the US, China & India. Strong arguments, based on physical science considerations, exist for prompt measures such as (1) an immediate moratorium on coal-fired plants that don't sequester CO2, (2) a gradually increasing price on carbon emissions and (3) regulatory standards, for example, that would encourage utilities and car manufacturers to improve efficiency, and (4) Apollo-scale R & D projects beginning now to develop sustainable carbon-neutral power that can be

  7. Comparative Assessment to Danger of Rock Bursts Origin in Different Conditions of Mining in OKR

    Directory of Open Access Journals (Sweden)

    Bukovanský Stanislav

    1998-03-01

    Full Text Available For this comparative assessment to factual possibilities of balance failure it is necessary to investigate a character and possible changes in individual elements of the system "rock - time", as well as their mutual interaction with rock burst origin and their course. Research observations after burst show that the influence of strong energy after rock burst, into the overlying impact click is present in a coal seam due to its higher pressure to a face (when compared with a relevant pressure answerring a final deformation after such burst. Certain "avalanche" in failures after burst could be characterized as a certain rank of individual particular phenomena.

  8. Which climatic modeling to assess climate change impacts on vineyards?

    OpenAIRE

    Quenol, Herve; Garcia De Cortazar Atauri, Inaki; Bois, Benjamin; Sturman, Andrew; Bonnardot, Valerie; Le Roux, Renan

    2017-01-01

    The impact of climatic change on viticulture is significant: main phenological stages appear earlier, wine characteristics are changing, ... This clearly illustrates the point that the adaptation of viticulture to climate change is crucial and should be based on simulations of future climate. Several types of models exist and are used to represent viticultural climates at various scales. In this paper, we propose a review of different types of climate models (methodology and uncertainties) an...

  9. Dangerous directions

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, W.M.; Kristensen, H.

    1998-03-01

    Even in the through-the-looking-glass world of nuclear deterrence, the current situation is bizarre: Although the United States and Russia are friends, and are both cutting back the numbers of strategic weapons, the United States is more able than ever to deliver a devastating, decapitating, first-strike blow against Russia, should US-Russian relations ever sour. Russian nuclear survivability is not assured, creating - at least on paper - a uniquely dangerous hair trigger. After several rounds of nuclear reductions and almost a decade of declared peace, how is it that US strategic nuclear forces have, been enhanced rather than diminished? The answer is partly Russia`s inability to fulfill the unwritten contract underlying US-Russian strategic arms reductions - that both sides maintain high levels of alert. Russia`s day-to-day nuclear readiness is miserable. Its missile force is in a state of flux, with even its land-based missiles severely challenged by technological weaknesses and insurmountable maintenance problems. Its mobile forces - particularly its SS-25 road-mobile missiles and its ballistic missile submarines - are at a virtual standstill. Apparently flawed, Russia`s newest submarines, those of the Typhoon class, are being prematurely retired. The intercontinental bomber force is essentially nonexistent. Russia cannot afford to modernize its nuclear forces, and thus faces the physical reality of forced disarmament. The imbalance vis-a-vis the United States will grow wider after the turn of the century, as the majority of Russia`s current systems reach the end of their service lives.

  10. Assessment of microbiological quality of water in the Nowohucki Reservoir with particular regard to microorganisms potentially dangerous to humans

    Directory of Open Access Journals (Sweden)

    Katarzyna Wolny-Koładka

    2016-12-01

    Full Text Available Introduction. This study was aimed to assess the microbiological quality of water in the Nowohucki Reservoir (Kraków, Poland as well as to determine whether its waters contain microorganisms potentially dangerous from an epidemiological point of view. Material and methods. Microbiological analyses included the determination of the number of mesophilic and psychrophilic bacteria, coliforms, fecal E. coli, as well as E. faecalis, C. perfringens, Staphylococcus spp. and Salmonella spp.. Water samples were collected 4 times per year on April 27th 2015 (spring, July 10th 2015 (summer, October 12th 2015 (autumn and December 29th 2015 (winter at 5 points within the area of the reservoir. Water and air temperature was measured onsite. Results. It was found that the prevalence of the analyzed microorganisms was affected by changing water and air temperature as well as by using this reservoir during holiday season for swimming purposes by local residents. All analyzed microbiological indicators of poor water quality were found in the analyzed water samples, which may pose a potential health risk to people swimming in the considered reservoir. Conclusions. From an epidemiological point of view, it is reasonable to include the Nowohucki Reservoir into a constant sanitary monitoring programme.

  11. Reframing climate change assessments around risk: recommendations for the US National Climate Assessment

    Science.gov (United States)

    Weaver, C. P.; Moss, R. H.; Ebi, K. L.; Gleick, P. H.; Stern, P. C.; Tebaldi, C.; Wilson, R. S.; Arvai, J. L.

    2017-08-01

    Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. We suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.

  12. Assessing the impact of aviation on climate

    Directory of Open Access Journals (Sweden)

    Karen Marais

    2008-04-01

    Full Text Available We present an assessment of the marginal climate impacts of new aviation activities. We use impulse response functions derived from carbon-cycle and atmospheric models to estimate changes in surface temperature for various aviation impacts (CO2, NOx on methane, NOx on ozone, sulfates, soot, and contrails/induced cirrus. We use different damage functions and discount rates to explore health, welfare and ecological costs for a range of assumptions and scenarios. Since uncertainty is high regarding many aviation effects, we explicitly capture some uncertainty by representing several model parameters as probabilistic distributions. The uncertainties are then propagated using Monte Carlo analysis to derive estimates for the impact of these uncertainties on the marginal future climate impacts. Our goal is to provide a framework that will communicate the potential impacts of aviation on climate change under different scenarios and assumptions, and that will allow decision-makers to compare these potential impacts to other aviation environmental impacts. We present results to describe the influence of parametric uncertainties, scenarios, and assumptions for valuation on the expected marginal future costs of aviation impacts. Estimates of the change in global average surface temperature due to aviation are most sensitive to changes in climate sensitivity, the radiative forcing attributed to short-lived effects (in particular those related to contrails and aviation-induced cirrus, and the choice of emissions scenario. Estimates of marginal future costs of aviation are most sensitive to assumptions regarding the discount rate, followed by assumptions regarding climate sensitivity, and the choice of emissions scenario.

  13. Organizational Climate Assessment: a Systemic Perspective

    Science.gov (United States)

    Argentero, Piergiorgio; Setti, Ilaria

    A number of studies showed how the set up of an involving and motivating work environment represents a source for organizational competitive advantage: in this view organizational climate (OC) research occupies a preferred position in current I/O psychology. The present study is a review carried out to establish the breadth of the literature on the characteristics of OC assessment considered in a systemic perspective. An organization with a strong climate is a work environment whose members have similar understanding of the norms and practices and share the same expectations. OC should be considered as a sort of emergent entity and, as such, it can be studied only within a systemic perspective because it is linked with some organizational variables, in terms of antecedents (such as the organization's internal structure and its environmental features) and consequences (such as job performance, psychological well-being and withdrawal) of the climate itself. In particular, when employees have a positive view of their organizational environment, consistently with their values and interests, they are more likely to identify their personal goals with those of the organization and, in turn, to invest a greater effort to pursue them: the employees' perception of the organizational environment is positively related to the key outcomes such as job involvement, effort and performance. OC analysis could also be considered as an effective Organizational Development (OD) tool: in particular, the Survey Feedback, that is the return of the OC survey results, could be an effective instrument to assess the efficacy of specific OD programs, such as Team Building, TQM and Gainsharing. The present study is focused on the interest to investigate all possible variables which are potential moderators of the climate - outcome relationship: therefore future researches in the OC field should consider a great variety of organizational variables, considered in terms of antecedents and effects

  14. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  15. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  16. Energy security and climate policy. Assessing interactions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-03-28

    World energy demand is surging. Oil, coal and natural gas still meet most global energy needs, creating serious implications for the environment. One result is that CO2 emissions, the principal cause of global warming, are rising. This new study underlines the close link between efforts to ensure energy security and those to mitigate climate change. Decisions on one side affect the other. To optimise the efficiency of their energy policy, OECD countries must consider energy security and climate change mitigation priorities jointly. The book presents a framework to assess interactions between energy security and climate change policies, combining qualitative and quantitative analyses. The quantitative analysis is based on the development of energy security indicators, tracking the evolution of policy concerns linked to energy resource concentration. The 'indicators' are applied to a reference scenario and CO2 policy cases for five case-study countries: The Czech Republic, France, Italy, the Netherlands, and the United Kingdom. Simultaneously resolving energy security and environmental concerns is a key challenge for policy makers today. This study helps chart the course.

  17. Wildfire Danger Potential in California

    Science.gov (United States)

    Kafatos, M.; Myoung, B.; Kim, S. H.; Fujioka, F. M.; Kim, J.

    2015-12-01

    Wildfires are an important concern in California (CA) which is characterized by the semi-arid to arid climate and vegetation types. Highly variable winter precipitation and extended hot and dry warm season in the region challenge an effective strategic fire management. Climatologically, the fire season which is based on live fuel moisture (LFM) of generally below 80% in Los Angeles County spans 4 months from mid-July to mid-November, but it has lasted over 7 months in the past several years. This behavior is primarily due to the ongoing drought in CA during the last decade, which is responsible for frequent outbreaks of severe wildfires in the region. Despite their importance, scientific advances for the recent changes in wildfire risk and effective assessments of wildfire risk are lacking. In the present study, we show impacts of large-scale atmospheric circulations on an early start and then extended length of fire seasons. For example, the strong relationships of North Atlantic Oscillation (NAO) with springtime temperature and precipitation in the SWUS that was recently revealed by our team members have led to an examination of the possible impact of NAO on wildfire danger in the spring. Our results show that the abnormally warm and dry spring conditions associated with positive NAO phases can cause an early start of a fire season and high fire risks throughout the summer and fall. For an effective fire danger assessment, we have tested the capability of satellite vegetation indices (VIs) in replicating in situ LFM of Southern CA chaparral ecosystems by 1) comparing seasonal/interannual characteristics of in-situ LFM with VIs and 2) developing an empirical model function of LFM. Unlike previous studies attempting a point-to-point comparison, we attempt to examine the LFM relationship with VIs averaged over different areal coverage with chamise-dominant grids (i.e., 0.5 km to 25 km radius circles). Lastly, we discuss implications of the results for fire danger

  18. A hybrid approach to incorporating climate change and variability into climate scenario for impact assessments

    OpenAIRE

    Gebretsadik, Yohannes; Strzepek, Kenneth; Schlosser, C. Adam

    2014-01-01

    Traditional 'delta-change' approach of scenario generation for climate change impact assessment to water resources strongly depends on the selected base-case observed historical climate conditions that the climate shocks are to be super-imposed. This method disregards the combined effect of climate change and the inherent hydro-climatological variability in the system. Here we demonstrated a hybrid uncertainty approach in which uncertainties in historical climate variability are combined with...

  19. The regional impacts of climate change: an assessment of vulnerability

    National Research Council Canada - National Science Library

    Zinyowera, Marufu C; Moss, Richard H; Watson, R. T

    1998-01-01

    .... The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health...

  20. Assessing urban adaptive capacity to climate change.

    Science.gov (United States)

    Araya-Muñoz, Dahyann; Metzger, Marc J; Stuart, Neil; Wilson, A Meriwether W; Alvarez, Luis

    2016-12-01

    Despite the growing number of studies focusing on urban vulnerability to climate change, adaptive capacity, which is a key component of the IPCC definition of vulnerability, is rarely assessed quantitatively. We examine the capacity of adaptation in the Concepción Metropolitan Area, Chile. A flexible methodology based on spatial fuzzy modelling was developed to standardise and aggregate, through a stepwise approach, seventeen indicators derived from widely available census statistical data into an adaptive capacity index. The results indicate that all the municipalities in the CMA increased their level of adaptive capacity between 1992 and 2002. However, the relative differences between municipalities did not change significantly over the studied timeframe. Fuzzy overlay allowed us to standardise and to effectively aggregate indicators with differing ranges and granularities of attribute values into an overall index. It also provided a conceptually sound and reproducible means of exploring the interplay of many indicators that individually influence adaptive capacity. Furthermore, it captured the complex, aggregated and continued nature of the adaptive capacity, favouring to deal with gaps of data and knowledge associated with the concept of adaptive capacity. The resulting maps can help identify municipalities where adaptive capacity is weak and identify which components of adaptive capacity need strengthening. Identification of these capacity conditions can stimulate dialogue amongst policymakers and stakeholders regarding how to manage urban areas and how to prioritise resources for urban development in ways that can also improve adaptive capacity and thus reduce vulnerability to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. BASINS and WEPP Climate Assessment Tools (CAT): Case ...

    Science.gov (United States)

    This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential future effects of climate change on water resources. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.

  2. Assessing climate change impacts on water balance in the Mount ...

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  3. GIS and Remote Sensing Based Assessment of Climate Change ...

    African Journals Online (AJOL)

    The effects of climate change are severe in developing countries like Ethiopia where agriculture is the dominant economy. The Remote Sensing and GIS based analysis of climate change impact is crucial to help Ethiopia benefit the most from the technology. This study aims at assessing changes and variations in climatic ...

  4. Assessment of the Effects of Climate Change on Livestock ...

    African Journals Online (AJOL)

    The investigation of the effects of climate change on livestock husbandry and practices in Jigawa State, Nigeria, was aimed at assessing the level of awareness of climate change by nomads and also determine the effect of climate change on livestock husbandry and practices. Using random sampling method, data were ...

  5. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change Gerrit Hansen Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced climate change are

  6. Climate change vulnerability assessment of forests in the Southwest USA

    Science.gov (United States)

    James H. Thorne; Hyeyeong Choe; Peter A. Stine; Jeanne C. Chambers; Andrew Holguin; Amber C. Kerr; Mark W. Schwartz

    2017-01-01

    Climate change effects are already apparent in some Southwestern US forests and are expected to intensify in the coming decades, via direct (temperature, precipitation) and indirect (fire, pests, pathogens) stressors. We grouped Southwestern forests into ten major types to assess their climate exposure by 2070 using two global climate models (GCMs) and two emission...

  7. Indicators of climate impacts for forests: recommendations for the US National Climate Assessment indicators system

    Science.gov (United States)

    Linda S. Heath; Sarah M. Anderson; Marla R. Emery; Jeffrey A. Hicke; Jeremy Littell; Alan Lucier; Jeffrey G. Masek; David L. Peterson; Richard Pouyat; Kevin M. Potter; Guy Robertson; Jinelle Sperry; Andrzej Bytnerowicz; Sarah Jovan; Miranda H. Mockrin; Robert Musselman; Bethany K. Schulz; Robert J. Smith; Susan I. Stewart

    2015-01-01

    The Third National Climate Assessment (NCA) process for the United States focused in part on developing a system of indicators to communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness to inform decisionmakers and the public. Initially, 13 active teams were formed to recommend indicators in a range of categories, including...

  8. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    Future climate change is generally believed to lead to an increase in climate variability and in the frequency and intensity of extreme events. Extreme climate events such as floods and dry spells have significant impacts on society. As noted by the Bureau of Meteorology, Canada, to examine whether such extremes have ...

  9. Assessing Statistical Model Assumptions under Climate Change

    Science.gov (United States)

    Varotsos, Konstantinos V.; Giannakopoulos, Christos; Tombrou, Maria

    2016-04-01

    The majority of the studies assesses climate change impacts on air-quality using chemical transport models coupled to climate ones in an off-line mode, for various horizontal resolutions and different present and future time slices. A complementary approach is based on present-day empirical relations between air-pollutants and various meteorological variables which are then extrapolated to the future. However, the extrapolation relies on various assumptions such as that these relationships will retain their main characteristics in the future. In this study we focus on the ozone-temperature relationship. It is well known that among a number of meteorological variables, temperature is found to exhibit the highest correlation with ozone concentrations. This has led, in the past years, to the development and application of statistical models with which the potential impact of increasing future temperatures on various ozone statistical targets was examined. To examine whether the ozone-temperature relationship retains its main characteristics under warmer temperatures we analyze the relationship during the heatwaves events of 2003 and 2006 in Europe. More specifically, we use available gridded daily maximum temperatures (E-OBS) and hourly ozone observations from different non-urban stations (EMEP) within the areas that were impacted from the two heatwave events. In addition, we compare the temperature distributions of the two events with temperatures from two different future time periods 2021-2050 and 2071-2100 from a number of regional climate models developed under the framework of the Cordex initiative (http://www.cordex.org) with a horizontal resolution of 12 x 12km, based on different IPCC RCPs emissions scenarios. A statistical analysis is performed on the ozone-temperature relationship for each station and for the two aforementioned years which are then compared against the ozone-temperature relationships obtained from the rest of the available dataseries. The

  10. The GCRP Climate Health Assessment: From Scientific Literature to Climate Health Literacy

    Science.gov (United States)

    Crimmins, A. R.; Balbus, J. M.

    2016-12-01

    As noted by the new report from the US GCRP, the Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, climate change is a significant threat to the health of the American people. Despite a growing awareness of the significance of climate change in general among Americans, however, recognition of the health significance of climate change is lacking. Not only are the general public and many climate scientists relatively uninformed about the myriad health implications of climate change; health professionals, including physicians and nurses, are in need of enhanced climate literacy. This presentation will provide an overview of the new GCRP Climate Health Assessment, introducing the audience to the systems thinking that underlies the assessment of health impacts, and reviewing frameworks that tie climate and earth systems phenomena to human vulnerability and health. The impacts on health through changes in temperature, precipitation, severity of weather extremes and climate variability, and alteration of ecosystems and phenology will be explored. The process of developing the assessment report will be discussed in the context of raising climate and health literacy within the federal government.

  11. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    Science.gov (United States)

    Romanach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  12. Modeling and assessing international climate financing

    Science.gov (United States)

    Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng

    2016-06-01

    Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.

  13. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  14. Case study applications of the BASINS climate assessment tool (CAT)

    Science.gov (United States)

    This EPA report will illustrate the application of different climate assessment capabilities within EPA’s BASINS modeling system for assessing a range of potential questions about the effects of climate change on streamflow and water quality in different watershed settings and us...

  15. Designing ecological climate change impact assessments to reflect key climatic drivers

    Science.gov (United States)

    Sofaer, Helen; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  16. Designing ecological climate change impact assessments to reflect key climatic drivers.

    Science.gov (United States)

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  17. Climate and climate-related issues for the safety assessment SR-Site

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The purpose of this report is to document current scientific knowledge on climate and climate-related conditions, relevant to the long-term safety of a KBS-3 repository, to a level required for an adequate treatment in the safety assessment SR-Site. The report also presents a number of dedicated studies on climate and selected climate-related processes of relevance for the assessment of long term repository safety. Based on this information, the report presents a number of possible future climate developments for Forsmark, the site selected for building a repository for spent nuclear fuel in Sweden (Figure 1-1). The presented climate developments are used as basis for the selection and analysis of SR-Site safety assessment scenarios in the SR-Site main report /SKB 2011/. The present report is based on research conducted and published by SKB as well as on research reported in the general scientific literature

  18. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    As noted by the Bureau of Meteorology, Canada, to examine whether such extremes have changed over time a variety of extreme climate indices can be defined, such as the number of days per year ... was already experiencing variability in its climate pattern, as such an information would be very useful for decision making.

  19. Urbanising Thailand: Implications for climate vulnerability assessment

    NARCIS (Netherlands)

    Friend, R.; Choosuk, C.; Hutanuwatr, K.; Inmuong, Y.; Kittitornkool, J.; Lambregts, B.; Promphakping, B.; Roachanakanan, T.; Thiengburanathum, P.; Siriwattanaphaiboon, S.

    2016-01-01

    This report summarises a series of studies carried out by a multi-disciplinary team of Thai scholars. It focuses on the dynamics of urbanisation and climate change risks, and on the linkages between urbanisation, climate change and emerging patterns of urban poverty and vulnerability. It provides

  20. IPCC Fourth Assessment Report (AR4) Observed Climate Change Impacts Database

    Data.gov (United States)

    National Aeronautics and Space Administration — The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessement Report (AR4) Observed Climate Change Impacts Database contains observed responses to climate...

  1. Assessment of awareness regarding climate change in an urban community.

    Science.gov (United States)

    Pandve, Harshal T; Chawla, P S; Fernandez, Kevin; Singru, Samir A; Khismatrao, Deepak; Pawar, Sangita

    2011-09-01

    Climate change has emerged as one of the most devastating environmental threats. It is essential to assess the awareness regarding climate change in the general population for framing the mitigation activities. To assess the awareness regarding climate change in an urban community. Urban field practice area of a medical college in the Pune city. Observational study. The cross-sectional survey was conducted in the urban adult population who had given the written consent. A pre-tested questionnaire was used for a face to face interview. Responses were evaluated. Proportions, percentage. Total 733 respondents above 18 years of age were included in the present survey. 672 (91.68%) respondents commented that global climate is changing. 547 (81.40%) respondents opined that human activities are contributing to climate change. 576 (85.71%) respondents commented that climate changing based on their personal experiences. Commonest source of information about climate change was television (59.78%). Poor awareness about UNFCC, Kyoto Protocol and IPCC was found. 549 (74.90%) respondents commented that deforestation contribute most significantly towards climate change. As per 530 (72.31%) respondents water related issues are due to changing climate change. According to 529 (72.17%) respondents, direct physical hazards of extreme climatic events are most important health related impact of climate change. According to 478 (65.21%) respondents, life style changes (63.3%) would be most effective in tackling climate change and for preventing further climate change. The urban general population is aware about changing global climate. Personal efforts are more important in mitigating climate change as per the urban general population. The awareness campaigns regarding mitigation activities are recommended.

  2. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...... reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  3. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    Science.gov (United States)

    Mearns, L. O.

    2012-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. All 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the various climate change experiments for various subregions, along with measures of uncertainty, will be presented

  4. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  5. A Regional Climate Change Assessment Program for North America

    Energy Technology Data Exchange (ETDEWEB)

    Mearns, L. O.; Gutowski, William; Jones, Richard; Leung, Lai-Yung R.; McGinnis, Seth; Nunes, A.; Qian, Yun

    2009-09-08

    There are two main uncertainties in determining future climate: the trajectories of future emissions of greenhouse gases and aerosols, and the response of the global climate system to any given set of future emissions [Meehl et al., 2007]. These uncertainties normally are elucidated via application of global climate models, which provide information at relatively coarse spatial resolutions. Greater interest in, and concern about, the details of climate change at regional scales has provided the motivation for the application of regional climate models, which introduces additional uncertainty [Christensen et al., 2007a]. These uncertainties in fi ne- scale regional climate responses, in contrast to uncertainties of coarser spatial resolution global models in which regional models are nested, now have been documented in numerous contexts [Christensen et al., 2007a] and have been found to extend to uncertainties in climate impacts [Wood et al., 2004; Oleson et al., 2007]. While European research in future climate projections has moved forward systematically to examine combined uncertainties from global and regional models [Christensen et al., 2007b], North American climate programs have lagged behind. To fi ll this research gap, scientists developed the North American Regional Climate Change Assessment Program (-NARCCAP). The fundamental scientifi c motivation of this international program is to explore separate and combined uncertainties in regional projections of future climate change resulting from the use of multiple atmosphere- ocean general circulation models (AOGCMs) to drive multiple regional climate models (RCMs). An equally important, and related, motivation for this program is to provide the climate impacts and adaptation community with high- resolution regional climate change scenarios that can be used for studies of the societal impacts of climate change and possible adaptation strategies.

  6. Integrated assessment of climate change with reductions of methane emissions

    NARCIS (Netherlands)

    Amstel, van A.R.

    2005-01-01

    We have been living in the anthropocene era since about 1950, and evidence of human influence on the natural ecosystems and climate is mounting. Reductions of greenhouse gas emissions are needed to reduce the effects of climate change in the future. In an integrated assessment with the IMAGE model

  7. Modeling current climate conditions for forest pest risk assessment

    Science.gov (United States)

    Frank H. Koch; John W. Coulston

    2010-01-01

    Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year...

  8. Assessment of farm households' vulnerability to climate change in ...

    African Journals Online (AJOL)

    Climate change is currently an emerging problem in Nigeria. The Niger Delta region presents some vulnerability due to activities of some oil companies. This study provides an assessment of farm households' perception of climate change and vulnerability in the Niger Delta region of Nigeria. The data were obtained form ...

  9. The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols

    Science.gov (United States)

    Schultz, T.

    2016-12-01

    The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.

  10. Criteria for assessing climate change impacts on ecosystems.

    Science.gov (United States)

    Loehle, Craig

    2011-09-01

    There is concern about the potential impacts of climate change on species and ecosystems. To address this concern, a large body of literature has developed in which these impacts are assessed. In this study, criteria for conducting reliable and useful assessments of impacts of future climate are suggested. The major decisions involve: clearly defining an emissions scenario; selecting a climate model; evaluating climate model skill and bias; quantifying General Circulation Model (GCM) between-model variability; selecting an ecosystem model and assessing uncertainty; properly considering transient versus equilibrium responses; including effects of CO(2) on plant response; evaluating implications of simplifying assumptions; and considering animal linkage with vegetation. A sample of the literature was surveyed in light of these criteria. Many of the studies used climate simulations that were >10 years old and not representative of best current models. Future effects of elevated CO(2) on plant drought resistance and productivity were generally included in growth model studies but not in niche (habitat suitability) studies, causing the latter to forecast greater future adverse impacts. Overly simplified spatial representation was frequent and caused the existence of refugia to be underestimated. Few studies compared multiple climate simulations and ecosystem models (including parametric uncertainty), leading to a false impression of precision and potentially arbitrary results due to high between-model variance. No study assessed climate model retrodictive skill or bias. Overall, most current studies fail to meet all of the proposed criteria. Suggestions for improving assessments are provided.

  11. Risk Assessment of Oil Pipeline Accidents in Special Climatic Conditions

    Science.gov (United States)

    Vtorushina, A. N.; Anishchenko, Y. V.; Nikonova, E. D.

    2017-05-01

    The present study identifies the main accidents’ factors and causes for oil pipeline located in Siberia and operated in special climatic conditions. Various types of pipeline accident scenarios were modeled. It is showed that the most dangerous scenarios are oil spills fire and oil vapor explosion due to the loss of piping integrity (rupture) of the pipeline’s section, laying on marshlands and oil spill on the water surface due to the loss of piping integrity (puncture). The most probable scenario is oil spills fire due to the loss of piping integrity (puncture) of the pipeline’s section, laying on dry lands and marshlands. To estimate the scenarios «event tree analysis» is used. Also such risk indexes as individual, societal, public and potential risks were determined.

  12. Dangerousness, Stress and Mental Health Evaluations.

    Science.gov (United States)

    Levinson, Richard M.; Ramsay, Georgeann

    Many jurisdictions require psychiatrists to assess patient "dangerousness" in the process of involuntary hospitalization. Considerable research indicates that psychiatric prediction of dangerous behavior is rather inaccurate, the principal error being one of overprediction. Inaccuracy may result, in part, from the psychiatrist's role in the health…

  13. IPCC. 4. climate assessment report, 2007; GIEC. 4. rapport d'evaluation du climat, 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The mission and challenge of the Intergovernmental panel on climate change (IPCC, GIEC in French) is to evaluate, synthesize and make available the sum of scientific and economic information of the complex domain of climatic change, and in addition to make the results of these works accepted by government representatives of 192 states. This document makes a brief synthesis in three parts of the 4. assessment report of the IPCC: 1 - physical scientific bases of climatic change: characteristic of the phenomenon, greenhouse gas emissions trend, already observed effects, forecasts of climate models; 2 - impacts, adaptations and vulnerabilities of climatic change: types of future impacts, impacts per sector, regional impacts, limits of ecosystems adaptation; 3 - mitigation of climatic changes: past emissions and future trends, possible mitigation actions and cost, possible political levers for emissions abatement. A last part introduces the French researchers involved in IPCC's works. (J.S.)

  14. USGCRP assessments: Meeting the challenges of climate and global change

    Science.gov (United States)

    Dickinson, T.; Kuperberg, J. M.

    2016-12-01

    The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.

  15. Millennium Ecosystem Assessment: MA Climate and Land Cover

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Climate and Land Cover provides data and information on global gridded climatological variables, global land cover maps, and...

  16. Agricultural climate impacts assessment for economic modeling and decision support

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  17. The Climate Science Special Report (CSSR) of the Fourth National Climate Assessment (NCA4)

    Science.gov (United States)

    Wuebbles, D. J.; Fahey, D. W.; Hibbard, K. A.

    2016-12-01

    The Climate Science Special Report (CSSR) will provide key input into the Fourth National Climate Assessment (NCA4). The report was initiated in 2016 under the guidance of the U.S. Global Change Research Program (USGCRP) as a new, stand-alone report of the state-of-science relating to climate change and its physical impacts. The report is undergoing peer and public review in late 2016 with the aim for final publication in the fourth quarter of 2017. CSSR will provide a comprehensive assessment of the science underlying the changes occurring in the Earth's climate system, with a special focus on the United States. CSSR will serve several purposes for NCA4, including 1) providing an updated detailed analysis of the findings of how climate change is affecting weather and climate across the United States, 2) providing an executive summary that will be used as the basis for the climate science discussion in NCA4, and 3) providing foundational information and projections for climate change, including extremes, to improve "end-to-end" consistency in sectoral, regional, and resilience analyses for NCA4. We will present a summary of the origins and development of CSSR, the writing team, the chapter topics and the relation of CSSR content to NCA4, other assessments and relevance to policy and research communities.

  18. assessing climate change impacts on river hydrology

    Indian Academy of Sciences (India)

    71

    (1951 to 2005) and future RCP 4.5 scenarios (2006-2060) were used to run the hydrological. 23 model, Soil and ... increasing at 0.100 C per decade for both historical and future scenarios. The impact of .... industrialization, studies on impact of climate change in this region are crucial for sustainable. 10 water resource ...

  19. Conclusion: re-assessing European climate leadership

    NARCIS (Netherlands)

    Wurzel, R.K.W.; Liefferink, J.D.; Connelly, J.

    2017-01-01

    The preceding chapters analysed the types and styles of leadership which different EU institutional, member state, societal and non-EU actors have offered in international climate change politics. They also considered when and how those type(s) and style(s) of leadership were exercised. Chapter 1

  20. Application of an economy-climate model to assess the impact of climate change

    Science.gov (United States)

    Chou, Jieming; Dong, Wenjie; Feng, Guolin

    2010-07-01

    An interdisciplinary investigation was conducted to assess the impact of climate change on grain yields using an economy-climate model (C-D-C). The model was formulated by incorporating climate factors into the classic Cobb-Douglas (C-D) economic production function model. The economic meanings of the model output elasticities are described and elucidated. The C-D-C model was applied to the assessment of the impact of climate change on grain yields in China during the past 20 years, from 1983 through 2002. In the study, the land of China was divided into eight regions, and both the C-D-C and C-D models were applied to each individual region. The results suggest that the C-D-C model is superior to the classic C-D model, indicating the importance of climate factors. Prospective applications of the C-D-C model are discussed.

  1. Imprecise probability analysis for integrated assessment of climate change

    OpenAIRE

    Kriegler, Elmar

    2005-01-01

    We present an application of imprecise probability theory to the quantification of uncertainty in the integrated assessment of climate change. Our work is motivated by the fact that uncertainty about climate change is pervasive, and therefore requires a thorough treatment in the integrated assessment process. Classical probability theory faces some severe difficulties in this respect, since it cannot capture very poor states of information in a satisfactory manner. A more general framework is...

  2. Integrative Assessment of Mitigation, Impacts, and Adaptation to Climate Change

    OpenAIRE

    Nakicenovic, N.; Nordhaus, W.D.; Richels, R.; Toth, F.L.

    1994-01-01

    This volume presents the proceedings of the second international workshop held at IIASA in October 1993 assessing the current state of integrated assessments. Numerous models and less formalized approaches analyze anthropogenic sources of greenhouse gas emissions, their concentrations in the atmosphere, the resulting climate forcing, impacts of the induced climate change on the economy and other human activities, as well as possible mitigation and adaptation strategies. Studies that include a...

  3. Development and Psychometrics of "Safety Climate Assessment Questionnaire"

    OpenAIRE

    Jafari MJ; Sadighzadeh A; Sarsangi V; Zaeri F; Zarei E

    2013-01-01

    Background and Aims: Eighty five percent of accidents can be attributed to unsafe acts. Eighty five to ninety eight percent of workplace injuries caused by unsafe acts are due to attitude, behavior and culture. Safety climate is a multi-dimensional structure that describes the attitude and the correct priority of the people towards the safety at work. To assess safety climate, a valid and reliable tool is needed. The aim of this study was developing a psychometric questionnaire to assess safe...

  4. Vulnerability Assessments in Support of the Climate Ready ...

    Science.gov (United States)

    As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared this draft report exploring a new methodology for climate change vulnerability assessments using San Francisco Bay’s salt marsh and mudflat ecosystems as a demonstration. N/A

  5. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    Science.gov (United States)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate

  6. Uncertainty assessment tool for climate change impact indicators

    Science.gov (United States)

    Otto, Juliane; Keup-Thiel, Elke; Jacob, Daniela; Rechid, Diana; Lückenkötter, Johannes; Juckes, Martin

    2015-04-01

    A major difficulty in the study of climate change impact indicators is dealing with the numerous sources of uncertainties of climate and non-climate data . Its assessment, however, is needed to communicate to users the degree of certainty of climate change impact indicators. This communication of uncertainty is an important component of the FP7 project "Climate Information Portal for Copernicus" (CLIPC). CLIPC is developing a portal to provide a central point of access for authoritative scientific information on climate change. In this project the Climate Service Center 2.0 is in charge of the development of a tool to assess the uncertainty of climate change impact indicators. The calculation of climate change impact indicators will include climate data from satellite and in-situ observations, climate models and re-analyses, and non-climate data. There is a lack of a systematic classification of uncertainties arising from the whole range of climate change impact indicators. We develop a framework that intends to clarify the potential sources of uncertainty of a given indicator and provides - if possible - solutions how to quantify the uncertainties. To structure the sources of uncertainties of climate change impact indicators, we first classify uncertainties along a 'cascade of uncertainty' (Reyer 2013). Our cascade consists of three levels which correspond to the CLIPC meta-classification of impact indicators: Tier-1 indicators are intended to give information on the climate system. Tier-2 indicators attempt to quantify the impacts of climate change on biophysical systems (i.e. flood risks). Tier-3 indicators primarily aim at providing information on the socio-economic systems affected by climate change. At each level, the potential sources of uncertainty of the input data sets and its processing will be discussed. Reference: Reyer, C. (2013): The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable

  7. Assessment of Coastal Governance for Climate Change Adaptation in Kenya

    Science.gov (United States)

    Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina

    2017-11-01

    The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.

  8. Using climate model simulations to assess the current climate risk to maize production

    Science.gov (United States)

    Kent, Chris; Pope, Edward; Thompson, Vikki; Lewis, Kirsty; Scaife, Adam A.; Dunstone, Nick

    2017-05-01

    The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world’s maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions—a multi-breadbasket failure—is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.

  9. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.

    Science.gov (United States)

    Ribeiro, Bruno R; Sales, Lilian P; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.

  10. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Bruno R Ribeiro

    Full Text Available Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.

  11. Validation of an organizational communication climate assessment toolkit.

    Science.gov (United States)

    Wynia, Matthew K; Johnson, Megan; McCoy, Thomas P; Griffin, Leah Passmore; Osborn, Chandra Y

    2010-01-01

    Effective communication is critical to providing quality health care and can be affected by a number of modifiable organizational factors. The authors performed a prospective multisite validation study of an organizational communication climate assessment tool in 13 geographically and ethnically diverse health care organizations. Communication climate was measured across 9 discrete domains. Patient and staff surveys with matched items in each domain were developed using a national consensus process, which then underwent psychometric field testing and assessment of domain coherence. The authors found meaningful within-site and between-site performance score variability in all domains. In multivariable models, most communication domains were significant predictors of patient-reported quality of care and trust. The authors conclude that these assessment tools provide a valid empirical assessment of organizational communication climate in 9 domains. Assessment results may be useful to track organizational performance, to benchmark, and to inform tailored quality improvement interventions.

  12. Full annual cycle climate change vulnerability assessment for migratory birds

    Science.gov (United States)

    Culp, Leah A.; Cohen, Emily B.; Scarpignato, Amy L.; Thogmartin, Wayne E.; Marra, Peter P.

    2017-01-01

    Climate change is a serious challenge faced by all plant and animal species. Climate change vulnerability assessments (CCVAs) are one method to assess risk and are increasingly used as a tool to inform management plans. Migratory animals move across regions and continents during their annual cycles where they are exposed to diverse climatic conditions. Climate change during any period and in any region of the annual cycle could influence survival, reproduction, or the cues used to optimize timing of migration. Therefore, CCVAs for migratory animals best estimate risk when they include climate exposure during the entire annual cycle. We developed a CCVA incorporating the full annual cycle and applied this method to 46 species of migratory birds breeding in the Upper Midwest and Great Lakes (UMGL) region of the United States. Our methodology included background risk, climate change exposure × climate sensitivity, adaptive capacity to climate change, and indirect effects of climate change. We compiled information about migratory connectivity between breeding and stationary non-breeding areas using literature searches and U.S. Geological Survey banding and re-encounter data. Climate change exposure (temperature and moisture) was assessed using UMGL breeding season climate and winter climate from non-breeding regions for each species. Where possible, we focused on non-breeding regions known to be linked through migratory connectivity. We ranked 10 species as highly vulnerable to climate change and two as having low vulnerability. The remaining 34 species were ranked as moderately vulnerable. In general, including non-breeding data provided more robust results that were highly individualistic by species. Two species were found to be highly vulnerable throughout their annual cycle. Projected drying will have the greatest effect during the non-breeding season for species overwintering in Mexico and the Caribbean. Projected temperature increases will have the greatest

  13. Climate and climate-related issues for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove (comp.)

    2006-11-15

    The purpose of this report is to document current scientific knowledge of the climate-related conditions and processes relevant to the long-term safety of a KBS-3 repository to a level required for an adequate treatment in the safety assessment SR-Can. The report also includes a concise background description of the climate system. The report includes three main chapters: A description of the climate system (Chapter 2); Identification and discussion of climate-related issues (Chapter 3); and, A description of the evolution of climate-related conditions for the safety assessment (Chapter 4). Chapter 2 includes an overview of present knowledge of the Earth climate system and the climate conditions that can be expected to occur in Sweden on a 100,000 year time perspective. Based on this, climate-related issues relevant for the long-term safety of a KBS-3 repository are identified. These are documented in Chapter 3 'Climate-related issues' to a level required for an adequate treatment in the safety assessment. Finally, in Chapter 4, 'Evolution of climate-related conditions for the safety assessment' an evolution for a 120,000 year period is presented, including discussions of identified climate-related issues of importance for repository safety. The documentation is from a scientific point of view not exhaustive, since such a treatment is neither necessary for the purposes of the safety assessment nor possible within the scope of a safety assessment. As further described in the SR-Can Main Report and in the Features Events and Processes report, the content of the present report has been audited by comparison with FEP databases compiled in other assessment projects. This report follows as far as possible the template for documentation of processes regarded as internal to the repository system. However, the term processes is not used in this report, instead the term issue has been used. Each issue includes a set of processes together resulting in the

  14. An assessment of unprofessional behavior among surgical residents on Facebook: a warning of the dangers of social media.

    Science.gov (United States)

    Langenfeld, Sean J; Cook, Gates; Sudbeck, Craig; Luers, Thomas; Schenarts, Paul J

    2014-01-01

    postgraduate year status (p = 0.88). Unprofessional behavior is prevalent among surgical residents who use Facebook, and this behavior does not appear to decrease as residents progress through training. This represents a risk to the reputations of hospitals and residency programs, and residents should be educated on the dangers of social media. Although it may be perceived as an invasion of privacy, this information is publically available, and program directors may benefit from monitoring these sites to identify gaps in professionalism that require correction. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Climate Change Vulnerability Assessment for Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  16. Towards a comprehensive climate impacts assessment of solar geoengineering

    Science.gov (United States)

    Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.; Gerten, Dieter; Caminade, Cyril; Gosling, Simon N.; Hendy, Erica J.; Kassie, Belay T.; Kissling, W. Daniel; Muri, Helene; Oschlies, Andreas; Smith, Steven J.

    2017-01-01

    Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar-geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.

  17. Consideration of climate change on environmental impact assessment in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org [Escuela de Doctorado, Universidad Nacional de Educación a Distancia, UNED, Draba Ingeniería y Consultoría Medioambiental, Cañada Nueva, 29, 28200 San Lorenzo de El Escorial (Spain); Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain); Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es [Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain)

    2016-02-15

    Most of the projects subject to environmental impact assessment (EIA) are closely related to climate change, as they contribute to or are affected by it. The growing certainty about climate change and its impacts makes its consideration an essential part of the EIA process, as well as in strategic environmental assessment (SEA). This paper examines how climate change (CC) has been taken into account in EIA in Spain through the analysis of 1713 environmental records of decision (RODs) of projects submitted for EIA. In 2013 Spain approved one of the most advanced laws in terms of CC consideration in environmental assessment, although it had not yet accumulated extensive practice on the issue. This contrasts with the situation of countries like Canada or the USA, which have a significant body of experience without specific legal requirements. Only 14% of the RODs analysed included references to CC, and in more than half of the cases it was a mere citation. Thermal power plants, which are subject to specific GHG regulations, show the highest consideration, while transport infrastructures, which are important contributors to CC, show a very low consideration. Almost all the references are related to their contribution to CC, while consideration of the effects of CC is minimal. The increasingly common incorporation of CC into SEA, should not imply its exclusion from EIA, because both processes have different aims and uses. Including the obligation to consider CC in the EIA regulations is highly desirable, but probably not enough without other measures, such as practical guidance, training and motivational programmes for practitioners and evaluators. But even these actions cannot ensure effective and adequate assessments of CC. Probably more resources should be spent on creating greater awareness in all the agents involved in EIA. - Highlights: • We analyse how the climate change is considered in EIA in Spain. • Few projects seriously assess climate change.

  18. Assessment of the Health Impacts of Climate Change in Kiribati

    OpenAIRE

    Lachlan McIver; Alistair Woodward; Seren Davies; Tebikau Tibwe; Steven Iddings

    2014-01-01

    Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest prior...

  19. Variation of a Lightning NOx Indicator for National Climate Assessment

    Science.gov (United States)

    Koshak, William; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.

    2014-01-01

    Lightning nitrogen oxides (LNOx) indirectly influences our climate since these molecules are important in controlling the concentration of ozone (O3) and hydroxyl radicals (OH) in the atmosphere [Huntrieser et al., 1998]. In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS; Christian et al. [1999]; Cecil et al. [2014]) data is used to estimate LNOx production over the southern portion of the conterminous US for the 16 year period 1998-2013.

  20. Indicators and metrics for the assessment of climate engineering

    Science.gov (United States)

    Oschlies, A.; Held, H.; Keller, D.; Keller, K.; Mengis, N.; Quaas, M.; Rickels, W.; Schmidt, H.

    2017-01-01

    Selecting appropriate indicators is essential to aggregate the information provided by climate model outputs into a manageable set of relevant metrics on which assessments of climate engineering (CE) can be based. From all the variables potentially available from climate models, indicators need to be selected that are able to inform scientists and society on the development of the Earth system under CE, as well as on possible impacts and side effects of various ways of deploying CE or not. However, the indicators used so far have been largely identical to those used in climate change assessments and do not visibly reflect the fact that indicators for assessing CE (and thus the metrics composed of these indicators) may be different from those used to assess global warming. Until now, there has been little dedicated effort to identifying specific indicators and metrics for assessing CE. We here propose that such an effort should be facilitated by a more decision-oriented approach and an iterative procedure in close interaction between academia, decision makers, and stakeholders. Specifically, synergies and trade-offs between social objectives reflected by individual indicators, as well as decision-relevant uncertainties should be considered in the development of metrics, so that society can take informed decisions about climate policy measures under the impression of the options available, their likely effects and side effects, and the quality of the underlying knowledge base.

  1. Consensus and Uncertainty: The National Assessment Climate and Water Report

    Science.gov (United States)

    Gleick, P. H.

    2001-12-01

    The recently completed Water Sector report of the National Assessment of the Potential Consequences of Climate Variability and Change evaluated the implications of climate change for U.S. water resources. This report was the product of more than two years of work reviewing more than 900 peer-reviewed papers on climate and water. The report also included new research prepared as part of the assessment. The final assessment was prepared by a large, multi-disciplinary assessment team of scientists, economists, engineers, and water managers, and went through two separate peer-reviews and a 60-day public comment period. One of the greatest challenges of the Water Assessment was determining how best to address the questions of uncertainties and consensus. Different methods of evaluating and presenting uncertainties were reviewed, including those in use by other scientific assessments such as the Intergovernmental Panel on Climate Change. Substantial debate among assessment team members led to modifications of these methods, and ultimately, the adoption of different approaches for different aspects of the report - scientific uncertainties and policy uncertainties were treated separately and explicitly. Based on the feedback received in the year since the report was released, the report successfully and clearly identifies what we know as well as what we don't know, and may provide useful guidance for policymakers considering how to move forward.

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados con los ... 2013 It started as an impulsive buy from a souvenir shop, but 10 hours after she first ...

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados con los ...

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lenses, remove the lenses and seek immediate medical attention from an ophthalmologist. Related resources: Learn how to ... eye dangers – and new threats – got the most attention. Find an Ophthalmologist Advanced Search Ask an Ophthalmologist ...

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Toy Guns Are Dangerous for Your Eyes SEP 20, 2017 By Dan Gudgel A report published in ... and information about eye health and preserving your vision. Privacy Policy Free EyeSmart Resources for Professionals Link ...

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados con los ... contacto de color Sep. 26, 2013 It started as an impulsive buy from a souvenir shop, but ...

  7. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lenses, remove the lenses and seek immediate medical attention from an ophthalmologist. Related resources: Learn how to ... eye dangers – and new threats – got the most attention. Gene Therapy Approved to Treat Rare Cause of ...

  8. Second Hand Smoke: Danger

    Science.gov (United States)

    ... What's this? Submit Button Past Emails Second Hand Smoke: Danger! Recommend on Facebook Tweet Share Compartir Make ... the United States are still exposed to secondhand smoke, even though cigarette smoking rates are dropping and ...

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative ...

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without ... been properly fitted by an eye care professional, the lenses stuck to my eye like a suction ...

  11. Linking Physical Climate Research and Economic Assessments of Mitigation Policies

    Science.gov (United States)

    Stainforth, David; Calel, Raphael

    2017-04-01

    Evaluating climate change policies requires economic assessments which balance the costs and benefits of climate action. A certain class of Integrated Assessment Models (IAMS) are widely used for this type of analysis; DICE, PAGE and FUND are three of the most influential. In the economics community there has been much discussion and debate about the economic assumptions implemented within these models. Two aspects in particular have gained much attention: i) the costs of damages resulting from climate change - the so-called damage function, and ii) the choice of discount rate applied to future costs and benefits. There has, however, been rather little attention given to the consequences of the choices made in the physical climate models within these IAMS. Here we discuss the practical aspects of the implementation of the physical models in these IAMS, as well as the implications of choices made in these physical science components for economic assessments[1]. We present a simple breakdown of how these IAMS differently represent the climate system as a consequence of differing underlying physical models, different parametric assumptions (for parameters representing, for instance, feedbacks and ocean heat uptake) and different numerical approaches to solving the models. We present the physical and economic consequences of these differences and reflect on how we might better incorporate the latest physical science understanding in economic models of this type. [1] Calel, R. and Stainforth D.A., "On the Physics of Three Integrated Assessment Models", Bulletin of the American Meteorological Society, in press.

  12. Vulnerability assessment of climate-induced water shortage in Phoenix.

    Science.gov (United States)

    Gober, Patricia; Kirkwood, Craig W

    2010-12-14

    Global warming has profound consequences for the climate of the American Southwest and its overallocated water supplies. This paper uses simulation modeling and the principles of decision making under uncertainty to translate climate information into tools for vulnerability assessment and urban climate adaptation. A dynamic simulation model, WaterSim, is used to explore future water-shortage conditions in Phoenix. Results indicate that policy action will be needed to attain water sustainability in 2030, even without reductions in river flows caused by climate change. Challenging but feasible changes in lifestyle and slower rates of population growth would allow the region to avoid shortage conditions and achieve groundwater sustainability under all but the most dire climate scenarios. Changes in lifestyle involve more native desert landscaping and fewer pools in addition to slower growth and higher urban densities. There is not a single most likely or optimal future for Phoenix. Urban climate adaptation involves using science-based models to anticipate water shortage and manage climate risk.

  13. Identification and assessment of potential vulnerabilities in the poultry meat production chain to dangerous agents and substances

    NARCIS (Netherlands)

    Schwägele, F.C.; Andrée, S.; Beraquet, N.; Castrillon, M.; Winkel, C.; Garforth, D.; Cnossen, H.J.; Lucas Luijckx, N.B.; Ayalew, G.

    2009-01-01

    The specific targeted European research project ΣChain (2006) addresses existing as well as potential vulnerabilities within food chains. One of the food chains within the focus of ΣChain is dealing with poultry meat. Fundamental for the assessment of potential vulnerabilities in the chain is basic

  14. Risk assessment of climate systems for national security.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Boslough, Mark Bruce Elrick; Brown, Theresa Jean; Cai, Ximing; Conrad, Stephen Hamilton; Constantine, Paul G; Dalbey, Keith R.; Debusschere, Bert J.; Fields, Richard; Hart, David Blaine; Kalinina, Elena Arkadievna; Kerstein, Alan R.; Levy, Michael; Lowry, Thomas Stephen; Malczynski, Leonard A.; Najm, Habib N.; Overfelt, James Robert; Parks, Mancel Jordan; Peplinski, William J.; Safta, Cosmin; Sargsyan, Khachik; Stubblefield, William Anthony; Taylor, Mark A.; Tidwell, Vincent Carroll; Trucano, Timothy Guy; Villa, Daniel L.

    2012-10-01

    Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments.

  15. Assessment of the health impacts of climate change in Kiribati.

    Science.gov (United States)

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-05-14

    Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.

  16. Methodological approaches to climate change vulnerability assessment of Protected Areas

    Directory of Open Access Journals (Sweden)

    Oksana N. Lipka

    2017-10-01

    Full Text Available Climate change impacts in Russia's territory make species and ecosystems conservation in Protected Areas a more difficult challenge. Additional adaptation measures are required. Before they are developed, it is important to assess the vulnerability of a territory: what exactly, and to which extent, is exposed to adverse climate impacts? The accomplished research will help develop an action plan consistent with the current unstable climate and extreme weather events, as well as with projections by the leading research institutions of Roshydromet and the Russian Academy of Science. Today, methodologies have been developed and successfully tested for some natural zones. The conservation science is now facing a new challenge: how to combine collected information with climate projections and identify development perspectives for concrete territories.

  17. Assessment of the Health Impacts of Climate Change in Kiribati

    Directory of Open Access Journals (Sweden)

    Lachlan McIver

    2014-05-01

    Full Text Available Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.

  18. Climate classification for Euro-CORDEX simulations assessment

    Science.gov (United States)

    Halenka, Tomas; Belda, Michal; Kalvova, Jaroslava; Holtanova, Eva

    2014-05-01

    The analysis of climate patterns can be performed for each climatic variable separately or the data can be aggregated using e.g. a kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. This way climate classifications also represent a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. Basic concepts are presented on global CRU data and the analysis is shown on CMIP5 family of GCM simulations. Different performance of individual GCMs can be seen, but with clear indication of some similarities given by the model dependencies. This evaluation can provide first insight on the driving GCM performance in individual region for downscaling. There are significant changes for some types in most models (e.g. increase of savana, decrease of tundra) for the future. The results of CMIP5 models are compared for the same analysis over European domain with the similar analysis based on the ensemble of EuroCORDEX regional simulations. E-OBS data are used for the present climate assesssment, validation for both 0.11 and 0.44 degree resolution is presented. Climate change signal is analysed as well. Different combinations of the biases coming either from GCM or RCM appear. From the future simulations the shift of the boundary between the boreal zone and continental temperate zone to the north is clearly seen as well as eastern move the maritime and continental type of temperate zone.

  19. Assessing Climate Impacts on Air Pollution from Models and Measurements

    Science.gov (United States)

    Holloway, T.; Plachinski, S. D.; Morton, J. L.; Spak, S.

    2011-12-01

    It is well known that large-scale patterns in temperature, humidity, solar radiation and atmospheric circulation affect formation and transport of atmospheric constituents. These relationships have supported a growing body of work projecting changes in ozone (O3), and to a lesser extent aerosols, as a function of changing climate. Typically, global and regional chemical transport models are used to quantify climate impacts on air pollution, but the ability of these models to assess weather-dependent chemical processes has not been thoroughly evaluated. Quantifying model sensitivity to climate poses the additional challenge of isolating the local to synoptic scale effects of meteorological conditions on chemistry and transport from concurrent trends in emissions, hemispheric background concentrations, and land cover change. Understanding how well models capture historic climate-chemistry relationships is essential in projecting future climate impacts, in that it allows for better evaluation of model skill and improved understanding of climate-chemistry relationships. We compare the sensitivity of chemistry-climate relationships, as simulated by the EPA Community Multiscale Air Quality (CMAQ) model, with observed historical response characteristics from EPA Air Quality System (AQS) monitoring data. We present results for O3, sulfate and nitrate aerosols, and ambient mercury concentrations. Despite the fact that CMAQ over-predicts daily maximum 8-hour ground-level O3 concentrations relative to AQS data, the model does an excellent job at simulating the response of O3 to daily maximum temperature. In both model and observations, we find that higher temperatures produce higher O3 across most of the U.S., as expected in summertime conditions. However, distinct regions appear in both datasets where temperature and O3 are anti-correlated - for example, over the Upper Midwestern U.S. states of Iowa, Missouri, Illinois, and Indiana in July 2002. Characterizing uncertainties

  20. Climate Change and Environmental assessments: Issues in an African Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, Arne; Naess, Lars Otto

    1997-12-31

    The present report discusses the potential for integrating climate change issues into environmental assessments of development actions, with an emphasis on sub-Sahara Africa. The study is motivated by the fact that future climate change could have significant adverse impacts on the natural and socio-economic environment in Africa. Yet, to date global change issues, including climate change, have been largely overlooked in the process of improving environmental assessment procedures and methodologies. It is argued that although emissions of greenhouse gases in Africa are negligible today, it is highly relevant to include this aspect in the planning of long-term development strategies. The report discusses potential areas of conflicts and synergies between climate change and development goals. The general conclusion is that environmental assessments could be an appropriate tool for addressing climate change issues, while there are still several obstacles to its practical implementation. Four priority areas are suggested for further work: (1) Environmental accounting, (2) harmonization and standard-setting, (3) implementation, and (4) risk management. 82 refs., 5 figs., 11 tabs.

  1. CLIMCONG: A framework-tool for assessing CLIMate CONGruency

    Science.gov (United States)

    Buras, Allan; Kölling, Christian; Menzel, Annette

    2016-04-01

    It is widely accepted that the anticipated elevational and latitudinal shifting of climate forces living organisms (including humans) to track these changes in space over a certain time. Due to the complexity of climate change, prediction of consequent migrations is a difficult procedure afflicted with many uncertainties. To simplify climate complexity and ease respective attempts, various approaches aimed at classifying global climates. For instance, the frequently used Köppen-Geiger climate classification (Köppen, 1900) has been applied to predict the shift of climate zones throughout the 21st century (Rubel and Kottek, 2010). Another - more objective but also more complex - classification approach has recently been presented by Metzger et al. (2013). Though being comprehensive, classifications have certain drawbacks, as I) often focusing on few variables, II) having discrete borders at the margins of classes, and III) subjective selection of an arbitrary number of classes. Ecological theory suggests that when only considering temperature and precipitation (such as Köppen, 1900) particular climate features - e.g. radiation and plant water availability - may not be represented with sufficient precision. Furthermore, sharp boundaries among homogeneous classes do not reflect natural gradients. To overcome the aforementioned drawbacks, we here present CLIMCONG - a framework-tool for assessing climate congruency for quantitatively describing climate similarity through continua in space and time. CLIMCONG allows users to individually select variables for calculation of climate congruency. By this, particular foci can be specified, depending on actual research questions posed towards climate change. For instance, while ecologists focus on a multitude of parameters driving net ecosystem productivity, water managers may only be interested in variables related to drought extremes and water availability. Based on the chosen parameters CLIMCONG determines congruency of

  2. Bivariate analysis of floods in climate impact assessments.

    Science.gov (United States)

    Brunner, Manuela Irene; Sikorska, Anna E; Seibert, Jan

    2018-03-01

    Climate impact studies regarding floods usually focus on peak discharges and a bivariate assessment of peak discharges and hydrograph volumes is not commonly included. A joint consideration of peak discharges and hydrograph volumes, however, is crucial when assessing flood risks for current and future climate conditions. Here, we present a methodology to develop synthetic design hydrographs for future climate conditions that jointly consider peak discharges and hydrograph volumes. First, change factors are derived based on a regional climate model and are applied to observed precipitation and temperature time series. Second, the modified time series are fed into a calibrated hydrological model to simulate runoff time series for future conditions. Third, these time series are used to construct synthetic design hydrographs. The bivariate flood frequency analysis used in the construction of synthetic design hydrographs takes into account the dependence between peak discharges and hydrograph volumes, and represents the shape of the hydrograph. The latter is modeled using a probability density function while the dependence between the design variables peak discharge and hydrograph volume is modeled using a copula. We applied this approach to a set of eight mountainous catchments in Switzerland to construct catchment-specific and season-specific design hydrographs for a control and three scenario climates. Our work demonstrates that projected climate changes have an impact not only on peak discharges but also on hydrograph volumes and on hydrograph shapes both at an annual and at a seasonal scale. These changes are not necessarily proportional which implies that climate impact assessments on future floods should consider more flood characteristics than just flood peaks. Copyright © 2017. Published by Elsevier B.V.

  3. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  4. Assessing Climate Misconceptions of Middle School Learners and Teachers

    Science.gov (United States)

    Sahagian, D. L.; Anastasio, D. J.; Bodzin, A.; Cirucci, L.; Bressler, D.; Dempsey, C.; Peffer, T.

    2012-12-01

    Middle School students and their teachers are among the many populations in the U.S. with misconceptions regarding the science or even reality of climate change. Teaching climate change science in schools is of paramount importance since all school-age children will eventually assume responsibility for the management and policy-making decisions of our planet. The recently published Framework for K-12 Science Education (National Research Council, 2012) emphasizes the importance of students understanding global climate change and its impacts on society. A preliminary assessment of over a thousand urban middles school students found the following from pretests prior to a climate literacy curriculum: - Do not understand that climate occurs on a time scale of decades (most think it is weeks or months) -Do not know the main atmospheric contributors to global warming -Do not understand the role of greenhouse gases as major contributors to increasing Earth's surface temperature -Do not understand the role of water vapor to trap heat and add to the greenhouse effect -Cannot identify some of the human activities that increase the amount of CO2 -Cannot identify sources of carbon emissions produced by US citizens -Cannot describe human activities that are causing the long-term increase of carbon -dioxide levels over the last 100 years -Cannot describe carbon reduction strategies that are feasible for lowering the levels of carbon dioxide in the atmosphere To address the lack of a well-designed middle school science climate change curriculum that can be used to help teachers promote the teaching and learning of important climate change concepts, we developed a 20-day Environmental Literacy and Inquiry (ELI): Climate Change curriculum in partnership with a local school district. Comprehension increased significantly from pre- to post-test after enactment of the ELI curriculum in the classrooms. This work is part of an ongoing systemic curriculum reform initiative to promote (1

  5. CONTRIBUTION OF ROMANIAN SOILS TO THE POLLUTION OF ATMOSPHERE WITH CO2, THE DANGERS OF CLIMATE CHANGES AND MEASURES TO ATTENUATE OR ELIMINATE THEM

    Directory of Open Access Journals (Sweden)

    Mihai Berca

    2010-01-01

    Full Text Available Romania has a surface of abt. 24 mil ha, and is almost entirely covered with soils. Over 9 millions hectars belong to thegroup of arable soils, cultivated with different field crops and permanently submitted to agricultural machineinterventions. This led to the oxidation of organic matter and of the heteropolycondensed humus due to the lack oftechnical and scientific instruments to stabilize the soils. In the moment when soils in the Southern, Eastern andWestern part of Romania were fallowed, these owned up to 15 % humus, either in a condensed form (huminic acids,either as humus-C, i.e. biomass residua in transformation.By the taking in culture and the soil tillage within the conventional system practiced still in our days, the analysis ofliterature and simulation calculations made by us showed that beginning 1930 until nowadays, over 70% of theagricultural soil humus was lost and abt 29 billions tons of CO2 and other dangerous gases were cast in the air.Recuperation of CO2 from air can be done only by „greening” all the surfaces and reintroducing CO2 in soil as humus.This can be done the speediest possible in a rate of maximum 0,1 % humus /year. There is no a viable solution for this,able to solve quickly the absorbtion.

  6. Evaluating fire danger in Brazilian biomes: present and future patterns

    Science.gov (United States)

    Silva, Patrícia; Bastos, Ana; DaCamara, Carlos; Libonati, Renata

    2017-04-01

    Climate change is expected to have a significant impact on fire occurrence and activity, particularly in Brazil, a region known to be fire-prone [1]. The Brazilian savanna, commonly referred to as cerrado, is a fire-adapted biome covering more than 20% of the country's total area. It presents the highest numbers of fire events, making it particularly susceptible to changes in climate. It is thus essential to understand the present fire regimes in Brazilian biomes, in order to better evaluate future patterns. The CPTEC/INPE, the Brazilian Center for Weather Forecasting and Climate Research at the Brazilian National Institute of Space Research developed a fire danger index based on the occurrence of hundreds of thousands of fire events in the main Brazilian biomes [2]: the Meteorological Fire Danger Index (MFDI). This index indicates the predisposition of vegetation to be burned on a given day, for given climate conditions preceding that day. It relies on daily values of air temperature, relative humidity, accumulated precipitation and vegetation cover. In this study we aim to access the capability of the MFDI to accurately replicate present fire conditions for different biomes, with a special focus on cerrado. To this end, we assess the link between the MFDI as calculated by three different reanalysis (ERA-Interim, NCEP/DOE Reanalysis 2 and MERRA-2) and the observed burned area. We further calculate the validated MFDI using a regional climate model, the RCA4 as forced by EC-Earth from CORDEX, to understand the ability of the model to characterize present fire danger. Finally, the need to calibrate the model to better characterize future fire danger was also evaluated. This work was developed within the framework of the Brazilian Fire-Land-Atmosphere System (BrFLAS) Project financed by the Portuguese and Brazilian science foundations, FCT and FAPESP (project references FAPESP/1389/2014 and 2014/20042-2). [1] KRAWCHUK, M.A.; MORITZ, M.A.; PARISIEN, M.A.; VAN DORN, J

  7. National Assessment of Climate Resources for Tourism Seasonality in China Using the Tourism Climate Index

    Directory of Open Access Journals (Sweden)

    Yan Fang

    2015-01-01

    Full Text Available Tourism is a very important industry, and it is deeply affected by climate. This article focuses on the role of climate in tourism seasonality and attempts to assess the impacts of climate resources on China’s tourism seasonality by using the Tourism Climate Index (TCI. Seasonal distribution maps of TCI scores indicate that the climates of most regions in China are comfortable for tourists during spring and autumn, while the climate conditions differ greatly in summer and winter, with “excellent”, “good”, “acceptable” and “unfavorable” existing almost by a latitudinal gradation. The number of good months throughout China varies from zero (the Tibetan Plateau area to 10 (Yunnan Province, and most localities have five to eight good months. Moreover, all locations in China can be classified as winter peak, summer peak and bi-modal shoulder peak. The results will provide some useful information for tourist destinations, travel agencies, tourism authorities and tourists.

  8. Geographic Information Systems for assessment of climate change ...

    African Journals Online (AJOL)

    Geographic Information Systems for assessment of climate change effects on teff in Ethiopia. ... Based on the current area under teff in Ethiopia, this equals an overall reduction in national production of about 1,190,784.12 t, equivalent to a loss of US$ 651 million to farmers. The results indicate that crop yield varied ...

  9. geographic information systems for assessment of climate change

    African Journals Online (AJOL)

    ACSS

    African Biodiversity Conservation and Innovations Centre, P. O. Box 100882 - 00101, Nairobi, Kenya. 1Institute ... The value of Geographic Information Systems (GIS) for assessing climate change impacts on crop productivity ... indices, the output of spatial analysis and teff yield data collected from diverse ecological zones.

  10. Assessment of climate change and vulnerability of coastal zone of ...

    African Journals Online (AJOL)

    Assessment of climate change and vulnerability of coastal zone of Ghana using trends in temperature and rainfall. A Ayensu. Abstract. No Abstract. Journal of Applied Science & Technology Vol 9 (1&2) 2004: 21-27. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  11. Developing and Validating a New Classroom Climate Observation Assessment Tool

    Science.gov (United States)

    Leff, Stephen S.; Thomas, Duane E.; Shapiro, Edward S.; Paskewich, Brooke; Wilson, Kim; Necowitz-Hoffman, Beth; Jawad, Abbas F.

    2011-01-01

    The climate of school classrooms, shaped by a combination of teacher practices and peer processes, is an important determinant for children's psychosocial functioning and is a primary factor affecting bullying and victimization. Given that there are relatively few theoretically grounded and validated assessment tools designed to measure the social…

  12. Diagnostic indicators for integrated assessment models of climate policy

    NARCIS (Netherlands)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker; Schwanitz, Valeria Jana; Luderer, Gunnar; Ashina, Shuichi; Bosetti, Valentina; Eom, Jiyong; Kitous, Alban; Méjean, Aurélie; Paroussos, Leonidas; Sano, Fuminori; Turton, Hal; Wilson, Charlie; Van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economy systems can be performed by a variety of models with different functional structures. In order to provide insights into why results differ between models, this article proposes a diagnostic scheme that can be applied to a

  13. Assessing the Campus's Ethical Climate: A Multidimensional Approach.

    Science.gov (United States)

    Banning, James H.

    1997-01-01

    Develops a general framework and matrix for assessing ethical behavior from a campus perspective and illustrates how visual anthropology can be used to implement the matrix. Claims that indices, such as photographs on bulletin boards, architecture, graffiti, and other environmental elements, can portray a campus's ethical climate. (RJM)

  14. Climate Assessment for Army Enterprise Planning Fact Sheet

    Science.gov (United States)

    2017-11-30

    Installation Range Complex Master Plan, Installation Integrated Natural Resource Management Plan, and Installation Critical Infrastructure Risk Management ...TITLE: Climate Assessment for Army Enterprise Planning SUBMITTING ORGANIZATION: ERDC STO START YEAR / END YEAR: FY14-FY17 1. NARRATIVE...change and related trending dynamic conditions to improve Army enterprise decisions. This effort provided Army enterprise decision metrics that are

  15. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    Science.gov (United States)

    Incorporation of global climate change (GCC) effects into regulatory assessments of chemical risk and injury requires an integrated examination of both chemical and non-chemical stressors. Environmental variables altered by GCC, such as temperature, precipitation, salinity and pH...

  16. Climate Change Assessments for Lakes Region of Turkey

    Directory of Open Access Journals (Sweden)

    Ayten Erol

    2012-07-01

    Full Text Available Climate change is one of the most important challenges for forestry. Forests are known to be most efficient natural tools to ensure availability and quality of water in many regions. Besides, planning of forest resources towards water quality and quantity is essential in countries that are expected to face with more frequent drought periods in the next decades due to climate change. Watershed management concept has been supposed as the primary tool to plan natural resources in a more efficient and sustainable way by both academicians and practitioners to mitigate and adapt climate change. Forest cover among other land use types provides the best regulating mechanism to mitigate erosion, sedimentation, desertification, and pollution. In addition, climate change can potentially affect forest stand dynamics by influencing the availability of water resources. Therefore, the amount of forest cover in a watershed is an indicator of climate change mitigation and adaptation. Climate change is a concern and risk for the sustainability of water resources in Lakes Region of Turkey. The objective of this study is to make a comprehensive assessment in lake watersheds of the Lakes region considering the forest cover. For this purpose, the study gives a general view of trends in climatic parameters using Mann Kendall trend test. The results showed that Mann Kendall trend test for temperature and precipitation data is not enough to evaluate the magnitude of potential changes of climate in terms of forest cover. Understanding impacts of changes in temperature and precipitation on forest cover, runoff data should be evaluated with temperature and precipitation for watersheds of forest areas in Lakes Region.

  17. An attempt to assess the energy related climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Iotova, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology

    1995-12-31

    A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary

  18. An Organizational Climate Assessment of the Army Contracting Workforce

    Science.gov (United States)

    2016-12-01

    unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The intent of this research is to assess the Army’s contracting workforce on... Distribution is unlimited. AN ORGANIZATIONAL CLIMATE ASSESSMENT OF THE ARMY CONTRACTING WORKFORCE Magen L. McKeithen, Major, United...and education is an essential element in recruiting, developing, and retaining a competent contracting workforce. In a Defense AT&L article, the

  19. Modeling and Representing National Climate Assessment Information using Linked Data

    Science.gov (United States)

    Zheng, J.; Tilmes, C.; Smith, A.; Zednik, S.; Fox, P. A.

    2012-12-01

    Every four years, earth scientists work together on a National Climate Assessment (NCA) report which integrates, evaluates, and interprets the findings of climate change and impacts on affected industries such as agriculture, natural environment, energy production and use, etc. Given the amount of information presented in each report, and the wide range of information sources and topics, it can be difficult for users to find and identify desired information. To ease the user effort of information discovery, well-structured metadata is needed that describes the report's key statements and conclusions and provide for traceable provenance of data sources used. We present an assessment ontology developed to describe terms, concepts and relations required for the NCA metadata. Wherever possible, the assessment ontology reuses terms from well-known ontologies such as Semantic Web for Earth and Environmental Terminology (SWEET) ontology, Dublin Core (DC) vocabulary. We have generated sample National Climate Assessment metadata conforming to our assessment ontology and publicly exposed via a SPARQL-endpoint and website. We have also modeled provenance information for the NCA writing activities using the W3C recommendation-candidate PROV-O ontology. Using this provenance the user will be able to trace the sources of information used in the assessment and therefore make trust decisions. In the future, we are planning to implement a faceted browser over the metadata to enhance metadata traversal and information discovery.

  20. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    showed some unexpected results, where climate models predicting the largest increase in net precipitation did not result in the largest increase in groundwater heads. This was found to be the result of different initial conditions (1990 - 2010) for the various climate models. In some areas a combination of a high initial groundwater head and an increase in precipitation towards 2021 - 2050 resulted in a groundwater head raise that reached the drainage or the surface water system. This will increase the exchange from the groundwater to the surface water system, but reduce the raise in groundwater heads. An alternative climate model, with a lower initial head can thus predict a higher increase in the groundwater head, although the increase in precipitation is lower. This illustrates an extra dimension in the uncertainty assessment, namely the climate models capability of simulating the current climatic conditions in a way that can reproduce the observed hydrological response. Højberg, AL, Troldborg, L, Stisen, S, et al. (2012) Stakeholder driven update and improvement of a national water resources model - http://www.sciencedirect.com/science/article/pii/S1364815212002423 Seaby, LP, Refsgaard, JC, Sonnenborg, TO, et al. (2012) Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections (submitted) Journal of Hydrology Stisen, S, Højberg, AL, Troldborg, L et al., (2012): On the importance of appropriate rain-gauge catch correction for hydrological modelling at mid to high latitudes - http://www.hydrol-earth-syst-sci.net/16/4157/2012/

  1. Dangerous Bifurcations Revisited

    Science.gov (United States)

    Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; Saha, Arindam; Banerjee, Soumitro; Sushko, Irina; Gardini, Laura

    2016-12-01

    A dangerous border collision bifurcation has been defined as the dynamical instability that occurs when the basins of attraction of stable fixed points shrink to a set of zero measure as the parameter approaches the bifurcation value from either side. This results in almost all trajectories diverging off to infinity at the bifurcation point, despite the eigenvalues of the fixed points before and after the bifurcation being within the unit circle. In this paper, we show that similar bifurcation phenomena also occur when the stable orbit in question is of a higher periodicity or is chaotic. Accordingly, we propose a generalized definition of dangerous bifurcation suitable for any kind of attracting sets. We report two types of dangerous border collision bifurcations and show that, in addition to the originally reported mechanism typically involving singleton saddle cycles, there exists one more situation where the basin boundary is formed by a repelling closed invariant curve.

  2. US National Climate Assessment (NCA) Scenarios for Assessing Our Climate Future: Issues and Methodological Perspectives Background Whitepaper for Participants

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Richard H.; Engle, Nathan L.; Hall, John; Jacobs, Kathy; Lempert, Rob; Mearns, L. O.; Melillo, Jerry; Mote, Phil; O' Brien, Sheila; Rosenzweig, C.; Ruane, Alex; Sheppard, Stephen; Vallario, Robert W.; Wiek, Arnim; Wilbanks, Thomas

    2011-10-01

    This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for release in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes

  3. [Dangerous, illegal captivities].

    Science.gov (United States)

    Winnik, Lidia; Lis, Leszek

    2005-01-01

    On the 21st of August 1997 the Polish legislature introduced the first animal protection law nr 724. This act however failed to specify in a clear and proper manner the problem of possession and maintenance of dangerous animals, which allows its multiple interpretations. Poland ratified the Washington Convention in 1990 restricting the trade of animals classified as endangered species. The present regulations enable illegal purchase and trade of those animals. According to the available data illegal trade of such animals, as well as the trade of products obtained from them, ranks in the third position in terms of crime generated income, only after the trade of drugs and weapons. In our country the sales of such animals have been growing at an alarming rate. The animals often get out of the control of their owners, or are abandoned by them. The presented work describes cases of reptiles being found in public places in our region. It also mentions the problem of possible dangers associated with intentional letting out of such animals in public places. The aim of the following paper is the analysis of the problem of raising of exotic animals, in particular venomous snakes and other animals, the possession of which may be dangerous not only for the owner but also for the people around. The existing laws and executive procedures have been discussed. Both, the family doctors as well as toxicologists have little knowledge as far as diagnosis and treatment of cases of stinging and biting by exotic animals is concerned. The authors suggest providing medical emergency doctors, family doctors and surgeons, with clinic toxicology programs, as well as introduction of special courses for middle medical personnel. Establishment of a central database and a database concerned with basic polyvalent serums are crucial in our country in order have the Toxicology Centers ready to face possible dangers associated with dangerous animals, and to prepare emergency solutions in cases of

  4. Methodology to assess coastal infrastructure resilience to climate change

    Directory of Open Access Journals (Sweden)

    Roca Marta

    2016-01-01

    In order to improve the resilience of the line, several options have been considered to evaluate and reduce climate change impacts to the railway. This paper describes the methodological approach developed to evaluate the risks of flooding for a range of scenarios in the estuary and open coast reaches of the line. Components to derive the present day and future climate change coastal conditions including some possible adaptation measures are also presented together with the results of the hindcasting analysis to assess the performance of the modelling system. An overview of the modelling results obtained to support the development of a long-term Resilience Strategy for asset management is also discussed.

  5. Climate Change and World Food Security: A New Assessment

    OpenAIRE

    Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Fischer, G.; Livermore, M.

    1998-01-01

    Building on previous work, quantitative estimates of climate change impacts on global food production have been made for the UK Hadley Centre's HadCM2 greenhouse gas only ensemble experiment and the more recent HadCM3 experiment (Hume et al., 1999). The consequences for world food prices and the number of people at risk of hunger as defined by the Food and Agriculture Organization (FAO, 1998) have also been assessed. Climate change is expected to increase yields at high and mid-latitudes, and...

  6. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    Science.gov (United States)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  7. Air transport of dangerous goods

    OpenAIRE

    Gregor, Petr

    2009-01-01

    Diploma thesis topic deals with air transport of dangerous goods. In the beginning part it describes air cargo transportation itself as well as the main characteristics. Thesis introduces organizations involved in international transport of dangerous goods. Next part of diploma thesis reveals project analysis of air transportation of dangerous goods in respect of IATA Dangerous Goods regulations and procedures. Thesis also covers introduction to air transportation of dangerous goods in specif...

  8. Dangers of the vagina.

    Science.gov (United States)

    Beit-Hallahmi, B

    1985-12-01

    Beliefs, myths, and literary expressions of men's fear of female genitals are reviewed. Both clinical evidence and folklore provide evidence that men imagine female genitals not only as a source of pleasure and attraction, but also as a source of danger in a very physical sense. The vagina dentata myth has many versions, including some modern ones, and its message is always the same: an awesome danger emanating from a woman's body. The prevalence of such feelings in folklore and in literature is noted.

  9. Climate Change Impacts and Vulnerability Assessment in Industrial Complexes

    Science.gov (United States)

    Lee, H. J.; Lee, D. K.

    2016-12-01

    Climate change has recently caused frequent natural disasters, such as floods, droughts, and heat waves. Such disasters have also increased industrial damages. We must establish climate change adaptation policies to reduce the industrial damages. It is important to make accurate vulnerability assessment to establish climate change adaptation policies. Thus, this study aims at establishing a new index to assess vulnerability level in industrial complexes. Most vulnerability indices have been developed with subjective approaches, such as the Delphi survey and the Analytic Hierarchy Process(AHP). The subjective approaches rely on the knowledge of a few experts, which provokes the lack of the reliability of the indices. To alleviate the problem, we have designed a vulnerability index incorporating objective approaches. We have investigated 42 industrial complex sites in Republic of Korea (ROK). To calculate weights of variables, we used entropy method as an objective method integrating the Delphi survey as a subjective method. Finally, we found our method integrating both subjective method and objective method could generate result. The integration of the entropy method enables us to assess the vulnerability objectively. Our method will be useful to establish climate change adaptation policies by reducing the uncertainties of the methods based on the subjective approaches.

  10. A vulnerability and risk assessment of SEPTA's regional rail : a transit climate change adaptation assessment pilot.

    Science.gov (United States)

    2013-08-01

    This final report for the Federal Transit Administration (FTA) Transit Climate Change Adaptation Assessment Pilot describes the actions : taken, information gathered, analyses performed, and lessons learned throughout the pilot project. This report d...

  11. Developing and Validating a New Classroom Climate Observation Assessment Tool.

    Science.gov (United States)

    Leff, Stephen S; Thomas, Duane E; Shapiro, Edward S; Paskewich, Brooke; Wilson, Kim; Necowitz-Hoffman, Beth; Jawad, Abbas F

    2011-01-01

    The climate of school classrooms, shaped by a combination of teacher practices and peer processes, is an important determinant for children's psychosocial functioning and is a primary factor affecting bullying and victimization. Given that there are relatively few theoretically-grounded and validated assessment tools designed to measure the social climate of classrooms, our research team developed an observation tool through participatory action research (PAR). This article details how the assessment tool was designed and preliminarily validated in 18 third-, fourth-, and fifth-grade classrooms in a large urban public school district. The goals of this study are to illustrate the feasibility of a PAR paradigm in measurement development, ascertain the psychometric properties of the assessment tool, and determine associations with different indices of classroom levels of relational and physical aggression.

  12. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    established from the on-site distribution functions of the horizontal mean wind speeds, the 90% quantile of turbulence along with average values of vertical wind shear and air density and the maximum flow inclination. This paper investigates the accuracy of fatigue loads estimated using this equivalent wind...... climate required by the current design standard by comparing damage equivalent fatigue loads estimated based on wind climate parameters for each 10 min time-series with fatigue loads estimated based on the equivalent wind climate parameters. Wind measurements from Boulder, CO, in the United States...... and Høvsøre in Denmark have been used to estimate the natural variation in the wind conditions between 10 min time periods. The structural wind turbine loads have been simulated using the aero-elastic model FAST. The results show that using a 90% quantile for the turbulence leads to an accurate assessment...

  13. Avoiding climate change uncertainties in Strategic Environmental Assessment

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone; Driscoll, Patrick Arthur

    2013-01-01

    This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies...... ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite...... incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty....

  14. Procedure for selecting GCM datasets for climate risk assessment

    Directory of Open Access Journals (Sweden)

    Chia-Yu Lin Ching-Pin Tung

    2017-01-01

    Full Text Available General Circulation Models (GCMs are indispensable tools to project future climate. It is not realistic or necessary to use all GCM datasets when assessing climate risks and building adaptive capacity. Thus, a rational procedure for selecting GCM datasets is needed. It is also required to classify weather stations into climate zones and then suggest a suitable list of GCM datasets to avoid weather stations with similar climate patterns but using different GCM datasets. The purpose of this study is to establish a process for selecting GCM datasets for a region. The process consists of climate zonation, applicability ranking, and a model similarity check. Principal component analysis (PCA and cluster analysis are used to classify regional weather stations into climate zones. The weighted average ranking (WAR method and demerit point system (DPS are then used to rank the GCM performance using CMIP5 (Coupled Model Intercomparison Project Phase 5 datasets. The GCM family tree is then applied to screen out highly similar GCMs before generating a GCM suggestion list. Taiwan is chosen as the study area for this investigation. Taiwan receives monthly mean precipitation data from 25 weather stations. The weather stations were clustered into ten climate zones with different GCM datasets suggested for each zone. The top five GCM datasets suggested for Taiwan by the WAR method are HadGEM2-AO, CESM1-CAM5, CCSM4, MIROC5, and GISS-E2-R while those suggested by the DPS method are CSIRO-Mk3-6-0, HadGEM2-AO, CESM1-CAM5, MIROC5, and CCSM4. The GCM selection process presented in this study is applicable to other regions to assist users in finding GCM datasets suitable for their research.

  15. The National Climate Assessment as a Resource for Science Communication

    Science.gov (United States)

    Somerville, R. C. J.

    2014-12-01

    The 2014 Third National Climate Assessment (NCA3) is scientifically authoritative and features major advances, relative to other assessments produced by several organizations. NCA3 is a valuable resource for communicating climate science to a wide variety of audiences. Other assessments were often overly detailed and laden with scientific jargon that made them appear too complex and technical to many in their intended audiences, especially policymakers, the media, and the broad public. Some other assessments emphasized extensive scientific caveats, quantitative uncertainty estimates and broad consensus support. All these attributes, while valuable in research, carry the risk of impeding science communication to non-specialists. Without compromising scientific accuracy and integrity, NCA3 is written in exceptionally clear and vivid English. It includes outstanding graphics and employs powerful techniques aimed at conveying key results unambiguously to a wide range of audiences. I have used NCA3 as a resource in speaking about climate change in three very different settings: classroom teaching for undergraduate university students, presenting in academia to historians and other non-scientists, and briefing corporate executives working on renewable energy. NCA3 proved the value of developing a climate assessment with communication goals and strategies given a high priority throughout the process, not added on as an afterthought. I draw several lessons. First, producing an outstanding scientific assessment is too complex and demanding a task to be carried out by scientists alone. Many types of specialized expertise are also needed. Second, speaking about science to a variety of audiences requires an assortment of communication skills and tools, all tailored to specific groups of listeners. Third, NCA3 is scientifically impeccable and is also an outstanding example of effective communication as well as a valuable resource for communicators.

  16. Environmental water demand assessment under climate change conditions.

    Science.gov (United States)

    Sarzaeim, Parisa; Bozorg-Haddad, Omid; Fallah-Mehdipour, Elahe; Loáiciga, Hugo A

    2017-07-01

    Measures taken to cope with the possible effects of climate change on water resources management are key for the successful adaptation to such change. This work assesses the environmental water demand of the Karkheh river in the reach comprising Karkheh dam to the Hoor-al-Azim wetland, Iran, under climate change during the period 2010-2059. The assessment of the environmental demand applies (1) representative concentration pathways (RCPs) and (2) downscaling methods. The first phase of this work projects temperature and rainfall in the period 2010-2059 under three RCPs and with two downscaling methods. Thus, six climatic scenarios are generated. The results showed that temperature and rainfall average would increase in the range of 1.7-5.2 and 1.9-9.2%, respectively. Subsequently, flows corresponding to the six different climatic scenarios are simulated with the unit hydrographs and component flows from rainfall, evaporation, and stream flow data (IHACRES) rainfall-runoff model and are input to the Karkheh reservoir. The simulation results indicated increases of 0.9-7.7% in the average flow under the six simulation scenarios during the period of analysis. The second phase of this paper's methodology determines the monthly minimum environmental water demands of the Karkheh river associated with the six simulation scenarios using a hydrological method. The determined environmental demands are compared with historical ones. The results show that the temporal variation of monthly environmental demand would change under climate change conditions. Furthermore, some climatic scenarios project environmental water demand larger than and some of them project less than the baseline one.

  17. Sharks in danger.

    Science.gov (United States)

    Cunningham-Day, Rachel

    2002-06-01

    Many shark populations are in danger of extinction as a direct result of man's activities. A change in attitude and a greater understanding of species' requirements are needed to prevent further destruction and replenish numbers, thus sustaining trade, fisheries and sport activity.

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... an Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact ... After One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter ...

  19. Semantic Gaps Are Dangerous

    DEFF Research Database (Denmark)

    Ejstrup, Michael; le Fevre Jakobsen, Bjarne

    2014-01-01

    Semantic gaps are dangerous Language adapts to the environment where it serves as a tool to communication. Language is a social agreement, and we all have to stick to both grammaticalized and non-grammaticalized rules in order to pass information about the world around us. As such language develops...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers ... Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados con los lentes de contacto de ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados ... the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non- ...

  2. Dangerous Raw Oysters

    Centers for Disease Control (CDC) Podcasts

    2013-08-05

    Dr. Duc Vugia, chief of the Infectious Diseases Branch at the California Department of Public Health, discusses the dangers of eating raw oysters.  Created: 8/5/2013 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/7/2013.

  3. Assessement of user needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  4. Ecological risk assessment in the context of global climate change.

    Science.gov (United States)

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Copyright © 2012 SETAC.

  5. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  6. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2{\\deg}C Global Warming is Dangerous

    CERN Document Server

    Hansen, James; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; Velicogna, Isabella; Tormey, Blair; Donovan, Bailey; Kandiano, Evgeniya; von Schuckmann, Karina; Kharecha, Pushker; Legrande, Allegra N; Bauer, Michael; Lo, Kwok-Wai

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 4...

  7. The science; global temperature is on the rise and the dangers are real and significant

    Energy Technology Data Exchange (ETDEWEB)

    Hengeveld, H. G. [Environment Canada, Atmospheric Environment Service, Ottawa, ON (Canada)

    2000-03-31

    Several decades of focused research into the behaviour of the global climate system have led to warnings by the scientific community to the effect that human activities might have a major impact on greenhouse gas concentrations and of the concern that such uncontrolled 'experimentation' with the Earth's life support system might be dangerous. The latest assessment by the Intergovernmental Panel on Climate Change (IPCC) released in 1995 concluded that human interference with the climate system will indeed contribute substantially to a warmer global climate, and that there is already substantial evidence of related changes in natural global systems. The report also stated that there is sound rationale for taking mitigative measures to reduce related risks. Despite the many uncertainties that still remain, there is now a solid body of scientific information to suggest that future climate changes will be real, significant, and potentially dangerous. This article provides summary descriptions of the major components of this scientific evidence, confirming the high probability of climatic change. It also describes the expected consequences of warmer climate in terms of increased precipitation, rising sea levels, retreating alpine glaciers, and changes in the ecological behaviour of bird nesting, insect migration and crop growing seasons.

  8. Assessing Impacts of Climate Change on Food Security Worldwide

    Science.gov (United States)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  9. How Novel are 21st Century Climates? A Global Assessment of Future Climates and their Analogs Back Through the Eocene

    Science.gov (United States)

    Burke, K. D.; Williams, J. W.; Jackson, S. T.

    2016-12-01

    Climate change is a multivariate process, where changes in the environmental space of a location will likely drive biotic responses of the flora and fauna that inhabit the region. In the face of a rapidly changing climate it is important to understand what the future may hold for ecosystems. One method commonly applied to understand how dissimilar future climates will be relative to the modern period is no-analog analysis. This has been done for 21st century climates relative to the modern period, but has not been extended through the paleorecord. Using HadCM3, CCSM3 TraCE-21ka, PMIP3, PlioMIP2 and EoMIP climate simulations, we assess global and regional climatic novelty by identifying the closest analogs in these periods for both future (21st century) and modern climates. This baseline offers a full range climate space with significant overlap of modern and future projected climates, and allows us to assess both emergences and disappearances of analog climate conditions throughout the past. This extended baseline includes past glacial and interglacial climates, as well as past earth warm periods. Past earth warm periods such as the middle to late Pliocene and the early Eocene may be most similar to projections of future climate, so it is important to evaluate our understanding of these global climates. Here we calculate dissimilarity to quantify novelty and no-analog conditions using the Standardized Euclidian Distance, as well as the Mahalanobis distance. Our work shows that nearest climate analogs for the modern period, as well as future climates, existed and disappeared during past warm periods. These results suggest that though climate change may be regionally novel relative to the modern period for some locations, analogs do exist through the paleorecord which in some cases reduce novelty. Nevertheless, novelty remains high in some locations suggesting that some future climates may be unprecedented.

  10. Cost Analysis of Water Transport for Climate Change Impact Assessment

    Science.gov (United States)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  11. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    Science.gov (United States)

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  12. Assessing climate change mitigation technology interventions by international institutions

    DEFF Research Database (Denmark)

    de Coninck, Heleen; Puig, Daniel

    2015-01-01

    intergovernmental agencies have set up specific programmes to supportthe diffusion of climate mitigation technologies. Using a simplified technological innovationsystem-based framework, this paper aims to systematically review these programmes, with thedual aim of assessing their collective success in promoting...... technological innovation, andidentifying opportunities for the newly formed UNFCCC Technology Mechanism. We concludethat, while all programmes reviewed have promoted technology transfer, they have givenlimited attention to innovation capabilities with users, government and universities. Functionsthat could...

  13. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    Science.gov (United States)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  14. Assessing Climate Change in Early Warm Season and Impacts on Wildfire Potential in the Southwestern United States

    Science.gov (United States)

    Kafatos, M.; Kim, S. H.; Kim, J.; Nghiem, S. V.; Fujioka, F.; Myoung, B.

    2016-12-01

    Wildfires are an important concern in the Southwestern United States (SWUS) where the prevalent semi-arid to arid climate, vegetation types and hot and dry warm seasons challenge strategic fire management. Although they are part of the natural cycle related to the region's climate, significant growth of urban areas and expansion of the wildland-urban interface, have made wildfires a serious high-risk hazard. Previous studies also showed that the SWUS region is prone to frequent droughts due to large variations in wet season rainfall and has suffered from a number of severe wildfires in the recent decades. Despite the increasing trend in large wildfires, future wildfire risk assessment studies at regional scales for proactive adaptations are lacking. Our previous study revealed strong correlations between the North Atlantic Oscillation (NAO) and temperatures during March-June in SWUS. The abnormally warm and dry conditions in an NAO-positive spring, combined with reduced winter precipitation, can cause an early start of a fire season and extend it for several seasons, from late spring to fall. A strong interannual variation of the Keetch-Byram Drought Index (KBDI) during the early warm season was also found in the 35 year period 1979 - 2013 of the North American Regional Reanalysis (NARR) dataset. Thus, it is crucial to investigate the climate change impact that early warm season temperatures have on future wildfire danger potential. Our study reported here examines fine-resolution fire-weather variables for 2041-2070 projected in the North American Regional Climate Change Assessment Program (NARCCAP). The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The local wildfire potential in future climate is investigated using both the Keetch-Byram Drought Index (KBDI) and the

  15. Assessment of Climate Change Effects on Shahcheraghi Reservoir Inflow

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2016-10-01

    Full Text Available Introduction: Forecasting the inflow to the reservoir is important issues due to the limited water resources and the importance of optimal utilization of reservoirs to meet the need for drinking, industry and agriculture in future time periods. In the meantime, ignoring the effects of climate change on meteorological and hydrological parameters and water resources in long-term planning of water resources cause inaccuracy. It is essential to assess the impact of climate change on reservoir operation in arid regions. In this research, climate change impact on hydrological and meteorological variables of the Shahcheragh dam basin, in Semnan Province, was studied using an integrated model of climate change assessment. Materials and Methods: The case study area of this study was located in Damghan Township, Semnan Province, Iran. It is an arid zone. The case study area is a part of the Iran Central Desert. The basin is in 12 km north of the Damghan City and between 53° E to 54° 30’ E longitude and 36° N to 36° 30’ N latitude. The area of the basin is 1,373 km2 with average annual inflow around 17.9 MCM. Total actual evaporation and average annual rainfall are 1,986 mm and 137 mm, respectively. This case study is chosen to test proposed framework for assessment of climate change impact hydrological and meteorological variables of the basin. In the proposed model, LARS-WG and ANN sub-models (7 sub models with a combination of different inputs such as temperature, precipitation and also solar radiation were used for downscaling daily outputs of CGCM3 model under 3 emission scenarios, A2, B1 and A1B and reservoir inflow simulation, respectively. LARS-WG was tested in 99% confidence level before using it as downscaling model and feed-forward neural network was used as raifall-runoff model. Moreover, the base period data (BPD, 1990-2008, were used for calibration. Finally, reservoir inflow was simulated for future period data (FPD of 2015-2044 and

  16. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    Science.gov (United States)

    Hooper, Michael J.; Ankley, Gerald T.; Cristol, Daniel A.; Maryoung, Lindley A.; Noyes, Pamela D.; Pinkerton, Kent E.

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.

  17. Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks.

    Science.gov (United States)

    Hooper, Michael J; Ankley, Gerald T; Cristol, Daniel A; Maryoung, Lindley A; Noyes, Pamela D; Pinkerton, Kent E

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical-GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical-climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments. Copyright © 2012 SETAC.

  18. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  19. A Framework to Assess the Impacts of Climate Change on ...

    Science.gov (United States)

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  20. Assessment of the Effects of Climate Change on Federal Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J. [M.J. Sale and Associates, Hanson, MA (United States); Shih-Chieh, Kao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ashfaq, Moetasim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kaiser, Dale P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webb, Cindy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-10-01

    As directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory report, referred to as the “9505 Assessment,” describes the technical basis for the report to Congress that was called for in the SECURE Water Act.

  1. 75 FR 51806 - Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices

    Science.gov (United States)

    2010-08-23

    ...-0701] Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices AGENCY...-day public comment period for the draft document titled, ``Climate Change Vulnerability Assessment... utilities to assess their vulnerability to future climate change. The report is intended to illustrate the...

  2. 76 FR 55673 - Vulnerability Assessments in Support of the Climate Ready Estuaries Program: A Novel Approach...

    Science.gov (United States)

    2011-09-08

    ... AGENCY Vulnerability Assessments in Support of the Climate Ready Estuaries Program: A Novel Approach... period for the draft documents titled, Vulnerability Assessments in Support of the Climate Ready... Partnership (EPA/600/R-11/ 058a) and Vulnerability Assessments in Support of the Climate Ready Estuaries...

  3. Integrating Communication Best Practices in the Third National Climate Assessment

    Science.gov (United States)

    Hassol, S. J.

    2014-12-01

    Modern climate science assessments now have a history of nearly a quarter-century. This experience, together with important advances in relevant social sciences, has greatly improved our ability to communicate climate science effectively. As a result, the Third National Climate Assessment (NCA) was designed to be truly accessible and useful to all its intended audiences, while still being comprehensive and scientifically accurate. At a time when meeting the challenge of climate change is increasingly recognized as an urgent national and global priority, the NCA is proving to be valuable to decision-makers, the media, and the public. In producing this latest NCA, a communication perspective was an important part of the process from the beginning, rather than an afterthought as has often been the case with scientific reports. Lessons learned from past projects and science communications research fed into developing the communication strategy for the Third NCA. A team of editors and graphic designers worked closely with the authors on language, graphics, and photographs throughout the development of the report, Highlights document, and other products. A web design team helped bring the report to life online. There were also innovations in outreach, including a network of organizations intended to extend the reach of the assessment by engaging stakeholders throughout the process. Professional slide set development and media training were part of the preparation for the report's release. The launch of the NCA in May 2014 saw widespread and ongoing media coverage, continued references to the NCA by decision-makers, and praise from many quarters for its excellence in making complex science clear and accessible. This NCA is a professionally crafted report that exemplifies best practices in 21st century communications.

  4. Potential dangers of cannabis.

    Science.gov (United States)

    Kaymakçalan, S

    1975-01-01

    Cannabis is not a harmless drug. The potential dangers of cannabis are briefly reviewed in this report. The above-mentioned observations on cannabis users should be kept in mind and carefully examined by all physicians. One could expect that as more potent cannabis preparations become available, some of the toxic manifestations which now seem rare might become more frequent. Some of the remarks about the dangers of cannabis may not be proved in future studies, and they may represent only our anxiety. However, prior to the elimination of these fears, no steps should be taken toward the legalizing of marijuana. At present there is no scientific evidence that cannabis is less harmful than either tobacco or alcohol. The opposite may be true. The analogy can be drawn between opium and cannabis. The permissive attitude toward the use of opium can easily lead to the use of morphine and other opiates. If we legalize the use of marijuana, we cannot prevent the use of more dangerous derivatives of cannabis; namely, hashish, cannabis oil and THC, itself. In my opinion, in the light of our present knowledge, legalizing of marijuana could be hazardous both for the individual and for society.

  5. La mesure du danger

    CERN Document Server

    Manceron, Vanessa; Revet, Sandrine

    2014-01-01

    La mesure du danger permet d’explorer des dangers de nature aussi diverse que la délinquance, la pollution, l’écueil maritime, la maladie ou l’attaque sorcellaire, l’extinction d’espèces animales ou végétales, voire de la Planète tout entière. Au croisement de la sociologie, de l’anthropologie et de l’histoire, les différents articles analysent les pratiques concrètes de mesure pour tenter de comprendre ce qui se produit au cours de l’opération d’évaluation du danger sans préjuger de la nature de celui-ci. L’anthropologie a contribué à la réflexion sur l’infortune en s’intéressant aux temporalités de l’après : maladies, catastrophes, pandémies, etc. et en cherchant à rendre compte de l’expérience des victimes, de leur vie ordinaire bouleversée, de la recomposition du quotidien. Elle s’intéresse aussi aux autres types de mesures, les savoirs incorporés, qui reposent sur l’odorat, la vue ou le toucher et ceux qui ressortent d’une épistémologie « non ...

  6. Fire danger rating network density

    Science.gov (United States)

    Rudy M. King; R. William Furman

    1976-01-01

    Conventional statistical techniques are used to answer the question, "What is the necessary station density for a fire danger network?" The Burning Index of the National Fire-Danger Rating System is used as an indicator of fire danger. Results are presented as station spacing in tabular form for each of six regions in the western United States.

  7. Assessment of climate variability and hydrological alterations in Kaidu Basin

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander

    2017-04-01

    Climate change and hydrological alterations are major concerns in a mountain river ecosystem. We provide an essential assessment of climate variability (1961-2011) in Kaidu basin by means of Mann-Kendall test and cumulative anomalies. The Indicator of Hydrologic Alteration (IHA) was further performed to analyze hydrological alterations (1972-2008). Change in the triggering of snowmelt runoff timing was analyzed by the winter/spring snowmelt runoff center time (WSCT). Results reveal that annual precipitation and temperature show an increase tendency, but with a significant trend in winter and summer, respectively, while the discharge reveals significant rises in both annual and seasonal scales. However, all the hydro-meteorological parameters show an obvious increase tendency especially in the mid-1990s. WSCT has a significant decreasing trend and was observed earlier by nearly 10 days in Kaidu Basin. Higher relationship between WSCT with temperatures (March to April, R= - 0.51) and precipitation (February to March, R=0.33) were found that temperature may play a major role in causing the earlier WSCT. Account for the reservoirs influences, the rise rate and monthly flows have increased evidently before and after the reservoirs regulation. Monthly streamflow was found higher in pre-impact (1972-1992) than post-impact period (1993-2008) based on the flow duration curves. Nevertheless, the base flow index displayed no change before and after the impact period. Consequently, both of climate change and reservoir regulation lead to a concentrated streamflow. Research should take this influence into consideration in hydrological analysis and modelling in terms of uncertainties. These findings deepen our understanding of climate change and hydrological alterations in Kaidu basin, and are useful for flood risk regulation, ecological restoration and future hydropower plants. Keywords: Climate change; Spring snowmelt runoff time; WSCT; hydrological alterations; IHA

  8. Lakes sensitivity to climatic stress – a sociological assessment

    Directory of Open Access Journals (Sweden)

    Lackowska Marta

    2016-12-01

    Full Text Available One of the conditions for effective water resources management in protected areas is local decision makers’ knowledge about potential threats caused by climate changes. Our study, conducted in the UNESCO Biosphere Reserve of Tuchola Forest in Poland, analyses the perception of threats by local stakeholders. Their assessments of the sensitivity of four lakes to the extreme weather events are compared with hydrological studies. The survey shows that the lakes’ varying responses to extreme weather conditions is rarely noticed by ordinary observers. Their perception is usually far from the hydrological facts, which indicates a lack of relevant information or a failure in making it widely accessible and understandable. Moreover, it is rather the human impact, not climate change, which is seen as the biggest threat to the lakes. Insufficient environmental knowledge may hinder the effective protection and management of natural resources, due to bad decisions and lack of the local communities’ support for adaptation and mitigation policies.

  9. County-Level Climate Uncertainty for Risk Assessments: Volume 1.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  10. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  11. Pacific Islands Regional Climate Assessment: Building a Framework to Track Physical and Social Indicators of Climate Change Across Pacific Islands

    Science.gov (United States)

    Grecni, Z. N.; Keener, V. W.

    2016-12-01

    Assessments inform regional and local climate change governance and provide the critical scientific basis for U.S. climate policy. Despite the centrality of scientific information to public discourse and decision making, comprehensive assessments of climate change drivers, impacts, and the vulnerability of human and ecological systems at regional or local scales are often conducted on an ad hoc basis. Methods for sustained assessment and communication of scientific information are diverse and nascent. The Pacific Islands Regional Climate Assessment (PIRCA) is a collaborative effort to assess climate change indicators, impacts, and adaptive capacity of the Hawaiian archipelago and the US-Affiliated Pacific Islands (USAPI). In 2012, PIRCA released the first comprehensive report summarizing the state of scientific knowledge about climate change in the region as a technical input to the U.S. National Climate Assessment. A multi-method evaluation of PIRCA outputs and delivery revealed that the vast majority of key stakeholders view the report as extremely credible and use it as a resource. The current study will present PIRCA's approach to establishing physical and social indicators to track on an ongoing basis, starting with the Republic of the Marshall Islands as an initial location of focus for providing a cross-sectoral indicators framework. Identifying and tracking useful indicators is aimed at sustaining the process of knowledge coproduction with decision makers who seek to better understand the climate variability and change and its impacts on Pacific Island communities.

  12. Assessing the impacts of climatic change on mountain water resources.

    Science.gov (United States)

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Evaluation of correct knowledge of key danger signs in pregnancy ...

    African Journals Online (AJOL)

    Context: Test of knowledge of pregnant women on key danger signs as a marker to assess the quality of information shared during health education at the antenatal clinic (ANC) is desirable. Aim: The aim was to assess correct knowledge of danger signs among pregnant women who attend ANC. Settings and Design: A ...

  14. Evaluation of correct knowledge of key danger signs in pregnancy ...

    African Journals Online (AJOL)

    2015-06-01

    Jun 1, 2015 ... Context: Test of knowledge of pregnant women on key danger signs as a marker to assess the quality of information shared during health education at the antenatal clinic (ANC) is desirable. Aim: The aim was to assess correct knowledge of danger signs among pregnant women who attend ANC. Settings ...

  15. Integrated assessment of socio-economic risks of dangerous hydrological phenomena in Russian coastal zones of the Baltic, the Azov and the Black Seas

    Science.gov (United States)

    Zemtsov, Stepan; Baburin, Vyacheslav; Goryachko, Mariya; Krylenko, Inna; Yumina, Natalya

    2013-04-01

    In 2012, an integrated damage from floods in Russia was about 1 billion euros, floods have caused the death of over 200 people. It is one of the most pressing scientific topics, but most of the works devoted to natural risks assessment. The main purpose of this work is to estimate the influence of dangerous hydrological phenomena (e.g. floods, underflooding and surges) on society, using vulnerability and damage assessment techniques. The objectives are to examine domestic and foreign methodologies, to integrate them and to test on specific Russian territory. Foreign training was organized at UNU-EHS (Bonn, Germany). Three different methods were used for each stage of research. The first part of the research was devoted to estimation of potential damage for population and economy of the Baltic Sea coastal zones. The authors used a model, which takes into account direct damage (loss of life, destruction of buildings, etc.) as well as indirect effects of the first, second, etc. orders (loss of profits, loss of the budget, etc.). A database, based on satellite images, maps, yearbooks of Russian Statistical Service and reports of entities, has been prepared. The database is a matrix, in which the rows are coastal zones, and the columns are given indicators: number of people in port areas (people), cost of fixed assets (million rubles), investment (million rubles.), revenue / profit (million rubles.), etc. The authors identified zones with different depth of flooding, using satellite images, and calculated the direct and indirect costs, using the methodology of EMERCOM. Maximum direct potential damage for the Baltic coast is about 15,7 billion euros, but indirect damage is more than 25,5 billion euros. The second part of research was devoted to vulnerability assessment of coastal municipalities of Krasnodar Region. A database, as a matrix of 252 parameters from 2007 to 2009 for 14 coastal municipalities, was developed. The parameters were divided into several blocks

  16. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  17. Assessing adaptation to the health risks of climate change: what guidance can existing frameworks provide?

    Science.gov (United States)

    Füssel, Hans-Martin

    2008-02-01

    Climate change adaptation assessments aim at assisting policy-makers in reducing the health risks associated with climate change and variability. This paper identifies key characteristics of the climate-health relationship and of the adaptation decision problem that require consideration in climate change adaptation assessments. It then analyzes whether these characteristics are appropriately considered in existing guidelines for climate impact and adaptation assessment and in pertinent conceptual models from environmental epidemiology. The review finds three assessment guidelines based on a generalized risk management framework to be most useful for guiding adaptation assessments of human health. Since none of them adequately addresses all key challenges of the adaptation decision problem, actual adaptation assessments need to combine elements from different guidelines. Established conceptual models from environmental epidemiology are found to be of limited relevance for assessing and planning adaptation to climate change since the prevailing toxicological model of environmental health is not applicable to many climate-sensitive health risks.

  18. Dangerousness and mental health policy.

    Science.gov (United States)

    Hewitt, J L

    2008-04-01

    Mental health policy development in the UK has become increasingly dominated by the assumed need to prevent violence and alleviate public concerns about the dangers of the mentally ill living in the community. Risk management has become the expected focus of contemporary mental health services, and responsibility has increasingly been devolved to individual service professionals when systems fail to prevent violence. This paper analyses the development of mental health legislation and its impact on services users and mental health professionals at the micro level of service delivery. Historical precedence, media influence and public opinion are explored, and the reification of risk is questioned in practical and ethical terms. The government's newest proposals for compulsory treatment in the community are discussed in terms of practical efficacy and therapeutic impact. Dangerousness is far from being an objectively observable phenomenon arising from clinical pathology, but is a formulation of what is partially knowable through social analysis and unknowable by virtue of its situation in individual psychic motivation. Risk assessment can therefore never be completely accurate, and the solution of a 'better safe than sorry' approach to mental health policy is ethically and pragmatically flawed.

  19. Assessing organizational climate: psychometric properties of the CLIOR Scale.

    Science.gov (United States)

    Peña-Suárez, Elsa; Muñiz, José; Campillo-Álvarez, Angela; Fonseca-Pedrero, Eduardo; García-Cueto, Eduardo

    2013-02-01

    Organizational climate is the set of perceptions shared by workers who occupy the same workplace. The main goal of this study is to develop a new organizational climate scale and to determine its psychometric properties. The sample consisted of 3,163 Health Service workers. A total of 88.7% of participants worked in hospitals, and 11.3% in primary care; 80% were women and 20% men, with a mean age of 51.9 years (SD= 6.28). The proposed scale consists of 50 Likert-type items, with an alpha coefficient of 0.97, and an essentially one-dimensional structure. The discrimination indexes of the items are greater than 0.40, and the items show no differential item functioning in relation to participants' sex. A short version of the scale was developed, made up of 15 items, with discrimination indexes higher than 0.40, an alpha coefficient of 0.94, and its structure was clearly one-dimensional. These results indicate that the new scale has adequate psychometric properties, allowing a reliable and valid assessment of organizational climate.

  20. Agent Model Development for Assessing Climate-Induced Geopolitical Instability.

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, Mark B.; Backus, George A.

    2005-12-01

    We present the initial stages of development of new agent-based computational methods to generate and test hypotheses about linkages between environmental change and international instability. This report summarizes the first year's effort of an originally proposed three-year Laboratory Directed Research and Development (LDRD) project. The preliminary work focused on a set of simple agent-based models and benefited from lessons learned in previous related projects and case studies of human response to climate change and environmental scarcity. Our approach was to define a qualitative model using extremely simple cellular agent models akin to Lovelock's Daisyworld and Schelling's segregation model. Such models do not require significant computing resources, and users can modify behavior rules to gain insights. One of the difficulties in agent-based modeling is finding the right balance between model simplicity and real-world representation. Our approach was to keep agent behaviors as simple as possible during the development stage (described herein) and to ground them with a realistic geospatial Earth system model in subsequent years. This work is directed toward incorporating projected climate data--including various C02 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report--and ultimately toward coupling a useful agent-based model to a general circulation model.3

  1. Statistical wave climate projections for coastal impact assessments

    Science.gov (United States)

    Camus, P.; Losada, I. J.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J.

    2017-09-01

    Global multimodel wave climate projections are obtained at 1.0° × 1.0° scale from 30 Coupled Model Intercomparison Project Phase 5 (CMIP5) global circulation model (GCM) realizations. A semi-supervised weather-typing approach based on a characterization of the ocean wave generation areas and the historical wave information from the recent GOW2 database are used to train the statistical model. This framework is also applied to obtain high resolution projections of coastal wave climate and coastal impacts as port operability and coastal flooding. Regional projections are estimated using the collection of weather types at spacing of 1.0°. This assumption is feasible because the predictor is defined based on the wave generation area and the classification is guided by the local wave climate. The assessment of future changes in coastal impacts is based on direct downscaling of indicators defined by empirical formulations (total water level for coastal flooding and number of hours per year with overtopping for port operability). Global multimodel projections of the significant wave height and peak period are consistent with changes obtained in previous studies. Statistical confidence of expected changes is obtained due to the large number of GCMs to construct the ensemble. The proposed methodology is proved to be flexible to project wave climate at different spatial scales. Regional changes of additional variables as wave direction or other statistics can be estimated from the future empirical distribution with extreme values restricted to high percentiles (i.e., 95th, 99th percentiles). The statistical framework can also be applied to evaluate regional coastal impacts integrating changes in storminess and sea level rise.

  2. Regional Risk Assessment for climate change impacts on coastal aquifers.

    Science.gov (United States)

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Development of A Dust Climate Indicator for the US National Climate Assessment

    Science.gov (United States)

    Tong, D.; Wang, J. X. L.; Gill, T. E.; Van Pelt, S.; Kim, D.

    2016-12-01

    Dust activity is a relatively simple but practical indicator to document the response of dryland ecosystems to climate change, making it an integral part of the National Climate Assessment (NCA). We present here a multi-agency collaboration that aims at developing a suite of dust climate indicators to document and monitor the long-term variability and trend of dust storm activity in the western United States. Recent dust observations have revealed rapid intensification of dust storm activity in the western United States. This trend is also closely correlated with a rapid increase in dust deposition in rainwater and "valley fever" hospitalization in southwestern states. It remains unclear, however, if such a trend, when enhanced by predicted warming and rainfall oscillation in the Southwest, will result in irreversible environmental development such as desertification or even another "Dust Bowl". Based on continuous ground aerosol monitoring, we have reconstructed a long-term dust storm climatology in the western United States. We report here direct evidence of rapid intensification of dust storm activity over US deserts in the past decades (1990 to 2013), in contrast to the decreasing trends in Asia and Africa. The US trend is spatially and temporally correlated with incidences of valley fever, an infectious disease caused by soil-dwelling fungus that has increased eight-fold in the past decade. We further investigate the linkage between dust variations and possible climate drivers and find that the regional dust trends are likely driven by large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation (PDO). Future study will explore the link between the temporal and spatial trends of increase in dustiness and vegetation change in southwestern semi-arid and arid ecosystems.

  4. A health impact assessment framework for assessing vulnerability and adaptation planning for climate change.

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-12-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  5. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    Directory of Open Access Journals (Sweden)

    Helen Brown

    2014-12-01

    Full Text Available This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  6. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146

  7. IPCC Fifth Assessment Report (AR5) Observed Climate Change Impacts Database, Version 2.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5) Observed Climate Change Impacts Database, Version 2.01 contains observed responses to...

  8. An Assessment of the Impact of Climate Change in India

    Science.gov (United States)

    Nair, K. S.

    2009-09-01

    adaptation, mitigation and post-hazard recovery and resettlement measures. Providing basic necessities such as water, food and power, maintaining public health, implementing protective measures in the coastal zones and modifications in the urban infrastructure, especially in the coastal megacities become expensive. Impact of extremes on rails, roads and building are also becoming a major issue in the coastal zones and urban centres. Industrial sector is facing a threat from the falling reliable supply of water and power. However, procedure for the implementation of the strategies to mitigate the climate change impact and of the policy for the adaptation to climate change is slow. There are several hurdles for this, including various ecological, socio-economic, technical and political issues, alterations of the physical environment, inability of certain habitats and species to adapt to a new environment, abject poverty, lack of awareness, and the inefficient administrative mechanism. A comprehensive assessment of the shifts in regional climate and the impact of climate change on different facets of life in India, and of the current strategies and polices to face such challenges is made in this study. Suggestions for the improvement of the climate policy and adaptation strategy have been provided.

  9. Transport of dangerous goods through road tunnels

    DEFF Research Database (Denmark)

    Jørgensen, N O; Lacroix, Didier; Amundsen, F.H.

    1999-01-01

    A paper which describes the work of an OECD research group. The group has suggested a grouping of dangerous materials, a quantitative risk assessment model and a decision support model which should allow tunnel operators to determine if a given material should be allowed throug a given tunnel...

  10. Integrating Climate Change Factors within China’s Environmental Impact Assessment Legislation: New Challenges and Developments

    OpenAIRE

    Xiangbai He

    2013-01-01

    Climate change and its undeniable impacts must be considered while applying the existing development tools. As a preventative instrument to identify, assess and mitigate the adverse environmental effects of proposed and current undertakings, the incorporation of the impacts of climate change into Environmental Impact Assessment (EIA) has been recommended. This article finds that EIA can be more beneficial with a ‘climate change - plan/project - environment’ interaction, where the climate chan...

  11. Second California Assessment: Integrated climate change impacts assessment of natural and managed systems. Guest editorial

    Science.gov (United States)

    Franco, G.; Cayan, D.R.; Moser, S.; Hanemann, M.; Jones, M.A.

    2011-01-01

    Since 2006 the scientific community in California, in cooperation with resource managers, has been conducting periodic statewide studies about the potential impacts of climate change on natural and managed systems. This Special Issue is a compilation of revised papers that originate from the most recent assessment that concluded in 2009. As with the 2006 studies that influenced the passage of California's landmark Global Warming Solutions Act (AB32), these papers have informed policy formulation at the state level, helping bring climate adaptation as a complementary measure to mitigation. We provide here a brief introduction to the papers included in this Special Issue focusing on how they are coordinated and support each other. We describe the common set of downscaled climate and sea-level rise scenarios used in this assessment that came from six different global climate models (GCMs) run under two greenhouse gas emissions scenarios: B1 (low emissions) and A2 (a medium-high emissions). Recommendations for future state assessments, some of which are being implemented in an on-going new assessment that will be completed in 2012, are offered. ?? 2011 Springer Science+Business Media B.V.

  12. Assessing climate change mitigation technology interventions by international institutions

    OpenAIRE

    de Coninck, Heleen; Puig, Daniel

    2015-01-01

    Accelerating the international use of climate mitigation technologies is key if effortsto curb climate change are to succeed, especially in developing countries, where weakdomestic technological innovation systems constrain the uptake of climate change mitigationtechnologies. Several intergovernmental agencies have set up specific programmes to supportthe diffusion of climate mitigation technologies. Using a simplified technological innovationsystem-based framework, this paper aims to systema...

  13. Climate Hazard Assessment for Stakeholder Adaptation Planning in New York City

    Science.gov (United States)

    Horton, Radley M.; Gornitz, Vivien; Bader, Daniel A.; Ruane, Alex C.; Goldberg, Richard; Rosenzweig, Cynthia

    2011-01-01

    This paper describes a time-sensitive approach to climate change projections, developed as part of New York City's climate change adaptation process, that has provided decision support to stakeholders from 40 agencies, regional planning associations, and private companies. The approach optimizes production of projections given constraints faced by decision makers as they incorporate climate change into long-term planning and policy. New York City stakeholders, who are well-versed in risk management, helped pre-select the climate variables most likely to impact urban infrastructure, and requested a projection range rather than a single 'most likely' outcome. The climate projections approach is transferable to other regions and consistent with broader efforts to provide climate services, including impact, vulnerability, and adaptation information. The approach uses 16 Global Climate Models (GCMs) and three emissions scenarios to calculate monthly change factors based on 30-year average future time slices relative to a 30- year model baseline. Projecting these model mean changes onto observed station data for New York City yields dramatic changes in the frequency of extreme events such as coastal flooding and dangerous heat events. Based on these methods, the current 1-in-10 year coastal flood is projected to occur more than once every 3 years by the end of the century, and heat events are projected to approximately triple in frequency. These frequency changes are of sufficient magnitude to merit consideration in long-term adaptation planning, even though the precise changes in extreme event frequency are highly uncertain

  14. Dangerous arachnids-Fake news or reality?

    Science.gov (United States)

    Hauke, Tobias J; Herzig, Volker

    2017-11-01

    The public perception of spiders and scorpions is skewed towards the potential harm they can inflict in humans, despite recent scientific evidence that arachnid venom components might be useful as bioinsecticides or even human therapeutics. Nevertheless, arachnids are becoming more popular as pets in Europe, America and Asia, raising the question for regulatory agencies in these regions as to whether they need to take measurements to protect their citizens. In order to decide upon the necessary regulatory steps, they first need to determine which arachnids are actually dangerous to humans. This review therefore provides an overview of the current literature on verified bites and stings from spiders and scorpions with the aim of assessing their potential danger for human health. As a guideline, we also provide a list of those arachnid genera that we consider as potentially dangerous, which includes 10 spider and 11 scorpion genera. The arachnid genera classified as dangerous comprise less than a quarter of all extant scorpion species and only 0.5% of all spiders species, with the actual number most likely being much lower than that, as not all species in those genera might turn out to pose an actual threat for humans. In conclusion, we found that only a small percentage of scorpions and a minute percentage of all spiders can be considered as potentially dangerous to humans. While in some countries of origin the high incidence of envenomations by dangerous arachnids can result in a serious problem to the health system, we assessed the risk that the same species pose when kept as pets under controlled maintenance conditions as significantly lower. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change

    Science.gov (United States)

    Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev

    2007-01-01

    This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.

  16. Dangers and Pleasures

    DEFF Research Database (Denmark)

    Järvinen, Margaretha Maria; Østergaard, Jeanette

    2011-01-01

    This is a study of young people’s conceptions of illegal drug use as dangerous and/or pleasurable and an analysis of the relationship between attitudes to drugs, drinking, friends’ reported drug use and own experience with drug use and drinking. The article applies a mixed methods approach using...... both survey data and focus group interviews. The main statistical method is Multiple Correspondence Analysis (MCA), which constructs a social space of young people’s attitudes to drugs and drug experiences relationally. We identify four interrelated positions on illegal drug use among 17 to 19-year......-old Danes: the anti-drug position, usually held by youths who do not use illegal drugs and do not have drug-using friends; the ambivalent position, occupied by non-users who report that they have drug-using friends; the transitory position, held by cannabis users, some of whom express positive attitudes...

  17. Is Brain Emulation Dangerous?

    Science.gov (United States)

    Eckersley, Peter; Sandberg, Anders

    2013-12-01

    Brain emulation is a hypothetical but extremely transformative technology which has a non-zero chance of appearing during the next century. This paper investigates whether such a technology would also have any predictable characteristics that give it a chance of being catastrophically dangerous, and whether there are any policy levers which might be used to make it safer. We conclude that the riskiness of brain emulation probably depends on the order of the preceding research trajectory. Broadly speaking, it appears safer for brain emulation to happen sooner, because slower CPUs would make the technology`s impact more gradual. It may also be safer if brains are scanned before they are fully understood from a neuroscience perspective, thereby increasing the initial population of emulations, although this prediction is weaker and more scenario-dependent. The risks posed by brain emulation also seem strongly connected to questions about the balance of power between attackers and defenders in computer security contests. If economic property rights in CPU cycles1 are essentially enforceable, emulation appears to be comparatively safe; if CPU cycles are ultimately easy to steal, the appearance of brain emulation is more likely to be a destabilizing development for human geopolitics. Furthermore, if the computers used to run emulations can be kept secure, then it appears that making brain emulation technologies ―open‖ would make them safer. If, however, computer insecurity is deep and unavoidable, openness may actually be more dangerous. We point to some arguments that suggest the former may be true, tentatively implying that it would be good policy to work towards brain emulation using open scientific methodology and free/open source software codebases

  18. Nevada Monitoring System to Assess Climate Variability and Change

    Science.gov (United States)

    Devitt, D. A.; Arnone, J.; Biondi, F.; Fenstermaker, L. F.; Saito, L.; Young, M.; Riddle, B.; Strachan, S. D.; Bird, B.; McCurdy, G.; Lyles, B. F.

    2010-12-01

    The Nevada System of Higher Education (University of Nevada Las Vegas, University of Nevada Reno and the Desert Research Institute) was awarded a multiyear NSF EPSCoR grant to support infrastructure associated with regional climate change research. The overall project is comprised of 5 components: education, cyberinfrastructure, policy, climate modeling and water/ecology. The water and ecology components are using their infrastructure funding for the assessment of climate variability and change on ecosystem function and hydrologic services. A series of 10 m tall towers are under construction and are being equipped with a wide array of sensors to monitor atmospheric, soil and plant parameters over time. The towers are located within the Mojave and Great Basin Deserts in two transects; the Mojave Desert transect is located in the southern Nevada Sheep Mountain Range and the Great Basin transect is located in the east central Nevada Snake Mountain Range. The towers are centrally positioned in well-defined vegetation zones. In southern Nevada these zones are represented by the following plant species: Creosote/Bursage (Creosotebush scrub zone); Blackbrush/Joshua Tree (Blackbrush zone); Pinyon/ Juniper (pygmy conifer zone), Ponderosa Pine (montane zone) and Bristlecone Pine (subalpine zone). The Snake Mountain transect incorporates the eastern and western valleys on both sides of the mountain range. The vegetation zones are represented by: Greasewood and mixed shrub (salt desert zone); Big Sage (sagebrush zone); Pinyon/Juniper (pygmy conifer zone); White/Douglas Fir, Ponderosa Pine and Aspen (montane zone); and Bristlecone/Limber Pine and Engelmann Spruce (subalpine zone). We are currently in the third year of funding with a goal of having the majority of towers fully operational by winter 2010. In close collaboration with our cyberinfrastructure component team, all data acquired from the transect monitoring stations will be made available to other researchers and the

  19. PFP dangerous waste training plan

    Energy Technology Data Exchange (ETDEWEB)

    Khojandi, J.

    1996-01-01

    This document establishes the minimum training requirements for the Plutonium Finishing Plant (PFP) personnel who are responsible for management of dangerous waste. The training plan outlines training requirements for handling of solid dangerous waste during generator accumulation and liquid dangerous waste during treatment and storage operations. The implementation of this training plan will ensure the PFP facility compliance with the training plan requirements of Dangerous Waste Regulation. Chapter 173-303-330. Washington Administrative Code (WAC). The requirements for such compliance is described in Section 11.0 of WHC-CM-7-5 Environmental Compliance Manual.

  20. Anticipatory flood risk assessment under climate change scenarios: from assessment to adaptation

    Science.gov (United States)

    Neuhold, C.; Hogl, K.; Seher, W.; Nachtnebel, H. P.; Scherhaufer, P.; Nordbeck, R.; Löschner, L.

    2012-04-01

    According to the Centre for Research on Epidemiology Disasters, floods are the type of natural disasters that affected the highest number of people from 1900 to 2008 worldwide. Specifically, Austria suffered from heavy floods in recent years, affecting thousands of people and causing billions of Euro in economic losses. Although there is yet no proof that these accumulated extreme events are a direct consequence of climate change, they may indicate what can be expected. Currently, comprehensive climate modelling research is being conducted for Austria that may lay the foundation for enhanced climate impact assessments (regional climate modelling under consideration of different global models and varying scenarios). However, the models so far have neither special focus on Austria nor a distinct definition of boundary conditions for Austria. Therefore, results of climate models are considered as too unreliable and inconsistent for predicting changes in flood characteristics, especially at a regional to local scale. As a consequence, adaptation strategies have to be derived from integrated impact analyses that are based on dissecting mechanisms and drivers for changes and not only on the dimension of climate change. This paper discusses a dynamic flood risk assessment methodology considering potential spatial and temporal developments of hazard and vulnerability under climate change scenarios. The approach integrates quantifiable results from assessments of hazard, exposure and sensitivity and the qualitative, interview based, assessment of adaptive capacities. Flood risk assessment will be conducted for the current state in Austria and enhanced by potential (1) flood scenarios increased by a climate change allowance (2) demographic development scenarios (3) land-use change scenarios and (4) adaptation policy assessment to identify regions especially prone to flooding. Comparing the current state with various anticipatory hazard and vulnerability scenarios provides

  1. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability

  2. Spatial-Temporal Assessment of Climate Model Drifts

    Science.gov (United States)

    Zanchettin, D.; Arisido, M.; Gaetan, C.; Rubino, A.

    2016-12-01

    Decadal climate forecasts with full-field initialized coupled climate models are affected by a growing error signal that develops due to the adjustment of the simulations from the assimilated state consistent with observations to the state consistent with the biased model's climatology. Sea-surface temperature (SST) drifts and biases are a major concern due to the central role of SST properties for the dynamical coupling between the atmosphere and the ocean, and for the associated variability. We propose a dynamic linear model based on a state-space approach and developed within a Bayesian hierarchical framework for probabilistic assessment of spatial and temporal characteristics of SST drifts in ensemble climate simulations. The state-space approach uses unobservable state variables to directly model the processes generating the observed variability. The statistical model is based on a sequential definition of the process having a conditional dependency only on the previous time step, which therefore corresponds to the Kalman filter formulas. In our formulation, the statistical model distinguishes between seasonal and longer-term drift components, and between large-scale and local drifts. We apply the Bayesian method to make inferences on the variance components of the Gaussian errors in both the observation and system equations of the state-space model. To this purpose, we draw samples from their posterior distributions using a Monte Carlo Markov Chain simulation technique with a slice sampler. In this contribution we will present results from an application of the statistical model on an ensemble of hindcasts with the MiKlip prototype system for decadal climate predictions, focused on the tropical Atlantic Ocean. We will demonstrate how our approach allows for a more reliable identification of sources of heterogeneity, non-stationarities and propagation pathways of SST errors. In particular, we will highlight the highly dynamical character of local seasonal

  3. A Common Methodology for Risk Assessment and Mapping of Climate Change Related Hazards—Implications for Climate Change Adaptation Policies

    Directory of Open Access Journals (Sweden)

    Maria Papathoma-Köhle

    2016-02-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC, 2014, suggests that an important increase in frequency and magnitude of hazardous processes related to climate change is to be expected at the global scale. Consequently, it is necessary to improve the level of preparedness and the level of public awareness, to fill institutional gaps, and to improve territorial planning in order to reduce the potentially disastrous impact of natural hazards related to climate change. This paper mainly presents a new framework for risk assessment and mapping which enables countries with limited data sources to assess their risk to climate change related hazards at the local level, in order to reduce potential costs, to develop risk reduction strategies, to harmonize their preparedness efforts with neighboring countries and to deal with trans-boundary risk. The methodology is based on the European Commission’s “Risk Assessment and Mapping Guidelines for Disaster Management” (2010 and considers local restrictions, such as a lack of documentation of historic disastrous events, spatial and other relevant data, offering alternative options for risk assessment, and the production of risk maps. The methodology is based on event tree analysis. It was developed within the European project SEERISK and adapted for a number of climate change-related hazards including floods, heat waves, wildfires, and storms. Additionally, the framework offers the possibility for risk assessment under different future scenarios. The implications for climate change adaptation policy are discussed.

  4. Climate change impact assessment on Zhoshui River water supply in Taiwan

    OpenAIRE

    Jyun-Long Lee Wen-Cheng Huang

    2017-01-01

    This study evaluates the impact of climate change on water resources. An integrated procedure is proposed for assessing the water resources system response to climate change on the basin scale. The Zhoshui River basin in Central Taiwan was selected for the impact assessment. Five downscaled general circulation models based on the A1B scenario for 2046 - 2065 were adopted to assess the climate change impact, including (1) the irrigation water requirement downstream of the basin, (2) the river ...

  5. Manifesto for a Dangerous Sociology

    Directory of Open Access Journals (Sweden)

    Cisneros, César

    2008-05-01

    Full Text Available Based on my experience as a Mexican sociologist, I argue for the practice of a "Dangerous Sociology". I examine the process of sociological observation to show the need for such a practice. Some dimensions of this "Dangerous Sociology" are defined.

  6. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, Sarah C.; Henry, Gregory H.R.; Hollister, Robert D.

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this ap...

  7. Tools for assessing climate impacts on fish and wildlife

    Science.gov (United States)

    Chad B. Wilsey; Joshua J. Lawler; Edwin P. Maurer; Donald McKenzie; Patricia A. Townsend; Richard Gwozdz; James A. Freund; Keala Hagmann; Karen M. Hutten

    2013-01-01

    Climate change is already affecting many fish and wildlife populations. Managing these populations requires an understanding of the nature, magnitude, and distribution of current and future climate impacts. Scientists and managers have at their disposal a wide array of models for projecting climate impacts that can be used to build such an understanding. Here, we...

  8. Assessing climate change impacts and adaptation strategies for ...

    African Journals Online (AJOL)

    There is a considerable knowledge gap with respect to climate change impact, vulnerability and adaptation to increased climate variability and change. In this paper, using the trade off analysis model, the impact of climate change on peoples' livelihoods and possible adaptation strategies to increase the resilience and ...

  9. An assessment of impacts of climate change on available water ...

    African Journals Online (AJOL)

    Water is the first sector to be affected by changes in climate. The prediction is that with climate change, the climate will be more variable with more intense storms which will increase the risks of flooding and droughts. Attaining and sustaining water security will therefore be more challenging than it has been up to now.

  10. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    Science.gov (United States)

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  11. Assessment of urgent impacts of greenhouse gas emissions—the climate tipping potential (CTP)

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2014-01-01

    The impact of anthropogenic greenhouse gas (GHG) emissions on climate change receives much focus today. This impact is however often considered only in terms of global warming potential (GWP), which does not take into account the need for staying below climatic target levels, in order to avoid...... the climate tipping potential (CTP) of GHG emissions relative to a climatic target level. The climate tipping impact category should be seen as complementary to the global warming impact category.The CTP of a GHG emission is expressed as the emission’s impact divided by the ‘capacity’ of the atmosphere...... of the climate tipping impact category for assessing climate change impacts in LCA, complimentary to the global warming impact category which shall still represent the long-term climate change impacts, is considered to improve the value of LCA as a tool for decision support for climate change mitigation....

  12. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff

    Science.gov (United States)

    Muerth, M. J.; Gauvin St-Denis, B.; Ricard, S.; Velázquez, J. A.; Schmid, J.; Minville, M.; Caya, D.; Chaumont, D.; Ludwig, R.; Turcotte, R.

    2012-09-01

    In climate change impact research, the assessment of future river runoff as well as the catchment scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate projections originating from the climate models and the downscaling techniques as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of incertitude. Within the QBic3 project (Québec-Bavaria International Collaboration on Climate Change) the relative contributions to the overall uncertainty from the whole model chain (from global climate models to water management models) are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use Regional Climate Models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to reproduce historic runoff conditions from hydrological models using them, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For those reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in hydrology, we should consider it as a source of uncertainty. If not, the

  13. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    Science.gov (United States)

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.

  14. A dangerous mixture

    Directory of Open Access Journals (Sweden)

    Anna Piva

    2014-03-01

    Full Text Available A 59-year old woman was admitted for fatigue and arm paresthesias with Trousseau sign. Her medical history included thyroidectomy and hypercholesterolemia recently treated with simvastatin. Laboratory tests showed severe hypokalemia and hypocalcemia, severe increase in muscle enzymes, metabolic alkalosis; low plasma renin activity, increased thyroid-stimulating hormone, normal free thyroxine, increased parathyroid hormone, decreased vitamin D3; alterations in electrolyte urinary excretion, cortisol and aldosterone were excluded. Hypothesizing a statin-related myopathy, simvastatin was suspended; the patient reported use of laxatives containing licorice. Electrolytes normalized with intravenous supplementation. Among many biochemical alterations, none stands out as a major cause for muscular and electrolyte disorders. All co-factors are inter-connected, starting with statin-induced myopathy, worsened by hypothyroidism, secondary hyperaldosteronism and vitamin D deficiency, leading to hypocalcemia and hypokalemia, perpetrating muscular and electrolyte disorders. The importance of considering clinical conditions as a whole emerges with multiple co-factors involved. Another issue concerns herbal products and their potential dangerous effects.

  15. Climate Change Impact Assessment on Han River Long Term Runoff in South Korea Based on RCP Climate Change Scenario

    Directory of Open Access Journals (Sweden)

    Seung Jin Hong

    2014-01-01

    Full Text Available The 2007 World Economic Forum (WEF referred to climate change as the overriding problem we face. Concerns have been raised about how global warming would accelerate future climate change and its consequences. Many climate change studies expect the possible occurrence of extreme high temperature, increase in heavy rains and strong typhoons in the near future. Currently, climate change scenarios are used to prepare an appropriate plan for these phenomena under climate change. The main purpose of this paper is to suggest and evaluate an operational method of assessing the potential impact of climate change on hydrologic components and water resources at the regional scale. Future runoff was simulated using high resolution Regional Circulation Model (RCM (12.5 × 12.5 km Representative Concentration Pathway (RCP scenario operated by the Korea Meteorological Administration (KMA and a semi-distribution model or SLURP (Semi-distributed Land Use-based Runoff Process. The study was carried out on the Han River including its nine dams. The study found that runoff characteristics, especially annual distribution, could change. The discharge in July tends to decrease while runoff can increase in August and September. The flow duration curve was estimated and compared with observed data and simulated daily runoff data for Paldang-dam to evaluate the effect of climate change. The analysis of the flow duration curve shows that the mean average low flow increased while the average wet and normal flow decreased under the climate change scenario.

  16. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change

    NARCIS (Netherlands)

    Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M.

    2013-01-01

    To better prioritise adaptation strategies to a changing climate that are currently being developed, there is a need for quantitative regional level assessments that are systematic and comparable across multiple weather hazards. This study presents an indicator-based impact assessment framework at

  17. The danger of dangerousness: why we must remove the dangerousness criterion from our mental health acts.

    Science.gov (United States)

    Large, M M; Ryan, C J; Nielssen, O B; Hayes, R A

    2008-12-01

    The mental health legislation of most developed countries includes either a dangerousness criterion or an obligatory dangerousness criterion (ODC). A dangerousness criterion holds that mentally ill people may be given treatment without consent if they are deemed to be a risk to themselves or others. An ODC holds that mentally ill people may be given treatment without consent only if they are deemed to be a risk to themselves or others. This paper argues that the dangerousness criterion is unnecessary, unethical and, in the case of the ODC, potentially harmful to mentally ill people and to the rest of the community. We examine the history of the dangerousness criterion, and provide reasoned argument and empirical evidence in support of our position. Dangerousness criteria are not required to balance the perceived loss of autonomy arising from mental health legislation. Dangerousness criteria unfairly discriminate against the mentally ill, as they represent an unreasonable barrier to treatment without consent, and they spread the burden of risk that any mentally ill person might become violent across large numbers of mentally ill people who will never become violent. Mental health legislation that includes an ODC is associated with a longer duration of untreated psychosis, and probably contributes to a poorer prognosis and an increase risk of suicide and violence in patients in their first episode of psychosis. Dangerousness criteria should be removed from mental health legislation and be replaced by criteria that focus on a patient's capacity to refuse treatment.

  18. ASSESSMENT OF SOCIAL AND PSYCHOLOGICAL CONSEQUENCES OF RADIATION DANGER EXPERIENCE AMONG DIFFERENT AGE GROUPS OF THE POPULATION FROM CONTAMINATED AREAS OF RUSSIA

    Directory of Open Access Journals (Sweden)

    T. A. Marchenko

    2012-01-01

    Full Text Available The results of evaluation of social-psychological consequences of radiation danger experience among different age groups of the population from contaminated areas of Russia (Oryol, Kaluga, Bryansk, Tula areas among whom the unfavorable emotional and personal changes were registered due to subjective features of perception of radiation threat have been represented (“risk” group. Experimental sample of the research consisted of 1 544 people from Russia. One of the main results of this research is establishment of the fact that adverse emotional and personal changes in connection with subjective features of perception of radiation threat were revealed for 53,9% of respondents of advanced age and more than 20% of respondents of middle and young age from contaminated areas of Russia. Among the respondents from contaminated areas of Belarus, about a third surveyed from each age group get to “risk” group.

  19. Climate considerations in long-term safety assessments for nuclear waste repositories.

    Science.gov (United States)

    Näslund, Jens-Ove; Brandefelt, Jenny; Liljedahl, Lillemor Claesson

    2013-05-01

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  20. Climate Considerations in Long-Term Safety Assessments for Nuclear Waste Repositories

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Jens-Ove; Brandefelt, Jenny; Claesson Liljedahl, Lillemor [Svensk Kaernbraenslehantering AB, Stockholm (Sweden)], E-mail: jens-ove.naslund@skb.se

    2013-05-15

    For a deep geological repository for spent nuclear fuel planned in Sweden, the safety assessment covers up to 1 million years. Climate scenarios range from high-end global warming for the coming 100 000 years, through deep permafrost, to large ice sheets during glacial conditions. In contrast, in an existing repository for short-lived waste the activity decays to low levels within a few tens of thousands of years. The shorter assessment period, 100 000 years, requires more focus on climate development over the coming tens of thousands of years, including the earliest possibility for permafrost growth and freezing of the engineered system. The handling of climate and climate change in safety assessments must be tailor-made for each repository concept and waste type. However, due to the uncertain future climate development on these vast time scales, all safety assessments for nuclear waste repositories require a range of possible climate scenarios.

  1. The United States National Climate Assessment - Alaska Technical Regional Report

    Science.gov (United States)

    Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart; Markon, Carl J.; Trainor, Sarah F.; Chapin, F. Stuart

    2012-01-01

    The Alaskan landscape is changing, both in terms of effects of human activities as a consequence of increased population, social and economic development and their effects on the local and broad landscape; and those effects that accompany naturally occurring hazards such as volcanic eruptions, earthquakes, and tsunamis. Some of the most prevalent changes, however, are those resulting from a changing climate, with both near term and potential upcoming effects expected to continue into the future. Alaska's average annual statewide temperatures have increased by nearly 4°F from 1949 to 2005, with significant spatial variability due to the large latitudinal and longitudinal expanse of the State. Increases in mean annual temperature have been greatest in the interior region, and smallest in the State's southwest coastal regions. In general, however, trends point toward increases in both minimum temperatures, and in fewer extreme cold days. Trends in precipitation are somewhat similar to those in temperature, but with more variability. On the whole, Alaska saw a 10-percent increase in precipitation from 1949 to 2005, with the greatest increases recorded in winter. The National Climate Assessment has designated two well-established scenarios developed by the Intergovernmental Panel on Climate Change (Nakicenovic and others, 2001) as a minimum set that technical and author teams considered as context in preparing portions of this assessment. These two scenarios are referred to as the Special Report on Emissions Scenarios A2 and B1 scenarios, which assume either a continuation of recent trends in fossil fuel use (A2) or a vigorous global effort to reduce fossil fuel use (B1). Temperature increases from 4 to 22°F are predicted (to 2070-2099) depending on which emissions scenario (A2 or B1) is used with the least warming in southeast Alaska and the greatest in the northwest. Concomitant with temperature changes, by the end of the 21st century the growing season is expected

  2. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    Science.gov (United States)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  3. Differential climate impacts for policy-relevant limits to global warming

    NARCIS (Netherlands)

    Schleussner, Carl Friedrich; Lissner, Tabea K.; Fischer, Erich M.; Wohland, Jan; Perrette, Mahé; Golly, Antonius; Rogelj, Joeri; Childers, Katelin; Schewe, Jacob; Frieler, Katja; Mengel, Matthias; Hare, William; Schaeffer, Michiel

    2016-01-01

    Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average

  4. A procedure for assessing climate change impacts on hydropower

    Energy Technology Data Exchange (ETDEWEB)

    Hamududu, B.; Jjunju, E.; Killingtveit, Aa.; Alfredsen, K.

    2010-07-01

    Full text: Ever since climate change was highlighted as an important issue in water related projects, various procedures have been used by different researchers to gain indications of likely impact of climate change on hydropower. Though all methods give results, comparisons of these results is not ideal and may be difficult due to large differences in methods used. This paper is an attempt to propose an ideal procedure or process of estimating the impact of climate change on hydropower production in a basin. The paper describes where to begin, what future climate change projections are necessary, and where to get such data. It also shows highlights various techniques that are available and could be applied to climate projections in order to down scale the large scale projections from global climate models to site or basin climate. Another technique that has been applied is the delta approach or perturbation methods that transfer changes in meteorological variables between the control and the scenario simulations from the regional climate model to a database of observed meteorological data. Further it highlights various ways of transforming basin climate variables that can be used in hydrological modeling to produce runoff series. The paper also discusses applicability of hydrological modeling strategies for climate predictions in relation to stationarity in models and how this will influence climate predictions. The runoff is the input into hydropower systems and hydropower simulations to get the desired hydropower production in the future. In all these steps, different approaches for processing are highlighted. The paper ends with a section on different sources of uncertainties in climate projections. Finally some concluding remarks are given on the reliability of the results from various methodologies. A case study on Zambezi River basin is given towards the end illustrating the differences resulting from different methodologies. (Author)

  5. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    Science.gov (United States)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  6. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Mikkelsen, Peter Steen; Halsnæs, Kirsten

    2012-01-01

    Climate change is likely to affect the water cycle by influencing the precipitation patterns. It is important to integrate the anticipated changes into the design of urban drainage in response to the increased risk level in cities. This paper presents a pluvial flood risk assessment framework...... to identify and assess adaptation options in the urban context. An integrated approach is adopted by incorporating climate change impact assessment, flood inundation modeling, economic tool, and risk assessment, hereby developing a step-by-step process for cost-benefit assessment of climate change adaptation...

  7. 75 FR 54403 - U.S. National Climate Assessment Objectives, Proposed Topics, and Next Steps

    Science.gov (United States)

    2010-09-07

    ... Climate Assessment (NCA), a project of the U.S. Global Change Research Program, by engaging people who are.... Analyzes the effects of global change on the natural environment, agriculture, energy production and use... change. The approach that is envisioned for this NCA is a comprehensive assessment of climate change...

  8. The Complexity of the Assessment of Creative Climate and Group Creativity

    DEFF Research Database (Denmark)

    Luo, Lingling; Deng, Xuemei; Zhou, Chunfang

    2015-01-01

    This paper provides a literature review that firstly demonstrates a growing interests in studies on creative climate and group creativity that is followed by a discussion on the important methodological significances of assessment of climate and the complexity of assessing group creativity. From...

  9. Assessing a Norwegian translation of the Organizational Climate Measure.

    Science.gov (United States)

    Bernstrøm, Vilde Hoff; Lone, Jon Anders; Bjørkli, Cato A; Ulleberg, Pål; Hoff, Thomas

    2013-04-01

    This study investigated the Norwegian translation of the Organizational Climate Measure developed by Patterson and colleagues. The Organizational Climate Measure is a global measure of organizational climate based on Quinn and Rohrbaugh's competing values model. The survey was administered to a Norwegian branch of an international service sector company (N = 555). The results revealed satisfactory internal reliability and interrater agreement for the 17 scales, and confirmatory factor analysis supported the original factor structure. The findings gave preliminary support for the Organizational Climate Measure as a reliable measure with a stable factor structure, and indicated that it is potentially useful in the Norwegian context.

  10. BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & ...

  11. Assessing the Problem Formulation in an Integrated Assessment Model: Implications for Climate Policy Decision-Support

    Science.gov (United States)

    Garner, G. G.; Reed, P. M.; Keller, K.

    2014-12-01

    Integrated assessment models (IAMs) are often used with the intent to aid in climate change decisionmaking. Numerous studies have analyzed the effects of parametric and/or structural uncertainties in IAMs, but uncertainties regarding the problem formulation are often overlooked. Here we use the Dynamic Integrated model of Climate and the Economy (DICE) to analyze the effects of uncertainty surrounding the problem formulation. The standard DICE model adopts a single objective to maximize a weighted sum of utilities of per-capita consumption. Decisionmakers, however, may be concerned with a broader range of values and preferences that are not captured by this a priori definition of utility. We reformulate the problem by introducing three additional objectives that represent values such as (i) reliably limiting global average warming to two degrees Celsius and minimizing both (ii) the costs of abatement and (iii) the damages due to climate change. We derive a set of Pareto-optimal solutions over which decisionmakers can trade-off and assess performance criteria a posteriori. We illustrate the potential for myopia in the traditional problem formulation and discuss the capability of this multiobjective formulation to provide decision support.

  12. Assessing climate change impacts on wheat production (a case study

    Directory of Open Access Journals (Sweden)

    J. Valizadeh

    2014-06-01

    Full Text Available Climate change is one of the major challenges facing humanity in the future and effect of climate change has been detrimental to agricultural industry. The aim of this study was to simulate the effects of climate change on the maturity period, leaf area index (LAI, biomass and grain yield of wheat under future climate change for the Sistan and Baluchestan region in Iran. For this purpose, two general circulation models HadCM3 and IPCM4 under three scenarios A1B, B1 and A2 in three time periods 2020, 2050 and 2080 were used. LARS-WG model was used for simulating climatic parameters for each period and CERES-Wheat model was used to simulate wheat growth. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters and simulation of stochastic growing season in future climate change conditions for the studied region. Wheat growing season period in all scenarios of climate change was reduced compared to the current situation. Possible reasons were the increase in temperature rate and the accelerated growth stages of wheat. This reduction in B1 scenario was less than A1B and A2 scenarios. Maximum wheat LAI in all scenarios, except scenario A1B in 2050, is decreased compared to the current situation. Yield and biological yield of wheat in both general circulation models under all scenarios and all times were reduced in comparison with current conditions and the lowest reduction was related to B1 scenario. In general, the results showed that wheat production in the future will be affected by climate change and will decrease in the studied region. To reduce these risks, the impact of climate change mitigation strategies and management systems for crop adaptation to climate change conditions should be considered.

  13. Intrinsic ethics regarding integrated assessment models for climate management.

    Science.gov (United States)

    Schienke, Erich W; Baum, Seth D; Tuana, Nancy; Davis, Kenneth J; Keller, Klaus

    2011-09-01

    In this essay we develop and argue for the adoption of a more comprehensive model of research ethics than is included within current conceptions of responsible conduct of research (RCR). We argue that our model, which we label the ethical dimensions of scientific research (EDSR), is a more comprehensive approach to encouraging ethically responsible scientific research compared to the currently typically adopted approach in RCR training. This essay focuses on developing a pedagogical approach that enables scientists to better understand and appreciate one important component of this model, what we call intrinsic ethics. Intrinsic ethical issues arise when values and ethical assumptions are embedded within scientific findings and analytical methods. Through a close examination of a case study and its application in teaching, namely, evaluation of climate change integrated assessment models, this paper develops a method and case for including intrinsic ethics within research ethics training to provide scientists with a comprehensive understanding and appreciation of the critical role of values and ethical choices in the production of research outcomes.

  14. Computer Calculation of Fire Danger

    Science.gov (United States)

    William A. Main

    1969-01-01

    This paper describes a computer program that calculates National Fire Danger Rating Indexes. fuel moisture, buildup index, and drying factor are also available. The program is written in FORTRAN and is usable on even the smallest compiler.

  15. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Research on Climate Change Impacts and Associated Economic Damages (part 2)

    Science.gov (United States)

    This is a workshop titled Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Research on Climate Change Impacts and Associated Economic Damages (part 2)

  16. Impacts of Europe's changing climate- 2008 indicator-based assessment

    NARCIS (Netherlands)

    Swart, R.J.

    2008-01-01

    The report presents past and projected climate change and impacts in Europe by means of about 40 indicators and identifies sectors and regions most vulnerable with a high need for adaptation. The report covers the following indicator categories: atmosphere and climate, cryosphere, marine

  17. An Assessment of a College of Business Administration's Ethical Climate

    Science.gov (United States)

    Schulte, Laura; Carter, Amanda

    2004-01-01

    This study investigated graduate faculty and student perceptions of the ethical climate of a College of Business Administration within a Midwestern metropolitan university and the perceived importance of the ethical climate in the retention of students within graduate academic programs. Eighteen faculty and 90 graduate students completed the…

  18. A Climate Change Risk and Resilience Assessment Process

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Lisa [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This presentation summarizes a site-specific climate resilience planning process applied at two different U.S. Department of Energy sites, in Colorado and along the Gulf Coast that federal site managers can use to identify and analyze potential climate-related risks and explore resilience options to minimize those risks.

  19. Human-induced climate change: an interdisciplinary assessment

    National Research Council Canada - National Science Library

    Schlesinger, M; Kheshgi, H; Smith, J; de la Chesnaye, F.C; Reilly, J. M; Wilson, T; Kolstad, C

    2007-01-01

    ... of climate sensitivity and change. The next part of the book surveys estimates of the impacts of climate change for different sectors and regions, describes recent studies for individual sectors, and examines how this research might be used in the policy process. The third part examines current topics related to mitigation of greenhouse gase...

  20. Assessment of Vulnerability of Farming Households to Climate ...

    African Journals Online (AJOL)

    The results also indicated that climate change resulted in low productivity, low income, as well as poor standard of living of the respondents. The most widely adopted coping strategy by the respondents was to switch to other sources of income whenever there was unpredictable variation in climate condition. This study ...

  1. Assessing Crop Vulnerability to Climate Change: A Southwest Perspective

    Science.gov (United States)

    The USDA Southwest Regional Climate Hub is one of ten Climate Hubs and Sub-hubs established in 2014. The Hub region includes Arizona, California (partnering with the California Sub-Hub), Nevada, New Mexico and Utah.  Beyond the mainland States, the SW hub also serves Hawaii and the US affiliated Pac...

  2. Assessment of Climate Change Adaptive Strategies in Small ...

    African Journals Online (AJOL)

    Animals are intrinsically dependent on the environment, and any fluctuations in weather and climate can affect them through water and land changes, such as desertification, feed and water availability. Climate change will not only impact the health and welfare of animals, but also the more than a billion people who depend ...

  3. geographic information systems for assessment of climate change

    African Journals Online (AJOL)

    ACSS

    Nature Climate Change 1:1- 4. Müller, C. 2013. African lessons on climate change risks for agriculture. Annual Reviews of. Nutrition 33: 395-411. Nix, H.A. 1986. A biogeographic analysis of. Australian elapid snakes. pp. 4-15. In: Atlas of Elapid Snakes of Australia. Longmore, R. (Ed.). Australian Flora and Fauna Series.

  4. Development of a Web-Based Tool for Climate Change Risk Assessment in the Business Sector

    Directory of Open Access Journals (Sweden)

    Donghyun Kim

    2016-10-01

    Full Text Available The Intergovernmental Panel on Climate Change 2013 report claims that climate change from human-induced greenhouse gas emissions will cause increasing temperatures in many regions and various detrimental effects such as rising sea levels, ecosystem changes, droughts, and floods. This study proposes a method for assessing the climate risks resulting from climate change as well as a tool that companies can use to assess those risks. The method for assessing climate risk is proposed in accordance with the ISO 31000 risk management process. We then design a web-based tool to implement the climate change risk assessment process. The data the tool generates enable companies to identify and analyze their climate risks to reduce potentially negative future financial impacts. The data on potential damage costs indicate that climate change is no longer an environmental issue but rather an economic one for companies, and the results presented through the proposed assessment method can be used to establish countermeasures and sustainable planning at companies. The results of this research are significant in that they provide companies with the critical information needed to improve their planning and response to climate risk.

  5. A modern pollen-climate dataset from the Darjeeling area, eastern Himalaya: Assessing its potential for past climate reconstruction

    Science.gov (United States)

    Ghosh, Ruby; Bruch, Angela A.; Portmann, Felix; Bera, Subir; Paruya, Dipak Kumar; Morthekai, P.; Ali, Sheikh Nawaz

    2017-10-01

    Relying on the ability of pollen assemblages to differentiate among elevationally stratified vegetation zones, we assess the potential of a modern pollen-climate dataset from the Darjeeling area, eastern Himalaya, in past climate reconstructions. The dataset includes 73 surface samples from 25 sites collected from a c. 130-3600 m a.s.l. elevation gradient along a horizontal distance of c. 150 km and 124 terrestrial pollen taxa, which are analysed with respect to various climatic and environmental variables such as mean annual temperature (MAT), mean annual precipitation (MAP), mean temperature of coldest quarter (MTCQ), mean temperature of warmest quarter (MTWQ), mean precipitation of driest quarter (MPDQ), mean precipitation of wettest quarter (MPWQ), AET (actual evapotranspiration) and MI (moisture index). To check the reliability of the modern pollen-climate relationships different ordination methods are employed and subsequently tested with Huisman-Olff-Fresco (HOF) models. A series of pollen-climate parameter transfer functions using weighted-averaging regression and calibration partial least squares (WA-PLS) models are developed to reconstruct past climate changes from modern pollen data, and have been cross-validated. Results indicate that three of the environmental variables i.e., MTCQ, MPDQ and MI have strong potential for past climate reconstruction based on the available surface pollen dataset. The potential of the present modern pollen-climate relationship for regional quantitative paleoclimate reconstruction is further tested on a Late Quaternary fossil pollen profile from the Darjeeling foothill region with previously reconstructed and quantified climate. The good agreement with existing data allows for new insights in the hydroclimatic conditions during the Last glacial maxima (LGM) with (winter) temperature being the dominant controlling factor for glacial changes during the LGM in the eastern Himalaya.

  6. Assessment of climate vulnerability in the Norwegian built environment

    Science.gov (United States)

    Hygen, H. O.; Øyen, C. F.; Almås, A. J.

    2011-05-01

    The main trends expected for the change of Norwegian climate for this century are increasing temperatures, precipitation and wind. This indicates a probable increase of climate-related risks to the Norwegian built environment. Through co-operation between the Norwegian Meteorological Institute and SINTEF Building and Infrastructure, building and climate information have been combined to estimate changes in strain to the built environment due to climate change. The results show that the risk of wood decay will increase for the whole country. Almost two million buildings will be subject to an increase in risk of wood decay from medium to high level. Similar analyses have been performed for other climate indices, demonstrating a clear increase in potential damages due to water and humidity, while frost damage probably will decrease.

  7. Assessing climate change awareness influence on Egyptian children

    Directory of Open Access Journals (Sweden)

    Sherine El Sakka

    2017-07-01

    Full Text Available Climate change (CCH is one of the important issues raised globally lately. heat, humidity pollution could harm children, cause diseases and death,85 % of the world’s youth live in the de-veloping countries, and Egypt as one of the developing countries its children face a great risk spe-cially with the presence of weak climate change awareness impact. Our research will investigate Egypt climate change awareness (CCA problem and how it affects Egyptian children, we will try to explore children problems (CHP, due to limited climate change awareness and conclude by emphasizing the importance of having appropriate solution; in term of avoiding negative climate change impact (CCHI on children in the future.

  8. Managing hardwood-softwood mixtures for future forests in eastern North America: assessing suitability to projected climate change

    Science.gov (United States)

    John M. Kabrick; Kenneth L. Clark; Anthony W. D' Amato; Daniel C. Dey; Laura S. Kenefic; Christel C. Kern; Benjamin O. Knapp; David A. MacLean; Patricia Raymond; Justin D. Waskiewicz

    2017-01-01

    Despite growing interest in management strategies for climate change adaptation, there are few methods for assessing the ability of stands to endure or adapt to projected future climates. We developed a means for assigning climate "Compatibility" and "Adaptability" scores to stands for assessing the suitability of tree species for projected climate...

  9. Violent fantasy, dangerousness, and the duty to warn and protect.

    Science.gov (United States)

    Gellerman, David M; Suddath, Robert

    2005-01-01

    An evaluation of homicidal ideation is a routine component of a mental status examination and may be evaluated in more depth in forensic evaluations as a dangerousness risk assessment. The evaluation of dangerousness often includes asking about violent fantasies that may have physical or sexual content. The authors examine the circumstances in which the revelation of violent fantasies to a mental health professional may trigger a duty to warn or protect third parties. Legal cases in which violent fantasies were considered in the context of assessing potential dangerousness are reviewed. The research literature on homicidal and sexually violent fantasies in both non-incarcerated and offender populations is examined. No consistent predictive relationship between violent fantasies and criminally dangerous behavior is reported in the available scientific literature. The authors suggest factors that mental health professionals may consider when assessing whether a particular violent fantasy indicates that a patient's thoughts could give rise to a duty.

  10. 76 FR 41217 - Technical Inputs and Assessment Capacity on Topics Related to 2013 U.S. National Climate Assessment

    Science.gov (United States)

    2011-07-13

    ... change and the natural environment, agriculture, energy production and use, ] land and water resources... as they relate to the value of climate and global change information for decision making. Managing... assessment experience, and current role in the climate/global change arena. Sponsoring organization(s), if...

  11. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  12. Computational data sciences for assessment and prediction of climate extremes

    Science.gov (United States)

    Ganguly, A. R.

    2011-12-01

    Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.

  13. Climate change impact assessments on the water resources of India under extensive human interventions.

    Science.gov (United States)

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  14. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    Science.gov (United States)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  15. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  16. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  17. Assessment of composite index methods for agricultural vulnerability to climate change.

    Science.gov (United States)

    Wiréhn, Lotten; Danielsson, Åsa; Neset, Tina-Simone S

    2015-06-01

    A common way of quantifying and communicating climate vulnerability is to calculate composite indices from indicators, visualizing these as maps. Inherent methodological uncertainties in vulnerability assessments, however, require greater attention. This study examines Swedish agricultural vulnerability to climate change, the aim being to review various indicator approaches for assessing agricultural vulnerability to climate change and to evaluate differences in climate vulnerability depending on the weighting and summarizing methods. The reviewed methods are evaluated by being tested at the municipal level. Three weighting and summarizing methods, representative of climate vulnerability indices in general, are analysed. The results indicate that 34 of 36 method combinations differ significantly from each other. We argue that representing agricultural vulnerability in a single composite index might be insufficient to guide climate adaptation. We emphasize the need for further research into how to measure and visualize agricultural vulnerability and into how to communicate uncertainties in both data and methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Assessment of the health impacts of climate change in Kiribati

    National Research Council Canada - National Science Library

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-01-01

    Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health...

  19. Assessing the impact on global climate from general anesthetic gases

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John; Wallington, Timothy J.

    2012-01-01

    Although present in the atmosphere with a combined concentration approximately 100,000 times lower than carbon dioxide (i.e., the principal anthropogenic driver of climate change), halogenated organic compounds are responsible for a warming effect of approximately 10% to 15% of the total anthropo......Although present in the atmosphere with a combined concentration approximately 100,000 times lower than carbon dioxide (i.e., the principal anthropogenic driver of climate change), halogenated organic compounds are responsible for a warming effect of approximately 10% to 15% of the total...... anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge...... regarding the impact of anesthetic gas release on the environment, with particular focus on its contribution to the radiative forcing of climate change....

  20. Assessment of coastal governance for climate change adaptation in Kenya

    CSIR Research Space (South Africa)

    Ojwang, L

    2017-11-01

    Full Text Available The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges...

  1. Prediction technologies for assessment of climate change impacts

    Science.gov (United States)

    Temperatures, precipitation, and weather patterns are changing, in response to increasing carbon dioxide in the atmosphere. With these relatively rapid changes, existing soil erosion prediction technologies that rely upon climate stationarity are potentially becoming less reliable. This is especiall...

  2. Assessing the Organizational Climate in the Belgian Armed Forces

    National Research Council Canada - National Science Library

    Mylle, Jacques

    1998-01-01

    ... are. Organizational climate is defined as the synthetic, collective perception of a set of relatively stable internal aspects of the organization as experienced and described by the members of that organization.

  3. Global change researchers assess projections of climate change

    Science.gov (United States)

    Barron, Eric J.

    In October 1994 climate researchers met at the Forum on Global Change Modeling to create a consensus document summarizing the debate on issues related to the use of climate models to influence policy. The charge to the Forum was to develop a brief statement on the credibility of projections of climate change provided by General Circulation Models. The Forum focused specifically on the climate aspects of the entire global change issue, not on emission scenarios, the consequences of change to ecosystems and natural resource systems, or the socio-economic implications and potential for responses.The Forum report put thoughts on this often divisive issue into perspective for use by the Government Accounting Office in developing and considering national policy options. The forum was organized in response to requests from the White House Office of Science and Technology by the Subcommitteeon Global Change Research, abranch of the new Committee on Earth and Natural Resources set up by the Clinton administration.

  4. Spatial Assessment of Temperature and Land Cover Change as Climate Change Monitoring Strategies in Owerri, Nigeria

    OpenAIRE

    K. O. E. Ukaegbu; M. C. Iwuji; C. C. Uche; I. E. Osumgborogwu; G. T. Amangabara

    2017-01-01

    Climate change is one of the alarming global environmental changes likely to have deleterious effects on natural, social, cultural and human systems. The risks associated with it call for a broad spectrum of policy responses and strategies at local, regional, national and global levels. This study seeks to explore the nexus between geospatial techniques in assessing climate change and sustainable development, discussing evidenced effects of climate change with considerations into sustainable ...

  5. Climate change and plant health; Development of a conceptual frame-work for impact assessment

    OpenAIRE

    Breukers, M.L.H.

    2010-01-01

    This report presents a conceptual framework for systematic assessment of direct economic impacts of climate change on pest and disease management at the crop level. The framework evaluates and aggregates the effects, and subsequently impacts, of climate change on selected pests and diseases and their control in a particular crop. Application of the framework reveals opportunities and threats in crop protection resulting from climate change, and can direct future adaptation efforts.

  6. Assess Climate Change's Impact on Coastal Rivers using a Coupled Climate-Hydrology Model

    Science.gov (United States)

    Xue, Z. G.; Gochis, D.; Yu, W.; Zang, Z.; Sampson, K. M.; Keim, B. D.

    2016-12-01

    In this study we present a coupled climate-hydrological model reproducing the water cycle of three coastal river basins along the northern Gulf of Mexico for the past three decades (1985-2014). Model simulated climate condition, surface physics, and streamflow were well validated against in situ data and satellite-derived products, giving us the confidence that the newly developed WRF-Hydro model can be a robust tool for evaluating climate change's impact on hydrological regime. Trend analysis of model simulated monthly and annual time series indicates that local climate is getting hotter and dryer, specifically during the growing season. Wavelet analysis reveals that local evapotranspiration is strongly correlated with temperature, while soil moisture, water surplus, and streamflow are coupled with precipitation. In addition, local climate is closely correlated with large-scale climate dynamics such as AMO and ENSO. A possible change-point is detected around year 2004, after which, the monthly precipitation decreased by 14.2%, evapotranspiration increased by 2.9%, and water surplus decreased by 36.5%. The implication of the difference between the water surplus (runoff) calculated using the classic Thornthwaite method and river discharge estimated using streamflow records to the coastal environment is also discussed.

  7. Assessing the sensitivity of avian species abundance to land cover and climate

    Science.gov (United States)

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  8. Climate research in the former Soviet Union. FASAC: Foreign Applied Sciences Assessment Center technical assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, R.G.; Baer, F.; Ellsaesser, H.W.; Harshvardhan; Hoffert, M.I.; Randall, D.A.

    1993-09-01

    This report assesses the state of the art in several areas of climate research in the former Soviet Union. This assessment was performed by a group of six internationally recognized US experts in related fields. The areas chosen for review are: large-scale circulation processes in the atmosphere and oceans; atmospheric radiative processes; cloud formation processes; climate effects of natural atmospheric disturbances; and the carbon cycle, paleoclimates, and general circulation model validation. The study found an active research community in each of the above areas. Overall, the quality of climate research in the former Soviet Union is mixed, although the best Soviet work is as good as the best corresponding work in the West. The best Soviet efforts have principally been in theoretical studies or data analysis. However, an apparent lack of access to modern computing facilities has severely hampered the Soviet research. Most of the issues considered in the Soviet literature are known, and have been discussed in the Western literature, although some extraordinary research in paleoclimatology was noted. Little unusual and exceptionally creative material was found in the other areas during the study period (1985 through 1992). Scientists in the former Soviet Union have closely followed the Western literature and technology. Given their strengths in theoretical and analytical methods, as well as their possession of simplified versions of detailed computer models being used in the West, researchers in the former Soviet Union have the potential to make significant contributions if supercomputers, workstations, and software become available. However, given the current state of the economy in the former Soviet Union, it is not clear that the computer gap will be bridged in the foreseeable future.

  9. A climate change vulnerability assessment of California's at-risk birds.

    Science.gov (United States)

    Gardali, Thomas; Seavy, Nathaniel E; DiGaudio, Ryan T; Comrack, Lyann A

    2012-01-01

    Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife.

  10. Separating sensitivity from exposure in assessing extinction risk from climate change.

    Science.gov (United States)

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  11. Utilizing the Koeppen climate classification to assess the future climate change

    Science.gov (United States)

    Hori, M. E.; Yasunari, T.

    2007-12-01

    It is suggested that global warming due to anthropogenic greenhouse gasses will cause a large change in the mean temperature and precipitation patterns of the future. One way to quantify the impact of this change is to use the climate classification method. Classifying the climate into regions with distinct properties instead of using only physical properties such as temperature and precipitation helps to give an objective view of how climate change affects the environment such as the land-surface types and vegetation. TheKoeppen climate classification has a long history of application and modification and is known to give a robust classification of the mean climate that closely follows the distribution of vegetation types. In this study, we apply theKoeppen climate classification on the result of 19 Atmosphere-Ocean GCM results provided by the PCMDI for the upcoming IPCC - AR4. By applying this method to the long-term future projection of climate models, instability of a particular climate region and its expected change in the longer timescales are quantified. The classification is performed on the 20th century simulation (20C3M) and the SRES-A1B / A2 scenario based on the long-term monthly climatology. The overall changes in classifications as well as inter-model distribution is calculated for all each model and the skill weighted ensemble mean. Results show that due to warmer climate and increase in moisture, large area of western Russian region and north America experience a shift from aDf (snow / fully moist) climate to Cf (Warm temperate / fully moist) classification which is in good agreement with the stronger NAO/AO phase in the north Atlantic. On the other hand, coastal Greenland region changes from a Ef (Polar frost) classification to Ef (Polar tundra) classification, which is in good agreement with the SST and sea-ice distribution. In contrast, northern China undergoes a change from Cf classification to Cw (Warm temperate / winter dry) classification

  12. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff

    Directory of Open Access Journals (Sweden)

    M. J. Muerth

    2013-03-01

    Full Text Available In climate change impact research, the assessment of future river runoff as well as the catchment-scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate projections originating from the climate models and the downscaling techniques, as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of uncertainty. Within the QBic3 project (Québec–Bavarian International Collaboration on Climate Change, the relative contributions to the overall uncertainty from the whole model chain (from global climate models to water management models are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use regional climate models (RCMs. One reason for that is that the physical coherence between atmospheric and land-surface variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to facilitate the reproduction of historic runoff conditions when used in hydrological models, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased climate model data itself is sometimes disputed among scientists. For these reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in hydrology, we should consider it as a source

  13. Climate change and plant health; Development of a conceptual frame-work for impact assessment

    NARCIS (Netherlands)

    Breukers, M.L.H.

    2010-01-01

    This report presents a conceptual framework for systematic assessment of direct economic impacts of climate change on pest and disease management at the crop level. The framework evaluates and aggregates the effects, and subsequently impacts, of climate change on selected pests and diseases and

  14. Quantitative metrics for assessing predicted climate change pressure on North American tree species

    Science.gov (United States)

    Kevin M. Potter; William W. Hargrove

    2013-01-01

    Changing climate may pose a threat to forest tree species, forcing three potential population-level responses: toleration/adaptation, movement to suitable environmental conditions, or local extirpation. Assessments that prioritize and classify tree species for management and conservation activities in the face of climate change will need to incorporate estimates of the...

  15. An assessment of the impact of climate change on plant species ...

    African Journals Online (AJOL)

    This study assesses the effects of climate change on vegetative species diversity exploring the usefulness of the Normalised Difference Water Index (NDWI) in predicting spatio-temporal diversity variations. The relationship between species richness and climatic variables of rainfall and temperature is explored based on ...

  16. 78 FR 64481 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Science.gov (United States)

    2013-10-29

    ... materials will be available at the office of the U.S. Global Change Research Program, Conference Room A... summarize the science and information pertaining to current and future impacts of climate change upon the... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory...

  17. 77 FR 43574 - National Climate Assessment and Development Advisory Committee (NCADAC); Open Meeting

    Science.gov (United States)

    2012-07-25

    ... available at the office of the U.S. Global Change Research Program, Conference Room A, Suite 250, 1717... information pertaining to current and future impacts of climate change upon the United States; and to provide... mission, the committee's specific objective is to produce a National Climate Assessment. FOR FURTHER...

  18. 78 FR 51711 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Science.gov (United States)

    2013-08-21

    ... materials will be available at the office of the U.S. Global Change Research Program, Conference Room A... summarize the science and information pertaining to current and future impacts of climate change upon the... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory...

  19. 77 FR 74174 - National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and...

    Science.gov (United States)

    2012-12-13

    ... materials will be available at the office of the U.S. Global Change Research Program, Conference Room A... summarize the science and information pertaining to current and future impacts of climate change upon the... National Oceanic and Atmospheric Administration (NOAA) National Climate Assessment and Development Advisory...

  20. 78 FR 21598 - National Climate Assessment and Development Advisory Committee (NCADAC)

    Science.gov (United States)

    2013-04-11

    ... materials will be available at the office of the U.S. Global Change Research Program, Conference Room A... pertaining to current and future impacts of climate change upon the United States; and to provide advice and... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory...

  1. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources

    Science.gov (United States)

    Polly C. Buotte; David L. Peterson; Kevin S. McKelvey; Jeffrey A. Hicke

    2016-01-01

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability...

  2. The importance of assessing climate change vulnerability to address species conservation

    Science.gov (United States)

    Karen E. Bagne; Megan M. Friggens; Sharon J. Coe; Deborah M. Finch

    2014-01-01

    Species conservation often prioritizes attention on a small subset of "special status" species at high risk of extinction, but actions based on current lists of special status species may not effectively moderate biodiversity loss if climate change alters threats. Assessments of climate change vulnerability may provide a method to enhance identification of...

  3. Template for assessing climate change impacts and management options: TACCIMO user guide version 2.2

    Science.gov (United States)

    Emrys Treasure; Steven McNulty; Jennifer Moore Myers; Lisa Nicole Jennings

    2014-01-01

    The Template for Assessing Climate Change Impacts and Management Options (TACCIMO) is a Web-based tool developed by the Forest Service, U.S. Department of Agriculture to assist Federal, State, and private land managers and planners with evaluation of climate change science implications for sustainable natural resource management. TACCIMO is a dynamic information...

  4. Improving the role of vulnerability assessments In decision support for effective climate adaptation

    Science.gov (United States)

    Linda A. Joyce; Constance I. Millar

    2014-01-01

    Vulnerability assessments (VA) have been proposed as an initial step in a process to develop and implement adaptation management for climate change in forest ecosystems. Scientific understanding of the effects of climate change is an ever-accumulating knowledge base. Synthesizing information from this knowledge base in the context of our understanding of ecosystem...

  5. Integrated assessment of farm level adaptation to climate change in agriculture

    NARCIS (Netherlands)

    Mandryk, M.

    2016-01-01

    The findings of the thesis allowed assessing plausible futures of agriculture in Flevoland around 2050 with insights in effective adaptation to climate change at different levels. Besides empirical findings, this thesis contributed methodologically to the portfolio of climate change impact and

  6. 76 FR 17626 - National Climate Assessment Development and Advisory Committee; Announcement of Time Change and...

    Science.gov (United States)

    2011-03-30

    ... announces a change in the start time and provides the location of the meeting of the National Climate... National Oceanic and Atmospheric Administration National Climate Assessment Development and Advisory Committee; Announcement of Time Change and Meeting Location AGENCY: National Oceanic and Atmospheric...

  7. Beyond Sexual Assault Surveys: A Model for Comprehensive Campus Climate Assessments

    Science.gov (United States)

    McMahon, Sarah; Stepleton, Kate; Cusano, Julia; O'Connor, Julia; Gandhi, Khushbu; McGinty, Felicia

    2018-01-01

    The White House Task Force to Protect Students from Sexual Assault identified campus climate surveys as "the first step" for addressing campus sexual violence. Through a process case study, this article presents one model for engaging in a comprehensive, action-focused campus climate assessment process. Rooted in principles of…

  8. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    Science.gov (United States)

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The North American Regional Climate Change Assessment Program: Overview of Phase I Results

    Energy Technology Data Exchange (ETDEWEB)

    Mearns, L. O.; Arritt, R.; Biner, S.; Bukovsky, Melissa; McGinnis, Seth; Sain, Steve; Caya, Daniel; Correia Jr., James; Flory, Dave; Gutowski, William; Takle, Gene; Jones, Richard; Leung, Lai-Yung R.; Moufouma-Okia, Wilfran; McDaniel, Larry; Nunes, A.; Qian, Yun; Roads, J.; Sloan, Lisa; Snyder, Mark A.

    2012-09-20

    The North American Regional Climate Change Assessment Program is an international effort designed to systematically investigate the uncertainties in regional scale projections of future climate and produce high resolution climate change scenarios using multiple regional climate models (RCMs) nested within atmosphere ocean general circulation models (AOGCMs) forced with the A2 SRES scenario, with a common domain covering the conterminous US, northern Mexico, and most of Canada. The program also includes an evaluation component (Phase I) wherein the participating RCMs are nested within 25 years of NCEP/DOE global reanalysis II. The grid spacing of the RCM simulations is 50 km.

  10. Assessing vulnerability to climate change and socioeconomic stressors in the Reef Islands group, Solomon Islands

    DEFF Research Database (Denmark)

    Birk, Thomas

    2014-01-01

    This article assesses the vulnerability to climatic and socioeconomic stresses in the Reef Islands, Solomon Islands, an atoll island group in the Southwest Pacific. Climate change and the associated sea-level rise are often seen as the most pressing challenges to atoll communities, yet this study...... infrastructure, economic marginalization and weak governance of Solomon Islands. Findings suggest that some of these non-climatic stresses are currently – and in the short term – more important determinants of local vulnerability than climate change and sea-level rise. Certainly, these stresses are likely...

  11. Assessing climate change impacts on river flows and environmental flow requirements at catchment scale

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan; Gül, A.

    2010-01-01

    . In this Study, the regional impacts of climate change on river flow and environmental flow requirement. which is a negotiated trade-off between water uses, are analysed for a lowland catchment in Denmark through MIKE SHE/MIKE 11 coupling. The Coupled model possesses an important capacity for simulating stream......The fourth assessment report of Intergovernmental Panel on Climate Change (IPCC) suggests studies that increase the spatial resolution to solve the scale mismatch between large-scale climatic models and the catchment scale while addressing climate change impacts on aquatic ecosystems. Impacts occur...

  12. [Dangerous states and mental health disorders: perceptions and reality].

    Science.gov (United States)

    Tassone-Monchicourt, C; Daumerie, N; Caria, A; Benradia, I; Roelandt, J-L

    2010-01-01

    Image of Madness was always strongly linked with the notion of "dangerousness", provoking fear and social exclusion, despite the evolution of psychiatric practices and organisation, and the emphasis on user's rights respect. Mediatization and politicization of this issue through news item combining crime and mental illness, reinforce and spread out this perception. This paper presents a review of the litterature on social perceptions associating "dangerousness", "Insanity" and "mental illness", available data about the link between "dangerous states" and "psychiatric disorders", as well as the notion of "dangerousness" and the assessment of "dangerous state" of people suffering or not from psychiatric disorders. MAPPING OF SOCIAL REPRESENTATIONS: The French Survey "Mental Health in General Population: Images and Realities (MHGP)" was carried out between 1999 and 2003, on a representative sample of 36.000 individuals over 18 years old. It aims at describing the social representations of the population about "insanity/insane" and "mental illness/mentally ill". The results show that about 75% of the people interviewed link "insanity" or "mental illness" with "criminal or violent acts". Young people and those with a high level of education more frequently categorize violent and dangerous behaviours in the field of Mental illness rather than in that of madness. CORRELATION BETWEEN DANGEROUS STATE AND PSYCHIATRIC DISORDERS: in the scientific literature, all experts reject the hypothesis of a direct link between violence and mental disorder. Besides, 2 tendencies appear in their conclusions: on one hand, some studies establish a significative link between violence and severe mental illness, compared with the general population. On the other hand, results show that 87 to 97% of des aggressors are not mentally ills. Therefore, the absence of scientific consensus feeds the confusion and reinforce the link of causality between psychiatric disorders and violence. OFFICIAL

  13. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  14. Experiences with collaborative climate impacts assessments for regional governments in southwestern British Columbia

    Science.gov (United States)

    Sobie, S. R.; Murdock, T. Q.

    2016-12-01

    Infrastructure vulnerability assessments and adaptation planning have created demand for detailed information about climate change and extreme events from local and regional governments. Individual communities often have distinct priorities regarding climate change impacts. While projections from climate models are available to investigate these impacts, they are not always applicable or easily interpreted by local agencies. We discuss a series of climate impacts assessments for several regional and local governments in southwestern British Columbia. Each of the assessments was conducted with input from the users on project definition from the start of the process and on interpretation of results throughout each project. To produce sufficient detail for the assessment regions, we produce high-resolution (800m) simulations of precipitation and temperature using downscaled climate model projections. Sets of derived climate parameters tailored to each region are calculated from both standard indices such as CLIMDEX and from an energy-balance snowpack model. Involving user groups from the beginning of the analysis helps to convey the meaning and confidence of each set of climate change parameters to users and also clarifies what projections are feasible or not for impact assessments. We discuss the different levels of involvement and collaboration with each organization, and the resulting decisions implemented following each of the projects.

  15. Putting the Assessment into Practice: Applications of Climate and Health Data and Information

    Science.gov (United States)

    Balbus, J. M.; Morris, J.; Luber, G.

    2016-12-01

    The USGCRP Climate and Health Assessment represents the most up to date synthesis of the scientific literature on the health impacts of climate change in the United States. One of its key messages is that climate change is already affecting the health of people in the United States and around the world, and these impacts are likely to become more extensive over time. Another key message is that all Americans have some degree of vulnerability to the health impacts of climate change at some point in their lives. Conclusions as significant as those call for measures to translate current knowledge into specific actions to protect populations and enhance resilience to the health impacts of climate change. This presentation will summarize efforts underway across the federal government to apply research results and climate and health data to enhancing the resilience of populations. These efforts include the development of early warning systems and other applications of predictive models of weather and climate-related health hazards; partnerships with health professional societies to help translate the assessment's findings into specific recommendations for health professionals; and the development of educational materials to help enhance the resilience of students and their families by enhancing their understanding of the connections between climate, climate change and health.

  16. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    Directory of Open Access Journals (Sweden)

    S. P. Bindra

    2014-12-01

    Full Text Available This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achieved in most area owing to precipitation variability’s and seasonality. It demonstrates that how large increases in water demand with very little recharge from precipitation have strained Libya’s groundwater resources resulting in declines of groundwater levels and its quality, especially on Libyan coastal areas where most of the agriculture, domestic and industrial activities are concentrated. Based on several research studies it demonstrates that how policy and decision making process using best practices for monitoring, analyzing and forecasting variation of climate is a way forward to cope with the impact of sea level rise, and combat some water supplies in vulnerable areas that are becoming unusable due to the penetration of salt water into coastal aquifers (Jifara Plain, Sirt, Jebal El-Akhdar.Finally, a number of Global Climate Models (GCM are reviewed to demonstrate that how better understanding of climate and climate change forecasting helps in devising appropriate adaptation strategies due to the impact of climate change.

  17. A framework for assessing risk to coastal ecosystems in Taiwan due to climate change

    Directory of Open Access Journals (Sweden)

    Ming-Chih Chiu

    2017-01-01

    Full Text Available Coastal ecosystems are rich with biodiversity and ecological functions that provide valuable ecosystem services. They are also vulnerable to the impacts of climate change and anthropogenic activities. Assessing the impacts of climate change on coastal ecosystems is crucial if we are to develop and implement strategies that minimize and mitigate these impacts. This study uses a theoretical framework that includes climatic hazards, ecosystem vulnerability, and exposure to damaging climatic events, to estimate the risks due to climate change on coastal ecosystems in Taiwan. We found that seagrass beds, algal reefs, and coral reefs in Taiwan are at high ecological risk to the future effects of sea level rise, elevated sea temperature, and ocean acidification. The responses of these highly threatened ecosystems to the effects of climate change is uncertain and depend, in part, on the type of ecosystem, its location in Taiwan, the rate at which these effects occur, and whether these impacts occur at the same time or sequentially. The coastal ecosystem risk to the adverse effects of climate change is high because they are especially vulnerable. The resistance of coastal ecosystems is linked to their complexity and maturity. Their low adaptive capacity is linked to the exploitation of their natural resources and inadequate biodiversity conservation. To minimize and mitigate the effects of climate change on high-risk areas and ecosystems ongoing monitoring programs and dynamic management will be needed. Our study is a first step toward building a framework for climate change risk assessment for the coastal ecosystems in Taiwan.

  18. Psychometric assessment of the Spiritual Climate Scale Arabic version for nurses in Saudi Arabia.

    Science.gov (United States)

    Cruz, Jonas Preposi; Albaqawi, Hamdan Mohammad; Alharbi, Sami Melbes; Alicante, Jerico G; Vitorino, Luciano M; Abunab, Hamzeh Y

    2017-12-07

    To assess the psychometric properties of the Spiritual Climate Scale Arabic version for Saudi nurses. Evidence showed that a high level of spiritual climate in the workplace is associated with increased productivity and performance, enhanced emotional intelligence, organisational commitment and job satisfaction among nurses. A convenient sample of 165 Saudi nurses was surveyed in this descriptive, cross-sectional study. Cronbach's α and intraclass correlation coefficient of the 2 week test-retest scores were computed to establish reliability. Exploratory factor analysis was performed to support the validity of the Spiritual Climate Scale Arabic version. The Spiritual Climate Scale Arabic version manifested excellent content validity. Exploratory factor analysis supported a single factor with an explained variance of 73.2%. The Cronbach's α values of the scale ranged from .79 to .88, while the intraclass correlation coefficient value was .90. The perceived spiritual climate was associated with the respondents' hospital, gender, age and years of experience. Findings of this study support the sound psychometric properties of the Spiritual Climate Scale Arabic version. The Spiritual Climate Scale Arabic version can be used by nurse managers to assess the nurses' perception of the spiritual climate in any clinical area. This process can lead to spiritually centred interventions, thereby ensuring a clinical climate that accepts and respects different spiritual beliefs and practices. © 2017 John Wiley & Sons Ltd.

  19. STUDYING OF SAFETY CLIMATE ASSESSMENT: A CASE STUDY AT STEEL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Hassan DARVISH

    2011-01-01

    Full Text Available Evolution of safety climate used as a practical means has determined and assessed potential problems relevant to safety issues in an organization and can be used in individuals’ performance and work efficiency and decreasing rate of incidents ;as well as; guidance to provide safety organization policy and comparison of safety performance in different organizations. The study wants to determine and prepare safety climate profile and application of its results in improving safety situation. In this study, applied tools presented by Loughborough University are used to evaluate safety climate in one of steel industries and data is collected through questionnaire, group discussions or purposeful interviews and observations, and safety climate score was obtained in 17 scopes. Calculating the score of each safety climate domain and preparing the profile indicated there is the average rate (4.89 2 in the safety climate of the industry.

  20. Climate change impact assessment of extreme precipitation on urban flash floods – case study, Aarhus, Denmark

    DEFF Research Database (Denmark)

    Madsen, Henrik; Sunyer Pinya, Maria Antonia; Rosbjerg, Dan

    Climate change is expected to cause more intense extreme rainfall events, which will have a severe impact on the risk of flash floods in urban areas. An assessment study was performed for the city of Aarhus, Denmark, analysing different methods of statistical downscaling of climate model...... considered. Urban flooding in Aarhus was simulated with a model that dynamically couples a hydraulic model of the drainage system and a 2D overland flow model. Scenarios representing current and future climate including uncertainties in the climate projections were analysed using synthetic design storms...... projections for estimation of changes in extreme rainfall characteristics. Climate model projections from 20 regional climate models (RCM) from the ENSEMBLES data archive were used in the analysis. Two different estimation methods were applied, using, respectively, a direct estimation of the changes...

  1. Assessment of the risks of climate change in the Working Group II contribution to the IPCC's Fifth Assessment Report (Invited)

    Science.gov (United States)

    Mach, K. J.; Field, C. B.; Mastrandrea, M.; Barros, V.

    2013-12-01

    For the past two decades, IPCC Working Group II has developed comprehensive periodic assessments of climate change impacts, adaptation, and vulnerability. In multiple rounds of drafting and review, author teams for each report evaluate the state of knowledge based on extensive scientific and technical information across disciplines. The Working Group II contribution to the IPCC's Fifth Assessment Report (WGII AR5), to be completed in 2014, explores the ways climate change is shifting patterns of risks and the implications for response. The risks of climate change often emerge from complex interactions typified by inherent uncertainties. Most fundamentally, climate-related risks result from physical hazards interacting with vulnerable and exposed people, assets, and ecosystems. The WGII AR5 assesses observed impacts of climate change, which may in some cases demonstrate risks already influenced by climate change, and it also assesses future risks affected by climate change and societal development. In communicating risks over the coming century, the assessment uses timeframe as a key distinction. Risks over the next few decades will evolve as socioeconomic trends interact with global temperature increase that is similar across emissions scenarios. During this near-term era of committed climate change, societal responses, particularly adaptations, will influence near-term outcomes. Other risks evolve in the longer term, varying across alternative climate change and development futures. Near-term and ongoing mitigation efforts, as well as development, will determine the risks of climate change in the second half of the 21st century, which can be considered an era of climate options. The WGII AR5 evaluates the ways impacts are experienced through extremes, not just through mean changes, and it considers the different types of vulnerability across regions and contexts. Ultimately, managing the risks of climate change can be considered a challenge of decisionmaking under

  2. Completing Northeast Regional Vulnerability Assessment Incorporating the NatureServe Climate Change Vulnerability Index

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — NatureServe and Heritage Program collaborators have developed a Climate Change Vulnerability Index (CCVI) to provide a rapid, scientifically defensible assessment of...

  3. Minnesota forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kelly Barrett; Randy Kolka; Casey McQuiston; Brian Palik; Peter B. Reich; Clarence Turner; Mark White; Cheryl Adams; Anthony D' Amato; Suzanne Hagell; Patricia Johnson; Rosemary Johnson; Mike Larson; Stephen Matthews; Rebecca Montgomery; Steve Olson; Matthew Peters; Anantha Prasad; Jack Rajala; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Minnesota will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Minnesota's Laurentian Mixed Forest Province to a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and...

  4. Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...

  5. Environmental tipping points significantly affect the cost−benefit assessment of climate policies

    Science.gov (United States)

    Cai, Yongyang; Judd, Kenneth L.; Lenton, Timothy M.; Lontzek, Thomas S.; Narita, Daiju

    2015-01-01

    Most current cost−benefit analyses of climate change policies suggest an optimal global climate policy that is significantly less stringent than the level required to meet the internationally agreed 2 °C target. This is partly because the sum of estimated economic damage of climate change across various sectors, such as energy use and changes in agricultural production, results in only a small economic loss or even a small economic gain in the gross world product under predicted levels of climate change. However, those cost−benefit analyses rarely take account of environmental tipping points leading to abrupt and irreversible impacts on market and nonmarket goods and services, including those provided by the climate and by ecosystems. Here we show that including environmental tipping point impacts in a stochastic dynamic integrated assessment model profoundly alters cost−benefit assessment of global climate policy. The risk of a tipping point, even if it only has nonmarket impacts, could substantially increase the present optimal carbon tax. For example, a risk of only 5% loss in nonmarket goods that occurs with a 5% annual probability at 4 °C increase of the global surface temperature causes an immediate two-thirds increase in optimal carbon tax. If the tipping point also has a 5% impact on market goods, the optimal carbon tax increases by more than a factor of 3. Hence existing cost−benefit assessments of global climate policy may be significantly underestimating the needs for controlling climate change. PMID:25825719

  6. Environmental tipping points significantly affect the cost-benefit assessment of climate policies.

    Science.gov (United States)

    Cai, Yongyang; Judd, Kenneth L; Lenton, Timothy M; Lontzek, Thomas S; Narita, Daiju

    2015-04-14

    Most current cost-benefit analyses of climate change policies suggest an optimal global climate policy that is significantly less stringent than the level required to meet the internationally agreed 2 °C target. This is partly because the sum of estimated economic damage of climate change across various sectors, such as energy use and changes in agricultural production, results in only a small economic loss or even a small economic gain in the gross world product under predicted levels of climate change. However, those cost-benefit analyses rarely take account of environmental tipping points leading to abrupt and irreversible impacts on market and nonmarket goods and services, including those provided by the climate and by ecosystems. Here we show that including environmental tipping point impacts in a stochastic dynamic integrated assessment model profoundly alters cost-benefit assessment of global climate policy. The risk of a tipping point, even if it only has nonmarket impacts, could substantially increase the present optimal carbon tax. For example, a risk of only 5% loss in nonmarket goods that occurs with a 5% annual probability at 4 °C increase of the global surface temperature causes an immediate two-thirds increase in optimal carbon tax. If the tipping point also has a 5% impact on market goods, the optimal carbon tax increases by more than a factor of 3. Hence existing cost-benefit assessments of global climate policy may be significantly underestimating the needs for controlling climate change.

  7. Assessing the near-term risk of climate uncertainty : interdependencies among the U.S. states.

    Energy Technology Data Exchange (ETDEWEB)

    Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.; Tidwell, Vincent Carroll; Stamber, Kevin Louis; Reinert, Rhonda K.; Backus, George A.; Warren, Drake E.; Zagonel, Aldo A.; Ehlen, Mark Andrew; Klise, Geoffrey T.; Vargas, Vanessa N.

    2010-04-01

    Policy makers will most likely need to make decisions about climate policy before climate scientists have resolved all relevant uncertainties about the impacts of climate change. This study demonstrates a risk-assessment methodology for evaluating uncertain future climatic conditions. We estimate the impacts of climate change on U.S. state- and national-level economic activity from 2010 to 2050. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions to mitigate the course of climate change, we focus on precipitation, one of the most uncertain aspects of future climate change. We use results of the climate-model ensemble from the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) as a proxy for representing climate uncertainty over the next 40 years, map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and perform a detailed 70-industry analysis of economic impacts among the interacting lower-48 states. We determine the industry-level contribution to the gross domestic product and employment impacts at the state level, as well as interstate population migration, effects on personal income, and consequences for the U.S. trade balance. We show that the mean or average risk of damage to the U.S. economy from climate change, at the national level, is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs.

  8. Agro-Climate Based Pedogenetic Assessment of Soils in Kulumsa ...

    African Journals Online (AJOL)

    ... “rift valley” and its border escarpment areas, and the most leached and most acidic Umbrisol in the High-Wurch (>3700 masl) agro-climatic belt on. Mount Chillallo, were identified. Even though there were acidic soils with pH as low as. 5.15 and very strongly leached profile, the chemical weathering processes appeared to ...

  9. A review on aspects of climate simulation assessment

    Science.gov (United States)

    Wang, Bin; Xie, Xin; Li, Lijuan

    2009-07-01

    This paper reviews some aspects of evaluation of climate simulation, including the ITCZ, the surface air temperature (SAT), and the monsoon. A brief introduction of some recently proposed approaches in weather forecast verification is followed by a discussion on their possible application to evaluation of climate simulation. The authors suggest five strategies to extend the forecast verification methods to climate simulation evaluation regardless significant differences between the forecasts and climate simulations. It is argued that resolution, convection scheme, stratocumulus cloud cover, among other processes in the atmospheric general circulation model (AGCM) and the ocean-atmosphere feedback are the potential causes for the double ITCZ problem in coupled models and AGCM simulations, based on the system- and component-level evaluations as well as the downscaling strategies in some recent research. Evaluations of simulated SAT and monsoons suggest that both coupled models and AGCMs show good performance in representing the SAT evolution and its variability over the past century in terms of correlation and wavelet analysis but poor at reproducing rainfall, and in addition, the AGCM alone is not suitable for monsoon regions due to the lack of air-sea interactions.

  10. Assessing impact of climate change on season length in Karnataka ...

    Indian Academy of Sciences (India)

    Changes in seasons and season length are an indicator, as well as an effect, of climate change. Seasonal change profoundly affects the balance of life in ecosystems and impacts essential human activities such as agriculture and irrigation. This study investigates the uncertainty of season length in Karnataka state, India, ...

  11. Assessment of climate change impacts on rainfall using large scale ...

    Indian Academy of Sciences (India)

    In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall ...

  12. Uncertainties in Agricultural Impact Assessments of Climate Change

    DEFF Research Database (Denmark)

    Montesino San Martin, Manuel

    Future food security will be challenged by the likely increase in demand, changes in consumption patterns and the effects of climate change. Framing food availability requires adequate agricultural production planning. Decision-making can benefit from improved understanding of the uncertainties...

  13. An Assessment of Campus Climate among Sexual Minority College Students

    Science.gov (United States)

    Paulk, Amber; Murray, Jennifer; Hunt, Andrea; Williams, Yaschica

    2017-01-01

    While several studies have clearly identified a link between sexual minority status and discrimination, harassment, and victimization on college campuses, less in known about sexual minority students and other indicators of campus climate. The goal of the current study was to examine the association between sexual minority status and students'…

  14. Climate change impact assessment and adaptation under uncertainty

    NARCIS (Netherlands)

    Wardekker, J.A.

    2011-01-01

    Expected impacts of climate change are associated with large uncertainties, particularly at the local level. Adaptation scientists, practitioners, and decision-makers will need to find ways to cope with these uncertainties. Several approaches have been suggested as ‘uncertainty-proof’ to some

  15. Multimodel assessment of water scarcity under climate change.

    Science.gov (United States)

    Schewe, Jacob; Heinke, Jens; Gerten, Dieter; Haddeland, Ingjerd; Arnell, Nigel W; Clark, Douglas B; Dankers, Rutger; Eisner, Stephanie; Fekete, Balázs M; Colón-González, Felipe J; Gosling, Simon N; Kim, Hyungjun; Liu, Xingcai; Masaki, Yoshimitsu; Portmann, Felix T; Satoh, Yusuke; Stacke, Tobias; Tang, Qiuhong; Wada, Yoshihide; Wisser, Dominik; Albrecht, Torsten; Frieler, Katja; Piontek, Franziska; Warszawski, Lila; Kabat, Pavel

    2014-03-04

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (water resources, suggesting a high potential for improved water resource projections through hydrological model development.

  16. Assessing cover crop management under actual and climate change conditions.

    Science.gov (United States)

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2017-10-22

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Assessing debris flow activity in a changing climate : open access

    NARCIS (Netherlands)

    Turkington, T.; Remaitre, A.; Ettema, J.; Hussin, H.Y.; van Westen, C.J.

    2016-01-01

    Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between

  18. Assessing debris flow activity in a changing climate

    NARCIS (Netherlands)

    Turkington, T.; Remaitre, A.; Ettema, J.; Hussin, H.Y.; van Westen, C.J.

    2016-01-01

    Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between

  19. The implication of irrigation in climate change impact assessment

    NARCIS (Netherlands)

    Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank

    2015-01-01

    This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on

  20. Assessing the response of runoff to climate change and human ...

    Indian Academy of Sciences (India)

    34

    Hydrological cycle and water resources are commonly influenced by climate change and human activities (Vorosmarty et al., 2000; Beven, 2001; Kezer and Matsuyama, 2006;. IPCC, 2007; Zhang et al., 2007). Human activities such as Land Use/Cover Change. (LUCC), alters vegetation retention, soil water infiltration, and ...

  1. Binational climate change vulnerability assessment of migratory birds in the Great Lakes Basins: Tools and impediments.

    Directory of Open Access Journals (Sweden)

    Robert S Rempel

    Full Text Available Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna, wood thrush (Hylocichla mustelina, and hooded warbler (Setophaga citrina. We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species.

  2. Binational climate change vulnerability assessment of migratory birds in the Great Lakes Basins: Tools and impediments.

    Science.gov (United States)

    Rempel, Robert S; Hornseth, Megan L

    2017-01-01

    Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna), wood thrush (Hylocichla mustelina), and hooded warbler (Setophaga citrina). We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species.

  3. Assessments of species' vulnerability to climate change: From pseudo to science

    Science.gov (United States)

    Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Muhlfeld, Clint C.; Waples, Robin S.; Luikart, Gordon

    2017-01-01

    Climate change vulnerability assessments (CCVAs) are important tools to plan for and mitigate potential impacts of climate change. However, CCVAs often lack scientific rigor, which can ultimately lead to poor conservation prioritization and associated ecological and economic costs. We discuss the need to improve comparability and consistency of CCVAs and either validate their findings or improve assessment of CCVA uncertainty and sensitivity to methodological assumptions.

  4. Mid­west. Climate change impacts in the United States: The third national climate assessment

    Science.gov (United States)

    Sara C. Pryor; Donald Scavia; Charles Downer; Marc Gaden; Louis Iverson; Rolf Nordstrom; Jonathan Patz; G. Phillip. Robertson

    2014-01-01

    In the next few decades, longer growing seasons and rising carbon dioxide levels will increase yields of some crops, though those benefits will be progressively offset by extreme weather events. Though adaptation options can reduce some of the detrimental effects, in the long term, the combined stresses associated with climate change are expected to decrease...

  5. Big sagebrush (Artemisia tridentata) in a shifting climate context: Assessment of seedling responses to climate

    Science.gov (United States)

    Martha A. Brabec

    2014-01-01

    The loss of big sagebrush (Artemisia tridentata) throughout the Great Basin Desert has motivated efforts to restore it because of fire and other disturbance effects on sagebrush-dependent wildlife and ecosystem function. Initial establishment is the first challenge to restoration, and appropriateness of seeds, climate, and weather variability are factors that may...

  6. Expert assessment of vulnerability of permafrost carbon to climate change

    Science.gov (United States)

    Schuur, E.A.G.; Abbott, B.W.; Bowden, W.B.; Brovkin, V.; Camill, P.; Canadell, J.G.; Chanton, J.P.; Chapin, F. S.; Christensen, T.R.; Ciais, P.; Crosby, B.T.; Czimczik, C.I.; Grosse, G.; Harden, J.; Hayes, D.J.; Hugelius, G.; Jastrow, J.D.; Jones, J.B.; Kleinen, T.; Koven, C.D.; Krinner, G.; Kuhry, P.; Lawrence, D.M.; McGuire, A.D.; Natali, Susan M.; O'Donnell, J. A.; Ping, C.-L.; Riley, W.J.; Rinke, A.; Romanovsky, V.E.; Sannel, A.B.K.; Schädel, C.; Schaefer, K.; Sky, J.; Subin, Z.M.; Tarnocai, C.; Turetsky, M.R.; Waldrop, M.P.; Anthony, K.M. Walter; Wickland, K.P.; Wilson, C.J.; Zimov, S.A.

    2013-01-01

    Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.

  7. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2017-10-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  8. Uncertainty in runoff based on Global Climate Model precipitation and temperature data - Part 1: Assessment of Global Climate Models

    Science.gov (United States)

    McMahon, T. A.; Peel, M. C.; Karoly, D. J.

    2014-05-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs) and within a GCM. Uncertainty between GCM projections of future climate can be assessed through analysis of runs of a given scenario from a wide range of GCMs. Within GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The objective of this, the first of two complementary papers, is to reduce between-GCM uncertainty by identifying and removing poorly performing GCMs prior to the analysis presented in the second paper. Here we assess how well 46 runs from 22 Coupled Model Intercomparison Project phase 3 (CMIP3) GCMs are able to reproduce observed precipitation and temperature climatological statistics. The performance of each GCM in reproducing these statistics was ranked and better performing GCMs identified for later analyses. Observed global land surface precipitation and temperature data were drawn from the CRU 3.10 gridded dataset and re-sampled to the resolution of each GCM for comparison. Observed and GCM based estimates of mean and standard deviation of annual precipitation, mean annual temperature, mean monthly precipitation and temperature and Köppen climate type were compared. The main metrics for assessing GCM performance were the Nash-Sutcliffe efficiency index and RMSE between modelled and observed long-term statistics. This information combined with a literature review of the performance of the CMIP3 models identified the following five models as the better performing models for the next phase of our analysis in assessing the uncertainty in runoff estimated from GCM projections of precipitation and temperature: HadCM3 (Hadley Centre for Climate Prediction and Research), MIROCM (Center for Climate System Research (The University of Tokyo), National Institute for

  9. Economic assessment of climate adaptation options for urban drainage design in Odense, Denmark

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Halsnæs, Kirsten; Arnbjerg-Nielsen, Karsten

    2012-01-01

    Climate change is likely to influence the water cycle by changing the precipitation patterns, in some cases leading to increased occurrences of precipitation extremes. Urban landscapes are vulnerable to such changes due to the concentrated population and socio-economic values in cities. Feasible...... adaptation requires better flood risk quantification and assessment of appropriate adaptation actions in term of costs and benefits. This paper presents an economic assessment of three prevailing climate adaptation options for urban drainage design in a Danish case study, Odense. A risk-based evaluation...... to adapt to urban pluvial flooding due to climate impacts in cities....

  10. Dangerous Goods Transport Problems in the European Union and Poland

    Directory of Open Access Journals (Sweden)

    Gabriel Nowacki

    2016-04-01

    Full Text Available The paper refers to threat assessment of dangerous goods (DG in transportation of the European Union and the Republic of Poland. Dangerous goods in the European Union are carried by inland waterways, rail and road. In Poland 87.5% of DG have been carried by road and 12.5% by rail in 2014. DG can cause an accident and lead to fires, explosions and chemical poisoning or burning with considerable harm to people and the environment. There is not monitoring system in Poland to control in real time road transportation of dangerous goods. Proposition of National System of Monitoring Dangerous Goods in Poland was presented. Realization of mentioned kind of system may significantly contribute to improving safety of people and environment.

  11. The dangers of sports journalism

    DEFF Research Database (Denmark)

    Sparre, Kirsten

    2017-01-01

    According to The Committee to Protect Journalists, 2 per cent of all journalists killed since 1992 worked on the sports beat. However, at present there is little understanding of the specific dangers faced by sports journalists. This chapter presents findings from exploratory research on 78 repor...

  12. The Clinical Prediction of Dangerousness.

    Science.gov (United States)

    1985-05-01

    psychopathic subgroup of personality disorders. Sociopathic , psychopathic and antisocial disorders are generally accepted as equivalent terms. Cleckley (1964...of Factors Influencing the Decision to Hospitalize ............................... 48 Table 3. Frequency of Differences between Dangerousness and...53 Table 6. Examination for Different Responses to Questionnaire Items by those Subjects with Vignette A and those with Vignette

  13. Multi-model assessment of water scarcity under climate change

    Science.gov (United States)

    Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N. W.; Clark, D. B.; Dankers, R.; Eisner, S.; Fekete, B. M.; Colon-Gonzalez, F. J.; Gosling, S. N.; KIM, H.; Liu, X.; Masaki, Y.; Portmann, F. T.; Satoh, Y.; Stacke, T.; Tang, Q.; Wada, Y.; Wisser, D.; albrecht, T.; Frieler, K.; Piontek, F.; Warszawski, L.; Kabat, P.

    2013-12-01

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. In the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) we use a large ensemble of global hydrological models (GHMs) forced by five global climate models (GCMs) and the latest greenhouse--gas concentration scenarios (RCPs) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that up to a global warming of 2°C above present (approx. 2.7°C above pre--industrial), each additional degree of warming will confront an additional approx. 7% of the global population with a severe decrease in water resources; and that climate change will increase the number of people living under absolute water scarcity (<500m3/capita/year) by another 40% (according to some models, more than 100%) compared to the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between present--day and 2°C, while indicators of very severe impacts increase unabated beyond 2°C. At the same time, the study highlights large uncertainties associated with these estimates, with both GCMs and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development. Relative change in annual discharge at 2°C compared to present-day, under RCP8.5, from an ensemble of 11 global hydrological models (GHMs) driven by five

  14. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.

  15. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brunsell, Nathaniel [Univ. of Kansas, Lawrence, KS (United States); Mechem, David [Univ. of Kansas, Lawrence, KS (United States); Ma, Chunsheng [Wichita State Univ., KS (United States)

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the

  16. Comparative assessment of PV plant performance models considering climate effects

    DEFF Research Database (Denmark)

    Tina, Giuseppe; Ventura, Cristina; Sera, Dezso

    2017-01-01

    The paper investigates the effect of climate conditions on the accuracy of PV system performance models (physical and interpolation methods) which are used within a monitoring system as a reference for the power produced by a PV system to detect inefficient or faulty operating conditions. The met......The paper investigates the effect of climate conditions on the accuracy of PV system performance models (physical and interpolation methods) which are used within a monitoring system as a reference for the power produced by a PV system to detect inefficient or faulty operating conditions...... the performance of the studied PV plants with others, the efficiency of the systems has been estimated by both conventional Performance Ratio and Corrected Performance Ratio...

  17. A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Herslund, Lise Byskov; Jalyer, Fatameh; Jean-Baptiste, Nathalie

    2016-01-01

    for strategic coordination and action. To better adapt to urban flooding andthereby reduce vulnerability and build resilience, we suggest working across dimensions and scales, integrating climate change issues in city-level plans and strategies and enabling local actions to initiate a ‘learning......In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub- Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability...... in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional...

  18. Climate Change Vulnerability of Native and Alien Freshwater Fishes of California: A Systematic Assessment Approach

    Science.gov (United States)

    Moyle, Peter B.; Kiernan, Joseph D.; Crain, Patrick K.; Quiñones, Rebecca M.

    2013-01-01

    Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California’s native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions. PMID:23717503

  19. Assessing Climate Change Perceptions, Management Strategies, and Information Needs for Indiana Agricultural and Forestry Sectors

    Science.gov (United States)

    Cherkauer, K. A.; Chin, N.

    2016-12-01

    The agricultural and forestry sectors in the state of Indiana are highly dependent on climate and, subsequently, highly vulnerable to the impacts of climate change. Higher temperatures, shifts in precipitation patterns, more widespread prevalence of pests and pathogens, and increased frequency and severity of extreme weather events could all have negative effects on these two sectors in the future. Agricultural and forest producers are already modifying their management strategies in response to perceptions of changes in climate risk, but such responses have been primarily reactive in nature and, in many cases, demonstrate a disconnect between scientific findings and stakeholder perceptions of the greatest climate risks. This research has been conducted to help improve understanding of climate change risks to agriculture and forestry in Indiana; stakeholder perceptions of climate risks and their current management strategies; and the effectiveness of these management strategies for dealing with current and future climate risk. Sector-specific focus groups, expert panel assessments and surveys have all been utilized in this work, which will also contribute to the new Indiana Climate Change Impacts Assessment report.

  20. Climate Change and the Joint Force: An Assessment

    Science.gov (United States)

    2017-05-25

    report /WG1AR5_ALL_FINAL.pdf. 6 A rising global temperature is an irrefutable scientific fact. Furthermore, climate scientists project...Specifically, it noted that as “greenhouse gas emissions increase, sea levels are rising, the average global temperatures are increasing and severe...United States Geological Survey estimates that there are approximately 90 billion barrels of oil , 1,669 trillion cubic feet of natural gas , and 44

  1. Climate model forecast biases assessed with a perturbed physics ensemble

    Science.gov (United States)

    Mulholland, David P.; Haines, Keith; Sparrow, Sarah N.; Wallom, David

    2017-09-01

    Perturbed physics ensembles have often been used to analyse long-timescale climate model behaviour, but have been used less often to study model processes on shorter timescales. We combine a transient perturbed physics ensemble with a set of initialised forecasts to deduce regional process errors present in the standard HadCM3 model, which cause the model to drift in the early stages of the forecast. First, it is shown that the transient drifts in the perturbed physics ensembles can be used to recover quantitatively the parameters that were perturbed. The parameters which exert most influence on the drifts vary regionally, but upper ocean mixing and atmospheric convective processes are particularly important on the 1-month timescale. Drifts in the initialised forecasts are then used to recover the `equivalent parameter perturbations', which allow identification of the physical processes that may be at fault in the HadCM3 representation of the real world. Most parameters show positive and negative adjustments in different regions, indicating that standard HadCM3 values represent a global compromise. The method is verified by correcting an unusually widespread positive bias in the strength of wind-driven ocean mixing, with forecast drifts reduced in a large number of areas as a result. This method could therefore be used to improve the skill of initialised climate model forecasts by reducing model biases through regional adjustments to physical processes, either by tuning or targeted parametrisation refinement. Further, such regionally tuned models might also significantly outperform standard climate models, with global parameter configurations, in longer-term climate studies.

  2. Assessment of cold-climate environmental research priorities

    Energy Technology Data Exchange (ETDEWEB)

    States, J.B.

    1983-04-01

    The Environmental Protection Agency (EPA) has consistently recognized that cold regions pose unique environmental problems. This report sets forth the conceptual framework and research plans for several high priority research areas. It provides the fundamental basis for implementation of the EPA Cold-Climate Environmental Research Program. This three- to five-year program encompasses both short- and long-term research of high relevance to the EPA and to the cold regions that it serves.

  3. Future projections of fire danger in Brazilian biomes in the 21st century

    Science.gov (United States)

    Libonati, Renata; Silva, Patrícia; DaCamara, Carlos; Bastos, Ana

    2016-04-01

    In the global context, Brazil is one of the regions more severely affected by fire occurrences, with important consequences in the global CO2 balance, the state of the Amazon forest and the ecological diversity of the region. Brazil is also one of the few regions experiencing a raise in annual mean temperature above 2.5o during the 20th century, which may further increase between 2o and 7o until 2100 and, likely, be accompanied by a decrease in precipitation [1]. As the fire occurrence and severity largely depends on these two variables, it is worth assessing the evolution of fire danger for the coming decades. In order to obtain a detailed characterization of the future fire patterns in the different biomes of Brazil, we use outputs from a regional-downscaling of the EC-Earth climate model at 0.44 degrees spatial resolution for two future scenarios, an intermediate (RCP4.5) and a more severe (RCP8.5) one. We use a fire danger index specifically developed for the Brazilian climate and biome characteristics, the IFR from INPE. This index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We find a systematic increase of the days with critical fire risk, which is more pronounced in RCP8.5 and mostly affects months when fire activity takes place. Temperature increase is the most determinant factor for the increase in fire danger in the dry regions of savannah and shrubland, a result to be expected as fuel is already very dry. [1] Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on

  4. Gaming climate change: Assessing online climate change games targeting youth produced in Spanish

    OpenAIRE

    Ouariachi, Tania; Olvera-Lobo, Mª Dolores; Gutiérrez-Pérez, José

    2017-01-01

    In search of innovative approaches to raise climate change awareness among digital natives, online and serious games are gaining currency as new platforms for communication, education and social change. Thanks to their interactivity and immersive narrative, games have capacity to convey to young people the problems that they will be facing in the future and enable them to experience these problems directly through the game. In addition, online games can offer the possibility to be implemented...

  5. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework.

    Science.gov (United States)

    Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Takahashi, Kiyoshi; Masui, Toshihiko; Tanaka, Akemi

    2014-01-01

    We assessed the impacts of climate change and agricultural autonomous adaptation measures (changes in crop variety and planting dates) on food consumption and risk of hunger considering uncertainties in socioeconomic and climate conditions by using a new scenario framework. We combined a global computable general equilibrium model and a crop model (M-GAEZ), and estimated the impacts through 2050 based on future assumptions of socioeconomic and climate conditions. We used three Shared Socioeconomic Pathways as future population and gross domestic products, four Representative Concentration Pathways as a greenhouse gas emissions constraint, and eight General Circulation Models to estimate climate conditions. We found that (i) the adaptation measures are expected to significantly lower the risk of hunger resulting from climate change under various socioeconomic and climate conditions. (ii) population and economic development had a greater impact than climate conditions for risk of hunger at least throughout 2050, but climate change was projected to have notable impacts, even in the strong emission mitigation scenarios. (iii) The impact on hunger risk varied across regions because levels of calorie intake, climate change impacts and land scarcity varied by region.

  6. Climate Change Effects and Impacts Assessment. A guidance manual for Local Government in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Wratt, D.; Mullan, B.; Salinger, J. [National Institute of Water and Atmospheric Research NIWA, Newmarket, Auckland (New Zealand); Allan, S.; Morgan, T. [MWH New Zealand, Christchurch (New Zealand); Kenny, G. [Earthwise Consulting, Hastings (New Zealand)

    2004-05-15

    Climate change is a real and internationally recognised outcome of increased amounts of greenhouse gases in the atmosphere. It will have effects over the next decades that are predictable with some level of certainty, but which will vary from place to place throughout New Zealand. The climate will also change from year to year and decade to decade due to natural processes. For example, some parts of the country often have dry summers and autumns when an El Nino climate pattern is present. Both natural fluctuations and human-induced climate changes need to be considered when developing adaptation plans and policies, rather than just 'greenhouse warming' effects on their own. Councils already address extreme weather events and climate variations as they develop plans and provide services. Climate change effects need also to be considered as part of these regulatory, assessment and planning activities. It is not necessary to develop a set of procedures for dealing separately with effects and impacts of climate change - they can be built into existing practices. Over time, climate change responses will involve iterative planning processes, keeping up-to-date with new information, monitoring changes, and reviewing the effectiveness of responses. The response to climate change involves international, national, regional, district and community consideration and action. The Guidance Manual aims to assist local government in working with its communities and making appropriate decisions.

  7. Assessment of climate change impact on phenology dynamic in Vojvodina region

    Science.gov (United States)

    Lalic, B.; Mihailovic, D. T.

    2009-09-01

    Global climate change is a continuous process that needs to be taken seriously, even though there are large uncertainties in its spatial and temporal distribution. One important bio tracer of climate change presence and magnitude is plant phenology dynamic. However, response of different plant communities to changing climate will vary across the regions and ecosystems but it will never fail. Therefore, on regional or farm level, observed phenology dynamic can be exploited as a measure of climate change impact, or expected climate change can be used in order to assess possible changes in plant growth dynamic. Nevertheless, phenology doesn't provide only date of flowering or emergence but also implies timing of farm operations as well as pest and disease dynamic. As an element of climate change impact study for Northern Serbia region in the framework of ADAGIO project, trend of plant phenology dynamic has been calculated. Climate data series of further climate were obtained using HadCM3, ECHAM5 and NCAR-PCM climate models. Statistical downscaling to smaller temporal scale was provided using Met&Roll weather generator. Time of phenological stages appearance was calculated for wheat and selected fruit varieties.

  8. [Mental disorders and dangerous acting out].

    Science.gov (United States)

    Bouchard, Jean-Pierre

    2015-01-01

    The major mental disorders which are most likely to lead to dangerous acting out are adult psychoses (schizophrenia and paranoia) and severe mood disorders (major depressive episodes and mania). Good knowledge of the symptomatology of these pathologies and their identification can help to anticipate and prevent much of the violence which people with these disorders may inflict on others or themselves. After mental assessment, those who commit wrongful and criminal acts may be ruled to be criminally irresponsible. They are then handed over to the relevant health care authorities for treatment for their mental disorders.

  9. Flaming alcoholic drinks: flirting with danger.

    Science.gov (United States)

    Tan, Alethea; Frew, Quentin; Yousif, Ali; Ueckermann, Nicola; Dziewulksi, Peter

    2014-01-01

    Alcohol-related burn injuries carry significant mortality and morbidity rates. Flaming alcoholic beverages served in trendy bars and clubs are becoming increasingly popular. The dangers associated with an ignited alcoholic drink are often underestimated by party goers whose risk assessment ability is already impaired by heavy alcohol consumption. The authors present two cases demonstrating the varied severity of burn injuries associated with flaming alcoholic drinks, and their clinical management. Consumption of flaming alcoholic drinks poses potential risks for burn injuries. Further support is required to enable national and local agencies to implement effective interventions in drinking environments.

  10. The Climate Resilience Toolkit: Central gateway for risk assessment and resilience planning at all governance scales

    Science.gov (United States)

    Herring, D.; Lipschultz, F.

    2016-12-01

    As people and organizations grapple with a changing climate amid a range of other factors simultaneously shifting, there is a need for credible, legitimate & salient scientific information in useful formats. In addition, an assessment framework is needed to guide the process of planning and implementing projects that allow communities and businesses to adapt to specific changing conditions, while also building overall resilience to future change. We will discuss how the U.S. Climate Resilience Toolkit (CRT) can improve people's ability to understand and manage their climate-related risks and opportunities, and help them make their communities and businesses more resilient. In close coordination with the U.S. Climate Data Initiative, the CRT is continually evolving to offer actionable authoritative information, relevant tools, and subject matter expertise from across the U.S. federal government in one easy-to-use location. The Toolkit's "Climate Explorer" is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Since climate is only one of many changing factors affecting decisions about the future, it also ties climate information to a wide range of relevant variables to help users explore vulnerabilities and impacts. New topic areas have been added, such as "Fisheries," "Regions," and "Built Environment" sections that feature case studies and personal experiences in making adaptation decisions. A curated "Reports" section is integrated with semantic web capabilities to help users locate the most relevant information sources. As part of the USGCRP's sustained assessment process, the CRT is aligning with other federal activities, such as the upcoming 4th National Climate Assessment.

  11. 77 FR 74175 - Solicitation of Review Editors for the Draft Report of the National Climate Assessment and...

    Science.gov (United States)

    2012-12-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XC384 Solicitation of Review Editors for the Draft... editors of the National Climate Assessment and Development Advisory Committee (NCADAC) National Climate... Review Editors of the National Climate Assessment and Development Advisory Committee (NCADAC) National...

  12. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2010 - part 1)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.

  13. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt.

    OpenAIRE

    Sušnik, J.; Vamvakeridou-Lyroudia, L.S.; Baumert, N.; Kloos, J.; Renaud, F. G.; Jeunesse, I. La; Mabrouk, B.; Savić, D.A.; Kapelan, Z.; Ludwig, R.; Fischer, G; Roson, R.; Zografos, C.

    2015-01-01

    International audience; CLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB —CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed — WaterAvailability and Security in Southern EuRope and the Mediterranean) and human security connected with possiblehydro-climatic conflicts (CLICO — CLImate change hydro-COnfl...

  14. NOAA's Coral Reef Conservation Program: 2016 projects to assess coral resilence and the resilence of communities to climate change

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to assess coral resilence and the resilence of communities to climate change: Climate and resilience-based...

  15. A vulnerability assessment of fish and invertebrates to climate change on the northeast US Continental Shelf (NCEI Accession 0154384)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data represent two outputs from the Northeast Fisheries Climate Vulnerability assessment. The first are the biological sensitivity and climate exposure scores...

  16. Taming the Climate Emergency: Geoengineering and Ethics

    Directory of Open Access Journals (Sweden)

    Markku Oksanen

    2012-03-01

    Full Text Available In this article, we shed some light into two questions with regard to te idea of climate emergency and dangerous climate change: Presuming that the negative effects of climate change can occur abruptly we want to investigate, in particular, whether there is any kind of rational basis to the conclusion that a state of climate emergency would require geoengineering implementations such as solar radiation management (SRM. Related to this, we will pose the question whether there can be exemptions from conventional morality justified by climate emergency for instance to use such largely untested geoengineering methods like SRM. We will take a look at SRM from an ethical point of view and analyze the concept of climate emergency and its policy relevance in order to assess the moral justification for the implementation of SRM.

  17. Particulate Matter and Health Risk under a Changing Climate: Assessment for Portugal

    Directory of Open Access Journals (Sweden)

    Daniela Dias

    2012-01-01

    Full Text Available The potential impacts of climate-induced changes in air pollution levels and its impacts on population health were investigated. The IPCC scenario (SRES A2 was used to analyse the effects of climate on future PM10 concentrations over Portugal and their impact on short-term population exposure and mortality. The air quality modelling system has been applied with high spatial resolution looking on climate changes at regional scale. To quantify health impacts related to air pollution changes, the WHO methodology for health impact assessment was implemented. The results point to 8% increase of premature mortality attributed to future PM10 levels in Portugal. The pollution episodes with daily average PM10 concentration above the current legislated value (50 μg·m−3 would be responsible for 81% of attributable cases. The absolute number of deaths attributable to PM10 under future climate emphasizes the importance of indirect effects of climate change on human health.

  18. Assessing climate change beliefs: Response effects of question wording and response alternatives.

    Science.gov (United States)

    Greenhill, Murni; Leviston, Zoe; Leonard, Rosemary; Walker, Iain

    2014-11-01

    To date, there is no 'gold standard' on how to best measure public climate change beliefs. We report a study (N = 897) testing four measures of climate change causation beliefs, drawn from four sources: the CSIRO, Griffith University, the Gallup poll, and the Newspoll. We found that question wording influences the outcome of beliefs reported. Questions that did not allow respondents to choose the option of believing in an equal mix of natural and anthropogenic climate change obtained different results to those that included the option. Age and belief groups were found to be important predictors of how consistent people were in reporting their beliefs. Response consistency gave some support to past findings suggesting climate change beliefs reflect something deeper in the individual belief system. Each belief question was assessed against five criterion variables commonly used in climate change literature. Implications for future studies are discussed. © The Author(s) 2013.

  19. Selection of climate policies under the uncertainties in the Fifth Assessment Report of the IPCC

    Science.gov (United States)

    Drouet, L.; Bosetti, V.; Tavoni, M.

    2015-10-01

    Strategies for dealing with climate change must incorporate and quantify all the relevant uncertainties, and be designed to manage the resulting risks. Here we employ the best available knowledge so far, summarized by the three working groups of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5; refs , , ), to quantify the uncertainty of mitigation costs, climate change dynamics, and economic damage for alternative carbon budgets. We rank climate policies according to different decision-making criteria concerning uncertainty, risk aversion and intertemporal preferences. Our findings show that preferences over uncertainties are as important as the choice of the widely discussed time discount factor. Climate policies consistent with limiting warming to 2 °C above preindustrial levels are compatible with a subset of decision-making criteria and some model parametrizations, but not with the commonly adopted expected utility framework.

  20. How to account for irreversibility in integrated assessment of climate change?; Comment tenir compte de l'irreversibilite dans l'evaluation integree du changement climatique?

    Energy Technology Data Exchange (ETDEWEB)

    Ha Duong, M

    1998-04-15

    How to account for irreversibility in integrated assessment of climate change? This Ph. D. thesis in Economics balances discounting, technical progress and the inertia of existing capital stock against uncertainty and the inertia of socio-economic systems to examine the issue of near term limitations of greenhouse gases emissions. After a general overview in chapter 2, and a more historical presentation of the debates in chapter 3, chapter 4 proceeds to review a large number of integrated assessment models. Chapter 5 introduces a Model on the Dynamics of Inertia and Adaptability of energy systems: DIAM, used to discuss how much previous studies might have overestimated the long term costs of CO{sub 2} limitations and underestimated adjustment costs. It shows that, given a target date for atmospheric CO{sub 2} concentration stabilisation, a higher inertia implies a lower optimal concentration trajectory. In a sequential decision framework, chapter 6 shows that current uncertainties about which CO{sub 2} concentration ceiling would not present dangerous interference with the climate system justifies precautionary action. Finally, chapter 7 uses the irreversibility effect theory to define formally situations of decision under controversy and compare the irreversibility of CO{sub 2} accumulation with the irreversibility of investments needed to moderate it. An option value for greenhouse gases emissions limitations is computed. (author)

  1. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Knudsen, Per; Broge, Niels

    2016-01-01

    protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from...... evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders –often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level...

  2. Final Report: Demographic Tools for Climate Change and Environmental Assessments

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Brian [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-01-24

    This report summarizes work over the course of a three-year project (2012-2015, with one year no-cost extension to 2016). The full proposal detailed six tasks: Task 1: Population projection model Task 2: Household model Task 3: Spatial population model Task 4: Integrated model development Task 5: Population projections for Shared Socio-economic Pathways (SSPs) Task 6: Population exposure to climate extremes We report on all six tasks, provide details on papers that have appeared or been submitted as a result of this project, and list selected key presentations that have been made within the university community and at professional meetings.

  3. Assessing the impact of costly punishment and group size in collective-risk climate dilemmas

    CERN Document Server

    Jiang, Luo-Luo; Zhou, Chang-Song; Kurths, Jurgen; Moreno, Yamir

    2016-01-01

    The mitigation of the effects of climate change on humankind is one of the most pressing and important collective governance problems nowadays$^{1-4}$. To explore different solutions and scenarios, previous works have framed this problem into a Public Goods Game (PGG), where a dilemma between short-term interests and long-term sustainability arises$^{5-9}$. In such a context, subjects are placed in groups and play a PGG with the aim of avoiding dangerous climate change impact. Here we report on a lab experiment designed to explore two important ingredients: costly punishment to free-riders and group size. Our results show that for high punishment risk, more groups succeed in achieving the global target, this finding being robust against group size. Interestingly enough, we also find a non-trivial effect of the size of the groups: the larger the size of the groups facing the dilemmas, the higher the punishment risk should be to achieve the desired goal. Overall, the results of the present study shed more light...

  4. The sensitivity of agricultural impacts assessment to climate data and scenario methodologies

    Science.gov (United States)

    Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Assessments of climate change impacts on the agricultural sector are crucially important from the farm- to global levels. While impacts assessments have made wide and creative use of data products, climate models, and methods for downscaling and scenario generation, this variety also hinders our ability to compare impacts from one study to other assessments. The unique nature of many impacts assessments is especially problematic when evaluating the impacts of climate change on large agricultural regions and global production; a crucial scale in understanding the economic impacts and market influence on food security and land use. This presentation examines the influence of methodological choices on agricultural impacts assessment by describing results from several projects. First, the utility of a wide variety of global and regional observational data products are compared for an agricultural system in the Florida Panhandle to determine the influence of observational uncertainties, reanalysis products, remotely sensed information, and downscaled models on impacts assessment. Second, the role of future climate scenarios is isolated by running the same Panhandle station with scenarios generated through a variety of generation methods with a focus on downscaling methodologies and the climate statistics allowed to change. Finally, an ensemble of weather generators are compared across an ensemble of wheat models in a variety of major agricultural regions, isolating important sensitivities in the crop models and corresponding strengths and weaknesses in the weather generators.

  5. Assessing Climate Change Impacts for DoD installations in the Southwest United States During the Warm Season

    Science.gov (United States)

    2017-03-10

    FINAL REPORT Assessing Climate Change Impacts for DoD Installations in the Southwest United States During the Warm Season SERDP Project RC...DATES COVERED (From - To) March 2012 to March 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Assessing climate change impacts for DoD installations in...select NARCCAP and UA-ATMO downscaled CMIP models. Figure 9: July-August precipitation during the period of historical climate versus climate change

  6. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080.

    Science.gov (United States)

    Fischer, Günther; Shah, Mahendra; Tubiello, Francesco N; van Velhuizen, Harrij

    2005-11-29

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological-economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5' X 5' latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change.

  7. Assessing pricing assumptions for weather index insurance in a changing climate

    Directory of Open Access Journals (Sweden)

    J.D. Daron

    2014-01-01

    Full Text Available Weather index insurance is being offered to low-income farmers in developing countries as an alternative to traditional multi-peril crop insurance. There is widespread support for index insurance as a means of climate change adaptation but whether or not these products are themselves resilient to climate change has not been well studied. Given climate variability and climate change, an over-reliance on historical climate observations to guide the design of such products can result in premiums which mislead policyholders and insurers alike, about the magnitude of underlying risks. Here, a method to incorporate different sources of climate data into the product design phase is presented. Bayesian Networks are constructed to demonstrate how insurers can assess the product viability from a climate perspective, using past observations and simulations of future climate. Sensitivity analyses illustrate the dependence of pricing decisions on both the choice of information, and the method for incorporating such data. The methods and their sensitivities are illustrated using a case study analysing the provision of index-based crop insurance in Kolhapur, India. We expose the benefits and limitations of the Bayesian Network approach, weather index insurance as an adaptation measure and climate simulations as a source of quantitative predictive information. Current climate model output is shown to be of limited value and difficult to use by index insurance practitioners. The method presented, however, is shown to be an effective tool for testing pricing assumptions and could feasibly be employed in the future to incorporate multiple sources of climate data.

  8. Xylitol and Your Dog: Danger, Paws Off

    Science.gov (United States)

    ... Home For Consumers Consumer Updates Xylitol and Your Dog: Danger, Paws Off Share Tweet Linkedin Pin it ... vitamins mouthwash toothpaste Why is Xylitol Dangerous to Dogs, but Not People? In both people and dogs, ...

  9. Dangerous Dogs, Constructivism and Normativity

    DEFF Research Database (Denmark)

    Hansen, Allan Dreyer

    2010-01-01

    This article argues that although there is no necessary link between constructivism and particular sets of norms, constructivism opens up a space for normativity and can be articulated through particular normative or political programs. I show how Laclau’s deconstructive constructivism can be art...... be articulated within the framework of an ethos of democratization. The article takes its empirical point of departure in debates over dangerous dogs....

  10. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie

    2015-01-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused...... a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models....... by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact...

  11. Uncertainties in climate assessment for the case of aviation NO

    Science.gov (United States)

    Holmes, Christopher D.; Tang, Qi; Prather, Michael J.

    2011-01-01

    Nitrogen oxides emitted from aircraft engines alter the chemistry of the atmosphere, perturbing the greenhouse gases methane (CH4) and ozone (O3). We quantify uncertainties in radiative forcing (RF) due to short-lived increases in O3, long-lived decreases in CH4 and O3, and their net effect, using the ensemble of published models and a factor decomposition of each forcing. The decomposition captures major features of the ensemble, and also shows which processes drive the total uncertainty in several climate metrics. Aviation-specific factors drive most of the uncertainty for the short-lived O3 and long-lived CH4 RFs, but a nonaviation factor dominates for long-lived O3. The model ensemble shows strong anticorrelation between the short-lived and long-lived RF perturbations (R2 = 0.87). Uncertainty in the net RF is highly sensitive to this correlation. We reproduce the correlation and ensemble spread in one model, showing that processes controlling the background tropospheric abundance of nitrogen oxides are likely responsible for the modeling uncertainty in climate impacts from aviation. PMID:21690364

  12. Global Squeeze: Assessing Climate-Critical Resource Constraints for Coastal Climate Adaptation

    Science.gov (United States)

    Chase, N. T.; Becker, A.; Schwegler, B.; Fischer, M.

    2014-12-01

    The projected impacts of climate change in the coastal zone will require local planning and local resources to adapt to increasing risks of social, environmental, and economic consequences from extreme events. This means that, for the first time in human history, aggregated local demands could outpace global supply of certain "climate-critical resources." For example, construction materials such as sand and gravel, steel, and cement may be needed to fortify many coastal locations at roughly the same point in time if decision makers begin to construct new storm barriers or elevate coastal lands. Where might adaptation bottlenecks occur? Can the world produce enough cement to armour the world's seaports as flood risks increase due to sea-level rise and more intense storms? Just how many coastal engineers would multiple such projects require? Understanding such global implications of adaptation requires global datasets—such as bathymetry, coastal topography, local sea-level rise and storm surge projections, and construction resource production capacity—that are currently unavailable at a resolution appropriate for a global-scale analysis. Our research group has identified numerous gaps in available data necessary to make such estimates on both the supply and demand sides of this equation. This presentation examines the emerging need and current availability of these types of datasets and argues for new coordinated efforts to develop and share such data.

  13. Accounting for adaptive capacity and uncertainty in assessments of species' climate-change vulnerability.

    Science.gov (United States)

    Wade, Alisa A; Hand, Brian K; Kovach, Ryan P; Luikart, Gordon; Whited, Diane C; Muhlfeld, Clint C

    2017-02-01

    Climate-change vulnerability assessments (CCVAs) are valuable tools for assessing species' vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species' vulnerability to climate change. © 2016 Society for Conservation Biology.

  14. BASINs 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual (Final Report)

    Science.gov (United States)

    EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of R...

  15. BASINS and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications (External Review Draft)

    Science.gov (United States)

    This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments...

  16. Crop modelling for integrated assessment of risk to food production from climate change

    NARCIS (Netherlands)

    Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, Heidi; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; Ittersum, van M.K.; Janssen, S.J.C.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartosová, L.; Asseng, S.

    2015-01-01

    The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess

  17. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change

    Science.gov (United States)

    Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston

    2017-01-01

    We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...

  18. Variogram as a tool for assessing the quality of climate models

    OpenAIRE

    Zanetti, Vitor Baccarin; CHOU,Sin Chan; Gandini, Maria Luiza Teófilo; Lyra, André

    2017-01-01

    Abstract. Climate models are very sensitive to spatial resolution. Their skill must always be verified, as they involve several phenomena which take place in different scales. For that reason, some of those phenomena must be adequately parameterized, with appropriate techniques of upscaling. The proposal of this work is to present the variogram as a tool for assessing the quality of climate models, based on comparison of model results with different spatial discretization. Results of the ETA ...

  19. Climate change and forests: Impacts and adaption. A regional assessment for the Western Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sukumar, R. [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deshingkar, P. [Stockholm Environment Inst. (Sweden)

    1997-12-31

    Potential climate change over the next 50 to 100 years could have major impacts on tropical forests. Forests, particularly in the tropics, are subjected to anthropogenic pressures leading to degradation and loss of forest ecosystems. Given the significant dependence of local people and economies on forests in tropical and temperate countries, there is a need to assess the possible impacts of climate change and to develop adaption measures. The diversity of forest types in the Western Ghats ranges from wet evergreen and deciduous forest to dry thorn and montane forests with a wide range of annual rainfall regimes (from less than 65 cm to over 300 cm). The study was conducted in two regions of the Western Ghats; the Uttara Kannada district and the Nilgiris. Climate change projections for 2020 and 2050 were used in assessing the possible impacts on forests. In general, the `most likely` projections of climate change were an increase in mean temperature in the range of 0.3-1.0 deg C and an increase in precipitation of 3-8% over the study regions by the year 2050. The `worst case` scenario was an increase in temperature of 1 deg C and a decrease in precipitation by 8% by 2050. To assess the vegetational responses to climate change, a simple model based on present-day correlations between climatic (mean annual temperature and precipitation) and vegetation types for these regions was developed. Likely changes in the areas under different forest types were assessed for `moderate climate` sensitivity and central scaling factor (referred to as the `most likely scenario`) for the years 2020 and 2050, and `high climate` sensitivity and a lower scaling factor (the `worst case scenario`) for 2050 90 refs, 15 figs, 15 tabs

  20. Motivators and barriers to incorporating climate change-related health risks in environmental health impact assessment.

    Science.gov (United States)

    Turner, Lyle R; Alderman, Katarzyna; Connell, Des; Tong, Shilu

    2013-03-22

    Climate change presents risks to health that must be addressed by both decision-makers and public health researchers. Within the application of Environmental Health Impact Assessment (EHIA), there have been few attempts to incorporate climate change-related health risks as an input to the framework. This study used a focus group design to examine the perceptions of government, industry and academic specialists about the suitability of assessing the health consequences of climate change within an EHIA framework. Practitioners expressed concern over a number of factors relating to the current EHIA methodology and the inclusion of climate change-related health risks. These concerns related to the broad scope of issues that would need to be considered, problems with identifying appropriate health indicators, the lack of relevant qualitative information that is currently incorporated in assessment and persistent issues surrounding stakeholder participation. It was suggested that improvements are needed in data collection processes, particularly in terms of adequate communication between environmental and health practitioners. Concerns were raised surrounding data privacy and usage, and how these could impact on the assessment process. These findings may provide guidance for government and industry bodies to improve the assessment of climate change-related health risks.

  1. Tools and Techniques for Basin-Scale Climate Change Assessment

    Science.gov (United States)

    Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.

    2012-12-01

    The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other

  2. 30 CFR 57.12021 - Danger signs.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Danger signs. 57.12021 Section 57.12021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.12021 Danger signs. Suitable danger signs shall be posted at all major electrical...

  3. 30 CFR 56.12021 - Danger signs.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Danger signs. 56.12021 Section 56.12021 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56.12021 Danger signs. Suitable danger signs shall be posted at all major electrical installations. ...

  4. Health consequence scales for use in health impact assessments of climate change.

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery

    2014-09-16

    While health impact assessment (HIA) has typically been applied to projects, plans or policies, it has significant potential with regard to strategic considerations of major health issues facing society such as climate change. Given the complexity of climate change, assessing health impacts presents new challenges that may require different approaches compared to traditional applications of HIA. This research focuses on the development of health consequence scales suited to assessing and comparing health effects associated with climate change and applied within a HIA framework. This assists in setting priorities for adaptation plans to minimize the public health impacts of climate change. The scales presented in this paper were initially developed for a HIA of climate change in Perth in 2050, but they can be applied across spatial and temporal scales. The design is based on a health effects pyramid with health measures expressed in orders of magnitude and linked to baseline population and health data. The health consequence measures are combined with a measure of likelihood to determine the level of risk associated with each health potential health impact. In addition, a simple visual framework that can be used to collate, compare and communicate the level of health risks associated with climate change has been developed.

  5. Health Consequence Scales for Use in Health Impact Assessments of Climate Change

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery

    2014-01-01

    While health impact assessment (HIA) has typically been applied to projects, plans or policies, it has significant potential with regard to strategic considerations of major health issues facing society such as climate change. Given the complexity of climate change, assessing health impacts presents new challenges that may require different approaches compared to traditional applications of HIA. This research focuses on the development of health consequence scales suited to assessing and comparing health effects associated with climate change and applied within a HIA framework. This assists in setting priorities for adaptation plans to minimize the public health impacts of climate change. The scales presented in this paper were initially developed for a HIA of climate change in Perth in 2050, but they can be applied across spatial and temporal scales. The design is based on a health effects pyramid with health measures expressed in orders of magnitude and linked to baseline population and health data. The health consequence measures are combined with a measure of likelihood to determine the level of risk associated with each health potential health impact. In addition, a simple visual framework that can be used to collate, compare and communicate the level of health risks associated with climate change has been developed. PMID:25229697

  6. Climate change health assessment: a novel approach for Alaska Native communities.

    Science.gov (United States)

    Brubaker, Michael Y; Bell, Jacob N; Berner, James E; Warren, John A

    2011-06-01

    Develop a process for assessing climate change impacts on public health that identifies climate-health vulnerabilities and mechanisms and encourages adaptation. Multi-stakeholder, participatory, qualitative research. A Climate Change Health Assessment (CCHA) was developed that involved 4 steps: (1) scoping to describe local conditions and engage stakeholders; (2) surveying to collect descriptive and quantitative data; (3) analysis to evaluate the data; and (4) planning to communicate findings and explore appropriate actions with community members. The health effects related to extreme weather, thinning ice, erosion, flooding, thawing permafrost and changing conditions of water and food resources were considered. The CCHA process was developed and performed in north-west Arctic villages. Refinement of the process took place in Point Hope, a coastal Inupiat village that practices whaling and a variety of other traditional subsistence harvest practices. Local observers identified climate change impacts that resulted in damaged health infrastructure, compromised food and water security and increased risk of injury. Priority health issues included thawing traditional ice cellars, diminished quality of the community water source and increased safety issues related to sea ice change. The CCHA increased awareness about health vulnerability and encouraged informed planning and decision-making. A community-scale assessment process guided by observation-based data can identify climate health impacts, raise awareness and encourage adaptive actions, thereby improving the response capacity of communities vulnerable to climate change.

  7. Regional climate change mitigation with crops: context and assessment.

    Science.gov (United States)

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  8. Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment

    Directory of Open Access Journals (Sweden)

    Iain Brown

    2015-11-01

    Full Text Available Risk assessment can potentially provide an objective framework to synthesise and prioritise climate change risks to inform adaptation policy. However, there are significant challenges in the application of comparative risk assessment procedures to climate change, particularly for the natural environment. These challenges are evaluated with particular reference to the first statutory Climate Change Risk Assessment (CCRA and evidence review procedures used to guide policy for the UK government. More progress was achieved on risk identification, screening and prioritisation compared to risk quantification. This was due to the inherent complexity and interdependence of ecological risks and their interaction with socio-economic drivers as well as a climate change. Robust strategies to manage risk were identified as those that coordinate organisational resources to enhance ecosystem resilience, and to accommodate inevitable change, rather than to meet specific species or habitats targets. The assessment also highlighted subjective and contextual components of risk appraisal including ethical issues regarding the level of human intervention in the natural environment and the proposed outcomes of any intervention. This suggests that goals for risk assessment need to be more clearly explicated and assumptions on tolerable risk declared as a primer for further dialogue on expectations for managed outcomes. Ecosystem-based adaptation may mean that traditional habitats and species conservation goals and existing regulatory frameworks no longer provide the best guide for long-term risk management thereby challenging the viability of some existing practices.

  9. Ensemble tropical-extratropical cyclone coastal flood hazard assessment with climate change

    Science.gov (United States)

    Orton, P. M.; Lin, N.; Colle, B.

    2016-12-01

    A challenge with quantifying future changes in coastal flooding for the U.S. East Coast is that climate change has varying effects on different types of storms, in addition to raising mean sea levels. Moreover, future flood hazard uncertainties are large and come from many sources. Here, a new coastal flood hazard assessment approach is demonstrated that separately evaluates and then combines probabilities of storm tide generated from tropical cyclones (TCs) and extratropical cyclones (ETCs). The separation enables us to incorporate climate change impacts on both types of storms. The assessment accounts for epistemic storm tide uncertainty using an ensemble of different prior studies and methods of assessment, merged with uncertainty in climate change effects on storm tides and sea levels. The assessment is applied for New York Harbor, under the auspices of the New York City Panel on Climate Change (NPCC). In the New York Bight region and much of the U.S. East Coast, differing flood exceedance curve slopes for TCs and ETCs arise due to their differing physics. It is demonstrated how errors can arise for this region from mixing together storm types in an extreme value statistical analysis, a common practice when using observations. The effects of climate change on TC and ETC flooding have recently been assessed for this region, for TCs using a Global Climate Model (GCM) driven hurricane model with hydrodynamic modeling, and for ETCs using a GCM-driven multilinear regression-based storm surge model. The results of these prior studies are applied to our central estimates of the flood exceedance curve probabilities, transforming them for climate change effects. The results are useful for decision-makers because they highlight the large uncertainty in present-day and future flood risk, and also for scientists because they identify the areas where further research is most needed.

  10. Incorporating climate change into ecosystem service assessments and decisions: a review.

    Science.gov (United States)

    Runting, Rebecca K; Bryan, Brett A; Dee, Laura E; Maseyk, Fleur J F; Mandle, Lisa; Hamel, Perrine; Wilson, Kerrie A; Yetka, Kathleen; Possingham, Hugh P; Rhodes, Jonathan R

    2017-01-01

    Climate change is having a significant impact on ecosystem services and is likely to become increasingly important as this phenomenon intensifies. Future impacts can be difficult to assess as they often involve long timescales, dynamic systems with high uncertainties, and are typically confounded by other drivers of change. Despite a growing literature on climate change impacts on ecosystem services, no quantitative syntheses exist. Hence, we lack an overarching understanding of the impacts of climate change, how they are being assessed, and the extent to which other drivers, uncertainties, and decision making are incorporated. To address this, we systematically reviewed the peer-reviewed literature that assesses climate change impacts on ecosystem services at subglobal scales. We found that the impact of climate change on most types of services was predominantly negative (59% negative, 24% mixed, 4% neutral, 13% positive), but varied across services, drivers, and assessment methods. Although uncertainty was usually incorporated, there were substantial gaps in the sources of uncertainty included, along with the methods used to incorporate them. We found that relatively few studies integrated decision making, and even fewer studies aimed to identify solutions that were robust to uncertainty. For management or policy to ensure the delivery of ecosystem services, integrated approaches that incorporate multiple drivers of change and account for multiple sources of uncertainty are needed. This is undoubtedly a challenging task, but ignoring these complexities can result in misleading assessments of the impacts of climate change, suboptimal management outcomes, and the inefficient allocation of resources for climate adaptation. © 2016 John Wiley & Sons Ltd.

  11. A quantitative method for risk assessment of agriculture due to climate change

    Science.gov (United States)

    Dong, Zhiqiang; Pan, Zhihua; An, Pingli; Zhang, Jingting; Zhang, Jun; Pan, Yuying; Huang, Lei; Zhao, Hui; Han, Guolin; Wu, Dong; Wang, Jialin; Fan, Dongliang; Gao, Lin; Pan, Xuebiao

    2018-01-01

    Climate change has greatly affected agriculture. Agriculture is facing increasing risks as its sensitivity and vulnerability to climate change. Scientific assessment of climate change-induced agricultural risks could help to actively deal with climate change and ensure food security. However, quantitative assessment of risk is a difficult issue. Here, based on the IPCC assessment reports, a quantitative method for risk assessment of agriculture due to climate change is proposed. Risk is described as the product of the degree of loss and its probability of occurrence. The degree of loss can be expressed by the yield change amplitude. The probability of occurrence can be calculated by the new concept of climate change effect-accumulated frequency (CCEAF). Specific steps of this assessment method are suggested. This method is determined feasible and practical by using the spring wheat in Wuchuan County of Inner Mongolia as a test example. The results show that the fluctuation of spring wheat yield increased with the warming and drying climatic trend in Wuchuan County. The maximum yield decrease and its probability were 3.5 and 64.6%, respectively, for the temperature maximum increase 88.3%, and its risk was 2.2%. The maximum yield decrease and its probability were 14.1 and 56.1%, respectively, for the precipitation maximum decrease 35.2%, and its risk was 7.9%. For the comprehensive impacts of temperature and precipitation, the maximum yield decrease and its probability were 17.6 and 53.4%, respectively, and its risk increased to 9.4%. If we do not adopt appropriate adaptation strategies, the degree of loss from the negative impacts of multiclimatic factors and its probability of occurrence will both increase accordingly, and the risk will also grow obviously.

  12. Validating a work group climate assessment tool for improving the performance of public health organizations

    Directory of Open Access Journals (Sweden)

    Tracy Allison

    2005-10-01

    Full Text Available Abstract Background This article describes the validation of an instrument to measure work group climate in public health organizations in developing countries. The instrument, the Work Group Climate Assessment Tool (WCA, was applied in Brazil, Mozambique, and Guinea to assess the intermediate outcomes of a program to develop leadership for performance improvement. Data were collected from 305 individuals in 42 work groups, who completed a self-administered questionnaire. Methods The WCA was initially validated using Cronbach's alpha reliability coefficient and exploratory factor analysis. This article presents the results of a second validation study to refine the initial analyses to account for nested data, to provide item-level psychometrics, and to establish construct validity. Analyses included eigenvalue decomposition analysis, confirmatory factor analysis, and validity and reliability analyses. Results This study confirmed the validity and reliability of the WCA across work groups with different demographic characteristics (gender, education, management level, and geographical location. The study showed that there is agreement between the theoretical construct of work climate and the items in the WCA tool across different populations. The WCA captures a single perception of climate rather than individual sub-scales of clarity, support, and challenge. Conclusion The WCA is useful for comparing the climates of different work groups, tracking the changes in climate in a single work group over time, or examining differences among individuals' perceptions of their work group climate. Application of the WCA before and after a leadership development process can help work groups hold a discussion about current climate and select a target for improvement. The WCA provides work groups with a tool to take ownership of their own group climate through a process that is simple and objective and that protects individual confidentiality.

  13. Validating a work group climate assessment tool for improving the performance of public health organizations

    Science.gov (United States)

    Perry, Cary; LeMay, Nancy; Rodway, Greg; Tracy, Allison; Galer, Joan

    2005-01-01

    Background This article describes the validation of an instrument to measure work group climate in public health organizations in developing countries. The instrument, the Work Group Climate Assessment Tool (WCA), was applied in Brazil, Mozambique, and Guinea to assess the intermediate outcomes of a program to develop leadership for performance improvement. Data were collected from 305 individuals in 42 work groups, who completed a self-administered questionnaire. Methods The WCA was initially validated using Cronbach's alpha reliability coefficient and exploratory factor analysis. This article presents the results of a second validation study to refine the initial analyses to account for nested data, to provide item-level psychometrics, and to establish construct validity. Analyses included eigenvalue decomposition analysis, confirmatory factor analysis, and validity and reliability analyses. Results This study confirmed the validity and reliability of the WCA across work groups with different demographic characteristics (gender, education, management level, and geographical location). The study showed that there is agreement between the theoretical construct of work climate and the items in the WCA tool across different populations. The WCA captures a single perception of climate rather than individual sub-scales of clarity, support, and challenge. Conclusion The WCA is useful for comparing the climates of different work groups, tracking the changes in climate in a single work group over time, or examining differences among individuals' perceptions of their work group climate. Application of the WCA before and after a leadership development process can help work groups hold a discussion about current climate and select a target for improvement. The WCA provides work groups with a tool to take ownership of their own group climate through a process that is simple and objective and that protects individual confidentiality. PMID:16223447

  14. An integrated vulnerability index for socio-climate risk assessment over the continental United States

    Science.gov (United States)

    Batıbeniz, Fulden; Ashfaq, Moetasim; Preston, Ben; Pagan, Brianna; Rastogi, Deeksha

    2017-04-01

    There is no clear knowledge towards the collective risk associated with multivariate extremes for natural and human systems, as the research thus far has not taken into account the combined impact of changes in hot, cold, wet and dry extremes. Concurrently, not all the factors influencing human vulnerability to climate change are related with natural system's response to climate forcing as future changes in both the magnitude and the distribution of human population and income levels can potentially multiply or reduce the risk of human exposure to climatic changes. For a comprehensive socio-climate risk assessment, a county-level integrated vulnerability index is developed in this study to provide an estimate of future exposure to both changes in climate extremes and socioeconomic conditions over the continental United States. The integrated vulnerability index is based on the combination of a unified climate extremes indices, which summarize overall exposure to multivariate and multidimensional climate extremes, including hot, cold, wet and dry, and shared socioeconomic pathways, which identify communities at risk based on projected population and income levels. We will present results from the application of the proposed integrated vulnerability index on a high-resolution (4km) 11-member ensemble of regional climate simulations and multiple socioeconomic pathways, aggregated at county scale, which cover 1966-2005 in the baseline and 2011-2050 in the near-term future climate under Representative Concentration Pathway 8.5. Overall, this research should help advance robust strategies for assessing the risk and vulnerability associated with projected changes in temperature and precipitation characteristics, as well as socioeconomic conditions.

  15. Assessing the potential of translocating vulnerable forest birds by searching for novel and enduring climatic ranges

    Science.gov (United States)

    Fortini, Lucas B.; Kaiser, Lauren R.; Vorsino, Adam E.; Paxton, Eben H.; Jacobi, James D.

    2017-01-01

    Hawaiian forest birds are imperiled, with fewer than half the original >40 species remaining extant. Recent studies document ongoing rapid population decline and pro- ject complete climate-based range losses for the critically endangered Kaua’i endemics ‘akeke’e (Loxops caeruleirostris) and ‘akikiki (Oreomystis bairdi) by end-of-century due to projected warming. Climate change facilitates the upward expansion of avian malaria into native high elevation forests where disease was historically absent. While intensi- fied conservation efforts attempt to safeguard these species and their habitats, the magnitude of potential loss and the urgency of this situation require all conservation options to be seriously considered. One option for Kaua’i endemics is translocation to islands with higher elevation habitats. We explored the feasibility of interisland translocation by projecting baseline and future climate-based ranges of ‘akeke’e and ‘akikiki across the Hawaiian archipelago. For islands where compatible climates for these spe- cies were projected to endure through end-of-century, an additional climatic niche overlap analysis compares the spatial overlap between Kaua’i endemics and current native species on prospective destination islands. Suitable climate-based ranges exist on Maui and Hawai’i for these Kaua’i endemics that offer climatically distinct areas compared to niche distributions of destination island endemics. While we recognize that any decision to translocate birds will include assessing numerous additional social, political, and biological factors, our focus on locations of enduring and ecologically compatible climate-based ranges represents the first step to evaluate this potential conservation option. Our approach considering baseline and future distributions of species with climatic niche overlap metrics to identify undesirable range overlap provides a method that can be utilized for other climate-vulnerable species with

  16. OBJECTIVE AND SUBJECTIVE IN AN ASSESSMENT OF THE DANGER OF THE CONSEQUENCES OF PEACEFUL NUCLEAR EXPLOSIONS ON THE EXAMPLE OF FACILITY «DNEPR»

    Directory of Open Access Journals (Sweden)

    E. V. Hramcov

    2015-01-01

    Full Text Available The purpose of research was to assess the dynamics of the changes during the five-year period (from 2008 to 2013 of the radiation situation in the territory adjacent to the places of the peaceful nuclear explosions of the “Dnepr” series in the Murmansk region, the analysis of information environment of the subject in the Internet and the study of the population public opinion.Gamma-radiation dose rate registered in the investigated territory in 2013 (140 – 180 nSv/h corresponded to the natural radiation background, characteristic for the Khibiny. The average content of 137Cs in soil is comparable to the level of the global fallout contamination. Levels of the artificial radionuclides concentration in the samples of natural foodstuffs (mushrooms and berries were found in 2013 to be much lower than corresponded permissible levels. Values of the 3H specific activity for the water samples from the surface and underground sources sampled in 2013 decreased more than in 1,5 times in comparing with 2008 and have not exceeded the interventional level – 7600 Bq/kg. Exposure doses estimated for the critical group of population Exposure doses estimated in 2013 for the critical groups of population have not exceeded the dose limit adopted in RSS-99/2009. The interest of population to the mentioned problem has not been pointed out on the basic of the analysis of publications electronic versions in mass media for 2013. The comparative analysis of the results of the survey showed that level of public concern over the radiation environment in their places of residence has been low in 2008 and even lower in 2013. With a low level of the knowledge concerning radiation respondents found their significant interest for the issues relating radiation, its effects on the health and radiation protection measures.Along with the radiation-hygienic monitoring, it is necessary to conduct regular activities aimed on the population informing about the

  17. The Assessment of Vulnerability of Industrial Parks to Climate Change in South Korea

    Science.gov (United States)

    Ryu, J. E.; Lee, D. K.; Jung, T. Y.; Choi, K. L.; Lee, S. H.

    2014-12-01

    Many countries are developing policy and measures to adapt to climate changes at the national and local levels, but the assessment of vulnerability to climate change and the establishment of countermeasures in the industries considering industrial factors such as worker, infrastructure are insufficient due to the characteristics of diverse processes and fields. In South Korea, the national government provides infrastructures for industrial parks where various companies in manufacturing and other industries are concentrated . Because of their concentration, damages can aggravate in case of natural disasters such as typhoons. In this study, vulnerability indices for climate change were developed and evaluated using climate scenarios for the climate exposure of localized terrential downpour for eight industrial parks. The vulnerability indices were selected and reviewed through literature review and two in-depth interviews with experts in various industries, and the assessment of vulnerability to climate change was conducted by collecting relevant information including the Directory of Industrial Complexes. The vulnerability of each industrial park to climate change was assessed for four time serious such as the base line, 2020s, 2050s, and 2100s . As a result, even though the possibility of localized heavy rain was the highest in Yeosu(Southeast coast) at present, but it was predicted that Gwangyang(Southwest coast) will be higher in the future. For the influences of climate including sensitivity, Ulsan Mipo(Southeast coast) is currently under the highest influence of climate, but the Gumi(Inland area) was forecasted to be under the highest influence of climate in the future. As a result of the assessment of vulnerability to climate change including adaptive capacity, Gumi and Myongji Noksan(Southeast coast) were most vulnerable to localized heavy rain. The degree of vulnerability of all the industrial parks except Ulsan and Yeosu was forecasted to increase in the

  18. A Review of Studies of Danger Perception and Prospects of its Study in Clinical Psychology Development

    Directory of Open Access Journals (Sweden)

    Veschikova M.I.,

    2015-02-01

    Full Text Available The objective of studies of danger perception is to predict the behavior of a person, group, or society in terms of the potential hazard, to identify the main groups of factors that affect the risk assessment and sources of distortion of the evaluation. The review presents the sociological theories of danger, reveals the gender differences in the danger perception, and describes in details the individual factors of danger perception. We discuss the prospects of studying the outside world danger perception in clinical psychology of development. We emphasize that the key period for the development of danger assessment process is adolescence, because this is the age when most significant quantitative and qualitative changes in the cognitive sphere occur: the development of abstract logical thinking, increased interest to the life and death, the appearance of “personal myth”.

  19. Learning and enhanced climate representation in integrated assessment models. Final report, September 1994--May 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kolstad, C.D.

    1997-12-31

    The objective of the project is to enhance capabilities for integrated-assessment modeling in two major areas: learning/R and D/information acquisition and the nexus between climate dynamics and climate impacts. In the first of these areas, the author`s objective is to improve the way in which economic models deal with learning (endogenous and/or exogenous) within an economy. This would obviously include the R and D process, whereby knowledge about climate change (and many other things) is acquired over time and influences regulatory actions. The work in climate dynamics is focused in part on incorporating the regional climate-change results from equilibrium and transient general circulation model (GCM) simulations in the simplified integrated-assessment model. While the work is generic and therefore applicable to any integrated-assessment model, it is done in the context of a standard Ramsey growth model. Thus, the work involves theoretical conceptualization, empirical implementation in an integrated-assessment model, and analysis using that model.

  20. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Climatic change of summer temperature and precipitation in the Alpine region - a statistical-dynamical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D.; Sept, V.

    1998-12-01

    Climatic changes in the Alpine region due to increasing greenhouse gas concentrations are assessed by using statistical-dynamical downscaling. The downscaling procedure is applied to two 30-year periods (1971-2000 and 2071-2100, summer months only) of the output of a transient coupled ocean/atmosphere climate scenario simulation. The downscaling results for the present-day climate are in sufficient agreement with observations. The estimated regional climate change during the next 100 years shows a general warming. The mean summer temperatures increase by about 3 to more than 5 Kelvin. The most intense climatic warming is predicted in the western parts of the Alps. The amount of summer precipitation decreases in most parts of central Europe by more than 20 percent. Only over the Adriatic area and parts of eastern central Europe an increase in precipitation is simulated. The results are compared with observed trends and results of regional climate change simulations of other authors. The observed trends and the majority of the simulated trends agree with our results. However, there are also climate change estimates which completely contradict with ours. (orig.) 29 refs.

  2. Review: Assessing the climate mitigation potential of biomass

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2016-12-01

    Full Text Available For many millennia, humans have used biomass for three broad purposes: food for humans and fodder for farm animals; energy; and materials. Food has always been exclusively produced from biomass, and in the year 1800, biomass still accounted for about 95% of all energy. Biomass has also been a major source of materials for construction, implements, clothing, bedding and other uses, but some researchers think that total human uses of biomass will soon reach limits of sustainability. It is thus important to select those biomass uses that will maximise global climate change benefits. With a ‘food first’ policy, it is increasingly recognised that projections of food needs are important for estimating future global bioenergy potential, and that non-food uses of biomass can be increased by both food crop yield improvements and dietary changes. However, few researchers have explicitly included future biomaterials production as a factor in bioenergy potential. Although biomaterials’ share of the materials market has roughly halved over the past quarter-century, we show that per tonne of biomass, biomaterials will usually allow greater greenhouse gas reductions than directly using biomass for bioenergy. particularly since in many cases, biomaterials can be later burnt for energy after their useful life.

  3. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States); Bohac, Dave [NorthernSTAR, St. Paul, MN (United States); McAlpine, Jack [NorthernSTAR, St. Paul, MN (United States); Hewett, Martha [NorthernSTAR, St. Paul, MN (United States)

    2017-06-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called "combi" systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  4. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, Dave [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; McAlpine, Jake [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Hewett, Martha [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-06-23

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called 'combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  5. Climate change assessment for Mediterranean agricultural areas by statistical downscaling

    Directory of Open Access Journals (Sweden)

    L. Palatella

    2010-07-01

    Full Text Available In this paper we produce projections of seasonal precipitation for four Mediterranean areas: Apulia region (Italy, Ebro river basin (Spain, Po valley (Italy and Antalya province (Turkey. We performed the statistical downscaling using Canonical Correlation Analysis (CCA in two versions: in one case Principal Component Analysis (PCA filter is applied only to predictor and in the other to both predictor and predictand. After performing a validation test, CCA after PCA filter on both predictor and predictand has been chosen. Sea level pressure (SLP is used as predictor. Downscaling has been carried out for the scenarios A2 and B2 on the basis of three GCM's: the CCCma-GCM2, the Csiro-MK2 and HadCM3. Three consecutive 30-year periods have been considered. For Summer precipitation in Apulia region we also use the 500 hPa temperature (T500 as predictor, obtaining comparable results. Results show different climate change signals in the four areas and confirm the need of an analysis that is capable of resolving internal differences within the Mediterranean region. The most robust signal is the reduction of Summer precipitation in the Ebro river basin. Other significative results are the increase of precipitation over Apulia in Summer, the reduction over the Po-valley in Spring and Autumn and the increase over the Antalya province in Summer and Autumn.

  6. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  7. Central Hardwoods ecosystem vulnerability assessment and synthesis: a report from the Central Hardwoods Climate Change Response Framework project

    Science.gov (United States)

    Leslie Brandt; Hong He; Louis Iverson; Frank R. Thompson; Patricia Butler; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Matthew Albrecht; Richard Blume-Weaver; Paul Deizman; John DePuy; William D. Dijak; Gary Dinkel; Songlin Fei; D. Todd Jones-Farrand; Michael Leahy; Stephen Matthews; Paul Nelson; Brad Oberle; Judi Perez; Matthew Peters; Anantha Prasad; Jeffrey E. Schneiderman; John Shuey; Adam B. Smith; Charles Studyvin; John M. Tirpak; Jeffery W. Walk; Wen J. Wang; Laura Watts; Dale Weigel; Steve. Westin

    2014-01-01

    The forests in the Central Hardwoods Region will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of terrestrial ecosystems in the Central Hardwoods Region of Illinois, Indiana, and Missouri to a range of future climates. Information on current forest conditions, observed climate trends,...

  8. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  9. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Olesen, Jørgen E

    2011-01-01

    Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled w...... the importance of including soil information for regional studies of climate change impacts on cropping systems....

  10. Ecosystem vulnerability assessment and synthesis: a report from the Climate Change Response Framework Project in northern Wisconsin

    Science.gov (United States)

    Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery. Dorland

    2011-01-01

    The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...

  11. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-01-01

    There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation...... basic assumptions in the economic analysis and the hydrological model, but also from the projection of future societies to local climate change impacts and suitable adaptation options. This presents a challenge to decision makers when trying to identify robust measures. We present an integrated...... of risk changes over time. The overall uncertainty is then attributed to six bulk processes: climate change impact, urban rainfall-runoff processes, stage-depth functions, unit cost of repair, cost of adaptation measures, and discount rate. We apply the approach on an urban hydrological catchment...

  12. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute...... to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics......, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa...

  13. Impact assessment and coastal climate change adaptation in a local transdisciplinary perspective

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, N. H.; Knudsen, Per

    From an applied point of view, the authors present and discuss inter- and transdisciplinary approaches to assess and deal with natural coastal hazards and climate change impacts. The construction of a shared working platform for knowledge integration across levels of governance and between research...... of climate change. The platform is dynamically updated with additional data and knowledge, e.g. from climate change evidence, or, by provision of updated regional models of future sea level rise. In order to integrate natural hazards and impact development over time, models on hydrology, geology...... a more prominent role. For example, the investment and maintenance costs of securing functional water and wastewater pipes are significantly reduced by incorporation of knowledge about climate change impacts. The presented approaches yield an integrative process-oriented framework to handle uncertainties...

  14. The integration of climatic data sets for wind resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.N.; Elliott, D.L.

    1997-09-01

    One barrier to wind energy development, in many regions of the world, is the lack of reliable information about the spacial distribution of the wind energy resource. The goal of the U.S. Department of Energy (DOE) Wind Energy Program`s wind resource assessment group is to improve the characterization of the wind resource in many of these regions in support of U.S. wind energy industry. NREL provides wind resource assessments for our clients in the form of reports, atlases, and wind resource maps. The assessments estimate the level of the wind resource, at wind turbine hub heights (typically 30m to 50m above ground level), for locations exposed to the prevailing winds.

  15. The dangers of sports journalism

    DEFF Research Database (Denmark)

    Sparre, Kirsten

    2017-01-01

    According to The Committee to Protect Journalists, 2 per cent of all journalists killed since 1992 worked on the sports beat. However, at present there is little understanding of the specific dangers faced by sports journalists. This chapter presents findings from exploratory research on 78 reports......, attacks, personal and social media harrassment, detention, legal pressure, and killings. The key perpetrators identified in the sample were fans, athletes and coaches, owners and officials of sports clubs and national associations, international sports federations, and authorities in authoritarian regimes...

  16. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.

    Directory of Open Access Journals (Sweden)

    Peter B Moyle

    Full Text Available Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1 current status of each species (baseline vulnerability to extinction and (2 likely future impacts of climate change (vulnerability to extinction. Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish

  17. Assessing Climate Change Impacts on Electric Power Generation in the Western Interconnection

    Science.gov (United States)

    Bartos, M. D.; Chester, M.

    2014-12-01

    In recent years, concerns have grown over the potential impacts of climate change on electricity generation. Water resources are integral to the production of thermoelectric and hydroelectric power, and droughts are expected to become more frequent, severe, and longer-lasting over the course of the twenty-first century. Many generation technologies—including gas turbines and solar cells—are also vulnerable to changes in local climatic conditions like ambient air temperature. As extreme weather becomes more common, methods are needed to assess the impacts of climate change on regional power systems. However, these methods must also account for (1) heterogeneity in generation technologies, and (2) local variation in climatic conditions. This study uses a physically-based modeling system to assess the vulnerability of electric power infrastructure in the Western Interconnection. Climatic and hydrologic parameters relevant to power generation are identified for six generation technologies. Downscaled climate forcings are then used as inputs to a physically-based modeling system, consisting of the Variable Infiltration Capacity (VIC) hydrological model and the RBM one-dimensional stream temperature model. Impacts to generating capacity are estimated directly from changes in modeled climatic and hydrologic parameters, using functional relationships unique to each generating technology. A preliminary analysis of 1,302 power stations in the Western Interconnection reveals decreases in summertime generating capacity of 8-22%, with the largest impacts occurring at thermoelectric and hydroelectric facilities in the Pacific Northwest and California. Impacts to base-load thermoelectric plants are mitigated by recirculating cooling systems, which reduce the performance penalty of low flows and high water temperatures. Climate impacts on solar and wind capacity are relatively small, indicating that these energy sources may play a more prominent role as conventional generation

  18. Strategies for Integrating Content from the USGCRP Climate and Health Assessment into the K-12 Classroom

    Science.gov (United States)

    Haine, D. B.

    2016-12-01

    That the physical environment shapes the lives and behaviors of people is certainly not news, but communicating the impact of a changing climate on human health and predicting the trajectory of these changes is an active area of study in public health. From air quality concerns to extreme heat to shifts in the range of disease vectors, there are many opportunities to make connections between Earth's changing climate and human health. While many science teachers understand that addressing human health impacts as a result of a changing climate can provide needed relevance, it can be challenging for teachers to do so given an already packed curriculum. This session will share instructional strategies for integrating content from the USGCRP Climate and Health Assessment (CHA) by enhancing, rather than displacing content related to climate science. This presentation will feature a data interpretation activity developed in collaboration with geoscientists at the University of North Carolina's Gillings School of Public Health to convey the connection between air quality, climate change and human health. This classroom activity invites students to read excerpts from the CHA and interpret data presented in the scientific literature, thus promoting scientific literacy. In summarizing this activity, I will highlight strategies for effectively engaging geoscientists in developing scientifically rigorous, STEM-focused educational activities that are aligned to state and national science standards and also address the realities of the science classroom. Collaborating with geoscientists and translating their research into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Thus, the USGCRP Climate and Health Assessment represents an opportunity to cultivate science literacy among K-12 students while providing relevant learning experiences that promote integration of science and engineering practices as

  19. Dangerous and severe personality disorder: an ethical concept?

    Science.gov (United States)

    Glen, Sally

    2005-04-01

    Most clinicians and mental health practitioners are reluctant to work with people with dangerous and severe personality disorders because they believe there is nothing that mental health services can offer. Dangerous and severe personality disorder also signals a diagnosis which is problematic morally. Moral philosophy has not found an adequate way of dealing with personality disorders. This paper explores the question: What makes a person morally responsible for his actions and what is a legitimate mitigating factor? How do psychiatric nurses working with this client group understand the awful things some clients do? What concepts do they need, if they are to know how to explain and how to react? It is suggested that dangerous and severe personality disorder is best regarded as a moral category, framed in terms of goodness, badness, obligation and other ethical concepts. It seems plausible that in important ways the dangerous and severe personality disordered client does not understand morality or understands it differently. The peculiar position of the dangerous and severe personality disordered individual in our system of moral responsibility stems from his apparent inability to see the importance of the interests of others. It might be more helpful to regard personality disordered clients as we do children: partially but not fully reasonable for their actions. We might regard the dangerous and severe personality disordered client responsible for those actions which he most clearly understands, such as causing others physical pain, but not for those with which he is only superficially engaged, such as causing emotional pain. The paper concludes by suggesting that the dangerous and severe personality disordered individual does not fit easily into any conventional moral category, be it criminal, patient, animal or child, and thus an assessment of his moral accountability must take into consideration his special circumstances.

  20. An Assessment of Climate Change Impacts on Los Angeles (California USA) Hospitals, Wildfires Highest Priority.

    Science.gov (United States)

    Adelaine, Sabrina A; Sato, Mizuki; Jin, Yufang; Godwin, Hilary

    2017-10-01

    Introduction Although many studies have delineated the variety and magnitude of impacts that climate change is likely to have on health, very little is known about how well hospitals are poised to respond to these impacts. Hypothesis/Problem The hypothesis is that most modern hospitals in urban areas in the United States need to augment their current disaster planning to include climate-related impacts. Using Los Angeles County (California USA) as a case study, historical data for emergency department (ED) visits and projections for extreme-heat events were used to determine how much climate change is likely to increase ED visits by mid-century for each hospital. In addition, historical data about the location of wildfires in Los Angeles County and projections for increased frequency of both wildfires and flooding related to sea-level rise were used to identify which area hospitals will have an increased risk of climate-related wildfires or flooding at mid-century. Only a small fraction of the total number of predicted ED visits at mid-century would likely to be due to climate change. By contrast, a significant portion of hospitals in Los Angeles County are in close proximity to very high fire hazard severity zones (VHFHSZs) and would be at greater risk to wildfire impacts as a result of climate change by mid-century. One hospital in Los Angeles County was anticipated to be at greater risk due to flooding by mid-century as a result of climate-related sea-level rise. This analysis suggests that several Los Angeles County hospitals should focus their climate-change-related planning on building resiliency to wildfires. Adelaine SA , Sato M , Jin Y , Godwin H . An assessment of climate change impacts on Los Angeles (California USA) hospitals, wildfires highest priority. Prehosp Disaster Med. 2017;32(5):556-562.

  1. An assessment of yield gains under climate change due to genetic modification of pearl millet.

    Science.gov (United States)

    Singh, Piara; Boote, K J; Kadiyala, M D M; Nedumaran, S; Gupta, S K; Srinivas, K; Bantilan, M C S

    2017-12-01

    Developing cultivars with traits that can enhance and sustain productivity under climate change will be an important climate smart adaptation option. The modified CSM-CERES-Pearl millet model was used to assess yield gains by modifying plant traits determining crop maturity duration, potential yield and tolerance to drought and heat in pearl millet cultivars grown at six locations in arid (Hisar, Jodhpur, Bikaner) and semi-arid (Jaipur, Aurangabad and Bijapur) tropical India and two locations in semi-arid tropical West Africa (Sadore in Niamey and Cinzana in Mali). In all the study locations the yields decreased when crop maturity duration was decreased by 10% both in current and future climate conditions; however, 10% increase in crop maturity significantly (pclimate situations in India and West Africa. Drought tolerance imparted the lowest yield gain at Aurangabad (6%), the highest at Sadore (30%) and intermediate at the other locations under current climate. Under climate change the contribution of drought tolerance to the yield of cultivars either increased or decreased depending upon changes in rainfall of the locations. Yield benefits of heat tolerance substantially increased under climate change at most locations, having the greatest effects at Bikaner (17%) in India and Sadore (13%) in West Africa. Aurangabad and Bijapur locations had no yield advantage from heat tolerance due to their low temperature regimes. Thus drought and heat tolerance in pearl millet increased yields under climate change in both the arid and semi-arid tropical climates with greater benefit in relatively hotter environments. This study will assists the plant breeders in evaluating new promising plant traits of pearl millet for adapting to climate change at the selected locations and other similar environments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Climate uncertainty and implications for U.S. state-level risk assessment through 2050.

    Energy Technology Data Exchange (ETDEWEB)

    Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.; Tidwell, Vincent Carroll; Stamber, Kevin Louis; Kelic, Andjelka; Backus, George A.; Warren, Drake E.; Zagonel, Aldo A.; Ehlen, Mark Andrew; Klise, Geoffrey T.; Vargas, Vanessa N.

    2009-10-01

    Decisions for climate policy will need to take place in advance of climate science resolving all relevant uncertainties. Further, if the concern of policy is to reduce risk, then the best-estimate of climate change impacts may not be so important as the currently understood uncertainty associated with realizable conditions having high consequence. This study focuses on one of the most uncertain aspects of future climate change - precipitation - to understand the implications of uncertainty on risk and the near-term justification for interventions to mitigate the course of climate change. We show that the mean risk of damage to the economy from climate change, at the national level, is on the order of one trillion dollars over the next 40 years, with employment impacts of nearly 7 million labor-years. At a 1% exceedance-probability, the impact is over twice the mean-risk value. Impacts at the level of individual U.S. states are then typically in the multiple tens of billions dollar range with employment losses exceeding hundreds of thousands of labor-years. We used results of the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) climate-model ensemble as the referent for climate uncertainty over the next 40 years, mapped the simulated weather hydrologically to the county level for determining the physical consequence to economic activity at the state level, and then performed a detailed, seventy-industry, analysis of economic impact among the interacting lower-48 states. We determined industry GDP and employment impacts at the state level, as well as interstate population migration, effect on personal income, and the consequences for the U.S. trade balance.

  3. Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy)

    Science.gov (United States)

    Avolio, Elenio; Orlandi, Fabio; Bellecci, Carlo; Fornaciari, Marco; Federico, Stefano

    2012-02-01

    In phenological studies, plant development and its relationship with meteorological conditions are considered in order to investigate the influence of climatic changes on the characteristics of many crop species. In this work, the impact of climate change on the flowering of the olive tree ( Olea europaea L.) in Calabria, southern Italy, has been studied. Olive is one of the most important plant species in the Mediterranean area and, at the same time, Calabria is one of the most representative regions of this area, both geographically and climatically. The work is divided into two main research activities. First, the behaviour of olive tree in Calabria and the influence of temperature on phenological phases of this crop are investigated. An aerobiological method is used to determine the olive flowering dates through the analysis of pollen data collected in three experimental fields for an 11-year study period (1999-2009). Second, the study of climate change in Calabria at high spatial and temporal resolution is performed. A dynamical downscaling procedure is applied for the regionalization of large-scale climate analysis derived from general circulation models for two representative climatic periods (1981-2000 and 2081-2100); the A2 IPCC scenario is used for future climate projections. The final part of this work is the integration of the results of the two research activities to predict the olive flowering variation for the future climatic conditions. In agreement with our previous works, we found a significant correlation between the phenological phases and temperature. For the twenty-first century, an advance of pollen season in Calabria of about 9 days, on average, is expected for each degree of temperature rise. From phenological model results, on the basis of future climate predictions over Calabria, an anticipation of maximum olive flowering between 10 and 34 days is expected, depending on the area. The results of this work are useful for adaptation and

  4. Assessing climatic trends of extreme rainfall indices over northeast Bangladesh

    Science.gov (United States)

    Basher, Md. Abul; Stiller-Reeve, Mathew Alexander; Saiful Islam, A. K. M.; Bremer, Scott

    2017-10-01

    This study analyzes the trends of extreme rainfall indices over northeast Bangladesh for the period of 1984 to 2016 for the pre-monsoon and monsoon seasons. The research was framed as part of a project co-producing knowledge of climate variability and impacts through collaboration between scientific and local communities in northeast Bangladesh, which found pre-monsoon and monsoon rainfall to be most important. With access to a greater number of rainfall stations than previous work in northeast Bangladesh, we investigated trends in extreme rainfall events using the Mann-Kendall trend test and Sen's slope estimator. To appraise the quality of the data, we used the Standard Normal Homogeneity and the Pettitt tests to check its homogeneity. Among the seven stations, only Sunamganj was found inhomogeneous, and was not considered for trend analysis. All indices of rainfall extremes showed a decreasing trend in both seasons, with the most significant decrease during the monsoon. Importantly, we saw a decreasing trend in the seasonal total rainfall and consecutive wet days, whereas there was an increasing trend in consecutive dry days. Moreover, we saw a decreasing trend in 1-day maximum rainfall, 5-day maximum rainfall, the intensity of the daily rainfall over 25 mm during the pre-monsoon and 50 mm during monsoon, which together may indicate a future decrease in the magnitude and intensity of flash floods and monsoon floods. If this trend continues, the northeast Bangladesh may suffer from water stress, which could affect the lives and livelihoods of communities living there.

  5. Assessing atmospheric temperature data sets for climate studies

    Directory of Open Access Journals (Sweden)

    Magnus Cederlöf

    2016-07-01

    Full Text Available Observed near-surface temperature trends during the period 1979–2014 show large differences between land and ocean, with positive values over land (0.25–0.27 °C/decade that are significantly larger than over the ocean (0.06–0.12 °C/decade. Temperature trends in the mid-troposphere of 0.08-0.11 °C/decade, on the other hand, are similar for both land and ocean and agree closely with the ocean surface temperature trend. The lapse rate is consequently systematically larger over land than over the ocean and also shows a positive trend in most land areas. This is puzzling as a response to external warming, such as from increasing greenhouse gases, is broadly the same throughout the troposphere. The reduced tropospheric warming trend over land suggests a weaker vertical temperature coupling indicating that some of the processes in the planetary boundary layer such as inversions have a limited influence on the temperature of the free atmosphere. Alternatively, the temperature of the free atmosphere is influenced by advection of colder tropospheric air from the oceans. It is therefore suggested to use either the more robust tropospheric temperature or ocean surface temperature in studies of climate sensitivity. We also conclude that the European Centre for Medium-Range Weather Forecasts Reanalysis Interim can be used to obtain consistent temperature trends through the depth of the atmosphere, as they are consistent both with near-surface temperature trends and atmospheric temperature trends obtained from microwave sounding sensors.

  6. Final Report: Climate Variability, Stochasticity and Learning in Integrated Assessment Models, September 15, 1996 - September 14, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Kolstad, Charles D.

    1999-09-14

    The focus of the work has been on climate variability and learning within computational climate-economy models (integrated assessment models--IAM's). The primary objective of the research is to improve the representation of learning in IAM's. This include's both endogenous and exogenous learning. A particular focus is on Bayesian learning about climate damage. A secondary objective is to improve the representation of climate variability within IAM's.

  7. Climate Change Impact Assessment and Adaptation Options in Vulnerable Agro-Landscapes in East-Africa

    Science.gov (United States)

    Manful, D.; Tscherning, K.; Kersebaum, K.; Dietz, J.; Dietrich, O.; Gomani, C.; Böhm, H.; Büchner, M.; Lischeid, G.,; Ojoyi, M.,

    2009-04-01

    Climate change poses a risk to the livelihoods of large populations in the developing world, especially in Africa. In East Africa, climate change is expected to affect the spatial distribution and quantity of precipitation. The proposed project will assess aspects of climate impacts and adaptation options in Tanzania. The project will attempt to quantify (1) projected impacts including: variability in temperature, rainfall, flooding and drought (2) the affect changes in 1. will have on specific sectors namely agriculture (food security), water resources and ecosystem services. The cumulative effects of diminished surface and ground water flow on agricultural production coupled with increasing demand for food due to increase in human pressure will also be evaluated. Expected outputs of the project include (1) downscaled climate change scenarios for different IPCC emission scenarios (2) model based estimations of climate change impacts on hydrological cycle and assessment of land use options (3) scenarios of sustainable livelihoods and resilient agro-landscapes under climate change (4) assessment of adaptive practices and criteria for best adaptation practices. The presentation will focus on novel approaches that focus on the use of agro-ecosystem models to predict local and regional impacts of climate variability on food with specific needs of the end-user factored into model set-up process. In other words, model configurations adapted to the information needs of a specific end-user or audience are evaluated. The perception of risk within different end-users (small scale farmer versus a regional or state level policy maker) are explicitly taken into consideration with the overarching aim of maximizing the impact of the results obtained from computer-based simulations.

  8. Concept Mapping to Assess Learning and Understanding of Complexity in Courses on Global Climate Change

    Science.gov (United States)

    Rebich-Hespanha, S.; Gautier, C.

    2010-12-01

    The complex nature of climate change science poses special challenges for educators wishing to broaden and deepen student understanding of the climate system and its sensitivity to and impacts upon human activity. Learners have prior knowledge that may limit their perception and processing of the multiple relationships between processes (e.g., feedbacks) that arise in global change science, and these existing mental models serve as the scaffold for all future learning. Because adoption of complex scientific concepts is not likely if instruction includes presentation of information or concepts that are not compatible with the learners’ prior knowledge, providing effective instruction on this complex topic requires learning opportunities that are anchored upon an evaluation of the limitations and inaccuracies of the learners’ existing understandings of the climate system. The formative evaluation that serves as the basis for planning such instruction can also be useful as a baseline against which to evaluate subsequent learning. We will present concept-mapping activities that we have used to assess students’ knowledge and understanding about global climate change in courses that utilized multiple assessment methods including presentations, writings, discussions, and concept maps. The courses in which these activities were completed use a variety of instructional approaches (including standard lectures and lab assignments and a mock summit) to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. Two instances of concept map assessment will be presented: one focused on evaluating student understanding of the major components of the climate system and their interconnections, and the other focused on student understanding of the connections between climate change and

  9. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    Science.gov (United States)

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. © Her Majesty the

  10. Applicability of ranked Regional Climate Models (RCM) to assess the impact of climate change on Ganges: A case study.

    Science.gov (United States)

    Anand, Jatin; Devak, Manjula; Gosain, Ashvani Kumar; Khosa, Rakesh; Dhanya, Ct

    2017-04-01

    The negative impact of climate change is felt over wide range of spatial scales, ranging from small basins to large watershed area, which can possibly outweighs the benefits of natural water system. General Circulation Models (GCMs) has been widely used as an input to a hydrological models (HMs), to simulate different hydrological components of a river basin. However, the coarser scale of GCMs and spatio-temporal biases, restricted its use at finer resolution. If downscaled, adds one more level of uncertainty i.e., downscaling uncertainty together with model and scenario uncertainty. The outputs computed from Regional Climate Models (RCM) may aid the uncertainties arising from GCMs, as the RCMs are the miniatures of GCMs. However, the RCMs do have some inherent systematic biases, hence bias correction is a prerequisite process before it is fed to HMs. RCMs, together with the input from GCMs at later boundaries also takes topography of the area into account. Hence, RCMs need to be ranked a priori. In this study, impact of climate change on the Ganga basin, India, is assessed using the ranked RCMs. Firstly, bias correction of 14 RCM models are done using Quantile-Quantile mapping and Equidistant cumulative distribution method, for historic (1990-2004) and future scenario (2021-2100), respectively. The runoff simulations from Soil Water Assessment Tool (SWAT), for historic scenario is used for ranking of RCMs. Entropy and PROMETHEE-2 method is employed to rank the RCMs based on five performance indicators namely, Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), normalised root mean square error (NRMSE), absolute normalised mean bias error (ANMBE) and average absolute relative error (AARE). The results illustrated that each of the performance indicators behaves differently for different RCMs. RCA 4 (CNRM-CERFACS) is found as the best model with the highest value of  (0.85), followed by RCA4 (MIROC) and RCA4 (ICHEC) with  values of 0.80 and 0

  11. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2011 - part 2)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.

  12. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    Science.gov (United States)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will

  13. Developing rural community health risk assessments for climate change: a Tasmanian pilot study.

    Science.gov (United States)

    Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J

    2015-01-01

    This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites

  14. Assessing reference evapotranspiration in a subhumid climate in NE Austria

    Science.gov (United States)

    Nolz, Reinhard; Eitzinger, Josef; Cepuder, Peter

    2015-04-01

    Computing reference evapotranspiration and multiplying it with a specific crop coefficient as recommended by the Food and Agriculture Organization of the United Nations (FAO) is the most widely accepted approach to estimate plant water requirements. The standardized form of the well-known FAO Penman-Monteith equation, published by the Environmental and Water Resources Institute of the American Society of Civil Engineers (ASCE-EWRI), is recommended as a standard procedure for calculating reference evapotranspiration. Applied and validated under different climatic conditions it generally achieved good results compared to other methods. However, several studies documented deviations between measured and calculated reference evapotranspiration depending on local environmental conditions. Consequently, it seems advisable to evaluate the model under local environmental conditions. Evapotranspiration was determined at a subhumid site in Austria (48°12'N, 16°34'E; 157 m asl) using a large weighing lysimeter operated at (limited) reference conditions and compared with calculations according to ASCE-EWRI. The lysimeter had an inner diameter of 1.9 m and a hemispherical bottom with a maximum depth of 2.5 m. Seepage water was measured at a free draining outlet using a tipping bucket. Lysimeter mass changes were sensed by a weighing facility with an accuracy of ±0.1 mm. Both rainfall and evapotranspiration were determined directly from lysimeter data using a simple water balance equation. Meteorological data for the ASCE-EWRI model were obtained from a weather station of the Central Institute for Meteorology and Geodynamics, Austria (ZAMG). The study period was from 2005 to 2010, analyses were based upon daily time steps. Daily calculated reference evapotranspiration was generally overestimated at small values, whereas it was rather underestimated when evapotranspiration was large, which is supported also by other studies. In the given case, advection of sensible heat proved

  15. Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP

    Science.gov (United States)

    Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.; hide

    2017-01-01

    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socioeconomic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

  16. Assessing inter-sectoral climate change risks: the role of ISIMIP

    Science.gov (United States)

    Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Stafford Smith, Mark; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.; Schewe, Jacob; van Vuuren, Detlef; Warszawski, Lila

    2017-01-01

    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

  17. Hydrologic landscape classification assesses streamflow vulnerability to climate change in Oregon, USA

    Science.gov (United States)

    Leibowitz, S. G.; Comeleo, R. L.; Wigington, P. J., Jr.; Weaver, C. P.; Morefield, P. E.; Sproles, E. A.; Ebersole, J. L.

    2014-03-01

    Classification can allow assessments of the hydrologic functions of landscapes and their responses to stressors. Here we demonstrate the use of a hydrologic landscape (HL) approach to assess vulnerability to potential future climate change at statewide and basin scales. The HL classification has five components: climate, seasonality, aquifer permeability, terrain, and soil permeability. We evaluate changes when the 1971-2000 HL climate indices are recalculated using 2041-2070 simulation results from the ECHAM and PCM climate models with the A2, A1b, and B1 emission scenarios. Changes in climate class were modest (4-18%) statewide. However, there were major changes in seasonality class for five of the six realizations (excluding PCM_B1): Oregon shifts from being 13% snow-dominated to 4-6% snow-dominated under these five realizations, representing a 56-68% reduction in snowmelt-dominated area. At the basin scale, projected changes for the Siletz basin, in Oregon's coast range, include a small switch from very wet to wet climate, with no change in seasonality. However, there is a modest increase in fall and winter water due to increased precipitation. For the Sandy basin, on the western slope of the Cascades, HL climate class does not change, but there are major changes in seasonality, especially for areas with low aquifer permeability, which experiences a 100% loss of spring seasonality. This would reduce summer baseflow, but impacts could potentially be mitigated by streamflow buffering effects provided by groundwater in the high aquifer permeability portions of the upper Sandy. The Middle Fork John Day basin (MFJD), in northeastern Oregon, is snowmelt-dominated. The basin experiences a net loss of wet and moist climate area, along with an increase in dry climate area. The MFJD also experiences major shifts from spring to winter seasonality, representing a 20-60% reduction in snowmelt-dominated area. Altered seasonality and/or magnitude of seasonal streamflows could

  18. Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project

    Science.gov (United States)

    Iglesias, A.

    2011-12-01

    The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed

  19. Climate induced changes on the hydrology of Mediterranean basins - assessing uncertainties and quantifying risks

    Science.gov (United States)

    Ludwig, Ralf

    2014-05-01

    According to current climate projections, the Mediterranean area is at high risk for severe changes in the hydrological budget and extremes. With innovative scientific measures, integrated hydrological modeling and novel field geophysical field monitoring techniques, the FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins; GA: 244151) assessed the impacts of climate change on the hydrology in seven basins in the Mediterranean area, in Italy, France, Turkey, Tunisia, Egypt and the Gaza Strip, and quantified uncertainties and risks for the main stakeholders of each test site. Intensive climate model auditing selected four regional climate models, whose data was bias corrected and downscaled to serve as climate forcing for a set of hydrological models in each site. The results of the multi-model hydro-climatic ensemble and socio-economic factor analysis were applied to develop a risk model building upon spatial vulnerability and risk assessment. Findings generally reveal an increasing risk for water resources management in the test sites, yet at different rates and severity in the investigated sectors, with highest impacts likely to occur in the transition months. Most important elements of this research include the following aspects: • Climate change contributes, yet in strong regional variation, to water scarcity in the Mediterranean; other factors, e.g. pollution or poor management practices, are regionally still dominant pressures on water resources. • Rain-fed agriculture needs to adapt to seasonal changes; stable or increasing productivity likely depends on additional irrigation. • Tourism could benefit in shoulder seasons, but may expect income losses in the summer peak season due to increasing heat stress. • Local & regional water managers and water users, lack, as yet, awareness of climate change induced risks; emerging focus areas are supplies of domestic drinking water, irrigation, hydropower and livestock. • Data

  20. Seasonality of flood events in a changing climate - An uncertainty assessment for Europe through the combination of different climate projections

    Science.gov (United States)

    Eisner, Stephanie; Voß, Frank; Schneider, Christof

    2010-05-01

    Global climate models (GCMs) project an increasing intensity and frequency of heavy rainfall events due to climate change. As a result, the frequency and magnitude of severe flood events is expected to increase in many regions. Furthermore, a change in the seasonality of flood events can be anticipated. In regions that regularly experience snowmelt floods, for instance, temperature increase will lead to a decreased snow accumulation and to a shortened duration of the snowpack. Thus, the risk of spring floods may be reduced. This study aims to estimate the impact of the projected climate change on the seasonality of flood events in the European region. For this purpose large scale river discharge simulations were carried out with the integrated, global model WaterGAP3 (Water - Global Assessment and Prognosis) with a spatial resolution of the grid cells of 5'. WaterGAP3 couples a hydrological model for the simulation of the terrestrial water cycle with a water use model that computes withdrawal and consumptive water use of the sectors manufacturing, electricity production, agriculture and private households. Thus, on the basis of daily climate input parameters with a spatial resolution of 0.5° and downscaled to the 5' grid scale level daily stream flow was simulated and analyzed. First, the seasonality of flood events of defined recurrence periods was determined for the reference period 1961-1990 and validated against measured river discharge data. Subsequently, WaterGAP3 was forced with bias corrected time series originating from simulation runs of different GCMs for the scenario period 2071-2100. To asses the uncertainty that arises from the GCM output used as input forcing to the hydrological model, the calculations were carried out for three different GCMs (Echam5, CNRM, ISLP) and two emission scenarios (A2 and B1 of the IPCC SRES scenarios), respectively. The study demonstrates that the selection of a particular GCM is a major source of uncertainty in assessing