WorldWideScience

Sample records for assessing climate change

  1. Climate change assessments

    Science.gov (United States)

    Linda A. Joyce

    2008-01-01

    The science associated with climate and its effects on ecosystems, economies, and social systems is developing rapidly. Climate change assessments can serve as an important synthesis of this science and provide the information and context for management and policy decisions on adaptation and mitigation. This topic paper describes the variety of climate change...

  2. Integrated climate change risk assessment:

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Halsnæs, Kirsten

    2017-01-01

    Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models....... enables the relative importance of the different factors (i.e. degree of climate change, assets value, discount rate etc.) to be determined, thus influencing the overall output of the assessment.......Risk assessments of flooding in urban areas during extreme precipitation for use in, for example, decision-making regarding climate adaptation, are surrounded by great uncertainties stemming from climate model projections, methods of downscaling and the assumptions of socioeconomic impact models...... to address the complex linkages between the different kinds of data required in assessing climate adaptation. It emphasizes that the availability of spatially explicit data can reduce the overall uncertainty of the risk assessment and assist in identifying key vulnerable assets. The usefulness...

  3. Climate change & extreme weather vulnerability assessment framework.

    Science.gov (United States)

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  4. Climate change vulnerability assessment in Georgia

    Science.gov (United States)

    Binita KC; J. Marshall Shepherd; Cassandra Johnson Gaither

    2015-01-01

    Climate change is occurring in the Southeastern United States, and one manifestation is changes in frequency and intensity of extreme events. A vulnerability assessment is performed in the state of Georgia (United States) at the county level from 1975 to 2012 in decadal increments. Climate change vulnerability is typically measured as a function of exposure to physical...

  5. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  6. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, Levi D.; Maurer, Edwin P.; Anderson, Jamie D.; Dettinger, Michael D.; Townsley, Edwin S.; Harrison, Alan; Pruitt, Tom

    2009-04-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios.

  7. Bioenergy and climate change mitigation: an assessment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Ravindranath, N. H.; Berndes, Göran

    2015-01-01

    -scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration......Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation......: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects...

  8. Handling Interdependencies in Climate Change Risk Assessment

    Directory of Open Access Journals (Sweden)

    Richard J. Dawson

    2015-12-01

    Full Text Available Typically, a climate change risk assessment focuses on individual sectors or hazards. However, interdependencies between climate risks manifest themselves via functional, physical, geographical, economic, policy and social mechanisms. These can occur over a range of spatial or temporal scales and with different strengths of coupling. Three case studies are used to demonstrate how interdependencies can significantly alter the nature and magnitude of risk, and, consequently, investment priorities for adaptation. The three examples explore interdependencies that arise from (1 climate loading dependence; (2 mediation of two climate impacts by physical processes operating over large spatial extents; and, (3 multiple risks that are influenced by shared climatic and socio-economic drivers. Drawing upon learning from these case studies, and other work, a framework for the analysis and consideration of interdependencies in climate change risk assessment has been developed. This is an iterative learning loop that involves defining the system, scoping interaction mechanisms, applying appropriate modelling tools, identifying vulnerabilities and opportunities, and assessing the performance of adaptation interventions.

  9. Integrated Climate Change Impacts Assessment in California

    Science.gov (United States)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  10. Which climatic modeling to assess climate change impacts on vineyards?

    OpenAIRE

    Quenol, Herve; Garcia De Cortazar Atauri, Inaki; Bois, Benjamin; Sturman, Andrew; Bonnardot, Valerie; Le Roux, Renan

    2017-01-01

    The impact of climatic change on viticulture is significant: main phenological stages appear earlier, wine characteristics are changing, ... This clearly illustrates the point that the adaptation of viticulture to climate change is crucial and should be based on simulations of future climate. Several types of models exist and are used to represent viticultural climates at various scales. In this paper, we propose a review of different types of climate models (methodology and uncertainties) an...

  11. Climate change vulnerability for species-Assessing the assessments.

    Science.gov (United States)

    Wheatley, Christopher J; Beale, Colin M; Bradbury, Richard B; Pearce-Higgins, James W; Critchlow, Rob; Thomas, Chris D

    2017-09-01

    Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.e. using historical data to assign risks and more recent data for validation). Our results show that the different vulnerability assessment methods are not consistent with one another; different risk categories are assigned for both the real and simulated sets of species. Validation of the different vulnerability assessments suggests that methods incorporating historic trend data into the assessment perform best at predicting distribution trends in subsequent time periods. This study demonstrates that climate change vulnerability assessments should not be used interchangeably due to the poor overall agreement between methods when considering the same species. The results of our validation provide more support for the use of trend-based rather than purely trait-based approaches, although further validation will be required as data become available. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  12. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  13. Assessing urban adaptive capacity to climate change.

    Science.gov (United States)

    Araya-Muñoz, Dahyann; Metzger, Marc J; Stuart, Neil; Wilson, A Meriwether W; Alvarez, Luis

    2016-12-01

    Despite the growing number of studies focusing on urban vulnerability to climate change, adaptive capacity, which is a key component of the IPCC definition of vulnerability, is rarely assessed quantitatively. We examine the capacity of adaptation in the Concepción Metropolitan Area, Chile. A flexible methodology based on spatial fuzzy modelling was developed to standardise and aggregate, through a stepwise approach, seventeen indicators derived from widely available census statistical data into an adaptive capacity index. The results indicate that all the municipalities in the CMA increased their level of adaptive capacity between 1992 and 2002. However, the relative differences between municipalities did not change significantly over the studied timeframe. Fuzzy overlay allowed us to standardise and to effectively aggregate indicators with differing ranges and granularities of attribute values into an overall index. It also provided a conceptually sound and reproducible means of exploring the interplay of many indicators that individually influence adaptive capacity. Furthermore, it captured the complex, aggregated and continued nature of the adaptive capacity, favouring to deal with gaps of data and knowledge associated with the concept of adaptive capacity. The resulting maps can help identify municipalities where adaptive capacity is weak and identify which components of adaptive capacity need strengthening. Identification of these capacity conditions can stimulate dialogue amongst policymakers and stakeholders regarding how to manage urban areas and how to prioritise resources for urban development in ways that can also improve adaptive capacity and thus reduce vulnerability to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The regional impacts of climate change: an assessment of vulnerability

    National Research Council Canada - National Science Library

    Zinyowera, Marufu C; Moss, Richard H; Watson, R. T

    1998-01-01

    .... The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health...

  15. GIS and Remote Sensing Based Assessment of Climate Change ...

    African Journals Online (AJOL)

    The effects of climate change are severe in developing countries like Ethiopia where agriculture is the dominant economy. The Remote Sensing and GIS based analysis of climate change impact is crucial to help Ethiopia benefit the most from the technology. This study aims at assessing changes and variations in climatic ...

  16. Assessment of the Effects of Climate Change on Livestock ...

    African Journals Online (AJOL)

    The investigation of the effects of climate change on livestock husbandry and practices in Jigawa State, Nigeria, was aimed at assessing the level of awareness of climate change by nomads and also determine the effect of climate change on livestock husbandry and practices. Using random sampling method, data were ...

  17. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change Gerrit Hansen Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced climate change are

  18. Assessing Statistical Model Assumptions under Climate Change

    Science.gov (United States)

    Varotsos, Konstantinos V.; Giannakopoulos, Christos; Tombrou, Maria

    2016-04-01

    The majority of the studies assesses climate change impacts on air-quality using chemical transport models coupled to climate ones in an off-line mode, for various horizontal resolutions and different present and future time slices. A complementary approach is based on present-day empirical relations between air-pollutants and various meteorological variables which are then extrapolated to the future. However, the extrapolation relies on various assumptions such as that these relationships will retain their main characteristics in the future. In this study we focus on the ozone-temperature relationship. It is well known that among a number of meteorological variables, temperature is found to exhibit the highest correlation with ozone concentrations. This has led, in the past years, to the development and application of statistical models with which the potential impact of increasing future temperatures on various ozone statistical targets was examined. To examine whether the ozone-temperature relationship retains its main characteristics under warmer temperatures we analyze the relationship during the heatwaves events of 2003 and 2006 in Europe. More specifically, we use available gridded daily maximum temperatures (E-OBS) and hourly ozone observations from different non-urban stations (EMEP) within the areas that were impacted from the two heatwave events. In addition, we compare the temperature distributions of the two events with temperatures from two different future time periods 2021-2050 and 2071-2100 from a number of regional climate models developed under the framework of the Cordex initiative (http://www.cordex.org) with a horizontal resolution of 12 x 12km, based on different IPCC RCPs emissions scenarios. A statistical analysis is performed on the ozone-temperature relationship for each station and for the two aforementioned years which are then compared against the ozone-temperature relationships obtained from the rest of the available dataseries. The

  19. assessing climate change impacts on river hydrology

    Indian Academy of Sciences (India)

    71

    (1951 to 2005) and future RCP 4.5 scenarios (2006-2060) were used to run the hydrological. 23 model, Soil and ... increasing at 0.100 C per decade for both historical and future scenarios. The impact of .... industrialization, studies on impact of climate change in this region are crucial for sustainable. 10 water resource ...

  20. Assessing climate change impacts on water balance in the Mount ...

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  1. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  2. Assessment of awareness regarding climate change in an urban community.

    Science.gov (United States)

    Pandve, Harshal T; Chawla, P S; Fernandez, Kevin; Singru, Samir A; Khismatrao, Deepak; Pawar, Sangita

    2011-09-01

    Climate change has emerged as one of the most devastating environmental threats. It is essential to assess the awareness regarding climate change in the general population for framing the mitigation activities. To assess the awareness regarding climate change in an urban community. Urban field practice area of a medical college in the Pune city. Observational study. The cross-sectional survey was conducted in the urban adult population who had given the written consent. A pre-tested questionnaire was used for a face to face interview. Responses were evaluated. Proportions, percentage. Total 733 respondents above 18 years of age were included in the present survey. 672 (91.68%) respondents commented that global climate is changing. 547 (81.40%) respondents opined that human activities are contributing to climate change. 576 (85.71%) respondents commented that climate changing based on their personal experiences. Commonest source of information about climate change was television (59.78%). Poor awareness about UNFCC, Kyoto Protocol and IPCC was found. 549 (74.90%) respondents commented that deforestation contribute most significantly towards climate change. As per 530 (72.31%) respondents water related issues are due to changing climate change. According to 529 (72.17%) respondents, direct physical hazards of extreme climatic events are most important health related impact of climate change. According to 478 (65.21%) respondents, life style changes (63.3%) would be most effective in tackling climate change and for preventing further climate change. The urban general population is aware about changing global climate. Personal efforts are more important in mitigating climate change as per the urban general population. The awareness campaigns regarding mitigation activities are recommended.

  3. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    Science.gov (United States)

    Mearns, L. O.

    2012-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. All 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the various climate change experiments for various subregions, along with measures of uncertainty, will be presented

  4. Climate change vulnerability assessment of forests in the Southwest USA

    Science.gov (United States)

    James H. Thorne; Hyeyeong Choe; Peter A. Stine; Jeanne C. Chambers; Andrew Holguin; Amber C. Kerr; Mark W. Schwartz

    2017-01-01

    Climate change effects are already apparent in some Southwestern US forests and are expected to intensify in the coming decades, via direct (temperature, precipitation) and indirect (fire, pests, pathogens) stressors. We grouped Southwestern forests into ten major types to assess their climate exposure by 2070 using two global climate models (GCMs) and two emission...

  5. Climate Change in Environmental Impact Assessment of Renewable Energy Projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2012-01-01

    Many renewable energy projects are subject to EIA. However a question that surfaces is what use an impact assessment is when the project is ‘good for the environment’? One of the current topics receiving much attention in impact assessment is climate change and how this factor is integrated...... in impact assessments. This warrants the question: How do we assess the climate change related impacts of a project that inherently has a positive effect on climate? This paper is based on a document study of EIA reports from Denmark. The results show that climate change is included in most of the EIA...... reports reviewed, and that only climate change mitigation is in focus while adaptation is absent. Also the results point to focus on positive impacts, while the indirect negative impacts are less apparent. This leads to a discussion of the results in the light of the purpose of EIA....

  6. Assessment of farm households' vulnerability to climate change in ...

    African Journals Online (AJOL)

    Climate change is currently an emerging problem in Nigeria. The Niger Delta region presents some vulnerability due to activities of some oil companies. This study provides an assessment of farm households' perception of climate change and vulnerability in the Niger Delta region of Nigeria. The data were obtained form ...

  7. A hybrid approach to incorporating climate change and variability into climate scenario for impact assessments

    OpenAIRE

    Gebretsadik, Yohannes; Strzepek, Kenneth; Schlosser, C. Adam

    2014-01-01

    Traditional 'delta-change' approach of scenario generation for climate change impact assessment to water resources strongly depends on the selected base-case observed historical climate conditions that the climate shocks are to be super-imposed. This method disregards the combined effect of climate change and the inherent hydro-climatological variability in the system. Here we demonstrated a hybrid uncertainty approach in which uncertainties in historical climate variability are combined with...

  8. Reframing climate change assessments around risk: recommendations for the US National Climate Assessment

    Science.gov (United States)

    Weaver, C. P.; Moss, R. H.; Ebi, K. L.; Gleick, P. H.; Stern, P. C.; Tebaldi, C.; Wilson, R. S.; Arvai, J. L.

    2017-08-01

    Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. We suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.

  9. Global change researchers assess projections of climate change

    Science.gov (United States)

    Barron, Eric J.

    In October 1994 climate researchers met at the Forum on Global Change Modeling to create a consensus document summarizing the debate on issues related to the use of climate models to influence policy. The charge to the Forum was to develop a brief statement on the credibility of projections of climate change provided by General Circulation Models. The Forum focused specifically on the climate aspects of the entire global change issue, not on emission scenarios, the consequences of change to ecosystems and natural resource systems, or the socio-economic implications and potential for responses.The Forum report put thoughts on this often divisive issue into perspective for use by the Government Accounting Office in developing and considering national policy options. The forum was organized in response to requests from the White House Office of Science and Technology by the Subcommitteeon Global Change Research, abranch of the new Committee on Earth and Natural Resources set up by the Clinton administration.

  10. USGCRP assessments: Meeting the challenges of climate and global change

    Science.gov (United States)

    Dickinson, T.; Kuperberg, J. M.

    2016-12-01

    The United States Global Change Research Program (USGCRP) is a confederation of the research arms of 13 Federal departments and agencies. Its mission is to build a knowledge base that informs human responses to climate and global change through coordinated and integrated Federal programs of research, education, communication, and decision support. USGCRP has supported several initiatives to promote better understanding of climate change impacts on health, support responses, and build on the progress of the 2014 National Climate Assessment. Most recently, USGCRP released a new report, "The Impacts of Climate Change on Human Health: A Scientific Assessment". This presentation will provide an overview of USGCRP, highlight the importance of assessments, and introduce ways in which assessment findings and underlying data can be translated into critical tools to build resilience.

  11. Assessment of Coastal Governance for Climate Change Adaptation in Kenya

    Science.gov (United States)

    Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina

    2017-11-01

    The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.

  12. IPCC Fourth Assessment Report (AR4) Observed Climate Change Impacts Database

    Data.gov (United States)

    National Aeronautics and Space Administration — The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessement Report (AR4) Observed Climate Change Impacts Database contains observed responses to climate...

  13. Imprecise probability analysis for integrated assessment of climate change

    OpenAIRE

    Kriegler, Elmar

    2005-01-01

    We present an application of imprecise probability theory to the quantification of uncertainty in the integrated assessment of climate change. Our work is motivated by the fact that uncertainty about climate change is pervasive, and therefore requires a thorough treatment in the integrated assessment process. Classical probability theory faces some severe difficulties in this respect, since it cannot capture very poor states of information in a satisfactory manner. A more general framework is...

  14. A Regional Climate Change Assessment Program for North America

    Energy Technology Data Exchange (ETDEWEB)

    Mearns, L. O.; Gutowski, William; Jones, Richard; Leung, Lai-Yung R.; McGinnis, Seth; Nunes, A.; Qian, Yun

    2009-09-08

    There are two main uncertainties in determining future climate: the trajectories of future emissions of greenhouse gases and aerosols, and the response of the global climate system to any given set of future emissions [Meehl et al., 2007]. These uncertainties normally are elucidated via application of global climate models, which provide information at relatively coarse spatial resolutions. Greater interest in, and concern about, the details of climate change at regional scales has provided the motivation for the application of regional climate models, which introduces additional uncertainty [Christensen et al., 2007a]. These uncertainties in fi ne- scale regional climate responses, in contrast to uncertainties of coarser spatial resolution global models in which regional models are nested, now have been documented in numerous contexts [Christensen et al., 2007a] and have been found to extend to uncertainties in climate impacts [Wood et al., 2004; Oleson et al., 2007]. While European research in future climate projections has moved forward systematically to examine combined uncertainties from global and regional models [Christensen et al., 2007b], North American climate programs have lagged behind. To fi ll this research gap, scientists developed the North American Regional Climate Change Assessment Program (-NARCCAP). The fundamental scientifi c motivation of this international program is to explore separate and combined uncertainties in regional projections of future climate change resulting from the use of multiple atmosphere- ocean general circulation models (AOGCMs) to drive multiple regional climate models (RCMs). An equally important, and related, motivation for this program is to provide the climate impacts and adaptation community with high- resolution regional climate change scenarios that can be used for studies of the societal impacts of climate change and possible adaptation strategies.

  15. Uncertainty assessment tool for climate change impact indicators

    Science.gov (United States)

    Otto, Juliane; Keup-Thiel, Elke; Jacob, Daniela; Rechid, Diana; Lückenkötter, Johannes; Juckes, Martin

    2015-04-01

    A major difficulty in the study of climate change impact indicators is dealing with the numerous sources of uncertainties of climate and non-climate data . Its assessment, however, is needed to communicate to users the degree of certainty of climate change impact indicators. This communication of uncertainty is an important component of the FP7 project "Climate Information Portal for Copernicus" (CLIPC). CLIPC is developing a portal to provide a central point of access for authoritative scientific information on climate change. In this project the Climate Service Center 2.0 is in charge of the development of a tool to assess the uncertainty of climate change impact indicators. The calculation of climate change impact indicators will include climate data from satellite and in-situ observations, climate models and re-analyses, and non-climate data. There is a lack of a systematic classification of uncertainties arising from the whole range of climate change impact indicators. We develop a framework that intends to clarify the potential sources of uncertainty of a given indicator and provides - if possible - solutions how to quantify the uncertainties. To structure the sources of uncertainties of climate change impact indicators, we first classify uncertainties along a 'cascade of uncertainty' (Reyer 2013). Our cascade consists of three levels which correspond to the CLIPC meta-classification of impact indicators: Tier-1 indicators are intended to give information on the climate system. Tier-2 indicators attempt to quantify the impacts of climate change on biophysical systems (i.e. flood risks). Tier-3 indicators primarily aim at providing information on the socio-economic systems affected by climate change. At each level, the potential sources of uncertainty of the input data sets and its processing will be discussed. Reference: Reyer, C. (2013): The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable

  16. Integrated assessment of climate change with reductions of methane emissions

    NARCIS (Netherlands)

    Amstel, van A.R.

    2005-01-01

    We have been living in the anthropocene era since about 1950, and evidence of human influence on the natural ecosystems and climate is mounting. Reductions of greenhouse gas emissions are needed to reduce the effects of climate change in the future. In an integrated assessment with the IMAGE model

  17. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.

    Science.gov (United States)

    Ribeiro, Bruno R; Sales, Lilian P; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.

  18. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Bruno R Ribeiro

    Full Text Available Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.

  19. Full annual cycle climate change vulnerability assessment for migratory birds

    Science.gov (United States)

    Culp, Leah A.; Cohen, Emily B.; Scarpignato, Amy L.; Thogmartin, Wayne E.; Marra, Peter P.

    2017-01-01

    Climate change is a serious challenge faced by all plant and animal species. Climate change vulnerability assessments (CCVAs) are one method to assess risk and are increasingly used as a tool to inform management plans. Migratory animals move across regions and continents during their annual cycles where they are exposed to diverse climatic conditions. Climate change during any period and in any region of the annual cycle could influence survival, reproduction, or the cues used to optimize timing of migration. Therefore, CCVAs for migratory animals best estimate risk when they include climate exposure during the entire annual cycle. We developed a CCVA incorporating the full annual cycle and applied this method to 46 species of migratory birds breeding in the Upper Midwest and Great Lakes (UMGL) region of the United States. Our methodology included background risk, climate change exposure × climate sensitivity, adaptive capacity to climate change, and indirect effects of climate change. We compiled information about migratory connectivity between breeding and stationary non-breeding areas using literature searches and U.S. Geological Survey banding and re-encounter data. Climate change exposure (temperature and moisture) was assessed using UMGL breeding season climate and winter climate from non-breeding regions for each species. Where possible, we focused on non-breeding regions known to be linked through migratory connectivity. We ranked 10 species as highly vulnerable to climate change and two as having low vulnerability. The remaining 34 species were ranked as moderately vulnerable. In general, including non-breeding data provided more robust results that were highly individualistic by species. Two species were found to be highly vulnerable throughout their annual cycle. Projected drying will have the greatest effect during the non-breeding season for species overwintering in Mexico and the Caribbean. Projected temperature increases will have the greatest

  20. Integrative Assessment of Mitigation, Impacts, and Adaptation to Climate Change

    OpenAIRE

    Nakicenovic, N.; Nordhaus, W.D.; Richels, R.; Toth, F.L.

    1994-01-01

    This volume presents the proceedings of the second international workshop held at IIASA in October 1993 assessing the current state of integrated assessments. Numerous models and less formalized approaches analyze anthropogenic sources of greenhouse gas emissions, their concentrations in the atmosphere, the resulting climate forcing, impacts of the induced climate change on the economy and other human activities, as well as possible mitigation and adaptation strategies. Studies that include a...

  1. Assessment of the Health Impacts of Climate Change in Kiribati

    OpenAIRE

    Lachlan McIver; Alistair Woodward; Seren Davies; Tebikau Tibwe; Steven Iddings

    2014-01-01

    Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest prior...

  2. Climate Change Vulnerability Assessment for Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte; Jeffrey A. Hicke; Alexander Peterson

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure) revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.

  3. Consideration of climate change on environmental impact assessment in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Enríquez-de-Salamanca, Álvaro, E-mail: aenriquez@draba.org [Escuela de Doctorado, Universidad Nacional de Educación a Distancia, UNED, Draba Ingeniería y Consultoría Medioambiental, Cañada Nueva, 29, 28200 San Lorenzo de El Escorial (Spain); Martín-Aranda, Rosa M., E-mail: rmartin@ccia.uned.es [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain); Díaz-Sierra, Rubén, E-mail: sierra@dfmf.uned.es [Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo Senda del Rey, 9, 28040, Madrid (Spain)

    2016-02-15

    Most of the projects subject to environmental impact assessment (EIA) are closely related to climate change, as they contribute to or are affected by it. The growing certainty about climate change and its impacts makes its consideration an essential part of the EIA process, as well as in strategic environmental assessment (SEA). This paper examines how climate change (CC) has been taken into account in EIA in Spain through the analysis of 1713 environmental records of decision (RODs) of projects submitted for EIA. In 2013 Spain approved one of the most advanced laws in terms of CC consideration in environmental assessment, although it had not yet accumulated extensive practice on the issue. This contrasts with the situation of countries like Canada or the USA, which have a significant body of experience without specific legal requirements. Only 14% of the RODs analysed included references to CC, and in more than half of the cases it was a mere citation. Thermal power plants, which are subject to specific GHG regulations, show the highest consideration, while transport infrastructures, which are important contributors to CC, show a very low consideration. Almost all the references are related to their contribution to CC, while consideration of the effects of CC is minimal. The increasingly common incorporation of CC into SEA, should not imply its exclusion from EIA, because both processes have different aims and uses. Including the obligation to consider CC in the EIA regulations is highly desirable, but probably not enough without other measures, such as practical guidance, training and motivational programmes for practitioners and evaluators. But even these actions cannot ensure effective and adequate assessments of CC. Probably more resources should be spent on creating greater awareness in all the agents involved in EIA. - Highlights: • We analyse how the climate change is considered in EIA in Spain. • Few projects seriously assess climate change.

  4. The development of climatic scenarios for assessing impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Carter, T.; Tuomenvirta, H. [Finnish Meteorological Inst., Helsinki (Finland); Posch, M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands)

    1995-12-31

    There is a growing recognition that mitigation measures for limiting future global changes in climate due to the enhanced greenhouse effect are unlikely to prevent some changes from occurring. Thus, if climate changes appear to be unavoidable, there is an increased need to evaluate their likely impacts on natural systems and human activities. Most impacts of climate change need to be examined at a regional scale, and their assessment requires up-to-date information on future regional climate changes. Unfortunately, accurate predictions of regional climate are not yet available. Instead, it is customary to construct climatic scenarios, which are plausible representations of future climate based on the best available information. This presentation outlines seven principles of climatic scenario development for impact studies, briefly describing some of the strengths and weaknesses of available methods and then illustrating one approach adopted in Finland

  5. Rapid climate change and society: assessing responses and thresholds.

    Science.gov (United States)

    Niemeyer, Simon; Petts, Judith; Hobson, Kersty

    2005-12-01

    Assessing the social risks associated with climate change requires an understanding of how humans will respond because it affects how well societies will adapt. In the case of rapid or dangerous climate change, of particular interest is the potential for these responses to cross thresholds beyond which they become maladaptive. To explore the possibility of such thresholds, a series of climate change scenarios were presented to U.K. participants whose subjective responses were recorded via interviews and surveyed using Q methodology. The results indicate an initially adaptive response to climate warming followed by a shift to maladaptation as the magnitude of change increases. Beyond this threshold, trust in collective action and institutions was diminished, negatively impacting adaptive capacity. Climate cooling invoked a qualitatively different response, although this may be a product of individuals being primed for warming because it has dominated public discourse. The climate change scenarios used in this research are severe by climatological standards. In reality, the observed responses might occur at a lower rate of change. Whatever the case, analysis of subjectivity has revealed potential for maladaptive human responses, constituting a dangerous or rapid climate threshold within the social sphere.

  6. Assessment of the health impacts of climate change in Kiribati.

    Science.gov (United States)

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-05-14

    Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.

  7. Assessment of the Health Impacts of Climate Change in Kiribati

    Directory of Open Access Journals (Sweden)

    Lachlan McIver

    2014-05-01

    Full Text Available Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.

  8. Criteria for assessing climate change impacts on ecosystems.

    Science.gov (United States)

    Loehle, Craig

    2011-09-01

    There is concern about the potential impacts of climate change on species and ecosystems. To address this concern, a large body of literature has developed in which these impacts are assessed. In this study, criteria for conducting reliable and useful assessments of impacts of future climate are suggested. The major decisions involve: clearly defining an emissions scenario; selecting a climate model; evaluating climate model skill and bias; quantifying General Circulation Model (GCM) between-model variability; selecting an ecosystem model and assessing uncertainty; properly considering transient versus equilibrium responses; including effects of CO(2) on plant response; evaluating implications of simplifying assumptions; and considering animal linkage with vegetation. A sample of the literature was surveyed in light of these criteria. Many of the studies used climate simulations that were >10 years old and not representative of best current models. Future effects of elevated CO(2) on plant drought resistance and productivity were generally included in growth model studies but not in niche (habitat suitability) studies, causing the latter to forecast greater future adverse impacts. Overly simplified spatial representation was frequent and caused the existence of refugia to be underestimated. Few studies compared multiple climate simulations and ecosystem models (including parametric uncertainty), leading to a false impression of precision and potentially arbitrary results due to high between-model variance. No study assessed climate model retrodictive skill or bias. Overall, most current studies fail to meet all of the proposed criteria. Suggestions for improving assessments are provided.

  9. Climate Change and Environmental assessments: Issues in an African Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, Arne; Naess, Lars Otto

    1997-12-31

    The present report discusses the potential for integrating climate change issues into environmental assessments of development actions, with an emphasis on sub-Sahara Africa. The study is motivated by the fact that future climate change could have significant adverse impacts on the natural and socio-economic environment in Africa. Yet, to date global change issues, including climate change, have been largely overlooked in the process of improving environmental assessment procedures and methodologies. It is argued that although emissions of greenhouse gases in Africa are negligible today, it is highly relevant to include this aspect in the planning of long-term development strategies. The report discusses potential areas of conflicts and synergies between climate change and development goals. The general conclusion is that environmental assessments could be an appropriate tool for addressing climate change issues, while there are still several obstacles to its practical implementation. Four priority areas are suggested for further work: (1) Environmental accounting, (2) harmonization and standard-setting, (3) implementation, and (4) risk management. 82 refs., 5 figs., 11 tabs.

  10. Climate Change Assessments for Lakes Region of Turkey

    Directory of Open Access Journals (Sweden)

    Ayten Erol

    2012-07-01

    Full Text Available Climate change is one of the most important challenges for forestry. Forests are known to be most efficient natural tools to ensure availability and quality of water in many regions. Besides, planning of forest resources towards water quality and quantity is essential in countries that are expected to face with more frequent drought periods in the next decades due to climate change. Watershed management concept has been supposed as the primary tool to plan natural resources in a more efficient and sustainable way by both academicians and practitioners to mitigate and adapt climate change. Forest cover among other land use types provides the best regulating mechanism to mitigate erosion, sedimentation, desertification, and pollution. In addition, climate change can potentially affect forest stand dynamics by influencing the availability of water resources. Therefore, the amount of forest cover in a watershed is an indicator of climate change mitigation and adaptation. Climate change is a concern and risk for the sustainability of water resources in Lakes Region of Turkey. The objective of this study is to make a comprehensive assessment in lake watersheds of the Lakes region considering the forest cover. For this purpose, the study gives a general view of trends in climatic parameters using Mann Kendall trend test. The results showed that Mann Kendall trend test for temperature and precipitation data is not enough to evaluate the magnitude of potential changes of climate in terms of forest cover. Understanding impacts of changes in temperature and precipitation on forest cover, runoff data should be evaluated with temperature and precipitation for watersheds of forest areas in Lakes Region.

  11. Ecological risk assessment in the context of global climate change.

    Science.gov (United States)

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Copyright © 2012 SETAC.

  12. Designing ecological climate change impact assessments to reflect key climatic drivers

    Science.gov (United States)

    Sofaer, Helen; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  13. Designing ecological climate change impact assessments to reflect key climatic drivers.

    Science.gov (United States)

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  14. Geographic Information Systems for assessment of climate change ...

    African Journals Online (AJOL)

    Geographic Information Systems for assessment of climate change effects on teff in Ethiopia. ... Based on the current area under teff in Ethiopia, this equals an overall reduction in national production of about 1,190,784.12 t, equivalent to a loss of US$ 651 million to farmers. The results indicate that crop yield varied ...

  15. geographic information systems for assessment of climate change

    African Journals Online (AJOL)

    ACSS

    African Biodiversity Conservation and Innovations Centre, P. O. Box 100882 - 00101, Nairobi, Kenya. 1Institute ... The value of Geographic Information Systems (GIS) for assessing climate change impacts on crop productivity ... indices, the output of spatial analysis and teff yield data collected from diverse ecological zones.

  16. Assessment of climate change and vulnerability of coastal zone of ...

    African Journals Online (AJOL)

    Assessment of climate change and vulnerability of coastal zone of Ghana using trends in temperature and rainfall. A Ayensu. Abstract. No Abstract. Journal of Applied Science & Technology Vol 9 (1&2) 2004: 21-27. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  17. Methodology to assess coastal infrastructure resilience to climate change

    Directory of Open Access Journals (Sweden)

    Roca Marta

    2016-01-01

    In order to improve the resilience of the line, several options have been considered to evaluate and reduce climate change impacts to the railway. This paper describes the methodological approach developed to evaluate the risks of flooding for a range of scenarios in the estuary and open coast reaches of the line. Components to derive the present day and future climate change coastal conditions including some possible adaptation measures are also presented together with the results of the hindcasting analysis to assess the performance of the modelling system. An overview of the modelling results obtained to support the development of a long-term Resilience Strategy for asset management is also discussed.

  18. Climate Change and World Food Security: A New Assessment

    OpenAIRE

    Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Fischer, G.; Livermore, M.

    1998-01-01

    Building on previous work, quantitative estimates of climate change impacts on global food production have been made for the UK Hadley Centre's HadCM2 greenhouse gas only ensemble experiment and the more recent HadCM3 experiment (Hume et al., 1999). The consequences for world food prices and the number of people at risk of hunger as defined by the Food and Agriculture Organization (FAO, 1998) have also been assessed. Climate change is expected to increase yields at high and mid-latitudes, and...

  19. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    Science.gov (United States)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  20. Avoiding climate change uncertainties in Strategic Environmental Assessment

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone; Driscoll, Patrick Arthur

    2013-01-01

    This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies...... ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite...... incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty....

  1. Climate Change Impacts and Vulnerability Assessment in Industrial Complexes

    Science.gov (United States)

    Lee, H. J.; Lee, D. K.

    2016-12-01

    Climate change has recently caused frequent natural disasters, such as floods, droughts, and heat waves. Such disasters have also increased industrial damages. We must establish climate change adaptation policies to reduce the industrial damages. It is important to make accurate vulnerability assessment to establish climate change adaptation policies. Thus, this study aims at establishing a new index to assess vulnerability level in industrial complexes. Most vulnerability indices have been developed with subjective approaches, such as the Delphi survey and the Analytic Hierarchy Process(AHP). The subjective approaches rely on the knowledge of a few experts, which provokes the lack of the reliability of the indices. To alleviate the problem, we have designed a vulnerability index incorporating objective approaches. We have investigated 42 industrial complex sites in Republic of Korea (ROK). To calculate weights of variables, we used entropy method as an objective method integrating the Delphi survey as a subjective method. Finally, we found our method integrating both subjective method and objective method could generate result. The integration of the entropy method enables us to assess the vulnerability objectively. Our method will be useful to establish climate change adaptation policies by reducing the uncertainties of the methods based on the subjective approaches.

  2. Methodological approaches to climate change vulnerability assessment of Protected Areas

    Directory of Open Access Journals (Sweden)

    Oksana N. Lipka

    2017-10-01

    Full Text Available Climate change impacts in Russia's territory make species and ecosystems conservation in Protected Areas a more difficult challenge. Additional adaptation measures are required. Before they are developed, it is important to assess the vulnerability of a territory: what exactly, and to which extent, is exposed to adverse climate impacts? The accomplished research will help develop an action plan consistent with the current unstable climate and extreme weather events, as well as with projections by the leading research institutions of Roshydromet and the Russian Academy of Science. Today, methodologies have been developed and successfully tested for some natural zones. The conservation science is now facing a new challenge: how to combine collected information with climate projections and identify development perspectives for concrete territories.

  3. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  4. Environmental water demand assessment under climate change conditions.

    Science.gov (United States)

    Sarzaeim, Parisa; Bozorg-Haddad, Omid; Fallah-Mehdipour, Elahe; Loáiciga, Hugo A

    2017-07-01

    Measures taken to cope with the possible effects of climate change on water resources management are key for the successful adaptation to such change. This work assesses the environmental water demand of the Karkheh river in the reach comprising Karkheh dam to the Hoor-al-Azim wetland, Iran, under climate change during the period 2010-2059. The assessment of the environmental demand applies (1) representative concentration pathways (RCPs) and (2) downscaling methods. The first phase of this work projects temperature and rainfall in the period 2010-2059 under three RCPs and with two downscaling methods. Thus, six climatic scenarios are generated. The results showed that temperature and rainfall average would increase in the range of 1.7-5.2 and 1.9-9.2%, respectively. Subsequently, flows corresponding to the six different climatic scenarios are simulated with the unit hydrographs and component flows from rainfall, evaporation, and stream flow data (IHACRES) rainfall-runoff model and are input to the Karkheh reservoir. The simulation results indicated increases of 0.9-7.7% in the average flow under the six simulation scenarios during the period of analysis. The second phase of this paper's methodology determines the monthly minimum environmental water demands of the Karkheh river associated with the six simulation scenarios using a hydrological method. The determined environmental demands are compared with historical ones. The results show that the temporal variation of monthly environmental demand would change under climate change conditions. Furthermore, some climatic scenarios project environmental water demand larger than and some of them project less than the baseline one.

  5. A Framework to Assess the Impacts of Climate Change on ...

    Science.gov (United States)

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  6. Assessment of Climate Change Effects on Shahcheraghi Reservoir Inflow

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2016-10-01

    Full Text Available Introduction: Forecasting the inflow to the reservoir is important issues due to the limited water resources and the importance of optimal utilization of reservoirs to meet the need for drinking, industry and agriculture in future time periods. In the meantime, ignoring the effects of climate change on meteorological and hydrological parameters and water resources in long-term planning of water resources cause inaccuracy. It is essential to assess the impact of climate change on reservoir operation in arid regions. In this research, climate change impact on hydrological and meteorological variables of the Shahcheragh dam basin, in Semnan Province, was studied using an integrated model of climate change assessment. Materials and Methods: The case study area of this study was located in Damghan Township, Semnan Province, Iran. It is an arid zone. The case study area is a part of the Iran Central Desert. The basin is in 12 km north of the Damghan City and between 53° E to 54° 30’ E longitude and 36° N to 36° 30’ N latitude. The area of the basin is 1,373 km2 with average annual inflow around 17.9 MCM. Total actual evaporation and average annual rainfall are 1,986 mm and 137 mm, respectively. This case study is chosen to test proposed framework for assessment of climate change impact hydrological and meteorological variables of the basin. In the proposed model, LARS-WG and ANN sub-models (7 sub models with a combination of different inputs such as temperature, precipitation and also solar radiation were used for downscaling daily outputs of CGCM3 model under 3 emission scenarios, A2, B1 and A1B and reservoir inflow simulation, respectively. LARS-WG was tested in 99% confidence level before using it as downscaling model and feed-forward neural network was used as raifall-runoff model. Moreover, the base period data (BPD, 1990-2008, were used for calibration. Finally, reservoir inflow was simulated for future period data (FPD of 2015-2044 and

  7. Assessing climate change mitigation technology interventions by international institutions

    OpenAIRE

    de Coninck, Heleen; Puig, Daniel

    2015-01-01

    Accelerating the international use of climate mitigation technologies is key if effortsto curb climate change are to succeed, especially in developing countries, where weakdomestic technological innovation systems constrain the uptake of climate change mitigationtechnologies. Several intergovernmental agencies have set up specific programmes to supportthe diffusion of climate mitigation technologies. Using a simplified technological innovationsystem-based framework, this paper aims to systema...

  8. Spatial Assessment of Temperature and Land Cover Change as Climate Change Monitoring Strategies in Owerri, Nigeria

    OpenAIRE

    K. O. E. Ukaegbu; M. C. Iwuji; C. C. Uche; I. E. Osumgborogwu; G. T. Amangabara

    2017-01-01

    Climate change is one of the alarming global environmental changes likely to have deleterious effects on natural, social, cultural and human systems. The risks associated with it call for a broad spectrum of policy responses and strategies at local, regional, national and global levels. This study seeks to explore the nexus between geospatial techniques in assessing climate change and sustainable development, discussing evidenced effects of climate change with considerations into sustainable ...

  9. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    Science.gov (United States)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate

  10. Cost Analysis of Water Transport for Climate Change Impact Assessment

    Science.gov (United States)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  11. Assessing Impacts of Climate Change on Food Security Worldwide

    Science.gov (United States)

    Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua

    2015-01-01

    The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.

  12. Assessing climate change impacts and adaptation strategies for ...

    African Journals Online (AJOL)

    There is a considerable knowledge gap with respect to climate change impact, vulnerability and adaptation to increased climate variability and change. In this paper, using the trade off analysis model, the impact of climate change on peoples' livelihoods and possible adaptation strategies to increase the resilience and ...

  13. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    Science.gov (United States)

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  14. Assessing the impacts of climatic change on mountain water resources.

    Science.gov (United States)

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Application of an economy-climate model to assess the impact of climate change

    Science.gov (United States)

    Chou, Jieming; Dong, Wenjie; Feng, Guolin

    2010-07-01

    An interdisciplinary investigation was conducted to assess the impact of climate change on grain yields using an economy-climate model (C-D-C). The model was formulated by incorporating climate factors into the classic Cobb-Douglas (C-D) economic production function model. The economic meanings of the model output elasticities are described and elucidated. The C-D-C model was applied to the assessment of the impact of climate change on grain yields in China during the past 20 years, from 1983 through 2002. In the study, the land of China was divided into eight regions, and both the C-D-C and C-D models were applied to each individual region. The results suggest that the C-D-C model is superior to the classic C-D model, indicating the importance of climate factors. Prospective applications of the C-D-C model are discussed.

  16. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    showed some unexpected results, where climate models predicting the largest increase in net precipitation did not result in the largest increase in groundwater heads. This was found to be the result of different initial conditions (1990 - 2010) for the various climate models. In some areas a combination of a high initial groundwater head and an increase in precipitation towards 2021 - 2050 resulted in a groundwater head raise that reached the drainage or the surface water system. This will increase the exchange from the groundwater to the surface water system, but reduce the raise in groundwater heads. An alternative climate model, with a lower initial head can thus predict a higher increase in the groundwater head, although the increase in precipitation is lower. This illustrates an extra dimension in the uncertainty assessment, namely the climate models capability of simulating the current climatic conditions in a way that can reproduce the observed hydrological response. Højberg, AL, Troldborg, L, Stisen, S, et al. (2012) Stakeholder driven update and improvement of a national water resources model - http://www.sciencedirect.com/science/article/pii/S1364815212002423 Seaby, LP, Refsgaard, JC, Sonnenborg, TO, et al. (2012) Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections (submitted) Journal of Hydrology Stisen, S, Højberg, AL, Troldborg, L et al., (2012): On the importance of appropriate rain-gauge catch correction for hydrological modelling at mid to high latitudes - http://www.hydrol-earth-syst-sci.net/16/4157/2012/

  17. Assessement of user needs for climate change scenarios in Switzerland

    Science.gov (United States)

    Fischer, Andreas; Liniger, Mark; Flückiger-Knutti, Jacqueline

    2016-04-01

    There is a growing demand to assess and inform about future climate change and its impacts on society and ecosystems and to deduce appropriate adaptation strategies. The basis for such assessments are reliable and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). New climate model simulations, an improved scientific understanding and new statistical downscaling tools make an update of these scenarios necessary. An important component toward the new national scenarios "CH2018" are the consideration of user needs in order to ensure that the new scenarios are user-tailored and hence find a wide applicability. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS). To get a better overview of who the users of climate scenarios are and what they need, a comprehensive market research was undertaken. The survey targeted the most climate-relevant sectors, and considered representatives from administration, research and private companies across Switzerland. The survey comprised several qualitative group interviews with key stakeholders, as well as a written questionaire, answered by more than one hundred users. Additionally, two workshops were organized to gather the needs in dissemination of climate scenarios. The results of the survey show the necessity to classify the user needs according to the level of usage: "intensive users" are mainly researchers who handle large climate scenario data for further use in subsequent impact studies; "extensive users" are usually from administrations or consulting companies and perform simple calculations for specific questions or use provided graphics and tables; "facilitators" are usually from media, NGOs or schools and process and disseminate scenario information for a specific target group. The less intensive the usage of climate

  18. An assessment of impacts of climate change on available water ...

    African Journals Online (AJOL)

    Water is the first sector to be affected by changes in climate. The prediction is that with climate change, the climate will be more variable with more intense storms which will increase the risks of flooding and droughts. Attaining and sustaining water security will therefore be more challenging than it has been up to now.

  19. Assessment of the Effects of Climate Change on Federal Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Michael J. [M.J. Sale and Associates, Hanson, MA (United States); Shih-Chieh, Kao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ashfaq, Moetasim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kaiser, Dale P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webb, Cindy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wei, Yaxing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-10-01

    As directed by Congress in Section 9505 of the SECURE Water Act of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory report, referred to as the “9505 Assessment,” describes the technical basis for the report to Congress that was called for in the SECURE Water Act.

  20. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  1. An Assessment of the Impact of Climate Change in India

    Science.gov (United States)

    Nair, K. S.

    2009-09-01

    adaptation, mitigation and post-hazard recovery and resettlement measures. Providing basic necessities such as water, food and power, maintaining public health, implementing protective measures in the coastal zones and modifications in the urban infrastructure, especially in the coastal megacities become expensive. Impact of extremes on rails, roads and building are also becoming a major issue in the coastal zones and urban centres. Industrial sector is facing a threat from the falling reliable supply of water and power. However, procedure for the implementation of the strategies to mitigate the climate change impact and of the policy for the adaptation to climate change is slow. There are several hurdles for this, including various ecological, socio-economic, technical and political issues, alterations of the physical environment, inability of certain habitats and species to adapt to a new environment, abject poverty, lack of awareness, and the inefficient administrative mechanism. A comprehensive assessment of the shifts in regional climate and the impact of climate change on different facets of life in India, and of the current strategies and polices to face such challenges is made in this study. Suggestions for the improvement of the climate policy and adaptation strategy have been provided.

  2. Climate Change Impact Assessment on Han River Long Term Runoff in South Korea Based on RCP Climate Change Scenario

    Directory of Open Access Journals (Sweden)

    Seung Jin Hong

    2014-01-01

    Full Text Available The 2007 World Economic Forum (WEF referred to climate change as the overriding problem we face. Concerns have been raised about how global warming would accelerate future climate change and its consequences. Many climate change studies expect the possible occurrence of extreme high temperature, increase in heavy rains and strong typhoons in the near future. Currently, climate change scenarios are used to prepare an appropriate plan for these phenomena under climate change. The main purpose of this paper is to suggest and evaluate an operational method of assessing the potential impact of climate change on hydrologic components and water resources at the regional scale. Future runoff was simulated using high resolution Regional Circulation Model (RCM (12.5 × 12.5 km Representative Concentration Pathway (RCP scenario operated by the Korea Meteorological Administration (KMA and a semi-distribution model or SLURP (Semi-distributed Land Use-based Runoff Process. The study was carried out on the Han River including its nine dams. The study found that runoff characteristics, especially annual distribution, could change. The discharge in July tends to decrease while runoff can increase in August and September. The flow duration curve was estimated and compared with observed data and simulated daily runoff data for Paldang-dam to evaluate the effect of climate change. The analysis of the flow duration curve shows that the mean average low flow increased while the average wet and normal flow decreased under the climate change scenario.

  3. A Common Methodology for Risk Assessment and Mapping of Climate Change Related Hazards—Implications for Climate Change Adaptation Policies

    Directory of Open Access Journals (Sweden)

    Maria Papathoma-Köhle

    2016-02-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC, 2014, suggests that an important increase in frequency and magnitude of hazardous processes related to climate change is to be expected at the global scale. Consequently, it is necessary to improve the level of preparedness and the level of public awareness, to fill institutional gaps, and to improve territorial planning in order to reduce the potentially disastrous impact of natural hazards related to climate change. This paper mainly presents a new framework for risk assessment and mapping which enables countries with limited data sources to assess their risk to climate change related hazards at the local level, in order to reduce potential costs, to develop risk reduction strategies, to harmonize their preparedness efforts with neighboring countries and to deal with trans-boundary risk. The methodology is based on the European Commission’s “Risk Assessment and Mapping Guidelines for Disaster Management” (2010 and considers local restrictions, such as a lack of documentation of historic disastrous events, spatial and other relevant data, offering alternative options for risk assessment, and the production of risk maps. The methodology is based on event tree analysis. It was developed within the European project SEERISK and adapted for a number of climate change-related hazards including floods, heat waves, wildfires, and storms. Additionally, the framework offers the possibility for risk assessment under different future scenarios. The implications for climate change adaptation policy are discussed.

  4. 75 FR 51806 - Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices

    Science.gov (United States)

    2010-08-23

    ...-0701] Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices AGENCY...-day public comment period for the draft document titled, ``Climate Change Vulnerability Assessment... utilities to assess their vulnerability to future climate change. The report is intended to illustrate the...

  5. Human-induced climate change: an interdisciplinary assessment

    National Research Council Canada - National Science Library

    Schlesinger, M; Kheshgi, H; Smith, J; de la Chesnaye, F.C; Reilly, J. M; Wilson, T; Kolstad, C

    2007-01-01

    ... of climate sensitivity and change. The next part of the book surveys estimates of the impacts of climate change for different sectors and regions, describes recent studies for individual sectors, and examines how this research might be used in the policy process. The third part examines current topics related to mitigation of greenhouse gase...

  6. Assessment of Climate Change Adaptive Strategies in Small ...

    African Journals Online (AJOL)

    Animals are intrinsically dependent on the environment, and any fluctuations in weather and climate can affect them through water and land changes, such as desertification, feed and water availability. Climate change will not only impact the health and welfare of animals, but also the more than a billion people who depend ...

  7. geographic information systems for assessment of climate change

    African Journals Online (AJOL)

    ACSS

    Nature Climate Change 1:1- 4. Müller, C. 2013. African lessons on climate change risks for agriculture. Annual Reviews of. Nutrition 33: 395-411. Nix, H.A. 1986. A biogeographic analysis of. Australian elapid snakes. pp. 4-15. In: Atlas of Elapid Snakes of Australia. Longmore, R. (Ed.). Australian Flora and Fauna Series.

  8. A vulnerability and risk assessment of SEPTA's regional rail : a transit climate change adaptation assessment pilot.

    Science.gov (United States)

    2013-08-01

    This final report for the Federal Transit Administration (FTA) Transit Climate Change Adaptation Assessment Pilot describes the actions : taken, information gathered, analyses performed, and lessons learned throughout the pilot project. This report d...

  9. Assessing climate change impacts on wheat production (a case study

    Directory of Open Access Journals (Sweden)

    J. Valizadeh

    2014-06-01

    Full Text Available Climate change is one of the major challenges facing humanity in the future and effect of climate change has been detrimental to agricultural industry. The aim of this study was to simulate the effects of climate change on the maturity period, leaf area index (LAI, biomass and grain yield of wheat under future climate change for the Sistan and Baluchestan region in Iran. For this purpose, two general circulation models HadCM3 and IPCM4 under three scenarios A1B, B1 and A2 in three time periods 2020, 2050 and 2080 were used. LARS-WG model was used for simulating climatic parameters for each period and CERES-Wheat model was used to simulate wheat growth. The results of model evaluation showed that LARS-WG had appropriate prediction for climatic parameters and simulation of stochastic growing season in future climate change conditions for the studied region. Wheat growing season period in all scenarios of climate change was reduced compared to the current situation. Possible reasons were the increase in temperature rate and the accelerated growth stages of wheat. This reduction in B1 scenario was less than A1B and A2 scenarios. Maximum wheat LAI in all scenarios, except scenario A1B in 2050, is decreased compared to the current situation. Yield and biological yield of wheat in both general circulation models under all scenarios and all times were reduced in comparison with current conditions and the lowest reduction was related to B1 scenario. In general, the results showed that wheat production in the future will be affected by climate change and will decrease in the studied region. To reduce these risks, the impact of climate change mitigation strategies and management systems for crop adaptation to climate change conditions should be considered.

  10. Prediction technologies for assessment of climate change impacts

    Science.gov (United States)

    Temperatures, precipitation, and weather patterns are changing, in response to increasing carbon dioxide in the atmosphere. With these relatively rapid changes, existing soil erosion prediction technologies that rely upon climate stationarity are potentially becoming less reliable. This is especiall...

  11. Climatic Change,

    Science.gov (United States)

    diagnoses of the mechanisms of both past and possible future climatic changes , an activity which has underscored the need for more complete...documentation of both recent instrumentally observed climatic changes and of those inferred from historical and paleoclimatic sources.

  12. Regional Risk Assessment for climate change impacts on coastal aquifers.

    Science.gov (United States)

    Iyalomhe, F; Rizzi, J; Pasini, S; Torresan, S; Critto, A; Marcomini, A

    2015-12-15

    Coastal aquifers have been identified as particularly vulnerable to impacts on water quantity and quality due to the high density of socio-economic activities and human assets in coastal regions and to the projected rising sea levels, contributing to the process of saltwater intrusion. This paper proposes a Regional Risk Assessment (RRA) methodology integrated with a chain of numerical models to evaluate potential climate change-related impacts on coastal aquifers and linked natural and human systems (i.e., wells, river, agricultural areas, lakes, forests and semi-natural environments). The RRA methodology employs Multi Criteria Decision Analysis methods and Geographic Information Systems functionalities to integrate heterogeneous spatial data on hazard, susceptibility and risk for saltwater intrusion and groundwater level variation. The proposed approach was applied on the Esino River basin (Italy) using future climate hazard scenarios based on a chain of climate, hydrological, hydraulic and groundwater system models running at different spatial scales. Models were forced with the IPCC SRES A1B emission scenario for the period 2071-2100 over four seasons (i.e., winter, spring, summer and autumn). Results indicate that in future seasons, climate change will cause few impacts on the lower Esino River valley. Groundwater level decrease will have limited effects: agricultural areas, forests and semi-natural environments will be at risk only in a region close to the coastline which covers less than 5% of the total surface of the considered receptors; less than 3.5% of the wells will be exposed in the worst scenario. Saltwater intrusion impact in future scenarios will be restricted to a narrow region close to the coastline (only few hundred meters), and thus it is expected to have very limited effects on the Esino coastal aquifer with no consequences on the considered natural and human systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Assessing climate change awareness influence on Egyptian children

    Directory of Open Access Journals (Sweden)

    Sherine El Sakka

    2017-07-01

    Full Text Available Climate change (CCH is one of the important issues raised globally lately. heat, humidity pollution could harm children, cause diseases and death,85 % of the world’s youth live in the de-veloping countries, and Egypt as one of the developing countries its children face a great risk spe-cially with the presence of weak climate change awareness impact. Our research will investigate Egypt climate change awareness (CCA problem and how it affects Egyptian children, we will try to explore children problems (CHP, due to limited climate change awareness and conclude by emphasizing the importance of having appropriate solution; in term of avoiding negative climate change impact (CCHI on children in the future.

  14. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    Science.gov (United States)

    Incorporation of global climate change (GCC) effects into regulatory assessments of chemical risk and injury requires an integrated examination of both chemical and non-chemical stressors. Environmental variables altered by GCC, such as temperature, precipitation, salinity and pH...

  15. Gaming climate change: Assessing online climate change games targeting youth produced in Spanish

    OpenAIRE

    Ouariachi, Tania; Olvera-Lobo, Mª Dolores; Gutiérrez-Pérez, José

    2017-01-01

    In search of innovative approaches to raise climate change awareness among digital natives, online and serious games are gaining currency as new platforms for communication, education and social change. Thanks to their interactivity and immersive narrative, games have capacity to convey to young people the problems that they will be facing in the future and enable them to experience these problems directly through the game. In addition, online games can offer the possibility to be implemented...

  16. A procedure for assessing climate change impacts on hydropower

    Energy Technology Data Exchange (ETDEWEB)

    Hamududu, B.; Jjunju, E.; Killingtveit, Aa.; Alfredsen, K.

    2010-07-01

    Full text: Ever since climate change was highlighted as an important issue in water related projects, various procedures have been used by different researchers to gain indications of likely impact of climate change on hydropower. Though all methods give results, comparisons of these results is not ideal and may be difficult due to large differences in methods used. This paper is an attempt to propose an ideal procedure or process of estimating the impact of climate change on hydropower production in a basin. The paper describes where to begin, what future climate change projections are necessary, and where to get such data. It also shows highlights various techniques that are available and could be applied to climate projections in order to down scale the large scale projections from global climate models to site or basin climate. Another technique that has been applied is the delta approach or perturbation methods that transfer changes in meteorological variables between the control and the scenario simulations from the regional climate model to a database of observed meteorological data. Further it highlights various ways of transforming basin climate variables that can be used in hydrological modeling to produce runoff series. The paper also discusses applicability of hydrological modeling strategies for climate predictions in relation to stationarity in models and how this will influence climate predictions. The runoff is the input into hydropower systems and hydropower simulations to get the desired hydropower production in the future. In all these steps, different approaches for processing are highlighted. The paper ends with a section on different sources of uncertainties in climate projections. Finally some concluding remarks are given on the reliability of the results from various methodologies. A case study on Zambezi River basin is given towards the end illustrating the differences resulting from different methodologies. (Author)

  17. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  18. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    Science.gov (United States)

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  19. IPCC Fifth Assessment Report (AR5) Observed Climate Change Impacts Database, Version 2.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5) Observed Climate Change Impacts Database, Version 2.01 contains observed responses to...

  20. Impacts of Europe's changing climate- 2008 indicator-based assessment

    NARCIS (Netherlands)

    Swart, R.J.

    2008-01-01

    The report presents past and projected climate change and impacts in Europe by means of about 40 indicators and identifies sectors and regions most vulnerable with a high need for adaptation. The report covers the following indicator categories: atmosphere and climate, cryosphere, marine

  1. Nevada Monitoring System to Assess Climate Variability and Change

    Science.gov (United States)

    Devitt, D. A.; Arnone, J.; Biondi, F.; Fenstermaker, L. F.; Saito, L.; Young, M.; Riddle, B.; Strachan, S. D.; Bird, B.; McCurdy, G.; Lyles, B. F.

    2010-12-01

    The Nevada System of Higher Education (University of Nevada Las Vegas, University of Nevada Reno and the Desert Research Institute) was awarded a multiyear NSF EPSCoR grant to support infrastructure associated with regional climate change research. The overall project is comprised of 5 components: education, cyberinfrastructure, policy, climate modeling and water/ecology. The water and ecology components are using their infrastructure funding for the assessment of climate variability and change on ecosystem function and hydrologic services. A series of 10 m tall towers are under construction and are being equipped with a wide array of sensors to monitor atmospheric, soil and plant parameters over time. The towers are located within the Mojave and Great Basin Deserts in two transects; the Mojave Desert transect is located in the southern Nevada Sheep Mountain Range and the Great Basin transect is located in the east central Nevada Snake Mountain Range. The towers are centrally positioned in well-defined vegetation zones. In southern Nevada these zones are represented by the following plant species: Creosote/Bursage (Creosotebush scrub zone); Blackbrush/Joshua Tree (Blackbrush zone); Pinyon/ Juniper (pygmy conifer zone), Ponderosa Pine (montane zone) and Bristlecone Pine (subalpine zone). The Snake Mountain transect incorporates the eastern and western valleys on both sides of the mountain range. The vegetation zones are represented by: Greasewood and mixed shrub (salt desert zone); Big Sage (sagebrush zone); Pinyon/Juniper (pygmy conifer zone); White/Douglas Fir, Ponderosa Pine and Aspen (montane zone); and Bristlecone/Limber Pine and Engelmann Spruce (subalpine zone). We are currently in the third year of funding with a goal of having the majority of towers fully operational by winter 2010. In close collaboration with our cyberinfrastructure component team, all data acquired from the transect monitoring stations will be made available to other researchers and the

  2. Assessment of the health impacts of climate change in Kiribati

    National Research Council Canada - National Science Library

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-01-01

    Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health...

  3. Assessment of coastal governance for climate change adaptation in Kenya

    CSIR Research Space (South Africa)

    Ojwang, L

    2017-11-01

    Full Text Available The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges...

  4. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    In several regions, but especially in semi-arid areas, raising frequency, duration and intensity of drought events, mainly driven by climate change dynamics, are expected to dramatically reduce the current stocks of freshwater resources, limiting crop development and yield especially where agriculture largely depends on irrigation. The achievement of an affordable and sustainable equilibrium between available water resources and irrigation demand is essentially related to the planning and implementation of evidence-based adaptation strategies and actions. The present study proposed a state-of-the art conceptual framework and computational methodology to assess the potential water scarcity risk, due to changes in climate trends and variability, on irrigated croplands. The model has been tested over the irrigated agriculture of Puglia Region, a semi-arid territory with the largest agricultural production in Southern Italy. The methodology, based on the Regional Risk Assessment (RRA) approach, has been applied within a scenario-based hazard framework. Regional climate projections, under alternative greenhouse gas concentration scenarios (RCP4.5 and RCP8.5) and for two different timeframes, 2021-2050 and 2041-2070 compared to the baseline 1976-2005 period, have been used to drive hydrological simulations of river inflow to the most important reservoirs serving irrigation purposes in Puglia. The novelty of the proposed RRA-based approach does not simply rely on the concept of risk as combination of hazard, exposure and vulnerability, but rather elaborates detailed (scientific and conceptual) framing and computational description of these factors, to produce risk spatial pattern maps and related statistics distinguishing the most critical areas (risk hot spots).. The application supported the identification of the most affected areas (i.e. Capitanata Reclamation Consortia under RCP8.5 2041-2070 scenario), crops (fruit trees and vineyards), and, finally, the vulnerability

  5. Assessing impact of climate change on season length in Karnataka ...

    Indian Academy of Sciences (India)

    Changes in seasons and season length are an indicator, as well as an effect, of climate change. Seasonal change profoundly affects the balance of life in ecosystems and impacts essential human activities such as agriculture and irrigation. This study investigates the uncertainty of season length in Karnataka state, India, ...

  6. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  7. Integrating Climate Change Factors within China’s Environmental Impact Assessment Legislation: New Challenges and Developments

    OpenAIRE

    Xiangbai He

    2013-01-01

    Climate change and its undeniable impacts must be considered while applying the existing development tools. As a preventative instrument to identify, assess and mitigate the adverse environmental effects of proposed and current undertakings, the incorporation of the impacts of climate change into Environmental Impact Assessment (EIA) has been recommended. This article finds that EIA can be more beneficial with a ‘climate change - plan/project - environment’ interaction, where the climate chan...

  8. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  9. Assessing adaptation to the health risks of climate change: what guidance can existing frameworks provide?

    Science.gov (United States)

    Füssel, Hans-Martin

    2008-02-01

    Climate change adaptation assessments aim at assisting policy-makers in reducing the health risks associated with climate change and variability. This paper identifies key characteristics of the climate-health relationship and of the adaptation decision problem that require consideration in climate change adaptation assessments. It then analyzes whether these characteristics are appropriately considered in existing guidelines for climate impact and adaptation assessment and in pertinent conceptual models from environmental epidemiology. The review finds three assessment guidelines based on a generalized risk management framework to be most useful for guiding adaptation assessments of human health. Since none of them adequately addresses all key challenges of the adaptation decision problem, actual adaptation assessments need to combine elements from different guidelines. Established conceptual models from environmental epidemiology are found to be of limited relevance for assessing and planning adaptation to climate change since the prevailing toxicological model of environmental health is not applicable to many climate-sensitive health risks.

  10. Uncertainties in Agricultural Impact Assessments of Climate Change

    DEFF Research Database (Denmark)

    Montesino San Martin, Manuel

    Future food security will be challenged by the likely increase in demand, changes in consumption patterns and the effects of climate change. Framing food availability requires adequate agricultural production planning. Decision-making can benefit from improved understanding of the uncertainties...

  11. Assessing the response of runoff to climate change and human ...

    Indian Academy of Sciences (India)

    34

    Hydrological cycle and water resources are commonly influenced by climate change and human activities (Vorosmarty et al., 2000; Beven, 2001; Kezer and Matsuyama, 2006;. IPCC, 2007; Zhang et al., 2007). Human activities such as Land Use/Cover Change. (LUCC), alters vegetation retention, soil water infiltration, and ...

  12. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Research on Climate Change Impacts and Associated Economic Damages (part 2)

    Science.gov (United States)

    This is a workshop titled Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Research on Climate Change Impacts and Associated Economic Damages (part 2)

  13. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  14. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    Science.gov (United States)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a

  15. Climate change impact assessment on Zhoshui River water supply in Taiwan

    OpenAIRE

    Jyun-Long Lee Wen-Cheng Huang

    2017-01-01

    This study evaluates the impact of climate change on water resources. An integrated procedure is proposed for assessing the water resources system response to climate change on the basin scale. The Zhoshui River basin in Central Taiwan was selected for the impact assessment. Five downscaled general circulation models based on the A1B scenario for 2046 - 2065 were adopted to assess the climate change impact, including (1) the irrigation water requirement downstream of the basin, (2) the river ...

  16. Assessment of climate change impacts on rainfall using large scale ...

    Indian Academy of Sciences (India)

    In this model, using the outputs from GCM, the rainfall of Zayandehrood dam is projected under two climate change scenarios. Most effective variables have been identified among 26 predictor variables. Comparison of the results of the two models shows that the developed SVM model has lesser errors in monthly rainfall ...

  17. Climate change impact assessment and adaptation under uncertainty

    NARCIS (Netherlands)

    Wardekker, J.A.

    2011-01-01

    Expected impacts of climate change are associated with large uncertainties, particularly at the local level. Adaptation scientists, practitioners, and decision-makers will need to find ways to cope with these uncertainties. Several approaches have been suggested as ‘uncertainty-proof’ to some

  18. Multimodel assessment of water scarcity under climate change.

    Science.gov (United States)

    Schewe, Jacob; Heinke, Jens; Gerten, Dieter; Haddeland, Ingjerd; Arnell, Nigel W; Clark, Douglas B; Dankers, Rutger; Eisner, Stephanie; Fekete, Balázs M; Colón-González, Felipe J; Gosling, Simon N; Kim, Hyungjun; Liu, Xingcai; Masaki, Yoshimitsu; Portmann, Felix T; Satoh, Yusuke; Stacke, Tobias; Tang, Qiuhong; Wada, Yoshihide; Wisser, Dominik; Albrecht, Torsten; Frieler, Katja; Piontek, Franziska; Warszawski, Lila; Kabat, Pavel

    2014-03-04

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (water resources, suggesting a high potential for improved water resource projections through hydrological model development.

  19. Assessing debris flow activity in a changing climate : open access

    NARCIS (Netherlands)

    Turkington, T.; Remaitre, A.; Ettema, J.; Hussin, H.Y.; van Westen, C.J.

    2016-01-01

    Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between

  20. Assessing debris flow activity in a changing climate

    NARCIS (Netherlands)

    Turkington, T.; Remaitre, A.; Ettema, J.; Hussin, H.Y.; van Westen, C.J.

    2016-01-01

    Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between

  1. The implication of irrigation in climate change impact assessment

    NARCIS (Netherlands)

    Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank

    2015-01-01

    This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on

  2. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    Directory of Open Access Journals (Sweden)

    J. Heinke

    2013-10-01

    Full Text Available In the ongoing political debate on climate change, global mean temperature change (ΔTglob has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  3. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  4. A health impact assessment framework for assessing vulnerability and adaptation planning for climate change.

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-12-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  5. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    Directory of Open Access Journals (Sweden)

    Helen Brown

    2014-12-01

    Full Text Available This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  6. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146

  7. Multi-model assessment of water scarcity under climate change

    Science.gov (United States)

    Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N. W.; Clark, D. B.; Dankers, R.; Eisner, S.; Fekete, B. M.; Colon-Gonzalez, F. J.; Gosling, S. N.; KIM, H.; Liu, X.; Masaki, Y.; Portmann, F. T.; Satoh, Y.; Stacke, T.; Tang, Q.; Wada, Y.; Wisser, D.; albrecht, T.; Frieler, K.; Piontek, F.; Warszawski, L.; Kabat, P.

    2013-12-01

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. In the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) we use a large ensemble of global hydrological models (GHMs) forced by five global climate models (GCMs) and the latest greenhouse--gas concentration scenarios (RCPs) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that up to a global warming of 2°C above present (approx. 2.7°C above pre--industrial), each additional degree of warming will confront an additional approx. 7% of the global population with a severe decrease in water resources; and that climate change will increase the number of people living under absolute water scarcity (<500m3/capita/year) by another 40% (according to some models, more than 100%) compared to the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between present--day and 2°C, while indicators of very severe impacts increase unabated beyond 2°C. At the same time, the study highlights large uncertainties associated with these estimates, with both GCMs and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development. Relative change in annual discharge at 2°C compared to present-day, under RCP8.5, from an ensemble of 11 global hydrological models (GHMs) driven by five

  8. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    Science.gov (United States)

    Hooper, Michael J.; Ankley, Gerald T.; Cristol, Daniel A.; Maryoung, Lindley A.; Noyes, Pamela D.; Pinkerton, Kent E.

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.

  9. Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks.

    Science.gov (United States)

    Hooper, Michael J; Ankley, Gerald T; Cristol, Daniel A; Maryoung, Lindley A; Noyes, Pamela D; Pinkerton, Kent E

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical-GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical-climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments. Copyright © 2012 SETAC.

  10. Expert assessment of vulnerability of permafrost carbon to climate change

    Science.gov (United States)

    Schuur, E.A.G.; Abbott, B.W.; Bowden, W.B.; Brovkin, V.; Camill, P.; Canadell, J.G.; Chanton, J.P.; Chapin, F. S.; Christensen, T.R.; Ciais, P.; Crosby, B.T.; Czimczik, C.I.; Grosse, G.; Harden, J.; Hayes, D.J.; Hugelius, G.; Jastrow, J.D.; Jones, J.B.; Kleinen, T.; Koven, C.D.; Krinner, G.; Kuhry, P.; Lawrence, D.M.; McGuire, A.D.; Natali, Susan M.; O'Donnell, J. A.; Ping, C.-L.; Riley, W.J.; Rinke, A.; Romanovsky, V.E.; Sannel, A.B.K.; Schädel, C.; Schaefer, K.; Sky, J.; Subin, Z.M.; Tarnocai, C.; Turetsky, M.R.; Waldrop, M.P.; Anthony, K.M. Walter; Wickland, K.P.; Wilson, C.J.; Zimov, S.A.

    2013-01-01

    Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.

  11. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  12. Assessing cover crop management under actual and climate change conditions.

    Science.gov (United States)

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2017-10-22

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Climate Change

    Science.gov (United States)

    ... and water. More extreme weather events, such as hurricanes and wildfires. These can cause death, injuries, stress, and mental health problems. Researchers are studying the best ways to lessen climate change and reduce its impact on our health. NIH: ...

  14. Assessing climate change mitigation technology interventions by international institutions

    DEFF Research Database (Denmark)

    de Coninck, Heleen; Puig, Daniel

    2015-01-01

    intergovernmental agencies have set up specific programmes to supportthe diffusion of climate mitigation technologies. Using a simplified technological innovationsystem-based framework, this paper aims to systematically review these programmes, with thedual aim of assessing their collective success in promoting...... technological innovation, andidentifying opportunities for the newly formed UNFCCC Technology Mechanism. We concludethat, while all programmes reviewed have promoted technology transfer, they have givenlimited attention to innovation capabilities with users, government and universities. Functionsthat could...

  15. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Mikkelsen, Peter Steen; Halsnæs, Kirsten

    2012-01-01

    Climate change is likely to affect the water cycle by influencing the precipitation patterns. It is important to integrate the anticipated changes into the design of urban drainage in response to the increased risk level in cities. This paper presents a pluvial flood risk assessment framework...... to identify and assess adaptation options in the urban context. An integrated approach is adopted by incorporating climate change impact assessment, flood inundation modeling, economic tool, and risk assessment, hereby developing a step-by-step process for cost-benefit assessment of climate change adaptation...

  16. Pacific Islands Regional Climate Assessment: Building a Framework to Track Physical and Social Indicators of Climate Change Across Pacific Islands

    Science.gov (United States)

    Grecni, Z. N.; Keener, V. W.

    2016-12-01

    Assessments inform regional and local climate change governance and provide the critical scientific basis for U.S. climate policy. Despite the centrality of scientific information to public discourse and decision making, comprehensive assessments of climate change drivers, impacts, and the vulnerability of human and ecological systems at regional or local scales are often conducted on an ad hoc basis. Methods for sustained assessment and communication of scientific information are diverse and nascent. The Pacific Islands Regional Climate Assessment (PIRCA) is a collaborative effort to assess climate change indicators, impacts, and adaptive capacity of the Hawaiian archipelago and the US-Affiliated Pacific Islands (USAPI). In 2012, PIRCA released the first comprehensive report summarizing the state of scientific knowledge about climate change in the region as a technical input to the U.S. National Climate Assessment. A multi-method evaluation of PIRCA outputs and delivery revealed that the vast majority of key stakeholders view the report as extremely credible and use it as a resource. The current study will present PIRCA's approach to establishing physical and social indicators to track on an ongoing basis, starting with the Republic of the Marshall Islands as an initial location of focus for providing a cross-sectoral indicators framework. Identifying and tracking useful indicators is aimed at sustaining the process of knowledge coproduction with decision makers who seek to better understand the climate variability and change and its impacts on Pacific Island communities.

  17. Anticipatory flood risk assessment under climate change scenarios: from assessment to adaptation

    Science.gov (United States)

    Neuhold, C.; Hogl, K.; Seher, W.; Nachtnebel, H. P.; Scherhaufer, P.; Nordbeck, R.; Löschner, L.

    2012-04-01

    According to the Centre for Research on Epidemiology Disasters, floods are the type of natural disasters that affected the highest number of people from 1900 to 2008 worldwide. Specifically, Austria suffered from heavy floods in recent years, affecting thousands of people and causing billions of Euro in economic losses. Although there is yet no proof that these accumulated extreme events are a direct consequence of climate change, they may indicate what can be expected. Currently, comprehensive climate modelling research is being conducted for Austria that may lay the foundation for enhanced climate impact assessments (regional climate modelling under consideration of different global models and varying scenarios). However, the models so far have neither special focus on Austria nor a distinct definition of boundary conditions for Austria. Therefore, results of climate models are considered as too unreliable and inconsistent for predicting changes in flood characteristics, especially at a regional to local scale. As a consequence, adaptation strategies have to be derived from integrated impact analyses that are based on dissecting mechanisms and drivers for changes and not only on the dimension of climate change. This paper discusses a dynamic flood risk assessment methodology considering potential spatial and temporal developments of hazard and vulnerability under climate change scenarios. The approach integrates quantifiable results from assessments of hazard, exposure and sensitivity and the qualitative, interview based, assessment of adaptive capacities. Flood risk assessment will be conducted for the current state in Austria and enhanced by potential (1) flood scenarios increased by a climate change allowance (2) demographic development scenarios (3) land-use change scenarios and (4) adaptation policy assessment to identify regions especially prone to flooding. Comparing the current state with various anticipatory hazard and vulnerability scenarios provides

  18. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) "reasons for concern".

    Science.gov (United States)

    Smith, Joel B; Schneider, Stephen H; Oppenheimer, Michael; Yohe, Gary W; Hare, William; Mastrandrea, Michael D; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H D; Füssel, Hans-Martin; Pittock, A Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal

    2009-03-17

    Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that "would prevent dangerous anthropogenic interference (DAI) with the climate system." In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 "reasons for concern" (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the "burning embers diagram." In presenting the "embers" in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 "reasons for concern."

  19. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”

    Science.gov (United States)

    Smith, Joel B.; Schneider, Stephen H.; Oppenheimer, Michael; Yohe, Gary W.; Hare, William; Mastrandrea, Michael D.; Patwardhan, Anand; Burton, Ian; Corfee-Morlot, Jan; Magadza, Chris H. D.; Füssel, Hans-Martin; Pittock, A. Barrie; Rahman, Atiq; Suarez, Avelino; van Ypersele, Jean-Pascal

    2009-01-01

    Article 2 of the United Nations Framework Convention on Climate Change [United Nations (1992) http://unfccc.int/resource/docs/convkp/conveng.pdf. Accessed February 9, 2009] commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that “would prevent dangerous anthropogenic interference (DAI) with the climate system.” In an effort to provide some insight into impacts of climate change that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 “reasons for concern” (RFCs). Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the “burning embers diagram.” In presenting the “embers” in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor did they conclude what level of impacts or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policy prescriptive. Here, we describe revisions of the sensitivities of the RFCs to increases in GMT and a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years. This is based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001, including literature that was assessed in the IPCC Fourth Assessment Report (AR4), as well as additional research published since AR4. Compared with results reported in the TAR, smaller increases in GMT are now estimated to lead to significant or substantial consequences in the framework of the 5 “reasons for concern.” PMID:19251662

  20. Separating sensitivity from exposure in assessing extinction risk from climate change.

    Science.gov (United States)

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  1. Climate change and plant health; Development of a conceptual frame-work for impact assessment

    OpenAIRE

    Breukers, M.L.H.

    2010-01-01

    This report presents a conceptual framework for systematic assessment of direct economic impacts of climate change on pest and disease management at the crop level. The framework evaluates and aggregates the effects, and subsequently impacts, of climate change on selected pests and diseases and their control in a particular crop. Application of the framework reveals opportunities and threats in crop protection resulting from climate change, and can direct future adaptation efforts.

  2. Development of a Web-Based Tool for Climate Change Risk Assessment in the Business Sector

    Directory of Open Access Journals (Sweden)

    Donghyun Kim

    2016-10-01

    Full Text Available The Intergovernmental Panel on Climate Change 2013 report claims that climate change from human-induced greenhouse gas emissions will cause increasing temperatures in many regions and various detrimental effects such as rising sea levels, ecosystem changes, droughts, and floods. This study proposes a method for assessing the climate risks resulting from climate change as well as a tool that companies can use to assess those risks. The method for assessing climate risk is proposed in accordance with the ISO 31000 risk management process. We then design a web-based tool to implement the climate change risk assessment process. The data the tool generates enable companies to identify and analyze their climate risks to reduce potentially negative future financial impacts. The data on potential damage costs indicate that climate change is no longer an environmental issue but rather an economic one for companies, and the results presented through the proposed assessment method can be used to establish countermeasures and sustainable planning at companies. The results of this research are significant in that they provide companies with the critical information needed to improve their planning and response to climate risk.

  3. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    Science.gov (United States)

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.

  4. Second California Assessment: Integrated climate change impacts assessment of natural and managed systems. Guest editorial

    Science.gov (United States)

    Franco, G.; Cayan, D.R.; Moser, S.; Hanemann, M.; Jones, M.A.

    2011-01-01

    Since 2006 the scientific community in California, in cooperation with resource managers, has been conducting periodic statewide studies about the potential impacts of climate change on natural and managed systems. This Special Issue is a compilation of revised papers that originate from the most recent assessment that concluded in 2009. As with the 2006 studies that influenced the passage of California's landmark Global Warming Solutions Act (AB32), these papers have informed policy formulation at the state level, helping bring climate adaptation as a complementary measure to mitigation. We provide here a brief introduction to the papers included in this Special Issue focusing on how they are coordinated and support each other. We describe the common set of downscaled climate and sea-level rise scenarios used in this assessment that came from six different global climate models (GCMs) run under two greenhouse gas emissions scenarios: B1 (low emissions) and A2 (a medium-high emissions). Recommendations for future state assessments, some of which are being implemented in an on-going new assessment that will be completed in 2012, are offered. ?? 2011 Springer Science+Business Media B.V.

  5. Tools and Techniques for Basin-Scale Climate Change Assessment

    Science.gov (United States)

    Zagona, E.; Rajagopalan, B.; Oakley, W.; Wilson, N.; Weinstein, P.; Verdin, A.; Jerla, C.; Prairie, J. R.

    2012-12-01

    The Department of Interior's WaterSMART Program seeks to secure and stretch water supplies to benefit future generations and identify adaptive measures to address climate change. Under WaterSMART, Basin Studies are comprehensive water studies to explore options for meeting projected imbalances in water supply and demand in specific basins. Such studies could be most beneficial with application of recent scientific advances in climate projections, stochastic simulation, operational modeling and robust decision-making, as well as computational techniques to organize and analyze many alternatives. A new integrated set of tools and techniques to facilitate these studies includes the following components: Future supply scenarios are produced by the Hydrology Simulator, which uses non-parametric K-nearest neighbor resampling techniques to generate ensembles of hydrologic traces based on historical data, optionally conditioned on long paleo reconstructed data using various Markov Chain techniuqes. Resampling can also be conditioned on climate change projections from e.g., downscaled GCM projections to capture increased variability; spatial and temporal disaggregation is also provided. The simulations produced are ensembles of hydrologic inputs to the RiverWare operations/infrastucture decision modeling software. Alternative demand scenarios can be produced with the Demand Input Tool (DIT), an Excel-based tool that allows modifying future demands by groups such as states; sectors, e.g., agriculture, municipal, energy; and hydrologic basins. The demands can be scaled at future dates or changes ramped over specified time periods. Resulting data is imported directly into the decision model. Different model files can represent infrastructure alternatives and different Policy Sets represent alternative operating policies, including options for noticing when conditions point to unacceptable vulnerabilities, which trigger dynamically executing changes in operations or other

  6. Climate change impact assessments on the water resources of India under extensive human interventions.

    Science.gov (United States)

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  7. Climate change and plant health; Development of a conceptual frame-work for impact assessment

    NARCIS (Netherlands)

    Breukers, M.L.H.

    2010-01-01

    This report presents a conceptual framework for systematic assessment of direct economic impacts of climate change on pest and disease management at the crop level. The framework evaluates and aggregates the effects, and subsequently impacts, of climate change on selected pests and diseases and

  8. Quantitative metrics for assessing predicted climate change pressure on North American tree species

    Science.gov (United States)

    Kevin M. Potter; William W. Hargrove

    2013-01-01

    Changing climate may pose a threat to forest tree species, forcing three potential population-level responses: toleration/adaptation, movement to suitable environmental conditions, or local extirpation. Assessments that prioritize and classify tree species for management and conservation activities in the face of climate change will need to incorporate estimates of the...

  9. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources

    Science.gov (United States)

    Polly C. Buotte; David L. Peterson; Kevin S. McKelvey; Jeffrey A. Hicke

    2016-01-01

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability...

  10. The importance of assessing climate change vulnerability to address species conservation

    Science.gov (United States)

    Karen E. Bagne; Megan M. Friggens; Sharon J. Coe; Deborah M. Finch

    2014-01-01

    Species conservation often prioritizes attention on a small subset of "special status" species at high risk of extinction, but actions based on current lists of special status species may not effectively moderate biodiversity loss if climate change alters threats. Assessments of climate change vulnerability may provide a method to enhance identification of...

  11. Template for assessing climate change impacts and management options: TACCIMO user guide version 2.2

    Science.gov (United States)

    Emrys Treasure; Steven McNulty; Jennifer Moore Myers; Lisa Nicole Jennings

    2014-01-01

    The Template for Assessing Climate Change Impacts and Management Options (TACCIMO) is a Web-based tool developed by the Forest Service, U.S. Department of Agriculture to assist Federal, State, and private land managers and planners with evaluation of climate change science implications for sustainable natural resource management. TACCIMO is a dynamic information...

  12. Integrated assessment of farm level adaptation to climate change in agriculture

    NARCIS (Netherlands)

    Mandryk, M.

    2016-01-01

    The findings of the thesis allowed assessing plausible futures of agriculture in Flevoland around 2050 with insights in effective adaptation to climate change at different levels. Besides empirical findings, this thesis contributed methodologically to the portfolio of climate change impact and

  13. 76 FR 17626 - National Climate Assessment Development and Advisory Committee; Announcement of Time Change and...

    Science.gov (United States)

    2011-03-30

    ... announces a change in the start time and provides the location of the meeting of the National Climate... National Oceanic and Atmospheric Administration National Climate Assessment Development and Advisory Committee; Announcement of Time Change and Meeting Location AGENCY: National Oceanic and Atmospheric...

  14. A climate change vulnerability assessment of California's at-risk birds.

    Science.gov (United States)

    Gardali, Thomas; Seavy, Nathaniel E; DiGaudio, Ryan T; Comrack, Lyann A

    2012-01-01

    Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife.

  15. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... doesn’t become place, and thus not experienced as a common good. Many Danish towns are situated by the sea; this has historically supported a strong spatial, functional and economically identity of the cities, with which people have identified. Effects of globalization processes and a rising sea level...

  16. Assessing climate change impacts on river flows and environmental flow requirements at catchment scale

    DEFF Research Database (Denmark)

    Gül, G.O.; Rosbjerg, Dan; Gül, A.

    2010-01-01

    . In this Study, the regional impacts of climate change on river flow and environmental flow requirement. which is a negotiated trade-off between water uses, are analysed for a lowland catchment in Denmark through MIKE SHE/MIKE 11 coupling. The Coupled model possesses an important capacity for simulating stream......The fourth assessment report of Intergovernmental Panel on Climate Change (IPCC) suggests studies that increase the spatial resolution to solve the scale mismatch between large-scale climatic models and the catchment scale while addressing climate change impacts on aquatic ecosystems. Impacts occur...

  17. A framework for assessing risk to coastal ecosystems in Taiwan due to climate change

    Directory of Open Access Journals (Sweden)

    Ming-Chih Chiu

    2017-01-01

    Full Text Available Coastal ecosystems are rich with biodiversity and ecological functions that provide valuable ecosystem services. They are also vulnerable to the impacts of climate change and anthropogenic activities. Assessing the impacts of climate change on coastal ecosystems is crucial if we are to develop and implement strategies that minimize and mitigate these impacts. This study uses a theoretical framework that includes climatic hazards, ecosystem vulnerability, and exposure to damaging climatic events, to estimate the risks due to climate change on coastal ecosystems in Taiwan. We found that seagrass beds, algal reefs, and coral reefs in Taiwan are at high ecological risk to the future effects of sea level rise, elevated sea temperature, and ocean acidification. The responses of these highly threatened ecosystems to the effects of climate change is uncertain and depend, in part, on the type of ecosystem, its location in Taiwan, the rate at which these effects occur, and whether these impacts occur at the same time or sequentially. The coastal ecosystem risk to the adverse effects of climate change is high because they are especially vulnerable. The resistance of coastal ecosystems is linked to their complexity and maturity. Their low adaptive capacity is linked to the exploitation of their natural resources and inadequate biodiversity conservation. To minimize and mitigate the effects of climate change on high-risk areas and ecosystems ongoing monitoring programs and dynamic management will be needed. Our study is a first step toward building a framework for climate change risk assessment for the coastal ecosystems in Taiwan.

  18. Utilizing the Koeppen climate classification to assess the future climate change

    Science.gov (United States)

    Hori, M. E.; Yasunari, T.

    2007-12-01

    It is suggested that global warming due to anthropogenic greenhouse gasses will cause a large change in the mean temperature and precipitation patterns of the future. One way to quantify the impact of this change is to use the climate classification method. Classifying the climate into regions with distinct properties instead of using only physical properties such as temperature and precipitation helps to give an objective view of how climate change affects the environment such as the land-surface types and vegetation. TheKoeppen climate classification has a long history of application and modification and is known to give a robust classification of the mean climate that closely follows the distribution of vegetation types. In this study, we apply theKoeppen climate classification on the result of 19 Atmosphere-Ocean GCM results provided by the PCMDI for the upcoming IPCC - AR4. By applying this method to the long-term future projection of climate models, instability of a particular climate region and its expected change in the longer timescales are quantified. The classification is performed on the 20th century simulation (20C3M) and the SRES-A1B / A2 scenario based on the long-term monthly climatology. The overall changes in classifications as well as inter-model distribution is calculated for all each model and the skill weighted ensemble mean. Results show that due to warmer climate and increase in moisture, large area of western Russian region and north America experience a shift from aDf (snow / fully moist) climate to Cf (Warm temperate / fully moist) classification which is in good agreement with the stronger NAO/AO phase in the north Atlantic. On the other hand, coastal Greenland region changes from a Ef (Polar frost) classification to Ef (Polar tundra) classification, which is in good agreement with the SST and sea-ice distribution. In contrast, northern China undergoes a change from Cf classification to Cw (Warm temperate / winter dry) classification

  19. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2010 - part 1)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.

  20. A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change

    Science.gov (United States)

    Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev

    2007-01-01

    This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.

  1. Climate Change Vulnerability of Native and Alien Freshwater Fishes of California: A Systematic Assessment Approach

    Science.gov (United States)

    Moyle, Peter B.; Kiernan, Joseph D.; Crain, Patrick K.; Quiñones, Rebecca M.

    2013-01-01

    Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California’s native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions. PMID:23717503

  2. Binational climate change vulnerability assessment of migratory birds in the Great Lakes Basins: Tools and impediments.

    Directory of Open Access Journals (Sweden)

    Robert S Rempel

    Full Text Available Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna, wood thrush (Hylocichla mustelina, and hooded warbler (Setophaga citrina. We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species.

  3. Binational climate change vulnerability assessment of migratory birds in the Great Lakes Basins: Tools and impediments.

    Science.gov (United States)

    Rempel, Robert S; Hornseth, Megan L

    2017-01-01

    Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna), wood thrush (Hylocichla mustelina), and hooded warbler (Setophaga citrina). We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species.

  4. Completing Northeast Regional Vulnerability Assessment Incorporating the NatureServe Climate Change Vulnerability Index

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — NatureServe and Heritage Program collaborators have developed a Climate Change Vulnerability Index (CCVI) to provide a rapid, scientifically defensible assessment of...

  5. Assessment of impacts on ground water resources in Libya and vulnerability to climate change

    Directory of Open Access Journals (Sweden)

    S. P. Bindra

    2014-12-01

    Full Text Available This paper is designed to present the likely impact of climate change on groundwater resources in general and Libya in particular. State of the art reviews on recent research studies, and methodology to assess the impact of climate change on groundwater resources shows that climate change poses uncertainties to the supply and management of water resources. It outlines to demonstrate that how climate change impact assessment plays a vital role in forming the sensitive water balance rarely achieved in most area owing to precipitation variability’s and seasonality. It demonstrates that how large increases in water demand with very little recharge from precipitation have strained Libya’s groundwater resources resulting in declines of groundwater levels and its quality, especially on Libyan coastal areas where most of the agriculture, domestic and industrial activities are concentrated. Based on several research studies it demonstrates that how policy and decision making process using best practices for monitoring, analyzing and forecasting variation of climate is a way forward to cope with the impact of sea level rise, and combat some water supplies in vulnerable areas that are becoming unusable due to the penetration of salt water into coastal aquifers (Jifara Plain, Sirt, Jebal El-Akhdar.Finally, a number of Global Climate Models (GCM are reviewed to demonstrate that how better understanding of climate and climate change forecasting helps in devising appropriate adaptation strategies due to the impact of climate change.

  6. Chatham Islands Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-15

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  7. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources.

    Science.gov (United States)

    Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A

    2016-03-15

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Climate Change Effects and Impacts Assessment. A guidance manual for Local Government in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Wratt, D.; Mullan, B.; Salinger, J. [National Institute of Water and Atmospheric Research NIWA, Newmarket, Auckland (New Zealand); Allan, S.; Morgan, T. [MWH New Zealand, Christchurch (New Zealand); Kenny, G. [Earthwise Consulting, Hastings (New Zealand)

    2004-05-15

    Climate change is a real and internationally recognised outcome of increased amounts of greenhouse gases in the atmosphere. It will have effects over the next decades that are predictable with some level of certainty, but which will vary from place to place throughout New Zealand. The climate will also change from year to year and decade to decade due to natural processes. For example, some parts of the country often have dry summers and autumns when an El Nino climate pattern is present. Both natural fluctuations and human-induced climate changes need to be considered when developing adaptation plans and policies, rather than just 'greenhouse warming' effects on their own. Councils already address extreme weather events and climate variations as they develop plans and provide services. Climate change effects need also to be considered as part of these regulatory, assessment and planning activities. It is not necessary to develop a set of procedures for dealing separately with effects and impacts of climate change - they can be built into existing practices. Over time, climate change responses will involve iterative planning processes, keeping up-to-date with new information, monitoring changes, and reviewing the effectiveness of responses. The response to climate change involves international, national, regional, district and community consideration and action. The Guidance Manual aims to assist local government in working with its communities and making appropriate decisions.

  9. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  10. Climate change assessment for Mediterranean agricultural areas by statistical downscaling

    Directory of Open Access Journals (Sweden)

    L. Palatella

    2010-07-01

    Full Text Available In this paper we produce projections of seasonal precipitation for four Mediterranean areas: Apulia region (Italy, Ebro river basin (Spain, Po valley (Italy and Antalya province (Turkey. We performed the statistical downscaling using Canonical Correlation Analysis (CCA in two versions: in one case Principal Component Analysis (PCA filter is applied only to predictor and in the other to both predictor and predictand. After performing a validation test, CCA after PCA filter on both predictor and predictand has been chosen. Sea level pressure (SLP is used as predictor. Downscaling has been carried out for the scenarios A2 and B2 on the basis of three GCM's: the CCCma-GCM2, the Csiro-MK2 and HadCM3. Three consecutive 30-year periods have been considered. For Summer precipitation in Apulia region we also use the 500 hPa temperature (T500 as predictor, obtaining comparable results. Results show different climate change signals in the four areas and confirm the need of an analysis that is capable of resolving internal differences within the Mediterranean region. The most robust signal is the reduction of Summer precipitation in the Ebro river basin. Other significative results are the increase of precipitation over Apulia in Summer, the reduction over the Po-valley in Spring and Autumn and the increase over the Antalya province in Summer and Autumn.

  11. Assessments of species' vulnerability to climate change: From pseudo to science

    Science.gov (United States)

    Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Muhlfeld, Clint C.; Waples, Robin S.; Luikart, Gordon

    2017-01-01

    Climate change vulnerability assessments (CCVAs) are important tools to plan for and mitigate potential impacts of climate change. However, CCVAs often lack scientific rigor, which can ultimately lead to poor conservation prioritization and associated ecological and economic costs. We discuss the need to improve comparability and consistency of CCVAs and either validate their findings or improve assessment of CCVA uncertainty and sensitivity to methodological assumptions.

  12. A Climate Change Risk and Resilience Assessment Process

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Lisa [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-07

    This presentation summarizes a site-specific climate resilience planning process applied at two different U.S. Department of Energy sites, in Colorado and along the Gulf Coast that federal site managers can use to identify and analyze potential climate-related risks and explore resilience options to minimize those risks.

  13. Assessing Crop Vulnerability to Climate Change: A Southwest Perspective

    Science.gov (United States)

    The USDA Southwest Regional Climate Hub is one of ten Climate Hubs and Sub-hubs established in 2014. The Hub region includes Arizona, California (partnering with the California Sub-Hub), Nevada, New Mexico and Utah.  Beyond the mainland States, the SW hub also serves Hawaii and the US affiliated Pac...

  14. Assess Climate Change's Impact on Coastal Rivers using a Coupled Climate-Hydrology Model

    Science.gov (United States)

    Xue, Z. G.; Gochis, D.; Yu, W.; Zang, Z.; Sampson, K. M.; Keim, B. D.

    2016-12-01

    In this study we present a coupled climate-hydrological model reproducing the water cycle of three coastal river basins along the northern Gulf of Mexico for the past three decades (1985-2014). Model simulated climate condition, surface physics, and streamflow were well validated against in situ data and satellite-derived products, giving us the confidence that the newly developed WRF-Hydro model can be a robust tool for evaluating climate change's impact on hydrological regime. Trend analysis of model simulated monthly and annual time series indicates that local climate is getting hotter and dryer, specifically during the growing season. Wavelet analysis reveals that local evapotranspiration is strongly correlated with temperature, while soil moisture, water surplus, and streamflow are coupled with precipitation. In addition, local climate is closely correlated with large-scale climate dynamics such as AMO and ENSO. A possible change-point is detected around year 2004, after which, the monthly precipitation decreased by 14.2%, evapotranspiration increased by 2.9%, and water surplus decreased by 36.5%. The implication of the difference between the water surplus (runoff) calculated using the classic Thornthwaite method and river discharge estimated using streamflow records to the coastal environment is also discussed.

  15. Assessment of composite index methods for agricultural vulnerability to climate change.

    Science.gov (United States)

    Wiréhn, Lotten; Danielsson, Åsa; Neset, Tina-Simone S

    2015-06-01

    A common way of quantifying and communicating climate vulnerability is to calculate composite indices from indicators, visualizing these as maps. Inherent methodological uncertainties in vulnerability assessments, however, require greater attention. This study examines Swedish agricultural vulnerability to climate change, the aim being to review various indicator approaches for assessing agricultural vulnerability to climate change and to evaluate differences in climate vulnerability depending on the weighting and summarizing methods. The reviewed methods are evaluated by being tested at the municipal level. Three weighting and summarizing methods, representative of climate vulnerability indices in general, are analysed. The results indicate that 34 of 36 method combinations differ significantly from each other. We argue that representing agricultural vulnerability in a single composite index might be insufficient to guide climate adaptation. We emphasize the need for further research into how to measure and visualize agricultural vulnerability and into how to communicate uncertainties in both data and methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessment of climate change impact on phenology dynamic in Vojvodina region

    Science.gov (United States)

    Lalic, B.; Mihailovic, D. T.

    2009-09-01

    Global climate change is a continuous process that needs to be taken seriously, even though there are large uncertainties in its spatial and temporal distribution. One important bio tracer of climate change presence and magnitude is plant phenology dynamic. However, response of different plant communities to changing climate will vary across the regions and ecosystems but it will never fail. Therefore, on regional or farm level, observed phenology dynamic can be exploited as a measure of climate change impact, or expected climate change can be used in order to assess possible changes in plant growth dynamic. Nevertheless, phenology doesn't provide only date of flowering or emergence but also implies timing of farm operations as well as pest and disease dynamic. As an element of climate change impact study for Northern Serbia region in the framework of ADAGIO project, trend of plant phenology dynamic has been calculated. Climate data series of further climate were obtained using HadCM3, ECHAM5 and NCAR-PCM climate models. Statistical downscaling to smaller temporal scale was provided using Met&Roll weather generator. Time of phenological stages appearance was calculated for wheat and selected fruit varieties.

  17. The North American Regional Climate Change Assessment Program: Overview of Phase I Results

    Energy Technology Data Exchange (ETDEWEB)

    Mearns, L. O.; Arritt, R.; Biner, S.; Bukovsky, Melissa; McGinnis, Seth; Sain, Steve; Caya, Daniel; Correia Jr., James; Flory, Dave; Gutowski, William; Takle, Gene; Jones, Richard; Leung, Lai-Yung R.; Moufouma-Okia, Wilfran; McDaniel, Larry; Nunes, A.; Qian, Yun; Roads, J.; Sloan, Lisa; Snyder, Mark A.

    2012-09-20

    The North American Regional Climate Change Assessment Program is an international effort designed to systematically investigate the uncertainties in regional scale projections of future climate and produce high resolution climate change scenarios using multiple regional climate models (RCMs) nested within atmosphere ocean general circulation models (AOGCMs) forced with the A2 SRES scenario, with a common domain covering the conterminous US, northern Mexico, and most of Canada. The program also includes an evaluation component (Phase I) wherein the participating RCMs are nested within 25 years of NCEP/DOE global reanalysis II. The grid spacing of the RCM simulations is 50 km.

  18. Assessing vulnerability to climate change and socioeconomic stressors in the Reef Islands group, Solomon Islands

    DEFF Research Database (Denmark)

    Birk, Thomas

    2014-01-01

    This article assesses the vulnerability to climatic and socioeconomic stresses in the Reef Islands, Solomon Islands, an atoll island group in the Southwest Pacific. Climate change and the associated sea-level rise are often seen as the most pressing challenges to atoll communities, yet this study...... infrastructure, economic marginalization and weak governance of Solomon Islands. Findings suggest that some of these non-climatic stresses are currently – and in the short term – more important determinants of local vulnerability than climate change and sea-level rise. Certainly, these stresses are likely...

  19. An assessment of the impact of climate change on plant species ...

    African Journals Online (AJOL)

    This study assesses the effects of climate change on vegetative species diversity exploring the usefulness of the Normalised Difference Water Index (NDWI) in predicting spatio-temporal diversity variations. The relationship between species richness and climatic variables of rainfall and temperature is explored based on ...

  20. Assessing climate change beliefs: Response effects of question wording and response alternatives.

    Science.gov (United States)

    Greenhill, Murni; Leviston, Zoe; Leonard, Rosemary; Walker, Iain

    2014-11-01

    To date, there is no 'gold standard' on how to best measure public climate change beliefs. We report a study (N = 897) testing four measures of climate change causation beliefs, drawn from four sources: the CSIRO, Griffith University, the Gallup poll, and the Newspoll. We found that question wording influences the outcome of beliefs reported. Questions that did not allow respondents to choose the option of believing in an equal mix of natural and anthropogenic climate change obtained different results to those that included the option. Age and belief groups were found to be important predictors of how consistent people were in reporting their beliefs. Response consistency gave some support to past findings suggesting climate change beliefs reflect something deeper in the individual belief system. Each belief question was assessed against five criterion variables commonly used in climate change literature. Implications for future studies are discussed. © The Author(s) 2013.

  1. Climate change impact assessment of extreme precipitation on urban flash floods – case study, Aarhus, Denmark

    DEFF Research Database (Denmark)

    Madsen, Henrik; Sunyer Pinya, Maria Antonia; Rosbjerg, Dan

    Climate change is expected to cause more intense extreme rainfall events, which will have a severe impact on the risk of flash floods in urban areas. An assessment study was performed for the city of Aarhus, Denmark, analysing different methods of statistical downscaling of climate model...... considered. Urban flooding in Aarhus was simulated with a model that dynamically couples a hydraulic model of the drainage system and a 2D overland flow model. Scenarios representing current and future climate including uncertainties in the climate projections were analysed using synthetic design storms...... projections for estimation of changes in extreme rainfall characteristics. Climate model projections from 20 regional climate models (RCM) from the ENSEMBLES data archive were used in the analysis. Two different estimation methods were applied, using, respectively, a direct estimation of the changes...

  2. A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Herslund, Lise Byskov; Jalyer, Fatameh; Jean-Baptiste, Nathalie

    2016-01-01

    for strategic coordination and action. To better adapt to urban flooding andthereby reduce vulnerability and build resilience, we suggest working across dimensions and scales, integrating climate change issues in city-level plans and strategies and enabling local actions to initiate a ‘learning......In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub- Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability...... in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional...

  3. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff

    Science.gov (United States)

    Muerth, M. J.; Gauvin St-Denis, B.; Ricard, S.; Velázquez, J. A.; Schmid, J.; Minville, M.; Caya, D.; Chaumont, D.; Ludwig, R.; Turcotte, R.

    2012-09-01

    In climate change impact research, the assessment of future river runoff as well as the catchment scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate projections originating from the climate models and the downscaling techniques as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of incertitude. Within the QBic3 project (Québec-Bavaria International Collaboration on Climate Change) the relative contributions to the overall uncertainty from the whole model chain (from global climate models to water management models) are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use Regional Climate Models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to reproduce historic runoff conditions from hydrological models using them, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For those reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in hydrology, we should consider it as a source of uncertainty. If not, the

  4. Indicators of climate change in Idaho: An assessment framework for coupling biophysical change and social perception

    Science.gov (United States)

    Climate change is well documented at the global scale, but local and regional changes are not as well understood. Finer, local-to-regional scale information is needed for creating specific, place-based planning and adaption efforts. Here we detail the development of an indicator-focused climate chan...

  5. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change

    NARCIS (Netherlands)

    Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M.

    2013-01-01

    To better prioritise adaptation strategies to a changing climate that are currently being developed, there is a need for quantitative regional level assessments that are systematic and comparable across multiple weather hazards. This study presents an indicator-based impact assessment framework at

  6. Mid­west. Climate change impacts in the United States: The third national climate assessment

    Science.gov (United States)

    Sara C. Pryor; Donald Scavia; Charles Downer; Marc Gaden; Louis Iverson; Rolf Nordstrom; Jonathan Patz; G. Phillip. Robertson

    2014-01-01

    In the next few decades, longer growing seasons and rising carbon dioxide levels will increase yields of some crops, though those benefits will be progressively offset by extreme weather events. Though adaptation options can reduce some of the detrimental effects, in the long term, the combined stresses associated with climate change are expected to decrease...

  7. Particulate Matter and Health Risk under a Changing Climate: Assessment for Portugal

    Directory of Open Access Journals (Sweden)

    Daniela Dias

    2012-01-01

    Full Text Available The potential impacts of climate-induced changes in air pollution levels and its impacts on population health were investigated. The IPCC scenario (SRES A2 was used to analyse the effects of climate on future PM10 concentrations over Portugal and their impact on short-term population exposure and mortality. The air quality modelling system has been applied with high spatial resolution looking on climate changes at regional scale. To quantify health impacts related to air pollution changes, the WHO methodology for health impact assessment was implemented. The results point to 8% increase of premature mortality attributed to future PM10 levels in Portugal. The pollution episodes with daily average PM10 concentration above the current legislated value (50 μg·m−3 would be responsible for 81% of attributable cases. The absolute number of deaths attributable to PM10 under future climate emphasizes the importance of indirect effects of climate change on human health.

  8. Climate change impact and adaptation assessment on food consumption utilizing a new scenario framework.

    Science.gov (United States)

    Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Takahashi, Kiyoshi; Masui, Toshihiko; Tanaka, Akemi

    2014-01-01

    We assessed the impacts of climate change and agricultural autonomous adaptation measures (changes in crop variety and planting dates) on food consumption and risk of hunger considering uncertainties in socioeconomic and climate conditions by using a new scenario framework. We combined a global computable general equilibrium model and a crop model (M-GAEZ), and estimated the impacts through 2050 based on future assumptions of socioeconomic and climate conditions. We used three Shared Socioeconomic Pathways as future population and gross domestic products, four Representative Concentration Pathways as a greenhouse gas emissions constraint, and eight General Circulation Models to estimate climate conditions. We found that (i) the adaptation measures are expected to significantly lower the risk of hunger resulting from climate change under various socioeconomic and climate conditions. (ii) population and economic development had a greater impact than climate conditions for risk of hunger at least throughout 2050, but climate change was projected to have notable impacts, even in the strong emission mitigation scenarios. (iii) The impact on hunger risk varied across regions because levels of calorie intake, climate change impacts and land scarcity varied by region.

  9. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2017-10-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  10. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt.

    OpenAIRE

    Sušnik, J.; Vamvakeridou-Lyroudia, L.S.; Baumert, N.; Kloos, J.; Renaud, F. G.; Jeunesse, I. La; Mabrouk, B.; Savić, D.A.; Kapelan, Z.; Ludwig, R.; Fischer, G; Roson, R.; Zografos, C.

    2015-01-01

    International audience; CLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB —CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed — WaterAvailability and Security in Southern EuRope and the Mediterranean) and human security connected with possiblehydro-climatic conflicts (CLICO — CLImate change hydro-COnfl...

  11. The Regional Integrated Sciences and Assessments (RISA) Program, Climate Services, and Meeting the National Climate Change Adaptation Challenge

    Science.gov (United States)

    Overpeck, J. T.; Udall, B.; Miles, E.; Dow, K.; Anderson, C.; Cayan, D.; Dettinger, M.; Hartmann, H.; Jones, J.; Mote, P.; Ray, A.; Shafer, M.; White, D.

    2008-12-01

    The NOAA-led RISA Program has grown steadily to nine regions and a focus that includes both natural climate variability and human-driven climate change. The RISAs are, at their core, university-based and heavily invested in partnerships, particularly with stakeholders, NOAA, and other federal agencies. RISA research, assessment and partnerships have led to new operational climate services within NOAA and other agencies, and have become important foundations in the development of local, state and regional climate change adaptation initiatives. The RISA experience indicates that a national climate service is needed, and must include: (1) services prioritized based on stakeholder needs; (2) sustained, ongoing regional interactions with users, (3) a commitment to improve climate literacy; (4) support for assessment as an ongoing, iterative process; (5) full recognition that stakeholder decisions are seldom made using climate information alone; (6) strong interagency partnership; (7) national implementation and regional in focus; (8) capability spanning local, state, tribal, regional, national and international space scales, and weeks to millennia time scales; and (9) institutional design and scientific support flexible enough to assure the effort is nimble enough to respond to rapidly-changing stakeholder needs. The RISA experience also highlights the central role that universities must play in national climate change adaptation programs. Universities have a tradition of trusted regional stakeholder partnerships, as well as the interdisciplinary expertise - including social science, ecosystem science, law, and economics - required to meet stakeholder climate-related needs; project workforce can also shift rapidly in universities. Universities have a proven ability to build and sustain interagency partnerships. Universities excel in most forms of education and training. And universities often have proven entrepreneurship, technology transfer and private sector

  12. Accounting for adaptive capacity and uncertainty in assessments of species' climate-change vulnerability.

    Science.gov (United States)

    Wade, Alisa A; Hand, Brian K; Kovach, Ryan P; Luikart, Gordon; Whited, Diane C; Muhlfeld, Clint C

    2017-02-01

    Climate-change vulnerability assessments (CCVAs) are valuable tools for assessing species' vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species' vulnerability to climate change. © 2016 Society for Conservation Biology.

  13. Assessing Climate Change Perceptions, Management Strategies, and Information Needs for Indiana Agricultural and Forestry Sectors

    Science.gov (United States)

    Cherkauer, K. A.; Chin, N.

    2016-12-01

    The agricultural and forestry sectors in the state of Indiana are highly dependent on climate and, subsequently, highly vulnerable to the impacts of climate change. Higher temperatures, shifts in precipitation patterns, more widespread prevalence of pests and pathogens, and increased frequency and severity of extreme weather events could all have negative effects on these two sectors in the future. Agricultural and forest producers are already modifying their management strategies in response to perceptions of changes in climate risk, but such responses have been primarily reactive in nature and, in many cases, demonstrate a disconnect between scientific findings and stakeholder perceptions of the greatest climate risks. This research has been conducted to help improve understanding of climate change risks to agriculture and forestry in Indiana; stakeholder perceptions of climate risks and their current management strategies; and the effectiveness of these management strategies for dealing with current and future climate risk. Sector-specific focus groups, expert panel assessments and surveys have all been utilized in this work, which will also contribute to the new Indiana Climate Change Impacts Assessment report.

  14. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  15. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2011 - part 2)

    Science.gov (United States)

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.

  16. Managing hardwood-softwood mixtures for future forests in eastern North America: assessing suitability to projected climate change

    Science.gov (United States)

    John M. Kabrick; Kenneth L. Clark; Anthony W. D' Amato; Daniel C. Dey; Laura S. Kenefic; Christel C. Kern; Benjamin O. Knapp; David A. MacLean; Patricia Raymond; Justin D. Waskiewicz

    2017-01-01

    Despite growing interest in management strategies for climate change adaptation, there are few methods for assessing the ability of stands to endure or adapt to projected future climates. We developed a means for assigning climate "Compatibility" and "Adaptability" scores to stands for assessing the suitability of tree species for projected climate...

  17. Climate Change and the Joint Force: An Assessment

    Science.gov (United States)

    2017-05-25

    report /WG1AR5_ALL_FINAL.pdf. 6 A rising global temperature is an irrefutable scientific fact. Furthermore, climate scientists project...Specifically, it noted that as “greenhouse gas emissions increase, sea levels are rising, the average global temperatures are increasing and severe...United States Geological Survey estimates that there are approximately 90 billion barrels of oil , 1,669 trillion cubic feet of natural gas , and 44

  18. Health consequence scales for use in health impact assessments of climate change.

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery

    2014-09-16

    While health impact assessment (HIA) has typically been applied to projects, plans or policies, it has significant potential with regard to strategic considerations of major health issues facing society such as climate change. Given the complexity of climate change, assessing health impacts presents new challenges that may require different approaches compared to traditional applications of HIA. This research focuses on the development of health consequence scales suited to assessing and comparing health effects associated with climate change and applied within a HIA framework. This assists in setting priorities for adaptation plans to minimize the public health impacts of climate change. The scales presented in this paper were initially developed for a HIA of climate change in Perth in 2050, but they can be applied across spatial and temporal scales. The design is based on a health effects pyramid with health measures expressed in orders of magnitude and linked to baseline population and health data. The health consequence measures are combined with a measure of likelihood to determine the level of risk associated with each health potential health impact. In addition, a simple visual framework that can be used to collate, compare and communicate the level of health risks associated with climate change has been developed.

  19. Health Consequence Scales for Use in Health Impact Assessments of Climate Change

    Science.gov (United States)

    Brown, Helen; Spickett, Jeffery

    2014-01-01

    While health impact assessment (HIA) has typically been applied to projects, plans or policies, it has significant potential with regard to strategic considerations of major health issues facing society such as climate change. Given the complexity of climate change, assessing health impacts presents new challenges that may require different approaches compared to traditional applications of HIA. This research focuses on the development of health consequence scales suited to assessing and comparing health effects associated with climate change and applied within a HIA framework. This assists in setting priorities for adaptation plans to minimize the public health impacts of climate change. The scales presented in this paper were initially developed for a HIA of climate change in Perth in 2050, but they can be applied across spatial and temporal scales. The design is based on a health effects pyramid with health measures expressed in orders of magnitude and linked to baseline population and health data. The health consequence measures are combined with a measure of likelihood to determine the level of risk associated with each health potential health impact. In addition, a simple visual framework that can be used to collate, compare and communicate the level of health risks associated with climate change has been developed. PMID:25229697

  20. Climate change health assessment: a novel approach for Alaska Native communities.

    Science.gov (United States)

    Brubaker, Michael Y; Bell, Jacob N; Berner, James E; Warren, John A

    2011-06-01

    Develop a process for assessing climate change impacts on public health that identifies climate-health vulnerabilities and mechanisms and encourages adaptation. Multi-stakeholder, participatory, qualitative research. A Climate Change Health Assessment (CCHA) was developed that involved 4 steps: (1) scoping to describe local conditions and engage stakeholders; (2) surveying to collect descriptive and quantitative data; (3) analysis to evaluate the data; and (4) planning to communicate findings and explore appropriate actions with community members. The health effects related to extreme weather, thinning ice, erosion, flooding, thawing permafrost and changing conditions of water and food resources were considered. The CCHA process was developed and performed in north-west Arctic villages. Refinement of the process took place in Point Hope, a coastal Inupiat village that practices whaling and a variety of other traditional subsistence harvest practices. Local observers identified climate change impacts that resulted in damaged health infrastructure, compromised food and water security and increased risk of injury. Priority health issues included thawing traditional ice cellars, diminished quality of the community water source and increased safety issues related to sea ice change. The CCHA increased awareness about health vulnerability and encouraged informed planning and decision-making. A community-scale assessment process guided by observation-based data can identify climate health impacts, raise awareness and encourage adaptive actions, thereby improving the response capacity of communities vulnerable to climate change.

  1. Minnesota forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kelly Barrett; Randy Kolka; Casey McQuiston; Brian Palik; Peter B. Reich; Clarence Turner; Mark White; Cheryl Adams; Anthony D' Amato; Suzanne Hagell; Patricia Johnson; Rosemary Johnson; Mike Larson; Stephen Matthews; Rebecca Montgomery; Steve Olson; Matthew Peters; Anantha Prasad; Jack Rajala; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Minnesota will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Minnesota's Laurentian Mixed Forest Province to a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and...

  2. Incorporating climate change into ecosystem service assessments and decisions: a review.

    Science.gov (United States)

    Runting, Rebecca K; Bryan, Brett A; Dee, Laura E; Maseyk, Fleur J F; Mandle, Lisa; Hamel, Perrine; Wilson, Kerrie A; Yetka, Kathleen; Possingham, Hugh P; Rhodes, Jonathan R

    2017-01-01

    Climate change is having a significant impact on ecosystem services and is likely to become increasingly important as this phenomenon intensifies. Future impacts can be difficult to assess as they often involve long timescales, dynamic systems with high uncertainties, and are typically confounded by other drivers of change. Despite a growing literature on climate change impacts on ecosystem services, no quantitative syntheses exist. Hence, we lack an overarching understanding of the impacts of climate change, how they are being assessed, and the extent to which other drivers, uncertainties, and decision making are incorporated. To address this, we systematically reviewed the peer-reviewed literature that assesses climate change impacts on ecosystem services at subglobal scales. We found that the impact of climate change on most types of services was predominantly negative (59% negative, 24% mixed, 4% neutral, 13% positive), but varied across services, drivers, and assessment methods. Although uncertainty was usually incorporated, there were substantial gaps in the sources of uncertainty included, along with the methods used to incorporate them. We found that relatively few studies integrated decision making, and even fewer studies aimed to identify solutions that were robust to uncertainty. For management or policy to ensure the delivery of ecosystem services, integrated approaches that incorporate multiple drivers of change and account for multiple sources of uncertainty are needed. This is undoubtedly a challenging task, but ignoring these complexities can result in misleading assessments of the impacts of climate change, suboptimal management outcomes, and the inefficient allocation of resources for climate adaptation. © 2016 John Wiley & Sons Ltd.

  3. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Final Report: Demographic Tools for Climate Change and Environmental Assessments

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Brian [National Center for Atmospheric Research, Boulder, CO (United States)

    2017-01-24

    This report summarizes work over the course of a three-year project (2012-2015, with one year no-cost extension to 2016). The full proposal detailed six tasks: Task 1: Population projection model Task 2: Household model Task 3: Spatial population model Task 4: Integrated model development Task 5: Population projections for Shared Socio-economic Pathways (SSPs) Task 6: Population exposure to climate extremes We report on all six tasks, provide details on papers that have appeared or been submitted as a result of this project, and list selected key presentations that have been made within the university community and at professional meetings.

  5. Motivators and barriers to incorporating climate change-related health risks in environmental health impact assessment.

    Science.gov (United States)

    Turner, Lyle R; Alderman, Katarzyna; Connell, Des; Tong, Shilu

    2013-03-22

    Climate change presents risks to health that must be addressed by both decision-makers and public health researchers. Within the application of Environmental Health Impact Assessment (EHIA), there have been few attempts to incorporate climate change-related health risks as an input to the framework. This study used a focus group design to examine the perceptions of government, industry and academic specialists about the suitability of assessing the health consequences of climate change within an EHIA framework. Practitioners expressed concern over a number of factors relating to the current EHIA methodology and the inclusion of climate change-related health risks. These concerns related to the broad scope of issues that would need to be considered, problems with identifying appropriate health indicators, the lack of relevant qualitative information that is currently incorporated in assessment and persistent issues surrounding stakeholder participation. It was suggested that improvements are needed in data collection processes, particularly in terms of adequate communication between environmental and health practitioners. Concerns were raised surrounding data privacy and usage, and how these could impact on the assessment process. These findings may provide guidance for government and industry bodies to improve the assessment of climate change-related health risks.

  6. Ensemble tropical-extratropical cyclone coastal flood hazard assessment with climate change

    Science.gov (United States)

    Orton, P. M.; Lin, N.; Colle, B.

    2016-12-01

    A challenge with quantifying future changes in coastal flooding for the U.S. East Coast is that climate change has varying effects on different types of storms, in addition to raising mean sea levels. Moreover, future flood hazard uncertainties are large and come from many sources. Here, a new coastal flood hazard assessment approach is demonstrated that separately evaluates and then combines probabilities of storm tide generated from tropical cyclones (TCs) and extratropical cyclones (ETCs). The separation enables us to incorporate climate change impacts on both types of storms. The assessment accounts for epistemic storm tide uncertainty using an ensemble of different prior studies and methods of assessment, merged with uncertainty in climate change effects on storm tides and sea levels. The assessment is applied for New York Harbor, under the auspices of the New York City Panel on Climate Change (NPCC). In the New York Bight region and much of the U.S. East Coast, differing flood exceedance curve slopes for TCs and ETCs arise due to their differing physics. It is demonstrated how errors can arise for this region from mixing together storm types in an extreme value statistical analysis, a common practice when using observations. The effects of climate change on TC and ETC flooding have recently been assessed for this region, for TCs using a Global Climate Model (GCM) driven hurricane model with hydrodynamic modeling, and for ETCs using a GCM-driven multilinear regression-based storm surge model. The results of these prior studies are applied to our central estimates of the flood exceedance curve probabilities, transforming them for climate change effects. The results are useful for decision-makers because they highlight the large uncertainty in present-day and future flood risk, and also for scientists because they identify the areas where further research is most needed.

  7. A quantitative method for risk assessment of agriculture due to climate change

    Science.gov (United States)

    Dong, Zhiqiang; Pan, Zhihua; An, Pingli; Zhang, Jingting; Zhang, Jun; Pan, Yuying; Huang, Lei; Zhao, Hui; Han, Guolin; Wu, Dong; Wang, Jialin; Fan, Dongliang; Gao, Lin; Pan, Xuebiao

    2018-01-01

    Climate change has greatly affected agriculture. Agriculture is facing increasing risks as its sensitivity and vulnerability to climate change. Scientific assessment of climate change-induced agricultural risks could help to actively deal with climate change and ensure food security. However, quantitative assessment of risk is a difficult issue. Here, based on the IPCC assessment reports, a quantitative method for risk assessment of agriculture due to climate change is proposed. Risk is described as the product of the degree of loss and its probability of occurrence. The degree of loss can be expressed by the yield change amplitude. The probability of occurrence can be calculated by the new concept of climate change effect-accumulated frequency (CCEAF). Specific steps of this assessment method are suggested. This method is determined feasible and practical by using the spring wheat in Wuchuan County of Inner Mongolia as a test example. The results show that the fluctuation of spring wheat yield increased with the warming and drying climatic trend in Wuchuan County. The maximum yield decrease and its probability were 3.5 and 64.6%, respectively, for the temperature maximum increase 88.3%, and its risk was 2.2%. The maximum yield decrease and its probability were 14.1 and 56.1%, respectively, for the precipitation maximum decrease 35.2%, and its risk was 7.9%. For the comprehensive impacts of temperature and precipitation, the maximum yield decrease and its probability were 17.6 and 53.4%, respectively, and its risk increased to 9.4%. If we do not adopt appropriate adaptation strategies, the degree of loss from the negative impacts of multiclimatic factors and its probability of occurrence will both increase accordingly, and the risk will also grow obviously.

  8. Climate change and forests: Impacts and adaption. A regional assessment for the Western Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sukumar, R. [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deshingkar, P. [Stockholm Environment Inst. (Sweden)

    1997-12-31

    Potential climate change over the next 50 to 100 years could have major impacts on tropical forests. Forests, particularly in the tropics, are subjected to anthropogenic pressures leading to degradation and loss of forest ecosystems. Given the significant dependence of local people and economies on forests in tropical and temperate countries, there is a need to assess the possible impacts of climate change and to develop adaption measures. The diversity of forest types in the Western Ghats ranges from wet evergreen and deciduous forest to dry thorn and montane forests with a wide range of annual rainfall regimes (from less than 65 cm to over 300 cm). The study was conducted in two regions of the Western Ghats; the Uttara Kannada district and the Nilgiris. Climate change projections for 2020 and 2050 were used in assessing the possible impacts on forests. In general, the `most likely` projections of climate change were an increase in mean temperature in the range of 0.3-1.0 deg C and an increase in precipitation of 3-8% over the study regions by the year 2050. The `worst case` scenario was an increase in temperature of 1 deg C and a decrease in precipitation by 8% by 2050. To assess the vegetational responses to climate change, a simple model based on present-day correlations between climatic (mean annual temperature and precipitation) and vegetation types for these regions was developed. Likely changes in the areas under different forest types were assessed for `moderate climate` sensitivity and central scaling factor (referred to as the `most likely scenario`) for the years 2020 and 2050, and `high climate` sensitivity and a lower scaling factor (the `worst case scenario`) for 2050 90 refs, 15 figs, 15 tabs

  9. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  10. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.

    Directory of Open Access Journals (Sweden)

    Peter B Moyle

    Full Text Available Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1 current status of each species (baseline vulnerability to extinction and (2 likely future impacts of climate change (vulnerability to extinction. Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish

  11. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080.

    Science.gov (United States)

    Fischer, Günther; Shah, Mahendra; Tubiello, Francesco N; van Velhuizen, Harrij

    2005-11-29

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological-economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5' X 5' latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change.

  12. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-01-01

    There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation...... basic assumptions in the economic analysis and the hydrological model, but also from the projection of future societies to local climate change impacts and suitable adaptation options. This presents a challenge to decision makers when trying to identify robust measures. We present an integrated...... of risk changes over time. The overall uncertainty is then attributed to six bulk processes: climate change impact, urban rainfall-runoff processes, stage-depth functions, unit cost of repair, cost of adaptation measures, and discount rate. We apply the approach on an urban hydrological catchment...

  13. Impact assessment and coastal climate change adaptation in a local transdisciplinary perspective

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, N. H.; Knudsen, Per

    From an applied point of view, the authors present and discuss inter- and transdisciplinary approaches to assess and deal with natural coastal hazards and climate change impacts. The construction of a shared working platform for knowledge integration across levels of governance and between research...... of climate change. The platform is dynamically updated with additional data and knowledge, e.g. from climate change evidence, or, by provision of updated regional models of future sea level rise. In order to integrate natural hazards and impact development over time, models on hydrology, geology...... a more prominent role. For example, the investment and maintenance costs of securing functional water and wastewater pipes are significantly reduced by incorporation of knowledge about climate change impacts. The presented approaches yield an integrative process-oriented framework to handle uncertainties...

  14. Assessment of the risks of climate change in the Working Group II contribution to the IPCC's Fifth Assessment Report (Invited)

    Science.gov (United States)

    Mach, K. J.; Field, C. B.; Mastrandrea, M.; Barros, V.

    2013-12-01

    For the past two decades, IPCC Working Group II has developed comprehensive periodic assessments of climate change impacts, adaptation, and vulnerability. In multiple rounds of drafting and review, author teams for each report evaluate the state of knowledge based on extensive scientific and technical information across disciplines. The Working Group II contribution to the IPCC's Fifth Assessment Report (WGII AR5), to be completed in 2014, explores the ways climate change is shifting patterns of risks and the implications for response. The risks of climate change often emerge from complex interactions typified by inherent uncertainties. Most fundamentally, climate-related risks result from physical hazards interacting with vulnerable and exposed people, assets, and ecosystems. The WGII AR5 assesses observed impacts of climate change, which may in some cases demonstrate risks already influenced by climate change, and it also assesses future risks affected by climate change and societal development. In communicating risks over the coming century, the assessment uses timeframe as a key distinction. Risks over the next few decades will evolve as socioeconomic trends interact with global temperature increase that is similar across emissions scenarios. During this near-term era of committed climate change, societal responses, particularly adaptations, will influence near-term outcomes. Other risks evolve in the longer term, varying across alternative climate change and development futures. Near-term and ongoing mitigation efforts, as well as development, will determine the risks of climate change in the second half of the 21st century, which can be considered an era of climate options. The WGII AR5 evaluates the ways impacts are experienced through extremes, not just through mean changes, and it considers the different types of vulnerability across regions and contexts. Ultimately, managing the risks of climate change can be considered a challenge of decisionmaking under

  15. Communicating Urban Climate Change

    Science.gov (United States)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of

  16. Crop modelling for integrated assessment of risk to food production from climate change

    NARCIS (Netherlands)

    Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, Heidi; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; Ittersum, van M.K.; Janssen, S.J.C.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartosová, L.; Asseng, S.

    2015-01-01

    The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess

  17. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change

    Science.gov (United States)

    Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston

    2017-01-01

    We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...

  18. Regional climate change mitigation with crops: context and assessment.

    Science.gov (United States)

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  19. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts

    Science.gov (United States)

    Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose

    2015-01-01

    Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...

  20. Changes in population susceptibility to heat and cold over time: assessing adaptation to climate change.

    Science.gov (United States)

    Arbuthnott, Katherine; Hajat, Shakoor; Heaviside, Clare; Vardoulakis, Sotiris

    2016-03-08

    examined the risk of cold. In contrast to the changes in heat related mortality observed, only one found a significant decrease in cold related mortality in later time periods. There is evidence that across a number of different settings, population susceptibility to heat and heatwaves has been decreasing. These changes in heat related susceptibility have important implications for health impact assessments of future heat related risk. A similar decrease in cold related mortality was not shown. Adaptation to heat has implications for future planning, particularly in urban areas, with anticipated increases in temperature due to climate change.

  1. Assessing Climate Change Impacts for DoD installations in the Southwest United States During the Warm Season

    Science.gov (United States)

    2017-03-10

    FINAL REPORT Assessing Climate Change Impacts for DoD Installations in the Southwest United States During the Warm Season SERDP Project RC...DATES COVERED (From - To) March 2012 to March 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Assessing climate change impacts for DoD installations in...select NARCCAP and UA-ATMO downscaled CMIP models. Figure 9: July-August precipitation during the period of historical climate versus climate change

  2. Assessing the vulnerability of watersheds to climate change: results of national forest watershed vulnerability pilot assessments

    Science.gov (United States)

    Michael J. Furniss; Ken B. Roby; Dan Cenderelli; John Chatel; Caty F. Clifton; Alan Clingenpeel; Polly E. Hays; Dale Higgins; Ken Hodges; Carol Howe; Laura Jungst; Joan Louie; Christine Mai; Ralph Martinez; Kerry Overton; Brian P. Staab; Rory Steinke; Mark. Weinhold

    2013-01-01

    Existing models and predictions project serious changes to worldwide hydrologic processes as a result of global climate change. Projections indicate that significant change may threaten National Forest System watersheds that are an important source of water used to support people, economies, and ecosystems.Wildland managers are expected to anticipate and...

  3. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Olesen, Jørgen E

    2011-01-01

    Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled w...... the importance of including soil information for regional studies of climate change impacts on cropping systems....

  4. Ecosystem vulnerability assessment and synthesis: a report from the Climate Change Response Framework Project in northern Wisconsin

    Science.gov (United States)

    Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery. Dorland

    2011-01-01

    The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...

  5. Designing a global assessment of climate change on inland fishes and fisheries: knowns and needs

    Science.gov (United States)

    Paukert, Craig; Lynch, Abigail J.; Beard, T. Douglas; Chen, Yushun; Cooke, Steven J.; Cooperman, Michael S.; Cowx, Ian G.; Infante, Dana M.; Ibengwe, Lilian; Myers, Bonnie; Nguyen, Phu Hoa; Winfield, Ian J.

    2017-01-01

    To date, there are few comprehensive assessments of how climate change affects inland finfish, fisheries, and aquaculture at a global scale, but one is necessary to identify research needs and commonalities across regions and to help guide decision making and funding priorities. Broadly, the consequences of climate change on inland fishes will impact global food security, the livelihoods of people who depend on inland capture and recreational fisheries. However, understanding how climate change will affect inland fishes and fisheries has lagged behind marine assessments. Building from a North American inland fisheries assessment, we convened an expert panel from seven countries to provide a first-step to a framework for determining how to approach an assessment of how climate change may affect inland fishes, capture fisheries, and aquaculture globally. Starting with the small group helped frame the key questions (e.g., who is the audience? What is the best approach and spatial scale?). Data gaps identified by the group include: the tolerances of inland fisheries to changes in temperature, stream flows, salinity, and other environmental factors linked to climate change, and the adaptive capacity of fishes and fisheries to adjust to these changes. These questions are difficult to address, but long-term and large-scale datasets are becoming more readily available as a means to test hypotheses related to climate change. We hope this perspective will help researchers and decision makers identify research priorities and provide a framework to help sustain inland fish populations and fisheries for the diversity of users around the globe.

  6. Multi-model assessment of water scarcity under climate change

    NARCIS (Netherlands)

    Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.; Colón-González, F.J.; Gosling, S.N.; Kim, H.; Liu, X; Masaki, Y.; Portmann, F.T.; Satoh, Y.; Stacke, T.; Tang, Q.; Wada, Y.|info:eu-repo/dai/nl/341387819; Wisser, D.; Albrecht, T.; Frieler, K.; Piontek, F.; Warszawski, L.; Kabat, P.

    2014-01-01

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by

  7. Multimodel assessment of water scarcity under climate change

    NARCIS (Netherlands)

    Schellnhuber, H.J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Kabat, P.

    2014-01-01

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by

  8. Climatic change of summer temperature and precipitation in the Alpine region - a statistical-dynamical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D.; Sept, V.

    1998-12-01

    Climatic changes in the Alpine region due to increasing greenhouse gas concentrations are assessed by using statistical-dynamical downscaling. The downscaling procedure is applied to two 30-year periods (1971-2000 and 2071-2100, summer months only) of the output of a transient coupled ocean/atmosphere climate scenario simulation. The downscaling results for the present-day climate are in sufficient agreement with observations. The estimated regional climate change during the next 100 years shows a general warming. The mean summer temperatures increase by about 3 to more than 5 Kelvin. The most intense climatic warming is predicted in the western parts of the Alps. The amount of summer precipitation decreases in most parts of central Europe by more than 20 percent. Only over the Adriatic area and parts of eastern central Europe an increase in precipitation is simulated. The results are compared with observed trends and results of regional climate change simulations of other authors. The observed trends and the majority of the simulated trends agree with our results. However, there are also climate change estimates which completely contradict with ours. (orig.) 29 refs.

  9. Assessing pricing assumptions for weather index insurance in a changing climate

    Directory of Open Access Journals (Sweden)

    J.D. Daron

    2014-01-01

    Full Text Available Weather index insurance is being offered to low-income farmers in developing countries as an alternative to traditional multi-peril crop insurance. There is widespread support for index insurance as a means of climate change adaptation but whether or not these products are themselves resilient to climate change has not been well studied. Given climate variability and climate change, an over-reliance on historical climate observations to guide the design of such products can result in premiums which mislead policyholders and insurers alike, about the magnitude of underlying risks. Here, a method to incorporate different sources of climate data into the product design phase is presented. Bayesian Networks are constructed to demonstrate how insurers can assess the product viability from a climate perspective, using past observations and simulations of future climate. Sensitivity analyses illustrate the dependence of pricing decisions on both the choice of information, and the method for incorporating such data. The methods and their sensitivities are illustrated using a case study analysing the provision of index-based crop insurance in Kolhapur, India. We expose the benefits and limitations of the Bayesian Network approach, weather index insurance as an adaptation measure and climate simulations as a source of quantitative predictive information. Current climate model output is shown to be of limited value and difficult to use by index insurance practitioners. The method presented, however, is shown to be an effective tool for testing pricing assumptions and could feasibly be employed in the future to incorporate multiple sources of climate data.

  10. The Assessment of Vulnerability of Industrial Parks to Climate Change in South Korea

    Science.gov (United States)

    Ryu, J. E.; Lee, D. K.; Jung, T. Y.; Choi, K. L.; Lee, S. H.

    2014-12-01

    Many countries are developing policy and measures to adapt to climate changes at the national and local levels, but the assessment of vulnerability to climate change and the establishment of countermeasures in the industries considering industrial factors such as worker, infrastructure are insufficient due to the characteristics of diverse processes and fields. In South Korea, the national government provides infrastructures for industrial parks where various companies in manufacturing and other industries are concentrated . Because of their concentration, damages can aggravate in case of natural disasters such as typhoons. In this study, vulnerability indices for climate change were developed and evaluated using climate scenarios for the climate exposure of localized terrential downpour for eight industrial parks. The vulnerability indices were selected and reviewed through literature review and two in-depth interviews with experts in various industries, and the assessment of vulnerability to climate change was conducted by collecting relevant information including the Directory of Industrial Complexes. The vulnerability of each industrial park to climate change was assessed for four time serious such as the base line, 2020s, 2050s, and 2100s . As a result, even though the possibility of localized heavy rain was the highest in Yeosu(Southeast coast) at present, but it was predicted that Gwangyang(Southwest coast) will be higher in the future. For the influences of climate including sensitivity, Ulsan Mipo(Southeast coast) is currently under the highest influence of climate, but the Gumi(Inland area) was forecasted to be under the highest influence of climate in the future. As a result of the assessment of vulnerability to climate change including adaptive capacity, Gumi and Myongji Noksan(Southeast coast) were most vulnerable to localized heavy rain. The degree of vulnerability of all the industrial parks except Ulsan and Yeosu was forecasted to increase in the

  11. An Assessment of Climate Change Impacts on Los Angeles (California USA) Hospitals, Wildfires Highest Priority.

    Science.gov (United States)

    Adelaine, Sabrina A; Sato, Mizuki; Jin, Yufang; Godwin, Hilary

    2017-10-01

    Introduction Although many studies have delineated the variety and magnitude of impacts that climate change is likely to have on health, very little is known about how well hospitals are poised to respond to these impacts. Hypothesis/Problem The hypothesis is that most modern hospitals in urban areas in the United States need to augment their current disaster planning to include climate-related impacts. Using Los Angeles County (California USA) as a case study, historical data for emergency department (ED) visits and projections for extreme-heat events were used to determine how much climate change is likely to increase ED visits by mid-century for each hospital. In addition, historical data about the location of wildfires in Los Angeles County and projections for increased frequency of both wildfires and flooding related to sea-level rise were used to identify which area hospitals will have an increased risk of climate-related wildfires or flooding at mid-century. Only a small fraction of the total number of predicted ED visits at mid-century would likely to be due to climate change. By contrast, a significant portion of hospitals in Los Angeles County are in close proximity to very high fire hazard severity zones (VHFHSZs) and would be at greater risk to wildfire impacts as a result of climate change by mid-century. One hospital in Los Angeles County was anticipated to be at greater risk due to flooding by mid-century as a result of climate-related sea-level rise. This analysis suggests that several Los Angeles County hospitals should focus their climate-change-related planning on building resiliency to wildfires. Adelaine SA , Sato M , Jin Y , Godwin H . An assessment of climate change impacts on Los Angeles (California USA) hospitals, wildfires highest priority. Prehosp Disaster Med. 2017;32(5):556-562.

  12. An assessment of yield gains under climate change due to genetic modification of pearl millet.

    Science.gov (United States)

    Singh, Piara; Boote, K J; Kadiyala, M D M; Nedumaran, S; Gupta, S K; Srinivas, K; Bantilan, M C S

    2017-12-01

    Developing cultivars with traits that can enhance and sustain productivity under climate change will be an important climate smart adaptation option. The modified CSM-CERES-Pearl millet model was used to assess yield gains by modifying plant traits determining crop maturity duration, potential yield and tolerance to drought and heat in pearl millet cultivars grown at six locations in arid (Hisar, Jodhpur, Bikaner) and semi-arid (Jaipur, Aurangabad and Bijapur) tropical India and two locations in semi-arid tropical West Africa (Sadore in Niamey and Cinzana in Mali). In all the study locations the yields decreased when crop maturity duration was decreased by 10% both in current and future climate conditions; however, 10% increase in crop maturity significantly (pclimate situations in India and West Africa. Drought tolerance imparted the lowest yield gain at Aurangabad (6%), the highest at Sadore (30%) and intermediate at the other locations under current climate. Under climate change the contribution of drought tolerance to the yield of cultivars either increased or decreased depending upon changes in rainfall of the locations. Yield benefits of heat tolerance substantially increased under climate change at most locations, having the greatest effects at Bikaner (17%) in India and Sadore (13%) in West Africa. Aurangabad and Bijapur locations had no yield advantage from heat tolerance due to their low temperature regimes. Thus drought and heat tolerance in pearl millet increased yields under climate change in both the arid and semi-arid tropical climates with greater benefit in relatively hotter environments. This study will assists the plant breeders in evaluating new promising plant traits of pearl millet for adapting to climate change at the selected locations and other similar environments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  14. Hydrologic landscape classification assesses streamflow vulnerability to climate change in Oregon, USA

    Science.gov (United States)

    Leibowitz, S. G.; Comeleo, R. L.; Wigington, P. J., Jr.; Weaver, C. P.; Morefield, P. E.; Sproles, E. A.; Ebersole, J. L.

    2014-03-01

    Classification can allow assessments of the hydrologic functions of landscapes and their responses to stressors. Here we demonstrate the use of a hydrologic landscape (HL) approach to assess vulnerability to potential future climate change at statewide and basin scales. The HL classification has five components: climate, seasonality, aquifer permeability, terrain, and soil permeability. We evaluate changes when the 1971-2000 HL climate indices are recalculated using 2041-2070 simulation results from the ECHAM and PCM climate models with the A2, A1b, and B1 emission scenarios. Changes in climate class were modest (4-18%) statewide. However, there were major changes in seasonality class for five of the six realizations (excluding PCM_B1): Oregon shifts from being 13% snow-dominated to 4-6% snow-dominated under these five realizations, representing a 56-68% reduction in snowmelt-dominated area. At the basin scale, projected changes for the Siletz basin, in Oregon's coast range, include a small switch from very wet to wet climate, with no change in seasonality. However, there is a modest increase in fall and winter water due to increased precipitation. For the Sandy basin, on the western slope of the Cascades, HL climate class does not change, but there are major changes in seasonality, especially for areas with low aquifer permeability, which experiences a 100% loss of spring seasonality. This would reduce summer baseflow, but impacts could potentially be mitigated by streamflow buffering effects provided by groundwater in the high aquifer permeability portions of the upper Sandy. The Middle Fork John Day basin (MFJD), in northeastern Oregon, is snowmelt-dominated. The basin experiences a net loss of wet and moist climate area, along with an increase in dry climate area. The MFJD also experiences major shifts from spring to winter seasonality, representing a 20-60% reduction in snowmelt-dominated area. Altered seasonality and/or magnitude of seasonal streamflows could

  15. Climate Change Impact Assessment and Adaptation Options in Vulnerable Agro-Landscapes in East-Africa

    Science.gov (United States)

    Manful, D.; Tscherning, K.; Kersebaum, K.; Dietz, J.; Dietrich, O.; Gomani, C.; Böhm, H.; Büchner, M.; Lischeid, G.,; Ojoyi, M.,

    2009-04-01

    Climate change poses a risk to the livelihoods of large populations in the developing world, especially in Africa. In East Africa, climate change is expected to affect the spatial distribution and quantity of precipitation. The proposed project will assess aspects of climate impacts and adaptation options in Tanzania. The project will attempt to quantify (1) projected impacts including: variability in temperature, rainfall, flooding and drought (2) the affect changes in 1. will have on specific sectors namely agriculture (food security), water resources and ecosystem services. The cumulative effects of diminished surface and ground water flow on agricultural production coupled with increasing demand for food due to increase in human pressure will also be evaluated. Expected outputs of the project include (1) downscaled climate change scenarios for different IPCC emission scenarios (2) model based estimations of climate change impacts on hydrological cycle and assessment of land use options (3) scenarios of sustainable livelihoods and resilient agro-landscapes under climate change (4) assessment of adaptive practices and criteria for best adaptation practices. The presentation will focus on novel approaches that focus on the use of agro-ecosystem models to predict local and regional impacts of climate variability on food with specific needs of the end-user factored into model set-up process. In other words, model configurations adapted to the information needs of a specific end-user or audience are evaluated. The perception of risk within different end-users (small scale farmer versus a regional or state level policy maker) are explicitly taken into consideration with the overarching aim of maximizing the impact of the results obtained from computer-based simulations.

  16. Concept Mapping to Assess Learning and Understanding of Complexity in Courses on Global Climate Change

    Science.gov (United States)

    Rebich-Hespanha, S.; Gautier, C.

    2010-12-01

    The complex nature of climate change science poses special challenges for educators wishing to broaden and deepen student understanding of the climate system and its sensitivity to and impacts upon human activity. Learners have prior knowledge that may limit their perception and processing of the multiple relationships between processes (e.g., feedbacks) that arise in global change science, and these existing mental models serve as the scaffold for all future learning. Because adoption of complex scientific concepts is not likely if instruction includes presentation of information or concepts that are not compatible with the learners’ prior knowledge, providing effective instruction on this complex topic requires learning opportunities that are anchored upon an evaluation of the limitations and inaccuracies of the learners’ existing understandings of the climate system. The formative evaluation that serves as the basis for planning such instruction can also be useful as a baseline against which to evaluate subsequent learning. We will present concept-mapping activities that we have used to assess students’ knowledge and understanding about global climate change in courses that utilized multiple assessment methods including presentations, writings, discussions, and concept maps. The courses in which these activities were completed use a variety of instructional approaches (including standard lectures and lab assignments and a mock summit) to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. Two instances of concept map assessment will be presented: one focused on evaluating student understanding of the major components of the climate system and their interconnections, and the other focused on student understanding of the connections between climate change and

  17. Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...

  18. On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff

    Directory of Open Access Journals (Sweden)

    M. J. Muerth

    2013-03-01

    Full Text Available In climate change impact research, the assessment of future river runoff as well as the catchment-scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate projections originating from the climate models and the downscaling techniques, as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of uncertainty. Within the QBic3 project (Québec–Bavarian International Collaboration on Climate Change, the relative contributions to the overall uncertainty from the whole model chain (from global climate models to water management models are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use regional climate models (RCMs. One reason for that is that the physical coherence between atmospheric and land-surface variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to facilitate the reproduction of historic runoff conditions when used in hydrological models, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased climate model data itself is sometimes disputed among scientists. For these reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in hydrology, we should consider it as a source

  19. Developing rural community health risk assessments for climate change: a Tasmanian pilot study.

    Science.gov (United States)

    Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J

    2015-01-01

    This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites

  20. Assessing insect responses to climate change: What are we testing for? Where should we be heading?

    Directory of Open Access Journals (Sweden)

    Nigel R. Andrew

    2013-02-01

    Full Text Available To understand how researchers are tackling globally important issues, it is crucial to identify whether current research is comprehensive enough to make substantive predictions about general responses. We examined how research on climate change affecting insects is being assessed, what factors are being tested and the localities of studies, from 1703 papers published between 1985 and August 2012. Most published research (64% is generated from Europe and North America and being dedicated to core data analysis, with 29% of the studies analysed dedicated to Lepidoptera and 22% Diptera: which are well above their contribution to the currently identified insect species richness (estimated at 13% and 17% respectively. Research publications on Coleoptera fall well short of their proportional contribution (19% of publications but 39% of insect species identified, and to a lesser extent so do Hemiptera, and Hymenoptera. Species specific responses to changes in temperature by assessing distribution/range shifts or changes in abundance were the most commonly used methods of assessing the impact of climate change on insects. Research on insects and climate change to date is dominated by manuscripts assessing butterflies in Europe, insects of economic and/or environmental concern in forestry, agriculture, and model organisms. The research on understanding how insects will respond to a rapidly changing climate is still in its infancy, but the current trends of publications give a good basis for how we are attempting to assess insect responses. In particular, there is a crucial need for broader studies of ecological, behavioural, physiological and life history responses to be addressed across a greater range of geographic locations, particularly Asia, Africa and Australasia, and in areas of high human population growth and habitat modification. It is still too early in our understanding of taxa responses to climate change to know if charismatic taxa, such as

  1. Index-based framework for assessing climate change impact on wetlands in Poland

    Science.gov (United States)

    O'Keeffe, Joanna; Marcinkowski, Paweł; Utratna, Marta; Szcześniak, Mateusz; Piniewski, Mikołaj; Okruszko, Tomasz

    2017-04-01

    Climate change is expected to impact the water cycle through changing the precipitation levels, river streamflows, soil moisture dynamics and therefore pose a threat to groundwater and surface-water fed wetlands and their biodiversity. We examined the past trends and future impacts of climate change on streamflow and soil water content. Simulation results from 1971 to 2000 (historical period) and from 2021 to 2100 (future period) were obtained with the use of the Soil and Water Assessment Tool (SWAT). Hydrological modelling was driven by a set of nine EUROCORDEX Regional Climate Models under two Representative Concentration Pathways (RCP's) of greenhouse gas concentration trajectories: 4.5 and 8.5. A special focus was made on water dependent habitats within the Special Areas of Conservation (SAC's) of the Natura 2000 network located within Odra and Vistula River basins in Poland. A habitat assessment was carried out to distinguish groundwater and surface water fed wetlands. By establishing threshold values of streamflow at bankfull flow we were able to identify flood events. Changes in frequency of the floods informed about the alteration to the water supply for wetlands reliant on inundation. The groundwater-fed wetlands were assessed on the basis of the soil water content. The model outputs were used to develop indices which were calculated for the climate change scenarios. Comparisons of simulated trends in soil water content and streamflow dynamics with average annual precipitation showed largely consistent patterns. The developed indicators are sensitive to projected changes in hydrologic regime in the conditions of changing climate. The results show influence of climate change on floodplain and groundwater-fed wetlands and show the number and kind of wetlands threatened in different regions of Poland. SAC's will play an important role of buffers and water regulators as soil water content in SAC's is projected to be higher than average for the future scenarios.

  2. NOAA's Coral Reef Conservation Program: 2016 projects to assess coral resilence and the resilence of communities to climate change

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to assess coral resilence and the resilence of communities to climate change: Climate and resilience-based...

  3. Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project

    Science.gov (United States)

    Iglesias, A.

    2011-12-01

    The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed

  4. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning.

    Science.gov (United States)

    Maxwell, Sean L; Venter, Oscar; Jones, Kendall R; Watson, James E M

    2015-10-01

    The impact of climate change on biodiversity is now evident, with the direct impacts of changing temperature and rainfall patterns and increases in the magnitude and frequency of extreme events on species distribution, populations, and overall ecosystem function being increasingly publicized. Changes in the climate system are also affecting human communities, and a range of human responses across terrestrial and marine realms have been witnessed, including altered agricultural activities, shifting fishing efforts, and human migration. Failing to account for the human responses to climate change is likely to compromise climate-smart conservation efforts. Here, we use a well-established conservation planning framework to show how integrating human responses to climate change into both species- and site-based vulnerability assessments and adaptation plans is possible. By explicitly taking into account human responses, conservation practitioners will improve their evaluation of species and ecosystem vulnerability, and will be better able to deliver win-wins for human- and biodiversity-focused climate adaptation. © 2015 New York Academy of Sciences.

  5. A global economic assessment of city policies to reduce climate change impacts

    Science.gov (United States)

    Estrada, Francisco; Botzen, W. J. Wouter; Tol, Richard S. J.

    2017-06-01

    Climate change impacts can be especially large in cities. Several large cities are taking climate change into account in long-term strategies, for which it is important to have information on the costs and benefits of adaptation. Studies on climate change impacts in cities mostly focus on a limited set of countries and risks, for example sea-level rise, health and water resources. Most of these studies are qualitative, except for the costs of sea-level rise in cities. These impact estimates do not take into account that large cities will experience additional warming due to the urban heat island effect, that is, the change of local climate patterns caused by urbanization. Here we provide a quantitative assessment of the economic costs of the joint impacts of local and global climate change for all main cities around the world. Cost-benefit analyses are presented of urban heat island mitigation options, including green and cool roofs and cool pavements. It is shown that local actions can be a climate risk-reduction instrument. Furthermore, limiting the urban heat island through city adaptation plans can significantly amplify the benefits of international mitigation efforts.

  6. International Conference on Climate Change Adaptation Assessments: Conference summary and statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The International Conference on Climate Change Adaptation Assessments was held in St. Petersburg, Russian Federation, from May 22--25, 1995. Sponsored by the Russian Federal Service for Hydrometeorology and Environmental Monitoring, the US Country Studies Program, and the directorate General for International Cooperation of the Netherlands Government, it was the first international conference focusing exclusively on adaptation to climate change. More than 100 people from 29 countries on five continents participated. The conference primarily addressed measures to anticipate the potential effects of climate change to minimize negative effects and take advantage of any positive effects. The focus was on what governments, institutions, and individuals can do to prepare for climate change. The conference dealt with two major topics: What adaptation options are most effective and efficient in anticipating climate change and what methods should be used to assess the effectiveness and efficiency of adaptation options. Brief summaries are given from the following sessions on agriculture; Water resources; coastal resources; ecosystems and forests; fisheries; human settlements; water and agriculture; and the panel session on international adaptation in national communications and other development plans and needs for technical assistance.

  7. Enhanced science-stakeholder communication to improve ecosystem model performances for climate change impact assessments

    DEFF Research Database (Denmark)

    Jonsson, Anna Maria; Anderbrant, Olle; Holmer, Jennie

    2015-01-01

    In recent years, climate impact assessments of relevance to the agricultural and forestry sectors have received considerable attention. Current ecosystem models commonly capture the effect of a warmer climate on biomass production, but they rarely sufficiently capture potential losses caused...... a discussion among the science–stakeholder communities on how to quantify the potential for climate change adaptation by improving the realism in the models....... by pests, pathogens and extreme weather events. In addition, alternative management regimes may not be integrated in the models. A way to improve the quality of climate impact assessments is to increase the science–stakeholder collaboration, and in a two-way dialog link empirical experience and impact...

  8. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute...... to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics......, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa...

  9. Climate induced changes on the hydrology of Mediterranean basins - assessing uncertainties and quantifying risks

    Science.gov (United States)

    Ludwig, Ralf

    2014-05-01

    According to current climate projections, the Mediterranean area is at high risk for severe changes in the hydrological budget and extremes. With innovative scientific measures, integrated hydrological modeling and novel field geophysical field monitoring techniques, the FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins; GA: 244151) assessed the impacts of climate change on the hydrology in seven basins in the Mediterranean area, in Italy, France, Turkey, Tunisia, Egypt and the Gaza Strip, and quantified uncertainties and risks for the main stakeholders of each test site. Intensive climate model auditing selected four regional climate models, whose data was bias corrected and downscaled to serve as climate forcing for a set of hydrological models in each site. The results of the multi-model hydro-climatic ensemble and socio-economic factor analysis were applied to develop a risk model building upon spatial vulnerability and risk assessment. Findings generally reveal an increasing risk for water resources management in the test sites, yet at different rates and severity in the investigated sectors, with highest impacts likely to occur in the transition months. Most important elements of this research include the following aspects: • Climate change contributes, yet in strong regional variation, to water scarcity in the Mediterranean; other factors, e.g. pollution or poor management practices, are regionally still dominant pressures on water resources. • Rain-fed agriculture needs to adapt to seasonal changes; stable or increasing productivity likely depends on additional irrigation. • Tourism could benefit in shoulder seasons, but may expect income losses in the summer peak season due to increasing heat stress. • Local & regional water managers and water users, lack, as yet, awareness of climate change induced risks; emerging focus areas are supplies of domestic drinking water, irrigation, hydropower and livestock. • Data

  10. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands

    OpenAIRE

    Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; Ittersum, van, M.K.

    2015-01-01

    Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. Wh...

  11. Assessing Climate Change Impacts on Electric Power Generation in the Western Interconnection

    Science.gov (United States)

    Bartos, M. D.; Chester, M.

    2014-12-01

    In recent years, concerns have grown over the potential impacts of climate change on electricity generation. Water resources are integral to the production of thermoelectric and hydroelectric power, and droughts are expected to become more frequent, severe, and longer-lasting over the course of the twenty-first century. Many generation technologies—including gas turbines and solar cells—are also vulnerable to changes in local climatic conditions like ambient air temperature. As extreme weather becomes more common, methods are needed to assess the impacts of climate change on regional power systems. However, these methods must also account for (1) heterogeneity in generation technologies, and (2) local variation in climatic conditions. This study uses a physically-based modeling system to assess the vulnerability of electric power infrastructure in the Western Interconnection. Climatic and hydrologic parameters relevant to power generation are identified for six generation technologies. Downscaled climate forcings are then used as inputs to a physically-based modeling system, consisting of the Variable Infiltration Capacity (VIC) hydrological model and the RBM one-dimensional stream temperature model. Impacts to generating capacity are estimated directly from changes in modeled climatic and hydrologic parameters, using functional relationships unique to each generating technology. A preliminary analysis of 1,302 power stations in the Western Interconnection reveals decreases in summertime generating capacity of 8-22%, with the largest impacts occurring at thermoelectric and hydroelectric facilities in the Pacific Northwest and California. Impacts to base-load thermoelectric plants are mitigated by recirculating cooling systems, which reduce the performance penalty of low flows and high water temperatures. Climate impacts on solar and wind capacity are relatively small, indicating that these energy sources may play a more prominent role as conventional generation

  12. Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy)

    Science.gov (United States)

    Avolio, Elenio; Orlandi, Fabio; Bellecci, Carlo; Fornaciari, Marco; Federico, Stefano

    2012-02-01

    In phenological studies, plant development and its relationship with meteorological conditions are considered in order to investigate the influence of climatic changes on the characteristics of many crop species. In this work, the impact of climate change on the flowering of the olive tree ( Olea europaea L.) in Calabria, southern Italy, has been studied. Olive is one of the most important plant species in the Mediterranean area and, at the same time, Calabria is one of the most representative regions of this area, both geographically and climatically. The work is divided into two main research activities. First, the behaviour of olive tree in Calabria and the influence of temperature on phenological phases of this crop are investigated. An aerobiological method is used to determine the olive flowering dates through the analysis of pollen data collected in three experimental fields for an 11-year study period (1999-2009). Second, the study of climate change in Calabria at high spatial and temporal resolution is performed. A dynamical downscaling procedure is applied for the regionalization of large-scale climate analysis derived from general circulation models for two representative climatic periods (1981-2000 and 2081-2100); the A2 IPCC scenario is used for future climate projections. The final part of this work is the integration of the results of the two research activities to predict the olive flowering variation for the future climatic conditions. In agreement with our previous works, we found a significant correlation between the phenological phases and temperature. For the twenty-first century, an advance of pollen season in Calabria of about 9 days, on average, is expected for each degree of temperature rise. From phenological model results, on the basis of future climate predictions over Calabria, an anticipation of maximum olive flowering between 10 and 34 days is expected, depending on the area. The results of this work are useful for adaptation and

  13. Assessment of achievements of the Lima Climate Change Conference and perspectives on the future

    Directory of Open Access Journals (Sweden)

    Xue-Du Lü

    2014-12-01

    Full Text Available The Lima call for climate action adopted at the Lima Climate Conference on Climate Change specifies that the principles of the United Nations Framework Convention on Climate Change, including the principle of common but differentiated responsibilities, shall apply to the new climate agreement to be adopted at the Paris Conference on Climate Change in 2015. Decisions on other heavily debated items, including the intended nationally determined contributions, were also made at the Lima Conference. The significant achievements in Lima and the positive momentum have laid a solid foundation for the adoption of a new climate agreement in the Paris Climate Conference. Four measures are proposed for China to meet great challenges in addressing climate change beyond 2020, including early formulation and issuance of a climate change law, establishment of a greenhouse gas emission trading scheme, promotion of advanced climate technology investments, and further international engagement for climate change.

  14. Phenology as an Integrative Science for Assessment of Global Climate Change Impacts

    Science.gov (United States)

    Weltzin, J.; Losleben, M. V.

    2007-12-01

    Phenology is the study of periodic plant and animal life cycle events and how these are influenced by seasonal and interannual variations in climate. Examples include the timing of leafing and flowering, agricultural crop stages, insect emergence, and animal migration. All of these events are sensitive measures of climatic variation and change, are relatively simple to record and understand, and are vital to both the scientific and public interest. Integration of spatially-extensive phenological data and models with both short and long-term climatic forecasts offer a powerful agent for human adaptation to ongoing and future climate change. However, a new data resource of national scale is needed to capture the valuable information potential of phenological responses to climate change; to study its nature, pace and the effects of ecosystem function; and to understand connectivity and synchrony among species. The USA National Phenology Network (USA-NPN) is being designed and organized to engage federal agencies, environmental networks and field stations, educational institutions, and mass participation by citizen scientists to create this data resource, and develop phenology research potential. This presentation illustrates the variety of source, scale, and use of phenology in assessing current and future global climate change impacts.

  15. Health impacts of climate change in the Solomon Islands: an assessment and adaptation action plan.

    Science.gov (United States)

    Spickett, Jeffery T; Katscherian, Dianne

    2014-06-25

    The Pacific island countries are particularly vulnerable to the environmental changes wrought by global climate change such as sea level rise, more frequent and intense extreme weather events and increasing temperatures. The potential biophysical changes likely to affect these countries have been identified and it is important that consideration be given to the implications of these changes on the health of their citizens. The potential health impacts of climatic changes on the population of the Solomon Islands were assessed through the use of a Health Impact Assessment framework. The process used a collaborative and consultative approach with local experts to identify the impacts to health that could arise from local environmental changes, considered the risks associated with these and proposed appropriate potential adaptive responses. Participants included knowledgeable representatives from the biophysical, socio-economic, infrastructure, environmental diseases and food sectors. The risk assessments considered both the likelihood and consequences of the health impacts occurring using a qualitative process. To mitigate the adverse effects of the health impacts, an extensive range of potential adaptation strategies were developed. The overall process provided an approach that could be used for further assessments as well as an extensive range of responses which could be used by sectors and to assist future decision making associated with the Solomon Islands' responses to climate change.

  16. Health Impacts of Climate Change in the Solomon Islands: An Assessment and Adaptation Action Plan

    Science.gov (United States)

    Spickett, Jeffery T; Katscherian, Dianne

    2014-01-01

    The Pacific island countries are particularly vulnerable to the environmental changes wrought by global climate change such as sea level rise, more frequent and intense extreme weather events and increasing temperatures. The potential biophysical changes likely to affect these countries have been identified and it is important that consideration be given to the implications of these changes on the health of their citizens. The potential health impacts of climatic changes on the population of the Solomon Islands were assessed through the use of a Health Impact Assessment framework. The process used a collaborative and consultative approach with local experts to identify the impacts to health that could arise from local environmental changes, considered the risks associated with these and proposed appropriate potential adaptive responses. Participants included knowledgeable representatives from the biophysical, socio-economic, infrastructure, environmental diseases and food sectors. The risk assessments considered both the likelihood and consequences of the health impacts occurring using a qualitative process. To mitigate the adverse effects of the health impacts, an extensive range of potential adaptation strategies were developed. The overall process provided an approach that could be used for further assessments as well as an extensive range of responses which could be used by sectors and to assist future decision making associated with the Solomon Islands’ responses to climate change. PMID:25168977

  17. Appendix: Assessment of watershed vulnerability to climate change - Pilot National Forest reports

    Science.gov (United States)

    Michael J. Furniss; Ken B. Roby; Dan Cenderelli; John Chatel; Caty F. Clifton; Alan Clingenpeel; Polly E. Hays; Dale Higgins; Ken Hodges; Carol Howe; Laura Jungst; Joan Louie; Christine Mai; Ralph Martinez; Kerry Overton; Brian P. Staab; Rory Steinke; Mark. Weinhold

    2013-01-01

    Assessment of watershed vulnerability to climate change. Pilot National Forest reports: Gallatin National Forest, Helena National Forest, Grand Mesa, Uncompahgre, and Gunnison National Forests, White River National Forest, Coconino National Forest, Sawtooth National Forest, Shasta-Trinity National Forest, Umatilla National Forest, Umatilla National Forest, Ouachita...

  18. Assessment of LULC and climate change on the hydrology of Ashti ...

    Indian Academy of Sciences (India)

    The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are ...

  19. Climate Change Education: Quantitatively Assessing the Impact of a Botanical Garden as an Informal Learning Environment

    Science.gov (United States)

    Sellmann, Daniela; Bogner, Franz X.

    2013-01-01

    Although informal learning environments have been studied extensively, ours is one of the first studies to quantitatively assess the impact of learning in botanical gardens on students' cognitive achievement. We observed a group of 10th graders participating in a one-day educational intervention on climate change implemented in a botanical garden.…

  20. Long-Term Assessment of Climate Change Impacts on Tennessee Valley Authority Reservoir Operations: Norris Dam

    Directory of Open Access Journals (Sweden)

    Joseph Rungee

    2017-08-01

    Full Text Available Norris Reservoir is the oldest and largest reservoir maintained and operated by the Tennessee Valley Authority (TVA. Norris Dam received a new operating guide in 2004; however, this new guide did not consider projected climate change. In an aging infrastructure, the necessity to assess the potential impacts of climate change on water resources planning and management is increasing. This study used a combined monthly hydrologic model and a general circulation model’s (GCM outcome to project inflows for three future time spans: 2030s, 2050s, and 2070s. The current operating guide was then assessed and optimized using penalty-function-driven genetic algorithms to gain insight for how the current guide will respond to climate change, and if it can be further optimized. The results showed that the current operating guide could sufficiently handle the increased projected runoff without major risk of dam failure or inundation, but the optimized operating guides decreased operational penalties ranging from 22 to 37 percent. These findings show that the framework used here provides water resources planning and management a methodology for assessing and optimizing current systems, and emphasizes the need to consider projected climate change as an assessment tool for reservoir operations.

  1. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    Science.gov (United States)

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. © Her Majesty the

  2. Statistical Downscaling and Bias Correction of Climate Model Outputs for Climate Change Impact Assessment in the U.S. Northeast

    Science.gov (United States)

    Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard

    2013-01-01

    Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.

  3. Separating sensitivity from exposure in assessing extinction risk from climate change

    OpenAIRE

    2014-01-01

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing clim...

  4. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    Science.gov (United States)

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Climate change vulnerabilities- an integrated assessment in Pyramid Lake Paiute Indian Reservation

    Science.gov (United States)

    Gautam, M. R.; Chief, K.; Wilde, K.; Smith, W.

    2011-12-01

    There are increasing concerns of potential climate change impacts that may place the Truckee River Basin in Nevada under unprecedented stress. We hypothesized that Pyramid Lake, a terminal lake of Truckee River, is prone to climatic as well as non-climatic stressors stemming from cumulative impacts from upstream urban areas and activities. Thus climate change may impair the ability of a major downstream water user, the Pyramid Lake Paiute Tribe (PLPT), to cope and adapt. The conventional approach in assessing vulnerability primarily focuses on hazards or biophysical vulnerabilities, such as water availability, floods, and drought impact. However, we found it inadequate to address the overall vulnerability of the PLPT. Thus in addition to biophysical vulnerabilities, intrinsic and external vulnerabilities were considered such as socio-economic variables (e.g. adaptive capacity) and policy and legal drivers (e.g. water rights). We proposed an elaborate framework for an integrated vulnerability assessment by adapting IPCC framework for vulnerability assessment, the Exposure-Sensitivity-Adaptive Capacity, and applied it to PLPT. Analysis of projected climate change dataset pointed towards increased incidences of floods and droughts and a warming trend over the whole basin with a higher rate at the lower basin in the future. In effort to understand how climatic trends trigger the vulnerability of PLPT, a multi-pronged approach was employed to understand key tribal livelihood assets including an in-depth analysis of the adaptive capacity of PLPT, a climate change survey, and a historical analysis of water conflict and negotiation. Results of the survey identified key natural assets as the lake, endangered fish, rangeland, and wetlands. The framework of a casual-loop diagram was developed in a system dynamic model that incorporated opinions of tribal stakeholders and other experts to evaluate how potential future climate changes might impact the endangered Cui ui fish

  6. Climate change and uncertainty avoidance in spatial planning: Illuminated through environmental assessment of spatial plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    Uncertainty is an unavoidable part of spatial planning and related predictions, e.g. of environmental impacts of plan implementation. The uncertainty premise embedded in planning is highly relevant and critical for climate change. But how well is uncertainty handled in planning practice? This paper...... concerns the handling and non- handling of climate change uncertainties in spatial planning - by using the explicit consideration of uncertainty within the mandatory Strategic Environmental Assessment (SEA) of spatial plans as an indicator. This paper suggests that uncertainty it not handled very well...

  7. Using conceptual maps to assess students' climate change understanding and misconceptions

    Science.gov (United States)

    Gautier, C.

    2011-12-01

    The complex and interdisciplinary nature of climate change science poses special challenges for educators in helping students understand the climate system, and how it is evolving under natural and anthropogenic forcing. Students and citizens alike have existing mental models that may limit their perception and processing of the multiple relationships between processes (e.g., feedback) that arise in global change science, and prevent adoption of complex scientific concepts. Their prior knowledge base serves as the scaffold for all future learning and grasping its range and limitations serves as an important basis upon which to anchor instruction. Different instructional strategies can be adopted to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. One assessment method for students' understanding of global climate change with its many uncertainties, whether associated with the workings of the climate system or with respect to social, cultural and economic processes that mediate human responses to changes within the system, is through the use of conceptual maps. When well designed, they offer a representation of students' mental model prior and post instruction. We will present two conceptual mapping activities used in the classroom to assess students' knowledge and understanding about global climate change and uncover misconceptions. For the first one, concept maps will be used to demonstrate evidence of learning and conceptual change, while for the second we will show how conceptual maps can provide information about gaps in knowledge and misconceptions students have about the topic.

  8. Assessment of Climate Change in the Southwest United States: Key Findings

    Science.gov (United States)

    Garfin, G. M.

    2012-12-01

    The Assessment of Climate Change in the Southwest United States, is a technical input to the National Climate Assessment. The 121-author report summarizes knowledge about climate change and its impacts across Arizona, California, Colorado, Nevada, New Mexico, and Utah. The report looks at links between climate and natural resources, vulnerabilities to climate variability and change across the region and along the U.S.-Mexico border, and adaptation and mitigation choices for addressing future changes. The period since 1950 has been warmer than any period of comparable length in the last 600 years. Droughts of the past 2,000 years have exceeded the most severe and sustained drought during 1901-2010. In the last decade, flows in the major river basins of the Southwest have been lower than their 20th century averages; many snowmelt-fed streams in the region exhibited earlier snowmelt and earlier center of mass of annual streamflows. Climate models project continued temperature increases, with longer and hotter summer heat waves. Average precipitation is projected to decrease in the southern part of the region. Reduced streamflows are projected for the Rio Grande, Colorado, and San Joaquin rivers. More frequent and intense winter flooding is projected for the western Sierra Nevada, whereas Colorado Front Range summer flooding is projected to increase. Observed ecosystems impacts include changes in phenology, widespread forest disturbance due to the confluence of drought, increased temperatures, and changes to insect life cycles. Area burned by wildfire is projected to increase in most of the Southwest. Plant and animal species' distributions will be affected by climate change, and studies show that observed climate changes are strongly associated with observed changes in species' distributions. California coastal ecosystems will be affected by a combination of ocean warming, reduced oxygen content, sea level rise and ocean acidification. When west coast sea levels are

  9. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    Science.gov (United States)

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Assessment of climate change impact on water resources in the Pungwe river basin

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lotta; Samuelsson, Patrick; Kjellstroem, Erik (Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)), e-mail: lotta.andersson@smhi.se

    2011-01-15

    The Rossby Centre Regional Climate Model (RCA3) and the hydrological model HBV were linked to assess climate change impacts on water resources in the Pungwe basin until 2050. RCA3 was capable of simulating the most important aspects of the climate for a control period at the regional scale. At the subbasin scale, additional scaling was needed. Three climate change experiments using ECHAM4-A2, B2 and CCSM3-B2 as input to RCA3 were carried out. According to the simulations annual rainfall in 2050 would be reduced by approximately 10% with increasing interannual variability of rainfall and dry season river flow and later onset of the rainy season. The ECHAM4-A2 driven experiment did also indicate a slight increase of high flows. If the results indeed reflect the future, they will worsen the already critical situation for water resources, regarding both floods and droughts. Uncertainties, however in the downscaled scenarios make it difficult to prioritize adaptation options. This calls for inclusion of more climate change experiments, in an ensemble of climate scenarios possibly by using a combination of dynamical and statistical downscaling of general circulation models, as well as extending the simulations to 2100 to further ensure robustness of the signal

  11. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050

    NARCIS (Netherlands)

    Bakkenes, M.; Alkemade, J.R.M.; Ihle, F.; Leemans, R.; Latour, J.B.

    2002-01-01

    The rapidly increasing atmospheric concentrations of greenhouse gases may lead to significant changes in regional and seasonal climate patterns. Such changes can strongly influence the diversity and distribution of species and, therefore, affect ecosystems and biodiversity. To assess these changes

  12. Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

    Science.gov (United States)

    Foden, Wendy B.; Butchart, Stuart H. M.; Stuart, Simon N.; Vié, Jean-Christophe; Akçakaya, H. Resit; Angulo, Ariadne; DeVantier, Lyndon M.; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D.; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A.; Hughes, Adrian F.; O’Hanlon, Susannah E.; Garnett, Stephen T.; Şekercioğlu, Çagan H.; Mace, Georgina M.

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability

  13. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.

    Science.gov (United States)

    Foden, Wendy B; Butchart, Stuart H M; Stuart, Simon N; Vié, Jean-Christophe; Akçakaya, H Resit; Angulo, Ariadne; DeVantier, Lyndon M; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A; Hughes, Adrian F; O'Hanlon, Susannah E; Garnett, Stephen T; Sekercioğlu, Cagan H; Mace, Georgina M

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can

  14. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.

    Directory of Open Access Journals (Sweden)

    Wendy B Foden

    Full Text Available Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species. The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%, 670-933 amphibian (11-15%, and 47-73 coral species (6-9% are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability

  15. European drought under climate change and an assessment of the uncertainties in projections

    Science.gov (United States)

    Yu, R. M. S.; Osborn, T.; Conway, D.; Warren, R.; Hankin, R.

    2012-04-01

    Extreme weather/climate events have significant environmental and societal impacts, and anthropogenic climate change has and will continue to alter their characteristics (IPCC, 2011). Drought is one of the most damaging natural hazards through its effects on agricultural, hydrological, ecological and socio-economic systems. Climate change is stimulating demand, from public and private sector decision-makers and also other stakeholders, for better understanding of potential future drought patterns which could facilitate disaster risk management. There remain considerable levels of uncertainty in climate change projections, particularly in relation to extreme events. Our incomplete understanding of the behaviour of the climate system has led to the development of various emission scenarios, carbon cycle models and global climate models (GCMs). Uncertainties arise also from the different types and definitions of drought. This study examines climate change-induced changes in European drought characteristics, and illustrates the robustness of these projections by quantifying the effects of using different emission scenarios, carbon cycle models and GCMs. This is achieved by using the multi-institutional modular "Community Integrated Assessment System (CIAS)" (Warren et al., 2008), a flexible integrated assessment system for modelling climate change. Simulations generated by the simple climate model MAGICC6.0 are assessed. These include ten C4MIP carbon cycle models and eighteen CMIP3 GCMs under five IPCC SRES emission scenarios, four Representative Concentration Pathway (RCP) scenarios, and three mitigation scenarios with CO2-equivalent levels stabilising at 550 ppm, 500 ppm and 450 ppm. Using an ensemble of 2160 future precipitation scenarios, we present an analysis on both short (3-month) and long (12-month) meteorological droughts based on the Standardised Precipitation Index (SPI) for the baseline period (1951-2000) and two future periods of 2001-2050 and 2051

  16. Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii

    OpenAIRE

    Leta, Olkeba Tolessa; El-Kadi, Aly I.; Dulai, Henrietta; Ghazal, Kariem A.

    2016-01-01

    Study region: Heeia watershed, Oahu, Hawaii, USA. Study focus: Hydrological models are useful tools for assessing the impact of climate change in watersheds. We evaluated the applicability of the Soil and Water Assessment Tool (SWAT) model in a case study of Heeia, Pacific-island watershed that has highly permeable volcanic soils and suffers from hydrological data scarcity. Applicability of the model was enhanced with several modifications to reflect unique watershed characteristics. The c...

  17. Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment

    Directory of Open Access Journals (Sweden)

    Iain Brown

    2015-11-01

    Full Text Available Risk assessment can potentially provide an objective framework to synthesise and prioritise climate change risks to inform adaptation policy. However, there are significant challenges in the application of comparative risk assessment procedures to climate change, particularly for the natural environment. These challenges are evaluated with particular reference to the first statutory Climate Change Risk Assessment (CCRA and evidence review procedures used to guide policy for the UK government. More progress was achieved on risk identification, screening and prioritisation compared to risk quantification. This was due to the inherent complexity and interdependence of ecological risks and their interaction with socio-economic drivers as well as a climate change. Robust strategies to manage risk were identified as those that coordinate organisational resources to enhance ecosystem resilience, and to accommodate inevitable change, rather than to meet specific species or habitats targets. The assessment also highlighted subjective and contextual components of risk appraisal including ethical issues regarding the level of human intervention in the natural environment and the proposed outcomes of any intervention. This suggests that goals for risk assessment need to be more clearly explicated and assumptions on tolerable risk declared as a primer for further dialogue on expectations for managed outcomes. Ecosystem-based adaptation may mean that traditional habitats and species conservation goals and existing regulatory frameworks no longer provide the best guide for long-term risk management thereby challenging the viability of some existing practices.

  18. A framework to assess the impacts of climate change on stream health indicators in Michigan watersheds

    Science.gov (United States)

    Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.

    2016-12-01

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of

  19. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.

  20. Climate Change Impact Assessment of Dike Safety and Flood Risk in the Vidaa River System

    DEFF Research Database (Denmark)

    Madsen, H.; Sunyer Pinya, Maria Antonia; Larsen, J.

    2013-01-01

    The impact of climate change on the flood risk and dike safety in the Vidaa River system, a cross-border catchment located in the southern part of Jutland, Denmark and northern Germany, is analysed. The river discharges to the Wadden Sea through a tidal sluice, and extreme water level conditions...... in the river system occur in periods of high sea water levels where the sluice is closed and increased catchment run-off take place. Climate model data from the ENSEMBLES data archive are used to assess the changes in climate variables and the resulting effect on catchment run-off. Extreme catchment run......-off is expected to increase about 8 % in 2050 and 14 % in 2100. The changes in sea water level is assessed considering climate projections of mean sea level rise, isostatic changes, and changes in storm surge statistics. At the Vidaa sluice a mean sea level rise of 0.15–0.39 m in 2050 and 0.41–1.11 m in 2010...

  1. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    Science.gov (United States)

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  2. Assessing impacts of climate change on forests: The state of biological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Lab., TN (United States); Rauscher, H.M. [Forest Service, Grand Rapids, MI (United States). North Central Forest Experiment Station

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  3. Agriculture: Climate Change

    Science.gov (United States)

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  4. Assessing trends in temperature, precipitation and streamflow due to climate change in Credit River watershed

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Dougherty, J.; Zimmer, C.; Kinkead, J.; Hulley, M.; Doherty, C. [Credit Valley Conservation Authority, Ontario (Canada)

    2009-07-01

    'Full text:' Studies on climate change at Natural Resources Canada showed that average temperature in Canada increased by 0.9°C since 1948 and further estimated that Ontario will warm by an average of 2°C to 5°C within the next 75 to 100 years. The climate change is linked to the anthropogenic activities which are understood to increasing green house gasses concentrations in the Earth's atmosphere thereby warming the planet. The warming is further related to affecting the components of hydrological cycle such as precipitation intensities, durations, snowfall, streamflow peaks, low flows etc. According to the Intergovernmental Panel on Climate Change (IPCC) Technical Paper on Climate Change and Water “Observational records and climate projections provide abundant evidence that freshwater resources are vulnerable and have the potential to be strongly impacted by climate change, with wide-ranging consequences for human societies and ecosystems.” The Ministry of Natural Resources projected temperature and precipitation changes for Southern Ontario for period 2075-2100 indicate 3-5°C higher summer and 5-6°C higher winter temperatures and ±10% change in annual precipitation from 1971-2000 using higher green house gas emission scenario (A2). However, the changes in climate and their effect on hydrological cycle could differ locally and these effects could be assessed using local historical data. Therefore, the Valley Conservation Authority initiated a study to assess how the climate change has affected the Credit River watershed by investigating trends in the historical temperature, precipitation and streamflow data sets. The temperature trends were analysed for mean, maximum and minimum temperatures on annual and monthly basis from nine meteorological stations located within or close to the Credit River watershed. The precipitation data from the same nine meteorological stations were used to analyse a) Intensity-Duration-Frequency (IDF) patterns

  5. Assessing ExxonMobil’s climate change communications (1977-2014)

    Science.gov (United States)

    Supran, Geoffrey; Oreskes, Naomi

    2017-08-01

    This paper assesses whether ExxonMobil Corporation has in the past misled the general public about climate change. We present an empirical document-by-document textual content analysis and comparison of 187 climate change communications from ExxonMobil, including peer-reviewed and non-peer-reviewed publications, internal company documents, and paid, editorial-style advertisements (‘advertorials’) in The New York Times. We examine whether these communications sent consistent messages about the state of climate science and its implications—specifically, we compare their positions on climate change as real, human-caused, serious, and solvable. In all four cases, we find that as documents become more publicly accessible, they increasingly communicate doubt. This discrepancy is most pronounced between advertorials and all other documents. For example, accounting for expressions of reasonable doubt, 83% of peer-reviewed papers and 80% of internal documents acknowledge that climate change is real and human-caused, yet only 12% of advertorials do so, with 81% instead expressing doubt. We conclude that ExxonMobil contributed to advancing climate science—by way of its scientists’ academic publications—but promoted doubt about it in advertorials. Given this discrepancy, we conclude that ExxonMobil misled the public. Our content analysis also examines ExxonMobil’s discussion of the risks of stranded fossil fuel assets. We find the topic discussed and sometimes quantified in 24 documents of various types, but absent from advertorials. Finally, based on the available documents, we outline ExxonMobil’s strategic approach to climate change research and communication, which helps to contextualize our findings.

  6. Curonian Lagoon drainage basin modelling and assessment of climate change impact

    Directory of Open Access Journals (Sweden)

    Natalja Čerkasova

    2016-04-01

    Full Text Available The Curonian Lagoon, which is the largest European coastal lagoon with a surface area of 1578 km2 and a drainage area of 100,458 km2, is facing a severe eutrophication problem. With its increasing water management difficulties, the need for a sophisticated hydrological model of the Curonian Lagoon's drainage area arose, in order to assess possible changes resulting from local and global processes. In this study, we developed and calibrated a sophisticated hydrological model with the required accuracy, as an initial step for the future development of a modelling framework that aims to correctly predict the movement of pesticides, sediments or nutrients, and to evaluate water-management practices. The Soil and Water Assessment Tool was used to implement a model of the study area and to assess the impact of climate-change scenarios on the run-off of the Nemunas River and the Minija River, which are located in the Curonian Lagoons drainage basin. The models calibration and validation were performed using monthly streamflow data, and evaluated using the coefficient of determination (R2 and the Nash-Sutcliffe model efficiency coefficient (NSE. The calculated values of the R2 and NSE for the Nemunas and Minija Rivers stations were 0.81 and 0.79 for the calibration, and 0.679 and 0.602 for the validation period. Two potential climate-change scenarios were developed within the general patterns of near-term climate projections, as defined by the Intergovernmental Panel on Climate Change Fifth Assessment Report: both pessimistic (substantial changes in precipitation and temperature and optimistic (insubstantial changes in precipitation and temperature. Both simulations produce similar general patterns in river-discharge change: a strong increase (up to 22% in the winter months, especially in February, a decrease during the spring (up to 10% and summer (up to 18%, and a slight increase during the autumn (up to 10%.

  7. National technology needs assessment for the preparation and implementation of climate change action plans

    Energy Technology Data Exchange (ETDEWEB)

    Berkel, C.W.M. van; Blonk, T.J.; Westra, C.A.

    1996-12-31

    In the United National Framework Convention on Climate Change (FCCC) it is recognised that developed countries have a responsibility in assisting developing countries and countries in economic transition in building a national capacity for the development, acquisition and transfer of Climate-related Technologies (CTs). Such assistance is most likely to be successful once it is tailored to the results of a sound assessment of the country`s development needs and once the results of this assessment have been endorsed by the most important stakeholders in the country. Recent insight in the opportunities and constraints for National (technology) Needs Assessments (NNAs) as planning tool for both capacity building and technology transfer regarding Environmentally Sound Technologies (ESTs) is applied here to propose a participatory Climate Change Action Planning (CCAP) process. This participatory planning process is thought to serve the dual objective of defining a national Climate Change Action Plan (CCAP) while at the same time contributing to the creation of a broad supportive basis for its acceptance and implementation among stakeholders in the developing country.

  8. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  9. A continental risk assessment of West Nile virus under climate change.

    Science.gov (United States)

    Harrigan, Ryan J; Thomassen, Henri A; Buermann, Wolfgang; Smith, Thomas B

    2014-08-01

    Since first introduced to North America in 1999, West Nile virus (WNV) has spread rapidly across the continent, threatening wildlife populations and posing serious health risks to humans. While WNV incidence has been linked to environmental factors, particularly temperature and rainfall, little is known about how future climate change may affect the spread of the disease. Using available data on WNV infections in vectors and hosts collected from 2003-2011 and using a suite of 10 species distribution models, weighted according to their predictive performance, we modeled the incidence of WNV under current climate conditions at a continental scale. Models were found to accurately predict spatial patterns of WNV that were then used to examine how future climate may affect the spread of the disease. Predictions were accurate for cases of human WNV infection in the following year (2012), with areas reporting infections having significantly higher probability of presence as predicted by our models. Projected geographic distributions of WNV in North America under future climate for 2050 and 2080 show an expansion of suitable climate for the disease, driven by warmer temperatures and lower annual precipitation that will result in the exposure of new and naïve host populations to the virus with potentially serious consequences. Our risk assessment identifies current and future hotspots of West Nile virus where mitigation efforts should be focused and presents an important new approach for monitoring vector-borne disease under climate change. © 2014 John Wiley & Sons Ltd.

  10. Assessing Climate Change Impacts on Wildfire Risk in the United States

    Directory of Open Access Journals (Sweden)

    Hyunjin An

    2015-09-01

    Full Text Available This study examines the statistical association of wildfire risk with climatic conditions and non-climate variables in 48 continental US states. Because the response variable “wildfire risk” is a fractional variable bounded between zero and one, we use a non-linear panel data model to recognize the bounded nature of the response variable. We estimate the non-linear panel data model (fractional probit using the Generalized Estimating Equation (GEE approach to ensure that the parameter estimation is efficient. The statistical model, coupled with the future climates projected by Global Climate Models (GCMs, is then employed to assess the impact of global climate change on wildfire risk. Our regression results show that wildfire risk is positively related to spring, summer, and winter temperatures and human population density whereas it is negatively associated with precipitation. The simulation results based on GCMs and the regression model indicate that climate change will intensify wildfire risk throughout the entire US, especially in the South Central region, posing an increasing wildfire threat and thus calling for more effective wildfire management strategies.

  11. Responding to climate change in New York State: the ClimAID integrated assessment for effective climate change adaptation in New York State. Final report.

    Science.gov (United States)

    2011-12-01

    Climate change is already beginning to affect New York State, and these impacts are projected to grow. At the same time, the state has the ability to develop adaptation strategies to prepare for and respond to climate risks now and in the future. The ClimAID assessment provides information on climate change impacts and adaptation for eight sectors in New York State: water resources, coastal zones, ecosystems, agriculture, energy, transportation,telecommunications, and public health. Observed climate trends and future climate projections were developed for seven regions across the state. Within each of the sectors, climate risks, vulnerabilities, and adaptation strategies are identified. Integrating themes across all of the sectors are equity and environmental justice and economics.Case studies are used to examine specific vulnerabilities and potential adaptation strategies in each of the eight sectors. These case studies also illustrate the linkages among climate vulnerabilities, risks, and adaptation, and demonstrate specific monitoring needs. Stakeholder participation was critical to the ClimAID assessment process to ensure relevance to decision makers across the state.

  12. Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP

    Science.gov (United States)

    Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.; hide

    2017-01-01

    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socioeconomic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

  13. Assessing inter-sectoral climate change risks: the role of ISIMIP

    Science.gov (United States)

    Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Stafford Smith, Mark; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.; Schewe, Jacob; van Vuuren, Detlef; Warszawski, Lila

    2017-01-01

    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

  14. Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan

    Directory of Open Access Journals (Sweden)

    Nophea Sasaki

    2011-04-01

    Full Text Available As a member of the Annex 1 countries to the Kyoto Protocol of the United Nations Framework Convention on Climate Change, Japan is committed to reducing 6% of the greenhouse gas emissions. In order to achieve this commitment, Japan has undertaken several major mitigation measures, one of which is the domestic measure that includes ecologically friendly lifestyle programs, utilizing natural energy, participating in local environmental activities, and amending environmental laws. Mitigation policies could be achieved if public responses were strong. As the internet has increasingly become an online platform for sharing environmental information, public responses to the need for reducing greenhouse gas emissions may be assessed using available online tools. We used Google Insights for Search, Google AdWords Keyword Tool, and Google Timeline View to assess public responses in Japan based on the interest shown for five search terms that define global climate change and its mitigation policies. Data on online search interests from January 04, 2004 to July 18, 2010 were analyzed according to locations and categories. Our study suggests that the search interests for the five chosen search terms dramatically increased, especially when new mitigation policies were introduced or when climate change related events were organized. Such a rapid increase indicates that the Japanese public strongly responds to climate change mitigation policies.

  15. Assessment of Climate Change and Vector-borne Diseases in the United States

    Science.gov (United States)

    Monaghan, A. J.; Beard, C. B.; Eisen, R. J.; Barker, C. M.; Garofalo, J.; Hahn, M.; Hayden, M.; Ogden, N.; Schramm, P.

    2016-12-01

    Vector-borne diseases are illnesses that are transmitted by vectors, which include mosquitoes, ticks, and fleas. The seasonality, distribution, and prevalence of vector-borne diseases are influenced significantly by climate factors, primarily high and low temperature extremes and precipitation patterns. In this presentation we summarize key findings from Chapter 5 ("Vector-borne Diseases") of the recently published USGCRP Scientific Assessment of the Impacts of Climate Change on Human Health in the United States. Climate change is expected to alter geographic and seasonal distributions of vectors and vector-borne diseases, leading to earlier activity and northward range expansion of ticks capable of carrying the bacteria that cause Lyme disease and other pathogens, and influencing the distribution, abundance and prevalence of infection in mosquitoes that transmit West Nile virus and other pathogens. The emergence or reemergence of vector-borne pathogens is also likely.

  16. Phase change material applications in buildings: an environmental assessment for some Spanish climate severities.

    Science.gov (United States)

    Aranda-Usón, Alfonso; Ferreira, Germán; López-Sabirón, Ana M; Mainar-Toledo, M D; Zabalza Bribián, Ignacio

    2013-02-01

    This work proposes an environmental analysis based on the life cycle assessment (LCA) methodology. LCA was applied to determine if energy savings are large enough to balance the environmental impact caused during phase change material (PCM) manufacture and its installation on tiles. Inputs and outputs of each management stage have been defined and the inventory emissions were calculated by SIMAPRO v 7.3.2. Emissions were classified into several impact categories; climate change, human toxicity, acidification, ozone depletion, particulate matter formation and eutrophication. Three commercial PCMs, evaluated using five different Spanish weather climates, were studied to explore a wide range of conditions. The main results conclude that the use of PCM can reduce the overall energy consumption and the environmental impacts. This reduction is strongly influenced by the climate conditions and the PCM introduced. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Assessing the Influence of Precipitation on Diurnal Temperature Range Changes: Implications for Climate Change Projection

    Science.gov (United States)

    Van den Hoof, C.; Garreaud, R.

    2014-12-01

    In this study, we investigate up to what extent the spatial heterogeneity in the projected changes in DTR during the rest of the 21st century (under several emission scenarios) is explained by the regional variability in projected precipitation changes. DTR is indeed a suitable index of climate variability and change [1] and several studies have highlighted the existence of a negative correlation with both the cloud cover and the precipitation rate over land throughout last century [2]. Precipitation reduces DTR mainly by decreasing surface solar radiation through increased cloud cover and by increasing daytime surface evaporative cooling through increased soil moisture content. Whether or not these processes are captured in the current generation of global and regional models is matter of research. To achieve our objective, we make use of the climate projections made available by the CMIP5 project as well as their historical runs, along with reanalysis and station data. At inter-annual timescale, the seasonal mean DTR simulated by an ensemble of CMIP5 models for the last decades shows a negative relationship over land with the simulated precipitation at zero lag. The correlation is globally very strong except during winter at higher latitudes. This corresponds well with the correlations observed in the re-analysis datasets. Some spatial variability in correlation strength is however noticeable between both datasets. Concerning the projected changes, the negative correlation between DTR and precipitation does not hold globally; no correlation or even positive correlations are observed in different climate regions, including Northern South America and Central Europe. Within this study we will further investigate the physical process that could explain this change in correlation sign as well as the reason why positive correlations are rarely observed or simulated at inter-annual timescale under current climate during summer and at lower latitudes during winter. [1] K

  18. The importance of hydrological uncertainty assessment methods in climate change impact studies

    Science.gov (United States)

    Honti, M.; Scheidegger, A.; Stamm, C.

    2014-08-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind

  19. Importance of hydrological uncertainty assessment methods in climate change impact studies

    Science.gov (United States)

    Honti, M.; Scheidegger, A.; Stamm, C.

    2014-01-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with a recent boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the following decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The source, structure and composition of uncertainty depended strongly on the uncertainty assessment method. This demonstrated that one could arrive to rather different conclusions about predictive uncertainty for the same

  20. Multi-model assessment of hydrologic impacts of climate change in a small Mediterranean basin

    Science.gov (United States)

    Perra, Enrica; Piras, Monica; Deidda, Roberto; Paniconi, Claudio; Mascaro, Giuseppe; Vivoni, Enrique R.; Cau, Pierluigi; Marras, Pier Andrea; Meyer, Swen; Ludwig, Ralf

    2017-04-01

    Assessing the hydrologic impacts of climate change is of great importance in the Mediterranean region, which is characterized by high precipitation variablitity and complex interactions within the water cycle. In this work we focus on the hydrological response of the Rio Mannu catchment, a small basin located in southern Sardinia (Italy) and characterized by a semi-arid climate. Specifically, we investigate inter-model variability and uncertainty by comparing the results of five distributed hydrologic models, namely CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration eXtended (TOPKAPI-X), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter flow and balance SIMulation (WASIM), that differ greatly in their representation of terrain features, physical processes, and numerical complexity. The hydrological models were independently calibrated and validated on observed meteorological and hydrological time series, and then forced by the output of four combinations of global and regional climate models (properly bias-corrected and downscaled) in order to evaluate the effects of climate change for a reference (1971-2000) and a future (2041-2070) period. Notwithstanding their differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages. The multi-model framework allows estimation of the uncertainty associated with these hydrologic simulations and this aspect will also be discussed.

  1. Using a social justice and health framework to assess European climate change adaptation strategies.

    Science.gov (United States)

    Boeckmann, Melanie; Zeeb, Hajo

    2014-11-28

    Climate change puts pressure on existing health vulnerabilities through higher frequency of extreme weather events, changes in disease vector distribution or exacerbated air pollution. Climate change adaptation policies may hold potential to reduce societal inequities. We assessed the role of public health and social justice in European climate change adaptation using a three-fold approach: a document analysis, a critical discourse analysis of a subgroup of strategies, and a ranking of strategies against our social justice framework. The ranking approach favored planning that includes various adaptation types, social issues and infrastructure changes. Themes on values identified in the five subgroup documents showed that risks are perceived as contradictory, technology is viewed as savior, responsibilities need to be negotiated, and social justice is advocated by only a few countries. Of 21 strategy documents assessed overall, those from Austria, England and Sweden received the highest scores in the ranking. Our qualitative assessment showed that in European adaptation planning, progress could still be made through community involvement into adaptation decisions, consistent consideration of social and demographic determinants, and a stronger link between infrastructural adaptation and the health sector. Overall, a social justice framework can serve as an evaluation guideline for adaptation policy documents.

  2. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula

    Science.gov (United States)

    Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy

    2015-01-01

    Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...

  3. Projecting climate change in the United States: A technical document supporting the Forest Service RPA 2010 Assessment

    Science.gov (United States)

    Linda A. Joyce; David T. Price; David P. Coulson; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin. Lawrence

    2014-01-01

    A set of climate change projections for the United States was developed for use in the 2010 USDA Forest Service RPA Assessment. These climate projections, along with projections for population dynamics, economic growth, and land use change in the United States, comprise the RPA scenarios and are used in the RPA Assessment to project future renewable resource conditions...

  4. Assessment of production risks for winter wheat in different German regions under climate change conditions

    Science.gov (United States)

    Kersebaum, K. C.; Gandorfer, M.; Wegehenkel, M.

    2012-04-01

    The study shows climate change impacts on wheat production in selected regions across Germany. To estimate yield and economic effects the agro-ecosystem model HERMES was used. The model performed runs using 2 different releases of the model WETTREG providing statistically downscaled climate change scenarios for the weather station network of the German Weather Service. Simulations were done using intersected GIS information on soil types and land use identifying the most relevant sites for wheat production. The production risks for wheat yields at the middle of this century were compared to a reference of the present climate. The irrigation demand was determined by the model using an automatic irrigation mode. Production risks with and without irrigation were assessed and the economic feasibility to reduce production risks by irrigation was evaluated. Costs and benefits were compared. Additionally, environmental effects, e.g. groundwater recharge and nitrogen emissions were assessed for irrigated and rain fed systems. Results show that positive and negative effects of climate change occur within most regions depending on the site conditions. Water holding capacity and groundwater distance were the most important factors which determined the vulnerability of sites. Under climate change condition in the middle of the next century we can expect especially at sites with low water holding capacity decreasing average gross margins, higher production risks and a reduced nitrogen use efficiency under rainfed conditions. Irrigation seems to be profitable and risk reducing at those sites, provided that water for irrigation is available. Additionally, the use of irrigation can also increase nitrogen use efficiency which reduced emissions by leaching. Despite the site conditions results depend strongly on the used regional climate scenario and the model approach to consider the effect of elevated CO2 in the atmosphere.

  5. Freshwater vulnerability under high end climate change. A pan-European assessment.

    Science.gov (United States)

    Koutroulis, A G; Papadimitriou, L V; Grillakis, M G; Tsanis, I K; Wyser, K; Betts, R A

    2018-02-01

    As freshwater availability is crucial for securing a sustainable, lower‑carbon future, there is a critical connection between water management and climate policies. Under a rapidly changing climate, it is more important than ever to estimate the degree of future water security. This is a challenging task as it depends on many different variables: the degree of warming and its consequent effects on hydrological resources, the water demand by different sectors, and the possible ameliorations or deteriorations of the effects due to climate change adaptation and mitigation strategies. A simple and transparent conceptual framework has been developed to assess the European vulnerability to freshwater stress under the present hydro-climatic and socioeconomic conditions, in comparison to projections of future vulnerability for different degrees of global warming (1.5°C, 2°C and 4°C), under the high-rate warming scenario (RCP8.5). Different levels of adaptation to climate change are considered in the framework, by employing various relevant pathways of socioeconomic development. A spatially detailed pan-European map of vulnerability to freshwater shortage has been developed at the local administrative level, making this approach extremely useful for supporting regional level policymaking and implementation and strategic planning against future freshwater stress. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    Science.gov (United States)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  7. Assessment of winter wheat loss risk impacted by climate change from 1982 to 2011

    Science.gov (United States)

    Du, Xin

    2017-04-01

    The world's farmers will face increasing pressure to grow more food on less land in succeeding few decades, because it seems that the continuous population growth and agricultural products turning to biofuels would extend several decades into the future. Therefore, the increased demand for food supply worldwide calls for improved accuracy of crop productivity estimation and assessment of grain production loss risk. Extensive studies have been launched to evaluate the impacts of climate change on crop production based on various crop models drove with global or regional climate model (GCM/RCM) output. However, assessment of climate change impacts on agriculture productivity is plagued with uncertainties of the future climate change scenarios and complexity of crop model. Therefore, given uncertain climate conditions and a lack of model parameters, these methods are strictly limited in application. In this study, an empirical assessment approach for crop loss risk impacted by water stress has been established and used to evaluate the risk of winter wheat loss in China, United States, Germany, France and United Kingdom. The average value of winter wheat loss risk impacted by water stress for the three countries of Europe is about -931kg/ha, which is obviously higher in contrast with that in China (-570kg/ha) and in United States (-367kg/ha). Our study has important implications for further application of operational assessment of crop loss risk at a country or region scale. Future studies should focus on using higher spatial resolution remote sensing data, combining actual evapo-transpiration to estimate water stress, improving the method for downscaling of statistic crop yield data, and establishing much more rational and elaborate zoning method.

  8. An application of a hydraulic model simulator in flood risk assessment under changing climatic conditions

    Science.gov (United States)

    Doroszkiewicz, J. M.; Romanowicz, R. J.

    2016-12-01

    The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the

  9. New directions in climate change vulnerability, impacts, and adaptation assessment: summary of a workshop

    National Research Council Canada - National Science Library

    Brewer, Jennifer F

    ...; adaptation is inevitable. The remaining question is to what extent humans will anticipate and reduce undesired consequences of climate change, or postpone response until after climate change impacts have altered ecological...

  10. Central Hardwoods ecosystem vulnerability assessment and synthesis: a report from the Central Hardwoods Climate Change Response Framework project

    Science.gov (United States)

    Leslie Brandt; Hong He; Louis Iverson; Frank R. Thompson; Patricia Butler; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Matthew Albrecht; Richard Blume-Weaver; Paul Deizman; John DePuy; William D. Dijak; Gary Dinkel; Songlin Fei; D. Todd Jones-Farrand; Michael Leahy; Stephen Matthews; Paul Nelson; Brad Oberle; Judi Perez; Matthew Peters; Anantha Prasad; Jeffrey E. Schneiderman; John Shuey; Adam B. Smith; Charles Studyvin; John M. Tirpak; Jeffery W. Walk; Wen J. Wang; Laura Watts; Dale Weigel; Steve. Westin

    2014-01-01

    The forests in the Central Hardwoods Region will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of terrestrial ecosystems in the Central Hardwoods Region of Illinois, Indiana, and Missouri to a range of future climates. Information on current forest conditions, observed climate trends,...

  11. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  12. An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa.

    Science.gov (United States)

    Onyango, Esther Achieng; Sahin, Oz; Awiti, Alex; Chu, Cordia; Mackey, Brendan

    2016-11-11

    Malaria is one of the key research concerns in climate change-health relationships. Numerous risk assessments and modelling studies provide evidence that the transmission range of malaria will expand with rising temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient understanding of the complex and interdependent factors that determine the risk and vulnerability of human populations at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerability to malaria due to climate change. Drawing upon published literature on existing frameworks, a systems approach was applied to characterize the factors influencing the interactions between climate change and malaria transmission. This involved structural analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model. A major conclusion was that this integrated assessment framework can be implemented using Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that incorporate both scientific and community perspectives.

  13. Assessing water resources vulnerability and resilience of southern Taiwan to climate change

    Directory of Open Access Journals (Sweden)

    Ming-Hsu Li

    2017-01-01

    Full Text Available Water resources management has become more challenging in Taiwan due to rapid socio-economic development and the complications of climate change. This study developed a systematic procedure for assessing water resources vulnerability and resilience with an integrated tool, TaiWAP, including climate change scenarios, a weather generator, a hydrological model, and system dynamic models. Five assessment indicators, including two for vulnerability, two for resilience, and one for availability were used to quantify changes in water resources and improvements after implementing adaption measures. Each indicator was presented with 3 grades, namely low, medium, and high. Water resources vulnerability and resilience for Tainan City in southern Taiwan were evaluated. Insufficient water supply facilities capacity is the major weakness causing low resilience. Water resources allocation flexibility is limited by substantial agricultural water demands. A total of 9 adaption measures and combinations of measures were assessed. Desalination plant implementation can steadily supply public water to lessen system failure duration. Although agricultural water conservation and fallow land can greatly reduce water demand, fallow compensation is a potential cost. When food security is considered, reducing irrigation leakage will be a better adaption measure to both water and agriculture stakeholders. Both agriculture water conservation and cropping systems adjustment have cross-spatial flexibilities. The combination of desalination, reservoirs and public water conservation provide the most beneficial effects in reducing climate change impact.

  14. CLIMATIC CHANGE AND CLIMATE CONTROL,

    Science.gov (United States)

    The heat balance method together with certain other methods of theoretical climatology for investigating the laws of natural climatic changes and for determining the possibility of controlling such changes is discussed.

  15. Quantifying Hydro-biogeochemical Model Sensitivity in Assessment of Climate Change Effect on Hyporheic Zone Processes

    Science.gov (United States)

    Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.

    2016-12-01

    The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.

  16. Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Ognjen Žurovec

    2017-07-01

    Full Text Available The rural population in Bosnia and Herzegovina (BH, which constitutes more than half of the total population, experienced serious incidences of extreme weather events in the past two decades. This part of the population is vulnerable to climate change due to significant dependence on agriculture as a climate-sensitive livelihood option. However, the source of their vulnerability is due not only to the extent and magnitude of these extreme climate events, but also to the internal status within the vulnerable systems before the occurrence of such events. In order to explore the different dimensions of vulnerability, we used a set of 20 indicators to quantitatively assess the vulnerability of the rural population to climate change at the local level in BH. Two summarizing and two weighting methods were applied to assess vulnerability—Equal weights (EW and principal component analysis (PCA. Based on the results obtained, we concluded that the current socio-economic conditions and the increased environmental pressure as a result of the present human-environment interactions are the main determinants of vulnerability in most vulnerable municipalities, rather than the degree to which these municipalities are exposed to significant climatic variations. Most vulnerable municipalities are located across the north, with a gradual decrease in vulnerability towards the central, north, and east of the country. Vulnerability increases again from here towards the south of the country. The number of municipalities classified as the highest and highly vulnerable increased when the second summarizing method and weighted indicators were used. However, the general geographic distribution of vulnerability did not change substantially compared to the first method. The approaches used in this study provide some valuable results at the local level, and are presented in a way that is practical for decision-making processes and may serve as a base for further research

  17. (Non-) robustness of vulnerability assessments to climate change: An application to New Zealand.

    Science.gov (United States)

    Fernandez, Mario Andres; Bucaram, Santiago; Renteria, Willington

    2017-12-01

    Assessments of vulnerability to climate change are a key element to inform climate policy and research. Assessments based on the aggregation of indicators have a strong appeal for their simplicity but are at risk of over-simplification and uncertainty. This paper explores the non-robustness of indicators-based assessments to changes in assumptions on the degree of substitution or compensation between indicators. Our case study is a nationwide assessment for New Zealand. We found that the ranking of geographic areas is sensitive to different parameterisations of the aggregation function, that is, areas that are categorised as highly vulnerable may switch to the least vulnerable category even with respect to the same climate hazards and population groups. Policy implications from the assessments are then compromised. Though indicators-based approaches may help on identifying drivers of vulnerability, there are weak grounds to use them to recommend mitigation or adaptation decisions given the high level of uncertainty because of non-robustness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A design for a sustained assessment of climate forcings and feedbacks on land use land cover change

    Science.gov (United States)

    Loveland, Thomas; Mahmood, Rezaul

    2014-01-01

    Land use and land cover change (LULCC) significantly influences the climate system. Hence, to prepare the nation for future climate change and variability, a sustained assessment of LULCC and its climatic impacts needs to be undertaken. To address this objective, not only do we need to determine contemporary trends in land use and land cover that affect, or are affected by, weather and climate but also identify sectors and regions that are most affected by weather and climate variability. Moreover, it is critical that we recognize land cover and regions that are most vulnerable to climate change and how end-use practices are adapting to climate change. This paper identifies a series of steps that need to be undertaken to address these key items. In addition, national-scale institutional capabilities are identified and discussed. Included in the discussions are challenges and opportunities for collaboration among these institutions for a sustained assessment.

  19. Health risks of climate change: an assessment of uncertainties and its implications for adaptation policies.

    Science.gov (United States)

    Wardekker, J Arjan; de Jong, Arie; van Bree, Leendert; Turkenburg, Wim C; van der Sluijs, Jeroen P

    2012-09-19

    Projections of health risks of climate change are surrounded with uncertainties in knowledge. Understanding of these uncertainties will help the selection of appropriate adaptation policies. We made an inventory of conceivable health impacts of climate change, explored the type and level of uncertainty for each impact, and discussed its implications for adaptation policy. A questionnaire-based expert elicitation was performed using an ordinal scoring scale. Experts were asked to indicate the level of precision with which health risks can be estimated, given the present state of knowledge. We assessed the individual scores, the expertise-weighted descriptive statistics, and the argumentation given for each score. Suggestions were made for how dealing with uncertainties could be taken into account in climate change adaptation policy strategies. The results showed that the direction of change could be indicated for most anticipated health effects. For several potential effects, too little knowledge exists to indicate whether any impact will occur, or whether the impact will be positive or negative. For several effects, rough 'order-of-magnitude' estimates were considered possible. Factors limiting health impact quantification include: lack of data, multi-causality, unknown impacts considering a high-quality health system, complex cause-effect relations leading to multi-directional impacts, possible changes of present-day response-relations, and difficulties in predicting local climate impacts. Participants considered heat-related mortality and non-endemic vector-borne diseases particularly relevant for climate change adaptation. For possible climate related health impacts characterised by ignorance, adaptation policies that focus on enhancing the health system's and society's capability of dealing with possible future changes, uncertainties and surprises (e.g. through resilience, flexibility, and adaptive capacity) are most appropriate. For climate related health

  20. Health risks of climate change: An assessment of uncertainties and its implications for adaptation policies

    Directory of Open Access Journals (Sweden)

    Wardekker J

    2012-09-01

    Full Text Available Abstract Background Projections of health risks of climate change are surrounded with uncertainties in knowledge. Understanding of these uncertainties will help the selection of appropriate adaptation policies. Methods We made an inventory of conceivable health impacts of climate change, explored the type and level of uncertainty for each impact, and discussed its implications for adaptation policy. A questionnaire-based expert elicitation was performed using an ordinal scoring scale. Experts were asked to indicate the level of precision with which health risks can be estimated, given the present state of knowledge. We assessed the individual scores, the expertise-weighted descriptive statistics, and the argumentation given for each score. Suggestions were made for how dealing with uncertainties could be taken into account in climate change adaptation policy strategies. Results The results showed that the direction of change could be indicated for most anticipated health effects. For several potential effects, too little knowledge exists to indicate whether any impact will occur, or whether the impact will be positive or negative. For several effects, rough ‘order-of-magnitude’ estimates were considered possible. Factors limiting health impact quantification include: lack of data, multi-causality, unknown impacts considering a high-quality health system, complex cause-effect relations leading to multi-directional impacts, possible changes of present-day response-relations, and difficulties in predicting local climate impacts. Participants considered heat-related mortality and non-endemic vector-borne diseases particularly relevant for climate change adaptation. Conclusions For possible climate related health impacts characterised by ignorance, adaptation policies that focus on enhancing the health system’s and society’s capability of dealing with possible future changes, uncertainties and surprises (e.g. through resilience, flexibility

  1. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012.

    Science.gov (United States)

    Roser-Renouf, Connie; Maibach, Edward W; Li, Jennifer

    2016-01-01

    Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011-2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed.

  2. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012

    Science.gov (United States)

    Roser-Renouf, Connie; Maibach, Edward W.; Li, Jennifer

    2016-01-01

    Background Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. Methods We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011–2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Results Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed. PMID:26991658

  3. Vanishing Springs in Nepalese Mountains: Assessment of Water Sources, Farmers' Perceptions, and Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Durga D. Poudel

    2017-02-01

    Full Text Available The Thulokhola watershed of the Nuwakot district in the midhills region of Nepal can be considered typical of climate change-related stresses in the region. To assess the status of water resources and document farmers' perceptions of and adaptation to climate change impacts in this watershed, we invited community groups to monitor water quality and conducted 6 focus group meetings, 3 participatory rural appraisals, and spring and household surveys in 2011 and 2012. Historical precipitation data from a nearby weather station and discharge data for the Tadi Khola, the nearest major river, were also analyzed. The spring survey results confirmed farmers' perceptions and showed that 73.2% of the springs used as water sources had a decreased flow and 12.2% had dried up over the past 10 or more years, as recognized by local residents. In response to the severe decline of precipitation and the drying up of springs, local communities have implemented some climate change adaptation measures, such as constructing water tanks at water sources, using pipes to transport drinking water, diverting water from other springs, digging deeper wells, and traveling farther to wash clothes and fetch drinking water. To enhance drinking water supplies and ensure the agricultural, ecological, and environmental integrity of the watershed, initiatives such as comprehensive research on springs and groundwater hydrology, a spring rejuvenation program, and community capacity building for water sustainability and climate change adaptation are suggested.

  4. Future yields assessment of bioenergy crops in relation to climate change and technological development in Europe

    Directory of Open Access Journals (Sweden)

    Salvatore L. Cosentino

    2012-05-01

    Full Text Available Bioenergy crops are expected to play an important role in reducing CO2 emission, in energy supply and in European energy policy. However, a sustainable bioenergy supply must be resilient to climate change and the impacts on agriculture at both global and regional scale. The purpose of this study was to forecast the potential distribution of several bioenergy crops based on agronomic and environmental constrains under current conditions and future scenarios (2020 and 2030 in European Union. Potential biomass yield, according to the category end use product achievable in each environmental zone of Europe at present and in the future available land have been also studied. Future yields were assessed according to two factors: technological development and climate change: the former was based on prospect of DG-Agriculture for conventional crops and expert judgments for bioenergy crops, while the latter based on relevant research papers and literature reviews which used site-specific crop growth models. Yields are expected to increase in northern Europe due to climate change and technological development, while in southerneastern Europe the negative effect of climate change will be mitigated by the technological development. The estimated total biomass production in Europe, on the basis of future yields and surplus land made available for energy crops, may not be sufficient to meet the needs of bioenergy supply as claimed in the European directive 2009/28/EC.

  5. A global economic assessment of city policies to reduce climate change impacts

    NARCIS (Netherlands)

    Estrada, Francisco; Botzen, W. J.Wouter; Tol, Richard S.J.

    2017-01-01

    Climate change impacts can be especially large in cities. Several large cities are taking climate change into account in long-term strategies, for which it is important to have information on the costs and benefits of adaptation. Studies on climate change impacts in cities mostly focus on a limited

  6. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands

    Science.gov (United States)

    Reidsma, Pytrik; Wolf, Joost; Kanellopoulos, Argyris; Schaap, Ben F.; Mandryk, Maryia; Verhagen, Jan; van Ittersum, Martin K.

    2015-04-01

    Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.

  7. Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing

    Science.gov (United States)

    Zoran, Maria

    Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and

  8. Research highlights: modelling to assess climate change impacts and promote development.

    Science.gov (United States)

    Luxem, Katja E; Lin, Vivian S

    2015-08-01

    We highlight four recent articles on biophysical modelling for the Ecosystem Services and Poverty Alleviation (ESPA) Deltas project in the Ganges-Brahmaputra-Meghna (GBM) delta system. These publications are part of a themed collection in Environmental Science: Processes & Impacts and contribute to a larger body of collaborative work that aims to assess the impacts of changing climate, policy, and development efforts on vulnerable populations in the GBM delta.

  9. Assessment of coastal flood risk in a changing climate along the northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, M. V.; Hagen, S. C.; Passeri, D. L.; Alizad, K.

    2014-12-01

    Coastal regions around the world are susceptible to a variety of natural disasters causing extreme inundation. It is anticipated that the vulnerability of coastal cities will increase due to the effects of climate change, and in particular sea level rise (SLR). We have developed a novel framework to construct a physics-based storm surge model that includes projections of coastal floodplain dynamics under climate change scenarios. Numerous experiments were conducted and it was concluded that a number of influencing factors, other than SLR, should be included in future assessments of coastal flooding under climate change; e.g., shoreline changes, barrier island morphology, salt marsh migration, and population dynamics. These factors can significantly affect the path, pattern, and magnitude of flooding depths and inundation along the coastline (Bilskie et al., 2014; Passeri et al., 2014). Using these factors, a storm surge model of the northern Gulf of Mexico (NGOM) representing present day conditions is modified to characterize the future outlook of the landscape. This adapted model is then used to assess flood risk in terms of the 100-year floodplain surface under SLR scenarios. A suite of hundreds of synthetic storms, derived by JPM-OS (Joint Probability Method - Optimum Sampling), are filtered to obtain the storms necessary to represent the statistically determined 100-year floodplain. The NGOM storm surge model is applied to simulate the synthetic storms and determine, for each storm, the flooding surface and depth, for four SLR scenarios for the year 2100 as prescribed by Parris et al. (2012). The collection of results facilitate the estimation of water surface elevation vs. frequency curves across the floodplain and the statistically defined 100-year floodplain is extracted. This novel method to assess coastal flooding under climate change can be performed across any coastal region worldwide, and results provide awareness of regions vulnerable to extreme

  10. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments

    Science.gov (United States)

    Prestele, Reinhard; Arneth, Almut; Bondeau, Alberte; de Noblet-Ducoudré, Nathalie; Pugh, Thomas A. M.; Sitch, Stephen; Stehfest, Elke; Verburg, Peter H.

    2017-05-01

    Land-use and land-cover change (LULCC) represents one of the key drivers of global environmental change. However, the processes and drivers of anthropogenic land-use activity are still overly simplistically implemented in terrestrial biosphere models (TBMs). The published results of these models are used in major assessments of processes and impacts of global environmental change, such as the reports of the Intergovernmental Panel on Climate Change (IPCC). Fully coupled models of climate, land use and biogeochemical cycles to explore land use-climate interactions across spatial scales are currently not available. Instead, information on land use is provided as exogenous data from the land-use change modules of integrated assessment models (IAMs) to TBMs. In this article, we discuss, based on literature review and illustrative analysis of empirical and modeled LULCC data, three major challenges of this current LULCC representation and their implications for land use-climate interaction studies: (I) provision of consistent, harmonized, land-use time series spanning from historical reconstructions to future projections while accounting for uncertainties associated with different land-use modeling approaches, (II) accounting for sub-grid processes and bidirectional changes (gross changes) across spatial scales, and (III) the allocation strategy of independent land-use data at the grid cell level in TBMs. We discuss the factors that hamper the development of improved land-use representation, which sufficiently accounts for uncertainties in the land-use modeling process. We propose that LULCC data-provider and user communities should engage in the joint development and evaluation of enhanced LULCC time series, which account for the diversity of LULCC modeling and increasingly include empirically based information about sub-grid processes and land-use transition trajectories, to improve the representation of land use in TBMs. Moreover, we suggest concentrating on the

  11. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  12. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Science.gov (United States)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  13. Health impacts of climate change in Vanuatu: an assessment and adaptation action plan.

    Science.gov (United States)

    Spickett, Jeffery T; Katscherian, Dianne; McIver, Lachlan

    2013-01-30

    Climate change is one of the greatest global challenges and Pacific island countries are particularly vulnerable due to, among other factors, their geography, demography and level of economic development. A Health Impact Assessment (HIA) framework was used as a basis for the consideration of the potential health impacts of changes in the climate on the population of Vanuatu, to assess the risks and propose a range of potential adaptive responses appropriate for Vanuatu. The HIA process involved the participation of a broad range of stakeholders including expert sector representatives in the areas of bio-physical, socio-economic, infrastructure, environmental diseases and food, who provided informed comment and input into the understanding of the potential health impacts and development of adaptation strategies. The risk associated with each of these impacts was assessed with the application of a qualitative process that considered both the consequences and the likelihood of each of the potential health impacts occurring. Potential adaptation strategies and actions were developed which could be used to mitigate the identified health impacts and provide responses which could be used by the various sectors in Vanuatu to contribute to future decision making processes associated with the health impacts of climate change.

  14. Climate change impact assessment on Zhoshui River water supply in Taiwan

    Directory of Open Access Journals (Sweden)

    Jyun-Long Lee Wen-Cheng Huang

    2017-01-01

    Full Text Available This study evaluates the impact of climate change on water resources. An integrated procedure is proposed for assessing the water resources system response to climate change on the basin scale. The Zhoshui River basin in Central Taiwan was selected for the impact assessment. Five downscaled general circulation models based on the A1B scenario for 2046 - 2065 were adopted to assess the climate change impact, including (1 the irrigation water requirement downstream of the basin, (2 the river flow upstream of the basin, and (3 the water resources utilization related to supply and demand in the basin. Rising temperatures will cause the irrigation water requirement to increase by 10%. Precipitation in the basin will substantially decrease and likely cause a 20% decrease in river flow. Thus, irrigation water shortages may become more severe in the future. As an adaptation, the Hushan Reservoir, which will begin operation in mid-2016, can assist in offsetting domestic and industrial demand. To maintain the irrigation deficit at the present level (2001 - 2010 in the future, conveyance losses should reduce to 30% and the farming area used in the second paddy growth season should be decreased by 10%.

  15. Addressing climate change in the Forest Vegetation Simulator to assess impacts on landscape forest dynamics

    Science.gov (United States)

    Nicholas L. Crookston; Gerald E. Rehfeldt; Gary E. Dixon; Aaron R. Weiskittel

    2010-01-01

    To simulate stand-level impacts of climate change, predictors in the widely used Forest Vegetation Simulator (FVS) were adjusted to account for expected climate effects. This was accomplished by: (1) adding functions that link mortality and regeneration of species to climate variables expressing climatic suitability, (2) constructing a function linking site index to...

  16. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies

    Science.gov (United States)

    Linda A. Joyce; David D. Briske; Joel R. Brown; H. Wayne Polley; Bruce A. McCarl; Derek W. Bailey

    2013-01-01

    Recent climatic trends and climate model projections indicate that climate change will modify rangeland ecosystem functions and the services and livelihoods that they provision. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland systems and that these systems possess substantial...

  17. Assessing STEM content learning: using the Arctic's changing climate to develop 21st century learner

    Science.gov (United States)

    Henderson, G. R.; Durkin, S.; Moran, A.

    2016-12-01

    In recent years the U.S. federal government has called for an increased focus on science, technology, engineering, and mathematics (STEM) in the educational system to ensure that there will be sufficient technical expertise to meet the needs of business and industry. As a direct result of this STEM emphasis, the number of outreach activities aimed at actively engaging these students in STEM learning has surged. Such activities, frequently in the form of summer camps led by university faculty, have targeted primary and secondary school students with the goal of growing student interest in STEM majors and STEM careers. This study assesses short-term content learning using a climate module that highlights rapidly changing Arctic climate conditions to illustrate concepts of radiative energy balance and climate feedback. Hands-on measurement of short and longwave radiation using simple instrumentation is used to demonstrate concepts that are then related back to the "big picture" Arctic issue. Pre and post module questionnaires were used to assess content learning, as this learning type has been identified as the basis for STEM literacy and the vehicle by which 21st century learning skills are usually developed. In this instance, students applied subject knowledge they gained by taking radiation measurements to better understand the real-world problem of climate change.

  18. Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberger, John [Aspen Global Change Inst., Basalt, CO (United States); Arnott, James [Aspen Global Change Inst., Basalt, CO (United States); Wright, Alyson [Aspen Global Change Inst., Basalt, CO (United States)

    2014-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6,” on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generation of coordinated modeling experiments known as the Coupled Model Intercomparison Project – 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).

  19. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  20. A needs assessment for climate change education in the Great Lakes region

    Science.gov (United States)

    Rutherford, S.; Schneider, L. B.; Walters, H.

    2011-12-01

    The National Science Foundation funded Great Lakes Climate Change Science and Education Systemic Network project is implementing a two year planning effort to create innovative education programs to benefit the public, formal and informal educators, scientists, and journalists in the region. The current partners include Eastern Michigan University, NOAA's Great Lakes Environmental Research Lab, University of Michigan, Michigan State University, Knight Center for Environmental Journalism, Ashland University, Ann Arbor Hands-On Museum, and the College of Exploration. To create a network we are planning to bring together different stakeholders to write two white papers, one from the scientists' perspective and the other from the educators'(both formal and informal) perspective. The current partners' key personnel have produced a list of possible people/institutions to include in a stakeholder survey. Some of the key personnel developed their databases from scratch. Some used listserves, and others tried a snowball email. To identify the best strategy that will inform these various stakeholders and the public regarding the science of climate change in the Great Lakes Region, a survey was developed for each of the different stakeholders. The survey is divided into three parts: 1) questions which convey some understanding of climate science and climate change 2) demographic questions, and finally 3) questions that pertain to the professional concerns or perspectives of the various stakeholders. This survey is being used to provide the project team with a "needs assessment" from the interested members of those stakeholders. The results from this process will be summarized.

  1. Including climate change in pest risk assessment: the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae).

    Science.gov (United States)

    Ni, W L; Li, Z H; Chen, H J; Wan, F H; Qu, W W; Zhang, Z; Kriticos, D J

    2012-04-01

    Bactrocera zonata (Saunders) is one of the most harmful species of Tephritidae. It causes extensive damage in Asia and threatens many countries located along or near the Mediterranean Sea. The climate mapping program, CLIMEX 3.0, and the GIS software, ArcGIS 9.3, were used to model the current and future potential geographical distribution of B. zonata. The model predicts that, under current climatic conditions, B. zonata will be able to establish itself throughout much of the tropics and subtropics, including some parts of the USA, southern China, southeastern Australia and northern New Zealand. Climate change scenarios for the 2070s indicate that the potential distribution of B. zonata will expand poleward into areas which are currently too cold. The main factors limiting the pest's range expansion are cold, hot and dry stress. The model's predictions of the numbers of generations produced annually by B. zonata were consistent with values previously recorded for the pest's occurrence in Egypt. The ROC curve and the AUC (an AUC of 0.912) were obtained to evaluate the performance of the CLIMEX model in this study. The analysis of this information indicated a high degree of accuracy for the CLIMEX model. The significant increases in the potential distribution of B. zonata projected under the climate change scenarios considered in this study suggest that biosecurity authorities should consider the effects of climate change when undertaking pest risk assessments. To prevent the introduction and spread of B. zonata, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.

  2. Assessment of vulnerability of forest ecosystems to climate change and adaptation planning in Nepal

    Science.gov (United States)

    Matin, M. A.; Chitale, V. S.

    2016-12-01

    Understanding ecosystem level vulnerability of forests and dependence of local communities on these ecosystems is a first step towards developing effective adaptation strategies. As forests are important components of livelihoods system for a large percentage of the population in the Himalayan region, they offer an important basis for creating and safeguarding more climate-resilient communities. Increased frequency, duration, and/or severity of drought and heat stress, changes in winter ecology, and pest and fire outbreaksunder climate change scenarios could fundamentally alter the composition, productivity and biogeography of forests affecting the potential ecosystem services offered and forest-based livelihoods. Hence, forest ecosystem vulnerability assessment to climate change and the development of a knowledgebase to identify and support relevant adaptation strategies is identified as an urgent need. Climate change vulnerability is measured as a function of exposure, sensitivity and the adaptive capacity of the system towards climate variability and extreme events. Effective adaptation to climate change depends on the availability of two important prerequisites: a) information on what, where, and how to adapt, and b) availability of resources to implement the adaptation measures. In the present study, we introduce the concept of two way multitier approach, which can support effective identification and implementation of adaptation measures in Nepal and the framework can be replicated in other countries in the HKH region. The assessment of overall vulnerability of forests comprises of two components: 1) understanding the relationship between exposure and sensitivity and positive feedback from adaptive capacity of forests; 2) quantifying the dependence of local communities on these ecosystems. We use climate datasets from Bioclim and biophysical products from MODIS, alongwith field datasets. We report that most of the forests along the high altitude areas and few

  3. Assessing institutional capacities to adapt to climate change - integrating psychological dimensions in the Adaptive Capacity Wheel

    Science.gov (United States)

    Grothmann, T.; Grecksch, K.; Winges, M.; Siebenhüner, B.

    2013-03-01

    Several case studies show that "soft social factors" (e.g. institutions, perceptions, social capital) strongly affect social capacities to adapt to climate change. Many soft social factors can probably be changed faster than "hard social factors" (e.g. economic and technological development) and are therefore particularly important for building social capacities. However, there are almost no methodologies for the systematic assessment of soft social factors. Gupta et al. (2010) have developed the Adaptive Capacity Wheel (ACW) for assessing the adaptive capacity of institutions. The ACW differentiates 22 criteria to assess six dimensions: variety, learning capacity, room for autonomous change, leadership, availability of resources, fair governance. To include important psychological factors we extended the ACW by two dimensions: "adaptation motivation" refers to actors' motivation to realise, support and/or promote adaptation to climate. "Adaptation belief" refers to actors' perceptions of realisability and effectiveness of adaptation measures. We applied the extended ACW to assess adaptive capacities of four sectors - water management, flood/coastal protection, civil protection and regional planning - in North Western Germany. The assessments of adaptation motivation and belief provided a clear added value. The results also revealed some methodological problems in applying the ACW (e.g. overlap of dimensions), for which we propose methodological solutions.

  4. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.

    Science.gov (United States)

    Pasini, S; Torresan, S; Rizzi, J; Zabeo, A; Critto, A; Marcomini, A

    2012-12-01

    Climate change impact assessment on water resources has received high international attention over the last two decades, due to the observed global warming and its consequences at the global to local scale. In particular, climate-related risks for groundwater and related ecosystems pose a great concern to scientists and water authorities involved in the protection of these valuable resources. The close link of global warming with water cycle alterations encourages research to deepen current knowledge on relationships between climate trends and status of water systems, and to develop predictive tools for their sustainable management, copying with key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution model simulations for the 2071-2100 period, according to IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant

  5. Data and processes linking vulnerability assessment to adaptation decision-making on climate change in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Naess, L.O. [Center for International Climate and Environmental Research, Oslo (Norway); Norland, I.T.; Lafferty, W.M. [University of Oslo, (Norway). Program for Research and Documentation for a Sustainable Society; Aall, C. [Western Norway Research Institute, Sogndal (Norway)

    2006-05-15

    The article focuses on the use of climate change vulnerability assessments in a local decision-making context, with particular reference to recent studies in Norway. We focus on two aspects of vulnerability assessment that we see as key to local decision-making: first, the information generated through the assessments themselves, and second, the institutional linkages to local level decision-making processes. Different research approaches generated different types of data. This is rarely made explicit, yet it has important implications for decision-making. In addressing these challenges we propose a dialectic approach based on exchange, rather than integration of data from different approaches. The focus is on process over product, and on the need for anchoring vulnerability assessments in local decision-making processes. In conclusion, we argue that there is unlikely to be one single 'correct' assessment tool or indicator model to make vulnerability assessments matter at a local level. (author)

  6. Assessment of simulated and projected climate change in Pakistan using IPCC AR4-based AOGCMs

    Science.gov (United States)

    Saeed, F.; Athar, H.

    2017-11-01

    A detailed spatio-temporal assessment of two basic climatic parameters (temperature and precipitation) is carried out using 22 Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)-based atmospheric oceanic general circulation models (AOGCMs) over data-sparse and climatically vulnerable region of Pakistan (20°-37° N and 60°-78° E), for the first time, for the baseline period (1975-1999), as well as for the three projected periods during the twenty-first century centered at 2025-2049, 2050-2074, and 2075-2099, respectively, both on seasonal and on annual bases, under three Special Report on Emission Scenarios (SRES): A2, A1B, and B1. An ensemble-based approach consisting of the IPCC AR4-based AOGCMs indicates that during the winter season (from December to March), 66% of the models display robust projected increase of winter precipitation by about 10% relative to the baseline period, irrespective of emission scenario and projection period, in the upper northern subregion of Pakistan (latitude > 35° N). The projected robust changes in the temperature by the end of twenty-first century are in the range of 3 to 4 ° C during the winter season and on an annual basis, in the central and western regions of Punjab province, especially in A2 and A1B emission scenarios. In particular, the IPCC AR4 models project a progressive increase in temperature throughout Pakistan, in contrast to spatial distribution of precipitation, where spatially less uniform and robust results for projected periods are obtained on sign of change. In general, changes in both precipitation and temperature are larger in the summer season (JAS) as compared to the winter season in the coming decades, relative to the baseline period. This may require comprehensive long-term strategic policies to adapt and mitigate climate change in Pakistan, in comparison to what is currently envisaged.

  7. Implications of global climate change for natural resource damage assessment, restoration, and rehabilitation.

    Science.gov (United States)

    Rohr, Jason R; Johnson, Philip; Hickey, Christopher W; Helm, Roger C; Fritz, Alyce; Brasfield, Sandra

    2013-01-01

    Various international and national regulations hold polluters liable for the cleanup of released hazardous substances and the restoration/rehabilitation of natural resources to preincident baseline conditions, a process often referred to as natural resource damage assessment and restoration (NRDAR). Here, we, the authors, describe how global climate change (GCC) will challenge each of the steps of NRDAR processes and offer eight recommendations to improve these processes in light of GCC. First, we call for a better understanding of the net effects of GCC and contaminants on natural resources. Second, we urge facilities and environmental managers to plan for GCC-related factors that are expected to increase the probability of contaminant releases. Third, we suggest re-evaluating definitions of baseline and reference conditions given that GCC will alter both their trajectories and variability. Fourth, we encourage long-term monitoring to improve the quantification of baseline conditions that will change as climate changes. This will enhance the accuracy of injury assessments, the effectiveness of restoration, and the detection of early warning signs that ecosystems are approaching tipping points. Fifth, in response to or anticipation of GCC, restoration projects may need to be conducted in areas distant from the site of injury or focused on functionally equivalent natural resources; thus, community involvement in NRDAR processes will be increasingly important. Sixth, we promote using NRDAR restoration projects as opportunities to mitigate GCC-related impacts. Seventh, we recommend adaptive management approaches to NRDAR processes and communication of successes and failures widely. Finally, we recommend focusing on managing the stressors that might be exacerbated by GCC, such as pollution and habitat loss, because there is a long history of successfully mitigating these stressors, which can be more easily managed on local scales than climate change. We believe that

  8. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  9. Improving the use of crop models for risk assessment and climate change adaptation.

    Science.gov (United States)

    Challinor, Andrew J; Müller, Christoph; Asseng, Senthold; Deva, Chetan; Nicklin, Kathryn Jane; Wallach, Daniel; Vanuytrecht, Eline; Whitfield, Stephen; Ramirez-Villegas, Julian; Koehler, Ann-Kristin

    2018-01-01

    Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1.Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk?2.Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output.3.Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions

  10. Assessing stand-level climate change risk using forest inventory data and species distribution models

    Science.gov (United States)

    Maria K. Janowiak; Louis R. Iverson; Jon Fosgitt; Stephen D. Handler; Matt Dallman; Scott Thomasma; Brad Hutnik; Christopher W. Swanston

    2017-01-01

    Climate change is having important effects on forest ecosystems, presenting a challenge for natural resource professionals to reduce climate-associated impacts while still achieving diverse management objectives. Regional projections of climate change and forest response are becoming more readily available, but managers are still searching for practical ways to apply...

  11. Assessing farmers’ perceptions about climate change: A double-hurdle approach

    Directory of Open Access Journals (Sweden)

    Patrick Hitayezu

    2017-01-01

    Full Text Available Drawing from insights of the behavioural decision research, this study applies a double-hurdle (DH estimation technique to assess social-psychological factors influencing the likelihood of perceiving climate risk and, given positive perception, the perceived patterns of climate change (CC among farmers in KwaZulu-Natal, South Africa. The model employs survey data collected from 352 small-scale farmers, 68% of whom had recognized CC, as indicated by perceptions of abnormal weather. Dominant perceptions are analysed using a principal component analysis technique and appraised based on meteorological records. The results point to higher probabilities of perceiving climate risk among farmers who experience more emotive mental imagery and those with stronger egalitarian values. The results further suggest that farmers who perceive CC based on affective impression and direct personal experience are more likely to suffer cognitive bias in their perceptions compared to farmers who perceive climate risk based on knowledge and analytic processing of climate information. Based on these findings, recommendations for effective CC communication policy are outlined.

  12. Assessing institutional capacities to adapt to climate change: integrating psychological dimensions in the Adaptive Capacity Wheel

    Science.gov (United States)

    Grothmann, T.; Grecksch, K.; Winges, M.; Siebenhüner, B.

    2013-12-01

    Several case studies show that social factors like institutions, perceptions and social capital strongly affect social capacities to adapt to climate change. Together with economic and technological development they are important for building social capacities. However, there are almost no methodologies for the systematic assessment of social factors. After reviewing existing methodologies we identify the Adaptive Capacity Wheel (ACW) by Gupta et al. (2010), developed for assessing the adaptive capacity of institutions, as the most comprehensive and operationalised framework to assess social factors. The ACW differentiates 22 criteria to assess 6 dimensions: variety, learning capacity, room for autonomous change, leadership, availability of resources, fair governance. To include important psychological factors we extended the ACW by two dimensions: "adaptation motivation" refers to actors' motivation to realise, support and/or promote adaptation to climate; "adaptation belief" refers to actors' perceptions of realisability and effectiveness of adaptation measures. We applied the extended ACW to assess adaptive capacities of four sectors - water management, flood/coastal protection, civil protection and regional planning - in northwestern Germany. The assessments of adaptation motivation and belief provided a clear added value. The results also revealed some methodological problems in applying the ACW (e.g. overlap of dimensions), for which we propose methodological solutions.

  13. Spatially Explicit Assessment of Ecosystem Resilience: An Approach to Adapt to Climate Changes

    Directory of Open Access Journals (Sweden)

    Haiming Yan

    2014-01-01

    Full Text Available The ecosystem resilience plays a key role in maintaining a steady flow of ecosystem services and enables quick and flexible responses to climate changes, and maintaining or restoring the ecosystem resilience of forests is a necessary societal adaptation to climate change; however, there is a great lack of spatially explicit ecosystem resilience assessments. Drawing on principles of the ecosystem resilience highlighted in the literature, we built on the theory of dissipative structures to develop a conceptual model of the ecosystem resilience of forests. A hierarchical indicator system was designed with the influencing factors of the forest ecosystem resilience, including the stand conditions and the ecological memory, which were further disaggregated into specific indicators. Furthermore, indicator weights were determined with the analytic hierarchy process (AHP and the coefficient of variation method. Based on the remote sensing data and forest inventory data and so forth, the resilience index of forests was calculated. The result suggests that there is significant spatial heterogeneity of the ecosystem resilience of forests, indicating it is feasible to generate large-scale ecosystem resilience maps with this assessment model, and the results can provide a scientific basis for the conservation of forests, which is of great significance to the climate change mitigation.

  14. Assessing the vulnerability of the transportation industry of Ukraine to future climate change

    Science.gov (United States)

    Khomenko, Inna

    2017-04-01

    Climate change will affect transportation primarily through increases in several types of weather and climate extremes. The impacts will vary by mode of transportation and region of the country, but they will be widespread and costly in both human and economic terms and will require significant changes in the planning, design, construction, operation, and maintenance of transportation systems. In the study impact of climate change on operation of road transport are analysed on the basis of RCP 4.5 and RCP 8.5 scenarios. Data contains series of daily mean, maximum and minimum temperature, daily liquid (or mixed) and solid precipitation, daily mean relative humidity and daily mean and maximum wind speed, obtained for the period of 2011 to 2050 for 28 cities distributed evenly across Ukraine. Spatial and temporal distributions of meteorological variables are obtained. The statistic characteristics obtained were compared with the correspondent climate normals and highway-related temporal changeability is determined. Frequency of freezing rain, wet snow, very hot days, droughts, fogs, ice-covered ground, slippery wet ground, ice and snow slippery coat are investigated. Climate and economic risks to the road transport network are assessed. Maps of spatial distribution of risk assessment are obtained. The results obtained show typical weather pattern is changed and climate and weather extreme influencing on operation of road transport are more frequent for the both scenarios, but for the RCP 8.5 scenario hazard weather occurs more often. During the period of 2011-2050 significant climate warming (by 2-3°C) is registered. Extreme temperatures are observed more frequently. High temperatures bring on growth in frequency of wildfires and heat waves. Annual precipitation amount decreases, except the western mountain and northern regions, where precipitation amount increase on 35%. Increase in temperature and decrease in precipitation can produce droughts in southern, eastern

  15. Assessing the adaptive capacity of the Ontario wine industry for climate change adaptation

    Directory of Open Access Journals (Sweden)

    Pickering K

    2015-03-01

    Full Text Available Kerrie Pickering,1 Ryan Plummer,1,2 Tony Shaw,3,4 Gary Pickering1,4,5 1Environmental Sustainability Research Centre, Brock University, St Catharines, ON, Canada; 2Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden; 3Department of Geography, 4Cool Climate Oenology and Viticulture Institute, 5Department of Psychology, Brock University, St Catharines, ON, Canada Background: Wine regions throughout the world are experiencing climate change characterized by the gradual alterations in growing seasons, temperature, precipitation, and the occurrences of extreme weather events that have significant consequences for quality wine production. Adapting to these new challenges depends largely on the present and future adaptive capacity of the grape growers, winemakers, and supporting institutions in order to minimize the impacts of climate change on grape yield and wine quality. Accordingly, the objective of this study was to develop a conceptual framework for assessing the adaptive capacity of a grape or wine region and apply it in the context of the Ontario wine industry. The framework consists of a three tiered structure, comprising eight operational and strategic determinants (financial, institutional, technological, political, knowledge, perception, social capital, and diversity. A comprehensive questionnaire was created from this framework consisting of 26 statements to which participants indicated their level of agreement. A total of 42 Ontario wine industry members completed the questionnaire via an on line survey. Results: The determinants related to perception, diversity, and knowledge have the highest degree of capacity, while political and technological determinants show the least. Overall, stakeholders are aware of both negative and positive impacts climate change could have on wine production. Results are discussed to explore opportunities to enhance adaptive capacity in the grape/wine community. Many stakeholders have already

  16. Assessing the impact of land use/land cover and climate changes on water stress in the derived savanna

    CSIR Research Space (South Africa)

    Amidu, A

    2013-07-01

    Full Text Available ___________________________________________________________________________________________________ Climate and Land Surface Changes in Hydrology Proceedings of H01, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013 (IAHS Publ. 359, 2013) 92-98 . Assessing the impact of land use/land cover and climate changes on water stress in the derived...

  17. Assessing climate change effects on long-term forest development: adjusting growth, phenology, and seed production in a gap model

    NARCIS (Netherlands)

    Meer, van der P.J.; Jorritsma, I.T.M.; Kramer, K.

    2002-01-01

    The sensitivity of forest development to climate change is assessed using a gap model. Process descriptions in the gap model of growth, phenology, and seed production were adjusted for climate change effects using a detailed process-based growth modeland a regression analysis. Simulation runs over

  18. Crop modelling for integrated assessment of risk to food production from climate change

    DEFF Research Database (Denmark)

    Ewert, F.; Rötter, R.P.; Bindi, M.

    2015-01-01

    . However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming......The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess...

  19. US country studies program: Support for climate change studies, national plans, and technology assessments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This paper describes the objectives of the next phase of the U.S. Country Studies Program which was launched in support of the Framework Convention on Climate Change (FCCC). The next phases of this program aim to: assist countries in preparing Climate Change Action plans; support technology assessments and development of technology initiatives; enhance exchange of information and expertise in support of FCCC. The program offers support for these processes in the form of handbooks which have been published to aid in preparing action plans, and to provide information on methane, forestry, and energy technologies. In addition an array of training workshops have been and are scheduled to offer hands on instruction to participants, expert advice is available from trained personnel, and modeling tools are available to aid in development of action plans.

  20. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, Cameron [Vertum Partners LP, Los Angeles, CA (United States); Capps, Scott [Vertum Partners LP, Los Angeles, CA (United States)

    2014-11-05

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

  1. A multi-disciplinary approach for the integrated assessment of water alterations under climate change

    Science.gov (United States)

    Sperotto, Anna; Torresan, Silvia; Molina, Jose Luis; Pulido Velazquez, Manuel; Critto, Andrea; Marcomini, Antonio

    2017-04-01

    Understanding the co-evolution and interrelations between natural and human pressures on water systems is required to ensure a sustainable management of resources under uncertain climate change conditions. To pursue multi-disciplinary research is therefore necessary to consider the multiplicity of stressors affecting water resources, take into account alternative perspectives (i.e. social, economic and environmental objective and priorities) and deal with uncertainty which characterize climate change scenarios. However, approaches commonly adopted in water quality assessment are predominantly mono-disciplinary, single-stressors oriented and apply concepts and models specific of different academic disciplines (e.g. physics, hydrology, ecology, sociology, economy) which, in fact, seldom shed their conceptual blinders failing to provide truly integrated results. In this context, the paper discusses the benefits and limits of adopting a multi-disciplinary approach where different knowledge domains collaborate and quantitative and qualitative information, coming from multiple conceptual and model-based research, are integrated in a harmonic manner. Specifically, Bayesian Networks are used as meta-modelling tool for structuring and combining the probabilistic information available in existing hydrological models, climate change and land use projections, historical observations and expert opinion. The developed network allows to perform a stochastic multi-risk assessment considering the interlacing between climate (i.e. irregularities in water regime) and land use changes (i.e. agriculture, urbanization) and their cascading impacts on water quality parameters (i.e. nutrients loadings). Main objective of the model is the development of multi-risk scenarios to assess and communicate the probability of not meeting a "Good chemical water status" over future timeframe taking into account projected climatic and not climatic conditions. The outcomes are finally used to identify

  2. Hydro-Meteorological Hazards Assessment Based Upon Climate Change Considerations in Isfara Basin

    Science.gov (United States)

    Ramesh, Azadeh; Conrad, Christopher; Mannig, Birgit; Schrader, Frank

    2013-04-01

    Central Asia is highly exposed and vulnerable to hydro-meteorological hazards and presents a constant threat to the population, in particular with flood and mudflow as frequent events in this region. Annual floods and mudflows cause enormous economic and social affects e.g. damages on houses and infrastructure in the floodplains, agricultural production particularly for water control (channels, bridges, etc.). An important challenge for the assessment of hydro-meteorological hazards is climate change, which is altering exposure. In the framework of the Trans-boundary Water Management in Central Asia/WMBOCA project, supported by TWM-CA and CAWa projects of German Research Centre for Geosciences (GFZ) and German Aerospace Center (DLR), we developed an approach how to address flood and mudflow using the official sources have been performed for selected areas in Central Asia based upon climate change considerations. This research has been carried out for the Isfara River basin which is located in northern Tajikistan and south-western Kyrgyzstan. The Isfara River basin belongs to Sugdh Oblast in Tajikistan and to Batken Oblast in Kyrgyzstan. The study begins with a description of the employed sources and methodology. The ensuing section offers analysis of exposure to hydro-meteorological hazards. Then, the study covers an overview of work related to the analysis of changes in mudflow and flood hazards in the past 20 years. Additionally, exposure to hydro-meteorological hazards in the case study has been assessed against a backdrop of rising climate change and variability for year 2050. This study presents initial findings from these analyses which are including (a) mapping of previous floods and mudflows in the basin, using conventional and traditional sources, supported remote sensing tools, (b) forecast of floods and mudflows in the basin, based upon climate change scenarios, and finally (c) supporting the local authorities and administrations in consideration of

  3. Assessing and Upgrading Ocean Mixing for the Study of Climate Change

    Science.gov (United States)

    Howard, A. M.; Fells, J.; Lindo, F.; Tulsee, V.; Canuto, V.; Cheng, Y.; Dubovikov, M. S.; Leboissetier, A.

    2016-12-01

    Climate is critical. Climate variability affects us all; Climate Change is a burning issue. Droughts, floods, other extreme events, and Global Warming's effects on these and problems such as sea-level rise and ecosystem disruption threaten lives. Citizens must be informed to make decisions concerning climate such as "business as usual" vs. mitigating emissions to keep warming within bounds. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. To make useful predictions we must realistically model each component of the climate system, including the ocean, whose critical role includes transporting&storing heat and dissolved CO2. We need physically based parameterizations of key ocean processes that can't be put explicitly in a global climate model, e.g. vertical&lateral mixing. The NASA-GISS turbulence group uses theory to model mixing including: 1) a comprehensive scheme for small scale vertical mixing, including convection&shear, internal waves & double-diffusion, and bottom tides 2) a new parameterization for the lateral&vertical mixing by mesoscale eddies. For better understanding we write our own programs. To assess the modelling MATLAB programs visualize and calculate statistics, including means, standard deviations and correlations, on NASA-GISS OGCM output with different mixing schemes and help us study drift from observations. We also try to upgrade the schemes, e.g. the bottom tidal mixing parameterizations' roughness, calculated from high resolution topographic data using Gaussian weighting functions with cut-offs. We study the effects of their parameters to improve them. A FORTRAN program extracts topography data subsets of manageable size for a MATLAB program, tested on idealized cases, to visualize&calculate roughness on. Students are introduced to modeling a complex system, gain a deeper appreciation of climate science, programming skills and familiarity with MATLAB, while furthering climate

  4. Assessment of climate change impacts on meteorological and hydrological droughts in the Jucar River Basin

    Science.gov (United States)

    Marcos-Garcia, Patricia; Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio

    2016-04-01

    Extreme natural phenomena, and more specifically droughts, constitute a serious environmental, economic and social issue in Southern Mediterranean countries, common in the Mediterranean Spanish basins due to the high temporal and spatial rainfall variability. Drought events are characterized by their complexity, being often difficult to identify and quantify both in time and space, and an universally accepted definition does not even exist. This fact, along with future uncertainty about the duration and intensity of the phenomena on account of climate change, makes necessary increasing the knowledge about the impacts of climate change on droughts in order to design management plans and mitigation strategies. The present abstract aims to evaluate the impact of climate change on both meteorological and hydrological droughts, through the use of a generalization of the Standardized Precipitation Index (SPI). We use the Standardized Flow Index (SFI) to assess the hydrological drought, using flow time series instead of rainfall time series. In the case of the meteorological droughts, the Standardized Precipitation and Evapotranspiration Index (SPEI) has been applied to assess the variability of temperature impacts. In order to characterize climate change impacts on droughts, we have used projections from the CORDEX project (Coordinated Regional Climate Downscaling Experiment). Future rainfall and temperature time series for short (2011-2040) and medium terms (2041-2070) were obtained, applying a quantile mapping method to correct the bias of these time series. Regarding the hydrological drought, the Témez hydrological model has been applied to simulate the impacts of future temperature and rainfall time series on runoff and river discharges. It is a conceptual, lumped and a few parameters hydrological model. Nevertheless, it is necessary to point out the time difference between the meteorological and the hydrological droughts. The case study is the Jucar river basin

  5. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers

    OpenAIRE

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell’Aquila, Alessandro

    2014-01-01

    Inability to determine reliably the direction and magnitude of change in natural and agro-ecosystems due to climate change poses considerable challenge to their management. Olive is an ancient ubiquitous crop having considerable ecological and socioeconomic importance in the Mediterranean Basin. We assess the ecological and economic impact of projected 1.8 °C climate warming on olive and its obligate pest, the olive fly. This level of climate warming will have varying impact on olive yield an...

  6. Applicability of ranked Regional Climate Models (RCM) to assess the impact of climate change on Ganges: A case study.

    Science.gov (United States)

    Anand, Jatin; Devak, Manjula; Gosain, Ashvani Kumar; Khosa, Rakesh; Dhanya, Ct

    2017-04-01

    The negative impact of climate change is felt over wide range of spatial scales, ranging from small basins to large watershed area, which can possibly outweighs the benefits of natural water system. General Circulation Models (GCMs) has been widely used as an input to a hydrological models (HMs), to simulate different hydrological components of a river basin. However, the coarser scale of GCMs and spatio-temporal biases, restricted its use at finer resolution. If downscaled, adds one more level of uncertainty i.e., downscaling uncertainty together with model and scenario uncertainty. The outputs computed from Regional Climate Models (RCM) may aid the uncertainties arising from GCMs, as the RCMs are the miniatures of GCMs. However, the RCMs do have some inherent systematic biases, hence bias correction is a prerequisite process before it is fed to HMs. RCMs, together with the input from GCMs at later boundaries also takes topography of the area into account. Hence, RCMs need to be ranked a priori. In this study, impact of climate change on the Ganga basin, India, is assessed using the ranked RCMs. Firstly, bias correction of 14 RCM models are done using Quantile-Quantile mapping and Equidistant cumulative distribution method, for historic (1990-2004) and future scenario (2021-2100), respectively. The runoff simulations from Soil Water Assessment Tool (SWAT), for historic scenario is used for ranking of RCMs. Entropy and PROMETHEE-2 method is employed to rank the RCMs based on five performance indicators namely, Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), normalised root mean square error (NRMSE), absolute normalised mean bias error (ANMBE) and average absolute relative error (AARE). The results illustrated that each of the performance indicators behaves differently for different RCMs. RCA 4 (CNRM-CERFACS) is found as the best model with the highest value of  (0.85), followed by RCA4 (MIROC) and RCA4 (ICHEC) with  values of 0.80 and 0

  7. Assessing climate change impacts on water resources in remote mountain regions

    Science.gov (United States)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  8. Uncertainty assessment of climate change adaptation using an economic pluvial flood risk framework

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    2012-01-01

    It is anticipated that climate change is likely to lead to an increasing risk level of flooding in cities in northern Europe. One challenging question is how to best address the increasing flood risk and assess the costs and benefits of adapting to such changes. We established an integrated...... uncertainty bounds propagated through the evaluation and identify the relative contribution of inherent uncertainties in the assessment. The case study is a small urban catchment located in Skibhus, Odense where no significant city development is anticipated. Two adaptation scenarios, namely pipe enlargement...... adaptation option on a basis of assessed economic indicators, e.g. net benefits (NPV), cost-recovery period (Y) and the difference in calculated net benefits (ΔNPV) when comparing two adaptation alternatives. Pipe enlargement turned out to be more economically beneficial in comparison to local infiltration...

  9. Assessment on Hydrologic Response by Climate Change in the Chao Phraya River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Mayzonee Ligaray

    2015-12-01

    Full Text Available The Chao Phraya River in Thailand has been greatly affected by climate change and the occurrence of extreme flood events, hindering its economic development. This study assessed the hydrological responses of the Chao Phraya River basin under several climate sensitivity and greenhouse gas emission scenarios. The Soil and Water Assessment Tool (SWAT model was applied to simulate the streamflow using meteorological and observed data over a nine-year period from 2003 to 2011. The SWAT model produced an acceptable performance for calibration and validation, yielding Nash-Sutcliffe efficiency (NSE values greater than 0.5. Precipitation scenarios yielded streamflow variations that corresponded to the change of rainfall intensity and amount of rainfall, while scenarios with increased air temperatures predicted future water shortages. High CO2 concentration scenarios incorporated plant responses that led to a dramatic increase in streamflow. The greenhouse gas emission scenarios increased the streamflow variations to 6.8%, 41.9%, and 38.4% from the reference period (2003–2011. This study also provided a framework upon which the peak flow can be managed to control the nonpoint sources during wet season. We hope that the future climate scenarios presented in this study could provide predictive information for the river basin.

  10. Assessment of robustness and significance of climate change signals for an ensemble of distribution-based scaled climate projections

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Refsgaard, J.C.; Sonnenborg, T.O.

    2013-01-01

    An ensemble of 11 regional climate model (RCM) projections are analysed for Denmark from a hydrological modelling inputs perspective. Two bias correction approaches are applied: a relatively simple monthly delta change (DC) method and a more complex daily distribution-based scaling (DBS) method....... Differences in the strength and direction of climate change signals are compared across models and between bias correction methods, the statistical significance of climate change is tested as it evolves over the 21st century, and the impact of choice of reference and change period lengths is analysed......, the DC approach is insufficient at recreating projected regimes while the DBS correction method can transfer changes in the mean as well as the variance, improving the characterisation of temporal dynamics as well as heavy precipitation events. Climate change signals in the near-future (2011...

  11. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  12. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  13. The Health Impacts of Climate Change: A Continuing Medical Education Needs Assessment Framework.

    Science.gov (United States)

    Valois, Pierre; Blouin, Patrick; Ouellet, Claudine; Renaud, Jean-Sébastien; Bélanger, Diane; Gosselin, Pierre

    2016-01-01

    As the health consequences of climate change (CC) will likely become more manifest in the future, family physicians have to be knowledgeable about these impacts and the ways in which they can affect their patients. The main aim of this study was to propose a competency framework and questionnaire used to conduct a needs analysis to identify and prioritize family physicians' real educational needs regarding the health impacts of CC. A mixed method combining a qualitative interview and a quantitative online questionnaire was used (n = 24 physicians). The interview assessed key beliefs related to participating in an online continuing medical education (eCME) activity on the health impacts of climate change, and the perception of the key factors or conditions required to ensure the family physicians' satisfaction with this eCME activity. The questionnaire assessed the current and desired levels of competency on five general training themes: general knowledge about CC; heat-related illnesses; CC, extreme weather events and modification of vector-borne and zoonotic diseases; CC, extreme weather events and modification of water-borne diseases; and mental health impacts of natural disasters. Results revealed the need for improved medical education on climate change and health. Results also add to the literature by showing that a 3-hour eCME activity covering these topics would be useful and would allow family physicians to use this knowledge in their daily practice, notably through prevention and counseling. Introducing a CME needs assessment framework and a generic instrument that reflects family physicians' needs regarding the health impacts of CC has the added advantage of standardizing the assessment procedure.

  14. Seasonality of flood events in a changing climate - An uncertainty assessment for Europe through the combination of different climate projections

    Science.gov (United States)

    Eisner, Stephanie; Voß, Frank; Schneider, Christof

    2010-05-01

    Global climate models (GCMs) project an increasing intensity and frequency of heavy rainfall events due to climate change. As a result, the frequency and magnitude of severe flood events is expected to increase in many regions. Furthermore, a change in the seasonality of flood events can be anticipated. In regions that regularly experience snowmelt floods, for instance, temperature increase will lead to a decreased snow accumulation and to a shortened duration of the snowpack. Thus, the risk of spring floods may be reduced. This study aims to estimate the impact of the projected climate change on the seasonality of flood events in the European region. For this purpose large scale river discharge simulations were carried out with the integrated, global model WaterGAP3 (Water - Global Assessment and Prognosis) with a spatial resolution of the grid cells of 5'. WaterGAP3 couples a hydrological model for the simulation of the terrestrial water cycle with a water use model that computes withdrawal and consumptive water use of the sectors manufacturing, electricity production, agriculture and private households. Thus, on the basis of daily climate input parameters with a spatial resolution of 0.5° and downscaled to the 5' grid scale level daily stream flow was simulated and analyzed. First, the seasonality of flood events of defined recurrence periods was determined for the reference period 1961-1990 and validated against measured river discharge data. Subsequently, WaterGAP3 was forced with bias corrected time series originating from simulation runs of different GCMs for the scenario period 2071-2100. To asses the uncertainty that arises from the GCM output used as input forcing to the hydrological model, the calculations were carried out for three different GCMs (Echam5, CNRM, ISLP) and two emission scenarios (A2 and B1 of the IPCC SRES scenarios), respectively. The study demonstrates that the selection of a particular GCM is a major source of uncertainty in assessing

  15. A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark

    Directory of Open Access Journals (Sweden)

    C. D. Børgesen

    2011-09-01

    Full Text Available Climate change will impact agricultural production both directly and indirectly, but uncertainties related to likely impacts constrain current political decision making on adaptation. This analysis focuses on a methodology for applying probabilistic climate change projections to assess modelled wheat yields and nitrate leaching from arable land in Denmark. The probabilistic projections describe a range of possible changes in temperature and precipitation. Two methodologies to apply climate projections in impact models were tested. Method A was a straightforward correction of temperature and precipitation, where the same correction was applied to the baseline weather data for all days in the year, and method B used seasonal changes in precipitation and temperature to correct the baseline weather data. Based on climate change projections for the time span 2000 to 2100 and two soil types, the mean impact and the uncertainty of the climate change projections were analysed. Combining probability density functions of climate change projections with crop model simulations, the uncertainty and trends in nitrogen (N leaching and grain yields with climate change were quantified. The uncertainty of climate change projections was the dominating source of uncertainty in the projections of yield and N leaching, whereas the methodology to seasonally apply climate change projections had a minor effect. For most conditions, the probability of large yield reductions and large N leaching losses tracked trends in mean yields and mean N leaching. The impacts of the uncertainty in climate change were higher for loamy sandy soil than for sandy soils due to generally higher yield levels for loamy sandy soils. There were large differences between soil types in response to climate change, illustrating the importance of including soil information for regional studies of climate change impacts on cropping systems.

  16. Quantitative assessment of resilience of a water supply system under rainfall reduction due to climate change

    Science.gov (United States)

    Amarasinghe, Pradeep; Liu, An; Egodawatta, Prasanna; Barnes, Paul; McGree, James; Goonetilleke, Ashantha

    2016-09-01

    A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system's stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.

  17. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf.

    Science.gov (United States)

    Hare, Jonathan A; Morrison, Wendy E; Nelson, Mark W; Stachura, Megan M; Teeters, Eric J; Griffis, Roger B; Alexander, Michael A; Scott, James D; Alade, Larry; Bell, Richard J; Chute, Antonie S; Curti, Kiersten L; Curtis, Tobey H; Kircheis, Daniel; Kocik, John F; Lucey, Sean M; McCandless, Camilla T; Milke, Lisa M; Richardson, David E; Robillard, Eric; Walsh, Harvey J; McManus, M Conor; Marancik, Katrin E; Griswold, Carolyn A

    2016-01-01

    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform

  18. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf

    Science.gov (United States)

    Hare, Jonathan A.; Morrison, Wendy E.; Nelson, Mark W.; Stachura, Megan M.; Teeters, Eric J.; Griffis, Roger B.; Alexander, Michael A.; Scott, James D.; Alade, Larry; Bell, Richard J.; Chute, Antonie S.; Curti, Kiersten L.; Curtis, Tobey H.; Kircheis, Daniel; Kocik, John F.; Lucey, Sean M.; McCandless, Camilla T.; Milke, Lisa M.; Richardson, David E.; Robillard, Eric; Walsh, Harvey J.; McManus, M. Conor; Marancik, Katrin E.; Griswold, Carolyn A.

    2016-01-01

    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform

  19. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf.

    Directory of Open Access Journals (Sweden)

    Jonathan A Hare

    Full Text Available Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region. These

  20. Integrated regional assessment of global climatic change: lessons from the Mackenzie Basin Impact Study (MBIS)

    Science.gov (United States)

    Cohen, Stewart J.

    1996-04-01

    This paper outlines the potential role integrated regional assessments of global climatic change scenarios could play in building better links between science and related policy concerns. The concept is illustrated through description of an ongoing case study from Canada—the Mackenzie Basin Impact Study (MBIS). As part of the Government of Canada's Green Plan, the Global Warming Science Program includes a study of regional impacts of global warming scenarios in the Mackenzie Basin, located in northwestern Canada. The MBIS is a six-year program focussing on potential climate-induced changes in the land and water resource base, and the implications of four scenarios of global climatic change on land use and economic policies in this region. These policy issues include interjurisdictional water management, sustainability of native lifestyles, economic development opportunities (agriculture, forestry, tourism, etc.), sustainability of ecosystems and infrastructure maintenance. MBIS is due to be completed in 1997. MBIS represents an attempt to address regional impacts by incorporating a "family of integrators" into the study framework, and by directly involving stakeholders in planning and research activities. The experience in organizing and carrying out this project may provide some lessons for others interested in organizing regional or country studies.

  1. Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam

    Science.gov (United States)

    Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.

    2010-01-01

    Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.

  2. The Second Assessment of the Effects of Climate Change on Federal Hydropower

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ashfaq, Moetasim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Naz, Bibi S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uria Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rastogi, Deeksha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mei, Rui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jager, Yetta [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Samu, Nicole M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sale, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Hydropower is a key contributor to the US renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power system. Ensuring the sustainable operation of existing hydropower facilities is of great importance to the US renewable energy portfolio and the reliability of electricity grid. As directed by Congress in Section 9505 of the SECURE Water Act (SWA) of 2009 (Public Law 111-11), the US Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, has prepared a second quinquennial report on examining the potential effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities. This Oak Ridge National Laboratory (ORNL) Technical Memorandum, referred to as the 9505 assessment, describes the technical basis for the report to Congress that was called for in the SWA. To evaluate the potential climate change effects on 132 federal hydropower plants across the entire US, a spatially consistent assessment approach is designed to enable an interregional comparison. This assessment uses a series of models and methods with different spatial resolutions to gradually downscale the global climate change signals into watershed-scale hydrologic projections to support hydropower impact assessment. A variety of historic meteorological and hydrologic observations, hydropower facility characteristics, and geospatial datasets is collected to support model development, calibration, and verification. Among most of the federal hydropower plants throughout the US, the most important climate change effect on hydrology is likely to be the trend toward earlier snowmelt and change of runoff seasonality. Under the projections of increasing winter/spring runoff and decreasing summer/fall runoff, water resource managers may need to consider different water use allocations. With the

  3. Assessing vulnerability to climate-induced changes in ecosystem services of boreal croplands and forests

    Science.gov (United States)

    Rankinen, Katri; Akujärvi, Anu; Holmberg, Maria

    2017-04-01

    Croplands and forests of the boreal region supply a wide range of ecosystem services. The properties and processes of these ecosystems regulate water flow and climate, and retain nutrients and store carbon. The functioning of the ecosystem processes depends on ambient temperatures and precipitation patterns, which are likely to continue changing in the boreal zone. MONIMET (LIFE12 ENV/FI/000409, 9/2013 - 9/2017) is an EU Life funded project about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. In this project, we calculated future changes of carbon storage in soil, and nutrient loading from soil to surface waters and drinking water supplies. We calculated the carbon storage of forests and croplands using the dynamic YASSO litter and soil carbon model. The simulated carbon budget estimates were upscaled to the river basin by combining them with gridded data of land cover. We simulated nutrient loading from two boreal catchments to the receiving waters using the dynamic, catchment scale model INCA. We calculated land use specific loading values for these two well monitored catchments that belong to the LTER (The Long Term Ecological Research) monitoring network, and upscaled these results to the larger river basin based on grid-scaled data of land cover. We used population projections as proxies for the societal demand for the services of climate regulation and water purification, and assessed thereby the vulnerability of society to climate-induced changes in these services. In this poster we present the technical frame of combining models and data.

  4. Vulnerability Index to Climate Change and its Application for Community-level Risk Assessment in Thailand

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2014-06-01

    Full Text Available On the basis of the vulnerability-led approach, the Prevalent Community-level Vulnerability Index (PCVI was developed as a simple composite index used to represent community-level vulnerability to climate change in the socioeconomic and hazard contexts. The PCVI consists of three major components which are Exposure & hazard, Socioeconomic-ecological fragility and Coping capacity. All of these components are further comprised of different indicators, representing different aspects of biophysical and social vulnerability of grass-root communities. Based on the results analyzed in the provincial pilot sites, the PCVI could represent both spatial patterns and magnitudes of vulnerability of each community in consistence with the local economic-social-environmental contexts. It generally reflects the differences in the local contexts and factors that determine overall vulnerability of each community. For the ease in calculating the PCVI especially for the provincial operating staffs and general public, the PREvalent Community Climate Change Vulnerability Tool (RECCC was further developed as a user-friendly, Excel-based program. In conclusions, the outputs of this study that include the PCVI and its database as well as the RECCC program are useful not only for analyzing vulnerability and assessing risks of community to climate change, but also for supporting decision-making process in developing and implementing adaptation activities at provincial level. These outputs were also designed for further integrating as a supplementary part of Provincial�s Decision Supporting System (DSS, with the purpose of promoting the participation of local organizations and stakeholders in coping with the adverse impacts of climate change. However, additional development of ERCCC program, together with dissemination of the vulnerability framework as well as the use of ERCCC program to local organizations needs to be continued.

  5. Final Report: Synthesis of aquatic climate change vulnerability assessments for the Interior West

    Science.gov (United States)

    Megan M. Friggens; Carly K. Woodlief

    2015-01-01

    Water is a critical resource for humans and ecological systems in the western United States. Aquatic ecosystems including lakes, rivers, riparian areas and wetlands, are at high risk of climate impacts because they experience relatively high exposure to climate fluctuations and extremes. In turn, impacts arising from climate change are far reaching because these...

  6. A framework for assessing climate change vulnerability and identifying adaptation responses in the central hardwoods region

    Science.gov (United States)

    Patricia R. Butler; Leslie A. Brandt; Stephen D. Handler; Maria K. Janowiak; Patricia D. Shannon; Chris W. Swanston

    2014-01-01

    The Central Hardwood region contains a mosaic of forests, woodlands, savannas, and other ecosystems that will increasingly be affected by a changing climate over the next century. Understanding potential impacts is important to sustaining healthy forests under changing conditions. The objectives of the Climate Change Response Framework (forestadaptation.org) are to...

  7. Vulnerability of the Barents Sea environment to climate changes: a review of the current assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gelfan, A.; Danilov-Danilyan, V.

    2009-07-15

    Authors' conclusion: Climate change is not considered to be just 'one more stress' on the ecosystem, but rather it will create complex and dynamic changes in the environment that may alter the level of its vulnerability. Cumulative effects can be defined as changes to the environment that are caused by an action in combination with other past, present and future human actions (Environment Canada 2003). The magnitude and effects of multiple stresses can be equal to the sum of the individual effects (additive effects) or they may strengthen or weaken each other (positive or negative feedbacks). To understand complex interactions within the system atmosphere-land surface-ocean at regional scales and to assess influence of the environmental changes on the ecological conditions, sophisticated models should be developed allowing to account for regional peculiarities of these systems. Development of such models is considered as one of the main challenge of the Earth system science. (author)

  8. Floods in a changing climate

    Science.gov (United States)

    Theresa K. Andersen; Marshall J. Shepherd

    2013-01-01

    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  9. Assessing Student Knowledge of Chemistry and Climate Science Concepts Associated with Climate Change: Resources to Inform Teaching and Learning

    Science.gov (United States)

    Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy

    2017-01-01

    Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…

  10. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  11. Synthetic Assessment of Global Distribution of Vulnerability to Climate Change: Maps and Data, 2005, 2050, and 2100

    Data.gov (United States)

    National Aeronautics and Space Administration — Synthetic Assessment of Global Distribution of Vulnerability to Climate Change: Maps and Data, 2005, 2050, and 2100 consist of maps and vulnerability index to...

  12. Life cycle assessment of stormwater management in the context of climate change adaptation.

    Science.gov (United States)

    Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Hauschild, Michael Zwicky; Rygaard, Martin

    2016-12-01

    Expected increases in pluvial flooding, due to climatic changes, require large investments in the retrofitting of cities to keep damage at an acceptable level. Many cities have investigated the possibility of implementing stormwater management (SWM) systems which are multi-functional and consist of different elements interacting to achieve desired safety levels. Typically, an economic assessment is carried out in the planning phase, while environmental sustainability is given little or no attention. In this paper, life cycle assessment is used to quantify environmental impacts of climate change adaptation strategies. The approach is tested using a climate change adaptation strategy for a catchment in Copenhagen, Denmark. A stormwater management system, using green infrastructure and local retention measures in combination with planned routing of stormwater on the surfaces to manage runoff, is compared to a traditional, sub-surface approach. Flood safety levels based on the Three Points Approach are defined as the functional unit to ensure comparability between systems. The adaptation plan has significantly lower impacts (3-18 person equivalents/year) than the traditional alternative (14-103 person equivalents/year) in all analysed impact categories. The main impacts are caused by managing rain events with return periods between 0.2 and 10 years. The impacts of handling smaller events with a return period of up to 0.2 years and extreme events with a return period of up to 100 years are lower in both alternatives. The uncertainty analysis shows the advantages of conducting an environmental assessment in the early stages of the planning process, when the design can still be optimised, but it also highlights the importance of detailed and site-specific data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Towards the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)

    Science.gov (United States)

    Fuglestvedt, J. S.; Masson-Delmotte, V.; Zhai, P.; Pirani, A.

    2016-12-01

    The IPCC, set up in 1988 by WMO and UNEP, is the international body for assessing the science related to climate change. The reports of the IPCC include Assessments, Synthesis and Special Reports (and their Summaries for Policymakers), as well as Methodological Reports, providing policymakers with regular assessments of the scientific basis of climate change, its impacts and future risks, and options for adaptation and mitigation. These assessments are policy-relevant, but not policy-prescriptive, and based on the assessment of the published literature. The assessments of the IPCC follow precise procedures to ensure that they provide a rigorous and balanced scientific information. Particularly critical is the volunteer involvment of tens of scientists involved in the scoping of each report, as well as the work of hundreds of Coordinating Lead Authors and Lead Authors of reports, with the complementary expertise of hundreds of sollicited Contributing Authors. The review process plays a key role in the open and transparent process underlying the IPCC reports. It is organized in multiple rounds and mobilizes thousands of other experts, a process monitored by Review Editors. The author teams develop rigorous methodologies to report the degree of confidence associated with each finding and report information with uncertainty. As a result, successive IPCC reports provide regular steps to determine matured climate science, through robust findings, but also emerging research pathways, and facilitate science maturation through analyses of multiple perspectives provided by the scientific literature in a comprehensive approach. While the IPCC does not conduct its own scientific research, the timeline of the IPCC reports acts as a stimulation for the research community, especially for internationally coordinated research programmes associated with global climate projections. These aspects will be developed in this presentation, with a focus on Working Group I (the physical

  14. Assessment of Hammocks (Petenes) Resilience to Sea Level Rise Due to Climate Change in Mexico.

    Science.gov (United States)

    Hernández-Montilla, Mariana C; Martínez-Morales, Miguel Angel; Posada Vanegas, Gregorio; de Jong, Bernardus H J

    2016-01-01

    There is a pressing need to assess resilience of coastal ecosystems against sea level rise. To develop appropriate response strategies against future climate disturbances, it is important to estimate the magnitude of disturbances that these ecosystems can absorb and to better understand their underlying processes. Hammocks (petenes) coastal ecosystems are highly vulnerable to sea level rise linked to climate change; their vulnerability is mainly due to its close relation with the sea through underground drainage in predominantly karstic soils. Hammocks are biologically important because of their high diversity and restricted distribution. This study proposes a strategy to assess resilience of this coastal ecosystem when high-precision data are scarce. Approaches and methods used to derive ecological resilience maps of hammocks are described and assessed. Resilience models were built by incorporating and weighting appropriate indicators of persistence to assess hammocks resilience against flooding due to climate change at "Los Petenes Biosphere Reserve", in the Yucatán Peninsula, Mexico. According to the analysis, 25% of the study area is highly resilient (hot spots), whereas 51% has low resilience (cold spots). The most significant hot spot clusters of resilience were located in areas distant to the coastal zone, with indirect tidal influence, and consisted mostly of hammocks surrounded by basin mangrove and floodplain forest. This study revealed that multi-criteria analysis and the use of GIS for qualitative, semi-quantitative and statistical spatial analyses constitute a powerful tool to develop ecological resilience maps of coastal ecosystems that are highly vulnerable to sea level rise, even when high-precision data are not available. This method can be applied in other sites to help develop resilience analyses and decision-making processes for management and conservation of coastal areas worldwide.

  15. Circulation pattern-based assessment of projected climate change for a catchment in Spain

    Science.gov (United States)

    Gupta, Hoshin V.; Sapriza-Azuri, Gonzalo; Jódar, Jorge; Carrera, Jesús

    2018-01-01

    We present an approach for evaluating catchment-scale hydro-meteorological impacts of projected climate change based on the atmospheric circulation patterns (ACPs) of a region. Our approach is motivated by the conjecture that GCMs are especially good at simulating the atmospheric circulation patterns that control moisture transport, and which can be expected to change in response to global warming. In support of this, we show (for the late 20th century) that GCMs provide much better simulations of ACPs than those of precipitation amount for the Upper Guadiana Basin in central Spain. For the same period, four of the twenty GCMs participating in the most recent (5th) IPCC Assessment provide quite accurate representations of the spatial patterns of mean sea level pressure, the frequency distribution of ACP type, the 'number of rainy days per month', and the daily 'probability of rain' (they also reproduce the trend of 'wet day amount', though not the actual magnitudes). A consequent analysis of projected trends and changes in hydro-climatic ACPology between the late 20th and 21st Centuries indicates that (1) actual changes appear to be occurring faster than predicted by the models, and (2) for two greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5) the expected decline in precipitation volume is associated mainly with a few specific ACPs (primarily directional flows from the Atlantic Ocean and Cantabric Sea), and with decreasing probability of rain (linked to increasing temperatures) rather than wet day amount. Our approach is a potentially more insightful alternative for catchment-scale climate impacts assessments than the common approach of statistical downscaling and bias correction.

  16. Climate Change and Health

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Climate change and health Fact sheet Updated July 2017 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – ...

  17. Assessment of climate change impact on floods in the Upper Prut and Tisza River catchments (Ukraine)

    Science.gov (United States)

    Didovets, Iulii; Krysanova, Valentina; Snizhko, Sergiy; Bronstert, Axel

    2017-04-01

    Changes in hydrological extremes become more significant in the climate change context. Due to the increasing trends of floods in recent decades in Ukraine and accompanied with high risk of social and economic loses, the potential changes in flood frequency are of high importance. The problem of climate change impact on hydrological extremes for Ukrainian region is not developed on sufficient level and more studies are needed. The projections of changes in floods associate with high uncertainties and depend of climate scenarios. This study aims to evaluate the impact of climate change on hydrological extreme events, using a set of 7 climate scenarios under RCP4.5 and RCP8.5 based on GCMs that have been downscaled RCMs from IMPRESSIONS project, and detect the changes using the eco-hydrological model SWIM in Upper Prut and Tisza River catchments.

  18. A Climate Change Vulnerability Assessment Report for the National Renewable Energy Laboratory: May 23, 2014 -- June 5, 2015

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J. [Abt Environmental Research, Boulder, CO (United States); O' Grady, M. [Abt Environmental Research, Boulder, CO (United States); Renfrow, S. [Abt Environmental Research, Boulder, CO (United States)

    2015-09-03

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), in Golden, Colorado, focuses on renewable energy and energy efficiency research. Its portfolio includes advancing renewable energy technologies that can help meet the nation's energy and environmental goals. NREL seeks to better understand the potential effects of climate change on the laboratory--and therefore on its mission--to ensure its ongoing success. Planning today for a changing climate can reduce NREL's risks and improve its resiliency to climate-related vulnerabilities. This report presents a vulnerability assessment for NREL. The assessment was conducted in fall 2014 to identify NREL's climate change vulnerabilities and the aspects of NREL's mission or operations that may be affected by a changing climate.

  19. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    Science.gov (United States)

    Fu, Linyun; Ma, Xiaogang; Zheng, Jin; Goldstein, Justin; Duggan, Brian; West, Patrick; Aulenbach, Steve; Tilmes, Curt; Fox, Peter

    2014-05-01

    This poster will show how we used a case-driven iterative methodology to develop an ontology to represent the content structure and the associated provenance information in a National Climate Assessment (NCA) report of the US Global Change Research Program (USGCRP). We applied the W3C PROV-O ontology to implement a formal representation of provenance. We argue that the use case-driven, iterative development process and the application of a formal provenance ontology help efficiently incorporate domain knowledge from earth and environmental scientists in a well-structured model interoperable in the context of the Web of Data.

  20. Food security under climate change

    Science.gov (United States)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  1. Assessing adaptation – Climate change and indigenous livelihood in the Andes of Bolivia

    Directory of Open Access Journals (Sweden)

    Marolyn Vidaurre de la Riva

    2013-12-01

    Full Text Available Based on a case study of Charazani – Bolivia, this article outlines the understanding of adaptive strategies to cope with climate change and its impact on environmental and socioeconomic conditions that are affecting rural livelihoods. Mainly qualitative methods were used to collect and analyze data following the framework for vulnerability assessments of a socio-ecological system. Climate data reveals an increase of precipitation and temperature during the last decades. Furthermore the occurrence of extreme weather events, particularly drought, frost, hailstorms and consequently landslides and fire are increasing. Local testimonies highlight these events as the principle reasons for agricultural losses. This climatic variability and simultaneous social changes were identified as the drivers of vulnerability. Yet, several adaptive measures were identified at household, community and external levels in order to cope with such vulnerability; e.g. traditional techniques in agriculture and risk management. Gradually, farmers complement these activities with contemporary practices in agriculture, like intensification of land use, diversification of irrigation system and use of artificial fertilizers. As part of a recent trend community members are forced to search for new off-farm alternatives beyond agriculture for subsistence. Despite there is a correspondingly large array of possible adaptation measures that families are implementing, local testimonies point out, that farmers often do not have the capacity and neither the economical resources to mitigate the risk in agricultural production. Although several actions are already considered to promote further adaptive capacity, the current target is to improve existing livelihood strategies by reducing vulnerability to hazards induced by climate change.

  2. Assessing potential changes of chestnut productivity in Europe under future climate conditions

    Science.gov (United States)

    Calheiros, T.; Pereira, M. G.; Pinto, J. G.; Caramelo, L.; Gomes-Laranjo, J.; Dacamara, C. C.

    2012-04-01

    The European chestnut is cultivated for its nuts and wood. Several studies point to the dependency of chestnut productivity on specific soil and climate characteristics. For instance, this species dislikes chalky and poorly drained soils, appreciates sedimentary, siliceous and acidic to neutral soils. Chestnut trees also seems to appreciate annual mean values of sunlight spanning between 2400 and 2600 h, rainfall ranging between 600 and 1500 mm, mean annual temperature between 9 and 13°C, 27°C being the mean of the maximum temperature (Heiniger and Conedera, 1992; Gomes-Laranjo et al.,2008). The amount of heat between May and October must range between 1800°D and 2400°D (Dinis et al., 2011) . In Poland, the growing season is defined as the period of time when the mean 24-h temperature is greater than 5°C (Wilczynski and Podalski, 2007). In Portugal, maximum photosynthetic activity occurs at 24-28°C for adult trees, but exhibits more than 50% of termoinhibition when the air temperature is above 32°C, which is frequent during summer (Gomes- Laranjo et al., 2006, 2008). Recently Pereira et al (2011) identified a set of meteorological variables/parameters with high impact on chestnut productivity. The main purpose of this work is to assess the potential impacts of future climate change on chestnut productivity in Portugal as well as on European chestnut orchards. First, observed data from the European Climate assessment (ECA) and simulations with the Regional Circulation Model (RCM) COSMO-CLM for recent climate conditions are used to assess the ability of the RCM to model the actual meteorological conditions. Then, ensemble projections from the ECHAM5/COSMO-CLM model chain for two climate scenarios (A1B and B1) are used to estimate the values of relevant meteorological variables and parameters und future climate conditions. Simulated values are then compared with those obtained for present climate. Results point to changes in the spatial and temporal

  3. Assessing the 20th century performance of global climate models and application to climate change adaptation planning

    Science.gov (United States)

    Geil, Kerrie

    Rapid environmental changes linked to human-induced increases in atmospheric greenhouse gas concentrations have been observed on a global scale over recent decades. Given the relative certainty of continued change across many earth systems, the information output from climate models is an essential resource for adaptation planning. But in the face of many known modeling deficiencies, how confident can we be in model projections of future climate? It stands to reason that a realistic simulation of the present climate is at least a necessary (but likely not sufficient) requirement for a model's ability to realistically simulate the climate of the future. Here, I present the results of three studies that evaluate the 20th century performance of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). (Abstract shortened by ProQuest.).

  4. Climate change: a primer

    OpenAIRE

    Khanna, Dr. Perminder; Aneja, Reenu

    2011-01-01

    Abstract Climate has inherent variability manifesting in gradual changes in temperature, precipitation and sea-level rise. The paper entitled “Climate Change: A Primer” attempts to analyse the policy response and adaptation to the need to address climate change at the international and domestic level both. Intense variations in climate would increase the risk of abrupt and non-linear changes in the ecosystem, impacting their function, biodiversity and productivity. The policy initiations and ...

  5. Climate Change Adaptation Approaches

    Science.gov (United States)

    2011-05-11

    US Army Corps of Engineers BUILDING STRONG® Climate Change Adaptation Approaches Presented at the E2S2 Symposium May 11th, 2011 New Orleans, LA...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Climate Change Adaptation Approaches 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...10/09).  One of the four priorities is to maintain readiness in the face of climate change .  Addressing Climate Change Risk and Vulnerability: a

  6. Assessing ocean vertical mixing schemes for the study of climate change

    Science.gov (United States)

    Howard, A. M.; Lindo, F.; Fells, J.; Tulsee, V.; Cheng, Y.; Canuto, V.

    2014-12-01

    Climate change is a burning issue of our time. It is critical to know the consequences of choosing "business as usual" vs. mitigating our emissions for impacts e.g. ecosystem disruption, sea-level rise, floods and droughts. To make predictions we must model realistically each component of the climate system. The ocean must be modeled carefully as it plays a critical role, including transporting heat and storing heat and dissolved carbon dioxide. Modeling the ocean realistically in turn requires physically based parameterizations of key processes in it that cannot be explicitly represented in a global climate model. One such process is vertical mixing. The turbulence group at NASA-GISS has developed a comprehensive new vertical mixing scheme (GISSVM) based on turbulence theory, including surface convection and wind shear, interior waves and double-diffusion, and bottom tides. The GISSVM is tested in stand-alone ocean simulations before being used in coupled climate models. It is also being upgraded to more faithfully represent the physical processes. To help assess mixing schemes, students use data from NASA-GISS to create visualizations and calculate statistics including mean bias and rms differences and correlations of fields. These are created and programmed with MATLAB. Results with the commonly used KPP mixing scheme and the present GISSVM and candidate improved variants of GISSVM will be compared between stand-alone ocean models and coupled models and observations. This project introduces students to modeling of a complex system, an important theme in contemporary science and helps them gain a better appreciation of climate science and a new perspective on it. They also gain familiarity with MATLAB, a widely used tool, and develop skills in writing and understanding programs. Moreover they contribute to the advancement of science by providing information that will help guide the improvement of the GISSVM and hence of ocean and climate models and ultimately our

  7. On the added value of the regional climate model REMO in the assessment of climate change signal over Central Africa

    Science.gov (United States)

    Fotso-Nguemo, Thierry C.; Vondou, Derbetini A.; Pokam, Wilfried M.; Djomou, Zéphirin Yepdo; Diallo, Ismaïla; Haensler, Andreas; Tchotchou, Lucie A. Djiotang; Kamsu-Tamo, Pierre H.; Gaye, Amadou T.; Tchawoua, Clément

    2017-12-01

    In this paper, the regional climate model REMO is used to investigate the added value of downscaling low resolutions global climate models (GCMs) and the climate change projections over Central Africa. REMO was forced by two GCMs (EC-Earth and MPI-ESM), for the period from 1950 to 2100 under the Representative Concentration Pathway 8.5 scenario. The performance of the REMO simulations for current climate is compared first with REMO simulation driven by ERA-Interim reanalysis, then by the corresponding GCMs in order to determine whether REMO outputs are able to effectively lead to added value at local scale. We found that REMO is generally able to better represent some aspects of the rainfall inter-annual variability, the daily rainfall intensity distribution as well as the intra-seasonal variability of the Central African monsoon, though few biases are still evident. It is also found that the boundary conditions strongly influences the spatial distribution of seasonal 2-m temperature and rainfall. From the analysis of the climate change signal from the present period 1976-2005 to the future 2066-2095, we found that all models project a warming at the end of the twenty-first century although the details of the climate change differ between REMO and the driving GCMs, specifically in REMO where we observe a general decrease in rainfall. This rainfall decrease is associated with delayed onset and anticipated recession of the Central African monsoon and a shortening of the rainy season. Small-scales variability of the climate change signal for 2-m temperature are usually smaller than that of the large-scales climate change part. For rainfall however, small-scales induce change of about 70% compared to the present climate statistics.

  8. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    Due to its intermittent and highly variable character, and the modeling parameterizations used, precipitation is one of the least well reproduced hydrologic variables by both Global Climate Models (GCMs) and Regional Climate Models (RCMs). This is especially the case at a regional level (where hydrologic risks are assessed) and at small temporal scales (e.g. daily) used to run hydrologic models. In an effort to remedy those shortcomings and assess the effect of climate change on rainfall statistics at hydrologically relevant scales, Langousis and Kaleris (2013) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables. The developed downscaling scheme was tested using atmospheric data from the ERA-Interim archive (http://www.ecmwf.int/research/era/do/get/index), and daily rainfall measurements from western Greece, and was proved capable of reproducing several statistical properties of actual rainfall records, at both annual and seasonal levels. This was done solely by conditioning rainfall simulation on a vector of atmospheric predictors, properly selected to reflect the relative influence of upper-air variables on ground-level rainfall statistics. In this study, we apply the developed framework for conditional rainfall simulation using atmospheric data from different GCM/RCM combinations. This is done using atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com), and daily rainfall measurements for an intermediate-sized catchment in Italy; i.e. the Flumendosa catchment. Since GCM/RCM products are suited to reproduce the local climatology in a statistical sense (i.e. in terms of relative frequencies), rather than ensuring a one-to-one temporal correspondence between observed and simulated fields (i.e. as is the case for ERA-interim reanalysis data), we proceed in three steps: a) we use statistical tools to establish a linkage between ERA-Interim upper-air atmospheric forecasts and

  9. Preliminary study on impact assessment of climate change on building risks induced by typhoons in Japan

    DEFF Research Database (Denmark)

    Nishijima, Kazuyoshi; Maruyama, Takashi; Graf, Mathias

    The present paper investigates possible impacts of the climate change on building risks caused by typhoons. The inputs to this investigation are: (1) outcomes from the numerical simulations with a Global Climate Model (GCM) developed under the framework of the KAKUSHIN program, (2) statistics...... and the future climate subject to the climate change, whereas the other inputs are utilized to develop a model for structural performance of buildings. Taking basis in these models, changes of building risks under the climate change are investigated. The result shows that the building risks slightly decrease...... on building damage in the event of Typhoon Songda, and (3) numerical simulation of the wind field induced by the typhoon Songda with the JMA Non- Hydrostatic Model (JMA-NHM). The first input is utilized to develop two sets of probabilistic typhoon models; i.e. corresponding to the current climate...

  10. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  11. Climate Change Law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan

    2016-01-01

    This book brings together over seventy fifty authors for a comprehensive examination of the emerging global regime of climate change law. Despite the relative youth of climate change law, we can already begin to see the outlines of legal regimes addressing climate change mitigation and adaptation

  12. Health and vitality assessment of two common pine species in the context of climate change in southern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sicard, Pierre, E-mail: pierre.sicard@acri-st.fr [ACRI-ST, 260 route du Pin Montard, BP 234, 06904 Sophia Antipolis cedex (France); Dalstein-Richier, Laurence [GIEFS (Groupe International d’Etudes des Forêts Sud-européennes) – 60, Avenue des Hespérides, 06300 Nice (France)

    2015-02-15

    The Mediterranean Basin is expected to be more strongly affected by ongoing climate change than most other regions of the earth. The South-eastern France can be considered as case study for assessing global change impacts on forests. Based on non-parametric statistical tests, the climatic parameters (temperature, relative humidity, rainfall, global radiation) and forest-response indicators (crown defoliation, discoloration and visible foliar ozone injury) of two pine species (Pinus halepensis and Pinus cembra) were analyzed. In the last 20 years, the trend analyses reveal a clear hotter and drier climate along the coastline and slightly rainier inland. In the current climate change context, a reduction in ground-level ozone (O{sub 3}) was found at remote sites and the visible foliar O{sub 3} injury decreased while deterioration of the crown conditions was observed likely due to a drier and warmer climate. Clearly, if such climatic and ecological changes are now being detected when the climate, in South-eastern France, has warmed in the last 20 years (+0.46–1.08 °C), it can be expected that many more impacts on tree species will occur in response to predicted temperature changes by 2100 (+1.95–4.59 °C). Climate change is projected to reduce the benefits of O{sub 3} precursor emissions controls leading to a higher O{sub 3} uptake. However, the drier and warmer climate should induce a soil drought leading to a lower O{sub 3} uptake. These two effects, acting together in an opposite way, could mitigate the harmful impacts of O{sub 3} on forests. The development of coordinated emission abatement strategies is useful to reduce both climate change and O{sub 3} pollution. Climate change will create additional challenges for forest management with substantial socio-economic and biological diversity impacts. However, the development of future sustainable and adaptive forest management strategies has the potential to reduce the vulnerability of forest species to climate

  13. Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system

    Science.gov (United States)

    Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál

    2018-01-01

    In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.

  14. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers.

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro

    2014-04-15

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.

  15. Assessing Student Learning About Climate Change With Earth System Place-Based Geospatial Data

    Science.gov (United States)

    Zalles, D. R.; Krumhansl, R. A.; Acker, J. G.; Manitakos, J.; Elston, A.

    2012-12-01

    Powerful web-based data sets about geospatially situated Earth system phenomena are now available for analysis by the general public, including for any teacher or set of students who have the requisite skills to partake in the analyses. Unfortunately there exist impediments to successful use of these data. Teachers and students may lack (1) readiness to use the software interfaces for querying and representing the data, (2) needed scientific practice skills such as interpreting geographic information system-based maps and time series plots, and (3) needed understandings of the fundamental scientific concepts to make sense of the data. Hence, to evaluate any program designed to engage students and teachers with these data resources, there need to be assessment strategies to check for understanding. Assessment becomes the key to identifying learning needs and intervening appropriately with additional task scaffolding or other forms of instructional support. The paper will describe contrasting assessment strategies being carried out in two climate change education projects funded by NASA and NSF. The NASA project, Data Enhanced Investigations for Climate Change Education (DICCE), brings data from NASA satellite missions to the classroom. A bank of DICCE assessment items is being developed to measure students' abilities to transfer their skills in analyzing data about their local region to other regions of the world. Teachers choose pre-post assessment items for variables of Earth system phenomena that they target in their instruction. The data vary depending on what courses the teachers are teaching. For example, Earth science teachers are likely to choose data about atmospheric phenomena and biology teachers are more likely to choose land cover data. The NSF project, Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (STORE), provides to teachers recent climatological and vegetation data about "study areas" in Central

  16. Assessment of climate change impacts on streamflow dynamics in the headwaters of the Amazon River basin

    Science.gov (United States)

    Yoon, Y.; Beighley, E.

    2015-12-01

    The Amazon River basin is the largest watershed in the world containing thousands of tributaries. Although the mainstream and its larger tributaries have been the focus on much research, there has been few studies focused on the hydrodynamics of smaller rivers in the foothills of the Andes Mountains. These smaller rivers are of particular importance for the fishery industry because fish migrate up these headwater rivers to spawn. During the rainy season, fish wait for storm event to increase water depths to a sufficient level for their passage. Understanding how streamflow dynamics will change in response to future conditions is vital for the sustainable management of the fishery industry. In this paper, we focus on improving the accuracy of river discharge estimates on relatively small-scale sub-catchments (100 ~ 40,000 km2) in the headwaters of the Amazon River basin. The Hillslope River Routing (HRR) hydrologic model and remotely sensed datasets are used. We provide annual runoff, seasonal patterns, and daily discharge characteristics for 81 known migration reaches. The model is calibrated for the period 2000-2014 and climate forecasts for the period 2070-2100 are used to assess future changes in streamflow dynamics. The forecasts for the 2070 to 2100 period were obtained by selecting 5 climate models from IPCC's Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) based on their ability to represent the main aspects of recent (1970 to 2000) Amazon climate. The river network for the HRR model is developing using surface topography based on the SRTM digital elevation model. Key model forcings include precipitation (TRMM 3B42) and evapotranspiration (MODIS ET, MOD16). Model parameters for soil depth, hydraulic conductivity, runoff coefficients and lateral routing were initially approximated based on literature values and adjusted during calibration. Measurements from stream gauges located near the reaches of interest were used for

  17. Adapting crop rotations to climate change in regional impact modelling assessments.

    Science.gov (United States)

    Teixeira, Edmar I; de Ruiter, John; Ausseil, Anne-Gaelle; Daigneault, Adam; Johnstone, Paul; Holmes, Allister; Tait, Andrew; Ewert, Frank

    2018-03-01

    The environmental and economic sustainability of future cropping systems depends on adaptation to climate change. Adaptation studies commonly rely on agricultural systems models to integrate multiple components of production systems such as crops, weather, soil and farmers' management decisions. Previous adaptation studies have mostly focused on isolated monocultures. However, in many agricultural regions worldwide, multi-crop rotations better represent local production systems. It is unclear how adaptation interventions influence crops grown in sequences. We develop a catchment-scale assessment to investigate the effects of tactical adaptations (choice of genotype and sowing date) on yield and underlying crop-soil factors of rotations. Based on locally surveyed data, a silage-maize followed by catch-crop-wheat rotation was simulated with the APSIM model for the RCP 8.5 emission scenario, two time periods (1985-2004 and 2080-2100) and six climate models across the Kaituna catchment in New Zealand. Results showed that direction and magnitude of climate change impacts, and the response to adaptation, varied spatially and were affected by rotation carryover effects due to agronomical (e.g. timing of sowing and harvesting) and soil (e.g. residual nitrogen, N) aspects. For example, by adapting maize to early-sowing dates under a warmer climate, there was an advance in catch crop establishment which enhanced residual soil N uptake. This dynamics, however, differed with local environment and choice of short- or long-cycle maize genotypes. Adaptation was insufficient to neutralize rotation yield losses in lowlands but consistently enhanced yield gains in highlands, where other constraints limited arable cropping. The positive responses to adaptation were mainly due to increases in solar radiation interception across the entire growth season. These results provide deeper insights on the dynamics of climate change impacts for crop rotation systems. Such knowledge can be used

  18. Health and vitality assessment of two common pine species in the context of climate change in southern Europe.

    Science.gov (United States)

    Sicard, Pierre; Dalstein-Richier, Laurence

    2015-02-01

    The Mediterranean Basin is expected to be more strongly affected by ongoing climate change than most other regions of the earth. The South-eastern France can be considered as case study for assessing global change impacts on forests. Based on non-parametric statistical tests, the climatic parameters (temperature, relative humidity, rainfall, global radiation) and forest-response indicators (crown defoliation, discoloration and visible foliar ozone injury) of two pine species (Pinus halepensis and Pinus cembra) were analyzed. In the last 20 years, the trend analyses reveal a clear hotter and drier climate along the coastline and slightly rainier inland. In the current climate change context, a reduction in ground-level ozone (O3) was found at remote sites and the visible foliar O3 injury decreased while deterioration of the crown conditions was observed likely due to a drier and warmer climate. Clearly, if such climatic and ecological changes are now being detected when the climate, in South-eastern France, has warmed in the last 20 years (+0.46-1.08°C), it can be expected that many more impacts on tree species will occur in response to predicted temperature changes by 2100 (+1.95-4.59°C). Climate change is projected to reduce the benefits of O3 precursor emissions controls leading to a higher O3 uptake. However, the drier and warmer climate should induce a soil drought leading to a lower O3 uptake. These two effects, acting together in an opposite way, could mitigate the harmful impacts of O3 on forests. The development of coordinated emission abatement strategies is useful to reduce both climate change and O3 pollution. Climate change will create additional challenges for forest management with substantial socio-economic and biological diversity impacts. However, the development of future sustainable and adaptive forest management strategies has the potential to reduce the vulnerability of forest species to climate change. Copyright © 2014 Elsevier Inc. All

  19. Updating soil CO2 emission experiments to assess climate change effects and extracellular soil respiration

    Science.gov (United States)

    Vidal Vazquez, Eva; Paz Ferreiro, Jorge

    2014-05-01

    Experimental work is an essential component in training future soil scientists. Soil CO2 emission is a key issue because of the potential impacts of this process on the greenhouse effect. The amount of organic carbon stored in soils worldwide is about 1600 gigatons (Gt) compared to 750 Gt in the atmosphere mostly in the form of CO2. Thus, if soil respiration increased slightly so that just 10% of the soil carbon pool was converted to CO2, atmospheric CO2 concentrations in the atmosphere could increase by one-fifth. General circulation model predictions indicate atmosphere warming between 2 and 5°C (IPCC 2007) and precipitation changes ranging from about -15 to +30%. Traditionally, release of CO2 was thought to occur only in an intracellular environment; however, recently CO2 emissions have been in irradiated soil, in the absence of microorganisms (Maire et al., 2013). Moreover, soil plays a role in the stabilization of respiration enzymes promoting CO2 release after microorganism death. Here, we propose to improve CO2 emission experiments commonly used in soil biology to investigate: 1) effects of climatic factors on soil CO2 emissions, and 2) rates of extracellular respiration in soils and how these rates are affected by environmental factors. Experiment designed to assess the effect of climate change can be conducted either in field conditions under different ecosystems (forest, grassland, cropland) or in a greenhouse using simple soil chambers. The interactions of climate change in CO2 emissions are investigated using climate-manipulation experiment that can be adapted to field or greenhouse conditions (e.g. Mc Daniel et al., 2013). The experimental design includes a control plot (without soil temperature and rain manipulation) a warming treatment as well as wetting and/or drying treatments. Plots are warmed to the target temperature by procedures such as infrared heaters (field) or radiant cable (greenhouse). To analyze extracellular respiration, rates of CO2

  20. The scaling law of climate change and its relevance to assessing (palaeo)biological responses

    Science.gov (United States)

    Kiessling, Wolfgang; Eichenseer, Kilian

    2014-05-01

    It is often argued that current rates of climate change are unprecedented in the geological past. At the same time, the magnitudes of change were often much greater in deep time than they are in history. The most severe global warming in the Phanerozoic, with dramatic consequences for life, probably occurred across the Permian-Triassic (P-T) boundary when an increase of tropical water temperatures of 15° C has been observed to occur over a timespan 0.8 myr (Sun et al. 2012), whereas global ocean warming over the last 50 years was 0.35° C (Burrows et al. 2011). When transforming these data into rates of change the P-T rate was roughly 370 times smaller than the current rate. We argue that the smaller rates of change inferred from geological proxy records are due to a scaling effect, that is, rates of climate change generally decrease with timespan of observation. We compiled from the published literature data on measured or inferred temperature changes and the timespans over which these changes were assessed. Our compilation currently comprises 120 values and covers timespans from 20 to 107 years. A log-log plot of timespan versus rate of temperature change depicts a highly significant correlation (r2 = 0.95) of a power-law relationship with an exponent of -0.87. Warming trends show a slightly lower exponent (-0.84) than cooling trends (-0.89) but the explained variance is better for the scaling of warming trends. Importantly, the scaled warming trend across the P-T boundary is higher than the current rates of warming. Similar scaling effects are well explored for sediment accumulation rates (Sadler 1981) and evolutionary rates (Gingerich 1993). These have been interpreted as being due to breaks in sedimentation and periods of stasis or transient reversals, respectively. In case of climate change, transient reversals in general trends are the most likely explanation for the scaling relationship. Even relatively rapid intervals of warming, such as the Pleistocene

  1. Health risks of climate change: An assessment of uncertainties and its implications for adaption policies

    NARCIS (Netherlands)

    Wardekker, J.A.; de Jong, A.; van Bree, L.; Turkenburg, W.C.; van der Sluijs, J.P.

    2012-01-01

    Background: Projections of health risks of climate change are surrounded with uncertainties in knowledge. Understanding of these uncertainties will help the selection of appropriate adaptation policies. Methods: We made an inventory of conceivable health impacts of climate change, explored the type

  2. An Assessment of the Impact of Climate Change on Plant Species ...

    African Journals Online (AJOL)

    Lazie

    changing climate. In southern Africa in general and Zimbabwe in particular, there is still paucity of scientific understanding of climate change's impact on vegetative species diversity, specifically species ...... Hughes, L. 2000 'Biological consequences of global warming: is the signal already apparent'? Trends in Ecology and ...

  3. Assessing climate change impacts and adaptation strategies for smallholder agricultural systems in Uganda

    NARCIS (Netherlands)

    Bagamba, F.; Bashaasha, B.; Claessens, L.F.G.; Antle, J.

    2012-01-01

    The debate on whether climate change will impact on peoples’ livelihoods and, hence, the need to act is essentially over and has instead shifted to the development of strategies needed by different regions and countries to adapt to climate change effects. However, there is still scanty information

  4. Assessing climate change impacts on soil salinity development with proximal and satellite sensors

    Science.gov (United States)

    Changes in climate patterns have dramatically influenced some agricultural areas. Examples include the historic 5-year drought in California’s San Joaquin Valley (SJV) and the 20-year above average annual rainfall in the Red River Valley (RRV) of the Midwestern USA. Climate change may have impacted ...

  5. Modeling Deoxynivalenol Contamination of Wheat in Northwestern Europe for Climate Change Assessments

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Goedhart, P.W.; Elen, O.; Börjesson, T.; Hietaniemi, V.; Booij, C.J.H.

    2012-01-01

    Climate change will affect mycotoxin contamination of feed and food. Mathematical models for predicting mycotoxin concentrations in cereal grains are useful for estimating the impact of climate change on these toxins. The objective of the current study was to construct a descriptive model to

  6. Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities

    Science.gov (United States)

    Y. Serengil; A. Augustaitis; Andrzej Bytnerowicz; Nancy Grulke; A.R. Kozovitz; R. Matyssek; G. Müller-Starck; M. Schaub; G. Wieser; A.A. Coskun; E. Paoletti

    2011-01-01

    Climate change and air pollution are two of the anthropogenic stressors that require international collaboration. Influence mechanisms and combating strategies towards them have similarities to some extent. Impacts of air pollution and climate change have long been studied under IUFRO Research Group 7.01 and state of the art findings are presented at biannual meetings...

  7. A robust impact assessment that informs actionable climate change adaptation: future sunburn browning risk in apple

    Science.gov (United States)

    Webb, Leanne; Darbyshire, Rebecca; Erwin, Tim; Goodwin, Ian

    2017-05-01

    Climate change impact assessments are predominantly undertaken for the purpose of informing future adaptation decisions. Often, the complexity of the methodology hinders the actionable outcomes. The approach used here illustrates the importance of considering uncertainty in future climate projections, at the same time providing robust and simple to interpret information for decision-makers. By quantifying current and future exposure of Royal Gala apple to damaging temperature extremes across ten important pome fruit-growing locations in Australia, differences in impact to ripening fruit are highlighted, with, by the end of the twenty-first century, some locations maintaining no sunburn browning risk, while others potentially experiencing the risk for the majority of the January ripening period. Installation of over-tree netting can reduce the impact of sunburn browning. The benefits from employing this management option varied across the ten study locations. The two approaches explored to assist decision-makers assess this information (a) using sunburn browning risk analogues and (b) through identifying hypothetical sunburn browning risk thresholds, resulted in varying recommendations for introducing over-tree netting. These recommendations were location and future time period dependent with some sites showing no benefit for sunburn protection from nets even by the end of the twenty-first century and others already deriving benefits from employing this adaptation option. Potential best and worst cases of sunburn browning risk and its potential reduction through introduction of over-tree nets were explored. The range of results presented highlights the importance of addressing uncertainty in climate projections that result from different global climate models and possible future emission pathways.

  8. A robust impact assessment that informs actionable climate change adaptation: future sunburn browning risk in apple.

    Science.gov (United States)

    Webb, Leanne; Darbyshire, Rebecca; Erwin, Tim; Goodwin, Ian

    2017-05-01

    Climate change impact assessments are predominantly undertaken for the purpose of informing future adaptation decisions. Often, the complexity of the methodology hinders the actionable outcomes. The approach used here illustrates the importance of considering uncertainty in future climate projections, at the same time providing robust and simple to interpret information for decision-makers. By quantifying current and future exposure of Royal Gala apple to damaging temperature extremes across ten important pome fruit-growing locations in Australia, differences in impact to ripening fruit are highlighted, with, by the end of the twenty-first century, some locations maintaining no sunburn browning risk, while others potentially experiencing the risk for the majority of the January ripening period. Installation of over-tree netting can reduce the impact of sunburn browning. The benefits from employing this management option varied across the ten study locations. The two approaches explored to assist decision-makers assess this information (a) using sunburn browning risk analogues and (b) through identifying hypothetical sunburn browning risk thresholds, resulted in varying recommendations for introducing over-tree netting. These recommendations were location and future time period dependent with some sites showing no benefit for sunburn protection from nets even by the end of the twenty-first century and others already deriving benefits from employing this adaptation option. Potential best and worst cases of sunburn browning risk and its potential reduction through introduction of over-tree nets were explored. The range of results presented highlights the importance of addressing uncertainty in climate projections that result from different global climate models and possible future emission pathways.

  9. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  10. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  11. Future integrated aquifer vulnerability assessment considering land use / land cover and climate change using DRASTIC and SWAT

    Science.gov (United States)

    Jang, W.; Engel, B.; Chaubey, I.

    2015-12-01

    Climate change causes significant changes to temperature regimes and precipitation patterns across the world. Such alterations in climate pose serious risks for not only inland freshwater ecosystems but also groundwater systems, and may adversely affect numerous critical services they provide to humans. All groundwater results from precipitation, and precipitation is affected by climate change. Climate change is also influenced by land use / land cover (LULC) change and vice versa. According to Intergovernmental Panel on Climate Change (IPCC) reports, climate change is caused by global warming which is generated by the increase of greenhouse gas (GHG) emissions in the atmosphere. LULC change is a major driving factor causing an increase in GHG emissions. LULC change data (years 2006-2100) will be produced by the Land Transformation Model (LTM) which simulates spatial patterns of LULC change over time. MIROC5 (years 2006-2100) will be obtained considering GCMs and ensemble characteristics such as resolution and trend of temperature and precipitation which is a consistency check with observed data from local weather stations and historical data from GCMs output data. Thus, MIROC5 will be used to account for future climate change scenarios and relationship between future climate change and alteration of groundwater quality in this study. For efficient groundwater resources management, integrated aquifer vulnerability assessments (= intrinsic vulnerability + hazard potential assessment) are required. DRASTIC will be used to evaluate intrinsic vulnerability, and aquifer hazard potential will be evaluated by Soil and Water Assessment Tool (SWAT) which can simulate pollution potential from surface and transport properties of contaminants. Thus, for effective integrated aquifer vulnerability assessment for LULC and climate change in the Midwestern United States, future projected LULC and climate data from the LTM and GCMs will be incorporated with DRASTIC and SWAT. It is

  12. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal.

    Science.gov (United States)

    Bajracharya, Ajay Ratna; Bajracharya, Sagar Ratna; Shrestha, Arun Bhakta; Maharjan, Sudan Bikash

    2018-06-01

    The Hindu Kush-Himalayan region is an important global freshwater resource. The hydrological regime of the region is vulnerable to climatic variations, especially precipitation and temperature. In our study, we modelled the impact of climate change on the water balance and hydrological regime of the snow dominated Kaligandaki Basin. The Soil and Water Assessment Tool (SWAT) was used for a future projection of changes in the hydrological regime of the Kaligandaki basin based on Representative Concentration Pathways Scenarios (RCP 4.5 and RCP 8.5) of ensemble downscaled Coupled Model Intercomparison Project's (CMIP5) General Circulation Model (GCM) outputs. It is predicted to be a rise in the average annual temperature of over 4°C, and an increase in the average annual precipitation of over 26% by the end of the 21st century under RCP 8.5 scenario. Modeling results show these will lead to significant changes in the basin's water balance and hydrological regime. In particular, a 50% increase in discharge is expected at the outlet of the basin. Snowmelt contribution will largely be affected by climate change, and it is projected to increase by 90% by 2090.Water availability in the basin is not likely to decrease during the 21st century. The study demonstrates that the important water balance components of snowmelt, evapotranspiration, and water yield at higher elevations in the upper and middle sub-basins of the Kaligandaki Basin will be most affected by the increasing temperatures and precipitation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Assessment of future impacts of potential climate change scenarios on aquifer recharge in continental Spain

    Science.gov (United States)

    Pulido-Velazquez, David; Collados-Lara, Antonio-Juan; Alcalá, Francisco J.

    2017-04-01

    This research proposes and applies a method to assess potential impacts of future climatic scenarios on aquifer rainfall recharge in wide and varied regions. The continental Spain territory was selected to show the application. The method requires to generate future series of climatic variables (precipitation, temperature) in the system to simulate them within a previously calibrated hydrological model for the historical data. In a previous work, Alcalá and Custodio (2014) used the atmospheric chloride mass balance (CMB) method for the spatial evaluation of average aquifer recharge by rainfall over the whole of continental Spain, by assuming long-term steady conditions of the balance variables. The distributed average CMB variables necessary to calculate recharge were estimated from available variable-length data series of variable quality and spatial coverage. The CMB variables were regionalized by ordinary kriging at the same 4976 nodes of a 10 km x 10 km grid. Two main sources of uncertainty affecting recharge estimates (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables and from mapping were segregated. Based on these stationary results we define a simple empirical rainfall-recharge model. We consider that spatiotemporal variability of rainfall and temperature are the most important climatic feature and variables influencing potential aquifer recharge in natural regime. Changes in these variables can be important in the assessment of future potential impacts of climatic scenarios over spatiotemporal renewable groundwater resource. For instance, if temperature increases, actual evapotranspitration (EA) will increases reducing the available water for others groundwater balance components, including the recharge. For this reason, instead of defining an infiltration rate coefficient that relates precipitation (P) and recharge we propose to define a transformation function that allows estimating the spatial

  14. Impact assessment of climate change on tourism in the Pacific small islands based on the database of long-term high-resolution climate ensemble experiments

    Science.gov (United States)

    Watanabe, S.; Utsumi, N.; Take, M.; Iida, A.

    2016-12-01

    This study aims to develop a new approach to assess the impact of climate change on the small oceanic islands in the Pacific. In the new approach, the change of the probabilities of various situations was projected with considering the spread of projection derived from ensemble simulations, instead of projecting the most probable situation. The database for Policy Decision making for Future climate change (d4PDF) is a database of long-term high-resolution climate ensemble experiments, which has the results of 100 ensemble simulations. We utilized the database for Policy Decision making for Future climate change (d4PDF), which was (a long-term and high-resolution database) composed of results of 100 ensemble experiments. A new methodology, Multi Threshold Ensemble Assessment (MTEA), was developed using the d4PDF in order to assess the impact of climate change. We focused on the impact of climate change on tourism because it has played an important role in the economy of the Pacific Islands. The Yaeyama Region, one of the tourist destinations in Okinawa, Japan, was selected as the case study site. Two kinds of impact were assessed: change in probability of extreme climate phenomena and tourist satisfaction associated with weather. The database of long-term high-resolution climate ensemble experiments and the questionnaire survey conducted by a local government were used for the assessment. The result indicated that the strength of extreme events would be increased, whereas the probability of occurrence would be decreased. This change should result in increase of the number of clear days and it could contribute to improve the tourist satisfaction.

  15. Probabilistic assessments of climate change impacts on durum wheat in the Mediterranean region

    Directory of Open Access Journals (Sweden)

    R. Ferrise

    2011-05-01

    Full Text Available Recently, the availability of multi-model ensemble prediction methods has permitted a shift from a scenario-based approach to a risk-based approach in assessing the effects of climate change. This provides more useful information to decision-makers who need probability estimates to assess the seriousness of the projected impacts.

    In this study, a probabilistic framework for evaluating the risk of durum wheat yield shortfall over the Mediterranean Basin has been exploited. An artificial neural network, trained to emulate the outputs of a process-based crop growth model, has been adopted to create yield response surfaces which are then overlaid with probabilistic projections of future temperature and precipitation changes in order to estimate probabilistic projections of future yields. The risk is calculated as the relative frequency of projected yields below a selected threshold.

    In contrast to previous studies, which suggest that the beneficial effects of elevated atmospheric CO2 concentration over the next few decades would outweigh the detrimental effects of the early stages of climatic warming and drying, the results of this study are of greater concern.

  16. Assessing extreme values for water management purposes in the context of climate change

    Science.gov (United States)

    Kallache, M.

    2012-04-01

    Extreme events are often defined as rare events, for example floods or heavy precipitation events. Then very extreme events cannot be counted any more, and the use of a theoretical distribution to extrapolate to yet not observed quantiles is a general approach. Extreme value theory (EVT) deals with the specific characteristics of extreme values, for example their asymmetric distribution, and provides according theoretical distributions. In hydrology, the use of EVT has a long tradition. A prominent example is the estimation of 100-year flood return levels for water management purposes. It is likely that changes to hydrological extremes due to climate change will have a great impact on human society in the future: Temperature increase might amplify the occurrence of heavy precipitation events due to an increased water-holding capacity of the atmosphere. On the other hand, regions, which are already vulnerable to water stress, might have to cope with an intensification of droughts. The adequate description of the characteristics of extreme hydrological events and their changes is thus a core element of risk assessment and water management. In this talk, examples of the use of EVT to assess hydrological extremes are given. Results for flood occurrence in Southern Germany and droughts in Central Spain will be presented. A focus will be set on the treatment of temporal or spatial evolving extremes, and the assessment of future changes.

  17. Multi-disciplinary assessments of climate change impacts on agriculture to support adaptation decision making in developing countries

    Science.gov (United States)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.

  18. Using Prediction Markets to Generate Probability Density Functions for Climate Change Risk Assessment

    Science.gov (United States)

    Boslough, M.

    2011-12-01

    Climate-related uncertainty is traditionally presented as an error bar, but it is becoming increasingly common to express it in terms of a probability density function (PDF). PDFs are a necessary component of probabilistic risk assessments, for which simple "best estimate" values are insufficient. Many groups have generated PDFs for climate sensitivity using a variety of methods. These PDFs are broadly consistent, but vary significantly in their details. One axiom of the verification and validation community is, "codes don't make predictions, people make predictions." This is a statement of the fact that subject domain experts generate results using assumptions within a range of epistemic uncertainty and interpret them according to their expert opinion. Different experts with different methods will arrive at different PDFs. For effective decision support, a single consensus PDF would be useful. We suggest that market methods can be used to aggregate an ensemble of opinions into a single distribution that expresses the consensus. Prediction markets have been shown to be highly successful at forecasting the outcome of events ranging from elections to box office returns. In prediction markets, traders can take a position on whether some future event will or will not occur. These positions are expressed as contracts that are traded in a double-action market that aggregates price, which can be interpreted as a consensus probability that the event will take place. Since climate sensitivity cannot directly be measured, it cannot be predicted. However, the changes in global mean surface temperature are a direct consequence of climate sensitivity, changes in forcing, and internal variability. Viable prediction markets require an undisputed event outcome on a specific date. Climate-related markets exist on Intrade.com, an online trading exchange. One such contract is titled "Global Temperature Anomaly for Dec 2011 to be greater than 0.65 Degrees C." Settlement is based

  19. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    Science.gov (United States)

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    Science.gov (United States)

    Ma, X.; Zheng, J. G.; Goldstein, J.; Duggan, B.; Xu, J.; Du, C.; Akkiraju, A.; Aulenbach, S.; Tilmes, C.; Fox, P. A.

    2013-12-01

    The periodical National Climate Assessment (NCA) of the US Global Change Research Program (USGCRP) [1] produces reports about findings of global climate change and the impacts of climate change on the United States. Those findings are of great public and academic concerns and are used in policy and management decisions, which make the provenance information of findings in those reports especially important. The USGCRP is developing a Global Change Information System (GCIS), in which the NCA reports and associated provenance information are the primary records. We were modeling and developing Semantic Web applications for the GCIS. By applying a use case-driven iterative methodology [2], we developed an ontology [3] to represent the content structure of a report and the associated provenance information. We also mapped the classes and properties in our ontology into the W3C PROV-O ontology [4] to realize the formal presentation of provenance. We successfully implemented the ontology in several pilot systems for a recent National Climate Assessment report (i.e., the NCA3). They provide users the functionalities to browse and search provenance information with topics of interest. Provenance information of the NCA3 has been made structured and interoperable by applying the developed ontology. Besides the pilot systems we developed, other tools and services are also able to interact with the data in the context of the 'Web of data' and thus create added values. Our research shows that the use case-driven iterative method bridges the gap between Semantic Web researchers and earth and environmental scientists and is able to be deployed rapidly for developing Semantic Web applications. Our work also provides first-hand experience for re-using the W3C PROV-O ontology in the field of earth and environmental sciences, as the PROV-O ontology is recently ratified (on 04/30/2013) by the W3C as a recommendation and relevant applications are still rare. [1] http

  1. Benthic estuarine communities in Brazil: moving forward to long term studies to assess climate change impacts

    Directory of Open Access Journals (Sweden)

    Angelo Fraga Bernardino

    Full Text Available Abstract Estuaries are unique coastal ecosystems that sustain and provide essential ecological services for mankind. Estuarine ecosystems include a variety of habitats with their own sediment-fauna dynamics, all of them globally undergoing alteration or threatened by human activities. Mangrove forests, saltmarshes, tidal flats and other confined estuarine systems are under increasing stress due to human activities leading to habitat and species loss. Combined changes in estuarine hydromorphology and in climate pose severe threats to estuarine ecosystems on a global scale. The ReBentos network is the first integrated attempt in Brazil to monitor estuarine changes in the long term to detect and assess the effects of global warming. This paper is an initial effort of ReBentos to review current knowledge on benthic estuarine ecology in Brazil. We herein present and synthesize all published work on Brazilian estuaries that has focused on the description of benthic communities and related ecological processes. We then use current data on Brazilian estuaries and present recommendations for future studies to address climate change effects, suggesting trends for possible future research and stressing the need for long-term datasets and international partnerships.

  2. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  3. Assessment of the Adaptation Strategiesin Rainfed Chickpea in Response to Future Climate Change in Zanjan Province

    Directory of Open Access Journals (Sweden)

    Amir Hajarpoor

    2016-11-01

    Full Text Available Introduction Chickpea (Cicer arietinum L. is cultivated on alarge scale in arid and semiarid environments. Terminal drought and heat stress, among other abiotic and biotic stresses, are the major constraints of yield in most regions of chickpea production. The study of the effects of climate change could help to develop adaptation strategies to promote and stabilize crop yield. This research was aimed to assess adoption strategies in rainfed chickpea in response to Zanjan province’s climate change using a crop simulation model along with providing simulated yield maps using geographical information system (GIS. Materials and methods To study the effects of climate change and simulation the adaptation strategies, the model of Soltani and Sinclair (Soltani & Sinclair, 2011 was used. This model simulates phenological development, leaf development and senescence, mass partitioning, plant nitrogen balance, yield formation and soil water balance. For each location, a baseline period of daily weather data was available (Table 1. Investigated scenarios were historical climate (control and future climate scenarios that included both direct effects of doubling CO2 (350 to 700 ppm and its indirect effects (10% reduced rainfall, 4ºC increase in temperature. The crop model was performed for the different years of baseline period for current and future climate under typical management and cultivar and also under three adaptation strategies in the future climate including Management adaptation (M, Genetic adaptation (G and a combination of both Management and Genetic adaptation (M & G as described below (Table 2: Management – In various studies changing the planting dates as the simplest and least-cost adaptation strategy has been emphasized (Luo et al., 2009; hence a shift in planting dates i.e. sowing 15 days in advance was explored in this study to reduce the risk of the late season drought. Genetics – Changes in genotype have been suggested to be

  4. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  5. Economics assessment and impact of climate change on rice production in selected granary area in Malaysia

    OpenAIRE

    Engku Ariff, Engku Elini

    2016-01-01

    Two of the major challenges to agriculture are the effective management of inputs involved in production and the impact of climate change on production. In Malaysia, as in other countries, input costs across rice farms within a particular year are highly variable, suggesting that there is scope for improving the efficiency of production. Climate change, particularly in the form of changed temperatures and rainfall, is likely to affect rice yields. In this thesis, we focus first on technical e...

  6. An Assessment of the evidence of Climate change in Bauchi, Nigeria

    African Journals Online (AJOL)

    The study aimed at identifying the evidences of climate change in Bauchi. The emphasis was to find out if there are changes on the temperature and rainfall over time; to what extent these changes occur and likely impact these changes will have in Bauchi. The study was done in Bauchi town, Bauchi state of northeastern ...

  7. Assessing Potential Climate Change Effects on Loblolly Pine Growth: A Probabilistic Regional Modeling Approach

    Science.gov (United States)

    Peter B. Woodbury; James E. Smith; David A. Weinstein; John A. Laurence

    1998-01-01

    Most models of the potential effects of climate change on forest growth have produced deterministic predictions. However, there are large uncertainties in data on regional forest condition, estimates of future climate, and quantitative relationships between environmental conditions and forest growth rate. We constructed a new model to analyze these uncertainties...

  8. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    the effects of climate change on the current Iberian power system. The Iberian power system is a competitive power market where power price is determined by power supply and demand, and which can be simulated by a market equilibrium model considering the power demand function and the installed capacities...... and marginal costs of the power producers. Two effects of climate change on the power system were studied: changes in the hydropower production caused by changes in precipitation and temperature, and changes in the electricity demand over the year caused by temperature changes. A rainfall-runoff model......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...

  9. Assessing the Use of Metaphors to Facilitate and Improve the Effectiveness of Climate Change Communication

    Science.gov (United States)

    Walsh-Thomas, J.; Maibach, E.

    2014-12-01

    Metaphors are sometimes used in science communication to explain unfamiliar scientific concepts and processes in more familiar terms. Empirical research has shown that metaphors can help audiences better understand complicated scientific concepts. A growing number of metaphors are used to explain various climate science concepts, but the only empirical evaluation of climate metaphors to date (van der Linden et al, 2014, Climatic Change) found that medical and bridge safety metaphors did not enhance the effectiveness of a simple corrective statement about the scientific consensus on human-caused climate change. Drawing on a recent meta-analysis by Sopory and Dillard (2002, Hum Commun. Res.), we will briefly review what is known about appropriate metaphor usage in communicating scientific concepts. We will also present preliminary findings from an experiment currently underway to further explain the conditions in which metaphors are likely to help in communicating climate science concepts. We hypothesize that metaphors will be more effective in communicating high complexity climate science concepts that are less easily understood by the public than more easily understood low complexity concepts (such as scientific consensus on climate change). We also hypothesize that the more familiar people are with the referent (performance enhancing drugs in baseball is a metaphor about "the climate system on steroids"), the more effective the metaphor will be. To test these hypotheses, we are randomly assigning ~1000 adults - approximately representative of the US adult population - to read one brief passage in which one of four relatively simple or complex climate concepts is presented and explained with or without a metaphor. The outcome measures will include climate change belief, concern, knowledge, and involvement. This study is intended to add to the knowledge base about use of metaphors in science communication, and provide practical advice to climate communicators.

  10. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    Science.gov (United States)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2017-04-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  11. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  12. Climate Change and Your National Forest: Assessing the potential effects of climate change on the El Yunque National Forest

    Science.gov (United States)

    L.N. Jennings; E.A. Treasure; S.G. McNulty

    2013-01-01

    Forestlands across the world are experiencing increased threats from fire, insect and plant invasions, disease, extreme weather, and drought. Scientists project increases in temperature and changes in rainfall patterns that can make these threats occur more often, with more intensity, and/or for longer durations. Although many of the effects of future changes are...

  13. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    Science.gov (United States)

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  14. Assessing climate change-robustness of protected area management plans—The case of Germany

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L.

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lowe